

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

An implementation methodology for using

concurrent and collaborative approaches for

theorem provers, with case studies of SAT and

LCF style provers

Sripriya G

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2013

Lay summary
Logic is the study of formal (symbolic) systems of reasoning (i.e. formal deductive inference) and of

methods of attaching meaning to them. Computers enabled(s) the automation of formal reasoning:

mechanised reasoning systems (theorem provers) are software systems which execute the reasoning

without or with (partial or step-by-step) human intervention. A typical problem scenario is: given a

set of assumptions/axioms (i.e. all the available relevant information about the given problem), A and

a conjecture/goal, G (the question being asked), can you find a proof of G, using A? The problem is

given to an automated reasoning system to work on until it arrives at an answer or until it runs out of

resources or the execution is terminated by the user. Theorem provers have a wide range of applications,

e.g. hardware and software verification. These provide significant challenges, in terms of size and

complexity of the problems, fueling the need for better theorem provers, capable of handling bigger and

more complex problems.

This thesis investigates the scope and efficacy of using concurrent/ distributed programming paradigms

to engineer better theorem provers (speed and/or ease of programmability, i.e. implementing one’s own

proof search procedures, using the system’s existing machinery). We have investigated this in the context

of two case studies of diverse, representative classes of theorem provers: the propositional satisfiability

problem, SAT (based on propositional logic; predominantly, fully automated systems; very popular

choice for industrial applications; and an active research field) and LCF style (first-order) theorem

proving (geared towards semi-automated, interactive theorem proving; focuses on programmability).

The improved accessibility of parallel computing power (e.g. multicore machines, GRIDs and better

software tools) and saturation of processor speeds of conventional single-processor computers has made

parallelisation and application of concurrent/distributed paradigms a popular choice and almost an im-

perative for engineering better/faster systems. Application of concurrent paradigms to theorem provers

can provide more processing power. More crucially, it can open up opportunities for implementing

novel approaches to address theorem proving tasks hitherto infeasible in a sequential setting. Some

such previously unexplored opportunities have been investigated in this thesis, for the two case studies

considered. Concurrent techniques have been developed to tap these opportunities and proof-of-concept

prototypes have been developed for the same. Empirical results show significant performance gains for

the criteria considered, as explained below.

An orthogonal focus of the work has been the implementation approach used to apply the techniques.

Here is why this has been investigated: Concurrent programming is an established field. However,

choosing the most effective concurrent technique to address a given task is a non-trivial task. Theo-

rem proving problems vary a lot in their structure and hardness and can depend on problem-domain,

logic of formulation, inference system used etc.. This in turn impacts the efficacy of a given concurrent

technique too. So, a generalised solution of concurrent-technique-application is unlikely to work for

theorem provers. This is in contrast to some other application domains which have adopted parallelisa-

tion, e.g., numerical computation, which possesses a fair amount of regularities which can be exploited

for parallelisation. For theorem proving, an iterative, experimental, developmental cycle of application

and empirical analysis is required to develop effective application of concurrent techniques, to address

specific theorem proving tasks. However, concurrent programming is notoriously error prone, hard to

iii

debug and evaluate. Thus, implementation approaches which promote easy prototyping, portability,

incremental development and effective isolation of design and implementation can greatly aid the en-

terprise of experimentation. In this thesis, we have explored one such approach, by using Alice ML, a

functional programming language with support for concurrency and distribution, to implement the pro-

totypes. We have used programming abstractions, i.e. a programming construct that captures a (concur-

rent/sequential) computational pattern, to encapsulate the implementations of the concurrent techniques

used. These allow for easy prototyping and code reuse and incremental development. Functional pro-

gramming languages are known to be particularly well suited for concurrent programming and allow for

concise and effective expression of programming abstractions (as higher-order constructs). The utility

of this approach is illustrated via the proof-of-concept prototypes of concurrent systems developed for

the two diverse case studies of theorem proving investigated in this work, addressing some previously

unexplored parallelisation opportunities for each, as described below:

SAT: We have developed two novel, concurrent approaches for SAT and developed prototypes for

the same, using Alice ML and employing programming abstractions where appropriate: (1) DPLL-

Stalmarck is a novel hybrid approach for SAT and uses two complementary SAT-algorithms, DPLL

and Stalmarck’s, where the two systems run asynchronously and dynamic information exchange is used

for co-operative solving. Compared to the standalone DPLL solver, DPLL-Stalmarck shows significant

performance gains for two of the three problem classes considered and comparable behaviour other-

wise. As an exploratory research effort, we have developed a novel algorithm, Concurrent Stalmarck,

by applying concurrent techniques to the Stalmarck algorithm and early empirical results show signif-

icant gains, compared to the (sequential) Stalmarck algorithm. For DPLL-Stalmarck, the interaction

of the two systems in the asynchronous setting has been encapsulated as a programming abstraction

and has been used to experiment with variants of the algorithms used in the individual asynchronous

solvers . Implementation of the saturation technique of the Stalmarck algorithm in a parallel setting, as

implemented in Concurrent Stalmarck, has been encapsulated as a programming abstraction.

LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques

to specific theorem proving scenarios. We have developed a multilayered approach to support pro-

grammable, sound extensions for an LCF prover: use programming abstractions to implement the con-

current techniques; use these to develop novel tacticals (control structures to apply tactics; a tactic

is an encapsulation of an inference rule), incorporating concurrent techniques; and use these to de-

velop novel proof search procedures. This approach has been implemented in a prototypical LCF style

first-order prover, using Alice ML. New tacticals developed are: fastest-first; distributed composition;

crossTalk: a novel tactic which uses dynamic, collaborative information exchange to handle unification

across multiple sub-goals, with shared meta-variables; a new tactic, performing simultaneous proof-

refutation attempts on propositional (sub-)goals, by invoking an external SAT solver (SAT case study),

as a counter-example finder. Examples of concrete theorem proving scenarios are provided, demonstrat-

ing the utility of these extensions. Synthesis of a variety of automatic proof search procedures has been

demonstrated, illustrating the scope of programmability and customisation, enabled by our multilayered

approach.

iv

Abstract
Theorem provers are faced with the challenges of size and complexity, fueled by the increasing range

of applications. The use of concurrent/ distributed programming paradigms to engineer better theo-

rem provers merits serious investigation, as it provides: more processing power and opportunities for

implementing novel approaches to address theorem proving tasks hitherto infeasible in a sequential set-

ting. Investigation of these opportunities for two diverse theorem prover settings with an emphasis on

desirable implementation criteria is the core focus of this thesis.

Concurrent programming is notoriously error prone, hard to debug and evaluate. Thus, implementation

approaches which promote easy prototyping, portability, incremental development and effective isola-

tion of design and implementation can greatly aid the enterprise of experimentation with the application

of concurrent techniques to address specific theorem proving tasks. In this thesis, we have explored one

such approach by using Alice ML, a functional programming language with support for concurrency

and distribution, to implement the prototypes and have used programming abstractions to encapsulate

the implementations of the concurrent techniques used. The utility of this approach is illustrated via

proof-of-concept prototypes of concurrent systems for two diverse case studies of theorem proving: the

propositional satisfiability problem (SAT) and LCF style (first-order) theorem proving, addressing some

previously unexplored parallelisation opportunities for each, as follows:.

SAT: We have developed a novel hybrid approach for SAT and implemented a prototype for the same:

DPLL-Stalmarck. It uses two complementary algorithms for SAT, DPLL and Stalmarck’s. The two

solvers run asynchronously and dynamic information exchange is used for co-operative solving. Inter-

action of the solvers has been encapsulated as a programming abstraction. Compared to the standalone

DPLL solver, DPLL-Stalmarck shows significant performance gains for two of the three problem classes

considered and comparable behaviour otherwise. As an exploratory research effort, we have developed a

novel algorithm, Concurrent Stalmarck, by applying concurrent techniques to the Stalmarck algorithm.

A proof-of-concept prototype for the same has been implemented. Implementation of the saturation

technique of the Stalmarck algorithm in a parallel setting, as implemented in Concurrent Stalmarck, has

been encapsulated as a programming abstraction.

LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques

to specific theorem proving scenarios. In this case study, we have developed a multilayered approach to

support programmable, sound extensions for an LCF prover: use programming abstractions to imple-

ment the concurrent techniques; use these to develop novel tacticals (control structures to apply tactics),

incorporating concurrent techniques; and use these to develop novel proof search procedures. This

approach has been implemented in a prototypical LCF style first-order prover, using Alice ML. New

tacticals developed are: fastest-first; distributed composition; crossTalk: a novel tactic which uses dy-

namic, collaborative information exchange to handle unification across multiple sub-goals, with shared

meta-variables; a new tactic, performing simultaneous proof-refutation attempts on propositional (sub-

)goals, by invoking an external SAT solver (SAT case study), as a counter-example finder. Examples of

concrete theorem proving scenarios are provided, demonstrating the utility of these extensions. Synthe-

sis of a variety of automatic proof search procedures has been demonstrated, illustrating the scope of

programmability and customisation, enabled by our multilayered approach.

v

Acknowledgements
My PhD supervisors, Prof Alan Bundy and Dr Alan Smaill, with their infinite patience,

encouragement and support have made the PhD journey (despite the many uncertain-

ties involved) a pleasant and enriching one and I am earnestly grateful for that. They

have helped me to acquire the invaluable perspective of seeing the Phd project not just

as an end in itself, but more as a means to an end, of it being training in research. I

would like to thank Alan Bundy for all his patient support and encouragement and for

being a lighthouse always through out this journey and for sharing his knowledge and

wisdom of the subject and research in general. Alan Smaill for bringing the Alice ML

language to our attention leading to its subsequent use in this project, for all his clever

and useful insights and ideas in shaping this project, for being an enormous source of

encouragement and support and for being so generous with his time.

My Thanks to Dr Makarius Wenzel, formerly of Technical University of Munich, Ger-

many for sharing my early interest and excitement of doing parallel theorem proving

and for his efforts to facilitate the same in the Isabelle system. I am very much grate-

ful to Dr Andreas Rossberg, the key architect of the Alice ML language, for all his

enthusiasm and support in answering my long list of questions.

I am profoundly grateful to different parts of the University of Edinburgh: the Princi-

pal’s scholarship, CISA, Informatics Graduate school and the ORS programme for the

funding support extended for my PhD and to the Informatics Graduate school for their

flexibility, understanding and support.

And to Aditya, for all his patience, understanding and support in various forms in this

entire journey that this Phd project has been.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Sripriya G)

vii

Table of Contents

List of Figures xvii

List of Tables xix

List of code samples xxii

1 Introduction 1
1.1 Why should parallelisation of theorem provers be considered? 1

1.2 Implementation methodology for application of concurrent techniques

to theorem proving . 2

1.3 Case studies . 3

1.4 Parallelisation options investigated in this work 4

1.5 Contributions . 5

1.6 Layout of the thesis . 7

2 Review of some parallel theorem provers 9
2.1 Parallel SAT solving . 11

2.1.1 Overview of techniques used in modern DPLL solvers 11

2.1.2 Search space partitioning, Dynamic load balancing 13

2.1.3 Evaluation related challenges 14

2.1.4 DPLL-Stalmarck . 14

2.1.5 Parallel SAT solver on transputers, PSATO, Guiding path . . . 16

2.1.6 Conflict driven clause learning for DPLL 19

2.1.7 DPLL-based parallel SAT solvers using search space partition-

ing, dynamic workload balancing and CDCL 20

2.1.8 PaModoc : a non-DPLL co-operative parallel SAT solver . . . 22

2.1.9 GRID based implementations 23

2.1.10 Others . 24

ix

2.1.11 Summary of key works on parallel SAT solving 25

2.2 Interactive theorem provers . 30

2.2.1 MetaPRL . 30

2.2.2 Parallel theorem proving in Isabelle using PolyML 32

2.2.3 OANTS . 34

2.3 Work partitioning approaches used in fully automatic theorem provers 37

2.3.1 TEAMWORK . 37

2.3.2 Nagging: NAGSAT, DALI 38

2.3.3 Other systems . 39

2.4 Parallel functional programming languages 40

2.5 Conclusions . 42

3 Hypotheses and case studies 48
3.1 Hypotheses . 48

3.2 Our approach and choice of case studies 49

4 Background 52
4.1 Formal logic: basics . 53

4.2 Propositional logic . 53

4.2.1 Syntax and semantics . 54

4.2.2 Validity, satisfiability and tautology 56

4.2.3 More definitions and notations 57

4.3 First-order logic . 58

4.3.1 Syntax and semantics . 59

4.3.2 Satisfiability, logical equivalence, validity 62

4.4 Theorem proving . 63

4.4.1 Inference system . 64

4.4.2 Natural deduction . 65

4.4.3 Sequent calculus . 65

4.4.4 Backward proof and sequent calculus 67

4.4.5 Interactive theorem proving 67

4.4.6 LCF . 68

4.5 SAT solvers: some relevant background 69

4.5.1 SAT algorithms: an overview 70

4.5.2 DPLL . 71

4.5.3 Stalmarck’s algorithm for SAT 73

x

4.6 Relevant key characteristics of Stalmarck’s algorithm 80

4.7 First-order theorem proving: some relevant background 82

4.7.1 Unification . 82

4.7.2 Sequent rules for classical first-order logic 84

4.7.3 Meta variables . 84

4.8 Some relevant background on parallel computing 84

4.8.1 Relevant architecture categories and some emerging architectures 86

4.8.2 Computational models . 89

4.8.3 On implementing parallelisation 90

4.9 Summary . 94

5 Why parallelise and how to? 95

5.1 The free lunch is over . 95

5.2 Parallelisation of theorem provers: for the diverse opportunities that it

can open up . 96

5.2.1 Enabling novel approaches 96

5.2.2 Modeling of mathematical reasoning: automating the dynam-

ics of proof discovery . 97

5.3 Some choices for introducing and implementing concurrency and par-

allelisation techniques for the theorem proving domain 99

5.3.1 Object-level and developmental factors 100

5.3.2 Issues to consider for effective parallelisation 101

5.4 Parallelisation and programming abstractions 104

5.4.1 Abstractions: what are they and how are they useful 104

5.4.2 Some concurrent/parallel programming abstractions 106

5.5 Using the functional programming paradigm for implementation of

and experimentation with concurrent/parallel techniques in theorem

provers . 109

5.5.1 Advantages of using functional programming to implement

concurrency . 109

5.5.2 Language-integrated concurrency in a declarative setting . . . 111

5.5.3 Summary of advantages of dataflow variables and overview of

how we have used it in our work 114

5.6 Alice ML . 116

5.6.1 Support for thread-based programming 117

xi

5.6.2 Synchronisation in Alice ML 118

5.6.3 Support for Stream-based programming 120

5.6.4 Support for distributed programming and message-passing . . 121

5.6.5 Ease of prototyping and developing abstractions in Alice ML . 123

5.6.6 Suitability of Alice ML for implementing programmable par-

allel extensions for LCF-style provers 124

5.6.7 Limitations of Alice ML . 124

5.7 Summary . 126

5.7.1 Conclusions and choice of case studies 126

6 Novel concurrent approaches for SAT 129

6.1 About this case study . 130

6.2 Implementation details for sequential SAT solvers based on DPLL and

Stalmarck algorithm . 132

6.3 Hybrid SAT solver: DPLL-Stalmarck 135

6.3.1 Why combine DPLL and Stalmarck ? 135

6.3.2 How to combine the two ? 135

6.3.3 Implementation . 136

6.4 Hybrid SAT solvers: DPLL-CDCL-Stalmarck,

DPLL-ConcurrentStalmarck . 142

6.4.1 DPLL-CDCL-Stalmarck . 142

6.4.2 DPLL-ConcurrentStalmarck 143

6.5 New concurrent algorithm for SAT, based on the Stalmarck algorithm 144

6.5.1 Gist of our approach . 144

6.5.2 High level description of the Concurrent Stalmarck algorithm 147

6.5.3 Stalmarck agents as services 150

6.5.4 Workflow of the Concurrent Stalmarck implementation 151

6.5.5 Producer-consumer pattern, Resource-management 152

6.5.6 Abstractions developed . 152

6.6 Concurrent DPLL . 155

6.7 Evaluation . 156

6.7.1 DPLL-Stalmarck . 157

6.7.2 Concurrent Stalmarck . 168

6.7.3 Methodological criteria . 171

6.8 Related work . 172

xii

6.9 Conclusions . 174

6.10 Future research . 177

7 Concurrent extensions for LCF style provers 180

7.1 Introduction . 180

7.2 Multilayered approach to apply concurrency and distribution techniques,

to an LCF style theorem prover . 184

7.2.1 Developing programmable, concurrent, sound extensions, for

LCF provers: A multilayered approach 184

7.2.2 Proof of concept . 186

7.2.3 Advantages of our proposed multilayered approach 187

7.3 HAL as a representative prototype 188

7.3.1 About HAL . 188

7.3.2 Why HAL ? . 188

7.4 Porting Isabelle to Alice ML . 189

7.5 Design overview of the HAL system 192

7.5.1 Data structures, treatment of bound variables and

meta-variables, enforcement of quantifier-rule-provisos 192

7.5.2 Basic sequential tacticals in HAL 197

7.5.3 Unification as a tactic in HAL 199

7.5.4 Sequential automatic proof search procedures in HAL 202

7.6 New concurrent tacticals . 205

7.6.1 Distributed composition . 205

7.6.2 Fastest-first: a novel choice operator using asynchronous con-

current execution . 210

7.7 Simultaneous proof-refutation attempts using a SAT solver 210

7.8 Collaborative unification: using communication for unification 213

7.8.1 Limitations of the sequential unify tactic in HAL 213

7.8.2 Gist of our solution: asynchronous evaluation and collabora-

tive use of partially evaluated information 216

7.8.3 CrossTalk: a new proof tactic implementing collaborative uni-

fication . 217

7.9 Novel automatic search procedures employing concurrent and collab-

orative approaches . 222

7.9.1 Using crossTalk in an automatic search procedure 222

xiii

7.9.2 New depth-first automatic search procedures, using the dist-

Comp and FF operators . 223

7.9.3 Using SAT-based tactics in an automatic proof search procedure 223

7.10 Evaluation . 225

7.10.1 Utility of the distributed composition operator 227

7.10.2 Utility of the fastest-first tactical 230

7.10.3 Utility of the crossTalk tactic 232

7.10.4 Programmability: new concurrent proof search procedures . . 237

7.10.5 Developmental methodology 239

7.11 Related work . 239

7.11.1 MetaPRL: similarities and differences 241

7.11.2 Isabelle-PolyML: similarities and differences 242

7.12 Summary . 245

7.13 Ideas for future work . 248

8 Conclusions 250
8.1 Why and how to parallelise a theorem prover 252

8.2 Novel concurrent approaches for SAT:

knowledge-sharing, lateral-thinking,

co-operative frameworks combining complementary approaches, large

scale parallelism . 254

8.2.1 Hybrid SAT solvers . 254

8.2.2 Concurrent Stalmarck . 257

8.3 A multilayered approach to develop programmable, sound extensions,

for an LCF prover . 258

8.4 Utility of our implementation approach 261

8.5 In a nut shell... 262

8.6 Directions for future research . 263

8.6.1 Ideas for future work related to the case studies of SAT and LCF263

8.6.2 Proof and refutation . 263

8.6.3 A society of agents for inductive theorem proving 264

8.6.4 Co-routining scope in Middle-out reasoning 265

8.6.5 The Dynamic Creation of Induction Rules Using Proof Planning266

Appendices 269
A 1 Parallel programming terminology 269

xiv

A 2 Alice features . 270

A 3 Alice ML code for hierarchical threads 273

A 4 Alice ML code for the DPLL solver 274

A 5 Alice ML code for the Stalmarck solver 277

A 6 Alice ML code for the DPLL-Stalmarck solver 283

A 7 Code fragment for the abstraction for DPLL working with a helper . . 292

A 8 Code trace for the working of collaborative unification tactic 293

A 9 Implementation of unification in HAL - code 298

References 299

Glossary 309

xv

List of Figures

4.1 Branch merge Rule . 77

4.2 Dilemma Rule . 78

4.3 0-saturation procedure of Stalmarck’s algorithm 79

4.4 1-saturation procedure of Stalmarck’s algorithm 79

6.1 High level interaction diagram for DPLL-Stalmarck 137

6.2 High level interaction diagram for DPLL-ConcurrentStalmarck 145

6.3 Gist of the concurrent Stalmarck implementation 146

6.4 Stalmarck Agent . 146

6.5 Interaction diagram for the concurrent Stalmarck implementation . . . 146

6.6 Test data (time taken) for Urquhart(n), with an asynchronous Stalmarck-

helper . 161

6.7 Test data (size of search space) for Urquhart(n), with an asynchronous

Stalmarck-helper . 161

6.8 Test data (time taken) for Urquhart(n), compositional approach: with

an initial time of 60s for the Stalmarck-helper 162

6.9 Test data (time taken, search space) for PHole(n), with an asynchronous

Stalmarck-helper . 163

6.10 Test data (time taken) for Random3SAT; Clause/Var=4.0 164

6.11 Test data (time taken) for Random3SAT; Clause/Var=4.3 165

6.12 Test data (time taken) for Random3SAT; Clause/Var=5.0 166

6.13 Test data for Urquhart problems, comparing sequential Stalmarck solver

and the novel concurrent Stalmarck implementation 170

xvii

List of Tables

4.1 Truth-table for conjunction of two variables 55

4.2 Stalmarck trigger rules for the connective ∧ 76

4.3 Sequent calculus rules for classical first-order logic without equality . 85

4.4 Comparison of multiprocessor architectures and distributed systems . 87

4.5 Commonly used programming approaches to incorporate parallelisa-

tion in shared and distributed memory models 92

5.1 Match between features of Alice ML and the LCF paradigm 124

6.1 Comparison of time taken by Stalmarck and our novel concurrent al-

gorithm, ConcurrentStalmarck, for Urquhart problems 170

xix

List of code samples

4.1 Datatype definition in Alice ML, for wff in propositional logic 55

4.2 Computing the truth-value of a propositional logic formula, for a given

valuation . 56

4.3 Recursive saturation procedure for Stalmarck’s algorithm 79

4.4 Unification algorithm for first-order logic 83

5.1 Incremental evaluation . 114

5.2 Some concurrent programming abstractions in Alice ML 123

6.1 Code fragment for data structures used by sequential DPLL and Stal-

marck solvers . 134

6.2 Code fragment for an iterative version of the DPLL algorithm 134

6.3 Functional program implementing the DPLL algorithm, with CDCL . 134

6.4 High level design of DPLL-with-helper 138

6.5 DPLL-with-helper abstraction-short version 141

6.6 Alice ML code for saturation abstraction 154

6.7 Concurrent-DPLL . 155

7.1 Code for the Sequence structure in HAL 195

7.2 Unification algorithm for first-order logic 201

7.3 Code fragment for the unification tactic in HAL 202

7.4 Code for adding asynchronous operations to the Sequence structure in

HAL . 209

7.5 Implementation of fastest-first tactic in HAL 210

7.6 Code fragment for the SAT-based counterexample-finder-tactic in HAL 211

7.7 Code fragment for implementation of SAT-based proof-refutation tac-

tic in HAL . 212

7.8 Code fragment for the referee abstraction in HAL 219

7.9 Code fragment for crossTalk:collaborative unification in HAL 220

7.10 Collaborative unification based automatic proof search 222

xxi

7.11 Example illustrating the utility of crossTalk, the collaborative unifica-

tion tactic . 233

7.12 Execution-trace of crossTalk, the novel unification tactic, for an example235

7.13 Execution-trace of crossTalk, the novel unification tactic, for an example235

7.14 Execution-trace of crossTalk, the novel unification tactic, for an example236

1 Handling termination of child threads in Alice ML 273

2 Full code for functional program, implementing the DPLL-CDCL al-

gorithm . 274

3 Full code for functional program, implementing the Stalmarck tautol-

ogy checking algorithm . 277

4 Full code for functional program, implementing the hybrid solver DPLL-

Stalmarck . 283

5 DPLL-with-helper abstraction . 292

6 Example illustrating the utility of crossTalk, the collaborative unifica-

tion tactic . 294

7 Execution-trace of crossTalk, the novel unification tactic, for an example295

8 Execution-trace of crossTalk, the novel unification tactic, for an example296

9 Execution-trace of crossTalk, the novel unification tactic, for an example296

10 Code fragment for implementation of unification in HAL 298

xxii

Chapter 1

Introduction

The tools that we use have a profound influence on our thinking habits and therefore

on our thinking abilities
-Edsger Dijkstra

In a similar vein, it can be said that our thinking habits inspire the tools that we create

and more pertinently so for a domain like mechanised reasoning systems. Our thinking

patterns are not always sequential or linear, why should the tools that we create be so?

1.1 Why should parallelisation of theorem provers be

considered?

The field of mechanised reasoning systems (theorem proving), with its ever increasing

applications, is faced with challenges of complexity and size, i.e. harder and bigger

problems. This calls for exploration of research directions that enable engineering of

better theorem provers that can tackle these challenges. Most theorem prover imple-

mentations and the underpinning techniques were developed for a sequential mode of

execution, which, in turn, has limited the possibilities of the approaches employed as

well as their implementations.

Application of concurrent and distributed programming techniques 1 to engineer faster

applications is fast becoming an ubiquitous trend across application domains. A strong

1In this work, we use the terms concurrent and parallel synonymously to refer to asynchronous pro-
cesses that execute simultaneously and possibly interact with one another. We use the term distributed
to refer to the special case where the processes run on different physical machines.

1

2 Chapter 1. Introduction

motivation for this approach is the saturation of processor speeds which in turn, means

that applications can no longer expect to achieve speedups purely by virtue of being

run on a faster processor, a phenomenon discussed in a much cited recent paper ti-

tled The free lunch is over [Sutter, 2005]. This trend has been fueled by the surge in

the accessibility and availability of a wide variety of parallel and distributed comput-

ing architectures aided by the emergence of new paradigms of computing and related

software that enable optimal utilisation of these emerging computing architectures.

In addition to providing more processing power, the concurrent and distributed pro-

gramming paradigms can open up novel ways of tackling problems that are not possi-

ble in a sequential mode of execution. E.g., consider the following scenario: There are

multiple choices of computation that can be pursued, the solution possibly occurring

in any one of them and where a judgement on the speed of each computation cannot

be made beforehand. Tackling this using a sequential mode of execution would typ-

ically entail execution of each computation one at a time. This does not help if e.g.,

the first computation takes a very long time and the solution happens to be in a subse-

quent computation. However, in a concurrent asynchronous programming paradigm,

we can spawn all the computations simultaneously and pick the fastest returning com-

putation. With the improved accessibility and the diversity of emerging architectures,

it becomes more interesting now than ever before to investigate novel ways of using

these technologies to tackle the challenges faced by today’s theorem provers and to

identify latent parallelisation, distribution and collaboration opportunities present in

theorem prover implementations. This need is echoed in a recent work [Kaufmann and

Moore, 2009], where Parallel, Distributed and Collaborative Theorem Proving is cited

as being one of the key research problems for automated theorem proving.

1.2 Implementation methodology for application of con-

current techniques to theorem proving

Theorem proving systems are diverse in the logics and proof calculi they implement

and theorem proving problems come from a variety of domains and vary vastly in

their problem structure, hardness and solution distribution. These factors influence

the scope for applying the new programming paradigms and utilising the emerging

architectures. For the effective application of concurrent technologies to tackle the

1.3. Case studies 3

challenges of size and complexity faced by theorem provers, a one-solution-fits-all ap-

proach is unlikely to work and an iterative developmental life cycle of implementation

and experimentation involving empirical studies and analysis is required. However,

this experimentation phase can often be stifled by the difficulties of implementation

as concurrent programming is notoriously error prone and difficult to program. Thus,

it will be hugely beneficial to adopt an implementation methodology that allows for

rapid prototyping of and experimentation with, application of concurrent techniques to

theorem provers.

Over the years, parallelisation has been explored among many of the theorem proving

flavours. We discuss some of these in chapter 2. Most of these systems have relied

on complicated OS level thread and socket programming for implementing the con-

currency features. From a software engineering perspective, the concurrency features

used are very much tied to their individual application and this does not encourage

incremental development or code-reuse. A recent review paper on trends in parallel

computing and multi-core technologies [Asanovic et al., 2006] emphasises the need

for effective software implementations that will enable optimal utilisation of the avail-

able processing power in emerging architectures. To the same end, the authors also

argue for the need for powerful

“distributed programming abstractions that can capture the common re-
quirements of classes of applications which are related but have quite dif-
ferent computational methods at a lower level of granularity.”

In this thesis, we discuss an implementation methodology that addresses these issues of

ease of prototyping and experimentation, facilitation of incremental development and

code reuse. Our approach uses distributed programming abstractions to encapsulate

the concurrent techniques applied to address theorem proving tasks and a concurrent

functional programming language, Alice ML [Rossberg et al., 2006], for implemen-

tation. The abstractions, in turn, are implemented as higher-order functions in Alice

ML. Using this methodology, we have developed novel proof search approaches using

concurrent techniques.

1.3 Case studies

The discussion of the developmental approach is aided by our experience of develop-

ment and experiments with two diverse case studies of theorem proving: the proposi-

4 Chapter 1. Introduction

tional satisfiability problem (SAT) and LCF style (first-order) theorem proving. These

are representative of two vastly different styles of theorem proving, the former being

brute-force, machine-oriented search while the latter is closer to human reasoning and

is thus a good vehicle for testing the utility of our developmental approach for a wide

range of scenarios of the application of concurrent techniques.

As part of the development of these prototypes, we have developed concurrent pro-

gramming abstractions. These abstractions can be used in a variety of theorem proving

scenarios, examples of which we discuss later in the thesis.

1.4 Parallelisation options investigated in this work

In particular, in this thesis, we focus on applying the following parallel programming

techniques to tackle the challenges of theorem proving:

Task parallelisation Use of multiple asynchronous computational processes operat-

ing simultaneously to achieve a task by effectively partitioning the work between

them.

Dynamic exchange of information between concurrent processes Co-operative ap-

proaches to solving a task by harnessing the opportunities of (possibly partially

evaluated) information exchange between processes working on the same prob-

lem or sub-problems

Use asynchronicity to synthesise novel computational patterns Some examples are:

spawn multiple computations and return the fastest returning computation; data-

driven execution, i.e. perform computations on the data as and when they are

available.

Computational model There are various computational models for concurrent and

distributed programming. In this thesis, we focus on the local-state, message-

passing model and the use of higher-order programming abstractions for imple-

mentation of concurrent techniques.

1.5. Contributions 5

1.5 Contributions

Implementation methodology
A prescriptive discussion of desirable features of an implementation approach

that will allow for rapid prototyping of and experimentation with, novel ap-

proaches to theorem proving that can be achieved by applying concurrent pro-

gramming techniques and aid portability and incremental development. This

thesis focuses on one such approach:

• Use a functional programming language with language-based support for

concurrency (as opposed to API based) to implement the concurrent tech-

niques. We have used Alice ML as the implementation language.

• Use programming abstractions to encapsulate the concurrent techniques.

In particular, we have developed the programming abstractions as higher-

order functions in Alice ML.

The utility of the approach in terms of the ease of prototyping and experimenta-

tion and the portability and incremental development criteria are demonstrated

via two case studies representing diverse styles of theorem proving: SAT and

LCF style first-order proving. The case studies serve an orthogonal purpose of

investigating previously unexplored opportunities of applying concurrent tech-

niques to the respective systems and the key contributions arising from these are

described below.

SAT

DPLL-Stalmarck a hybrid approach for SAT has been developed using two

different, but complementary SAT algorithms: DPLL and Stalmarck.

A prototype that implements this approach has been developed in Alice ML

and uses solvers based on the two algorithms in an asynchronous setting

and uses dynamic information-sharing to enable co-operation between the

solvers. The DPLL solver is the main solver and the Stalmarck solver acts

as a clause-learning process and supplies the learned clauses to the DPLL

process, thereby helping the DPLL process to potentially prune its search

space.

Concurrent Stalmarck As an exploratory research effort, a novel concurrent

algorithm,Concurrent Stalmarck has been developed. This algorithm has

6 Chapter 1. Introduction

been developed by applying concurrent techniques to the original Stal-

marck algorithm. It demonstrates an alternative to the task-partitioning

techniques observed in existing parallel SAT solvers (which are largely

DPLL-based) and is well suited for implementing on architectures with

large scale parallel processing resources, e.g. large clusters.

A prototype implementing this new algorithm has been developed in Al-

ice ML. The implementation demonstrates a novel form of implementing

work distribution using the declarative concurrency features of Alice ML

and uses minimal communication to achieve work distribution.

Concurrent programming abstractions for the following:

• Implementation of the saturation technique (used in the Stalmarck al-

gorithm) in a concurrent setting.

• Encapsulation of the interaction of DPLL with the external solver, al-

lowing for it to be extended to incorporate one or more external solvers

as helpers.

LCF

• We have developed a multilayered approach to introduce sound extensions

to an LCF prover by applying concurrent programming techniques to syn-

thesize novel concurrent tacticals (control structures for applying tactics).

The multilayered approach involves implementation of the concurrent tech-

niques as abstractions which are in turn, used to implement the concurrent

tacticals and which in turn, can be used interactively as well as within au-

tomatic proof search methods.

• We have developed a prototype in Alice ML, as a proof-of-concept for this

multilayered approach. HAL, a prototypical LCF style first-order theorem

prover [Paulson, 1996], was ported to Alice ML and the multilayered ap-

proach was applied to it to introduce a variety of novel concurrent tacticals.

These concurrent tacticals are available for interactive and automatic use.

They have been used within the automatic proof search procedures as well,

resulting in some novel and interesting proof search methods.

• Asynchronous, collaborative implementation of the unification tactic within

HAL has been developed. Multiple goals (sharing the same meta-variables

1.6. Layout of the thesis 7

asynchronously) compute the unifiers and subsequently collaborate to come

up with the unifier compatible with all the goals. This implementation

is illustrative of a co-operative approach between multiple goals working

asynchronously, sharing partially evaluated information.

1.6 Layout of the thesis

In this section, we signpost the material discussed in the thesis.

In chapter 2, we provide an overview of a selection of published research on paralleli-

sation of theorem proving. Though by no means an exhaustive list, it spans a broad

range of theorem proving flavours as well as parallelisation approaches. The field of

parallel SAT solving has had a relatively high proportion of published research in com-

parison to parallelisation of other flavours of theorem proving and is covered in detail

in §2.1. In §2.5, we provide a discussion of the state of the field of parallelisation of

mechanised reasoning systems in the light of the works discussed in the chapter and

identify the scope for further investigation of the topic, setting out an agenda for the

work reported in this thesis.

In §3.1, we give a concise statement of the hypothesis of the work reported in this

thesis, giving the rationale for our choice of the case studies used.

In chapter 4, we provide the relevant background related to theorem proving, in partic-

ular, SAT and LCF style theorem proving. Also included are explanations of relevant

parallel programming terminology used in this thesis.

In chapter 5, we give a detailed discussion of why parallelisation of theorem proving

should be considered. This discussion includes perspectives of hardware imperatives

as well as theorem proving specific issues that motivate the need. This chapter also in-

troduces the developmental methodology proposed in this thesis. This is done by pro-

viding a discussion of how parallelisation can be implemented, formulating desirable

criteria for the same. In §5.4.1, the notion of concurrent programming abstractions

is introduced and its applicability in the context of the work reported in this thesis

is explained. Also included are explanations of a few relevant standard concurrent

programming abstractions. In §5.5.1, the advantages of using a functional program-

ming language for implementing concurrency are listed. The chapter ends with §5.6,

explaining how Alice ML, the implementation language used for implementing the

8 Chapter 1. Introduction

prototypes discussed in this thesis, serves as a good vehicle to implement the proposed

developmental methodology.

In chapter 6, we report our investigation of the focus of this thesis for the case study

of the propositional satisfiability problem (SAT). In §6.1, we set out the agenda for

the two novel approaches of application of concurrent techniques to SAT that we have

developed. Details of the approaches and the implementation of their proof-of-concept

prototypes are provided in §6.3 and §6.5. Details of the empirical evaluation carried

out for these prototypes are provided in §6.7. Conclusions and pointers to future work

are provided in §6.9.

In chapter 7, the investigation of LCF style first-order proving is reported. The mul-

tilayered approach developed for the same is explained with the aid of the proof-of-

concept prototype of HAL, a LCF-style first-order theorem prover. The novel concur-

rent tacticals developed are explained with examples. Automatic proof search proce-

dures implemented using these novel tacticals are described including proof attempts

in HAL where they outperform their sequential counterparts.

In chapter 8, we provide a unified picture of the aims of the thesis and how they have

been achieved in the light of the material described earlier in the thesis.

Chapter 2

Parallelisation of mechanised

reasoning systems: An overview

Theorem proving, with its ever increasing suite of applications, is faced with the chal-

lenges of problem size and complexity. New avenues of exploration are crucially

needed to tackle these challenges. One such direction is parallelisation. Recent years

have seen a huge increase in the availability and accessibility of a variety of paral-

lel processing architectures including multicore machines and a variety of distributed

computing environments. Appropriate (re)engineering of applications is crucial to har-

ness the power of these emerging architectures. There are a variety of possibilities for

parallelisation of an application domain like theorem proving which has an established

set of algorithms (a detailed discussion on parallelisation techniques is provided in

chapter 5).

Parallelisation has been explored in the context of many theorem proving approaches

using a variety of parallel and distributed architectures, including, but not limited to:

propositional satisfiability (SAT) solvers (e.g. [Singer, 2006]), term rewriting based

systems (e.g. [Yelick, 1992]), equational deduction based systems (e.g. [Denzinger

et al., 1996]), model checking (e.g. [Heyman et al., 2002]), resolution based systems

(e.g. [Bonacina, 1992]) and natural deduction based systems (e.g. [Benzmüller et al.,

2008]).

The availability and accessibility of technological infrastructure often tends to define

the directions and boundaries of research whose ultimate end products are system

9

10 Chapter 2. Review of some parallel theorem provers

implementations. The body of published research in the field of application of par-

allelisation techniques to theorem proving and automated reasoning too reflects this

phenomenon: from the early work on parallel Prolog efforts designed for transput-

ers (e.g. [Böhm and Speckenmeyer, 1996]) to SAT solvers designed for grids (e.g.

[Chrabakh and Wolski, 2003]) to higher-order theorem provers for multicore machines

(e.g. [Matthews and Wenzel, 2010]).

The parallelisation approaches used have been diverse. In this chapter, we provide a

discussion of some of these approaches and related implementations 1:

• Search space partitioning, information sharing (§2.1.7, §2.3, §2.2.1)

• Use of heterogeneous reasoning systems (§2.2.3)

• Portfolio-based approaches that use multiple solvers, matching the problem with

the solvers (§2.1.10, §2.3.2)

• Approaches using concepts and notions of agent based systems (§2.2.3)

• Approaches targeted at specific architectures e.g. grids, employing techniques

for effective load-balancing and utilisation of idle resources (§2.1.9)

In the work reported in this thesis, we focus on the following two flavours of theorem

proving: SAT solvers and LCF style provers (see §4.4.6 for more details about LCF).

In §2.1, we provide a survey of key published research on parallelisation for the SAT

domain, highlighting the techniques that have formed the basis of the parallelisation ef-

forts and the major issues faced in engineering efficient parallel SAT solvers. In §2.2,

we provide a discussion of the parallelisation approaches adopted by interactive theo-

rem provers. In §2.3, we provide a discussion of some work partitioning approaches

used in parallel automatic theorem provers. An orthogonal dimension of relevance

is the implementation platform and developmental methodology used to incorporate

concurrent techniques into theorem provers. To this end, in §2.4, we consider the

implementation viewpoint with a discussion of parallel functional languages as imple-

mentation languages. We end the chapter with a summary of the different flavours of

parallelisation, with a discussion of the issues related to the implementation method-

ologies adopted by the various systems and our observations on what more can be done

1Given the growing list of published research in this field, the authors would like to emphasise that
this list is by no means exhaustive.

2.1. Parallel SAT solving 11

to promote easy prototyping of and experimentation with the application of concurrent

techniques to tackle theorem proving challenges.

2.1 Parallel SAT solving

Parallelisation has been investigated widely for the SAT domain in the past few years.

In this section, we discuss some representative work related to parallelisation of SAT

solvers, in relation to our SAT case study, discussed in chapter 6.

In §2.1.1, we provide an overview of some key techniques used in many state-of-the-

art (sequential) DPLL-based SAT solvers, some of which are used in the parallelisation

approaches reviewed in this chapter. In §2.1.2, we discuss some of the specific chal-

lenges posed by the SAT domain for effective parallelisation. In §2.1.5, we describe,

in detail, two concepts that have been widely used in the DPLL-based parallel SAT

solvers reviewed in this section: guiding path (GP), which has been used extensively

for search space partitioning and conflict driven clause-learning (CDCL), which has

been used in many systems that use collaborative learning. Among the non-DPLL

solvers, in §2.1.4.2, we discuss the work on using the DPLL and Stalmarck’s algo-

rithm in a synergetic manner, as part of a heterogeneous proof engine. In §2.1.8, we

review an early work based on a non-DPLL algorithm that uses collaborative learning.

In §2.1.10, we review portfolio-based systems that use multiple solvers on the same

problem.

2.1.1 Overview of techniques used in modern DPLL solvers

Many of the state-of-the-art, complete solvers of today continue to use variants of the

DPLL algorithm, augmented with various techniques. Over the past decade or so, a

huge amount of research has been invested in formulating a variety of techniques that

have enabled modern DPLL-based SAT solvers to push their tractability threshold.

These have included developing various heuristics, novel techniques to prune search

spaces and effective data structures and implementations. We enumerate some of these

below, with appropriate references for the interested reader.

Efficient data structures, efficient unit propagation, watched literals [Zhang and Stickel,

1994] introduced tries, an efficient data structure for the CNF based SAT prob-

12 Chapter 2. Review of some parallel theorem provers

lem and related algorithms enabling a very efficient form of unit propagation

and was implemented successfully in the SATO system [Zhang, 1997]. Work re-

ported in [Moskewicz et al., 2001] built on this further and introduced the notion

of watched literals.

Better branching heuristics A wide variety of effective static and dynamic branching

heuristics have been developed ranging from the maximal occurring variable to

more sophisticated ones based on a function of the current variable and search-

state. A detailed survey of branching heuristics can be found in [Hooker and

Vinay, 1995].

Backjumping, conflict driven clause learning Non-chronological backtracking is a

common technique used in most modern SAT solvers. It allows for jumping to a

decision level, based on the reason for the conflict rather than merely tracing the

way back up the search tree in a chronological order.

The size of the search tree is exponential for the DPLL algorithm. So, heuristics

to prune the search space are crucial to make the approach to work in prac-

tice. Conflict driven clause learning (CDCL) [Marques-Silva et al., 1996], was

introduced to address these and was implemented in the SAT solver, GRASP

[Marques-Silva and Sakallah, 1996]. CDCL is discussed in detail in §2.1.6.

Randomised restarts It has been identified that even for some relatively easy in-

stances certain orders of search may take the algorithm into parts of the search

space that do not produce useful conflict clauses, leaving it floundering. Restarts

were proposed in [Giles et al., 1998] as an approach to deal with high variance

in running times over similar instances [Gomes et al., 2000]. A restart is the op-

eration of throwing away the current partial assignment (excluding assignments

at decision level zero), and starting the search process from scratch or with a

(new) randomly chosen assignment. A restart is performed after a certain num-

ber of unsuccessful backtracks (in the execution of the DPLL algorithm). The

clauses learnt are retained and the original problem is augmented with them for

the restart.

Structural information, Formula preprocessing DPLL relies crucially on the CNF

format and hence a given problem has to be converted to CNF, to be used with a

DPLL-based SAT solver. This conversion often destroys the implicit structural

2.1. Parallel SAT solving 13

information that may be present in the problem instances. Hence, DPLL-based

solvers fail to capitalise on the implicit structure, often observed in SAT in-

stances derived from real world problems [Thiffault et al., 2004]. This issue has

been addressed in different ways: by trying to identify and exploit the struc-

tural symmetry present in some problem instances; by introducing techniques

to extract the structural information from the CNF problem or from the native

problem format in a pre-processing stage and use it as auxiliary information for

the DPLL to use in its branching heuristics [Sabharwal et al., 2003] and also to

enhance the performance of clause-learning algorithms.

Runtime variations, Benchmarking, Phase transition The search spaces as spanned

by the DPLL algorithm are highly irregular as it is hard to predict the effect of

unit propagation. This irregularity is further accentuated in the SAT cases as the

time taken to find the satisfying assignment can vary hugely for even different

instances of the same class of problems. A rigorous analysis of runtime dis-

tributions of backtrack procedures for propositional satisfiability and constraint

satisfaction has been carried out in [Gomes et al., 2000]. This shows the huge

variation that is observed in the time taken to solve the same instance, by vary-

ing the order of branching (the branching is done using randomisation and the

random seed is varied). Benchmarks have been developed for the SAT domain,

e.g., SATLIB [Hoos and Stützle, 2000] provides a wide variety of CNF format

benchmarks spanning random instances and real-world instances.

2.1.2 Search space partitioning, Dynamic load balancing

Functional partitioning and data partitioning (described in §4.8.3) are two common

techniques adopted in parallel programming, to perform work decomposition. The

former is not a viable option for parallelisation of the DPLL algorithm, because, the

DPLL algorithm relies on the coherence of the state updates performed sequentially

by the various functions. The latter, achieved in the case of the DPLL algorithm, by

partitioning the search space using efficient techniques and heuristics is the approach

adopted by many of the parallel SAT solvers based on the DPLL algorithm.

However, it is hard to predict the time needed to solve a given branch, as the effect

of unit propagation in reducing a problem cannot be predicted always. This irreg-

14 Chapter 2. Review of some parallel theorem provers

ularity in the search spaces poses a significant challenge for performing static work

decomposition (partitioning the search space) for effectively parallelising SAT solvers

implemented using the DPLL algorithm. To address this, efficient dynamic workload

balancing strategies have to be used, making it an important focus area especially for

parallel SAT solvers which focus on optimally utilising bulk parallel processing re-

sources by distributing work amongst them.

One approach to tackle such scenarios is to do some form of dynamic search space

partitioning as evidenced by many parallel SAT solver implementations [Böhm and

Speckenmeyer, 1996], [Zhang et al., 1996], [Sinz et al., 2001], [Blochinger et al.,

2005a]. This introduces the need for effective dynamic load-balancing strategies for

optimal utilisation of idle resources, without the load-balancing related communication

causing too much of an overhead. Another approach is to use heuristics to pick a subset

of variables and use assumptions based on them as units of work for parallelisation,

e.g. as seen in [Gil et al., 2008].

2.1.3 Evaluation related challenges

Issues related to evaluation of parallel SAT solvers have been investigated in [Speck-

enmeyer et al., 1988], [Speckenmeyer et al., 1997]. One of the issues considered in

this work is the anomalies in the super-linear speedups produced by some parallel

implementations of backtracking search procedures. This is attributed to the non-

deterministic treatment of the search tree by a parallel execution. The work also

discusses the irregularity of the distribution of solutions for the SAT cases and the

need to separate SAT and UNSAT cases for the purpose of evaluation of parallel SAT

solvers based on DPLL. Irregular distribution of solutions, SAT vs UNSAT cases and

architecture dependency make the task of comparison of sequential and parallel imple-

mentations of SAT very difficult.

2.1.4 DPLL-Stalmarck

In §2.1.4.1, we describe a well known drawback of the DPLL algorithm for SAT, its

inability to use implicit structural information. In §2.1.4.2, we review a work that uses

the DPLL algorithm along with other algorithms within a proof engine framework.

2.1. Parallel SAT solving 15

2.1.4.1 Using implicit structural information in the problem

Real world problems often possess a lot of implicit structure. However, much of this

is lost in the process of encoding them as SAT problems, mostly by virtue of the CNF

conversion process. However, this is unavoidable since the DPLL algorithm relies cru-

cially on the CNF format. This drawback of the DPLL algorithm has received a lot

of attention in the literature in recent years, e.g., see [Thiffault et al., 2004]. Different

approaches have been proposed to address them: using non-clausal solvers [Thiffault

et al., 2004], extracting structural information after the CNF conversion by exploiting

variable dependency and/or symmetry, e.g., [Dubois and Dequen, 2001], [Beame et al.,

2003], [Sabharwal et al., 2003].

Stalmarck’s algorithm [Sheeran and Stalmarck, 1998], [Borälv, 1997] addresses the

problem by avoiding the need for CNF conversion and by using relations between sub-

formulas as the basis for the inference rules in the algorithm. It adopts a breadth-first

search approach. The algorithm is described in detail in §4.5.3.

2.1.4.2 A compositional approach, using the DPLL and Stalmarck algorithms

DPLL adopts a depth-first approach and Stalmarck’s algorithm adopts a breadth-first

approach. The complementary nature of these approaches means that they explore

different parts of the search space and thus there is potential to engineer a co-operative

framework using the two approaches.

The work described in [Andersson et al., 2002] uses these two algorithms in a com-

positional manner, to solve SAT. It uses a proof engine framework approach to solve

combinational design automation problems encoded as SAT problems. The approach is

to engineer different proof techniques as strategies, i.e. functions between proof states

and allow for composition of the strategies. Each strategy also takes an additional pa-

rameter which determines the time it is allowed to run. Both the DPLL and Stalmarck

algorithms have been implemented as strategies in this system. The framework is es-

sentially a sequential compositional system and hence the Stalmarck strategy has to be

run for a pre-defined period of time and then composed with the DPLL strategy. Thus,

it does not allow for dynamic interaction and cooperative information-sharing between

the two techniques. In effect, it works as a pipeline of the different solvers used, each

16 Chapter 2. Review of some parallel theorem provers

solving a sub-problem independently.

The information produced by the Stalmarck process is independent of the DPLL’s

search-state. Thus, the Stalmarck process(s) can run autonomously and communicate

their result dynamically to the DPLL solver. The results in turn, can potentially help

to prune the DPLL’s search space. So, there is clearly scope here for the two processes

to be running concurrently. However, this is not the case in the work reviewed above

[Andersson et al., 2002]. We have addressed these opportunities in our work on a hy-

brid SAT solver, based on the DPLL and Stalmarck algorithms, described later in the

thesis, in §6.3.

2.1.5 Parallel SAT solver on transputers, PSATO, Guiding path

One of the early works on parallelising SAT using workload balancing is described

in [Böhm and Speckenmeyer, 1996]. This work describes a parallel SAT solver de-

ployed on a message-passing based parallel architecture, a transputer system (every

processor is connected with at most 4 other processors) with upto 256 processors. Each

processor runs a copy of a highly optimised sequential Davis-Putnam algorithm based

SAT solver and solves small subformulas. A naive way of search tree decomposition

is used as a starting point. It employs a dynamic workload balancing strategy based on

a technique for estimating the workload for a sub-problem, based on a problem-class

dependent constant and the number of unset variables in its partial truth assignment.

The strategy is varied depending on the architectures and it involves the overhead of

communication. The work focused primarily on UNSAT instances. It reports good

performance with near linear speedup for the class of UNSAT formulas considered:

random 3-CNF UNSAT instances.

Another pioneering parallel SAT solver implementations is PSATO [Zhang et al.,

1996], a parallel SAT solver, based on SATO [Zhang, 1997], a highly efficient (se-

quential) implementation of the Davis-Putnam algorithm for SAT. A key contribution

of this work is the introduction of the notion of a guiding path (GP), a technique useful

for dynamically partitioning the search space into non-overlapping portions. GPs have

since been used as a key technique for work distribution in many of the parallel SAT

solvers, [Sinz et al., 2001], [Blochinger et al., 2005a], [Feldman et al., 2005].

2.1. Parallel SAT solving 17

2.1.5.1 Guiding path

A Guiding path (GP) is the path in the search tree from the root to the current node,

with additional information attached to the edges as follows: Considering the binary

search tree generated by the recursive calls to the DPLL algorithm, at a given choice

point (i.e. a case-split on the truth values of the variable), the GP records the list of

variables which have been assigned a value till that point. Each case-split corresponds

to an entry in the GP along with the following information (i) Literal Ld+1 , which was

selected at level d (ii) A flag indicating if both branches have been explored (closed)

or not (open), i.e. if backtracking is not needed or is needed respectively. An entry in

the GP with an open flag is a potential candidate for search space division, as at some

point, the algorithm will need to backtrack to that point and explore the subtree rooted

at the other branch, say, T. E.g., if a process P1 has a node N, given by < L1,open >,

then another process, say, P2 can come along and take up the work of exploring the

subtree T and the flag for node N, at process P1 is updated to closed.

GPs also provide a way of recording work that has been done already. E.g., if the solver

halts unexpectedly (e.g, by running out of memory, occurrence of some extraneous

fault), with the following guiding path, (< x1,open >,< x5,closed >,< x3,closed >),

then, when the solver is restarted with this guiding path as the input, the information in

the GP can be used to avoid parts of the search space that have been explored already,

such as (< x1,open >,< x5,open >,...).

It allows for dynamic work load balancing by providing a means to divide the search

space on-the-fly. If a process, say IP, becomes idle , it can potentially ask another busy

process, say BP, for a sub-problem from its search-space. BP can then pick a new

variable from its GP to generate a new and unexplored (sub-) problem and give it to

IP and the variable that was picked can now be closed, thus removing the sub-search

space that has been given to IP from its own work.

To use GPs in these ways, a SAT solver should be able to start at any point within the

search space enocoded in the given GP. This typically calls for modifications to the

system.

18 Chapter 2. Review of some parallel theorem provers

2.1.5.2 Distinguishing features of PSATO

The main objective of this work was to utilise idle resources in a network of work-

stations, e.g., during out of work hours. In view of this, PSATO provides for start-

suspend-resume facilities. This was realised by using GPs as a way of accumulating

intermediate results of separate runs of the prover on the same problem. These facili-

ties also allow for possibilities of a solver working on a particularly hard problem over

many days or longer durations even, with possible interruptions.

PSATO adopts a master-slave model of distributed computation. A slave process is a

Davis-Putnam algorithm based SAT solver that accepts as input a problem and a GP.

For a given guiding path, the solver process picks a node from the GP to proceed, us-

ing a case-splitting rule as the guide to make the choice. The master takes care of task

partitioning among slaves. The slave reports to the master upon task completion/in-

terruption, with a result in the former case and a GP in the latter case. The master

process maintains a list of GPs with the number of GPs being 10% higher than the

number of slaves. If it falls below that, the GPs are split and work is distributed to the

slaves. PSATO ran on a network of workstations and used a public domain distributed

language, called P4, developed at the Argonne National Laboratory, [Butler and Lusk,

1994]. P4 provided a C library for programming a variety of parallel machines.

[Zhang et al., 1996] also discusses the inherent difficulties of evaluating the perfor-

mance of a parallel SAT solver, because of the rapid fluctuations in the hardness of

the problem. This work reports experiments on random 3-CNF UNSAT cases drawn

from the quasi-group problem domain with a clause-variable ratio of 4.25 , which has

been known to be the phase transition boundary [Gent and Walsh, 1994a] for SAT. The

experiments were run for a number of variables = 100, 150, 200, with 50 cases for each

and the average time was taken. The number of workstations used for the experiments

were 1, 5, 20. The work reports better performance on speedup and overhead, for the

harder cases, which is explained by the fact that the master got more chance to manage

GPs and balance workloads, thus being able to score gains over the sequential version.

2.1. Parallel SAT solving 19

2.1.6 Conflict driven clause learning for DPLL

The size of the search tree is exponential for the DPLL algorithm. So, heuristics to

prune the search space are crucial to make the approach to work in practice. Conflict

driven clause learning (CDCL) [Marques-Silva et al., 1996], was introduced to address

these. CDCL is a technique that grew out of AI research on explanation-based learn-

ing [Stallman and Sussman, 1977]. Whenever a conflict occurs in the DPLL algorithm

and the algorithm is forced to backtrack, the system derives a reason for the conflict in

the form of a new clause, by employing a powerful conflict analysis procedure which

analyses the implication structure generated by the unit propagation procedure of the

DPLL algorithm. The clause(s) thus derived, often referred to as the learnt clauses

can be added to the problem, thus ensuring that the same assignment (that led to the

conflict) is not made again.

CDCL was originally introduced to enable non-chronological backtracking. It has been

further augmented with effective techniques for caching and reuse of learnt clauses,

which can be added to the original set of clauses (i.e. the given problem). It is in this

form that it has been widely employed in the context of parallelising DPLL-based SAT

solvers. CDCL, along with other efficient implementation techniques, has boosted the

tractability threshold of SAT solvers by a huge margin and is currently used as a stan-

dard technique in many of the state-of-the-art SAT solvers.

Clause length and potentially exponential number of learnt clauses (a learnt clause

is generated for every conflict) are related issues of importance. Thus, the topic of

management of learnt clauses is an important focus area for effective use of CDCL, as

adding all of them to the problem will quickly exhaust the memory.

Though CDCL was introduced in the context of sequential SAT solvers, the resulting

possibilities of information sharing have been exploited by many recent parallel SAT

solvers primarily as a tool to prune search spaces. This is discussed in §2.1.7.

In the parallel SAT solver scenario, management of clauses assumes high significance.

E.g. for systems that rely on the Message Passing Interface (MPI), communicating

vast amounts of data per worker over a whole range of workers can significantly in-

crease the communication overhead and can slowdown the master process as well, thus

20 Chapter 2. Review of some parallel theorem provers

significantly affecting the overall performance of the system. Heuristics have to be em-

ployed to balance the length of the clauses and the number of clauses communicated

and tradeoffs have to be made in communicating them.

Information sharing is especially useful if the shared information is consistent through-

out the problem, and not for a particular context (e.g, for a particular case-split) and it

is advantageous if the information-finding work can be autonomously organised with-

out interfering with the main algorithm, as it helps to avoid bottlenecks. The potential

of information sharing has been explored in a non-DPLL setting without using CDCL

as well, as discussed in §2.1.8.

2.1.7 DPLL-based parallel SAT solvers using search space parti-

tioning, dynamic workload balancing and CDCL

Use of search space partitioning invariably necessitates that some form of dynamic

workload balancing strategy. Search space partitioning along with workload balancing

were the prominent directions pursued in the early works on parallelisation of SAT. A

large proportion of published research on parallel SAT which use the DPLL algorithm

employ a GP related notion for search space partitioning. More recently, CDCL is

being used with different forms of clause sharing, catering to different parallel com-

putational models and architectures and a variety of heuristics have been developed to

filter the clauses. In this section, we provide a discussion of some of these, mentioning

their distinguishing features and performance.

PaSAT [Blochinger et al., 2005b] describes a parallel DPLL solver, using GPs based

search-space partitioning and exchange of lemmas derived using CDCL. It is imple-

mented on a proprietary distributed computing platform called DOTS (Distributed

Object-oriented threads system). It uses C++ as the implementation language, message-

passing for communication between the threads and works on distributed computing

environments like clusters. It implements a form of distributed learning and restricts

the length of the clauses that can be shared. Parameters are used for workload balanc-

ing by employing a work stealing strategy. However, a high level of communication

is required to accomplish this form of load balancing. The clauses are exchanged be-

tween the individual sub-processes and thus the traffic can become prohibitively high.

2.1. Parallel SAT solving 21

It is a crucial consideration for any parallel system to keep the inter process communi-

cation low.

PaMiraXT [Schubert et al., 2005] uses MPI technology, CDCL and GPs to implement

a form of distributed learning and is targeted at distributed computing environments. It

uses MiraXT as the core solver. MiraXT is a thread based parallel SAT solver desgined

for shared memory architectures (see §4.8.2 for defintion). PaMiraXT uses a shared

clause-database which stores all the learnt clauses and the workers can choose the rele-

vant clauses that they want to use from this database. This reduces the message latency

and also eliminates the need to restrict the length of the conflict clauses generated.

PMSat [Gil et al., 2008] is a parallel implementation for SAT solving, based on the

MiniSAT SAT solver [Eén and Sörensson, 2004], targeted at distributed computing

environments like clusters. This has been implemented in C++ using MPI. MiniSAT

is a DPLL-based SAT solver that incorporates many recent developments in heuris-

tics and allows for satisfiability search based on a given set of assumptions (a set of

literals set to True). This feature is crucial for the PMSat implementation. The par-

allelisation effort adopts a search space partitioning approach as follows: A subset

of the set of variables of the given problem is chosen and assumptions are generated

based on these variables. An assumption defines an implicit subspace of the problem’s

original search space. These assumptions form the units of work for the parallelisa-

tion effort. The solver is based on a master-slave architecture. The master explicitly

distributes the work as described above to the workers. The workers are instances of

the MiniSAT solver. The workers work on their individual subspace using the DPLL

algorithm and report their result to the master. The workers are not given any time

restrictions and are assumed to work in the absence of infrastructure fault. In the case

of SAT, the satisfying assignment is communicated and the master stops with the an-

swer. In the case of UNSAT, a clause is derived based on the conflict and the worker’s

assumptions using the notion of GP as described in [Zhang et al., 1996]. This is then

communicated to the master along with the UNSAT status. The master maintains a

database of learnt clauses received from different workers and uses it to prune search

spaces of unexplored units of work (assumptions which are in turn, subspaces) or in

some cases to eliminate complete units of work. Performance statistics of comparisons

of sequential MiniSAT and PMSAT for 25 instances drawn from the SATLIB bench-

marks show super linear speedups for some SAT instances. The authors also discuss

the difficulties involved in making a conclusive empirical analysis of the gains of par-

22 Chapter 2. Review of some parallel theorem provers

allelisation based on these speedups. However, no explicit load balancing strategies

have been implemented. Work allocation is explicitly done by the master when there

is an idle worker. This requires the master to incorporate mechanisms for monitoring

the workers. Communication of learnt clauses happens via the master and there is no

peer-to-peer clause sharing.

2.1.8 PaModoc : a non-DPLL co-operative parallel SAT solver

[Okushi, 1999] describes a parallel propositional theorem prover called Parallel Modoc,

based on the system Modoc [Gelder, 1999]. The spirit of this approach has been to

use communication as a vital part of the algorithm and not just as a means of load-

balancing. Modoc adopts a backward-chaining, goal-oriented, model-elimination ap-

proach to SAT. It uses the notion of autarkies, first introduced in [Monien and Speck-

enmeyer, 1985], which are partial truth-assignments with pruning information encoded

in them and Modoc uses these to prune unfruitful branches. Furthermore, Modoc also

records lemmas based on its sub-refutation attempts. Parallel Modoc executes multi-

ple instances of Modoc as separate processes, one for each goal clause. The processes

cooperate in finding a solution by sharing lemmas and autarkies via a shared data

structure called the blackboard. The work reports speedup over the sequential version

of Modoc on SAT encodings of planning problems.

There is an obvious limitation to this work, in that it targets a very specific imple-

mentation, i.e. Modoc, and thus cannot be used in conjunction with other DPLL-based

systems and is unable to benefit from the huge advances made in the DPLL solver

related techniques and heuristics. Nevertheless, it holds conceptual significance, as

it adopts a different emphasis and direction compared to other trends in parallel SAT

solving.

The availability of information that can be readily used, without any preconditions

on their applicability, is very desirable for the purpose of effective and instantaneous

information-sharing and to allow for autonomous agents to work on the same problem.

However this is not the case in this work. Not all autarkies found can be immediately

used by other processes, as they have associated preconditions that have to be met.

Furthermore, there can be scenarios wherein there are conflicts between the autarkies

themselves and a conflict-resolution policy needs to be in place. In the work on par-

2.1. Parallel SAT solving 23

allel Modoc, the policy adopted has been to give priority to the ones already on the

blackboard over to those contributed by an individual Modoc process. This leads to

both wasted effort as well as the additional time spent on working out what the relevant

autarkies are. But, it is an indispensable step as given Modoc’s approach and the fact

that autarkies are the shared information that is communicated via the blackboard, it

becomes necessary to check the preconditions to produce consistent information to put

on the blackboard. There is no published research available on further work on this

system.

2.1.9 GRID based implementations

The SDSAT (Simple Distributed SAT) approach [Hyvärinen et al., 2008b], exploits

the phenomenon of variation in the run times for the same instance (see §2.1.1) to run

randomised SAT solvers in a grid-like distributed environment. CL-SDSAT (Clause

Learning Simple Distributed SAT) is a parallel implementation specifically targeted

to address the aspects of a grid-like computing environment. It uses a master-worker

(a.k.a master-slave) architecture. The master process distributes the same problem

instances to the workers each of which run instances of a randomised clause learn-

ing SAT solver based on the solver MiniSAT [Eén and Sörensson, 2004] (using ran-

domised restarts and randomised branching decisions). The master stops when one of

the workers finishes. However, unsuccessful workers (due to exhausting the allocated

resources) transfer some or all of their learnt clauses to the master. These classes are

added to the problem instance that is given to subsequent workers. Thus, this allows

for a way of both accumulating and reusing the learnt clauses. But, the clause learning

process itself is still based on CDCL and hence tied to the DPLL algorithm. Also, the

learnt clauses cannot be communicated to workers that are already running. In partic-

ular, this work does not use any search space partitioning. The paper reports results

of solving previously unsolved problems from the SAT 2007 competition, by using a

version of CL-SDSAT deployed on a production level GRID environment.

zetaSAT [Blochinger et al., 2005a] is a solver using the same ideas as PaSAT, with

some modification and re-engineered to address GRID specific issues. GRIDSAT
[Chrabakh and Wolski, 2003], is a DPLL-based solver designed for the GRID, using

the highly successful and optimised zchaff [Yogesh Mahajan, 2004] as the individual

solver at each node of the GRID. Being a GRID application, the focus is on dynamic

24 Chapter 2. Review of some parallel theorem provers

resource allocation for optimal management of resources.

2.1.10 Others

ySAT [Feldman et al., 2005] is a parallel multithreaded DPLL-based SAT solver on

a single multiprocessor workstation with a shared memory architecture. Though the

core algorithm is DPLL, this system incorporates many of the optimisation techniques

introduced in recent years. The emphasis has been on providing an efficient portable

implementation using the computation model of shared memory architecture. It also

demonstrates the disadvantages of parallel execution of a backtrack search procedure,

like DPLL, on a shared memory architecture, e.g. a multiprocessor machine, due to

issues related to increased cache-misses.

ManySAT [Hamadi and Sais, 2009] adopts a portfolio based approach aimed at shared

memory architectures such as multicore architectures, and is targeted at addressing

the sensitivity to parameter tuning exhibited by modern DPLL-based sequential SAT

solvers. The implementation uses a portfolio of complementary sequential SAT solvers,

obtained from careful variations of the DPLL algorithm. Restarts are used and are ex-

ecuted using heuristics based on the potential backjumping effect of learnt clauses.

[Cope et al., 2001] investigates parallelisation of SAT in a functional setting using the

recursive version of the DPLL algorithm along with CDCL. It uses GpH (Glasgow Par-

allel Haskell, a parallel dialect of Haskell) as the implementation language and relies

on asynchronous evaluation of both the branches at each case-split. It reports better

performance for hard instances but no speedup for others, but the experimental results

provided are fairly limited and there has been no subsequent published work on it.

NAGSAT [Forman and Segre, 2002] describes a SAT solver based on a more general

technique called nagging (described in §2.3.2). In brief, the nagging technique al-

lows for asynchronous solvers to work on reformulations of the same (sub-) problem.

The NAGSAT system uses this technique with a DPLL-based solver, using the 3-SAT

problem specification. The sub-problems that the worker gets is typically a sub-tree of

the search tree of the master’s current state. The worker applies one of the following

reformulations to the sub-tree: (i) Reorder the list of variables that are awaiting assign-

ment (ii) Randomly flip the logical meaning of the variables, thereby switching the

2.1. Parallel SAT solving 25

order in which the positive and negative literals will be split upon. The work reports

sub-linear speedup for 64 nodes and compares it with the performance in the 2-node

case speculating that the framework is quite scalable.

The 32/64 bit architectures of modern computers enable 32/64 1-bit operations to be

performed simultaneously. [Heule and van Maaren, 2008] discusses work on using this

feature to boost the performance of the DPLL algorithm by modifying assignments to

variables in parallel. This is applied to an incomplete procedure on the lines of the one

described in WalkSAT [Selman et al., 1996]. The payoff of modifying assignments in

parallel is big here due to its high reliance on assignment modifications.

There has been work along lines of applying interdisciplinary approaches, e.g., of using

market-inspired approaches to SAT. [Walsh et al., 2001, 2003] discuss approaches of

formulating the SAT problem as production on a supply-chain and use the distributed

market protocol for supply-chain management to solve the SAT problem.

2.1.11 Summary of key works on parallel SAT solving

In this section, we provide a summary of the work discussed above.

As we have seen in this section, in relation to complete methods for SAT solving, the

vast majority of parallelisation efforts have been along the lines of either or both of the

following

• Use (dynamic) search-space partitioning techniques primarily. Most of these

systems employ load-balancing strategies using the guiding path technique [Zhang

et al., 1996]

• Use DPLL with conflict-driven clause learning(CDCL) [Marques-Silva et al.,

1996] in a distributed setting, often referred to as distributed learning in the

literature.

• It is instructive to observe that all these parallel systems are based on the DPLL

algorithm 2.

2There has been work on parallelising incomplete methods. Among complete methods, almost all
the parallelisation efforts have focused on the DPLL algorithm. We do not address incomplete methods
in this work.

26 Chapter 2. Review of some parallel theorem provers

• An orthogonal direction of research is the use of portfolio based approaches of

using multiple SAT solvers and published research in this category report on

systems where all the solvers in the portfolio use DPLL as the core algorithm.

Other techniques include:

• Exploring alternative formulations of the problem asynchronously using a DPLL

implementation

• Using a non-DPLL method with collaborative learning using the notion of au-

tarkies.

Thus, though in comparison to parallelisation of other forms of theorem proving, there

has been relatively large amount of published research in parallel SAT, there are still

opportunities that merit serious investigation. Some of these are listed below and have

been addressed in the SAT case study, discussed in this thesis, in chapter 6.

DPLL and need for other complementary players DPLL has been the dominant al-

gorithm among complete algorithms for SAT and has been used in highly opti-

mised implementations with sophisticated heuristics. However, as discussed in

§2.1.4.1, DPLL suffers from a fundamental inability to leverage on implicit

structural information present in real world problem instances [Thiffault et al.,

2004]. This is due to its heavy reliance on the CNF encoding and the loss of

structural information that happens as a result of the process of conversion to

CNF. Recent works have tried to address this by supplying the structural infor-

mation as an auxiliary input. However, this approach entails bespoke and often

complicated domain specific analysis is required to enable mining of structural

information for a given class of problems [Beame et al., 2003]. Despite these

limitations, tremendous amount of research and development has been invested

in the development of heuristics and efficient implementations of DPLL-based

solvers. Thus, it makes sense to capitalise on the advanced technology available

for DPLL-based solvers and use complementary solvers along with it. These

complementary solvers should be chosen so as to address DPLL’s shortcomings.

An additional desirable characteristic, particularly in the context of designing

hybrid solvers will be solvers that enable exploration of the search space in a

manner complementary to that of DPLL’s search method. The depth-first and

2.1. Parallel SAT solving 27

breadth-first search are known to be complementary approaches. Thus, a hy-

brid co-operative system building on algorithms based on these two approaches

holds a lot of potential. As discussed earlier, [Andersson et al., 2002] describes

a sequential compositional system that uses the DPLL and Stalmarck solvers,

along with other solvers in a proof engine framework. The sequential nature of

the framework did not allow for asynchronous running of solvers, thus making

dynamic information sharing infeasible.

Asynchronous running of the solvers and dynamic information sharing can be

powerful tools in the context of creating a co-operative solver based on one or

more algorithms, in view of both enabling effective forms of interaction and

being able to use distributed computing architectures. Furthermore, information

sharing is especially useful if the information-finding work can be autonomously

organised without interfering with the main algorithm, thus avoiding bottle-

necks. These opportunities have been addressed in our work on the hybrid SAT

solver, engineered by combining the DPLL and Stalmarck algorithms, discussed

in §6.3.

Information sharing and learning in non-DPLL solvers The clause-learning tech-

nique employed in the collaborative SAT solvers reviewed in this section is based

on the conflict-driven clause learning technique of §2.1.6. Though CDCL has

proved to be effective in boosting performance for sequential solvers, in the con-

text of using it as an information provider for a concurrent co-operative archi-

tecture for SAT solving, its efficacy can be restricted for the following reasons.

CDCL is embedded with the DPLL framework and this influences the clause-

learning process itself, which can now learn only by spanning the search tree in

the same way as the DPLL and does not bring any alternative viewpoints of the

problem. Furthermore, the learning process also suffers from one of the main

drawbacks of the DPLL algorithm, its inability to use implicit structural infor-

mation §2.1.4.1. Added to this is the issue of the number of clauses generated

by CDCL, as discussed in §2.1.6. To address this, it is useful to investigate

alternative forms of learning clauses, independent of the DPLL algorithm and

preferably in a way that can capitalise on the structure. Furthermore, it can be

beneficial, if this learning is based on complementary approaches that can poten-

tially span the search space in different ways. We have explored one such possi-

28 Chapter 2. Review of some parallel theorem provers

bility in our development of the hybrid solver, DPLL-Stalmarck, as discussed in

§6.3.

Asynchronous solvers and dynamic interaction Asynchronous running of the par-

ticipating solvers and enabling dynamic information sharing can be powerful

tools in the context of creating a co-operative hybrid solver. These can en-

able effective forms of dynamic interaction, potentially pruning search spaces

and also enable optimal use of distributed computing architectures. This is not

feasible in a sequential, compositional approach,e.g., as the one discussed in

the compositional approach described above, [Andersson et al., 2002]. Fur-

thermore, information sharing is especially useful if the shared information is

consistent throughout the problem and if the information-finding work can be

autonomously organised without interfering with the main algorithm, thus avoid-

ing bottlenecks. These aspects have been addressed in our work on the hybrid

approach, described in §6.3.

Need for exploring work partitioning in non-DPLL solvers Effective work partition-

ing either in terms of task decomposition or data decomposition (see §4.8) is of

crucial importance for effective parallelisation of an application. Thus, to enable

effective parallelisation of SAT and utilisation of large scale parallelisation capa-

bilities like those provided by clusters of workstations, developing effective work

partitioning techniques for SAT is of tremendous importance. The vast majority

of DPLL-based implementations use work decomposition by allocating subtrees

to multiple parallel processes. The tasks of decomposition, allocation and man-

agement of subtrees and load balancing related communication, incur overheads.

These overheads are offset, if the number of subtrees is significant and/or the av-

erage computational cost (time,space) of the subtrees is significantly high. It

is well known that the search spaces of many of the SAT problem classes are

irregular, thus making work decomposition very difficult. This in turn, proves

as a serious limitation to parallelisation approaches using work decomposition

based on subtrees. To address the difficulties posed by DPLL-based solvers for

effective work decomposition, a useful line of investigation is the exploration

of work-partitioning possibilities for algorithms other than DPLL. We have ex-

plored this for the Stalmarck algorithm, as discussed in §6.5.

Developmental/developmental aspects The features discussed above relate to the

object-level aspects of parallelisation of SAT (as discussed in §5.3.1). Of par-

2.1. Parallel SAT solving 29

ticular importance to the objectives of this thesis are the developmental/develop-

mental aspects. For the SAT domain and particularly for DPLL-based solvers,

use of an implementation language like C has become the default choice. This

choice has been motivated by the possibilities of employing techniques like ef-

fective cache optimisations etc. Almost all the works described in published

research on parallel SAT solvers have been developed using C++ or C, a trend

dictated by and shared with the state-of-the-art in sequential SAT solvers. These

use APIs to manage the spawning of processes and inter-process communica-

tion. As discussed in §5.5.2, §5.5.1 and §5.4.1, these impose the following

limitations: prohibitive developmental costs hampering the ease of prototyping

and experimentation; less scope for portability and incremental development.

F Our work has used Alice ML as the implementation language. This choice

has enabled: easy prototyping, potential porting possibilities to a C-based im-

plementation e.g. and development of distributed programming abstractions that

can be used to address other theorem proving scenarios.

Of particular interest to the material discussed in this thesis are the developmen-

tal aspects of these systems. As can be gathered from the preceding descriptions

of the various systems, almost all of them are based on fine tuned implemen-

tations of DPLL. In almost all cases, this entails use of a C like programming

language and there are justified reasons for these choices, in terms of speed and

machine-level fine tuning of the sequential implementations. However, for the

purpose of parallelisation, these platforms may not always be conducive to easy

prototyping and experimentation. Also, concurrent programming for imperative

programming languages is known to be extremely difficult. Almost all the par-

allel SAT systems discussed here have used C or C++ and some form of MPI

style communication. Also, there has been negligible contribution on portable

techniques reported in any of the works, as speed and success rate have been

the primary objectives for these systems. Consequentially, there has not been

much of incremental development of the systems either. Given the vast body

of work done on efficient implementations of SAT in C-like platforms, it is un-

likely and perhaps not very efficient for the state-of-the-art to move to functional

programming language platforms. However, a middle path can be the following:

• Have an experimental prototype system in a functional setting with sup-

port for concurrency and distribution (e.g. using a functional programming

30 Chapter 2. Review of some parallel theorem provers

language like Alice ML [Rossberg et al., 2006])

• Use this to prototype to apply concurrent and distributed techniques to ad-

dress SAT

• Use programming abstractions to implement the concurrent techniques, fo-

cusing on portability and ease of implementing new techniques and proto-

typing new experiments

• Use the prototype to conduct experiments and perform empirical evaluation

and to iteratively improve the concurrent approach employed

• Once a particular concurrent approach has been found to be effective, it can

be implemented in other parallel SAT solvers with the aid of the abstraction

used for the implementation. In particular, these target parallel SAT solvers

can be ones that use a C-like platform with parallelisation support.

We have adopted this implementation methodology in the prototypes reported in

this work.

2.2 Interactive theorem provers

In this section, we discuss some of the works that address parallelisation in the context

of interactive theorem provers.

2.2.1 MetaPRL

[Hickey, 1999] discusses a prototype distributed proving architecture implemented

within the MetaPRL logical framework, a system derived from the Nuprl proof de-

velopment system. It aims to provide a distribution mechanism for general purpose

tactics, thus making it theoretically feasible for it to be applied to any definable logic.

The focus is on fault tolerance: for cases where large proofs are run on a cluster and

proofs should not be lost due to machine failure or network failure. The distributed

tactic module replaces the sequential tactic module, which is an intermediate layer be-

tween the tactic library and the logic engine, in the context of the MetaPRL logical

framework.

2.2. Interactive theorem provers 31

The prototype was implemented using Ensemble 3, a generic communications toolkit

developed using OCaml, an ML dialect. It treats two different parallellisation options

at the level of sub-goal generation: (i) and-parallelism, the case when all sub-goals

have to be proved for the goal to be proved (ii) or-parallelism, the case when proving

any one of the sub-goals is sufficient. The parallelism opportunities considered are

those provided by the compositional and choice related tacticals (control structures for

applying the individual tactics).

A scheduler is used and a client submits a job to it. A job consists of a goal and

a tactic that needs to be applied to it. The scheduler maintains a constant number

of threads in its thread pool and allocates the jobs to the individual threads from the

thread pool. Ensemble provides an implementation of the global shared memory ab-

straction to maintain a queue of pending jobs and to provide a space for the individual

threads to post their progress to; the scheduler adds jobs to this queue. Every process

in MetaPRL holds a copy of this shared memory and locks are used to manage the

read-write conflicts.

The scheduler can perform the following communication operations with the threads:

issue a new job, cancel a running thread, ask a thread for an unfinished job, receive a

result from a thread. It does similar communication operations with the client: receives

a job, sends the results back, accepts a job cancelation request from the client.

The scheduler maintains a pending-job pool and a running-job pool. When a new job is

submitted by a client, the scheduler places the job in the pending-job pool, and enters

the scheduler loop in which it allocates jobs from the pending-job pool to idle threads

and updates the running-job pool. If the pending-job pool is free, it requests all threads

to return part of their proof trees to the scheduler. This can be considered as a form of

work stealing. When a thread completes, the result is used to prune the proof tree of

which its goal was a node. The pruning of the proof tree is done depending on: (i) the

success and failure of the job, i.e. the application of the given tactic to the given goal

and (ii) if it was or-parallelism or and-parallelism.

The difficulties faced in implementation are discussed. The Ensemble toolkit was not

designed to support multiple threads. This necessitated communication between the

3http://dsl.cs.technion.ac.il/projects/Ensemble/

http://dsl.cs.technion.ac.il/projects/Ensemble/

32 Chapter 2. Review of some parallel theorem provers

MetaPRL processes and the Ensemble processes to be routed through a (physical)

shared memory. The limited serialisation capabilities of OCaml were used as com-

munication mechanisms for communicating tactics as functions. This required careful

engineering of mechanisms to make the right choices of variables (e.g., bound vari-

ables should not be sent as part of the message).

Results comparing the unthreaded sequential prover and the distributed architecture are

discussed for: (i) fully automatic proofs for the pigeon hole problem and a first-order

logic formulation of proof of ancestry in a large genealogical database. (ii) automated

replays of proof transcripts for interactively generated proofs for domains related to

the Nuprl type theory. The work reports good speedups for an ensemble group of 5

processors.

The genealogical case showed super linear speedup and the work cites attributes this to

the fact that the random scheduling algorithm performed better than the default depth-

first search performed by the unthreaded prover. However, the number of cases tried

are fairly small as are the problem sizes: the results presented are only for individual

instances from each problem, for instance for the pigeon hole problem with the number

of holes as 3 and 4. The problems considered are fairly small and it is hard to get a

clear picture of the efficacy of the architecture, because, as the problem size grows, the

communication overheads and workload increase.

2.2.2 Parallel theorem proving in Isabelle using PolyML

The work discussed in [Wenzel, 2009], [Matthews and Wenzel, 2010] aims to pro-

vide parallelisation support for Isabelle via the PolyML (an ML dialect) platform. It

addresses the multicore architecture specifically. It reports the details on the signif-

icant reworking of the ML layers undertaken to facilitate support for parallelism in

the PolyML platform. It lays out a few possible scenarios where the PolyML’s parallel

features can be used for the Isabelle/Isar system. The work reports experiments on par-

allel theory loading. However, no concrete case studies or examples of parallel proof

checking are provided.

• The authors have focused on facilitating PolyML to support multicores and

runtime systems that support (to use the authors’ words) truly parallel system

threads. They further state that Alice ML’s runtime system does not support

2.2. Interactive theorem provers 33

this feature. However, Alice ML provides good support for high level language

constructs that facilitate rapid prototyping, experimentation, modularity, incre-

mental development and allows for programming abstractions to be synthesised

as higher-order functions and can thus be an ideal choice to base a prototypical

experimental workbench on.

• The focus of this work has been to enable implicit parallelism leveraging on the

Isabelle/Isar document structure rather than enabling explicit parallelism and/or

giving the user the choice and flexibility to develop their own parallel implemen-

tations. Large Isabelle-Isar proof documents possess some structure in their col-

lection of theories (a directed acyclic graph (DAG) to be specific). Thus, there

is scope for independent nodes in that graph to be loaded in parallel [Wenzel,

2009].

• The work reports significant reworking of the PolyML internals. Though not

covered in detail in the papers, the work has entailed significant reworking of

Isabelle’s stateful bootstrapping process which relies on the notions of heap (a

dump of the bindings at the ML top level environment) and usage of a non-

standard ML feature use. As discussed in §7.4, our efforts to port Isabelle to

Alice ML helped to highlight some of these issues. The Isabelle reorganisation

entailed is echoed in the conclusion of the work reported in [Wenzel, 2009] as

follows:

“impure programming might well be considered as premature optimi-
sation from the past that is better avoided in highly parallel programs
- if correctness and performance matter. The sources for Isabelle/ML
was already almost purely functional. We merely had to throw out a
small amount of stateful code that had crept in over the years.”

• Given the diversity in structure and solution space of theorem proving problems,

the scope of applying concurrent techniques in a fruitful manner can vary vastly

from one problem class to another. Thus, providing the user with the flexibil-

ity to develop their own extensions enabling them to develop novel proof search

procedures tailored to address specific problem classes can be a very useful fea-

ture. However, this is not addressed in this work as the emphasis is on parallel

proof checking rather than on parallel proof search.

34 Chapter 2. Review of some parallel theorem provers

2.2.3 OANTS

The OANTS project [Benzmüller and Sorge, 2000; Benzmüller et al., 2008] builds

on the OMEGA system [Melis and Siekmann, 1999]. It aims to provide a flexible

framework for integrating (specialist) external reasoners in a central theorem proving

environment. Proof rules, tactics, methods and external systems are encapsulated as

single reasoning agents. The central proof object plays a pivotal role in the system,

for the purpose of exchanging results with the external reasoners. The heterogeneous

setup allows for multiple proof attempts to be executed in parallel, by possibly different

reasoners. Furthermore, the design allows for parallelisation opportunities potentially

on different levels: term level and proof search level. The term level possibilities are

explored in the implementation of the command suggestion mechanism in OANTS,

which is discussed below. The use of external reasoning systems can be interpreted

as parallelisation at the proof search level. The system has been developed in Allegro

Common Lisp and uses its parallelism support. In the following sections, we sum-

marise the distinguishing strands of investigation explored in OANTS, which utilise

asynchronous modes of execution.

• The integration of reasoning systems aspect is portable to other systems. But, the

command suggestion mechanism is highly dependent on the proof object/proof

data structure of the OMEGA system and thus does not allow for easy portability

• Use of agent based mechanisms for the interaction and orchestration of hetero-

geneous reasoning systems

• The central proof object allows for translations of contributions from external

reasoners into it.

2.2.3.1 Flexible integration of heterogeneous reasoning systems

The heterogeneous reasoning systems addressed include: Higher-order and first-order,

model generators and computer algebra systems. It uses the MathWeb software bus

[Zimmer and Dennis, 2002] primarily for distribution and communication. Some key

distinguishing aspects of this strand of the project are:

• One of the key features is the use of a central proof object. This is used for

exchanging information from and with the main proof and the external reasoners.

2.2. Interactive theorem provers 35

• The system uses a declarative framework aimed to allow for integration of rea-

soners in a customisable and resource adaptive manner.

• The co-operation between two integrated systems has been realised via an infer-

ence rule.

• A concurrent hierarchical blackboard architecture is used for orchestrating co-

operation between the various agents. Problems and sub-problems are posted to

the blackboard from where they can be picked up by an external reasoner which

can then contribute to the overall solution either by solving the problem that it

has picked up or generating sub-problems for the same.

• The idea of using a prover and counter-example generator has been explored, for

instance using the automatic first-order prover, Otter [McCune, 1994].

• Experiments have been reported converting first-order problems into higher-

order and using a higher-order and first-order prover collaboratively outperform-

ing first-order provers for some instances.

• Allows for suspend-resume functionality on a higher-level for resource optimi-

sation: E.g., when a proof state has only first-order goals, the agents for higher-

order rules are switched off.

2.2.3.2 Command suggestion mechanism within the OMEGA system

The command suggestion mechanism within the OMEGA system, has been realised

by employing an agent-oriented approach incorporating concurrent consideration of

the various possible next steps followed by a weighted analysis of the same using

goal-directed heuristics. Originally developed to support the user in interactive theo-

rem proving by searching for possible next proof steps during user interaction, these

suggestions are computed by inference parameters extracted from the proof state which

inform the search for applicable inference rules.

• The individual agents are of two types: command agents and suggestion agents.

The command agents post arguments to the argument-blackboard, triggering

suggestion agents to post possible suggestions to the suggestion-blackboard.

Agents suggest arguments of inference rules and they are assessed by an in-

dependent agent on the basis of heuristics. The suggestion agents autonomously

36 Chapter 2. Review of some parallel theorem provers

search for suggestions, as background processes. The suggestion agents co-

operate by exchanging results via a blackboard architecture. The ranked results

are shown to the user as they are computed, thus preventing the potential bottle-

neck of long user waiting times. The background processes allow for utilisation

of idle resources and application of resource-adaptive strategies.

• The approach has aimed to capitalise on the implicit information (typically relat-

ing the arguments of the rules: premises, conclusions and additional parameters)

present in rules and tactics in a natural deduction setting. Each inference rule

has its own associated agent society and its own associated blackboard. Each

external reasoner is also encapsulated by an agent.

• In the context of OANTS and the heterogeneous setup, the suggestions can in-

clude calling external reasoners apart from the routine ones: application of tac-

tics, specific calculus rules and proof methods. To be precise, using the informa-

tion from the proof state, the applicability of the rules, tactics etc are tested and

the appropriate parameter instantiations are suggested for the same.

• The system can work in two modes: presenting the suggestions to the user, leav-

ing the ultimate decision to the user or in an automatic mode, where the system

makes the choice and stores the others for possible backtracking.

2.2.3.3 Exploration of multiple strategies

OANTS has also been used within the multi strategy proof planner MULTI [Melis and

Meier, 2000] in the following ways:

• To determine the applicability of proof planning methods in the context of inter-

active proof planning.

• To check for applicable theorems from the mathematical knowledge base.

2.3. Work partitioning approaches used in fully automatic theorem provers 37

2.3 Work partitioning approaches used in fully auto-

matic theorem provers

2.3.1 TEAMWORK

[Denzinger and Kronenburg, 1996] proposes the teamwork approach, to tackle the dif-

ficult problem of work partitioning for automatic theorem proving. It is advocated by

the authors as a useful technique for scenarios where the description of the task shows

no obvious ways of distribution. It is inspired by the team dynamics of a modern organ-

isation, in particular, where the teams can be reconfigured. It uses techniques from the

AI planning domain. Three categories of computational components are introduced:

expert, referee and supervisor. It is a hierarchical structure where each expert reports

to a referee and the referee reports to the supervisor who is responsible for steering the

subsequent processing. An iterative process is specified as follows:

• Experts are allocated individual tasks during the work phase and report to its

referee upon completing the task

• The referee produces a report for each of its experts and chooses which of the

results may be of interest to other experts and reports them to the supervisor

• In the next phase (referred as team meeting), the supervisor aggregates all the

information that it has and evaluates the performance of the individual experts

(referred as short term memory) and also augments its knowledge about the ref-

erees, in terms of their dependencies and incompatibilities (referred as long term

memory). Based on the knowledge that it has, the supervisor performs the reac-

tive planning task of choosing the experts for the next round and their resource

allocations. It also chooses the results that will benefit the majority of the experts

and adds it to the problem instance for the next round.

Mechanisms are proposed for accomplishing the steps involved in this iterative pro-

cess: judgements made by the referees; information used by the supervisor to make

the decisions of devising a new plan, revising a plan and allocation of resources.

The teamwork approach is fundamentally a competitive approach. By using a reactive

planning architecture to devise and revise a plan, it addresses the problem of not being

able to effectively partition the work apriori for a given problem. By using multiple

38 Chapter 2. Review of some parallel theorem provers

experts working on the same problem, it allows for the same problem to be tackled us-

ing different approaches. However, there is a level of redundancy, as each expert holds

a copy of the problem. Also, there is no explicit knowledge-sharing or co-operation

between the processes. The authors claim to facilitate implicit co-operation as after

each round, only the results that will benefit the majority of the experts go to the next

round. The work reports results where the whole system fares better than the individual

experts.

The teamwork approach was developed initially for the domain of equational deduction

by completion [Denzinger and Kronenburg, 1996]. It has subsequently been used to

parallelise strategies based on the unfailing completion procedure using a combination

of the teamwork approach and the PaReDuX system [Avenhaus et al., 2002], a strategy-

compliant parallel implementation of the unfailing completion method. The approach

has also been used in the TECHS system [Fuchs and Denzinger, 1997], where it is

used to engineer a heterogeneous reasoning system.

2.3.2 Nagging: NAGSAT, DALI

[Segre et al., 2002; Sturgill and Segre, 1997] propose a generic parallel search-pruning

technique called nagging, in which asynchronous solvers work on different reformu-

lations of the same problem or sub-problems. This is aimed at exploiting a given

solver’s sensitivity to the problem’s formulation. E.g., an alternative reformulation

of the N-queens problem can be a 90-degree board rotation. The technique adopts

a master-worker (a.k.a master-slave) approach. The master carries out a sequential

search. A problem transformation function is specified for each worker to map search

trees to alternate search trees. The workers work on the alternative formulation (using

its problem transformation function) of a sub-space of the search space that the master

is working on.

The possible scenarios of interaction between the master and worker are as follows: (i)

If the master backtracks beyond the sub-tree given to the worker (thus rendering the

worker’s work redundant), then, it issues a call to the worker to quit and the worker

becomes idle and goes into the loop to request for more work from the master. (ii) If

the worker completes before the master, then it communicates its results to the master

and depending on the result, the master uses it either to complete the problem or to

prune its own search space and continue working. Nagging shows real benefits when

2.3. Work partitioning approaches used in fully automatic theorem provers 39

(ii) happens often and (i) happens rarely.

The technique is designed to be inherently fault-tolerant and scalable. It does not re-

quire explicit load balancing as whenever a worker becomes idle, it goes and fetches

work. A serious limitation of this work is that there is no information sharing between

the workers. Furthermore, it crucially hinges on the availability of effective problem

reformulation techniques, which in itself requires highly tuned heuristics. The tech-

nique has been implemented for a SAT solver [Forman and Segre, 2002] and for a

resolution style first-order prover [Sturgill and Segre, 1997].

2.3.3 Other systems

The DARES (Distributed automated reasoning system) [Intosh et al., 1991] applies

ideas from the distributed problem solving domain to theorem proving. It is based on

resolution style automated theorem proving. The objective of this work is to come up

with a co-operative problem solving strategy that works by using independent agents

working on a problem with the caveat that no agent has sufficient knowledge to solve

the problem. The solution proposed aims to deliver a co-operative strategy where each

agent works on its own incomplete knowledge and uses heuristics for co-operation.

The co-operation is in the form of requesting other agents for information, the decision

to make the request being determined by its own assessment of its current state.

[Fisher, 1997; Fisher and Ghidini, 2002] discuss early ideas on a computation model

for concurrent theorem proving using asynchronous, autonomously executing objects

(referred as agents in this work). It is based on the notions of broadcast message pass-

ing and grouping the agents to minimise communication and structure the agent space.

In the context of theorem proving, formulae are distributed to the agents and an appro-

priate logical deduction mechanism is encapsulated within the execution machinery

of the agent. The agents use broadcast message passing for communication and each

agent listens to the messages being broadcast and takes appropriate action. However,

the focus of the work is to apply the ideas and the related computational model to

complex distributed systems rather than utilise concurrent programming techniques

to engineer better theorem provers. Moreover, the work does not include details on

system implementations and/or empirical results for a concurrent theorem prover. No

further work has been done applying these ideas to engineer better theorem provers4,

4Personal email communication with the author

40 Chapter 2. Review of some parallel theorem provers

though there is published research available on application of the ideas to multiagent

systems [Fisher, 2004].

2.4 Parallel functional programming languages

It is well recognised that the functional programming languages are a good substrate

for implementing concurrency. In recent years, many functional programming lan-

guages with concurrency support have emerged. In this section, we provide a summary

of some of the advantages of using a functional programming language to implement

a concurrent system and enumerate some key concurrent functional programming lan-

guages. More details are provided later in the thesis in §5.5.1.

Some of the key advantages of functional programming languages are 5:

• Immutable state

• Lack of side effects

• Referential transparency

• Allows for composition

• Ease of synchronisation, one of the biggest challenges faced by a programmer

using concurrent techniques. Many imperative languages use explicit synchro-

nisation, i.e. the mechanisms of synchronisation have to be completely handled

by the programmer and require careful use of locks, semaphores etc. One of

the established techniques that circumvents the need to use these devices is that

of implicit data flow synchronisation (explained in detail in §5.5.2.1). This

technique fits naturally into the declarative concurrency paradigm and hence a

functional programming language is well placed to support this.

• A functional programming language equipped with concurrency support pro-

vides the perfect setting for development of concurrent programming abstrac-

tions as higher-order programming constructs that can be composed and reused.

Some functional languages that provide concurrency support are:

5Some of these apply only for pure functional programming languages

2.4. Parallel functional programming languages 41

Erlang Erlang [Armstrong, 1997, 2007] has been used in real-time telecommunica-

tions applications at the Ericsson laboratories, Sweden. Its computational model

treats processes as black boxes with message-passing as the sole form of com-

munication. The emphasis is on robustness and fault-tolerance, driven by the

target domain of real-time applications. However, it does not have support for

type inference.

Haskell Haskell is a pure functional programming language and various libraries have

been developed to provide support for parallel programming [Jones and Singh,

2008]

Scala Integrates features of object-oriented languages and functional programming

languages and uses static typing [Odersky, 2004]

F# F# [Syme et al., 2007] provides language-integrated support for asynchronous

functional programming with a focus on reactive event-driven programming

OCaml OCamlMPI [Leroy, 2003], is an implementation of bindings for OCaml (a

functional programming language [Leroy, 1996]), based on the message-passing

interface standard (MPI). MPI bindings allow for restricted forms of program-

ming models. In particular, the multithreaded model is not possible with MPI

bindings

Alice ML Alice ML [Rossberg et al., 2006] is a standard ML based language with

support for concurrency and distribution. It provides static typing while allowing

for dynamic type checking of higher-order modules loaded at runtime. This is

the implementation language used in this work and is described in detail in §5.6

and Appendix §A 2

PolyML Provides support via libraries for a small selection of asynchronous program-

ming features like futures. The focus is to use multicore machines using native

threads [Matthews, 2010]. It does not provide support for distribution.

PolyML vs Alice ML In PolyML, support for concurrent programming is not very

developer friendly (compared to e.g. Alice ML). It is still fairly primitive and

has only a very limited set of features. This can prove to be a serious limitation

even to be able to develop modest experiments to use these features for proof

checking. The current support provides an ML view on the original C versions of

the well known Posix Threads (or pthreads) library using the following features:

42 Chapter 2. Review of some parallel theorem provers

Encapsulation of a concurrent computation The fork operator creates a new

thread and executes the given computation but cannot give a return value.

Also, there is no join operation. The authors state that to simulate a return

value, side-effects will need to be used together with appropriate synchro-

nisation. Alice ML provides concurrent computations (encapsulated by the

thread structure) as first class values. This feature together with the pow-

erful support for implicit (dataflow) synchronisation (for more details, the

reader is referred to §5.6, §5.5.2.1), allows for asynchronous computations

to be passed around as futures, which stand for the pending computations.

Dataflow synchronisation Unlike Alice ML, there is no support for implicit

(dataflow) synchronisation (see §5.6, for more on the support provided

by Alice ML). The work has made an attempt to wrap up the pthreads

based synchronisation primitives (mutex, condition variable). The authors

state that this is a higher-order representation of conditional critical sec-

tion. However, from the details described in the paper, the operations pro-

vided are fairly restrictive and it requires the programmer to handle many

of the synchronisation relation operations: e.g., consider the key synchro-

nisation primitive called guarded access; this has to be supplied with an

explicit guarding predicate and a state update function; a change in state

is broadcast to the waiting threads; though the broadcast operation is done

automatically, the waiting threads have to take the responsibility for estab-

lishing some semantic conditions for sychronisation; the primitive cannot

make distinctions between state changes while signalling; furthermore, the

broadcast operation is a source of bottleneck, when the number of depen-

dent processes are large.

2.5 Conclusions

In this chapter, we discussed some key directions in which research has been pur-

sued to address parallelisation of theorem proving, focussing on some prominent rep-

resentative systems, most relevant to the work discussed in this thesis. The discussion

highlights the diversity of the theorem proving flavours tackled and the parallelisation

techniques employed. Among the systems discussed, most of them have attempted

to use effective work partitioning and load balancing for optimal utilisation of re-

2.5. Conclusions 43

sources. Other technologies adopted are: agent based methodologies (§2.2.3); using

asynchronous solvers (§2.3.2, §2.3.1); using techniques from other fields like those

employed by the Teamwork project; using asynchronous proof attempts on multiple

reformulations of the problem. Some key issues that emerge as important for effective

application of concurrent and distributed techniques for theorem proving are:

1. Search space partitioning

2. Dynamic load balancing

3. Effective information sharing

4. Identifying and addressing sources of bottlenecks

5. Overheads: Scheduling and locking/unlocking are known to be two main over-

heads affecting parallel implementations. In particular, when the individual sub-

problems created as a result of work partitioning are small, the cost of creating a

thread and allocating a task to a thread can be many orders of magnitude higher

than the work performed by the computation. In the case of shared memory,

locking/unlocking account for a significant part of the overhead.

6. Scalability, i.e. the more processors there are, the faster the computation is per-

formed (i.e. the faster the solution is found). Most of the parallel implementa-

tions imply a proportional increase in communication overheads with an increase

in the number of processors. This becomes an inhibiting factor for scalability.

7. Evaluation difficulties: in particular, given the sensitivity of distributed systems

to the effectiveness of a particular implementation, it becomes very hard to make

a uniform empirical evaluation. Another related issue is that of evaluation of a

particular implementation vs evaluation of the techniques employed.

The work reviewed in this chapter exhibit the diversity in focus areas of system devel-

opment which in turn, influence the design decisions. One possible classification of

the focus areas is as follows:

Architecture oriented Optimal utilisation of machine architectures and hence devis-

ing techniques to address their strengths and weaknesses, e.g., utilisation of idle

resources in a distributed network of computers, like grids. For such a scenario,

fault-tolerance capabilities and optimal work stealing techniques become very

crucial for the success of the system. Related work discussed earlier are PSATO,

44 Chapter 2. Review of some parallel theorem provers

GRIDSAT, and metaPRL. A primary concern for these systems has been to ad-

dress the scenario where workstations fail so as to enable productive use of work

done till that point. Another objective has been that it should not cause bottle-

necks and that it should not compromise the soundness and consistency of the

system.

The field of SAT (which has seen a huge surge in published research on paral-

lelisation efforts in recent years) provides a good illustration of the issue of ar-

chitecture dependency and how the parallelisation efforts invariably are oriented

towards making the most of and/or circumventing problems posed by the domi-

nant architectures of the day. One of the earliest published work in parallel SAT

was targeted at transputers [Böhm and Speckenmeyer, 1996]. A more recent

work, separated by a decade from this is tailored towards the grid [Hyvärinen

et al., 2008a] and thus focuses on the utilisation of idle-resources and adopts

techniques for making judgements on the work required by using techniques

from the research on distribution of solutions.

Application oriented The various systems have tried to achieve different objectives

related to the particular flavour of system, using parallelisation and some of these

are:

• SAT: To improve the tractability threshold which in turn, includes space

and time. However, most works focus on improving the time taken to solve

a problem.

• Portfolio based systems use characterisations of strengths of particular solvers

with respect to problem classes. A distributed setup is used to run multiple

solvers, matching the solvers with the problems.

• Heterogeneous systems aim to leverage on the strengths of different rea-

soning systems. The OANTS system (§2.2.3) discusses how the applica-

tion domain of mathematical formalisations stands to gain from a heteroge-

neous approach employing distributed architectures. E.g., a proof attempt

in a higher-order formalisation can generate problems that are very appro-

priate to be tackled by a first-order prover or a SAT solver.

• Exploit the effect of alternate formulations of the same problem by running

asynchronous solvers on the different formulations. This has been investi-

2.5. Conclusions 45

gated in the context of SAT and automatic first-order proving in the work

on the nagging technique e.g. as discussed in §2.3.2.

Theorem proving problems come from a variety of domains and they vary vastly in

their problem structure, hardness and solution distribution. A one-solution-fits all ap-

proach is unlikely to work as each problem class and/or problems may stand to benefit

by application of different concurrent techniques. Thus, the ease of prototyping and

experimentation is of crucial importance for the effective investigation of the scope for

applying concurrent techniques to theorem proving scenarios and to assess their effi-

cacy. An iterative developmental life cycle is required addressing the following stages:

implementation/prototyping, empirical studies, analysis and refinement of the system.

However, the experimentation phase can often be stifled by the difficulties of concur-

rent programming which is notoriously error prone and difficult to program. Thus,

it will be hugely beneficial to provide a prototypical system for the theorem prover

under consideration such that it provides the building blocks and allows the user to

build on them to quickly prototype new techniques, conduct experiments and carry out

empirical analysis on the same.

Considering the various systems reviewed in this chapter, an almost uniform picture

that emerges is the limited scope for portability and lack of incremental development.

Given the changing nature of the architectures today, the issue of architecture depen-

dency highlighted earlier is very relevant. This further accentuates the importance of

producing portable implementations. On an implementation level, most of the systems

reviewed in this chapter have used API based approaches which are not exactly con-

ducive to portability. Also, there is little cross pollination of techniques employed, e.g.

from one theorem proving flavour to another, or even within the same flavour, in many

cases.

Another important issue is that of empirical evaluation. As discussed in [Bonacina,

1999], empirical evaluations conducted in the field of parallel theorem proving are not

always indicative of the true potential of the implemented techniques. Because, as is

imperative for empirical evaluations, they tend to be done for specific implementations

rather than the strategies implemented. This speaks further for a flexible framework

that allows for an effective isolation of design and implementation.

46 Chapter 2. Review of some parallel theorem provers

Use of the well established software engineering practice of effective programming

abstractions of the concurrent techniques can help achieve this as well as aiding porta-

bility of the same. Use of domain specific programming abstractions for application

of concurrent techniques has been advocated by leading experts in the field of con-

current programming as well [Asanovic et al., 2006] and has been adopted by many

application domains. However, there has been no work towards producing concurrent

programming abstractions that will be widely applicable to various theorem proving

scenarios. This is in contrast to approaches adopted by other fields that have used

concurrency and parallelism to build better applications. E.g., image processing [Fal-

cou, 2009] uses the notion of algorithmic skeletons [Cole, 1991] to address this need.

Further discussion on this topic can be found later in the thesis, in chapter 5.

Thus, the development of systems that allow for rapid prototyping of and experimenta-

tion with, novel proof search procedures merits serious investigation. The availability

of the same can greatly help the development of effective application of concurrent and

distributed techniques to theorem proving. In particular, it is worth exploring the use

of programming abstractions for implementing the concurrent techniques as it can help

effective isolation of design and implementation and promote: portability, incremental

development and reuse of the abstractions across various theorem proving scenarios.

SAT solving and LCF style theorem proving are representative of two diverse schools

of theorem proving. Among other things, SAT represents the style of brute-force search

with little scope for human intervention and the LCF style is representative of inter-

active style of theorem proving and a style of reasoning closer to the way humans

reason. Thus, these two are good candidates for testing the utility of an experimental

workbench, to explore the scope and efficacy of using previously unexplored or little

explored concurrent and distributed techniques to implement novel search procedures

in the respective contexts of SAT and LCF style. An LCF style first-order prover can

prove to be a good candidate to base a prototype on to apply concurrent techniques. In

this chapter, we reviewed systems addressing parallelisation for these two flavours.

We summarised the state of parallel SAT and identified some possibilities for explo-

ration of different directions in §2.1.11. Among the LCF style provers, the dominant

research direction has been the use of heterogeneous provers, an example of which

is the OANTS system discussed in §2.2.3. The metaPRL project adopts a different

direction (discussed in §2.2.1) and addresses the topic of using idle workstations to

2.5. Conclusions 47

implicitly parallelise tactic application in a predefined way. However, it does not pro-

vide for information sharing and it does not provide the scope for the user to build their

own concurrent techniques. LCF provers are ideal vehicles for developing sound, pro-

grammable extensions that incorporate concurrent and distributed techniques. They

also provide scope for ML level user interaction. Thus, using a functional program-

ming language with concurrency support to address this potential merits serious in-

vestigation. Giving the user the flexibility to develop their own extensions can greatly

promote the possibilities of prototyping of and experimentation with novel proof search

procedures that apply concurrent and distributed techniques.

In the next chapter, we present a concise statement of the hypothesis of this project and

give an overview of how we have addressed the developmental aspects via the two case

studies of SAT and LCF style prover and development of the respective prototypes.

The SAT case study explores the opportunities identified in §2.1.11 and the LCF style

prover enables sound and programmable extensions that in turn, can be used to develop

novel proof search procedures.

Chapter 3

Hypotheses and case studies

3.1 Hypotheses

In this section, we state the hypotheses of this work. These are explained in detail in

the next section, which includes the rationale for our choice of case studies.

Developmental level hypothesis

Using a functional programming language with language-based (as
opposed to API based) support for concurrency and distribution, en-
ables easy prototyping of applications of concurrent and distributed
techniques to theorem proving. Use of programming abstractions, to
implement the concurrency techniques aids portability, promotes in-
cremental development and allows for isolation of design and imple-
mentation.

The utility of the developmental approach described above, is illustrated via proof-

of-concept prototypes of application of concurrent techniques to address two diverse

case studies of theorem proving: the propositional satisfiability problem (SAT) and

LCF style (first-order) theorem proving. Furthermore, the individual case studies, ad-

dress the scope and utility of applying concurrent techniques in specific ways, by ex-

ploiting previously unexplored parallelisation opportunities within the case-studies, as

described below.

48

3.2. Our approach and choice of case studies 49

Object level hypothesis

1. For the propositional satisfiability problem (SAT), use of an
asynchronous mode of execution enables the development of two
novel approaches to SAT:

(a) A hybrid solver using an asynchronous combination of two
distinct SAT approaches: the DPLL [Davis et al., 1962]
and Stalmarck [Sheeran and Stalmarck, 2000] algorithms.
In comparison to the stand alone DPLL solver, the hybrid
solver performs better for some problem cases and does not
show significant slowdown for other cases examined.

(b) As an exploratory research effort, a novel algorithm has been
developed by applying concurrent techniques to the Stal-
marck algorithm. The new algorithm is well placed to utilise
large scale parallel processing capabilities and demonstrates
a novel form of work-partitioning approach for SAT.

2. A multilayered approach to application of concurrent techniques
to an LCF style first-order prover, using concurrent LCF-style
tacticals, realised via programming abstractions enables:

(a) Programmable extensions (to the prover), incorporating con-
current programming techniques, retaining the soundness
guarantees

(b) Easy prototyping and evaluation of novel proof search tech-
niques, applying concurrent programming techniques, that
can be tailored to a given theorem proving scenario

(c) The novel proof search procedures use concurrent ap-
proaches to deal with theorem proving tasks and in the pro-
cess, address some of the shortcomings of their sequential
counterparts and fare better in some test cases.

3.2 Our approach and choice of case studies

In the last section, we set out the hypotheses of this thesis. In this section, we elaborate

on the same, with a brief outline of how they have been addressed, in this thesis. The

rationale for choosing the case studies is also explained.

Developmental level A prescriptive analysis of the implementation aspects, as out-

lined in §3.1 above, is discussed, in detail, in chapter 5). In concrete terms, here

is how we have realised the same, in this project:

50 Chapter 3. Hypotheses and case studies

Choice of platform Alice ML [Rossberg et al., 2006], a functional program-

ming language with rich, lightweight, language-based (as opposed to API-

based) support for concurrency and distribution has been used to implement

the concurrent and distributed techniques. The rationale for this choice is

covered in detail in §5.5 and §5.6.

Use of programming abstractions Programming abstractions have been devel-

oped, for the concurrent techniques implemented. The abstractions have

been developed as higher-order functions in Alice ML, in a way that pro-

motes reusability, portability and incremental development and allows for

separation of design and implementation. This aspect is covered in detail

in §5.4.1.

Object level The desirable developmental methodological criteria, gathered from our

analysis, have been applied to implement prototypes of application of concurrent

techniques to two diverse case-studies of theorem proving flavours: SAT and

LCF style first-order theorem proving. The applications of concurrent techniques

considered, aim to exploit previously unexplored parallelisation opportunities

and are described respectively in chapter 6 and chapter 7. In brief, they are as

follows:

SAT

• Implementation of a hybrid approach to SAT using asynchronous SAT

solvers, based on combining the depth-first approach based DPLL al-

gorithm [Davis et al., 1962] with the breadth-first approach based Stal-

marck’s algorithm [Sheeran and Stalmarck, 2000]

• Implementation of a novel distributed algorithm based on Stalmarck’s

algorithm for SAT [Sheeran and Stalmarck, 2000]

• Development of programming abstractions for the techniques employed

• Evaluation of the implementations using standard benchmark prob-

lems

LCF style prover

• Development of a multilayered approach for developing programmable

extensions (to an LCF prover), such that the extensions incorporate

3.2. Our approach and choice of case studies 51

concurrent and distributed techniques and retain the soundness guar-

antees of the LCF prover. In particular, the multilayered approach we

have developed is as follows: Use programming abstractions for the

concurrent techniques and use them to develop concurrent tacticals

and use them in turn, for developing novel proof search procedures

• Use a LCF style, first-order prover, to develop a proof-of-concept pro-

totype, for this multilayered approach

• Evaluation of the implementation, assessing their scope of addressing

the limitations of their sequential counterparts

The case-studies serve the following purposes:

• They help us to understand the efficacy of our approach to implementation, in

terms of ease of prototyping and experimentation and portability.

• They help us to understand the performance gains/losses made by exploiting the

particular parallelisation opportunities. Performance metrics include

Speed, size of search space In comparison to their sequential counterparts in

the average case scenario

Scope, Success rates Can handle complexity and size better and/or can handle

problems that are not tractable by the sequential counterparts

Chapter 4

Background

In this chapter, we provide details deemed relevant for the purpose of understanding

work discussed in this thesis and an enumeration of notations and terminology used in

this thesis. Definitions of a purely technical nature and/or definitions that are not ex-

plicitly used, but still relevant to the thesis, are provided in the glossary accompanying

this thesis. In this thesis, we use Alice ML [Rossberg et al., 2006] syntax1, to describe

code fragments2. Topics addressed in this chapter include the following:

• Propositional logic, in §4.2.3 and first-order logic, in §4.3

• Propositional satisfiability (SAT) solvers, in §4.5, relevant for understanding the

material discussed in chapter 6

• The prototype first-order theorem prover discussed in chapter 7 is an LCF style

prover and uses sequent calculus. To this end, §4.4 provides a general overview

of theorem proving, covering natural deduction, sequent calculus and the LCF

style of theorem proving.

• §4.7 provides background material that is specific to first-order theorem prov-

ing and addresses unification, meta-variables and an enumeration of the sequent

calculus rules for first-order logic.

• For a broader introduction to theorem proving and/or details on specific aspects,

the following sources are recommended: [Huth and Ryan, 2004], [Harrison,

1which in turn, is based on standard ML (SML) [Milner et al., 1997]
2Many definitions covered in this chapter include recursively defined structures and functions and

we use code-fragments as an aid to describe these, along with verbal descriptions.

52

4.1. Formal logic: basics 53

2009], [Robinson and Voronkov, 2001]. Many of the definitions provided in

this chapter are sourced from the first two texts.

• Relevant information on parallel, concurrent, distributed programming is pro-

vided in §4.8. Appendix §A 1 provides some more details on this topic as does

chapter 5. [Andrews, 2000] is a recommended source for more on this topic.

4.1 Formal logic: basics

Logic is widely understood as the study of formal (symbolic) systems of reasoning

and of methods of attaching meaning to them. In formal logic, a clear distinction is

maintained between the formal (symbolic) expressions and what they stand for.

Syntax of a logic sets out a precisely defined language that provides the building

blocks for the language (giving its alphabet and grammar) and the rules for a

well-formed statement (often referred to in the literature as a well-formed for-

mula (wff)). In this thesis, we use just formula to refer to a wff.

Semantics is concerned with the meaning of these formal (symbolic) expressions.

Interpretation maps expressions to their meanings, thus connecting the syntax and

semantics of the given logic.

In the next two sections, we describe the syntax and semantics of propositional logic

and first-order logic and associated terminology. Also included are descriptions of the

notions of validity, tautology and satisfiability for the two logics.

4.2 Propositional logic

In propositional logic, formulas are intended to represent propositions, i.e. assertions

that may be considered true or false (often referred to as truth-values). In the rest of

this section, we describe the syntax and semantics of propositional logic and describe

related definitions and terminology used in this thesis.

54 Chapter 4. Background

4.2.1 Syntax and semantics

Syntax Formulas in propositional logic are built using the following:

Constants ‘True’ (>), ‘False’ (⊥) 3

Atoms Atomic propositions, also referred to as propositional variables or just

variables.

Logical connectives A logical connective is an operator that takes a fixed num-

ber (referred to as arity) of formulas as arguments and gives a compound

formula as the result. Formulas in propositional logic are built using the

following connectives, given below in the descending order of precedence,

with examples illustrating their usage. For each connective, the symbols

used to denote them are also given4.

Negation, ¬, Not : ¬p, where p is a variable

Conjunction, ∧, And : p∧q, where p, q are variables

Disjunction, ∨, Or : p∨q, where p, q are variables

Implication,→, Imp : p→ q, where p, q are variables

Double-implication,↔, Iff : p↔ q, where p, q are variables

Propositional formula A propositional formula φ is defined over a set of propo-

sitional variables, x1,x2, . . . ,xk, using the standard propositional connec-

tives, ¬, ∨, ∧,→,↔. Listing 4.1 gives a datatype definition in Alice ML,

for a well-formed formula (wff) in propositional logic. In Backus Naur

Form, the definition of a propositional formula can be given as

φ ::=⊥ | > | p | ¬φ | φ∧φ | φ∨φ | φ→ φ | φ↔ φ

where p stands for any propositional variable.

Notation In this thesis, we use lower case and upper case alphabets to denote

variables and formulas respectively

3We use the capitalised words to refer to the constants
4For each connective, the abbreviated English word is used in code fragments and the symbol is used

in infix formulas.

4.2. Propositional logic 55

Listing 4.1: Datatype definition in Alice ML, for wff in propositional logic

datatype (’ a) formula = False

| True

| Atom of ’ a

| Not o f (’ a) formula

| And of (’ a) formula ∗ (’ a) formula

| Or of (’ a) formula ∗ (’ a) formula

| Imp of (’ a) formula ∗ (’ a) formula

| I f f o f (’ a) formula ∗ (’ a) formula

Semantics The semantics of propositional logic is captured via the following defini-

tions:

Valuation determines the assignment of truth-values to the atoms. It is a func-

tion from the set of atoms to the set of truth-values.

Truth-table, meaning of connectives The semantics of logical connectives can

be explained using truth-tables5. Truth-tables (as used in propositional

logic) are used to compute the truth-value of a given propositional for-

mula, for each combination of truth-values taken by its constituent vari-

ables. Thus, if a given formula F has n propositional variables there will

be 2n rows (to account for the 2n possible combinations of truth-values of

the n variables) and n+1 columns (to account for the n variables and F) in

the truth-table. An example is provided in Table 4.1.

p q p ∧ q

> > >
> ⊥ ⊥
⊥ > ⊥
⊥ ⊥ ⊥

Table 4.1: Truth-table for conjunction of two variables

Truth-value of a formula Since propositional formulas are intended to repre-

sent assertions that may be true or false, the ultimate meaning of a formula

is just one of the two truth-values, ‘True’ or ‘False’ and it depends on the

truth-values assigned to the atomic propositions and the constants and con-

nectives present in the formula.

5More on this line of explanation can be found in one of the references provided earlier

56 Chapter 4. Background

Given a formula F and a valuation v, the overall truth-value of the formula

can be computed by the recursively defined function, eval, given in List-

ing 4.2. This function also clarifies the semantics of the logical connectives

mentioned above.

Listing 4.2: Truth-value of a propositional logic formula, F, for a valuation, v

fun eval F v =

case F of

False => f a l s e

| True => t r ue

| Atom (x) => v (x)

| Not (p) => not (eva l p v)

| And (p , q) => (eva l p v) andalso (eva l q v)

| Or (p , q) => (eva l p v) o re lse (eva l q v)

| Imp (p , q) => not (eva l p v) or (eva l q v)

| I f f (p , q) => (eva l p v) = (eva l q v) ;

4.2.2 Validity, satisfiability and tautology

We say that a valuation v satisfies a formula F if

eval F v =>

A formula is said to be:

• a tautology or logically valid, if it is satisfied by all valuations

• satisfiable, if it is satisfied by some valuation(s)

• unsatisfiable or a contradiction, if no valuation satisfies it.

Some related observations:

• A tautology is also satisfiable.

• A formula is unsatisfiable precisely if it not satisfiable

• For a given formula F , for any valuation, v,

eval (¬F) v is f alse iff eval F v is true

So, F is a tautology if and only if ¬F is unsatisfiable

4.2. Propositional logic 57

• Intuitively speaking,

– tautologies are ‘always true’

– satisfiable formulas are ‘sometimes (but possibly not always) true’

– contradictions are ‘always false’

4.2.3 More definitions and notations

Literal A literal is a variable, v or the negation of a variable. We use ¬v to denote the

negation of the variable v.

Clause A clause is a disjunction of literals. It can be written as

l1 ∨ l2 ∨ . . . ∨ ln,

where each li is a literal. It follows trivially from the definition that for a clause

to be true, at least one of the literals has to be true and it is false if all the literals

are false.

Empty clause, unsatisfiability for a clause An empty clause, i.e. a clause with no

literals is taken to be trivially unsatisfiable. A clause can thus be unsatisfiable

either when it has no literals or when all the literals in the clause take the value

false.

Unit clause A clause is said to be a unit clause, if it contains exactly one literal.

Conjunctive normal form (CNF) A propositional formula is said to be in conjunc-

tive normal form (CNF), if it is a conjunction of clauses. Here are some more

definitions related to CNF that are used later in this thesis, in chapter 6.

3-CNF When each conjunct contains a disjunction of at most three literals, the

formula is said to be in 3-CNF.

Conversion to CNF Given an arbitrary boolean formula F , there exists a poly-

nomial algorithm to convert it to a CNF formula, F ′, such that it is equisat-

isfiable, i.e. F ′ is satisfiable if and only if F is [Tseitin, 1968].

CNF and satisfiability It follows from the definition that a given CNF formula

is satisfiable iff all its clauses are satisfiable.

58 Chapter 4. Background

Pure literal Used mostly in the context of a CNF representation, a literal is said

to be pure (in the context of the given formula) if its negation does not

occur in the formula.

Empty problem An empty CNF problem, i.e a CNF problem with no clauses

is valid.

Set representation In the material discussed in this thesis, we represent a SAT

problem in CNF, as a set of clauses and a clause as a set of literals.

SAT Given a propositional formula, the problem of finding whether there exists a

variable assignment such that the formula evaluates to true is called the propo-

sitional satisfiability problem, also referred to as boolean satisfiability problem

and is abbreviated as SAT.

Tautology checking As defined earlier, a given formula is a tautology if its negation

is unsatisfiable and it is not a tautology if the negation is satisfiable. Thus, the

problem of finding if a given propositional formula F is a tautology is equivalent

to finding if ¬F is unsatisfiable.

4.3 First-order logic

Propositional logic allows us to build formulas only from propositional variables. First-

order (predicate) logic extends propositional logic by accommodating the following

(described in detail below):

• Variables refer to individual entities, rather than truth values

• Propositions can be built from non-propositional (domain) variables and con-

stants using functions and predicates

• Quantifiers, universal and existential : ∀,∃

• Bound variables: non-propositional variables can be bound with quantifiers

This section describes relevant background related to first-order logic, useful for un-

derstanding material discussed in this thesis, in particular chapter 7.

4.3. First-order logic 59

4.3.1 Syntax and semantics

Syntax The following notions describe the syntax of first-order logic

Vocabulary A first-order logic vocabulary consists of three sets. A set :

• P , of predicate symbols, each with its associated arity, i.e. the number

of arguments it expects

• F , of function symbols, each with its associated arity, i.e. the number

of arguments it expects

• C , of constant symbols. Constants can be interpreted as 0-arity func-

tions and so, the set of constant symbols can be subsumed in the set of

function symbols. Thus, in most cases, the set of constant symbols is

not specified explicitly in the vocabulary.

Variable is a place-holder for any, or some, unspecified objects/concrete values.

Term is used to refer to an object that we are talking about and terms can be:

variables, constants and functions applied to those. In pseudo Backus Naur

form, we may write a term, t, as follows:

t ::= x | c | f (t, . . . , t)

where x ranges over var, a set of variables, c over 0-arity function symbols

in F , and f over those elements of F with arity n > 0.

It is important to note that

• the first building blocks of terms are constants and variables

• the notion of terms is dependent on the set F . If it is changed, the

set of terms also changes. The same holds true for the set of formulas

(defined below), when F is changed.

Predicate takes a fixed number (referred to as arity) of terms as arguments. It

evaluates to a truth-value, when its arguments evaluate to domain elements

and a valuation function for the variables is given.

Function takes a fixed number (referred to as arity) of terms as arguments. It is

a term and evaluates to an element of the domain, when its arguments do.

60 Chapter 4. Background

Formula In pseudo Backus Naur form, a first-order logic formula, P, is as fol-

lows:

P := P(t1, t2, . . . , tn) | ¬ P | P ∧ P | P ∨ P |

P → P | P ↔ P | ∀ x P | ∃ x P

where P ∈ P is a predicate symbol of arity n≥ 1, ti are terms over F and x

is a variable.

Connectives are operators that takes a fixed number (referred to as arity) of for-

mulae as arguments giving a compound formula as result; the compound

result has a truth value determined by the connective and the truth-values of

the arguments. Classical first-order logic without equality builds on propo-

sitional logic with the following additional constructs called quantifiers:

∀,∃, that are used with variables and terms.

Quantifiers The formula, ∀x P, where x is a variable and P any formula, means

intuitively, ‘for all values of x, P is true’. For this reason, ∀ is referred to

as the universal quantifier. The analogous formula ∃x. P, means intuitively,

‘there exists an x such that P is true’, i.e. ‘P is true for some value(s) of

x’. For this reason, ∃ is referred to as the existential quantifier. In the

formulas, ∀x P and ∃x. P, P is referred to as the scope of the quantifier. It is

worth observing here that in first-order logic, quantifiers cannot be applied

to functions or predicates. Logics where quantification over functions and

predicates is permitted are said to be second-order or higher-order.

Bound variables, Free variables The quantifier is said to bind instances of x

within its scope and these variable(s) are said to be bound. It is useful to

note that renaming the bound variables does not affect the meaning of a

formula. Instances of variables that are not within the scope of a quantifier

are called free variables. Intuitively speaking, a bound variable is just a

placeholder referring back to the corresponding binding operation, rather

than an independent variable in the usual sense.

Signature, language When we talk of a signature of first-order logic, we refer

to the pair of sets, of functions and predicates, both as name-arity pairs and

the corresponding language as the sets of terms and formulas that can be

built using only functions and predicates appearing in that signature (but

4.3. First-order logic 61

any variables)6.

Terms vs Formulas In first-order logic, a syntactic distinction is made between

formulas and terms. Formulas are intended to be true or false. Terms stand

for objects in the domain of discourse and are in turn, built from variables

using functions.

Notation

• We use lower case letters for variables and arity and upper case letter

for all other symbols.

• The order of precedence of symbols in a formula is as follows:

– ¬, ∀y and ∃y bind most tightly

– ∨ and ∧

– →,↔

Substitution Given a variable x, a term t and a formula φ, a substitution, φ[t/x],

is defined to be the formula obtained by replacing each free occurrence of

the variable x in φ, with t.

More concretely, a substitution is a finite set of replacements [t1/x1, . . . , tk/xk]

(a function from variables to terms), where x1, . . . , xk are distinct variables

and t1, . . . , tk are terms.

The finite set x1, . . . ,xk is called the domain of the substitution. A given

substitution, φ, can be defined to apply over arbitrary terms and formulae,

by defining xφ = x if x not in domain φ.

A given substitution φ can be extended to accommodate terms, constants

and literals as well by augmenting the definition with xφ = x ∀x /∈ domain(φ).

A pair ti/xi is called a binding for xi. The extension, composition and equal-

ity operators are defined in a natural way.

Substitution and free variables While performing the substitution φ[t/x], the

term t may contain a variable y, such that the occurrences of x in φ are under

the scope of ∃y or ∀y in φ. In such cases, as a result of the substitution, the

value y, which might have been fixed by a concrete context, gets caught in

6The exact formal definitions of language and signature vary in the literature. The key objective
though is that the concept of a term or formula being in a restricted language is clear

62 Chapter 4. Background

the scope of a quantifier. So, we use a capture-avoiding substitution, where

such bound variables are renamed, before carrying out the subsitution.

Semantics As with a propositional formula, the meaning of a first-order formula is

defined recursively and depends on, and varies with, the actual choice of values

and the meaning of the predicate and function symbols involved. To describe the

notion of semantics for first-order logic, we require the following definitions

Interpretation, valuation In first-order logic, the variables, function symbols

and predicate symbols all need to be interpreted. It is customary to separate

these concerns, and define the meaning of a term or formula with respect

to both an interpretation, which specifies the interpretation of the function

and predicate symbols, and a valuation, which specifies the meanings of

variables. Mathematically, an interpretation M consists of the following

three parts:

Domain A nonempty set D called the domain of the interpretation. The

intention is that all terms have values in D.

Interpretation of functions A mapping of each n-ary function symbol f

to a function fM : Dn → D.

Interpretation of predicates A mapping of each n-ary predicate symbol

P to a boolean function PM : Dn → { f alse, true}. Equivalently, we

can think of the interpretation as a subset PM ⊆ Dn.

Value of a term The value of a term in a particular interpretation M and valu-

ation v is defined by recursion, taking note of how all variables are inter-

preted by v and function symbols by M:

termval M v x = v(x),

termval M v(f (t1, . . . , tn)) = fM(termval M v t1, . . . termval M v tn)

4.3.2 Satisfiability, logical equivalence, validity

Whether a formula holds (i.e. has the value ‘true’) in a particular interpretation M and

valuation v is defined by recursion and mostly follows the pattern described earlier for

propositional logic. The definitions are given below. The main added complexity is

specifying the meaning of the quantifiers. We intend that f orall.x P(x) should hold in

4.4. Theorem proving 63

a particular interpretation M and valuation v, precisely if the body P(x) is true for any

interpretation of the variable x, i.e. if we modify the effect of the valuation v on x in

any way at all.

holds M v⊥ = f alse

holds M v> = true

holds M v (R(t1, . . . , tn)) = RM(termval M v t1, . . . , termval M v tn)

holds M v(¬p) = ¬(holds M v p)

holds M v(p ∧ q) = (holds M v p) and (holds M v q)

holds M v(p ∨ q) = (holds M v p) or (holds M v q)

holds M v(p → q) = (not (holds M v p)) or (holds M v q)

holds M v(p ↔ q) = (holds M v p = holds M v q)

holds M v(∀.x p) = f or all a ∈ D, (holds M((x 7→ a)v)p)

holds M v(∃.x p) = f or some a ∈ D, (holds M((x 7→ a)v)p)

Validity, logical equivalence By analogy with propositional logic, a first-order for-

mula is said to be logically valid if it holds in all interpretations and and all

valuations. If p ↔ q is logically valid, we say that p and q are logically equiva-

lent.

Satisfiability We say that an interpretation M satisfies a formula P, or simply that P

holds in M, if for all valuations v, we have holds M v p = True. Similarly,

we say that M satisfies a set of formulas, or that S holds in M, if it satisfies each

formula in the set. We say that a first-order formula or set of first-order formulas

is satisfiable if there is some interpretation that satisfies it.

Model An interpretation that satisfies a set of formulas Γ is said to be a model of Γ.

The notation Γ |= P means ‘P holds in all models of Γ’. When Γ is the empty

set, we just write |= P

4.4 Theorem proving

We use the term automated/mechansied reasoning systems with the following interpre-

tation: (i) reasoning is understood as formal deductive inference as practiced in formal

64 Chapter 4. Background

logic (ii) the term automated/mechansied systems is used to broadly include classes of

software systems that are capable of performing the reasoning without or with (partial

or step-by-step) human intervention. We use the terms automatic/fully automatic and

interactive systems to refer to the two classes respectively. A theorem proving problem

is typically specified in a given logic, say, L, as follows:

Given a set of axioms (assumptions), A and a conjecture (goal) G to prove,

is there a proof in L of G from the given axioms, A?

where A, G are specified in the given logic.

For a typical problem scenario, this translates to:

• the assumptions capture all the relevant available information

• the conjecture expresses the question being asked

The problem is given to an automated reasoning system to work on until it arrives at

an answer or until it runs out of resources or the execution is terminated by the user.

4.4.1 Inference system

An inference/deduction system is a mechanism that allows for the construction of valid

logical statements from other valid ones by purely syntactic means. An inference rule

gives a method of deriving valid formulas (conclusions), from a set of given formulas

(premises), by purely syntactic means, i.e. without using any semantic information.

A proof calculus is the formalisation of the deductive machinery of choice. A given

automated reasoning system implements a specific deductive machinery via a partic-

ular proof calculus. The inference rules that are part of the proof calculus are called

basic inference rules in contrast to the rules that can be derived, which are referred as

derived rules. The emphasis is on the use of purely syntactic means, i.e. based purely

on the form, hence the alternative name formal rules/systems.

The choice of a proof system depends, amongst other things on: the logic, the applica-

tion domain, the intended mode of operation of the system (automatic, interactive etc).

Natural deduction based systems, sequent calculus, axiomatic systems and tableaux

systems are examples of inference systems. We describe the natural deduction system

and the sequent calculus in §4.4.2, as these are relevant to the material discussed in

the first-order theorem proving case study discussed later in the thesis.

4.4. Theorem proving 65

4.4.2 Natural deduction

Natural deduction is a style of inference that captures the reasoning patterns used by

humans, more closely than axiomatic systems, hence the qualification natural. It con-

sists of rules for introducing and eliminating each of the logical connectives and quan-

tifiers. Despite the natural tag, the deduction still is a formal system as in: it allows us

to manipulate formulae and derive conclusions by purely syntactic means, regardless

of their meaning.

As an example, consider the following, for the case of propositional logic: suppose

that, by assuming P is true, Q can be shown to be true, by virtue of some intervening

proof steps. Then, by making a semantic argument using the truth table for the connec-

tive→, we can conclude that P→ Q holds. This conclusion does not depend on any

assumption. The assumption of P being true was made within the proof and was dis-

charged in the process of going from Q to P → Q. This is an illustration of a method

for introducing the connective → and implicitly generating a new formula. Similar

arguments follow for eliminating the connectives from a formula. E.g., the elimination

rule for→ captures the well known modus ponens. It says that if you know P→Q and

you know that P is true, then Q holds. Similar such rules can be formulated for other

connectives.

4.4.3 Sequent calculus

In natural deduction, proofs are constructed by fitting the rules together, in the form of

a tree. As in ordinary reasoning, temporary assumptions may be made, in the course of

the proof and then discharged by incorporating them into the conclusion. The proof-

tree form of proofs in the natural deduction system, in their crude form, do not lend

themselves well to reasoning about them and/or to incorporate them in a software sys-

tem etc.. Sequent calculus addresses this well. It is a less pictorial and more algebraic

formulation of natural deduction in which the role of assumptions is made more ex-

plicit. It provides a means of reasoning about proofs and axiomatising deduction.

Natural deduction and sequent calculus, by virtue of capturing the behaviour of the

logical connectives (independent of the logic), gives us the opportunity to generate

different logics by varying the rules. This has led to their use in the engineering of the-

orem provers aimed at providing a generic theorem prover approach [Paulson, 1989].

66 Chapter 4. Background

Definitions

Sequent Though the rules of sequent calculus affect logic formulae, the objects of

manipulation are not logic formulae, but sequents. A sequent is of the form:

φ1,φ2, . . . ,φn ` ψ1,ψ2, . . . ,ψm, where:

• φ1,φ2, . . . ,φn and ψ1,ψ2, . . . ,ψm are lists of formulae.

• A formula appearing by itself on either side of the turnstile symbol denotes

a singleton set.

• For a given interpretation, if the sequent holds, it means the following:

If all φis are true, then, at least one of the ψ js is true.

Premises, conclusion For convenience, a sequent is often represented as

Γ ` ∆,

where both Γ and ∆ are (possibly empty) sets of formulae. Γ is the sequent’s

antecedent/premises and ∆ its succedent/conclusion. A special case is

` ψ

, which has the same meaning as ψ.

Role of Sequent It is useful to note that a sequent is not a formula and the symbol `
(known as turnstile is not a connective. Furthermore, the sequent captures the

intention of being able to apply inference rules to the premises, repeating the

process if necessary, to eventually obtain the conclusion.

Valid sequent A valid sequent is one that is true under every interpretation. Thus,

referring to the above point on the role of a sequent, we can say that a valid

sequent gives the intention of the status of certainty.

Basic sequent A sequent is called basic if both sides share a common formula. Such

sequents are clearly valid.

Left rules, right rules Sequent calculus rules come in pairs, to introduce each con-

nective on the left or right of the ` symbol. For first-order logic, there are :left

and :right for each connective and quantifier. The sequent calculus rules for

classical first-order logic without equality are given in Table 4.3.

4.4. Theorem proving 67

4.4.4 Backward proof and sequent calculus

Though the inference rules given in Table 4.3 render themselves to forward-reasoning

at first glance, such a usage to find a proof for a given conjecture entails enumeration of

all the possible derivations using the given premises. This approach is used in tableaux

based methods and is not addressed in this work. An alternative approach is to find a

proof using a backward style of proving, often referred to as refinement or backward

proof :

• Start from the initial goal, i.e. the given sequent that is to be proved. At this

stage, this is the root of the proof tree and its only leaf is this goal

• Apply a sequent rule to one of the leaves. Here, the leaf (goal) plays the succe-

dent and the application of the rule generates sub-goals, which are in turn, the

antecedents of the applied rule. Thus, the leaf is now transformed into a branch

node with one or more leaves (sub-goals).

• The above step is performed recursively until all the leaves are basic sequents

(success) or when no rules can be applied to a leaf any more (failure).

• For propositional logic, this procedure must terminate, though this is not the case

for first-order logic.

4.4.5 Interactive theorem proving

In interactive theorem proving systems, the human user guides the proof process, with

the possible assistance of the machine (possibly to do some of the tedious/mundane

bits or to marshal the power of automation using encodings of specific proof search

procedures and heuristics), while the system still ensures that no mistakes are made,

i.e. that the proof produced eventually, is sound.

The interactive aspect naturally fed the need for programmability of the theorem prover:

the user should be able to extend the built-in automation as much as desired, while still

being able to allow only extensions that are sound. In the next section, we describe LCF

(Logic for Computable Functions), which started as a system that addressed the dual

needs of interactive aspects and programmability and has gone on to become one of

the most influential foundations of interactive theorem proving. It has formed the basis

68 Chapter 4. Background

for many successful interactive theorem provers, e.g. Isabelle [Nipkow et al., 2002],

Nuprl [Constable et al., 1986]. In this work, we use the terms LCF based approaches,

LCF style provers to refer to such systems and use the following terms synonymously:

programmable theorem provers, tactic-based theorem provers and LCF-style theorem

provers.

4.4.6 LCF

In the LCF approach,

• The commands are embodied in a language that has an expressive functional

subset 7.

• Each inference rule of the logic is expressed as an ML function, which has as its

result a value of the special abstract type (say, thm). This special abstract type,

which stands for proved theorems in the implementation language, is in fact one

of the key LCF ideas.

• The only constructors of the abstract type thm correspond to approved inference

rules. This ensures that anything of type thm, must by construction, have been

proved rather than simply asserted.

However, the user is given full access to the implementation language and can use any

programming techniques of the implementation language to engineer more sophisti-

cated ways of orchestrating the basic inference rules. As thm is an abstract type with

specific constructors as discussed above, any result of type thm, in which ever way

it was arrived at, must ultimately have been produced by correct application of the

primitive rules. This holds no matter how complex the means of arriving at that was.

Thus, it allows for both programmability of the prover as well as guaranteeing the

soundness of the programmed extensions. In practice, the implementation language

for most interactive theorem provers is usually a flavour of ML (Meta language).

LCF style provers use a predominantly goal-directed, backward-chaining style of proof

(§4.4.4). The notion of tactics helps to realise this in an efficient manner. Tactics,

7LCF and the functional programming language ML (Meta Language) are very closely related, with
the latter having had its genesis in the development of (Edinburgh) LCF; ML was the precursor to
Standard ML (SML)

4.5. SAT solvers: some relevant background 69

are essentially the rules of inference, with intended usage in the backwards direction,

equipped with extra book-keeping mechanisms. Using tactics, we can formalise the

idea of working backwards from a goal to (possibly simpler) sub-goals. This equips us

with the tools to program some general purpose problem solving strategies.

Another feature of LCF is the following: when a rule gets used (in the backward style),

giving a list of sub-goals, the justification, the reason why it was a legitimate step (i.e.

the name of the inference rule), has to be kept track of. In LCF, this is taken care of by

tactics. Tactics are thus functions which encapsulate an inference rule and maps a goal

to a list of sub-goals while maintaining the justification.

Thus, a typical step in an LCF prover will involve: finding a tactic (rule) whose conclu-

sion can be made to match the goal (sub-goal) and read off the premises of the rule thus

found to give the sub-goals. Keep using this basic strategy until all sub-goals reduce

to axioms or previously proved theorems. The challenge that this introduces is that at

each step there will be many matches (of tactics). So, an efficient search mechanism

will be required to make sure that we try all possibilities. Tacticals provide the tools to

address this aspect.

Tacticals are encapsulation of control structures, for applying the tactics in various

ways (sequencing, conditional operation, repetition etc).

LCF systems have a kernel, which consists mechanisms to apply the basic inference

rules. All other proof rules are defined in terms of these rules. Thus, it suffices to just

trust the small kernel. This is a very desirable feature, particularly for prototyping of

and experimentation with sophisticated techniques. We have used one such system for

first-order logic, in our case study discussed in chapter 7.

4.5 SAT solvers: some relevant background

The propositional satisfiability problem, often abbreviated as SAT, was the first prob-

lem to be shown as being NP-complete [Cook, 1971] and thus is of significant theoret-

ical importance. Despite its NP-complete status, many industry-standard SAT solvers

70 Chapter 4. Background

have been developed that have been used to tackle real world problem instances of up

to a million variables.

SAT solvers are being used increasingly in a wide range of application domains. Re-

cent advances have pushed the tractability threshold of industry-standard SAT solvers

both in terms of problem-size (number of variables) and complexity. The electronic

design automation (EDA) industry has increasingly adopted SAT engines for a wide

variety of testing and verification tools like automatic test pattern generators, equiva-

lence checkers, property checkers. SAT is also increasingly being used for software

verification and debugging. Outwith the hardware and software verification commu-

nity, SAT has also been used widely for other domains like: configuration management

such as resolving software package dependencies and checking consistency of techni-

cal documentation [Sinz et al., 2006].

Key propositional logic related definitions and notations used in this thesis were pro-

vided in §4.2.3. In this section, we provide the following aspects of SAT related

background that are particularly relevant to the work described in this thesis:

• Detailed descriptions of the DPLL and Stalmarck algorithm

• Overview of some key techniques used in state-of-the-art DPLL-based SAT

solvers

For more details about SAT related background and recent advances, the reader is

referred to [Biere et al., 2009]. [Harrison, 2009] is a good reference for general back-

ground on SAT and details on the workings of the Stalmarck algorithm, in particular.

4.5.1 SAT algorithms: an overview

Algorithms for SAT can be broadly classified as below.

Complete algorithms These algorithms can prove both satisfiability and unsatisfia-

bility. Some complete SAT algorithms are:

• Resolution based algorithms: DP [Davis and Putnam, 1960], DPLL [Davis

et al., 1962]

• Stalmarck’s method [Sheeran and Stalmarck, 1998, 2000]

• Recursive learning [Kunz and Pradhan, 1994]

4.5. SAT solvers: some relevant background 71

• Algorithms based on Binary Decision Diagrams (BDDs) [Drechsler and

Becker, 1998]

Incomplete algorithms These algorithms cannot prove unsatisfiability. Some of these

algorithms apply probabilistic techniques to solve the SAT problem and some

consider the SAT CNF problem as a discrete optimisation problem of maximis-

ing the number of satisfied clauses. Examples of algorithms in this category

are:

• Local search [Selman et al., 1996]

• Randomised restarts [Gomes et al., 1998]

• Simulated annealing [Kirkpatrick et al., 1983; Spears, 1993]

• Hill climbing [Gent and Walsh, 1993]

In the work described in this thesis, we consider parallelisation for only the complete

category. We describe the DPLL and Stalmarck algorithms in detail in the following

sections.

4.5.2 DPLL

In this section, we describe the DPLL algorithm [Davis et al., 1962] and provide an

overview of key techniques used in modern DPLL-based SAT solvers.

4.5.2.1 The DPLL algorithm

The long established and popular DPLL algorithm [Davis et al., 1962], follows a depth

first search approach. It uses branching, unit clause propagation and pure literal de-

tection. An informal description of the algorithm is given below. A code fragment

describing a functional implementation of a recursive version of this algorithm is given

later in the thesis in Listing 6.2.

1. Branch Given a CNF formula, the algorithm heuristically selects an unassigned

variable and assigns it either true or false. This is referred in the literature (syn-

onymously) by any of the following terms: case-split, branching, decision-point.

2. Apply inference rules The solver then tries to deduce the consequences of the as-

signment made using the following inference rules:

72 Chapter 4. Background

Unit clause rule Let C be a unit clause consisting only the literal, v. Obviously,

C is true iff v is true. In the context of the CNF representation, this becomes

a powerful inference rule to apply to reduce the problem, during the search

for a satisfiable assignment. Because, for the CNF formula to be true, every

clause has to be true, including the unit clauses and this in turn, implies

that the sole variable in the clause has to be true. This is added to the

assignment and applied throughout the problem which can in turn, reduce

the problem further. Iterated exhaustive application of the unit clause rule

(i.e. until it can no longer be applied) is performed. This is referred to as

unit propagation. This is the key inference rule for the DPLL algorithm.

As evident from the description, the unit clause rule and consequently, the

DPLL algorithm relies crucially on the CNF representation.

Pure literal rule For the purpose of finding a satisfiability assignment for a

CNF formula, pure literals can be assigned the value True and the clause

of occurrence (which is now true) can be dropped from the problem. This

is also used in an iterative, exhaustive manner, but has been dropped out of

most modern SAT solvers as it is observed to slow down the algorithm and

the benefits of its use are not sufficient enough, to justify its use.

3. Satisfying assignment found/Backtrack After applying the inference rules, the

algorithm can reach a state with the following 3 possibilities:

SAT The problem is empty, i.e. all clauses have been satisfied. The algorithm

terminates with the answer SAT with the current assignment as a possible

satisfying assignment.

Conflict, Backtracking When the algorithm encounters an empty clause, i.e.

the problem has been rendered unsatisfiable by the current assignment, a

conflict is said to have occurred. Occurrence of a conflict means that a

satisfying assignment cannot be reached by using the current assignment.

So, the algorithm backtracks, to try a different branch value for the most

recent decision level. If both branches have been explored at that level, it

backtracks to the earlier decision level and continues applying the infer-

ence rules, i.e. applies Step-2 as above. If there are no more variables to

branch on and/or no more decision levels to backtrack to, it means that the

entire search space has been explored without finding a satisfying assign-

4.5. SAT solvers: some relevant background 73

ment. So, the algorithm terminates with the answer UNSAT. It is useful

to observe here that the original algorithm thus incorporates what is now

termed chronological backtracking, relying only on the nesting level of the

tree.

It is worth observing here that from an implementation point of view, there

are significant number of state related operations that happens here, as the

algorithm has to throw away the current problem state and use the assign-

ment at the level to which it has backtracked, along with the original prob-

lem instance.

Unknown If the application of the inference rules did not lead to either SAT or

conflict, the algorithm continues with Step-1, i.e. branching.

4.5.3 Stalmarck’s algorithm for SAT

Stalmarck’s algorithm [Sheeran and Stalmarck, 2000; Stalmarck, 1992; Stalmarck and

Saflund, 1990a] is an algorithm for checking if an arbitrary propositional formula (not

necessarily in CNF) is a tautology or not. For the case of SAT, one can equivalently

check if the negation of the given formula is a tautology.

Stalmarck’s method is a proof procedure for classical propositional logic and has been

implemented in a suite of commercial tools called NP-Tools, engineered by the com-

pany Prover Technology (www.prover.com). This suite has been successfully used in

real world industrial verification projects containing millions of sub-formulas in the

areas of telecom service specification analysis, analysis of railway interlocking soft-

ware, analysis of programmable controllers and analysis of aircraft systems [Borälv,

1997]. Furthermore, Stalmarck’s method has been found to perform better than BDD

based methods and the Otter prover [McCune, 1994] for some classes of real world

verification problems [Groote et al., 1995]. The implementation related aspect of rep-

resenting a propositional logic formula as a set of triplets, which plays a pivotal role in

the Stalmarck procedure, is covered by a patent [Stalmarck, 1992].

74 Chapter 4. Background

Definitions

For a given formula X, let S(X) be the set containing all subformulas of X, including

True (>), False (⊥) and the complements of subformulas of X. Then, a formula rela-

tion on X is defined as an equivalence relation with domain, S(X), with the following

additional qualifications and notations:

• A ∼ B means that A and B are in the same equivalence class and must have the

same truth value

• If A∼ B, then ¬A∼ ¬B

• A � B is encoded as ¬A ∼ B, thus allowing for encoding of both equalities and

inequalities between subformulas

• R(A≡ B) refers to the least formula relation containing R and relating A and B;

A≡ B is referred to as an association.

• X+ refers to the identity relation on S(X), placing each element of S(X) in its

own equivalence class; X> refers to X+(X ≡>); X⊥ is defined in a similar way

Note that X> constitutes a partial valuation and plays an important part in the

algorithm

• If a formula and its complement are in the same equivalence class, it signals an

explicit contradiction

• Union and intersection of the equivalence classes are defined in the standard way.

• These equivalence classes are of particular interest when (i) > is a member (ii)

⊥ is a member.

Notion of triplets

The algorithm uses a data structure called triplets to represent compound formulas.

This is explained via the definitions and example below.

• A triplet (x, y, z), for a connective ⊕, is an abbreviation for

x ↔ y ⊕ z

where ⊕ can be any boolean connective, and the variable x represents a sub-

formula of the original formula.

4.5. SAT solvers: some relevant background 75

• Any arbitrary propositional formula can be reduced to a set of triplets by intro-

ducing new variables (when needed) to stand for subformulas. For the purpose of

this thesis, we make a distinction between these newly introduced variables and

the variables present in the given formula by referring to them as triplet variables

and original variables respectively. An example is provided in Example 4.1.

Example 4.1 Triplets

The formula p→ q→ p gives the following triplets, for the connective,→:
(b1, q, p) (b2, p, b1)

where p, q are the original variables and b1 and b2 are the triplet variables,
with b1 standing for the subformula q→ p and b2 for the entire formula

• When a given triplet (x, y, z) is explicitly contradictory i.e. it signals a contradic-

tory propositional formula when expressed as x↔ y⊕z, it is said to be a terminal

triplet. E.g., the triplet (>,>,⊥), is a terminal triplet for the→ connective.

For the sake of convenience, we adopt the convention that for the connective→,

the only terminal triplets are (>,>,⊥), (⊥,x,>), (⊥,⊥,x). It is easy to see that

any explicitly contradictory triplet is equivalent to one of these forms.

The triplet representation plays an important part in the algorithm. The algorithms

works by assigning truth values to the triplets (i.e. to the subformulas) and deriving

the consequences by using the inference rules and recording equivalences between the

triplets (subformulas). Thus, it serves as a shorthand notation to capture (sub)formula

relations.

Simple rules

For each connective, a set of simple rules, also referred to as trigger rules are defined,

using the notion of triplets. Intuitively, for a given triplet (p, q, r), a simple rule captures

the obvious deductions when p is equivalent to another formula, including True (>) and

False (⊥). The unifying pattern for the rules is the following:

If all the preconditions hold, then the conclusions must hold.

76 Chapter 4. Background

The simple rules for the connective ∧ are given in Table 4.2. Similar rules apply for

other propositional connectives as well.

If ... Then ...

p = ¬q q => and r =⊥
p = ¬r q =⊥ and r =>
q = r p = r

q = ¬r p =⊥
p => q => and r =>
q => p = r

q =⊥ p =⊥
r => p = q

r =⊥ p =⊥

Table 4.2: Stalmarck trigger rules for the connective ∧, i.e. for the formula, p↔ q∧ r

Applying a simple rule to a set of triplets gives a new set of triplets obtained by substi-

tuting the newly derived variable instantiations if any. A small example illustrating this

is given below (see Example 4.2). The simple/trigger rules, along with the dilemma

rule described below (§4.5.3) provides a complete proof system for classical proposi-

tional logic [Sheeran and Stalmarck, 2000].

Example 4.2 Application of simple rules

Referring to Example 4.1 above, let us assume b2 (which corresponds to the entire
formula p→ q→ p) to be False and apply the simple trigger rules.
For the triplet (b2, p,b1), if b2 = ⊥ then p => and b1 =⊥. Substituting this newly
derived information to the triplet (b1, q, p) gives (⊥, q, >), which is a terminal
triplet.

Thus, we started with the assumption that p→ q→ p is false and we have
derived a terminal triplet, i.e. a contradiction. So, we conclude that the formula is
valid.

Using the equivalence classes

The equivalence classes on subformulas defined earlier is used in the following ways,

in the context of the Stalmarck procedure:

4.5. SAT solvers: some relevant background 77

Figure 4.1: Branch-merge rule: applies a case-split and garners conclusions from the

two branches

• It extends the scope of possible derivations: instead of just deriving some formu-

las to be true or false, one can also derive the knowledge that certain (sub)formulas

are equivalent, i.e. certain sets of formulas have the same truth value. This fea-

ture gives more power to the simple rules and consequently the proof procedure.

• From the point of view of a refutation procedure, the derivation of a contradictory

formula relation from X>, constitutes a refutation of the formula X. This notion

can be extended to tautology checking by attempting to refute X⊥.

• The equivalence classes also play a pivotal role in the algorithmic description of

the dilemma rule as defined below.

• If an explicit contradiction (see §4.5.3 for definition) has been derived in the

course of a derivation, the relation can be deemed to be equivalent to that with a

single equivalence class and the derivation can be stopped.

A desirable by-product of the use of (sub)formula relations is the potential scope to

gainfully exploit the implicit structural information present in many real world SAT

instances. As discussed in §2.1.1, DPLL-based SAT solvers do not fare well in this

aspect of utilisation of implicit structural information [Thiffault et al., 2004].

78 Chapter 4. Background

R

R1: the derivation R(A≡ B)

R2: the derivation R(A≡ ¬B)

R1uR2

Figure 4.2: Dilemma rule, a branch-merge rule, implemented using equivalences, u
denotes intersection

Dilemma rule

The dilemma rule (Figure 4.2) is a branch and merge rule (Figure 4.1). For a given

formula relation R, application of the dilemma rule involves the following steps:

• Choose A and B from different (and non-complementary) equivalent classes in

R.

• Obtain the derivations R1 and R2, obtained by exhaustive application of the sim-

ple rules to the two independent branches: R(A≡B) and R(A≡¬B) respectively.

• Extract R1 uR2, i.e. the conclusions that are common to both branches (merge

operation) with u defined as below

• R1uR2 is defined as:

– R2 if R1 is explicitly contradictory

– R1 if R2 is explicitly contradictory

– R1∩R2 otherwise, where ∩ is understood as set intersection

• Choosing B≡> gives the case of the two branches being A≡> and A≡⊥, i.e.

one where some propositional variable is assumed to be true and one where it is

assumed to be false

• Thus, intuitively, the dilemma rule can be understood as: any information that

holds for both the truth values of a propositional formula, i.e. when x is true

and when x is false, must hold independent of the value of x, i.e. it is (univer-

sally) consistent information. Thus, the knowledge derived in the course of the

Stalmarck algorithm can be used by another algorithm applied to the same prob-

lem. This is a valuable feature which we use in our hybrid SAT solver which we

describe in chapter 6.

4.5. SAT solvers: some relevant background 79

Saturation procedure

Figure 4.3: 0-saturation procedure of Stalmarck’s algorithm

Figure 4.4: 1-saturation procedure of Stalmarck’s algorithm

Listing 4.3: Recursive saturation procedure for Stalmarck’s algorithm

sa tu ra te (R, k+1) = repeat

L := Sub (R) ; R’ := R

f o r each l i n L

do

R1 = sa tu ra te (R(l equiv FALSE) , k)

R2 = sa tu ra te (R(l equiv TRUE) , k)

i f c o n t r a d i c t o r y (R1) and c o n t r a d i c t o r y (R2)

then r e t u r n R1 union R2

else i f c o n t r a d i c t o r y (R1)

then R = R2

else i f c o n t r a d i c t o r y (R2)

then R = R1

else R = R1 i n t e r s e c t R2

u n t i l R ’ = R

r e t u r n R

80 Chapter 4. Background

In the Stalmarck algorithm, the proof system consisting of the simple rules and the

dilemma rule is embedded in a saturation framework, i.e. exhaustive application of

the rules until no more new information (no more new equivalences) can be derived.

This allows for the following valuable feature: recursive learning and incorporation of

information gathered.

Given an equivalence relation, i.e. a set of equivalences between (sub) formulas, 0- sat-

uration tries to derive as many new equivalences as possible, by exhaustively applying

the simple rules and using the properties of symmetry, transitivity and involution of

negation where applicable.

In practice, 0- saturation starts with an equation (between two triplets), applies a re-

lated simple rule and derives the consequences (which are in the form of equations

themselves). It continues to apply the simple rules on those triplets whose variables

were affected by the consequences of the earlier application(s). The process continues

until no further simple rules can be applied. It augments the equivalence relation with

the newly derived consequences. Example 4.2 provides a simple example illustrating

0- saturation. Listing 4.3 gives the pseudocode for k+1-saturation, defined in terms of

branching and k-saturation.

4.6 Relevant key characteristics of Stalmarck’s algorithm

Some of the key strengths of the method that have contributed to its success in the

hardware domain and other industrial applications [Borälv, 1997] are as follows:

• Ability to exploit the structure of the given formula via (sub)formula relations, a

key benefit compared to the CNF based methods like DPLL where the CNF con-

version often entails loss of (implicit) structural information. E.g., it is known to

fare much better than DPLL for Urquhart problems [Urquhart, 1987] and pigeon

hole problems [Haken, 1985]. Both these classes of problems are easy for a hu-

man to solve because of the inherent structure, but yet, they have been proved

hard for DPLL-based solvers.

• The recursive saturation algorithm which allows for continuous gathering of

information in the form of formula relations. This has enabled the algorithm to

efficiently search for shallow sub-formula proofs and this in turn, has turned to

be an efficient strategy to tackle many industrial problems.

4.6. Relevant key characteristics of Stalmarck’s algorithm 81

• The saturation aspect further distinguishes the algorithm from both breadth-first-

search and iterative deepening [Sheeran and Stalmarck, 2000].

• Intuitively, the dilemma rule can be understood as: any information that holds

for both the truth values of a propositional formula (when x is True and when x

is false) must hold independent of the value of x, i.e. it is (universally) consistent

information. Thus, the knowledge derived in the process of the Stalmarck algo-

rithm can be shared by a different algorithm applied to the same problem. This

is a valuable feature which we use in our hybrid SAT solver.

• The learning mechanism used in the Stalmarck algorithm has the following

key advantages compared to the popular conflict driven clause learning (CDCL)

[Marques-Silva et al., 1996] based techniques which are DPLL-based.

– Stalmarck’s algorithm learns by spanning the search tree in a breadth-first

fashion whereas the DPLL-based CDCL techniques are restricted to the

depth-first search space exploration. This makes it an ideal candidate to be

used as a complementary learning mechanism with a DPLL-based solver.

– The above mentioned point about loss of structural information applies to

the CDCL techniques as well as they are DPLL-based and Stalmarck’s al-

gorithm fares better on this aspect.

• The method is more sensitive to the hardness degree of a formula (see §4.5.3,

[Sheeran and Stalmarck, 2000]) than to its size in terms of number of variables or

connectives. This makes it a good choice for application for real-world problems

of a large scale as well.

Hardness criteria

Stalmarck’s algorithm has an associated notion of proof hardness based on a novel

proof-theoretic notion of proof depth which translates to minimum number of nested

instances of the branch/merge rule required in any proof of a problem (formula).

Roughly speaking, a formula’s satisfiability is decidable by n-saturation, if it is de-

cidable by the primitive rules and at most n-deep nesting of case-splits. A formula

decidable by n-saturation is said to be n-easy, and if it is decidable by n-saturation but

not (n-1)-saturation, it is said to be n-hard. For more details, the reader is referred to

[Sheeran and Stalmarck, 2000; Stalmarck, 1994; Stalmarck and Saflund, 1990b].

82 Chapter 4. Background

The notion of proof hardness is of interest to us in this thesis for the following reason:

With respect to this notion, the Stalmarck procedure is exponential in the hardness of

the formula, but polynomial in the size of the formula, assuming a maximum degree of

hardness [Stalmarck, 1994]. Thus, the method is much more sensitive to the hardness

degree of a formula than to its size, in terms of the number of variables or connectives.

Problems encountered in many real world applications have been found to have low

degrees of hardness, typically less than 2 [Borälv, 1997].

4.7 First-order theorem proving: some relevant back-

ground

Definitions related to first-order logic were provided in §4.3. In this section, we pro-

vide background material related to relevant logical inference methods for first-order

logic. For the purpose of the prototype prover discussed in this thesis (chapter 7), we

consider classical first-order logic without equality and the material discussed in the

rest of this section is to be taken in this context.

4.7.1 Unification

As described in §4.3, a substitution in first-order logic allows for free occurrences

of variables in a formula to be replaced by terms8. The process of finding substitu-

tions that make different logical expressions identical, is called unification and is a key

component of all first-order inference algorithms.

Informally speaking, a unification algorithm gives a syntactic procedure for deciding

on appropriate instantiations to make terms match up correctly when it is possible to

do so and reports failure, when otherwise. An often cited analogy is that of solving a

system of simultaneous equations in ordinary algebra. Just as a set of equations may

not have a solution, so may a unification problem. A code-fragment is provided in

Listing 4.4, describing a particular unification algorithm for classical first-order logic

without equality. This has been used in the prototypical first-order prover discussed

later in chapter 7.

8Given a variable x, a term t and a formula φ, a substitution, φ[t/x], is defined to be the formula
obtained by replacing each free occurrence of variable x in φ with t.

4.7. First-order theorem proving: some relevant background 83

Listing 4.4: Unification algorithm for first-order logic. The algorithm works by comparing the structures of the
inputs, element by element. The substitution mu is built up along the way and is used to make sure that later
comparisons are consistent with bindings that were established earlier.

Uni fy (x , y) = U n i f y i n t e r n a l (x , y , [])

U n i f y i n t e r n a l (x , y , mu)

I f (mu = F a i l u r e) then r e t u r n F a i l u r e

I f (x=y) then r e t u r n mu

I f (I s a v a r i a b l e (x)) then r e t u r n U n i f y v a r i a b l e (x , y , mu)

I f (I s a v a r i a b l e (y)) then r e t u r n U n i f y v a r i a b l e (y , x , mu)

I f (Is a compound (x)) and (is a compound (y)) then

r e t u r n U n i f y i n t e r n a l (args (x) , args (y) , U n i f y i n t e r n a l (op (x) , op (y) ,mu)

I f (I s a l i s t (x)) and (I s a l i s t (y)) then

r e t u r n U n i f y i n t e r n a l (t a i l (x) , t a i l (y) , U n i f y i n t e r n a l (head (x) , head (y) ,mu)

otherwise r e t u r n F a i l u r e

U n i f y v a r i a b l e (var , x , mu)

I f (a s u b s t i t u t i o n value / var i s i n mu) then

r e t u r n U n i f y i n t e r n a l (value , x , mu)

I f (a s u b s t i t u t i o n value / x i s i n mu) then

r e t u r n U n i f y i n t e r n a l (var , value , mu)

I f (var occurs anywhere i n x) then r e t u r n F a i l u r e

Add x / var to mu and r e t u r n

A unifier of two formulas P and Q is a substitution σ that makes

Pσ = Qσ

A given pair of expressions may have several unifiers or none. The substitution σ is

more general than φ if

φ = σ o θ

for some substitution θ and o is the composition operator. A substitution σ is the most

general unifier (MGU) of terms t1, . . . , tk if:

• σ unifies t1, . . . , tk and

• σ is more general than every other unifier of t1, . . . , tk

The practical implication of the notion of MGU is the following: by using the compo-

sition operation, the MGU can generate all unifiers of the terms. In general, unification

algorithms focus on finding the MGU for a given set of formulas. MGU for a given set

of formulas is unique, up to renaming.

84 Chapter 4. Background

4.7.2 Sequent rules for classical first-order logic

Sequent calculus is used in the implementation of the prototype first-order theorem

prover used as the baseline system in the case-study discussed in chapter 7. §4.4.2 and

§4.4.4 covered sequent calculus and backward proof. Table 4.3 provides an enumera-

tion of the sequent rules for classical first-order logic without equality.

4.7.3 Meta variables

Scenarios involving quantifiers pose a challenge in terms of the appropriate substitu-

tion for the variables. In particular, consider the sequent rules ∀ : le f t and ∃ : right

from Table 4.3. A successful instantiation of the term will be one that will ultimately

generate subgoals and a successful proof. An application of the rules thus amounts

to predicting one such candidate. However, this prediction is clearly not possible and

a feasible solution is to postpone the commitment and apply a systematic process of

trying out various possibilities along with other heuristics etc to synthesise value(s) for

the candidate. 9. This calls for a suitable device to capture this pending value and yet

be able to continue with the rest of the proof. One such device is the introduction of

meta-variables, which act as placeholders for terms which require their instantiation

to be postponed/kept pending. In this thesis, we use the following notation to denote

meta-variables: precede the variable with a question mark symbol, e.g. ?a1.

As will be discussed later in the thesis in chapter 7, implementation of the unifica-

tion procedure for first-order logic described earlier, benefits from the notion of meta-

variables.

4.8 Some relevant background on parallel computing

Parallel computing is a rapidly evolving field, both in terms of the machine architec-

tures and the software and tools to use them. In this section, we provide an overview of

some related concepts, which are of relevance to the material discussed in this thesis.

9This is analogous to the way mathematical reasoning works: try out multiple candidates for a
particular variable that will allow for the proof to be finished or while trying to give a value to a variable
which will fit the rest of the proof.

4.8. Some relevant background on parallel computing 85

C
on

ne
ct

iv
e

:le
ft

:r
ig

ht

∧
φ
,ψ

,Γ
`

∆

φ
∧

ψ
,Γ
`

∆

Γ
`

∆
,φ

Γ
`

∆
,ψ

Γ
`

∆
,φ
∧

ψ

∨
φ
,Γ
`

∆
ψ
,Γ
`

∆

φ
∨

ψ
,Γ
`

∆

Γ
`

∆
,φ
,ψ

Γ
`

∆
,φ
∨

ψ

→
Γ
`

∆
,φ

ψ
,Γ
`

∆

φ
→

ψ
,Γ
`

∆

φ
,Γ
`

∆
,ψ

Γ
`

∆
,φ
→

ψ

↔
φ
,ψ

,Γ
`

∆
Γ
`

∆
,φ
,ψ

φ
↔

ψ
,Γ
`

∆

φ
,Γ
`

∆
,ψ

ψ
,Γ
`

∆
,φ

Γ
`

∆
,φ
↔

ψ

¬
Γ
`

∆
,φ

¬φ
,Γ
`

∆

φ
,Γ
`

∆

Γ
`

∆
,¬

φ

∀
φ
[t/

x]
,∀

xφ
,Γ
`

∆

∀x
φ
,Γ
`

∆

Γ
`

∆
,φ

pr
ov

is
o:

x
m

us
tn

ot
oc

cu
rf

re
e

in
th

e
co

nc
lu

si
on

Γ
`

∆
,∀

xφ
∃

φ
,Γ
`

∆
pr

ov
is

o:
x

m
us

tn
ot

oc
cu

rf
re

e
in

th
e

co
nc

lu
si

on
∃x

.φ
,Γ
`

∆

Γ
`

∆
,∃

x.
φ
,φ
[t/

x]
Γ
`

∆
,∃

x.
φ

Ta
bl

e
4.

3:
S

eq
ue

nt
ca

lc
ul

us
ru

le
s

fo
rc

la
ss

ic
al

fir
st

-o
rd

er
lo

gi
c

w
ith

ou
te

qu
al

ity

86 Chapter 4. Background

Definitions of the terms used are provided in Appendix §A 1. [Andrews, 2000; Karp

and Ramachandran, 1990] are good sources for further details on related background.

4.8.1 Relevant architecture categories and some emerging archi-

tectures

In this section, we enumerate some of the major hardware architectures, with an overview

of where various emerging computing platforms fit in this taxonomy. An overview of

related software tools that support programming for these architectures is also pro-

vided.

4.8.1.1 Classification of architectures

The conventional taxonomy for classifying parallel architectures is based on notions

of instruction and data stream. However, today’s processors have built-in parallelism

in the way they execute instructions. The architecture of interest in this work is the

Multiple Instruction Multiple Data (MIMD) category. MIMD systems are further clas-

sified into the following two categories. A feature-wise comparison of the two is given

in Table 4.4.

Multi processor All processors have direct access to all memory

Multi computer a.k.a Distributed systems Each processor has its own local mem-

ory and access to non-local memory; remote access to memory requires the use

of some form of message-passing mechanism

4.8.1.2 Emerging computing architectures

Some relevant emerging architectures are described below.

Multicore architectures contain two or more independent units(cores) that can read

and execute instructions, all housed in the same physical unit. Shared-memory

is the most common memory model though inter-core communication models

are also used. The term many core is used when the number of cores is very

high, typically in the order of a million cores.

4.8. Some relevant background on parallel computing 87

A
tt

ri
bu

te
M

ul
tip

ro
ce

ss
or

D
is

tr
ib

ut
ed

sy
st

em
s

C
os

t
G

en
er

al
ly

ex
pe

ns
iv

e:
In

vo
lv

es
ad

va
nc

ed
ha

rd
-

w
ar

e
im

pl
em

en
ta

tio
ns

R
el

at
iv

el
y

le
ss

ex
pe

ns
iv

e
as

th
e

m
ai

n
co

st
s

of

se
tu

p
ar

e
ne

gl
ig

ib
le

E
as

e
of

bu
ild

in
g

Fa
ce

s
lim

ita
tio

ns
of

th
e

nu
m

be
r

of
pr

oc
es

so
rs

th
at

ca
n

be
pa

rt
of

a
si

ng
le

m
ul

tip
ro

ce
ss

or
un

it

E
as

ie
r

to
bu

ild
:

In
di

vi
du

al
co

m
pu

te
rs

ca
n

be

ad
de

d
to

an
ex

is
tin

g
ne

tw
or

k
w

ith
re

la
tiv

e
ea

se
,

th
us

ke
ep

in
g

th
e

co
st

s
lo

w

E
as

e
of

ex
te

ns
io

n
N

um
be

ro
fp

ro
ce

ss
or

s
is

fix
ed

E
as

ie
r

to
ex

te
nd

:
N

um
be

r
of

m
ac

hi
ne

s
in

a

gi
ve

n
ne

tw
or

k
ca

n
be

ch
an

ge
d

ea
si

ly

In
te

rp
ro

ce
ss

or
co

m
m

u-

ni
ca

tio
n

In
te

rc
on

ne
ct

io
n

be
tw

ee
n

th
e

pr
oc

es
so

rs
is

fa
st

So
m

e
fo

rm
of

m
es

sa
ge

pa
ss

in
g

ha
s

to
be

us
ed

,

w
hi

ch
in

tu
rn

,m
ay

in
tr

od
uc

e
a

tim
e

ov
er

he
ad

Id
le

re
so

ur
ce

ut
ili

sa
tio

n
H

ar
d:

It
is

ha
rd

fo
r

ap
pl

ic
at

io
n

so
ft

w
ar

e
to

em
-

pl
oy

lo
ad

ba
la

nc
in

g
st

ra
te

gi
es

G
oo

d
su

pp
or

t:
E

.g
.,

ap
pl

ic
at

io
n

so
ft

w
ar

e
ro

u-

tin
el

y
em

pl
oy

st
ra

te
gi

es
to

op
tim

al
ly

ut
ili

se
id

le

m
ac

hi
ne

s,
du

ri
ng

th
ei

rd
ow

n
tim

e
fo

ri
ns

ta
nc

e

Su
ita

bi
lit

y
fo

r
pa

rt
ic

u-

la
r

pa
ra

lle
l

im
pl

em
en

-

ta
tio

ns

Id
ea

lly
su

ite
d

fo
r

pa
ra

lle
li

m
pl

em
en

ta
tio

ns
th

at

ut
ili

se
sh

ar
ed

m
em

or
y

an
d/

or
he

av
y

du
ty

in
te

r

pr
oc

es
s

co
m

m
un

ic
at

io
n

an
d

nu
m

be
ro

fp
ro

ce
ss

-

in
g

un
its

ar
e

no
tt

oo
la

rg
e

Id
ea

lly
su

ite
d

fo
r

pa
ra

lle
li

m
pl

em
en

ta
tio

ns
th

at

ty
pi

ca
lly

do
no

tr
el

y
on

sh
ar

ed
m

em
or

y
an

d
ca

n

op
er

at
e

w
ith

lit
tle

in
te

rp
ro

ce
ss

co
m

m
un

ic
at

io
n

E
xa

m
pl

es
M

ul
tic

or
e

m
ac

hi
ne

s
C

lu
st

er
s

of
w

or
ks

ta
tio

ns
,g

ri
d

Ta
bl

e
4.

4:
C

om
pa

ris
on

of
m

ul
tip

ro
ce

ss
or

ar
ch

ite
ct

ur
es

an
d

di
st

rib
ut

ed
sy

st
em

s

88 Chapter 4. Background

GPGPUs stands for General Purpose computation on Graphics Processing Units. It is

also referred to as GPU Computing. Originally designed for high-performance

graphics, GPUs are increasingly used as many-core processors, capable of sup-

porting implementations with a high degree of parallelism. This has been aided

by the availability of accessible development tools and interfaces. These are

very well suited for operations like stream processing, i.e. to do the same job

on a large data set, where the jobs themselves do not need to communicate with

each other.

Distributed computing architectures came into existence with the advent of net-

works and thus has been around for a very long time. In this time, it has assumed

many identities, some of which are described below. All of them use a group of

computing elements (CEs), often called workstations and rely on the message-

passing computational model rather than the shared-memory model. In addition,

each variant has its own specifics that need to be catered to, as explained below:

Clusters A group of CEs that are interconnected by general purpose communi-

cation networks such as fast ethernet or other advanced forms of high-speed

connections like a local area network.

Grid A distributed network of often heterogeneous CEs that communicate using

the communication infrastructure of the Internet. Grid- like environments

pose the following specific challenges in comparison to e.g., a cluster of

locally connected CEs:

• higher message latency due to the widely distributed nature of the net-

work and the reliance on relatively low-speed bandwidths

• limitations posed on the access to a CE; e.g. in most cases, due to se-

curity reasons, access is via a gateway machine and the operations that

can be performed on a CE are limited to submitting a job, querying the

status and retrieving the results; for the same reasons, communication

between the CEs is not possible always

• resource limitations imposed by scenarios where a given CE may be

scheduling multiple jobs

• higher likelihood of interruptions and hence higher degree of fault-

tolerance is required

4.8. Some relevant background on parallel computing 89

• inter-operability issues borne out of the heterogeneous nature of the

network

• a CE might fail, making robust fault-tolerance capabilities, an impor-

tant consideration

Cloud computing Cloud computing 10 is focussed on the virtualisation of ap-

plications, thus allowing for software to be provided as services running

on huge commodity clusters. Cloud computing works on a pay per use ba-

sis and is operated by dedicated, special purpose, large and homogeneous

data centres with virtualized services. The individual application develop-

ers/users can buy more processing power as and when needed.

Both clusters and grids provide enormous potential for idle-resource-utilisation strate-

gies. These architectures are ideal deployment vehicles for distributed programming

applications with different parts of a given application running on various nodes with

load balancing strategies to make the most of the idle time of nodes and/or employing

collaborative problem solving approaches and they are very well suited for algorithms

adopting the message-passing computational model. Multiprocessor machines are bet-

ter suited for algorithms that adopt a shared-memory computational model. GPGPUs

are specifically targeted at data parallelism.

4.8.2 Computational models

Exploring the scope and efficacy of employing these new computing paradigms and

architectures to address the challenges of an application domain entails effective ad-

dressing of a variety of issues. Some of these are: effective task decomposition, coor-

dination mechanisms, resource allocation strategies, choice of computational model(s)

etc.. Increasingly, no single computation model fits all the requirements of an applica-

tion and quite often a combination of models are used. In this section, we describe two

main computational models relevant to this thesis.

A concurrent program contains simultaneously executing threads that are orchestrated

10For more on cloud computing, the reader may want to read this url http://en.wikipedia.org/
wiki/Cloud_computing

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

90 Chapter 4. Background

in predefined ways to perform a task. The threads can use inter-process communication

and/or synchronisation to accomplish a task. Thus, concurrent programming encom-

passes programming for both multiprocessor and distributed systems. Shared memory

programming and distributed programming/message-passing based programming re-

fer to two specific ways of writing a concurrent program and are most commonly used

in the context of multiprocessor and distributed memory models respectively.

Shared memory programming assumes that all the processes have access to all parts

of the memory. Thus, conceptually they are very similar to sequential programming,

except for the asynchronous nature of the processes. There are obvious factors to deal

with, in the form of race conditions and synchronisation of memory, owing to possible

scenarios of concurrent access of the same memory location.

On the other hand, distributed programming relies on message passing for its com-

munication and is faced with the challenges of: message latency, heterogeneity of the

architectures and/or operating systems of the individual workstations, optimal load-

balancing strategies (to keep all the processing units as busy as possible).

An additional distinction that is sometimes made in the literature, particularly in the

context of high-performance applications, is parallel programs. It is used to refer to a

subset of concurrent programs that are specifically targeted at reducing the execution

time, compared to the sequential counterpart. Both shared memory programming and

distributed programming can be used to write parallel programs and is usually dictated

by the target architecture. However, in this thesis, we use the term parallel programs

with no particular specialised usage.

In the next section, we discuss some relevant parallelisation techniques.

4.8.3 On implementing parallelisation

Typically, the starting point for a parallel algorithm is to take a sequential algorithm

and parallelise it using an appropriate parallelisation strategy. The process of choosing

an appropriate strategy entails making choices about the following:

1. Number of processors to use

4.8. Some relevant background on parallel computing 91

2. Using some form of decomposition of work for distribution across processors

3. Load-balancing strategies

4. Choosing the computational model in conjunction with all these factors and the

associated overheads of communication and synchronisation

To address the decomposition aspect of a given algorithm, the following two ap-

proaches are generally adopted:

Functional decomposition/Task parallelism Splits the algorithm into more or less

independent procedures that can be executed in parallel, essentially giving rise

to a new algorithm which may share some similarity with the original algorithm.

Domain decomposition/data parallelism This focusses on the data set used in the

execution of the algorithm, enabling concurrent processing of independent sets

of input, internal or output data. The typical case of data parallelism is when the

same operation is performed on a huge data set.

The rationale for picking an implementation choice for parallelisation is a function of

the application domain, the particular target system, algorithms, target architecture(s)

and the techniques of parallelisation employed. e.g.

Parallelisation technique Data parallelism, co-routining, hybrid approaches

Computational models Shared memory, distributed memory, hybrid memory models

Target architectures of deployment Clusters, grids, multicore machines, GPUs

Choices for implementation

In Table 4.5, we summarise some of the commonly used implementation approaches

to incorporate parallelisation in shared and distributed memory models.

Language-based parallel programming

Use of API based approaches like openMP and MPI give access to parameters closer

to the machine architecture. However, they do not offer abstraction, from the program-

ming point of view and are notoriously hard to program and debug. The developer has

92 Chapter 4. Background

O
ption

Shared
m

em
ory

m
odel

D
istributed

m
em

ory
m

odel

Sm
artcom

pilers
U

se
a

parallelising
com

piler
thatautom

atically

converts
a

sequentialprogram
to

a
parallelone.

T
his

is
very

language
dependentand

has
to

be

tuned
to

w
ork

forspecific
m

em
ory

m
odels

N
otused

U
se

O
S

based
resources

Processes,threads,sem
aphores

Sockets

Parallel
libraries:

U
sed

by
sequen-

tiallanguages

O
penM

P
PV

M
,M

PI

Parallel
languages:

M
ost

cater
to

m
ultiple

program
m

ing
m

odels

A
da,C

ilk,H
PF,N

E
SL

,Java,C
#,PolyM

L
Java,C

#,A
da,L

inda,A
lice

M
L

Table
4.5:

C
om

m
only

used
program

m
ing

approaches
to

incorporate
parallelisation

in
shared

and
distributed

m
em

ory
m

odels

4.8. Some relevant background on parallel computing 93

to take care of all the low level details like lock synchronisation and thread schedul-

ing. Architectures are changing, with greater internal concurrency (multi-core), better

fine-grained concurrency control (threading, affinity), and more levels of memory hi-

erarchy. This topic is addressed in greater detail in chapter 5.

Performance measurement

Speedup: is defined as the ratio of the CPU time of the sequential version and the

parallel version

Efficiency: is the dual of speedup and is defined as the ratio of speedup and the num-

ber of processors; this gives rise to notions of linear, sub-linear and super-linear

speedups, depending on efficiency being equal to 1.0, less than 1.0, greater than

1.0 respectively

Scalability Speedup and efficiency are relative measures and the empirical behaviour

can fluctuate depending on the number of processors. Also, a program may

display different behaviours with respect to speedup and efficiency depending

on problem sizes. The notion of scalability tries to address these anomalies. A

program is said to scale if the efficiency behaves consistently over a large range

of values of the number of processors and problem sizes

Overhead: is defined as the ratio of the extra CPU time and the sequential CPU time,

where the extra CPU time is the difference between the total CPU time of all

the machines in the parallel version. This metric serves as a performance indica-

tor taking into account time spent on communication, workload balancing, data

structure creation/re-creation etc..

Sources of overheads The main sources of overhead in a concurrent/parallel program

are:

• Process creation and scheduling

• Inter-process communication

• Synchronisation

All the aforementioned notions are bound to machine-level parameters. An alterna-

tive language-based performance measurement technique has been used informally in

teaching and prototyping. This uses the following two measures (more abstract than

94 Chapter 4. Background

running time of the processors etc): work and depth: work is defined as the total num-

ber of operations executed by a computation, and depth is defined as the longest chain

of sequential dependencies in the computation [Karp and Ramachandran, 1990]. How-

ever, this cannot account for locality issues and other overheads.

4.9 Summary

In this chapter, we provided background material useful for understanding material

discussed in this thesis along with notations and terminology used in the thesis. Propo-

sitional logic and first-order logic were introduced with descriptions of their syntax,

semantics and associated definitions. A brief introduction to theorem proving was

provided and details were given for specific proof systems used later in the thesis.

Bacckground material related to SAT solvers was discussed, covering the DPLL and

Stalmarck’s algorithm in detail, with an overview of key techniques used in optimised

DPLL-based SAT solvers. The discussion of first-order theorem proving methods fo-

cused on sequent calculus, unification and meta-variables. Finally, some relevant ma-

terial related to distributed programming was provided. A description of Alice ML,

the implementation language used in this thesis and and programming abstractions is

given in chapter 5.

Chapter 5

Why parallelise a theorem prover

and how to do it

5.1 The free lunch is over

A much cited recent paper titled The free lunch is over [Sutter, 2005], provides some

significant insights on why parallelisation is not just a choice, but is an imperative to

enable performance gains in the future. The paper talks of how, until now, applications

have been seeing performance gains, without any significant redesign, simply by virtue

of the advances in hardware technology and how the performance lunch is not going to

be free any more. With the physical limitations of processor speeds reaching saturation

levels, parallel architectures are becoming the default choice to provide more compu-

tational power and engineering better applications is set to be accomplished in fun-

damentally different ways compared to the past. These emerging architectures come

in varied forms from multicore machines to different kinds of distributed computing

architectures.

Theorem proving with its inherently vast search spaces is facing challenges in terms

of both problem size and complexity, fueled by the increasing range of applications

that theorem provers are being used to tackle. Engineering better theorem provers

with improved speed and/or improved success rates for both more complex and big-

ger problems, is thus a pressing need. With the imperative trends of parallelisation

and the increasing ease of accessibility of emerging architectures and availability of

95

96 Chapter 5. Why parallelise and how to?

a wide variety of related software tools, it becomes more interesting now than ever

before to investigate novel ways of using parallel technologies to identify and harness

latent parallelisation, distribution and co-routining/collaboration opportunities present

in theorem proving tasks. This need is echoed in a recent book [Kaufmann and Moore,

2009], where parallel, distributed and collaborative theorem proving is cited as being

one of the key research problems for the future of automated theorem proving.

5.2 Parallelisation of theorem provers: for the diverse

opportunities that it can open up

While the imperatives dictated by the limitations of processors and the concurrent/-

parallel nature of emerging architectures is a strong motivation for investigating appli-

cation of concurrent approaches to theorem proving, the use of these techniques can

enable novel approaches to reasoning that are not possible in a sequential mode of

execution. In this section, we describe some of these possibilities.

5.2.1 Enabling novel approaches

The origin and development of logic from early on, was motivated by the desire to

understand reasoning. In fact, not just understand, but to be able to reduce reasoning

to calculation/computation. The advent of computers facilitated the automation of the

reasoning, paving the way for the field of automated reasoning. However, sequential

computers have been used predominantly for building automated reasoners.

Use of parallel computer infrastructure to perform the automation of (the inference

involved in) reasoning holds promise for implementing novel ways of automated rea-

soning and potentially to introduce new automated patterns of reasoning. Here are

some examples, some of which we have used in the case studies discussed in this

thesis (signposted in the material below):

Fastest first A fastest-first approach for performing a reasoning step E.g. if there are

multiple OR-choices for the next inference step to be applied (where any one

successful step suffices), a concurrent setting allows one to do the following:

spawn threads for each choice and choose the one that returns first. We have

5.2. Parallelisation of theorem provers: for the diverse opportunities that it can open up97

used this approach in the context of an LCF prover to introduce novel tacticals.

This is described in detail in §7.6.2.

Asynchronous implementation of least-commitment strategies Meta-variables (see

§4.7) are a standard technique used in theorem provers. A meta-variable is a spe-

cial variable that acts as a device for implementing a least commitment strategy

as follows: it stands for a pending choice whose instantiation is made later in the

proof.

Scenarios using least commitment strategies like meta-variables are a good place

to employ asynchronous modes of execution. Because, with the parallel model,

one can now spawn an asynchronous process to find a suitable choice for the

candidate of the least commitment technique, while carrying on with the rest of

the computation.

Asynchronous implementation of proof and refutation steps Another possibility that

one would not normally consider in a sequential model, is to spawn proof and

refutation steps asynchronously. There could be other variations like spawning

refutation step(s) for one or more part(s) of the proof (e.g., for proving/disprov-

ing a lemma).

Variables shared across multiple goals A parallel model opens up new possibilities

for devising proof procedures for tackling scenarios where variables are shared

between multiple goals: e.g., using message-passing and asynchronous execu-

tion. We have used this approach in the context of an LCF prover to use exchange

of partially evaluated information across multiple goals. This is described in de-

tail in §7.8.3.

5.2.2 Modeling of mathematical reasoning: automating the dynam-

ics of proof discovery

Mathematical assistants refer to theorem provers applied to the mechanisation of math-

ematics and/or discovery of proofs. Compared to sequential algorithmic search-based

mathematical assistants, a system that has been augmented with support for concur-

rency and parallelism, can open up novel opportunities for a radically different treat-

ment to mimic the dynamics of proof discovery. In the next section, we explain the

term dynamics, as used in this thesis.

98 Chapter 5. Why parallelise and how to?

5.2.2.1 The dynamics of proof discovery

There are not many accounts of how mathematicians actually discover proofs, as the

published work invariably is a polished result and the details of the process of discovery

are seldom documented. The publication, How the proof of Baudet’s conjecture was

found [Waerden, 1971], is a rare account of a mathematician’s attempt to explain the

process by which a proof was constructed.

It is an illustrative exposition of a phenomenon that is quite often encountered during

the discovery of most proofs, whether it is by an individual or by a group of mathemati-

cians. This account illustrates the dynamics of proof discovery, i.e. the interaction and

communication between the different processes that happens in the course of the dis-

covery of a proof by human mathematician(s): trial and error, proposal of an induction

hypothesis, modification and learning from failure.

5.2.2.2 How to automate the dynamics of proof discovery?

One possible approach to model the interactive nature of the process of finding a proof

is by using agent-oriented mechanisms incorporating notions of utility functions for

proof processes (agents) and associated notions of rational approaches that try to max-

imise the utility etc ([Woolridge, 2001] is a good reference for background on agent

based systems). As discussed in §2.2.3, the OANTS system [Benzmüller et al., 2008],

uses an agent-oriented approach to implement a command suggestion mechanism for a

tactic based LCF prover, with the possibility of using heterogeneous external provers.

Another possibility is to use approaches that draw inspiration from other fields which

display similar dynamics, as seen in the TEAMWORK approach [Denzinger and Kro-

nenburg, 1996], discussed in §2.3.1. It uses the dynamics involved in a hierarchical

team setting, as observed e.g. in a typical (competitive) workplace: a hierarchy of

experts, who are workers with specialised expertise, managers and supervisors. The

dynamics involved is as follows: an iterative setup is provided and workers work asyn-

chronously on pre-allocated tasks; a clear system of evaluation is performed by the

supervisors and managers; this in turn,, is used to perform resource allocation for the

workers for the next iteration.

Here is another possibility: we can try to mimic the dynamics at the inference level of

5.3. Some choices for introducing and implementing concurrency and parallelisation techniques for the theorem proving domain99

a proof, in the context of a single individual or a team of human beings working on a

proof (similar to the dynamics in the process of discovery of the mathematical proof

described above) 1. With the various possibilities of inter-process communication and

asynchronous execution, application of concurrency and parallelisation techniques to

engineer theorem provers can offer a whole new set of possibilities for enabling such

an approach to mimic the dynamics of a proof.

It can make mechanised mathematics assistants more powerful, by providing better

facilities to mimic a human mathematician’s reasoning. Furthermore, it can also allow

for forms of reasoning that are not within the scope of human mathematicians. E.g.,

consider the possibility of executing an inference step that involves a million inter-

related sub-steps. Now, consider the scope for potentially executing all the million

inter-related sub-steps asynchronously and allowing them to communicate and share

information and/or return the fastest computation, a task certainly beyond human ca-

pabilities. If mechanised mathematical assistants are provided, capable of performing

such concurrent computations, it can lead to new possibilities for enabling a mecha-

nised mathematical assistant for use beyond the role of a computational assistant.

5.3 Some choices for introducing and implementing con-

currency and parallelisation techniques for the the-

orem proving domain

Above, we saw the importance of the application of concurrent programming tech-

niques and the adoption of emerging architectures to engineer better theorem provers.

We then provided some thought experiments on how these techniques can enable novel

approaches to theorem proving that hitherto were not possible in a sequential mode of

execution. In this section, we address the topic of implementation.

1Here, the term dynamics, refers to the interaction that happens between multiple proof steps/pro-
cesses spanned in the course of finding a proof.

100 Chapter 5. Why parallelise and how to?

5.3.1 Object-level and developmental factors

Parallelisation of a theorem prover entails significant challenges along the following

two dimensions and an effective redesign of theorem provers to incorporate concur-

rency and parallelisation has to address both these issues in an efficient manner:

Object-level: how to apply concurrent techniques to a theorem prover It is a non-

trivial task to identify opportunities to apply concurrent and parallel techniques

to a theorem prover and to make the right choices for implementing them. Some

key questions are:

1. Where are the points in an algorithm/system with latent opportunities for

effective employment of these techniques?

2. What form of parallelisation should be used: functional decomposition/-

data decomposition?

3. What form of communication/task co-ordination should be used?

4. What are the overheads and tradeoffs?

These are in turn, influenced by the particular theorem proving system under

consideration: the underlying logic, the proof system and the intended mode of

operation. We refer to this strand of investigation as object-level.

As discussed later in §5.3.2, the theorem proving domain poses some specific

challenges for parallelisation in terms of irregular solution spaces and shortage

of uniform hardness criteria, which makes load balancing very difficult. The

effective application of parallel techniques to the domain of theorem proving is

still at a fairly nascent stage and it can thus stand to gain by more exploratory re-

search involving an iterative process of experimentation at the algorithmic level

and empirical analysis.

Developmental level: how to implement the concurrent techniques The experimen-

tation phase referred to above can often be stifled by the difficulties of concurrent

programming, which is notoriously error prone and difficult to program. This

can prove to be a huge barrier for application of concurrent and parallel tech-

niques to a domain, where, exploratory research is particularly needed. To this

end, implementation techniques should ideally support the following:

• Rapid prototyping

5.3. Some choices for introducing and implementing concurrency and parallelisation techniques for the theorem proving domain101

• Ease of experimentation

• Portability

• Programmability and scope for incremental development

In addition to the criteria mentioned above, an approach that incorporates the

use of effective high-level programming constructs that abstract the low level

implementation details allows for separation of design and implementation.

Such an approach allows the theorem prover designer to focus effectively on the

exploration and experimentation aspects, in working towards synthesising novel

proof search procedures, using concurrent and parallel techniques.

A detailed discussion of the use of high-level programming constructs, as an

implementation approach is given in §5.4.1. We have adopted this approach in

the case studies described later in the thesis. We have developed parallel/con-

current/distributed programming a bstractions, which we will henceforth refer to

as programming abstractions for the theorem proving domain. These have all

the advantages mentioned above and potential to be employed in other theorem

proving scenarios other than those implemented in the work described here.

5.3.2 Issues to consider for effective parallelisation

In this section, we discuss important considerations for effective parallelisation, spe-

cific to the theorem proving domain.

Domain related challenges for theorem proving Parallelisation of theorem proving

poses challenges that are different from other scientific computing domains, e.g.,

numerical computation, a domain that has seen widespread adoption of paralleli-

sation approaches. Numerical algorithms possess a fair amount of regularities

that can be exploited for the purpose of parallelisation. But, this is not the case

with most symbolic algorithms found in theorem proving systems. Parallelisa-

tion of theorem proving entails a different set of challenges and requires different

solutions, in many instances. Some of the challenging issues are:

• Irregularity of search spaces makes it hard to estimate the time needed for

a computational step. A uniform characterisation of the difficulty of a sub-

problem is not always possible. This calls for a dynamic form of task

102 Chapter 5. Why parallelise and how to?

decomposition and interaction.

• Effective work partitioning is hard for most theorem proving domains, e.g.

SAT solvers (see §2.1.11 for a discussion on this)

• Another related issue is that of performance variation. A small variation in

a problem can potentially have drastic effects on its hardness and hence the

time taken to compute it. This makes it very difficult to perform evaluation

of the efficacy of a particular parallelisation approach/technique.

• Theorem proving problems come from a variety of domains and in turn,

differ in their structure, difficulty levels and distribution of solution spaces.

Thus, the utility of concurrent techniques can vary a lot depending on the

problem class as well, apart from the theorem proving flavour under consid-

eration. Thus, it is important for the user to have the flexibility to customise

the suite of concurrent techniques, to a particular problem class. We have

implemented one such approach for an LCF prover and have provided a

suite of concurrent tacticals that allows the user to build on them to imple-

ment their own novel proof search procedures. This is described in detail

in §7.2.1.

• The predominant flavour of parallelisation of theorem provers, particularly

for the case of automatic theorem provers has been the use of some form

of decomposition of work (see §4.8.3), for distribution across processors.

However, parallelisation of theorem proving need not stop at being decom-

position of one form or another. As we will see later in the thesis, there are

many more useful ways in which concurrency, parallelisation and asyn-

chronicity can be put to use. E.g., some theorem proving scenarios can

benefit from the use of co-routining techniques, collaborative approaches

and sharing of (partially evaluated) information, spanning multiple proof

attempts or proof attempts of sub-goals for the same proof.

Efficiency criteria for algorithms: sequential vs parallel It is well known that de-

signing better parallel algorithms requires a different set of considerations. It is

not always the case that the primary criteria that make a sequential algorithm ef-

ficient necessarily carry forward to making a parallel algorithm efficient. E.g., a

key criterion for an efficient sequential algorithm is the effective reuse of previ-

ously computed data and avoiding repetitions in computation. But, the priorities

5.3. Some choices for introducing and implementing concurrency and parallelisation techniques for the theorem proving domain103

are different for a parallel algorithm. Redundant computations are often per-

formed to reduce communication costs and to effectively harness a huge array of

machines/processors and similar considerations hold for space requirements as

well [Steele, 2009].

In the light of this hugely important aspect, parallelisation of theorem proving

needs development of novel parallel algorithms as well as reusing existing se-

quential algorithms and adopting ways of decomposing the computation.

Implementation choices Some of the key considerations are:

• The concurrent programming techniques and computational models to em-

ploy

• Choice of granularity, to apply these techniques on

• Target machine architecture, e.g., multi-core(shared memory), clusters (dis-

tributed memory) etc.

• Choices for implementation: use APIs, a functional programming lan-

guage, an imperative language etc.

• Programmability: is the user going to be able to extend and further develop

the concurrent techniques implemented? Do soundness criteria have to be

considered for extensions?

• Use of APIs vs language-integrated parallelism: §4.8.3 gives some of the

commonly used options for implementation of parallelisation. A quick

glance at these reveals that the options to implement concurrent algorithms

are spread along the spectrum of decreasing proximity to the machine level

and operating system level resources and increasing ease of programming.

This draws a not totally surprising parallel with the world of programming

languages from the machine level languages to intermediate languages to

higher level languages which can equally be placed on a similar spectrum

of speed and access to machine level resources to ease of programming,

portability and implementation

104 Chapter 5. Why parallelise and how to?

5.4 Parallelisation and programming abstractions

As mentioned earlier, parallel programming is notoriously difficult to program. It is

error-prone, hard-to-debug and performance analysis is extremely difficult. From the

point of a theorem prover developer, this is not a desirable situation. The developer’s

effort is better invested in the investigation of how to apply the new computational

paradigms of concurrency, parallelism and distribution to their given application or al-

gorithm rather than trying to deal with how to implement it. Thus, the need to separate

design and implementation is of critical significance for effective adoption of these

new paradigms of programming. This in turn, can enable novel algorithmic solutions

that hitherto were infeasible in a sequential model of computation. In this work, we

have used concurrent programming abstractions as a device to achieve this separation.

They are described in detail in this section.

5.4.1 Abstractions: what are they and how are they useful

In the world of sequential programming, design patterns [Gamma et al., 2002], are

used to capture recurring patterns of computation. A similar notion extended to the

world of parallel programming, is provided by the notion of algorithmic skeletons,

introduced in the book [Cole, 1991]. It is based on the observation that applications

from diverse domains employ parallelism in the form of a few recurring patterns of

computation and communication. Algorithmic skeletons are higher-order program-

ming constructs that encapsulate these patterns with appropriate parametrisations.

For the purpose of this work, we use the terms programming abstractions and ab-

stractions synonymously to refer to the following: capturing recurring patterns of

computation, independent of an individual algorithm or program, as a higher-order

programming construct with appropriate parametrisations. 2

A simple example is the task farm skeleton, parametrised by: task-supply function

(say, f1), task-doer-function (say, f2), data-location(s). This captures the following

recurring pattern of computation: input data is generated (independently) by f1; f2

works (independently) on the generated data.

2 Algorithmic skeletons, as used in the parallel programming literature, includes various compiler
translations and optimisations for the abstraction. We exclude these aspects in our usage and treat the
abstraction aspect alone.

5.4. Parallelisation and programming abstractions 105

The utility of skeletons is two fold:

• From a software engineering perspective, it offers: modularity, ease of prototyp-

ing and development, code reuse and the potential for incremental development,

facilitated by the compositional nature of the algorithmic skeletons

• With a focus on resource utilisation: it allows for engineering efficient APIs,

tailored for particular parallel programming languages. Furthermore, skeletal

programming advocates the following: the abstractions should transcend the ar-

chitectural variations and architecture tuning should be handled at the implemen-

tation level [Cole, 2004].

Use of domain specific programming abstractions, for application of concurrent tech-

niques has been advocated by leading experts in the field of concurrent programming

as well [Asanovic et al., 2006] and has been adopted by many application domains.

As mentioned before, the speed at which the parallel computing architectures and

paradigms are emerging further accentuates the need for an abstraction based approach,

especially from an application point of view. Tying oneself down to a particular archi-

tecture or a particular implementation, can potentially make the work obsolete and

extracting the crux of the implementation and porting it to another system may not be

possible always.

In the context of an LCF style theorem prover, introducing parallelism and co-routining

using programming abstractions, is particularly attractive as it is very much in tune

with the essence of LCF approach of a trusted kernel of rules as the primitives with ev-

erything else built around it. The LCF style of theorem proving captures this separation

very well compared to other schools of theorem proving.

To conclude this discussion, we provide an enumeration of the advantages of using

programming abstractions to apply concurrent programming techniques to theorem

proving:

• Allows for the separation of design and implementation

• Is independent of the target machine architecture

• Allows for portability to a wide range of platforms and languages

• Being higher-order functions, they can be composed and nested, thereby allow-

ing for incremental design and development of richer and more sophisticated

106 Chapter 5. Why parallelise and how to?

abstractions

• Facilitate code reuse: scope for one abstraction to tackle multiple scenarios, via

appropriate parametrisations

• Improves the clarity of design

• The modularity and reasoning power given by the abstractions make it easier to

address issues related to formal notions of correctness

Using abstractions and high-level constructs comes at some cost to the developer in

terms of losing control over the low-level (machine-level, OS-level) choices that could

potentially be made. This is due to the significant abstraction gap between the design

(high-level abstractions) and the implementation (low-level details). But, the benefits

could potentially outweigh the costs for a domain like theorem proving and particularly

so at the experimental stage, where dealing with low level APIs etc requires specifi-

cation of too many details and can prove to be highly detrimental to the enterprise of

experimentation. It can often obscure the meaning of the algorithm/technique being

used as well.

5.4.2 Some concurrent/parallel programming abstractions

In this section, we describe some well-known programming abstractions that we have

used in our case studies discussed in this thesis.

5.4.2.1 Producer-consumer

Producer-consumer is a commonly used parallelisation pattern and is commonly im-

plemented using streams. A thread (the producer), puts data onto a stream (say data

stream). The consumer threads read the data off the data stream and can read the da-

tums off as and when they are generated. The code fragment given in Listing 5.1 is an

illustration of the producer-consumer pattern.

Some of the advantages are: (i) to address scenarios where the data generation step

is time consuming and/or unpredictable (ii) allows for data parallelism, by virtue of

multiple consumers working on the data. This model can be used typically to replace

iterative computations by using multiway data decomposition and aggregation of data

(as opposed to dealing with singular decomposition and accumulation).

5.4. Parallelisation and programming abstractions 107

We discuss how we have used this to address particular theorem proving scenarios for

SAT and LCF style first-order theorem proving in §6.5 and §7.6 respectively.

5.4.2.2 Pipeline

Pipeline is an abstraction that captures the following scenario: multiple computations

need to be performed in sequence, with the output of one, serving as the input for the

next computation. A simple example is the computation of the composition of multiple

functions. It is an extension of the producer-consumer abstraction, to include more

than two computational threads, with intermediate streams between any two threads.

Each computation is performed in its own thread and has an input stream and an output

stream. A discussion on how we have used this in our work on LCF style first-order

theorem proving is given in §7.6.

5.4.2.3 Barrier

Barrier is an abstraction used to capture the following computational pattern that com-

monly occurs in many iterative algorithms. Typically, the same computation is per-

formed on all elements (of the input), allowing for a simple multi-way decomposition

with multiple threads working on each element. The key factor is that each thread

cannot start its next iteration until all the others have completed the current iteration.

This is due to the mutual dependency on the data computed by the concurrent threads

in the current iteration. The computation times may be different for each of thread, as

each of them is working on different data. Barriers are commonly used to capture this

pattern of forced waiting.

For the set of the concurrent threads participating in a computation, a barrier point is

defined in the algorithm. Upon reaching the barrier point, each thread has to wait until

all other threads have reached the point. Different languages and APIs implement this

abstraction in a variety of ways. For the purpose of this work, we use the term to refer

to the computational pattern captured by it.

The field of numerical algorithms is an application class with many cases of barrier-like

patterns, e.g. in algorithms computing better approximations to an answer. In theorem

proving, a similar behaviour can be found in algorithms which use the saturation tech-

nique of performing an inference step iteratively until no more new inferences can be

108 Chapter 5. Why parallelise and how to?

found and where the (n+1)th iteration has to wait for the results of the nth iteration to

be fully computed, before it can commence its own computation. We have investigated

the possibility of utilising a barrier-like computational pattern in the implementation

of a novel concurrent algorithm for SAT that we have developed. This algorithm is

particularly amenable to large scale parallelism. This is discussed in detail in §6.5.6.

5.4.2.4 MapReduce

MapReduce is an abstraction that has gained a lot of attention in recent research,

partly because of it being championed in a big way by Google, which has developed

its own implementation of the abstraction to run on its huge commodity clusters. For

more details of Google’s implementation, the interested reader is referred to [Dean

and Ghemawat, 2004]. The abstraction sets out a specific programming pattern with

the claim that many algorithms for generation and processing of large data sets can be

re-cast to fit into the pattern, with appropriate parametrisations.

A high-level description of the abstraction is as follows

• A user-specified map function processes a key-value pair to generate an interme-

diate set of key-value pairs (an iterative operation)

• A reduce function groups the intermediate values by the key and merges them

(an aggregation operation)

It is targeted at optimal utilisation of distributed clusters. The specific implementa-

tion (e.g. Google’s implementation) takes care of the details of load balancing, fault-

tolerance etc. Various APIs implementing the abstraction are available, with variations

in the resource utilisation strategies employed and their implementations, as well as

the architectures targeted.

Among other things, the popularity of the abstraction is due to the simplicity of the

control structure, widespread availability of implementation APIs for a variety of lan-

guages and platforms, availability of technical infrastructure to deploy them as well as

effective dissemination of the APIs promoted by organisations like Google.

The MapReduce abstraction has not been applied in the prototypes discussed in this

thesis. But, a possible opportunity for its application in the concurrent Stalmarck’s

algorithm for SAT is discussed in §8.6.

5.5. Using the functional programming paradigm for implementation of and experimentation with concurrent/parallel techniques in theorem provers109

5.5 Using the functional programming paradigm for im-

plementation of and experimentation with concur-

rent/parallel techniques in theorem provers

In §5.5.1, we outline some features of the functional programming paradigm which

make it a good choice for implementing concurrency/parallelism. In §5.5.2, we dis-

cuss some techniques for introducing some key concurrent/parallel programming de-

vices to a functional programming model, for communication and synchronisation,

while retaining the pro-parallelism factors of the functional programming paradigm.

In §5.6, we provide an overview of Alice ML, the implementation language for the

case studies discussed later in this thesis. Alice ML is a functional programming lan-

guage, augmented with support for concurrency and distribution and provides robust

support for type-inference, in the distributed context as well. This discussion provides

an illustration of a concrete instance of a programming language that implements the

features discussed in §5.5.2. Furthermore, it also serves as an illustration of the de-

sirable features of a concrete concurrent/distributed programming language that meets

the criteria outlined in §5.3.1.

It is useful to draw the attention of the reader to the following: this discussion aims

at general theorem proving as the target candidate, but is especially geared towards

LCF style programmable provers. The work described in this thesis addresses only

two case studies of SAT solvers and a first-order LCF style (programmable) prover.

Thus, the entire spectrum of features discussed here, have not been put to full use in

our experiments with these prototypes. Nevertheless, we believe that the description

here serves a purpose of its own and provides the context for some of the work that we

have outlined in the future work section, (see §8.6).

5.5.1 Advantages of using functional programming to implement

concurrency

The advantages of functional programming are well known: easier to reason about,

easier composition etc. It turns out that functional programming languages are a good

substrate for implementing concurrency. Some of the key advantages of functional

110 Chapter 5. Why parallelise and how to?

programming languages are 3:

• Immutable state

• Lack of side effects

• Referential transparency

• Allows for composition

• Ease of synchronisation, one of the biggest challenges of concurrent program-

ming. Many imperative languages use explicit synchronisation, i.e. the mech-

anisms of synchronisation have to be completely handled by the programmer

and requires careful use of locks, semaphores etc. One of the established tech-

niques that circumvents the need to use these devices is that of implicit data flow

synchronisation (explained in detail in §5.5.2.1). This technique fits naturally

into the declarative concurrency paradigm and hence a functional programming

language is well placed to support this.

• A functional programming language equipped with concurrency support, pro-

vides the perfect setting for development of concurrent programming abstrac-

tions as higher-order programming constructs that can be composed and reused.

Some functional languages that have tried to provide concurrency support are:

Erlang has been used in real-time telecommunications applications at the Ericsson

laboratories, Sweden [Armstrong, 1997, 2007]. Its computational model treats

processes as black boxes with message-passing as the sole form of communi-

cation. The emphasis is on robustness and fault-tolerance, driven by the target

domain of real-time applications. However, it does not have support for type

inference.

Haskell is a pure functional programming language and various libraries have been

developed to provide support for parallel programming [Jones and Singh, 2008].

Scala integrates features of object-oriented languages and functional programming

languages and uses static typing [Odersky, 2004].

F# provides language-integrated support for asynchronous functional programming

with a focus on reactive event-driven programming [Syme et al., 2007].

3Some of these apply only for pure functional programming languages

5.5. Using the functional programming paradigm for implementation of and experimentation with concurrent/parallel techniques in theorem provers111

OCaml is an established functional programming language [Leroy, 1996]. OCamlMPI

[Leroy, 2003], an implementation of bindings for OCaml is available, based on

the message-passing interface standard (MPI). MPI bindings allow for restricted

forms of programming models. In particular, the multithreaded model is not

possible with MPI bindings.

PolyML provides support via libraries for a small selection of asynchronous program-

ming features like futures. The focus is to use multicore machines using native

threads [Matthews, 2010]. It does not provide support for distribution.

Alice ML is a standard ML based language with support for concurrency and dis-

tribution [Rossberg et al., 2006]. It provides static typing while allowing for

dynamic type checking of higher-order modules loaded at runtime. This is the

implementation language used in this work and is described in detail in §5.6.

5.5.2 Language-integrated concurrency in a declarative setting

The term declarative concurrency is used to refer to a model of deterministic concur-

rency that is compatible with declarative programming. For a detailed discussion on

this topic, the reader is referred to [Roy and Haridi, 2004]. A formal definition of the

term, declarative concurrency, as given in [Roy and Haridi, 2004] is as follows:

A concurrent program is declarative if the following holds for all possible inputs. All

executions with a given set of inputs have one of two results: (1) they all do not ter-

minate or (2) they all eventually reach partial termination 4 and give results that are

logically equivalent (i.e. though the order of computation may be different, the end

result is same)

Enabling declarative concurrency in a language, by using libraries, can make it very

cumbersome to use 5. Declarative concurrency needs low-level support on the level

of individual assignments and conditional checks. Provision of support for declarative

concurrency by using libraries will require library calls to achieve each of these steps

and to manage their interdependencies. The more natural solution is for the support

4A thread of execution is said to have partially terminated if it has not terminated completely yet.
Further binding of inputs would cause it to execute further, up to the next partial termination, and will
execute no further if no binding happens.

5A discussion on this with contributions by one of the authors of [Roy and Haridi, 2004] can be
found here: http://lambda-the-ultimate.org/node/458

http://lambda-the-ultimate.org/node/458

112 Chapter 5. Why parallelise and how to?

to be incorporated into the language definition and system, i.e. language-integrated

declarative concurrency.

In the rest of this section, we discuss some key concurrent/parallel programming tech-

niques and constructs, that can be introduced within a functional programming model,

while still ensuring that the declarative aspects are retained.

5.5.2.1 Dataflow synchronisation

Some of the main challenges related to writing concurrent programs are: maintain-

ing consistency of data across threads/processes, race-conditions, locks, synchronisa-

tion and shared state in data structures. Synchronisation is a fundamental concept in

concurrent programming. When a thread needs the result of a computation done by

another thread, it waits until the result is available, i.e. it synchronises on the avail-

ability of the result. Many imperative languages use explicit synchronisation, wherein

the mechanisms of synchronisation have to be completely handled by the program-

mer. This requires skilful handling of various concurrent programming techniques like

locks. This is one of the many reasons that concurrent programming is very difficult.

An alternative approach to handle synchronisation is referred to as implicit synchroni-

sation. Here, the synchronisation operations are part of the operational semantics of

the language.

Use of dataflow variables is one of the established techniques to implement implicit

synchronisation. The motivation for dataflow variables is as follows: what happens

if an operation tries to use a variable that is not yet bound? It would be nice if the

operation would simply wait. Perhaps some other thread will bind the variable, and

then the operation can continue. This behavior is known as dataflow and the conse-

quent implicit synchronisation that happens is referred to as dataflow synchronisation.

The variable in question is referred to as a dataflow variable. An unbound dataflow

variable is said to have a partial value.

The following consequences of the dataflow behaviour are particularly well-suited to

concurrent programming:

Incremental evaluation, a.k.a Data-driven evaluation allows for incremental eval-

uation, i.e. if the input is given incrementally, the program will compute the

output incrementally. See Listing 5.1 for an example.

5.5. Using the functional programming paradigm for implementation of and experimentation with concurrent/parallel techniques in theorem provers113

The code given in Listing 5.1 is a concurrent program. But, in a situation without

dataflow variables, list1 will need to be computed completely before the func-

tion consumeInt can even start. Given the time delay in this contrived example,

the computation of list1 takes at least 10,000s, before the first result gets printed.

On the other hand, with the dataflow variable situation, the consumeInt func-

tion starts as soon as the first element becomes available (after 1000s, in this

example).

If in the example, list1 is a stream of data, then, we get a scenario where the

call to consumeInt will never terminate completely, leading to what is referred

to as partial termination. It will kick in every time further binding (of list1)

happens, i.e. further elements start appearing in the stream list1. This feature

of partial termination is a unique consequence of employing dataflow variables

and facilitates incremental evaluation. We use the term data-driven evaluation

synonymously to refer to this phenomenon.

Incremental evaluation vs Lazy-evaluation I.e. data-driven vs demand-driven eval-

uation: It is useful to observe here that while the above example share some

similarities with lazy evaluation, a closer examination will highlight the follow-

ing differences:

• lazy evaluation does a form of lock-step execution alternating between the

producer and consumer

• it is demand-driven, rather than data-driven

• a producer cannot keep generating data unless the previous data have been

consumed, in contrast to our example, where the producer can keep gener-

ating data, even if say, there is a delay in the computation of the consumer

function

Order of execution does not matter The result of a program remains the same whether

the program is executed concurrently or otherwise. E.g., if a program contains

the following as concurrent computations (and hence without a deterministic or-

der of execution/evaluation): a = b + 2 and b = 3, then with the dataflow variables

scenario, the end result will be always same, as the order of execution does not

matter.

114 Chapter 5. Why parallelise and how to?

Listing 5.1: Simple example illustrating incremental evaluation using dataflow variables

% Enumerate i n tege rs from low to high , g i v i n g a

% pause of 1000s i n each i t e r a t i o n

fun produceIn t low high = l e t

do sleep 1000s

i n

i f low > high then [] e lse low : : (produceIn t low+1 high)

end

%P r i n t the square o f each element o f the given l i s t

fun consumeInt source = L i s t .map (fn x => p r i n t x ∗ x) source

%Spawn a thread to compute l i s t 1

va l l i s t 1 = spawn (fn => produceIn t 1 10) ;

%Spawn a thread to apply the f u n c t i o n consumeInt to l i s t 1

do spawn consumeInt l i s t 1

5.5.3 Summary of advantages of dataflow variables and overview

of how we have used it in our work

Here is a summary of some key advantages of the use of dataflow variables, in relation

to concurrent/parallel programming:

• It is a powerful tool for enabling implicit synchronisation for concurrent pro-

grams

• It allows for static dependencies between different parts of a program (as speci-

fied by the code) to be replaced by dynamic (data-driven) dependencies, allowing

for incremental evaluation and parallelisation

• It allows for the output of one part of the program to be passed as input to the

next part, independent of the order in which the two parts are executed, as the

in-built synchronisation takes care of the dependencies

• The same behaviour makes it a good device for distributed programming, where

communication is handled across machines and issues like latency need to be

taken into account. By virtue of the dataflow behaviour, implicit communication

of the result of a computation happens

• It is very useful for addressing scenarios, where all the information needed for a

computation is not available, by considering the end result as a complete value

5.5. Using the functional programming paradigm for implementation of and experimentation with concurrent/parallel techniques in theorem provers115

with gaps (unbound variables) that need to be filled

We have used the powerful feature of incremental evaluation and the resulting data-

driven behaviour in our case studies described later in the thesis in the following ways:

To implement waiting for work, in a work-partitioning scenario for SAT In the SAT

case study, we describe the implementation of a novel concurrent algorithm for

SAT that is amenable to large scale parallelism (§6.5). In this implementation,

the work allocation mechanism is organised as a data-driven execution, thus

allowing for effective work stealing without the costly overheads of communi-

cation to achieve work stealing that is often observed in the literature in other

systems.

To implement asynchronous composition of tactics, for an LCF prover In the LCF

prover case study, we have used the data-driven behaviour to implement a novel

control structure for applying two tactics one after another6. The shortcom-

ings of a sequential implementation of composition and how the data-driven be-

haviour helps to address them is described in detail in §7.6.1.

5.5.3.1 Language constructs for concurrent/parallel programming in the declar-

ative model

A thread is an independently executing instruction sequence. If the language support

for threads adheres to the dataflow principle, then all the benefits of dataflow syn-

chronisation are carried over, paving the way for declarative concurrency based thread

programming.

5.5.3.2 Message-passing and distribution mechanisms

The free lunch may be over (see §5.1), in terms of the memory speeds and what the

architecture can offer, but certainly, there is scope for improvements in the network

speeds, which are still steadily increasing. This has, in fact, paved the way for emerg-

ing paradigms such as cloud computing. As the network speeds go up and become

more reliable, implementation techniques like message passing, remote procedure call

(RPC) and related distributed memory models can provide a wide range of possibili-

ties, in terms of parallelisation techniques. This extends to trends in supercomputers as
6When applied (to a proof state), a tactic returns a list of next-possible proof states.

116 Chapter 5. Why parallelise and how to?

well, which are increasingly adopting the road of connecting a massive array of CPUs

with an extremely fast interconnect. Thus, the use of message-passing techniques for

parallelisation of theorem proving deserves serious investigation.

The declarative concurrent model can be augmented with a message passing mech-

anism using streams. In concurrent programming parlance, a stream refers to a list

with an unbounded tail. When used for message passing, streams are used to hold

the messages and posting a message to a stream corresponds to extending the list by

one element. Treating the tail as an unbounded dataflow variable enables us to include

streams within the declarative concurrent model. Furthermore, streams allow for im-

plementing asynchronous communication models, making the send and receive (read)

actions independent of each other. In this work, we use the channels feature of the

Alice ML library, to implement streams and use the two terms synonymously in the

exposition.

Serialisation, also referred to as marshalling, refers to the process of converting a data

structure into a format, such that it can be stored in memory and/or can be transmitted

over a network, to be reassembled into the original data structure in a similar or dif-

ferent environment. It is a very useful feature in the context of message-passing based

distributed systems, particularly in the context of the declarative model.

5.6 Alice ML

Alice ML [Rossberg, 2007] is a standard ML(SML) [Milner et al., 1997] like functional

programming language with support for two seemingly contrasting features: dynamic

exchange of higher-order values with other processes and strong static typing, thus

enabling type-safe distributed programming. This is achieved by the provision of the

following features:

5.6. Alice ML 117

Higher-order modules and dynamic type checking achieved with the aid of pack-

ages

Higher-order serialisation accomplished with the aid of pickling

Concurrency related features realised with the aid of threads and futures

Distribution support using tickets, pickles, proxies

In addition to the above features, Alice ML includes optional lazy evaluation which can

be enforced on an expression by prefixing it with the keyword lazy. Exceptions are also

included as part of the language definition. The declarative nature of the language and

language-integrated support for concurrency and distribution make it an ideal vehicle

for rapid-prototyping and experimentation. The suite of concurrency/distribution prim-

itives facilitates the expression of programming abstractions in a concise way, allowing

for code reuse, portability and incremental development, all highly desirable features

for applying concurrent techniques to theorem proving, as discussed in §5.3.1. These

factors assume special significance for LCF style programmable provers, as discussed

later in the thesis in chapter 7.

In the rest of this section, we describe the features mentioned above as well as the

support provided by Alice ML for the features discussed in §5.5.2. A consolidated

listing of the relevant language constructs is provided in Appendix §A 2. A thorough

discussion of the technical details related to type checking etc can be found in [Ross-

berg, 2007]. Another source of comprehensive information on the language specific

features is the web page for the Alice ML manual,

http://www.ps.uni-saarland.de/alice/manual/sitemap.html.

5.6.1 Support for thread-based programming

Operating system threads are computationally expensive as they involve allocation/deal-

location of system resources and stacks. For this reason, the use of language-based

lightweight threads is highly recommended [von Behren et al., 2003]. Alice ML pro-

vides support for lightweight threads. Furthermore, creation of threads in Alice ML

is relatively straightforward, a positive aspect, from the development perspective. Pre-

fixing an expression with the keyword spawn results in the creation of a concurrent

computation (thread), evaluating the expression.

http://www.ps.uni-saarland.de/alice/manual/sitemap.html

118 Chapter 5. Why parallelise and how to?

The result of the computation thus spawned is a future, a placeholder for the result of

the asynchronous computation that has been spawned. As soon as the thread termi-

nates, its result globally replaces the future. Thus, the result of a thread’s computation

(a future) can be referred to, before the computation is complete and the operational se-

mantics of future will implicitly take care of the synchronisation. Futures are explained

in detail in §5.6.2.

Threads are treated as first class values in Alice ML. This allows for pending compu-

tations to be communicated over a network, allowing for effective distribution. This

feature, along with Alice ML’s robust support for dynamic typing for distribution, can

be of great use for using distributed computing resources for theorem proving. E.g.,

in the context of theorem proving, the notion of futures can be used for implementing

constructs like holes in proofs, which can be used to stand for a pending computation.

The distribution support can be used for using grids and clusters to execute parts of the

proof or to outsource a heavy-duty computation to a remote (powerful) server.

Alice ML supports lightweight threads. This enables thread-based programming, even

on machines with modest resources. From a prototyping and experimentation point of

view, it allows for multiple threads to be run on a single processor machine. The simple

constructs provided for thread-based programming, along with the support for dataflow

synchronisation make Alice ML a developer-friendly language for doing thread-based

programming. This is of crucial importance to us, as theorem provers are complex

systems and the development efforts required for introduction of concurrent techniques

should not be too high as it can stifle ease of prototyping of complex techniques and

experiments.

5.6.2 Synchronisation in Alice ML

In §5.5.2.1, we described the importance of synchronisation for concurrent program-

ming and the options for implicit synchronisation facilitated in a functional setting. In

this section, we describe how Alice ML supports these features.

5.6.2.1 Implicit synchronisation

Effective devices to implement synchronisation between threads is a fundamental ne-

cessity for concurrency support in a programming language. In §5.5.2, we saw the ad-

5.6. Alice ML 119

vantages of language-integrated implicit synchronisation using the dataflow behaviour.

Alice ML uses the concept of futures to provide implicit synchronisation and com-

munication between threads 7. It is defined as follows: A future is a transparent

place-holder for an (as yet) undetermined value that allows for implicit synchroni-

sation based on data flow. Alice ML provides an additional language construct called

promises, which is explained below. Alice ML offers four kinds of futures:

Concurrent future Place-holder for the result of an expression computed in its own

thread. In functional programming terminology, it is a place-holder for the result

of a concurrently evaluated expression. For the purpose of this work, we use the

term future, to refer to concurrent future unless specified otherwise

Lazy future It is very similar to concurrent future, in being a place holder for the

result of a concurrently evaluated expression. However, the computation is de-

layed until another thread actually requires its result. Thus, it is useful to model

a demand-driven computation. In Alice ML, an expression can be made lazy by

prefixing it with the keyword lazy

Promised future It is created through an explicit handle called a promise. A promised

future is eliminated by fulfilling the associated promise through an explicit op-

eration. Promises are akin to single-assignment variables or logic variables and

allow for the construction of data structures with holes. Promises are created

uninitialised, but may be assigned only once.

Failed future Replaces a future that could not be eliminated because the associated

computation terminated with an exception. Whenever a failed future is accessed,

the respective exception will be re-raised in the thread accessing it.

A thread might want to create a future without making a commitment to the way the

information is obtained. Promises are useful for addressing such scenarios, as they

separate the operations of creation and elimination of futures. A promise is an explicit

handle for a future. A suitable value determining the future will be made available at

some later point in time and this is done explicitly using the operation fulfill. While

it is still a form of dataflow synchronisation, the key difference between promises and

concurrent futures is the use of the operation fulfill. A corresponding fail operation is

also provided, yielding a failed future carrying the corresponding exception.

7The original idea of futures has its origins in the parallel language, MULTILISP [Halstead, 1985]

120 Chapter 5. Why parallelise and how to?

Futures can be passed around as values. Once an operation actually requests the value

that the future stands for, then the corresponding thread will block until the future has

been determined. This serves as a powerful mechanism for high-level concurrent pro-

gramming. It also allows for lag tolerance: the rest of the computation can continue

while the result is being computed. In the context of LCF-style theorem provers, fu-

tures and promises can be used to spawn proof attempts of sub-goals in a concurrent

manner. The implicit synchronisation will allow for the rest of the proof process to

continue without having to wait for these proofs to be completed.

5.6.2.2 Explicit synchronisation

Alice ML provides support for explicit synchronisation using the following two con-

structs:

await It triggers the computation of the argument, waits until the computation has

been completed and then returns the result.

va l awai t : ’ a −−> ’ a

awaitEither Implements non-deterministic choice: triggers computation of two fu-

tures and blocks until at least one has been determined. This simple primitive

can be used to encode complex synchronisation with multiple events.

(∗ a l t r e f e r s to the standard SML datatype ;

datatype (’ a , ’ b) a l t = FST of ’ a | SND of ’ b ∗)

va l awa i tE i t he r : ’ a ∗ ’ b −−> (’ a , ’ b) a l t

5.6.3 Support for Stream-based programming

Alice ML provides the construct channels, a fully concurrent imperative abstraction

for streams 8. Also provided are associated operations to insert elements into and to

take elements off the channel. A consumer takes elements available at the beginning

of the channel and a producer inserts elements in the channel, either at the beginning

(LIFO) or at the end (FIFO).

8Streams are used in concurrent programming to refer to a list with an unbounded tail.

5.6. Alice ML 121

In Alice ML, channels are thread-safe: many consumers and producers can operate

concurrently on the same channel. However, channels contain implicit locks. Thus,

stopping a thread while it is manipulating a channel, may cause all further access to

the same channel to block, until the thread is restarted.

The elements of a given channel can be obtained as a list using the operations toList

and toListNB (explained in Appendix §A 2). Both functions return a lazy list with the

elements of the channel.The latter returns an empty list, if there are no elements in the

channel and the former waits, till the channel gets populated. If the list is evaluated,

then the current elements of the channel are emptied and form the elements of the list

returned (lazy semantics), while the tail of the list still refers to the tail of the channel.

Thus, a subsequent operation of insertion of an element to the channel results in an

insertion of the element to the list when the list is evaluated (lazy semantics). A list

can also be cloned. The cloning operation returns a new channel initialized with the

elements of the given channel.

5.6.4 Support for distributed programming and message-passing

As mentioned earlier, Alice ML provides support for dynamic exchange of higher-

order values with other processes and strong static typing, thus enabling type-safe dis-

tributed programming. A language that allows for encapsulation of modules as first-

class values and allows for them to be exchanged over a network, ensuring type safety,

is a very desirable choice for implementing a distributed theorem prover. e.g., it can

open up an entire spectrum of potential opportunities of using richer message-passing

techniques, where the messages can have higher-order content. The type-safety guar-

antees make it an ideal choice to use, to extend an LCF style prover with sound ex-

tensions incorporating concurrency, parallelism and distribution. In the rest of this

section, we briefly describe the mechanisms used by Alice ML to enable distribution.

Pickling A generic mechanism for import and export of language-level data struc-

tures, including code. A pickle is a self-contained, platform-independent, exter-

nal representation of an Alice ML value.

Proxy Remote procedure calls (RPCs) (see Appendix §A 1 for definition) are the main

means of inter-process communication in Alice ML. A thread in an Alice ML

process can call a function that actually resides in another process. To perform

122 Chapter 5. Why parallelise and how to?

RPCs, Alice ML employs the notion of a proxy function. A proxy is a (mo-

bile) wrapper for a stationary function. It can be pickled and transferred to other

processes, independent of the wrapped function. When a proxy is invoked/ap-

plied, the proxy is evaluated in the process that it was created in, irrespective of

which process the proxy was invoked from (see [Rossberg et al., 2006],[Ross-

berg, 2007] for more information). Proxies help to address two key scenarios

encountered in distributed programming:

Establishing/retrieving connections, Tickets Connections can be provided by

offering a module containing proxies on the network. Tickets are URLs

which are globally-unique and dynamically generated at the time of of-

fering a module. These are used to retrieve a module, achieved using an

operation called take. The ticket identifies the machine/process where the

module is located. The module itself is wrapped in an Alice ML language

construct called a package.

Remote execution Spawning processes remotely is achieved using the notion

of components and the functions provided in the Alice ML library, Remote.

Components are the units of compilation and deployment in Alice ML.

The export of a component is a module expression that will be evaluated

when executing the component. The remote library provides a function run,

which enables remote execution and performs most of the low-level steps

needed. It takes as arguments: the target machine name and the component.

It connects to the given remote machine, using a low-level service like ssh.

It then starts a fresh Alice ML process on the remote machine, as a worker.

The worker immediately connects to the master (the machine that invoked

the run function) to receive the component argument, and evaluates the

component, giving a package, which is sent back.

Dynamic type checking The notion of packages was mentioned briefly above. This

is the device that is used to perform dynamic type checking, in relation to dis-

tribution. A package is a value encapsulating an arbitrary (higher-order) module

and its signature. It has two associated operations: pack and unpack. Unpacking

a package performs a dynamic type check. Thus, along with tickets, packages

enable the realisation of distributed dynamic exchange of higher-order values

with other processes and strong static typing, enabling type-safe distributed pro-

gramming

5.6. Alice ML 123

Listing 5.2: Sample code for some concurrent programming abstractions in Alice ML

(∗Higher−order b a r r i e r ∗)

fun b a r r i e r f s = map awai t (map (fn f . spawn f ()) f s)

(∗Time−out ∗)

except ion TimeOut

fun timeOut t ime f =

case awa i tE i t he r (f , spawn sleep t ime) o f

| FST f −−> x

| SND { } −−> r a i se TimeOut

(∗ Fastest− f i r s t : Returns the computat ion t h a t complets f i r s t te rmina tes the other ∗)

fun f a s t e s t F i r s t f1 f2 =

l e t

va l (t1 , r1) = Thread . spawnThread f1 (∗ t1 : Thread , r1 : r e s u l t , a f u t u r e ∗)

va l (t2 , r2) = Thread . spawnThread f2

i n

case (Future . awa i tE i t he r (r1 , r2)) o f

FST({ }) −−> (i f (Thread . s t a t e (t2) <> Thread .TERMINATED) then Thread . te rmina te (t2) ; r1

)

| SND({ }) −−> (i f (Thread . s t a t e (t1) <> Thread .TERMINATED) then Thread . te rmina te (t1) ; r2

)

end

Network transparency A process can obtain references to values in another process

(remote values), which are handled in (almost) the same way as local values.

Hence the same abstraction mechanisms and idioms can be applied for local and

remote operations and communication.

5.6.5 Ease of prototyping and developing abstractions in Alice ML

The language-integrated support for key concurrent programming primitives are ex-

pressive enough, to engineer concurrent programming abstractions, as higher-order

functions. We provide code samples of some abstractions in Listing 5.2. As high-

lighted earlier, Alice ML provides support for network transparency in the context of

distribution. Hence the same abstraction mechanisms and idioms can be applied for

local and remote operations and communication. The utility of developing effective

concurrent/distributed programming abstractions for theorem proving is highlighted in

both the case studies discussed in this thesis. See chapter 6,chapter 7 for more details.

124 Chapter 5. Why parallelise and how to?

5.6.6 Suitability of Alice ML for implementing programmable par-

allel extensions for LCF-style provers

The following features of the LCF paradigm make it very well-placed to take advan-

tage of the Alice ML features of type-safe distributed programming, implicit synchro-

nisation and ease of developing abstractions:

LCF feature Alice ML feature

Theorem as an abstract data type

with restricted constructors and a

trusted kernel

Implicit synchronisation, type-safe

distributed programming

Modularity Components

Programmability The power of ML with support for

concurrency and distribution

Table 5.1: Match between features of Alice ML and the LCF paradigm

5.6.7 Limitations of Alice ML

Not suited for Multi-core Alice ML uses a virtual machine constructed on top of

the SEAM infrastructure (Simple Extensible Abstract Machine), a portable in-

frastructure for building virtual machines which implements generic services

like memory management, thread management, pickling etc. [Rossberg, 2007].

SEAM and the Alice virtual machine have been implemented in C++, while

the rest of the system is almost entirely bootstrapped in Alice ML. SEAM im-

plements threads purely in software, using its own scheduling mechanism. It

does not yet enable employment of system threads. Consequently, an Alice ML

program cannot yet take advantage of multi-processor machines and multi-core

processors. As the langage is not being actively developed any more, it is unclear

if support for these features will be included, in the near future.

Overheads of distributed programming mechanisms In §5.6.4, we described how

Alice ML supports type-safe distributed programming. However, our develop-

ment experience shows that using these facilities comes at a significant cost due

to the cloning and proxy operations performed at the various nodes of the dis-

5.6. Alice ML 125

tributed architecture. The tradeoff of using these facilities in relation to their

utility needs to be considered for effective use of these techniques.

Non-deterministic thread scheduling For the same reasons mentioned above, thread

scheduling is non-deterministic. The runnable threads are scheduled in a round-

robin fashion. Thus, execution of priority mechanisms needs to be implemented

via explicit coding.

Possible space leaks This is related to the garbage collection mechanism in Alice ML.

Proxies represent a form of inter-process reference in Alice ML. Currently, a

function for which a proxy has been constructed can never be collected, thus

potentially creating a space leak.

Termination of child threads When a thread (that has spawned many other child

threads) is terminated, the child threads are not terminated. We have addressed

this problem by implementing, what we have called hierarchical threads. This

inherits the Alice ML thread structure, but with facilities to handle termination

of the child threads when the parent thread is terminated. This has been done by

implementing bookkeeping to ensure that the parent thread’s identifier is visible

to the child threads and vice versa. See Listing 1 and Appendix §A 3.

Interactive top-level support Alice ML is an extension of Standard ML, and the Al-

ice interactive top-level works in a similar fashion to those of other SML based

systems. However, certain under-specified/unspecified features of Standard ML,

like use, are not implemented. Thus, a system that has been written in some

dialect of SML which assumes such implementations, faces these limitations,

when being ported to Alice ML. We ran into one such limitation, in our efforts

to port the theorem prover Isabelle [Nipkow et al., 2002] to Alice ML. More

details about this are explained in §7.4.

Other incompatibilities An enumeration of incompatibilities with SML is maintained

in the Alice ML project webpages. It needs to be added that most of these have

easy workarounds as we discovered both in our efforts to port Isabelle to Alice

ML as well as in porting a prototype first-order theorem prover (see chapter 7).

http://www.ps.uni-saarland.de/alice/manual/limitations.html

126 Chapter 5. Why parallelise and how to?

5.7 Summary

In this chapter, we briefly touched upon the imperatives of the hardware world driving

the paradigm shift in the programming techniques used for engineering better appli-

cations and how these hold for the theorem proving domain too. We then set out an

agenda for application of concurrent techniques to theorem proving (see §5.3.1). This

agenda makes a distinction between the object-level focus and the developmental fo-

cus. A set of criteria for desirable implementation methodologies was provided. These

criteria are geared towards enabling easy prototyping of and meaningful, non-trivial ex-

perimentation with the application of concurrent techniques to theorem proving. This

in turn, can lead to the synthesis of effective novel proof search procedures incorporat-

ing concurrency and parallelism and enable optimal utilisation of emerging computing

paradigms and novel computing architectures.

Also presented was an overview of the advantages of functional programming and

some related concurrency features, in a declarative setting. Alice ML was presented as

a concrete example of a real language that supports these concurrency features. Some

possible theorem proving applications of the Alice ML features were alluded to, with

references to details discussed later in this thesis.

Another topic that was discussed was the importance of developing effective program-

ming abstractions (higher order programming constructs that capture concurrency pat-

terns) for specific theorem proving scenarios, that can particularly be applied to address

more than one theorem proving task. The use of abstractions ticks many boxes of the

desirable criteria for implementation: portability, code-reuse, ease of programming,

separation of design and implementation.

5.7.1 Conclusions and choice of case studies

The question of how to parallelise a theorem prover is too broad in scope, to tackle in

a PhD project, given the particular challenges posed by the theorem proving domain.

As seen in chapter 2, the introduction aspect in terms of the spectrum of techniques

employed, the implementation and the empirical studies have all been vastly different

across the flavours of theorem proving. Thus, the question certainly needs to be con-

sidered in the context of a given flavour of theorem proving: logic used, proof system

used, mode of usage.

5.7. Summary 127

However, what certainly holds in all cases, is the need for an implementation method-

ology that will facilitate rapid prototyping of and experimentation with the application

of concurrent/parallel techniques, facilitating the development of novel proof proce-

dures and re-engineering of some existing proof procedures.

Some important considerations for the effective employment of the parallel paradigm

to engineer better theorem provers are:

• Provision of frameworks that will allow for rapid prototyping and experimenta-

tion with and incremental development of novel parallelisation approaches

• There is a lot of similarity in the problem scenarios encountered and the algo-

rithms used in different theorem provers. Thus, an effective implementation of

parallelisation to tackle one scenario can be reused to tackle another similar sce-

nario. Likewise, parallelisation approaches employed to improve/redesign an

existing algorithm can be extended to another similar, if not identical algorith-

m/implementation. Thus, extracting these generic patterns can be extremely use-

ful to facilitate portability, reuse and incremental development and it is desirable

for implementation efforts to address these issues.

• The use of language-integrated parallelism offers a completely different set of

possibilities for applying concurrent and co-routining approaches to theorem

proving. Particularly, in the case of LCF style theorem proving, language-

integrated parallel programming, as opposed to API-based parallel program-

ming, allows for introduction of programming abstractions at the kernel level.

In the rest of the thesis, we discuss two specific case studies of theorem proving, where

we have applied the object-level/developmental agenda set out here: (i) SAT, the propo-

sitional satisfiability problem (discussed in chapter 6) (ii) HAL, a prototypical LCF-

style classical first-order prover without equality (discussed in chapter 7). These case

studies were chosen to give a balanced view of the object-level possibilities in two dis-

parate and representative flavours of theorem proving: (i) automatic, axiom-oriented

style and (ii) interactive, human-reasoning oriented style. The developmental aspects

have been effectively addressed and an enumeration of the abstractions developed and

how they can possibly be reused are discussed in the respective chapters.

The SAT case study has identified opportunities for:

• Using two asynchronous communicating SAT solvers, each with a different ap-

128 Chapter 5. Why parallelise and how to?

proach to spanning the search space, with one learning from another, allowing it

to possibly prune its search space.

• Recasting an existing recursive breadth-first search algorithm for SAT (the Stal-

marck algorithm), giving a new algorithm that is more amenable to large-scale

parallelisation

The HAL case-study has

• Showcased a multilayered approach to introducing concurrency/parallelism for

LCF-style provers, focussing on programmability

• Give end users and theorem proving developers the opportunity to experiment

with and develop novel proof search procedures as well use the primitives and

abstractions to re-engineer existing search procedures.

Chapter 6

Novel approaches to SAT solving:

lateral thinking, co-operation,

concurrency and large scale

parallelism

Given a propositional formula, the problem of finding whether there exists a variable

assignment such that the formula evaluates to true is called the propositional satisfia-

bility problem, often abbreviated as SAT. In this thesis, we have investigated the use of

concurrent/distributed programming techniques for theorem proving, by considering

two independent case studies of SAT and first-order theorem proving. SAT is the topic

of discussion of this chapter. Relevant background material on propositional logic and

SAT solvers were provided in §4.2.3 and §4.5 respectively.

Despite its NP-complete status, recent years have seen great advances in the devel-

opment of new techniques and effective implementations for SAT. These advances

have pushed the tractability threshold of SAT solvers in terms of size, hardness and

complexity. However, the increasing suite of application domains present bigger and

more complex problems and create a need for better SAT solvers that can handle the

challenges of size and complexity, a phenomenon shared with the wider theorem prov-

ing world. As discussed in chapter 5, utilising emerging concurrent architectures and

developing new ways of using concurrent/ distributed techniques to address these chal-

lenges for the domain of theorem proving, merits serious investigation.

129

130 Chapter 6. Novel concurrent approaches for SAT

6.1 About this case study

§2.1 provides a detailed review of published research related to the field of parallel

SAT solvers. §2.1.11 distills this review and identifies some of the unexplored oppor-

tunities that merit investigation, in the context of applying concurrent approaches to

engineering efficient SAT solvers, some of which are addressed in this case study.

As explained in §3.1 and §5.3.1, in this thesis, for each case study, we have explored

the following two strands of investigation:

Object-level aspects: previously unexplored or little-explored ways of using concur-

rent/distributed techniques for the particular theorem proving flavour considered

in the case study

Developmental aspects: developmental effort required, ease of prototyping and ex-

perimentation, scope for incremental development and portability

In this case study, addressing the object level strand of investigation, we discuss two

novel ways of using concurrent/distributed programming techniques for SAT, using

the DPLL [Davis et al., 1962] algorithm and the Stalmarck algorithm [Sheeran and

Stalmarck, 1998, 2000].

DPLL: As described in §4.5.2.1, DPLL is a depth-first search based complete algo-

rithm for SAT, used in many successful state-of-the-art sequential SAT solvers

and many parallel SAT solvers are also based on the DPLL algorithm.

Stalmarck algorithm: As described in §4.5.3, the Stalmarck algorithm is a tautology

checking algorithm. For the purpose of the prototypes developed in this project,

we use the algorithm to compute learned clauses (described in §6.3.3.1). In the

rest of this exposition, use of the term Stalmarck algorithm in the context of the

hybrid solver, refers to this clause learner, unless specified otherwise.

While the DPLL method is a depth-first search approach, the Stalmarck algo-

rithm can be interpreted as a breadth-first search approach, spanning all possible

trees in increasing depth, with several enhancements.

An additional strength of this algorithm is its ability to leverage on the structure

of the given propositional formula. Some of the key strengths of the method

that have contributed to its success in the hardware domain and other industrial

applications [Borälv, 1997] were enumerated in §4.6.

6.1. About this case study 131

These novel concurrent approaches for SAT have been implemented in proof-of-concept

prototypes, developed in Alice ML [Rossberg et al., 2006]. On a developmental level,

programming abstractions encapsulating the concurrent techniques employed in the

implementation, have been developed as higher-order functions in Alice ML. These

can be ported to and/or used along with other SAT solvers.

Coarse granularity, DPLL-Stalmarck, a hybrid solver: In §6.3, we discuss the de-

velopment of a novel co-operative hybrid approach to SAT. This combines the

depth-first approach based DPLL algorithm and the breadth-first approach based

Stalmarck algorithm, in an asynchronous setting. This allows for dynamic inter-

action and exchange of information, enabling dynamic pruning of search spaces.

multithreaded and distributed versions of this hybrid solver have been imple-

mented. Empirical results show performance gains for the hybrid solver, com-

pared to the stand-alone DPLL solver for two of the three problem classes con-

sidered. The behaviour of the third class was more random and non-uniform, but

largely the hybrid solver was slower than the DPLL. In fact, the DPLL solver

fared better without the CDCL. These are discussed in §6.7.1, with an analysis

of the empirical behaviour.

An abstraction dodpllWithHelper, has been developed. This can be used to

implement a DPLL solver with one or more external solvers that work asyn-

chronously, acting as information providing helpers for the DPLL process. We

have used doDPLLwithHelper to engineer two more hybrid solvers,

DPLL-CDCL-Stalmarck and DPLL-ConcurrentStalmarck.

Fine granularity, Concurrent Stalmarck: In §6.5, we describe a novel algorithm

that we have developed, by applying concurrent techniques to the Stalmarck

algorithm. This is amenable to large scale parallelism. It provides an alternative

approach to tackling task partitioning, different from the ones used by DPLL-

based methods in the literature.

An abstraction has been developed to implement the saturation technique used

in the Stalmarck algorithm (see §4.5.3). This abstraction uses the computa-

tional pattern captured by the standard barrier abstraction found in concurrent

programming literature (see §5.4.2.3).

A novel form of work allocation has also been implemented using the power of

data-driven evaluation. A proof-of-concept prototype of this new algorithm, has

132 Chapter 6. Novel concurrent approaches for SAT

been implemented in a multithreaded setting and early empirical results for the

multithreaded version are provided.

At this point, it is worth drawing the attention of the reader to the following: the objec-

tives of the investigation and prototypes discussed in this chapter have not been geared

towards building an industry-standard SAT solver, but, rather, focuses on conduct-

ing exploratory investigations: identifying latent opportunities of applying concurrent

techniques in novel ways, with a focus on the developmental aspects of using program-

ming abstractions in a way that promotes portability and incremental development.

6.2 Implementation details for sequential SAT solvers

based on DPLL and Stalmarck algorithm

In this section, we provide details of two independent sequential systems based on the

DPLL and Stalmarck algorithms, implemented in Alice ML.

The code for these sequential solvers has been adapted from the SML versions of

the same, found in the code repository accompanying a recent textbook on automated

reasoning, entitled, Handbook of Practical Logic and Automated Reasoning [Harrison,

2009]. The code can be found in the following web pages: SML code for sequential

DPLL and SML code for sequential Stalmarck tautology checker. The full Alice ML

code for the sequential SAT solvers, based on the DPLL and Stalmarck algorithms, are

provided in full in Appendix §A 4 and Appendix §A 5 respectively and include the

relevant copyright notices. Brief, high-level descriptions of the data structure and the

DPLL implementation are given in Listing 6.1, Listing 6.2 and Listing 6.3.

We ported the SML code to Alice ML and used the two sequential solvers as base-

line systems to develop our parallel prototypes and to compare performances of the

sequential and parallel versions. In particular, the Stalmarck solver provided by the

above source is a tautology checker. We ported the code to Alice ML and did fur-

ther modifications (described below) to engineer a clause-learning tool based on the

Stalmarck algorithm, for use in DPLL-Stalmarck, our hybrid SAT solver.

In the rest of this section, we describe, in brief, some of the key features of the sequen-

tial versions, relevant for understanding the rest of the discussion. 1.

1For a more detailed presentation on the sequential implementations, the reader is referred to the

http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/dp.ml
http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/dp.ml
http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/stal.ml

6.2. Implementation details for sequential SAT solvers based on DPLL and Stalmarck algorithm133

Some non-trivial features of the sequential Stalmarck implementa-

tion

In this section, we describe some non-trivial features of our Stalmarck implementation,

in relation to the modifications that we have done in the ported Alice ML implementa-

tion, for use in our hybrid solver.

Equivalences An efficient key-value based data structure (using finite maps) is used

for representing equivalences between formulas and this enables fast lookup, ad-

dition and deletion of equations 2. Associated operations of insertion, equality

are provided along with Stalmarck specific operations: checking for contradic-

tions in an equivalence and intersection of equivalence classes

Trigger rules Trigger rules or simple rules that are used by Stalmarck’s algorithm

to derive equivalences between (sub)formuals. These are generated for a given

formula, as a one-time operation.

Implementing zero-saturation As explained in §4.6, zero-saturation, one of the key

components of the Stalmarck’s algorithm is the exhaustive application of the

trigger rules to derive new equivalences from existing ones.. This is implemented

by the function zero saturate in the original code. It takes an equivalence and

a variable assignment as input and returns a new equivalence, augmented with

the deductions derived as a result of the application of the simple rules. We

have retained this implementation in our clause learner based on the Stalmarck

algorithm and the concurrent Stalmarck prototype.

Implementing detection of contradiction Implemented by the function truefalse, which

checks for the presence of a contradiction, i.e. an equation of the form >≡⊥

k-saturation Uses two mutually recursive functions: saturate takes new assignments,

0-saturates to derive new information from them and repeatedly calls splits which

in turn, splits over each variable in turn,, performing (k-1) saturations and inter-

secting the results

textbook [Harrison, 2009] which includes a detailed description of the Stalmarck algorithm as well.
2http://www.ps.uni-saarland.de/alice/manual/library/map.html

134 Chapter 6. Novel concurrent approaches for SAT

Listing 6.1: Code fragment for data structures used by sequential DPLL and Stalmarck solvers

datatype (’ a) formula = False | True | Atom of ’ a | Not o f (’ a) formula

| And of (’ a) formula ∗ (’ a) formula | Or of (’ a) formula ∗ (’ a) formula

| Imp of (’ a) formula ∗ (’ a) formula

Listing 6.2: Code fragment for an iterative implementation of the DPLL algorithm, using an explicit trail

datatype t r a i l m i x = Guessed | Deduced ; ; (∗ E x p l i c i t t r a i l ∗)

fun backt rack t r a i l = case t r a i l o f

(p , Deduced) : : t t => backt rack t t | => t r a i l ;

fun d p l i c l s t r a i l = l e t va l (c ls ’ , t r a i l ’) =un i t p ropaga te (c ls , t r a i l) i n

i f mem [] c ls ’ then case (backt rack t r a i l) o f

(p , Guessed) : : t t => d p l i c l s ((negate p , Deduced) : : t t) | =>f a l s e

e lse case (unassigned c l s t r a i l ’) o f [] => t r ue | ps => l e t

va l p=maximize (posneg count c ls ’) ps i n d p l i c l s ((p , Guessed) : : t r a i l ’) end

end

fun d p l i s a t fm = d p l i (de fcn fs fm) [] ; fun d p l i t a u t fm = not (d p l i s a t (Not fm)) ;

Listing 6.3: Code fragment for iterative implementation of the DPLL algorithm, with non-chronological backjump-
ing and learning

fun backjump c l s p t r a i l =case (backt rack t r a i l) o f (q , Guessed) : : t t => l e t

va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , (p , Guessed) : : t t) i n

i f mem [] c ls ’ then backjump c l s p t t e lse t r a i l end | => t r a i l ;

fun dplb c l s t r a i l = l e t va l (c ls ’ , t r a i l ’) =un i t p ropaga te (c ls , t r a i l) i n

i f mem [] c ls ’ then case (backt rack t r a i l) o f

(p , Guessed) : : t t => l e t

va l t r a i l ’ = backjump c l s p t t ; va l d e c l i t s = L i s t . f i l t e r (fn (, d)=>d=Guessed) t r a i l ’ ;

va l c o n f l i c t = i n s e r t (negate p) (smap (negate o f s t) d e c l i t s ord forms) ord forms

i n dplb (c o n f l i c t : : c l s) ((negate p , Deduced) : : t r a i l ’) end

| => f a l s e

e lse case (unassigned c l s t r a i l ’) o f [] => t r ue

| ps=> l e t va l p=maximize (posneg count c ls ’) ps i n dplb c l s ((p , Guessed) : : t r a i l ’) end

end ;

fun dp lbsa t fm = dplb (de fcn fs fm) [] ; fun dp lb tau t fm = not (dp lbsa t (Not fm)) ;

6.3. Hybrid SAT solver: DPLL-Stalmarck 135

6.3 Hybrid SAT solver: DPLL-Stalmarck

As discussed earlier, there is a need for exploring non-DPLL algorithms, so as to:

• address the limitations posed by DPLL solvers;

• explore the use of other complementary algorithms, alongside DPLL solvers;

• enable knowledge sharing between complementary approaches.

We have explored these possibilities by engineering a hybrid solver, by combining the

Stalmarck algorithm with the DPLL algorithm. The rest of this section describes this

hybrid solver, DPLL-Stalmarck.

6.3.1 Why combine DPLL and Stalmarck ?

As explained in §4.6, the Stalmarck algorithm has many distinguishing features, which

make it a good candidate to be used along with the DPLL algorithm. A hybrid SAT

solver that combines the breadth-first approach of the Stalmarck algorithm with the

depth-first approach of DPLL in a co-operative manner, can enable the solver to span

the search space in two different ways and will endow the hybrid solver with multiple,

complementary viewpoints of the same problem (lateral thinking!). Furthermore, as

the Stalmarck algorithm leverages on the structure of a given formula (see §4.5.3), it

can help to offset the loss of implicit structural information, suffered by DPLL-based

solvers.

6.3.2 How to combine the two ?

In our prototype of the hybrid solver, we have combined the two solvers in an asyn-

chronous computational model. This allows for dynamic sharing of information and is

well placed to prune the search spaces of the DPLL solver in a dynamic manner. Fur-

thermore, the two solvers can work concurrently and independently on the problem, as

autonomous, asynchronous computational processes. They communicate only when

there is information to be shared, thus avoiding bottlenecks as well as being able to

make the most of distributed architectures. The whole setup works in a co-operative

manner by sharing the information found (which is one-way, from Stalmarck to DPLL,

in our current implementation).

136 Chapter 6. Novel concurrent approaches for SAT

6.3.3 Implementation

In this section, we describe the implementation of the hybrid solver, DPLL-Stalmarck.

§6.3.3.1 describes the Stalmarck-algorithm-based clause-learning tool that we have

developed.

6.3.3.1 Using the Stalmarck algorithm, as a clause-learning tool

As described in §4.5.3, in the original Stalmarck (tautology checking) algorithm, after

transforming the given formula to triplets, vi ≡ ⊥ is taken as an initial assumption,

where vi, a literal, stands for the entire formula. Using this as a starting point, the

algorithm derives the consequences using the dilemma rule, zero-saturation and the

saturation procedure; Obviously, if the given formula is a tautology, a contradiction

will be derived as one of of consequences.

At this point, it is useful to observe that the key building blocks of the original Stal-

marck algorithm of (i) equivalence relations between the formulas (ii) the dilemma rule

(iii) zero-saturation and the k-saturation procedures are independent of the tautology

checking in itself. In fact, for a given formula, the saturation Stalmarck algorithm can

be used to derive the consequences, for a given list of assumptions.

To use the Stalmarck algorithm as a clause-learning tool for SAT, we use vi ≡ True as

the initial assumption, where vi, a literal, stands for the entire formula and derive the

consequences, which are in the form of equivalences between (sub)formulas, of the

form:

p ≡ q i.e. p ↔ q,

where p, q can be any of the following: literal, sub-formula, >, ⊥.

We have implemented this modification to the original Stalmarck algorithm and use the

modified version as an engine that generates the consequences, as mentioned above.

The consequences are converted to clausal form and constitute the learned clauses,

for our purpose. Given that formula structure plays a pivotal role in the derivation of

these consequences, these learned clauses also stand to benefit from the same. In our

implementation, p ≡ q is converted to clausal form. This modified algorithm is used

as a clause-learning mechanism and has been combined with the DPLL algorithm, in

our hybrid solver, DPLL-Stalmarck.

6.3. Hybrid SAT solver: DPLL-Stalmarck 137

If a contradiction is derived as a consequence by the Stalmarck algorithm, with the ini-

tial assumption of taking the original formula to be True, then it means that the original

formula is UNSAT. This will get detected by the DPLL algorithm as the contradiction

will be passed as an empty clause as part of the learned-clauses, to the DPLL algo-

rithm, which will subsequently render the problem to be UNSAT. Furthermore, the

Stalmarck algorithm can derive many consequences in one iteration. This further adds

to the power of using this as a clause-learning mechanism.

6.3.3.2 Interaction between DPLL and Stalmarck

A high level description of the implementation of the hybrid solver, DPLL-Stalmarck,

is given in Listing 6.43. In our implementation of DPLL-Stalmarck, the main process

is the sequential DPLL algorithm, that computes the final answer. The Stalmarck algo-

rithm based solver is used in its clause learning form (as described above) and works as

an independent process working on the same problem and supplies the learned clauses

to the DPLL process. It thus acts as a helper, and supplies information to the DPLL

process.

Figure 6.1: High level interaction diagram for DPLL-Stalmarck

3For DPLL-Stalmarck, helper should be interpreted as one or more Stalmarck processes.

138 Chapter 6. Novel concurrent approaches for SAT

Listing 6.4: High level design of implementation of DPLL solver with helper

type inboxE l t = prop formula l i s t (∗Clause : represented as a l i s t o f prop formulas ∗)

fun boots t rapHelper putTkt getTk t helperFn fm helperTime = tempHelperFun putTkt getTk t

helperTime fm ;

fun makeInboxAndGetAccessHandles () = l e t

va l (d p l l I n b o x : i nboxE l t Channel . channel) = Channel . channel () ;

(∗ Funct ion to i n s e r t a l i s t o f c lauses to d p l l I n bo x ∗)

fun dp l l InboxPut1 e l t L i s t = L i s t . app (fn y => Channel . put (d p l l I n b o x , y)) e l t L i s t ;

(∗ Funct ion to get elements from dp l l I nb o x ∗)

fun dp l l InboxGet1 () = l e t va l tempCh=Channel . c lone d p l l I n b o x i n Channel . toL is tNB tempCh

end

(∗ Al low f o r remote invoca t i on o f the above f u n c t i o n s ∗)

va l dp l l InboxPutPack = pack (va l dp l l I nboxPu t = Remote . proxy dp l l InboxPut1)

: (va l dp l l I nboxPu t : i nboxE l t l i s t −> u n i t)

va l d p l l P u t T k t = Remote . o f f e r dpl l InboxPutPack ;

va l dpl l InboxGetPack = pack (va l dp l l InboxGet = Remote . proxy dp l l InboxGet1)

: (va l dp l l InboxGet : u n i t −> i nboxE l t l i s t)

va l dp l lGe tTk t = Remote . o f f e r dpl l InboxGetPack ;

i n

(dp l l I nbox , dp l l InboxPut1 , dpl l InboxGet1 , dp l lPu tTk t , dp l lGe tTk t)

end

fun doDPLLwithHelper helperFun helperTime fm = l e t

(∗ make the l o c a l d p l l I n bo x channel ; Any ex te rna l agent (e . g . , s ta lmarck agent) can

post to t h i s , as long as they know the appropr ia te t i c k e t ∗)

va l (dp l l I nbox , dp l l InboxPut1 , dpl l InboxGet1 , dp l lPu tTk t , dp l lGe tTk t) =

makeInboxAndGetAccessHandles ()

va l thrHandle = boots t rapHelper d p l l P u t T k t dp l lGe tTk t helperFun fm helperTime

(∗ −−−−−−−−−−−−−−−−−−−−−−−−−− ∗) (∗DPLL∗)

va l c l s = defcn fs fm ; (∗Convert ing to CNF∗) va l t r a i l = [] (∗ I n i t i a l value ∗)

fun d p l i s t a l m a i n c l s t r a i l = l e t

va l c lsL is tFromInbox = dp l l InboxGet1 () ; (∗Get clauses from Inbox ∗)

va l re lClsFromInbox = dropDupl ica tesFromClsL is t

(L i s t . f i l t e r (i sC lRe levant (vars InL is tOfC lauses c l s)) c lsL is tFromInbox)

va l c l s = L i s t .@(c ls , re lClsFromInbox) (∗Add re levan t Inbox clauses to problem∗)

va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l)

i n

i f mem [] c ls ’ then case (backt rack t r a i l) o f

(p , Guessed) : : t t => d p l i s t a l m a i n c l s ((negate p , Deduced) : : t t) | => f a l s e

e lse case (unassigned c l s t r a i l ’) o f [] => t r ue

| ps=> l e t va l p=maximize (posneg count c ls ’) ps i n d p l i s t a l m a i n c l s ((p , Guessed) : : t r a i l

’) end

end

(∗ −−−−−−−−−−−−−−−−−−−−−−−−−− ∗) (∗DPLL∗)

va l res = d p l i s t a l m a i n c l s t r a i l ; do wrapUpHelper thrHandle ;

i n

res

end

6.3. Hybrid SAT solver: DPLL-Stalmarck 139

Some key features of the DPLL-Stalmarck solver are as follows :

dpllInbox A dpllInbox is created, using Alice ML’s Channels, an abstraction for

an unbounded list. Using the Alice ML’s library functions of remote execu-

tion, the tickets to remotely access dpllInbox are provided (get, put operations:

dpllInboxGet and dpllInboxPut). See §5.6 and §A 2 for explanation of Alice

ML related terminology.

Bootstrapping, spawning of the helper process: Bootstrapping of the helper func-

tion is executed. The helper is spawned as an independent process. In the mul-

tithreaded version, this is executed in its own thread. In the distributed version,

the helper is executed in a different machine. The dpllInbox access functions

(or the respective tickets, where the helper is a remote process) are passed to the

helper process . Different options to execute the helper are provided, as given

below. These options are provided mainly for experimentation.

• Fully asynchronous: a helper is spawned and the execution of the rest of

the solver is continued. In our implementation, this is achieved by giving

-1 as the time for the helper.

• Compositional: a helper is spawned with the given time and posts its re-

sults to dpllInbox when the time is over. The main thread of execution of

DPLL proceeds after this. By increasing the time parameter appropriately,

this helps to address the scenarios where the helper is either too slow or a

particular problem (class) is too difficult for the helper.

The helper posts the information as clauses. It can post any clause, because as

described below, the DPLL process takes care of filtering out the relevant clauses

from the contents of dpllInbox.

Dynamic pruning of the DPLL search space, using the helper info At every branch

point, before descending in to the branch, the DPLL algorithm looks up the con-

tents of dpllInbox and adds the relevant clauses from dpllInbox to its current

problem. Here, we use the term relevant clause to refer to a clause which shares

some variable with the current problem, i.e., the problem state at that branch

point. We do this, because, adding other clauses does not help to reduce the

problem.

The addition of the relevant learned clauses can potentially prune search spaces,

140 Chapter 6. Novel concurrent approaches for SAT

when unit propagation is carried out subsequently. Also, dpllInbox can be popu-

lated at any point during the execution of DPLL algorithm, thus allowing for the

helper clauses to be posted as they are produced, enabling dynamic interaction

between the DPLL process and the helper.

6.3.3.3 Other key features of the hybrid solver

Computational model: dpllInbox,which holds the information from the helper, does

not share any memory with the DPLL process. Thus, it can potentially reside

in a different OS process and possibly even in a remote machine and the DPLL

process too can access it using the appropriate tickets, just as the helper process

does. However, we have chosen to have it within the DPLL process (though

it still does not share any memory with the DPLL process) for the following

reason: Remote lookups are expensive in terms of computational time and the

DPLL process performs the operation of lookup of the dpllInbox at every case

split. Our implementation uses an asynchronous message passing model. The

helper process posts the information to the dpllInbox, but neither process waits

for the other’s actions.

Performance and overheads: The hybrid implementation does incur some overheads

in terms of the dpllInbox setup, lookups and associated processing. But, as men-

tioned above, the information from the helper can potentially prune the search

spaces. Particularly so, since the information is being populated on-the-fly by

the asynchronous helper(s), the DPLL process gets a chance to use possibly new

information at each step. The speed at which the helper generates and posts the

information to the dpllInbox is also crucial for the performance.

The utility of the information from a helper and the tradeoffs of the utility vs

overheads is a topic that needs to be investigated more closely. A rigorous anal-

ysis of the same, possibly matching problems with a helper (as done in portfolio

methods in SAT e.g. [Hamadi et al., 2009]) can greatly benefit the implementa-

tion. This is a possible option for future work.

Programming abstraction: Listing 6.5 gives the code fragment for doDPLLwith-

Helper, the programming abstraction that we have developed for the implemen-

tation of a DPLL solver with a helper. The full code is given in Appendix 5.

6.3. Hybrid SAT solver: DPLL-Stalmarck 141

The abstraction is parametrised by the following:

• Dpll solver of choice

• Helper function of choice

• Time parameter for helper

• Type of learned clauses supplied by the helper

• Functions to bootstrap and wrap up the helper

Listing 6.5: Programming abstraction of DPLL solver with helper

fun doDPLLwithHelper d p l l S o l v e r inboxEl tType boots t rapHelper wrapUpHelper helperFun

helperTime fm = l e t

(∗make the l o c a l d p l l I n bo x channel ; Any ex te rna l agent (e . g . , s ta lmarck agent)

can post to t h i s , as long as they know the appropr ia te t i c k e t ∗)

va l (dp l l I nbox , dp l l InboxPut1 , dpl l InboxGet1 , dp l lPu tTk t , dp l lGe tTk t) =

makeInboxAndGetAccessHandles ()

va l thrHandle = boots t rapHelper d p l l P u t T k t dp l lGe tTk t helperFun fm helperTime

(∗ +++++++++++ DPLL +++++++++++++++ ∗)

va l c l s = defcn fs fm ; (∗Convert ing to CNF∗) va l t r a i l = [] (∗ I n i t i a l value ∗)

va l res = d p l l S o l v e r dp l l InboxGet1 c l s t r a i l ; do wrapUpHelper thrHandle ;

i n res end

In tune with the motivation of the development of an abstraction, this allows for

any helper to be used alongside the DPLL process.

• The only information that the helper needs is the problem and a handle to

access dpllInbox.

• The helper is an independent process and is not dependent on the execution

of the DPLL process. Depending on the user’s preference, it can either be

run asynchronously or run for a predefined time, before the execution of

the DPLL process begins.

• The abstraction allows for a plug-and-play style of experimenting with dif-

ferent helper implementations. Even the user can become a helper agent

by populating dpllInbox with information. This may or may not be use-

ful in practical situations depending on the problem class considered, but,

nevertheless, illustrates the potential of the abstraction and the ease of pro-

totyping by adopting such an approach.

Multiple helpers As described earlier, the doDPLLwithHelper abstraction makes our

142 Chapter 6. Novel concurrent approaches for SAT

implementation generic enough to incorporate any helper, as any process can

post information to dpllInbox as long as it knows the appropriate tickets. Thus,

the implementation allows for multiple helpers, which can possibly be based on

different algorithms as well.

6.4 Hybrid SAT solvers: DPLL-CDCL-Stalmarck,

DPLL-ConcurrentStalmarck

As mentioned earlier, the doDPLLwithHelper abstraction allows for quick prototyping

of a DPLL solver with a helper, with minimal developmental effort. To illustrate of the

utility of this abstraction, we have used it to engineer two new hybrid solvers. These

are explained in this section.

6.4.1 DPLL-CDCL-Stalmarck

The DPLL solver used in our hybrid solver, DPLL-Stalmarck, does not use the CDCL

clause learning technique. CDCL has been widely adopted in most modern SAT

solvers which are based on the DPLL algorithm. It can be useful to combine the power

of CDCL and Stalmarck, by engineering a hybrid solver which uses the Stalmarck

clause learner as a helper (as in the DPLL-Stalmarck architecture), and uses the DPLL

algorithm, augmented with CDCL, as the main solver. To this end, we have engineered

a new hybrid solver, DPLL-CDCL-Stalmarck. Empirical results for this are provided

in §6.7. This solver has been developed by using the abstraction doDPLLwithHelper

(described in §6.3.3.3), with the following parametrisation:

Dpll solver of choice: a sequential DPLL sat solver, augmented with CDCL, (see

Listing 6.3 for a high-level design of this solver)

Helper function of choice: As in DPLL-Stalmarck

Time parameter for helper: As in DPLL-Stalmarck

Type of learned clauses supplied by the helper: As in DPLL-Stalmarck

Functions to bootstrap and wrap up the helper: As in DPLL-Stalmarck

6.4. Hybrid SAT solvers: DPLL-CDCL-Stalmarck, DPLL-ConcurrentStalmarck 143

6.4.2 DPLL-ConcurrentStalmarck

This solver has been developed by using the abstraction doDPLLwithHelper (described

in §6.3.3.3), with multiple helpers, as explained below.

Concurrent Stalmarck is a piece of exploratory research approach that we have devel-

oped by applying concurrent techniques to the Stalmarck algorithm and is described

in detail, later, in §6.5. The concurrent Stalmarck implementation uses multiple pro-

cesses to tackle the problem. Each of these processes is independent of the others,

works on the same problem and can generate learned clauses on its own. These learned

clauses can be used by the DPLL solver, in the same way as the ones from the Stal-

marck clause learner. Thus, each process can be used as a helper for the DPLL process.

In the case of using the concurrent Stalmarck algorithm as a helper, the bootstrapping

stage involves: posting the problem to a pre-defined location; posting the units of

work (combinations) to a predefined location and triggering the user specified number

of agent services which are already running on remote hosts. A diagram describing

the high-level design of DPLL-ConcurrentStalmarck is given in DPLL-ConcurrStal-

interactionDiagram.

144 Chapter 6. Novel concurrent approaches for SAT

6.5 New concurrent algorithm for SAT, based on the

Stalmarck algorithm

As mentioned in §6.4, as a piece of exploratory research, we have developed Con-

current Stalmarck, a novel algorithm applying concurrent techniques to the Stalmarck

algorithm. The novel algorithm is amenable to large-scale parallelism and has allowed

us to employ a producer-consumer approach and thus is well placed for optimal utilisa-

tion of bulk parallel processing resources. We have implemented an abstraction, which

implements the saturation technique, a key component of the Stalmarck algorithm (see

§4.5.3).

6.5.1 Gist of our approach

As described in §4.5.3, Stalmarck’s algorithm uses the recursive saturation procedure

(see Listing 4.3), which in turn, uses the 0-saturation (see Figure 4.3) and the branch-

merge rule (see Figure 4.1). As described in Listing 4.3, saturate(P,k+1), performs a

recursive application of the procedure, with 0-saturation serving as base-case for the

recursion.

The key insight for the design of our new algorithm has been the fact that the recursive

applications of the branch-merge rule can be flattened, as the operations are associa-

tive and thus independent of the order of execution. However, in a sequential setting,

application of the saturation technique involves waiting for the completion of the com-

putation of all candidates being considered in an iteration, before deciding to perform

the next iteration.

This pattern of computation is similar to the barrier pattern found in the concurrent

programming literature (see §5.4.2.3). We have implemented the application of the

saturation technique as a programming abstraction, similar to the barrier abstraction.

6.5. New concurrent algorithm for SAT, based on the Stalmarck algorithm 145

Fi
gu

re
6.

2:
H

ig
h

le
ve

li
nt

er
ac

tio
n

di
ag

ra
m

fo
rD

P
LL

-C
on

cu
rr

en
tS

ta
lm

ar
ck

146 Chapter 6. Novel concurrent approaches for SAT

Figure 6.3: Gist of the concurrent Stalmarck implementation

Figure 6.4: Stalmarck Agent

Figure 6.5: Interaction diagram for the concurrent Stalmarck implementation

6.5. New concurrent algorithm for SAT, based on the Stalmarck algorithm 147

6.5.2 High level description of the Concurrent Stalmarck algorithm

In this section, we provide a high-level description of the algorithm, Concurrent Stal-

marck. The description is given in a top-down fashion, with key operations described

individually.

concurrStal(P,n,k)

1. • Let P be the problem; number of variables: n; saturation level : r;

• Let DednChannel be a channel that can hold equivalences. In Alice

ML, Channels operate as a stack data structure and the get and put

operations behave accordingly. Let the top element of DednChannel

be top(DednChannel).

• Insert a dummy equivalence into DednChannel.

2. Convert the given problem into triplets and compute the associated simple

rules (triggers). The triplicate conversion which introduces new variables

will give the variable representing the whole problem, say, vprob. Let the

initial assignment be AI . As explained earlier in §6.3.3.1, to use the solver

as a tautology checker, we set the negation of the formula to false and aim

to derive a contradiction; to use it as a clause-learning process, we set the

formula to true and pass the derived consequences as the learned information

and hence AI is vprob ≡ > or ¬vprob ≡ ⊥ as required.

3. The concurrent saturation procedure for a given problem , P, with n variables

and with recursion depth, r : concurrSaturationForGivenDepth(P,n,r) is

computed by iteratively exploring combinations for i = 0,1, . . . ,r using ex-
ploreCombnsAndSaturateForLevel k(prob,n,k) that was described above

with equivalences deduced at each level getting passed to the next level.

148 Chapter 6. Novel concurrent approaches for SAT

Concurrent saturation procedure for level k:

exploreCombnsAndSaturateForLevel k(P,n,k)

• For a problem with n variables, for depth k, explore all possible
(n

k

)
combi-

nations, C1,C2, . . . ,C(n
k)

, using the function, exploreASingleCombn, defined

above.

• Let EC j denote the deductions that have to necessarily hold for the combina-

tion of variables, C j.

• Let Ek = (equivalence) union of EC j , j = 1,2, . . . ,
(n

k

)
. Post Ek, to Ded-

nChannel.

• Check if new information has been found by comparing the original equiv-

alence, E0 and the equivalence in DednChannel. If yes, then, repeat the

processing of combinations. I.e. go to the processing of combination step,

i.e. exploreASingleCombn(P,n,C j)

• In the step where equivalences are posted, the equations between

(sub)formulas held in each EC j is valid for the entire problem. Thus, the pro-

cessing required for a given combination can be carried out independently.

6.5. New concurrent algorithm for SAT, based on the Stalmarck algorithm 149

Function to derive the consequences of the given combination of variables, C j:

exploreASingleCombn(P, n, C j):
For the combination, C j, consider all possible truth-value assignments (i.e. 2k as-

signments): A1,A2, . . . ,A2k .

• For each assignment, say, Aq, Apply 0-saturation to the problem using the

following input: the equivalence given by top(DednChannel) and the as-

signment Aq . Get the deductions from the application of 0-saturation, in the

form of the augmented equivalence, say EAq .

As explained in §6.2, 0-saturation takes an equivalence and a variable as-

signment, applies the simple rules, augments the given equivalence with the

deductions obtained and returns the new equivalence.

• The assignments, Ap− s, p = 1, . . . ,2k are arranged as a truth-table, with

two consecutive members differing in one column. Take the intersection of

the equivalences EAq , for q = 1,2, . . . ,2k. Call this EC j . The intersection is

performed as follows to account for saturation at multiple levels:

– Let eqvAssList be the list (EAq,Aq), for q = 1,2, . . . ,2k

– For every two consecutive members of eqvAssList, say (EAi,Ai) and

(EA j ,A j), do the following:

∗ Perform zero saturation for the pair and obtain the intersection of

the resulting equivalences

∗ If the new equivalence is different from the original one, repeat the

above step, else return the new equivalence along with baseAssi j,

the assignment with the last column dropped. Ai and A j differ in

their last column. Thus, dropping the last column takes us one

level down the saturation tree

– Repeat the above step of pairwise reduction to progressively reduce

eqvAssList to a single equivalence. This is the intersection of the truth-

table assignments, with saturation performed for every branch-merge

150 Chapter 6. Novel concurrent approaches for SAT

As mentioned in the description above, the processing of an individual combination

can be performed by an independent process (agent). Thus, a shared-memory com-

putational model is not required. Furthermore, the individual processes are not tightly

coupled and do not need to communicate very often. The only information that an

agent needs is top(DednChannel) and access to post to DednChannel. This gives the

freedom of allowing these agents to run on many different processes and possibly dif-

ferent workstations, without any dependencies on the state of the other processes and

without creating any bottlenecks for other processes that use the agent’s results. Our

implementation can be considered to be an implicit form of a message-passing compu-

tational model, because, though the computational agents do not communicate directly

with each other, they do so via DednChannel. We have used Alice ML’s channel fea-

ture (see §5.6) to implement DednChannel. We refer to this agent as the Stalmarck

agent service and it is described in detail in the next section.

6.5.3 Stalmarck agents as services

A single Stalmarck agent can be described as a service that is running as an indepen-

dent process that computes exploreASingleCombn(P,n,C j), as described above. In a

multithreaded setup, the processes run on the same machine. In the distributed setup,

they can run on different machines and their functions can be invoked remotely. The

computation carried out by the service is described below. The Stalmarck agent ser-

vices are bound to the following three channels (as given in Figure 6.4) at the time of

its creation:

• A work stream (implemented using Alice ML channel feature), say Combn-

sChannel. This is the placeholder for the units of work (combinations) to be

processed.

• A problem stream, where the problem gets posted, say ProbChannel.

• A third stream is created where the agents post their deductions, say DednChan-

nel.

The data-driven consumption model enabled by the incremental evaluation behaviour

implemented in Alice ML (described in §5.5.2.1, §5.5.2.1, §5.6.2) have been used

to engineer the facilities of waiting for work. The computation performed by the Stal-

marck agent proceeds as follows:

6.5. New concurrent algorithm for SAT, based on the Stalmarck algorithm 151

• Waits on ProbChannel, where the problem will appear.

• Once a problem appears, the service will proceed to the next step, to fetch a

combination from CombnsChannel; if there is no combination it will wait.

• After fetching a combination successfully, it will apply the same to the problem

and post the deductions, if any, to DednChannel.

• The DPLL agent or another Stalmarck agent can access the location, DednChan-

nel, where the deductions are provided.

• Furthermore, at each stage, the relevant results from DednChannel are applied

to the problem. In some cases, this can dramatically reduce the problem. By rel-

evant results, we mean only literals that have a presence in the current problem,

i.e. a unit clause with literal l is relevant only if either l or ¬l is present in the

problem.

6.5.4 Workflow of the Concurrent Stalmarck implementation

The workflow of the Concurrent Stalmarck implementation is as follows:

1. The problem and initial assignment are posted in the ProbChannel and the indi-

vidual combinations which constitute independent units of work are posted in a

CombnsChannel.

2. A user-specified number of Stalmarck agents are spawned. These workers are

parametrised by: ProbChannel, CombnsChannel, DednChannel.

3. A worker picks a unit of work from the work stream and processes it and reports

its results to the data-repository location.

4. Upon finishing its work, the worker picks up the next piece of work from the

work stream location, if available, and waits otherwise.

5. When all the units of work are exhausted, a referee makes a check to identify if

any new results have been deduced compared to the original state. If it is so, then

the work stream is re-populated with the original content, the original assignment

is augmented with the new information and the entire cycle is repeated. If no new

results have been posted, the original process is terminated.

152 Chapter 6. Novel concurrent approaches for SAT

6.5.5 Producer-consumer pattern, Resource-management

The Stalmarck agent service implementation can be viewed as an instance of the

producer-consumer abstraction as described in §5.4.2.1. As described above, once

triggered, the computation of the agent acts as a consumer and picks a combination

from CombnsChannel, the producer. It works on it and upon finishing the work, posts

the results to DednChannel and waits for the next combination from the stream Comb-

nsChannel. As described above, the data-driven consumption model enabled by Alice

ML’s incremental evaluation facilities have been used to implement the waiting fea-

ture. Any agent that has completed its computation picks the next unit of work from

CombnsChannel without needing any explicit communication. No explicit communi-

cation to individual workers is involved either as all units of work are posted on to the

same work channel. If CombnsChannel is empty, the agent waits for it to be populated

with an element (the semantics of Alice ML’s Channel library means that this wait-

ing continues till CombnsChannel is closed explicitly). Thus, the need for expensive

communication to facilitate work stealing and load balancing is avoided, achieving an

implicit form of resource management. Furthermore, the flexibility on the number of

agents working on the problem allows for enforcing resource-management techniques,

as the user can specify the number of Stalmarck agents depending on the computa-

tional resources available. E.g., if the solver is deployed in a network of workstations,

then the number of Stalmarck agents can be adjusted to optimally utilise the available

number of idle workstations.

6.5.6 Abstractions developed

We have built on standard abstractions found in the parallel programming literature to

address the particular scenarios in our implementation of the Stalmarck-based concur-

rent algorithm, as explained below.

Abstraction for the saturation technique, adaptation of barrier We have developed

saturation abstraction, an abstraction for implementing the saturation technique

of Stalmarck’s algorithm in a parallel setting. This involves Step 1, Step 2

and Step 5 of the above work flow given in §6.5.4. The code fragment for

this abstraction is given in Listing 6.6. The saturation procedure is a technique

that is used in other theorem proving scenarios as well and thus this abstraction

6.5. New concurrent algorithm for SAT, based on the Stalmarck algorithm 153

can potentially be reused to tackle those as well. Furthermore, the saturation

technique is a form of recursive learning: one of deriving information and re-

peating the small steps in the light of the newly derived information, until no new

information can be derived. The saturation abstraction can be reused/extended

to address other scenarios of recursive learning as well. saturation abstraction

shares similarities with barrier, a standard abstraction found in concurrent com-

puting literature (explained in §5.4.2.3). It involves waiting for all the com-

binations to finish their computation (i.e. compute consequences as equations

between (sub)formula) before making the decision to perform the next iteration

(if new information has been found by one or more combination) or not (no new

information was derived).

Computational pattern used in deduction performed by each worker As explained

in the earlier sections, in our implementation of the Concurrent Stalmarck algo-

rithm, each agent works on a unit of work, i.e. a combination of variables and

computes the deductions that have to compulsorily hold for that combination of

variables. The deduction process of each worker in turn, involves:

• Application of the simple rules for all the possible truth assignments for the

given combination of variables, giving the corresponding deductions.

• Aggregation of the deductions from all the truth assignments and compu-

tation of their intersection.

• The intersection thus computed is the required output for the given combi-

nation, problem and assignment.

Our implementation of this deduction process can be considered as an instance of

the standard Map Reduce abstraction found in concurrent programming literature

(see §5.4.2.4) as follows:

• The data is the list of truth assignments being considered.

• The map operation is the application of the simple rules to a given truth

assignment.

• The reduce operation is the intersection operation over the results of the

map operation carried out over the list.

154 Chapter 6. Novel concurrent approaches for SAT

Listing 6.6: Alice ML code for saturation abstraction

fun s a t u r a t i o n a b s t r a c t i o n compareFn getSta te g e t A l l takeStockFn agFnList= l e t

fun s a t u r a t i o n a b s t r a c t i o n 2 compareFn getSta te g e t A l l takeStockFn agFnList = l e t

va l o ldS ta te = getSta te () ;

do returnWhenAllDone agFnList ;

va l r e s L i s t = g e t A l l () ; do takeStockFn r e s L i s t o ldS ta te ;

va l newState = getSta te () ;

i n

i f not (compareFn o ldSta te newState) then

s a t u r a t i o n a b s t r a c t i o n 2 compareFn getSta te g e t A l l takeStockFn agFnList

e lse ()

end

i n

Exn . catch (Exn . r e r a i s e)

(fn () => s a t u r a t i o n a b s t r a c t i o n 2 compareFn getSta te g e t A l l takeStockFn agFnList)

end

6.6. Concurrent DPLL 155

6.6 Concurrent DPLL

This solver uses the standard DPLL algorithm, in an asynchronous setting. At each

choice-point, two threads are spawned asynchronously to explore the respective sub-

trees. The thread that comes back first with a satisfiable assignment terminates the

other thread. Furthermore, termination of a thread terminates all the sub-threads spawned

under it. Alice ML’s implementation of threads does not support automatic termination

of child threads. We have implemented a modified version which does terminate the

child threads; the code for the same is given in Appendix §A 3.

This implementation can show performance gains in cases where the satisfiable assign-

ment is at a shallow level on one of the branches and exploration of the other branch

takes a very long time. The gains made by this feature can be analysed by comparing

the performance of: DPLL, DPLL with orders-flipped at choice-points and concurrent-

DPLL. The code outline for this solver is given below.

Listing 6.7: Concurrent-DPLL

fun takeFas tes tAndK i l lO ther (t1 , r1) (t2 , r2) =

case (Future . awa i tE i t he r (r1 , r2)) o f

FST(Sat ()) => (Thread . te rmina te (t2) ; r1) |FST(Unsat) => r2

| SND(Sat ()) => (Thread . te rmina te (t1) ; r2) |SND(Unsat) => r1

fun doConcurrent DPLL prob : r e s u l t = l e t

fun solveAssign (prob , l i t) : r e s u l t = l e t

va l rProb = doA l lUn i tC l (doA l lP u reL i t (remTauts (prob , l i t)))

i n

case tes tProb (rProb) o f

Sat sa t ass ign => Sat sa t ass ign |Unsat => Unsat

|UNKNOWN => branch (rProb , p i ckBranch ingL i t (rProb))

and

branch (prob , l i t) : r e s u l t = l e t

(∗Spawn two searches wi th orders o f t r a v e r s a l f l i p p e d ∗)

va l (t1 , r1) = spawnThread (solveAssign (prob , l i t)) ; (∗ r1 f u t u r e ∗)

va l (t2 , r2) = spawnThread (solveAssign (prob , ˜ l i t)) ; (∗ r2 f u t u r e ∗)

i n do takeFas tes tAndK i l lO ther (t1 , r1) (t2 , r2) end

i n solveAssign prob end

156 Chapter 6. Novel concurrent approaches for SAT

6.7 Evaluation

As described in 1, our object-level hypothesis for SAT is as follows:

Use of an asynchronous mode of execution enables development of two
novel algorithms:

1. A hybrid solver, based on the DPLL and Stalmarck algorithms, which
shows gains in some test problem classes considered and does not
show significant slowdown in some other problem cases examined
in this work.

2. A novel concurrent algorithm based on applying concurrent tech-
niques to the Stalmarck algorithm, such that it is amenable to large
scale parallelism.

In this chapter, we have described these new approaches to engineer SAT solvers,

made feasible by an asynchronous mode of execution. Proof-of-concept prototype

implementations of these approaches were also described. In this section, we report on

experiments conducted on these prototype solvers, using different problem classes.

We claim the following:

1. In comparison to the DPLL-CDCL solver, the hybrid SAT solver DPLL-Stalmarck,

by virtue of using the Stalmarck solver as an asynchronous clause learning pro-

cess, uses the learned clauses dynamically to:

• Prune its search space;

• Reduce the time taken to find an answer (SAT or UNSAT).

2. In comparison to the sequential Stalmarck, Concurrent Stalmarck enables a pre-

viously unexplored, novel way of applying concurrency and distribution, to en-

gineer a new algorithm, based on the original Stalmarck algorithm. Used as a

tautology checker, the concurrent version reduces the time taken in comparison

to the sequential Stalmarck.

In §6.7, we describe the limitations to the empirical evaluation conducted. In §6.7.1

and §6.7.2, we explain our process of evaluation of the prototypical implementations

of DPLL-Stalmarck and Concurrent Stalmarck respectively. For each of these, we give

the following:

• Rationale for design;

• Why we expected it to work;

6.7. Evaluation 157

• Choice of empirical tests to test the performance;

• Empirical results and an analysis of the same.

We end the section with an assessment of how the prototypes fare on the other aspect

of our hypothesis, i.e. the methodological criteria of : use of abstractions that aid

portability, ease of prototyping and incremental development.

Platform imposed limitations to empirical evaluation

Both the prototypes described in this chapter use a message-passing style of communi-

cation and do not use shared-memory. Thus, they are ideally placed for multithreaded

implementations and distributed computing architectures. However, Alice ML’s distri-

bution and remote invocation facilities incur a significant overhead in terms of compu-

tational time as they involve cloning of data structures and proxy function calls. This

drawback of Alice ML as a platform proved a limiting factor in our empirical evalua-

tion of distributed versions of the prototypes described in this chapter. So, we restricted

ourselves to multithreaded versions of the prototypes for the purpose of empirical eval-

uation.

Thus, though the use of a functional approach via Alice ML serves as an excellent

implementation platform choice in terms of high-level language support for developing

abstractions and ease of prototyping, it has limited the scope of our experiments.

6.7.1 DPLL-Stalmarck

In this section, we explain our evaluation process for the prototypical implementation

of the hybrid approach for SAT, explained in §6.3.

Rationale for design

• Combination of complementary approaches.

• It can derive many clauses simultaneously.

• Using the concurrent variant of Stalmarck’s algorithm that we have imple-

mented, we can organise the learning process as a collection of distributed

processes, thus enabling optimal utilisation of distributed architectures.

158 Chapter 6. Novel concurrent approaches for SAT

• This new form of distribution gives an alternative to the current work-

partitioning methods found in the literature on parallel SAT solvers almost

all of which are DPLL-based and use a variant of the guiding path tech-

nique for search space partitioning.

Why we expected it to work?

• The manner of spanning the search tree is different from that of DPLL and

the process of learning is not conflict-driven unlike the CDCL techniques

embedded in DPLL.

• Stalmarck algorithm’s clause-learning mechanism is different from that

of CDCL (conflict-driven clause learning) based DPLL solvers [Marques-

Silva et al., 1996].

• It does not rely on the DPLL arriving at a conflict in its search tree and

learning a clause from the conflict. It explores the search tree in a breadth

first manner and uses the formula relations and hence the structure in the

given formula, to derive the learned clauses, with the aid of the dilemma

rule and the saturation technique.

• The hybrid architecture is generic enough for any information providing

agent to be plugged in and relies only on message-passing. Thus, the state-

of-the-art in DPLL can still be used and the hybrid design can be ported

to other solvers, achieving the separation in design and implementation

mentioned in our developmental hypothesis.

6.7.1.1 Details of experiments: problem classes, solvers, metrics

Problem classes: We describe below the classes of problems that we have used to

compare the performance of our hybrid solver, DPLL-Stalmarck, with that of

DPLL-CDCL:

Pigeon hole problems: For a given n, the well known pigeon hole problem,

PHole(n), states that (n+1) pigeons cannot fit n holes. Our encoding gives

n∗ (n+1) propositional variables and (n+1)+n∗ (n∗ (n+1)/2) clauses.

This is UNSAT for all n. We have conducted experiments for n = 2, 3, . . . , 13

Urquhart problems: Originally described in [Urquhart, 1987] as a hard class

6.7. Evaluation 159

of problems for resolution, Urquhart(k), for a given k, is a chain of equiva-

lences of the form

l1↔ l2↔ . . .↔ lk↔ l1↔ l2↔ . . .↔ lk.

Urquhart(k), when converted to CNF (using a naive conversion procedure),

has k variables and 2k−1 clauses. This is a tautology for all k, with the trivial

assignment of setting all variables to True. We have conducted experiments

for k = 2, 3, . . . , 13, 15, 20, . . . , 50

Uniform Random-3-SAT: Uniform Random-3-SAT is a family of SAT prob-

lems distributions obtained by randomly generating 3-CNF formulae in the

following way: For an instance with n variables and m clauses, each of the

m clauses is constructed from 3 literals which are randomly drawn from the

2n possible literals (the n variables and their negations) such that each pos-

sible literal is selected with the same probability of 1/2n. Clauses are not

accepted for the construction of the problem instance if they contain multi-

ple copies of the same literal or if they are tautological (i.e., they contain a

variable and its negation as a literal). Each choice of n and m thus induces

a distribution of Random-3-SAT instances. Uniform Random-3-SAT is the

union of these distributions over all n and m. One particularly interesting

property of uniform Random-3-SAT is the characterisation of hardness of

a problem of this class, using the clause-variable ratio, i.e. m/n [Gent and

Walsh, 1994b].

Solvers used

DPLL-CDCL: Sequential SAT solver based on DPLL algorithm, augmented

with CDCL.

DPLL-Stalmarck: Our novel hybrid SAT solver, combining the DPLL and

Stalmarck algorithms

1. Fully asynchronous mode

2. With a pre-set time for the helper to work on, before the DPLL process

starts

DPLL-CDCL-Stalmarck: Same as DPLL-Stalmarck, but with DPLL-CDCL,

instead of DPLL.

160 Chapter 6. Novel concurrent approaches for SAT

Metrics used: Time taken by the solver to compute the answer and size of search-

space spanned by the solver. By size of the search space, we refer to the number

of case-splits performed by the solver.

Concurrent implementation considered for empirical results multithreaded version

Platform specifications Intel(R) Xeon(TM) CPU 3.60 GHz, 3.86 GB RAM, running

Scientific Linux release 6.3 (Carbon); Alice ML version: 1.4

6.7. Evaluation 161

Figure 6.6: Test data (time taken) for Urquhart(n), with an asynchronous Stalmarck-

helper

Figure 6.7: Test data (size of search space) for Urquhart(n), with an asynchronous

Stalmarck-helper

1Dotted line shows that the solver timed-out and N.A refers to the corresponding search space

162 Chapter 6. Novel concurrent approaches for SAT

Figure 6.8: Test data (time taken) for Urquhart(n), compositional approach: with an

initial time of 60s for the Stalmarck-helper

6.7. Evaluation 163

Figure 6.9: Test data (time taken, search space) for PHole(n), with an asynchronous

Stalmarck-helper

164 Chapter 6. Novel concurrent approaches for SAT

Figure 6.10: Test data (time taken) for Random3SAT; Clause/Var=5.0; n=20,30,. . .,80;

From top: using an asynchronous Stalmarck-helper, compositional approach, with an

initial time of 200s, 500s for the Stalmarck-helper

6.7. Evaluation 165

Figure 6.11: Test data (time taken) for Random3SAT; Clause/Var=5.0; n=20,30,. . .,80;

From top: using an asynchronous Stalmarck-helper, compositional approach, with an

initial time of 200s, 500s for the Stalmarck-helper

166 Chapter 6. Novel concurrent approaches for SAT

Figure 6.12: Test data (time taken) for Random3SAT; Clause/Var=5.0; n=20,30,. . .,80;

From top: using an asynchronous Stalmarck-helper, compositional approach, with an

initial time of 200s, 500s for the Stalmarck-helper

6.7. Evaluation 167

6.7.1.2 Analysis of empirical results

Urquhart Figure 6.6 and Figure 6.7 give the relevant data for the comparison, with

the helper working in the fully asynchronous mode and Figure 6.8 gives the

data, with the helper given an initial time of 60s. We tried a few different values,

lesser and more than 60s. The lesser values did not help for the bigger problems

and increasing the time did not make a difference for the problem parameters

considered. So, we chose 60s as the value for the helper time, for all the problem

parameters considered. The data can be summarised as follows:

DPLL-Stalmarck vs DPLL-CDCL This comparison gives an evaluation of the

efficacy of the CDCL learning technique and the Stalmarck clause learner.

DPLL-Stalmarck outperforms the DPLL-CDCL solver, in terms of both

search space and time. For n > 9, in the fully asynchronous mode and

for n > 3, in the compositional approach, with a helper time of 60s, the

DPLL-Stalmarck solver uniformly outperforms the DPLL-CDCL solver,

in a significant manner.

Thus, the empirical data above confirms that for this problem class, when

used with the DPLL algorithm, the clause learner based on the Stalmarck

algorithm, used in our hybrid solver, DPLL-Stalmarck, fares better than the

CDCL technique.

DPLL-Stalmarck vs DPLL-CDCL-Stalmarck This comparison informs us about

the efficacy of the interplay between the CDCL and Stalmarck clause-

learning mechanisms. The test data shows that the DPLL-Stalmarck solver

is faster than the DPLL-CDCL-Stalmarck solver, for n < 13 and is slower

for n > 13 . The search space size shows a similar behaviour.

Thus, the empirical data above leads us to conclude that for large n, for this

problem class, the combined power of CDCL and Stalmarck fares better

than the stand-alone Stalmarck clause learner, when used within a DPLL-

CDCL solver.

The Urquhart problem class is known to be difficult for the DPLL algorithm as

it has to search through almost all possible cases [Urquhart, 1987]. It is also an

example of a problem class, whose implicit structure is lost in the CNF conver-

sion process and thus the CDCL learning technique will also fail to capitalise

168 Chapter 6. Novel concurrent approaches for SAT

on the implicit structure. This problem class has been proved to be of hardness

class 2 for the Stalmarck algorithm [Stalmarck, 1994], partly due to the ability of

the Stalmarck algorithm to capitalise on the formula structure. Though hardness

class 2 is not very easy, it is tractable, for relatively large problems.

A point worth observing here is that CDCL is embedded within DPLL and Stal-

marck is an external clause learner. Thus, there is no way to decouple the learner

from the DPLL algorithm and execute it as an independent process as in the case

of the Stalmarck learner.

Pigeon hole Figure 6.9 gives the relevant data for this problem class, comparing the

DPLL-Stalmarck solver, with the DPLL-CDCL solver. The DPLL-Stalmarck

solver outperforms the DPLL-CDCL solver, for n>5.

It is well known that this problem class is hard for DPLL. Resolution proofs

for pigeon hole problems are exponential in n [Haken, 1985]. It is also a good

example for the phenomenon of loss of implicit structural information as a result

of CNF conversion.

Random 3 SAT We have tested for clause-variable ratio = 4.3, 4.0, 5.0. Unlike the

above two problem classes, there is no uniform behaviour, in the asynchronous

case. However, when the helper is given an initial time of 500s, the behaviour

shows a more uniform pattern. Relevant data for the same is provided in Fig-

ure 6.10, Figure 6.11 and Figure 6.13, for clause-variable ratio = 4.3, 4.0, 5.0,

respectively.

6.7.2 Concurrent Stalmarck

In this section, we report early results conducted using the proof-of-concept prototype

of the novel concurrent-distributed algorithm for SAT, explained in §6.5. This has

been developed by applying concurrent techniques to the original Stalmarck algorithm

and enabling a producer-consumer style of processing.

Rationale for design As explained in §6.5, in our design of the concurrent-Stalmarck

algorithm, we flattened the recursion involved in the saturation component of the

original Stalmarck’s algorithm. The individual processes are not tightly coupled

and do not need to communicate very often. So, we exploited this latent op-

portunity for parallelisation in designing a new concurrent solver based on the

6.7. Evaluation 169

Stalmarck algorithm. Our design allows for employing producer-consumer style

parallelisation and relies only on implicit message-passing without any require-

ments for shared memory. Thus, it allows for optimal utilisation of distributed

computing environments like clusters and grids. However, in our current work,

we have tested it only on multithreaded versions and a local cluster. Another

orthogonal point is the following: It gives a new way of task decomposition

compared to others seen in the DPLL-based systems in the literature (e.g., guid-

ing path as in PSATO [Zhang et al., 1996]).

Why we expected it to work?

• For a given saturation level, r, the number of candidates for computation

are all the possible combinations, i.e. ∑nC j, j = 1,2, . . . ,r. The saturation

aspect of the procedure means that the combinations need to be processed

repeatedly if new knowledge has been found. Thus, the number of times

an agent performs the computation can be significant, particularly for prob-

lems where the number of variables is high. However, the communication

needs are less. Thus, a distributed implementation using indirect message-

passing is a promising candidate to show gains in speed.

• We have used task decomposition and have organised it as a data-driven

execution, thus allowing for effective work stealing without the costly over-

heads of communication to achieve work stealing that is often observed in

the literature in other systems.

Empirical results

We have used a multithreaded implementation for the purpose of these experiments on

the Urquhart problem class 4. These early results show significant performance gains

for the concurrent implementation, in comparison to the sequential implementation.

4Our prototypes are designed to support a large scale parallel computing environment and we have
tested these prototypes on a local cluster of workstations. However, as discussed earlier in §6.7, the
limitations imposed by the Alice ML platform has meant that we include empirical results only for a
multithreaded implementation.

170 Chapter 6. Novel concurrent approaches for SAT

Prob-param Stalmarck Concurrent-Stalmarck

3 1.395s 0.040s

4 2.155s 0.055s

5 3.367s 0.070s

6 3.263s 0.087s

7 4.157s 0.106s

8 5.097s 0.125s

Table 6.1: Comparison of time taken by Stalmarck and our novel algorithm, Concur-

rentStalmarck, for Urquhart problems

Figure 6.13: Test data for Urquhart problems, comparing sequential Stalmarck solver

and the novel concurrent Stalmarck implementation

6.7. Evaluation 171

6.7.3 Methodological criteria

As explained in §6.3.3.3, the doDPLLwithHelper abstraction allows for easy prototyp-

ing of a hybrid solver allowing for flexible integration of one or more external infor-

mation providing agents, with the flexibility of even using heterogeneous solvers as

helpers. This has been realised using our approach of using programming abstractions

and the additional advantage of using a functional programming language has enabled

us to implement the abstraction as a higher-order function.

Our approach has allowed us to make an effective isolation of design and implemen-

tation as illustrated by our analysis of the criteria for the helper to be effective in the

context of the DPLL-Stalmarck implementation. Our approach enabled easy perfor-

mance analysis and easy prototyping of alternate experiments.

The use of the doDPLLwithHelper abstraction enables clarity of design with respect

to the interaction between the solvers. It encapsulates the mechanism used by the

DPLL process to use the clauses provided in dpllInbox. The mode of provision of the

information is thus separated from how it is used. This allows for easy porting of the

design to other platforms.

We have demonstrated the utility of using the abstraction to promote incremental devel-

opment via our prototypes, DPLL-CDCL-Stalmarck and DPLL-ConcurrentStalmarck,

as explained earlier in this chapter. We developed the abstraction doDPLLwithHelper

to implement the hybrid solver DPLL-Stalmarck. This abstraction was used to engineer

the solvers,

• DPLL-CDCL-Stalmarck, by using DPLL-CDCL as the main solver.

• DPLL-ConcurrentStalmarck by replacing the Stalmarck solver with the imple-

mentation of our novel algorithm Concurrent Stalmarck.

In the Concurrent Stalmarck implementation, we have developed a programming ab-

straction that is similar to the barrier abstraction found in concurrent computing litera-

ture (see §5.4.2.3). This implementation also employs a novel form of work allocation

using the data-driven behaviour enabled by the use of incremental evaluation facili-

tated by the use of Alice ML. This prototype illustrates the scope of applying concur-

rent techniques via programming abstractions to existing algorithms to develop novel

algorithms that are better placed to utilise large scale parallel processing resources.

172 Chapter 6. Novel concurrent approaches for SAT

Our use of a high-level language approach to implement concurrent techniques (as

opposed to an API based approach), using abstractions thus greatly enables portability

and aids incremental development. It also promotes an iterative development lifecycle

as follows :

• Use a high level programming language and programming abstractions to

engineer an experimental workbench to prototype and experiment with ap-

plying concurrent techniques to engineer a better SAT solver;

• Perform empirical evaluation and analyse the same;

• Use the analysis to improve the prototypes;

• When a prototype has been finalised, port it to a state-of-the-art solver.

Many of the industry-standard SAT solvers involve fine-tuning of various parameters,

cache performance and the hardware that the solver is being run on. These SAT solvers

are mostly written in C and applying concurrency/distributed programming techniques

at a fine level of granularity to these systems is a complicated exercise and can of-

ten compromise the fine-tuning that makes them so efficient in the first place. A

lightweight thread mechanism and rapid-prototyping facilities allows for easier and

richer experimentation. Comparisons can be made with sequential solvers developed

in the same framework and the results thus gleaned can be used to port the distributed

programming abstractions to other industry standard solvers as well, using their own

infrastructure for distribution.

6.8 Related work

In this section, we compare our work with other works on parallelisation of SAT and

try to draw out the similarities and differences.

As we saw earlier, information sharing is increasingly being investigated as a technique

to boost the efficiency of the current SAT solvers. But the current systems employ

CDCL based approaches within a DPLL framework. CDCL techniques generate a

huge number of learned clauses as a clause is generated at each conflict. Due to this,

management of these clauses becomes a serious concern as adding all of them to the

6.8. Related work 173

problem will quickly exhaust the memory. So, most solvers employ some heuristics to

choose clauses from the database of clauses generated by the conflicts. Furthermore,

as discussed in [Hamadi and Sais, 2009], for many hard instances, conflict analysis

leads to a learnt clause which has at least one literal from the level before the conflict

level, causing the algorithm to backjump one level.

CDCL is embedded within the DPLL algorithm and so,

• the clause learning happens by spanning the search space in the same way, as the

DPLL process

• it suffers from loss of implicit structural information (inherited from the DPLL

algorithm)

• it cannot be decoupled from the DPLL process and so, cannot work indepen-

dently, as a clause learner.

Our hybrid solver, DPLL-Stalmarck uses the breadth-first approach based, Stalmarck

clause-learner. This has the advantage of using a complementary search procedure

to provide the clauses as opposed to CDCL. An additional advantage is the ability

to be able to spawn the Stalmarck solver or more generally one or more helpers in

different machines, thus allowing for effective utilisation of a distributed architecture.

A strength of the Stalmarck procedure is to leverage on the structure present in the

problem as it works using relations between (sub) formulas. When used on the right

problem classes, this aspect can greatly aid the power of the information provided by

Stalmarck to the DPLL solver.

The combination of DPLL and Stalmarck has been previously explored in [Andersson

et al., 2002]. They use a static compositional approach within a proof engine frame-

work. It requires apriori judgements to be made on the hardness of the problem to

determine the parameter for each solver in the framework. It does not allow for dy-

namic interaction between the solvers as enabled by our prototype DPLL-Stalmarck.

Effective work decomposition and managing the cost of load-balancing are critically

important for effective parallelisation of applications. Most works on parallel SAT

use guiding path for work decomposition and API based communication for load-

balancing. In our concurrent Stalmarck implementation, we have demonstrated an

alternate form of work decomposition for SAT that is not found in the literature to

the best of our knowledge. Furthermore, using Alice ML’s support for data-driven

174 Chapter 6. Novel concurrent approaches for SAT

execution and incremental evaluation, we have demonstrated a way of work allotment

without the overhead of communication.

6.9 Conclusions

A concise summary of the content of this chapter is as follows:

• We demonstrated the scope and efficacy of applying concurrent programming

techniques, to address some previously unexplored possibilities for engineering

SAT solvers, by describing the following two novel approaches:

DPLL-Stalmarck Our hybrid solver, DPLL-Stalmarck, demonstrates a co-operative

architecture using two different but complementary solvers based on the

depth-first approach based DPLL and breadth-first approach based Stal-

marck algorithms, in an asynchronous setting.

A clause-learner based on the Stalmarck algorithm works independently on

the same problem as the DPLL solver. This clause learner acts as a helper

to the DPLL solver and provides learned clauses dynamically, to the DPLL

solver. It illustrates the power of using the solvers in an asynchronous setup

so as to facilitate dynamic information sharing and is thus well placed to

prune the search spaces of DPLL in a dynamic manner. This also elimi-

nates the requirements of employing resource allocation strategies for the

helpers, based on the hardness of the problem for a given helper, which is

the approach that has been used in [Andersson et al., 2002].

Furthermore, the two solvers can work concurrently and independently on

the problem, communicating only when there is information to be shared,

thus avoiding bottlenecks as well as being able to make the most of dis-

tributed architectures. In our current implementation, we have used asyn-

chronous message passing whereby the helper posts the information to

dpllInbox. This is accessed by the DPLL process which reacts to the infor-

mation. The DPLL process does not directly communicate with the helper.

This reactive approach can be looked at as an instance of what is some-

times referred to as the Hollywood principle: Don’t call us, we’ll call you

and saves valuable resources in terms of communication costs.

6.9. Conclusions 175

Concurrent Stalmarck A novel algorithm, Concurrent Stalmarck, has been de-

veloped by applying concurrent techniques to the Stalmarck algorithm,

such that the new algorithm is well-placed to use large scale parallel pro-

cessing resources, such as a cluster of workstations. It can be used as a

tautology checker or as a clause-learning process. The use of concurrency

techniques has been done to enable harnessing large scale parallel process-

ing resources or to deploy on massively parallel machines or a huge cluster.

We have implemented work stealing using the incremental evaluation fea-

ture facilitated by Alice ML. This eliminates the need for costly communi-

cation to achieve load balancing. This prototype is a piece of exploratory

research and illustrates the scope of applying parallelisation to an exist-

ing algorithm to synthesise a new algorithm that is well placed to utilise

emerging architectures and novel computing patterns.

• Proof-of-concept prototypes implementing these approaches were described.

• Empirical results conducted using these prototypes was provided, with an anal-

ysis of the data. Performance gains were observed in two of the three problem

classes considered for the hybrid solver implementation. Empirical results of

the concurrent Stalmarck implementation also exhibited significant performance

gains over the sequential implementation.

• Programming abstractions (developed as higher-order functions in Alice ML),

encapsulating the concurrent approaches employed in the prototypes that have

been developed, were described. The implementations discussed in this chapter

serve as an illustration of the developmental claim of this thesis as outlined in

§3.1, of the utility of a functional programming language for implementation

and the advantages of using programming abstractions for implementation. A

discussion of how these criteria have been met is given in §6.5.6 and §6.7.3.

• The utility of the abstractions was concretely demonstrated by using the abstrac-

tions to develop new hybrid solvers.

The DPLL algorithm is a tightly coupled algorithm and as such traditional work par-

titioning approaches have limited applicability. Optimal work partitioning and load-

balancing are crucial for effective utilisation of distributed architectures. However,

hardness characterisations of SAT problems are difficult and search spaces are highly

irregular. These make optimal work partitioning and load-balancing very difficult to

176 Chapter 6. Novel concurrent approaches for SAT

achieve. The Concurrent Stalmarck algorithm that we have developed effectively ad-

dress these issues. Furthermore, they can be used in conjunction with the hybrid solver

architecture, as demonstrated in the DPLL-ConcurrentStalmarck prototype.

DPLL-based SAT solvers have evolved over a considerable time period and highly

optimised data structures and implementations for these solvers have been developed,

making them very successful in handling big and complex problems. Thus, it makes

sense to use the advanced technology available for these solvers. The hybrid solver

architecture that we have demonstrated, via the doDPLLwithHelper abstraction, opens

up opportunities for using the state-of-the-art in DPLL-based SAT solvers, along with

helpers, who act as providers of learned clauses. The helper(s) can be chosen, such

that:

• it addresses the limitations of DPLL, such as loss of implicit structural informa-

tion;

• its learning mechanism uses an alternate, complementary viewpoint of the prob-

lem i.e. an alternate, complementary search approach, compared to that of DPLL;

• it can run autonomously, independent of the DPLL process, thus preventing bot-

tlenecks and optimally utilise multiple workstations;

• it is known to perform well on the given problem class, while focusing on a

particular problem class.

Most of the parallel SAT solvers are also DPLL-based and use guiding-path for work

partitioning and distributed clause learning (sharing the clauses learnt by CDCL).

However, by design, the CDCL clause-learning technique, is embedded within the

DPLL algorithm and so,

• the clause learning happens by spanning the search space in the same way, as the

DPLL process;

• it suffers from loss of implicit structural information (inherited from the DPLL

algorithm);

• it cannot be decoupled from the DPLL process and so, cannot work indepen-

dently, as a clause learner.

The Stalmarck clause learner that we have used, addresses all these points, as

6.10. Future research 177

• the clause learning happens by spanning the search space in a breadth-first fash-

ion, complementary to that of DPLL;

• it leverages on the structure of a formula;

• it is independent of the DPLL algorithm and can thus work independently, as a

clause learner.

The hybrid solver architecture that we have demonstrated here can enable use of the

Stalmarck clause learner along with an optimised DPLL (DPLL+CDCL) solver.

In the next section, we outline some future research possibilities, following on from

the work described in this chapter.

,

6.10 Future research

We have explored a wide topic in this thesis, by addressing developmental method-

ology and object-level opportunities for two diverse case studies of theorem proving.

Though we have achieved our initial goals of investigation, in course of the work re-

ported here, we have come across more opportunities that merit further investigation.

We could not follow up on these, due to insufficient time and/or not falling within the

scope of this work. We enumerate some such opportunities, which are future research

possibilities, building on the work discussed here:

1. Port the cooperative framework of DPLL-Stalmarck to other platforms, e.g. C-

like platforms.

2. DPLL’s search space is pruned by Stalmarck’s results as shown in our work. The

key to better performance is to get Stalmarck to produce information relevant to

the DPLL at a faster rate. There are a few ways to do it. The obvious way is

to use massively parallel machines. A complementary approach can be in the

direction of using efficient data structures like a BitArray and bit-operations to

perform the unit task.

3. Run on a wider variety of benchmarks, with particular emphasis on domain-

specificity, in order to study the ones that will gain most from the DPLL-Stalmarck

architecture.

178 Chapter 6. Novel concurrent approaches for SAT

4. Study the sensitivity of branching-heuristics in relation to the use of information

supplied by the Stalmarck process.

5. Come up with new heuristics that will adjust according to the information sup-

plied by the Stalmarck process.

6. Run experiments to study the relation between the number of Stalmarck agents

and the performance.

7. Study phase-transition behaviour for the hybrid solver.

8. Stalmarck’s algorithm’s notions of proof hardness can inform the choice of re-

cursion depth and allocation of resources to the solver for a given problem. Au-

tomate exploitation of this aspect.

9. Combination of complete solvers and incomplete solvers, using the DPLL-with-

a-helper abstraction e.g.. In the work described in this thesis, we have used the

Stalmarck solver primarily as a learning mechanism: as an information provider

rather than as a solver by itself. If the strength of probabilistic and other incom-

plete solvers can be used in a similar way, they can be used as the helper in our

abstraction. However, we have not explored this possibility in detail and so are

not aware of the limitations or potential opportunities that such an architecture

would entail.

10. In practice, tractability for sequential Stalmarck solvers is restricted by the hard-

nesss criteria and a value of two is captured by the maxim if it is 2-hard, it is too

hard [Harrison, 1996]. A distributed approach as implemented in our concurrent

Stalmarck solver can significantly help here as more work can now be handled

thus giving scope for improving the tractability threshold. However, we have not

tested these possibilities empirically. This is an option for future work.

11. The utility of the information from a helper and the tradeoffs of the utility vs

overheads is a topic that needs to be investigated more closely. A rigorous anal-

ysis of the same, possibly matching problems with a helper (as done in portfolio

methods in SAT e.g. [Hamadi et al., 2009]) can greatly benefit the implementa-

tion.

12. Exploration of the utility of a shared memory model to enable the DPLL process

to immediately absorb the information from the helper.

6.10. Future research 179

13. Similarities of saturation abstraction and the barrier abstraction were explained

in §6.5.6. The barrier abstraction is quite popular and is provided as an opti-

mised library implementation in many concurrent programming languages. Thus,

this similarity can be utilised to open potential opportunities for porting this im-

plementation to another platform to allow for utilisation of such optimised im-

plementations.

14. As explained in §5.4.2.4, the Map Reduce abstraction is becoming increasingly

popular and optimised implementations of the same are widely available for us-

ing on a variety of distributed architectures. In §6.5.6, we explained how the

deduction process performed by an agent can be viewed as a Map-Reduce op-

eration by giving the map and reduce operations for our implementation. This

similarity can be exploited further to open potential opportunities for porting this

implementation to other platforms using optimised implementations of the Map

Reduce abstraction.

Chapter 7

Developing concurrent,

programmable, sound extensions, for

an LCF style theorem prover

7.1 Introduction

As explained in §3.1 and §5.3.1, in this thesis, for each case study, we have explored

the following two strands of investigation:

Object-level aspects: previously unexplored or little-explored ways of using concur-

rent/distributed techniques for the particular theorem proving flavour considered

in the case study

Developmental aspects: developmental effort required, ease of prototyping and ex-

perimentation, scope for exploratory investigations, incremental development

and portability

In chapter 6, we saw the scope and efficacy of employing concurrency, distribution

and synergetic use of complementary reasoning systems within a propositional satis-

fiability (SAT) solver. This is representative of a decision procedure for arguably the

simplest logic with the employed techniques and algorithms falling into the category

of fully automatic theorem provers. In this chapter, we consider a paradigmatic case

of an LCF style first-order theorem prover, to explore the two strands of investigation

mentioned above.

180

7.1. Introduction 181

As discussed in §4.4.6, LCF style theorem provers have the following key distinguish-

ing aspects:

• Small trusted kernel

• Proof as an abstract type

• Programmability

• Interaction via a functional programming language

There are arguably many possible approaches to applying concurrent techniques to

an LCF style theorem prover. A survey of related published research was provided

in chapter 2. The vast majority of these works focus on approaches using a coarse-

grained, heterogeneous combination of provers and other systems, e.g., use of first-

order theorem provers to tackle higher-order problems. While these approaches have

their own purpose and merits, we have explored an orthogonal approach, to investigate

the opportunities of applying concurrent approaches to engineer novel proof search

procedures, in the first-order LCF context. We have focused on the following:

• providing the user with the tools to program their own concurrent proof search

procedure(s), with minimal developmental effort;

• enable easy set up of experiments, comparing different concurrent approaches;

• encapsulate the concurrent techniques employed, thus separating design and im-

plementation, and facilitating porting of the design to other LCF provers.

Theorem proving problem classes originate from a variety of domains and can vary

greatly in problem structure, proof hardness, solution distribution etc.. Even within the

same formalism, and for the same prover, the computational challenges presented by

a problem class/instance can be vastly different. For example, in the first-order LCF

context, a problem instance can pose a challenge,

1. by generating a significantly large number of independent sub-goals, each of

which needs to be proved;

2. in the form of instantiation of shared meta-variables in sub-goals and manage-

ment of the consequent interdependencies.

3. which is related to quantifiers: possibility a non-deterministic choice of inference-

rule application, where particular choice(s) lead to non-terminating search(s).

182 Chapter 7. Concurrent extensions for LCF style provers

The choice of appropriate concurrent programming technique(s), to tackle these sce-

narios can be possibly different and a concurrent approach that benefits one scenario

need not necessarily benefit another. For example, 1 mentioned above, calls for an

approach using multiple processes working on each of the independent sub-goals, an

instance of AND-parallelism. Interprocess communication is not required in this sce-

nario, whereas, it is necessary to effectively handle 2.

This diversity calls for a programmable approach to apply concurrent techniques, en-

suring that the soundness and interactive aspects that distinguish LCF provers, are

retained as well. By programmable, we mean the following: the user can use the con-

current primitives and control structures provided in the system and adapt and extend

(i.e. program) them to code their own concurrent proof search procedure.

Such an approach can empower the user with the ability to choose the appropriate con-

current techniques for the scenario/problem at hand. Enabling the users to program

their extensions, incorporating concurrent techniques and leveraging on the in-built

soundness guarantees of the LCF approach, is very much in alignment with the funda-

mental motivation of the LCF style theorem provers, particularly, the programmability

and interactive aspects.

To address these objectives, we have developed a multilayered approach to imple-

ment sound and programmable extensions to an LCF prover, such that they incorporate

concurrent programming techniques. As an aid to our investigation, we have used a

sequent-calculus based prototype LCF style prover for classical first-order logic with-

out equality, HAL [Paulson, 1996]1, (described in detail in §7.3.1 and §7.5).

HAL is designed for a sequential mode of execution. We have used it as our baseline

system, to develop a prototype that implements our multilayered approach and thus

allows for programmable, sound extensions, incorporating concurrent and distributed

programming techniques.

1HAL is not an acronym and as such carries no special meaning!

7.1. Introduction 183

In the rest of this chapter, we describe the following:

1. The multilayered approach that we have developed, in order to facilitate sound,

programmable extensions to an LCF style theorem prover, incorporating concur-

rent and parallel approaches.

2. How the HAL system serves as a representative prototype for our investigation

and the design details of the HAL system. Also a summary of the problems

highlighted by our efforts to port Isabelle 2006 to Alice ML, primarily related to

the non-functional aspects present in Isabelle’s design.

3. The new concurrent tacticals developed, aimed at addressing the limitations of

their sequential counterparts in HAL.

4. A novel approach to implement unification, using multiple asynchronous pro-

cesses and exchange of (partially) evaluated information.

5. A discussion comparing our approach to other related work.

6. An analysis of the related Isabelle-PolyML project, drawing out similarities and

differences with our work.

7. Examples illustrating the utility of the concurrent tacticals provided in our pro-

totype by demonstrating the ease of programming novel concurrent proof search

procedures, tailored to individual problem scenarios.

8. The utility of a multilayered approach for ease of development, experimentation,

incremental development and programmability. An outline of how our prototype

serves as a proof-of-concept of the multilayered approach and how the approach

can be applied to other LCF provers as well.

184 Chapter 7. Concurrent extensions for LCF style provers

7.2 Multilayered approach to apply concurrency and dis-

tribution techniques, to an LCF style theorem prover

In this section, we describe the multilayered approach that we have developed to em-

ploy concurrent techniques in an LCF style theorem prover and a proof-of-concept

prototype implementing this approach, implemented in Alice ML. We end the section,

with a summary of the advantages of our approach.

7.2.1 Developing programmable, concurrent, sound extensions,

for LCF provers: A multilayered approach

An LCF style theorem prover has a trusted kernel of tactics (primitive inference rules).

Tacticals, control structures to apply the tactics, are provided. These tacticals and

tactics are used to synthesise proof search procedures. This guarantees the soundness

of proofs derived by the system, among other advantages. The kernel can serve as a

good place to introduce a layer of concurrent and co-routining control structures for

applying tactics. If the concurrency techniques used retain and adhere to the type-

inference properties, this approach will ensure that

• the soundness properties are carried forward, by virtue of the LCF approach’s

treatment of treating theorem as an abstract type, whose only constructors are

the sound inference rules from the trusted kernel;

• the concurrent control structures for applying tactics are available for use at the

top-level and for use in proof search procedures (in the same way as the sequen-

tial ones).

We have adopted this treatment in the multilayered approach that we have developed:

by working from the programming language to the kernel of the theorem prover. The

framework thus engineered allows for programmable, sound extensions to an LCF

prover, incorporating concurrent techniques.

7.2. Multilayered approach to apply concurrency and distribution techniques, to an LCF style theorem prover185

The gist of our approach is as follows:

Concurrent techniques implemented as programming abstractions: We implement

the relevant concurrent programming techniques as programming abstractions

with appropriate parametrisations. For example, encapsulate the computational

pattern used to return the fastest returning function from a list of functions, as a

programming abstraction, (see §7.6.2). Another example is an abstraction for

computing a consensus (see §7.8.3.1).

Concurrent tacticals, engineered via the abstractions: Using the tactics present in

the LCF system and the concurrent programming abstractions developed (as

above), we develop a suite of concurrent tacticals: control structures incorpo-

rating concurrent techniques, for applying the tactics. These allow the user to

apply tactics using a variety of concurrent techniques. They can also be used

for incremental development of new tacticals and proof search procedures, em-

ploying concurrent techniques. These are described in §7.6. A point worth

observing here, is that, the concurrent tacticals, have the same functional be-

haviour (i.e. the same type) as sequential tacticals and can hence be used in the

same way as sequential tacticals, e.g. composing one sequential tactical with a

concurrent tactical.

Concurrent proof search procedures, engineered via the concurrent tacticals: We

use the concurrent tacticals and abstractions to implement established proof

search procedures and design new ones employing concurrent techniques in a

gainful manner to accomplish proof search. These are described in §7.9.2 and

§7.9.1.

At the start of this research project in 2006, within the realm of application of paral-

lelisation to the LCF style of theorem proving, this direction of research had not been

reported in any published research, to the best of our knowledge.

An early paper outlining the ideas of this approach and discussing the advantages of

a multilayered approach as opposed to an adhoc MPI style approach, was presented

in an Isabelle workshop in 2007 [Sripriya et al., 2007]. Subsequently, the utility of

the approach has been taken on board by the Isabelle developers. They have since

invested a lot of efforts to provide concurrency and parallelisation support in Isabelle

and have recently published some early results on the same [Matthews and Wenzel,

2010; Wenzel, 2009]. This work is discussed in detail, later in the chapter, in §7.4. It

186 Chapter 7. Concurrent extensions for LCF style provers

is useful to note that this work required considerable reworking of Isabelle’s bootstrap-

ping process and the ML interaction mode, addressing the non-functional aspects. It

also required considerable, fundamental modifications to the PolyML platform, to ac-

commodate concurrency support. Furthermore, the project required a concerted effort

of two years, by one of the key Isabelle developers and an ML expert (PolyML).

7.2.2 Proof of concept

We have developed a proof-of-concept prototype of this multilayered approach, ap-

plied to an LCF style, sequent-calculus-based, first-order prover (described in detail in

§7.3.1 and §7.5). HAL has been used as the baseline sequential system and has been

ported to Alice ML. In §7.3.1, we describe the rationale behind the choice of HAL as

the baseline system for our prototype.

Abstractions The programming abstractions layer has been developed in Alice ML,

as a collection of higher-order functions, with appropriate parametrisations. In

developing the abstractions, our focus has been to enable the use of asynchronous

processing and co-routining techniques. These enable the realisation of collab-

orative problem solving approaches, even at the term level, e.g. as implemented

in our collaborative unification tactic.

Concurrent tacticals The existing tactic base of HAL has been used along with the

concurrent programming abstractions, to implement novel control structures for

applying tactics. We have implemented a novel collaborative unification tactic,

using the power of collaborative exchange of partially evaluated information.

Programming concurrent proof search procedures We have implemented a novel

proof search procedure, based on the depth-first approach, using asynchronous

operations and the collaborative unification tactic. Examples are provided, illus-

trating the potential of using concurrent techniques to engineer a proof search

procedure to address specific scenarios. These demonstrate the utility of our

approach, as it illustrates the ease of programming a search procedure, incorpo-

rating concurrent techniques, using the concurrent tacticals and other primitives

provided.

Using programming abstractions to implement concurrent programming is advocated

strongly within the parallel programming community [Asanovic et al., 2006]. The use

7.2. Multilayered approach to apply concurrency and distribution techniques, to an LCF style theorem prover187

of abstractions is considered advantageous from a software engineering perspective, as

it promotes modularity, code reuse, portability etc..

The requirements for implementation of our multilayered approach are as follows:

• The LCF system should be ported to a functional language that supports concur-

rency and distribution, preferably in a language-integrated manner, as described

in §5.5.2.

• The design of the LCF system should be free of side-effects-based, imperative-

style programming or should abstract them.

7.2.3 Advantages of our proposed multilayered approach

Below, we summarise the advantages of the multilayered approach that we have devel-

oped and implemented:

• The approach accomplishes an effective separation of design and implementa-

tion. So, once a suite of concurrent tacticals has been found to be useful, it can

be ported to (i.e. replicated in) other eligible LCF systems. We use the term

portability in this sense.

• The approach also allows for the concurrent-distributed features developed to be

made available for interactive use, as they adhere to the definition of tactics and

tacticals.

• As mentioned before, due to the diversity in the problem classes and their re-

lated computational challenges, a one-solution-fits-all approach may not always

work, for the effective application of concurrent programming techniques to en-

gineer better theorem provers. Our multilayered approach enables the provision

of an experimental workbench based on a given LCF style theorem prover. The

workbench can in turn, be used to quickly prototype experimental techniques

incorporating concurrency in order to develop novel proof search procedures.

188 Chapter 7. Concurrent extensions for LCF style provers

7.3 HAL as a representative prototype

In this section, we provide an overview of the HAL system and the rationale behind

our choice of HAL, as an exemplar system, for developing our prototype.

7.3.1 About HAL

HAL is a sequent-calculus based first-order theorem prover. It is meant as an illus-

trative prototype and is described in the functional programming language textbook,

entitled, ML for the working programmer [Paulson, 1996]. The code for HAL, written

in ML, is provided along with the book and is available from the web2. We ported

the code to Alice ML and used it as the sequential baseline system to implement our

multilayered approach, introducing sound, programmable extensions to HAL. Design

details of HAL are described later, in §7.5.

HAL constructs proofs by refinement steps, working backwards from a goal. At each

step, an inference rule is matched to a goal, reducing it to subgoals. HAL implements

sequent calculus, as a set of transformations, on an abstract type of proof states. Each

inference rule is provided as a tactic. A basic user interface allows the tactics to be

executed. In general, tactic-based theorem provers (see §4.4.6 for definitions) allow

a mixture of automatic and interactive working. To provide more automation, HAL

provides a collection of tacticals, i.e. control structures to apply tactics. These can be

used to code (semi-)automatic proof search procedures for first-order logic.

7.3.2 Why HAL ?

The objective of development of the prototype described in this work has been:

• To provide a proof-of-concept prototype, implementing our multilayered ap-

proach.

• Allow sound, programmable extensions.

• Act as a workbench to prototype and experiment with synthesising concurrent

proof search procedures, in the LCF, first-order context.

2http://www.cl.cam.ac.uk/ lp15/MLbook/programs/

7.4. Porting Isabelle to Alice ML 189

Our multilayered approach fits well with an ML-based interaction mode of an LCF

prover. So, GUI and additional layers that obscure the ML-based interaction with the

LCF kernel, were not needed and particularly when it came at the cost of a compli-

cated system. Thus, an LCF style system written in an ML dialect and allowing for

interaction with the kernel via ML, was an essential requirement.

Like development of any prototype system, the choice of HAL, has been motivated by

implementation considerations as well. We started off our implementation efforts, by

trying to use Isabelle to implement our prototype. In §7.4, we describe the challenges

encountered in porting Isabelle to Alice ML. Most of these were due to Isabelle’s boot-

strapping procedures, the non-functional aspects present in the system and reliance on

non-standard features of SML like the availability of the function use to build the nec-

essary bindings. These were not compatible with Alice ML’s fully modular approach

using components (see §5.6). Furthermore, Isabelle has evolved over two decades and

has become a very complicated system to base a prototype on and as we discovered

during our efforts, many non-functional aspects have crept into the system. Also, with

the recent releases of Isabelle relying almost entirely on the proof script Isar mode,

ML-based interaction, in the original LCF sense, has become almost obsolete and is

not adequately supported.

To summarise, HAL serves as an ideal vehicle to base our prototype on, for the follow-

ing reasons:

• It has a reasonably small and self-contained code kernel (written in SML [Milner

et al., 1997]), a desirable feature, from a prototype developmental perspective.

• Is still powerful enough to realise our objective (as given in 1) for the LCF style

of theorem proving in a first-order setting.

• We successfully ported HAL to Alice ML, our implementation language, unlike

our efforts to port Isabelle to Alice ML (described in §7.4).

7.4 Porting Isabelle to Alice ML

In this section, we report our efforts to port Isabelle to Alice ML which were not

completely successful and briefly mention the reasons for the same. Also described

are the issues in Isabelle’s bootstrapping process that were highlighted in the course of

190 Chapter 7. Concurrent extensions for LCF style provers

our efforts.

At the time of the start of the development of the prototypes described in this thesis,

we considered Isabelle as a possible vehicle to base our prototype on. However, at

that time, Isabelle did not have any provisions for parallel support. As discussed ear-

lier in the thesis, our rationale behind the choice of Alice ML as the implementation

language has been in alignment with the hypothesis that we are investigating: light

weight threads; message passing, concurrent and distribution possibilities offered; an

SML based language; ease of developing programming abstractions as higher-order

functions.

We spent a significant amount of time to port Isabelle to Alice ML which turned out

to be not completely successful 3. Our efforts highlighted certain aspects of the Is-

abelle system that were not purely functional, particularly in the way the logics are

built. Our work helped to initiate many changes that have since been made (2006-09)

to the Isabelle architecture and the bootstrapping process. We enumerate some of the

key issues below:

• We successfully dealt with a fair amount of incompatibilities in the form of li-

braries and some quirks related to Alice ML. But, there were non-functional

aspects related to the Isabelle architecture, in particular the bootstrapping pro-

cess, which made the porting task unsuccessful. The bootstrapping phase relies

heavily on two non-standard artefacts: the notion of a heap, a non-standard fea-

ture used in many ML dialects, and a top-level function called use. It is useful to

point out here that use is not part of the SML definition and is not implemented

in Alice ML. A heap refers to a dumped image of the ML top-level environment

and holds all the bindings, evaluations and declarations created till that point.

All this is within the same ML process. In Isabelle, to build a logic, the corre-

sponding heap is in turn, built using nested applications of the use function for

loading bindings and declarations. This severely compromises the modularity of

the system. We experimented with some ways around to address this by using

the Alice ML component system (Alice ML views programs as modular units,

called components), which were not completely successful. Alice ML adopts a

lazy approach to loading the components. This conflicts with the expected be-

3We used Isabelle 2006 for our porting efforts.

7.4. Porting Isabelle to Alice ML 191

haviour of use in its nested application in Isabelle’s bootstrapping stage. But, the

dependencies and the bootstrapping process were too arbitrary to manage. How-

ever, using Alice ML’s component system is still a promising option to follow

through.

• The Isar proofscript environment with all its advantages of user-friendliness for

interactive proof has also made the ML-level usage with the tactics less acces-

sible, thus reducing the programmability of the system. Furthermore, the in-

troduction of the Isar layer has introduced many modifications in the system

architecture. The documentation for these was sparse at the time of our experi-

ments.

• Isabelle has evolved over 20 years, and with the additional Isar layer, it has

become too complex a system to tackle for the purpose of re-organising the ar-

chitecture. Furthermore, with the Isar layer, the ML level usage with the tactics

is less accessible. As we learnt in course of our efforts of porting Isabelle to

Alice ML, such an enterprise requires non-trivial amounts of work requiring

fairly in-depth knowledge of the internals of the implementation language and

the theorem prover. Furthermore, the ML modules may depend on previous def-

initions and proofs produced at runtime. This bootstrapping process never stops,

although some end-users may have the illusion that the environment distributed

as ”Isabelle/HOL” is something like a finished program.

Initially the use of OS level POSIX-threads and forking Isabelle processes was sug-

gested by one of the Isabelle architects as a route to do parallel theorem proving 4. The

OS level approach would also limit the granularity at which the concurrent/parallel fea-

tures can be used. E.g., using these features at a term level will be impossible using this

approach. The importance, potential and advantages of using the lightweight threads

approach as implemented in Alice ML was presented in an Isabelle workshop by the

author in 2007 [Sripriya et al., 2007] and subsequently the efficacy of such an approach

has been taken on board fully by the Isabelle developers. However, the considerations

of a more robust language of production quality, of which PolyML is supposed to be

one, along with the fact that Isabelle works best on the PolyML platform, among all

dialects of ML, led the Isabelle developers to venture on their own project providing

parallelisation support in Isabelle via PolyML 5. This is an ongoing project since 2007

4Email communication: Larry Paulson, June 2006
5Personal email communication with Makarius Wenzel, Tech Univ of Munich, one of the key Is-

192 Chapter 7. Concurrent extensions for LCF style provers

and addresses the development of features like futures (that are already supported by

Alice ML) in PolyML [Matthews and Wenzel, 2010]. This is discussed in more detail

in §7.11.2.

Our presentation of our approach at the Isabelle workshop also led to a useful collab-

oration with the Isabelle developers to facilitate changes in the Isabelle architecture to

address the issues that we had identified during our efforts to port Isabelle to Alice ML.

Some of these were fixed by the Isabelle developers and Isabelle’s Pure kernel can now

be ported to Alice ML. However, the implementation of the changes was too late for

our project. Hence, we switched to work on the HAL system which is described in the

next section.In §7.3.2, we described our rationale for this choice. Furthermore, porting

Isabelle to Alice ML (despite the modifications done to Isabelle’s bootstrapping issues

highlighted by us) may require considerable effort, given the way that the logics are

built in Isabelle, as an ongoing buildup of bindings on the top-level environment (with

respect to Isabelle 2009).

7.5 Design overview of the HAL system

In this section, we describe the implementation details of HAL, required to understand

the material discussed in this chapter. More details can be found in [Paulson, 1996].

The system is coded in Standard ML (SML) and should be portable to any SML dialect.

For definitions and the background of sequent calculus, LCF style theorem proving and

the notions of goal, proof state, tactics and tacticals, the reader is referred to §4.4.2 and

§4.4.6. Table 4.3 gives a list of all the sequent calculus rules relevant for our purpose.

7.5.1 Data structures, treatment of bound variables and

meta-variables, enforcement of quantifier-rule-provisos

Term: is defined as a datatype, as follows:

datatype term = Unknown

| Var o f s t r i n g | Param of s t r i n g ∗ s t r i n g l i s t

| Bound of i n t

| Fun of s t r i n g ∗ term l i s t

abelle/Isar architects

7.5. Design overview of the HAL system 193

Formula: is defined as a datatype, as follows:

datatype form = Pred of s t r i n g ∗ term l i s t

| Conn of s t r i n g ∗ form l i s t

| Quant o f s t r i n g ∗ s t r i n g ∗ form

Name-free representation of bound variables

HAL adopts a name-free representation of bound variables, with origins in a λ−
calculus-based representation. Operations such as abstraction and substitution

are easily performed in the name-free representation. We give a brief account of

this treatment here, more details can be found in [Paulson, 1996, pg.376].

The name x of a bound variable serves only to match each occurrence of x, with

its binding, so that reductions can be performed correctly. If these matches can

be made by other means, then the names can be abolished. This can be achieved

using the nesting depth of abstractions. Each occurrence of a bound variable is

represented by an index (de Bruijn indices), giving the number of abstractions

lying between it and its binding abstraction. E.g., the term,

λx.x(λy.xy(λz.xyz))

can be represented, using the name-free notation as follows

λ.0(λ.10(λ.210))

Meta-variables:

As seen in §4.7.1, a meta-variable serves as a convenient device to handle the

pending (yet-to-be-instantiated) status of a variable during the course of a proof.

In HAL, a meta-variable is denoted with a leading ? symbol, e.g. ?a.

Enforcing provisos in quantifier rules:

The sequent rules ∀ : le f t and ∃ : right (see Table 4.3) impose the proviso that

x must not occur free in the conclusion. When the conclusion contains meta-

variables, additional machinery is required to enforce this proviso. In HAL, this

is taken care of by labeling each free variable with a list of forbidden meta-

variables. Thus, to express the condition that the free variable, b, must not be

contained in a term substituted for the meta-variables ?a1, . . . , ?ak, the following

notation is used:

b?a1, ..., ?ak

194 Chapter 7. Concurrent extensions for LCF style provers

. In other words, b?a1,...,?ak says that any instantiation of the meta-variables in

?a1, . . . , ?ak should not contain a free occurrence of b.

On an implementation level, this is enforced by maintaining a list of the forbid-

den meta-variables (which is empty to start with) for every free variable 6.

The unification algorithm implementation used in HAL, builds and uses this in-

formation while computing the possible compatible substitutions that will make

the given pair of terms identical.

Unsafe quantifier rules: ∀ : le f t, ∃ : right: Table 4.3 gives a list of all the sequent

calculus rules relevant for our purpose. ∀ : le f t, and ∃ : right have one feature

that is not present in any of the other rules. In backward proof, they do not

remove any formulae from the goal. They expand a quantified formula, substi-

tuting a term into its body; and retain the formula to allow repeated expansion. It

is impossible to determine in advance how many expansions of a quantified for-

mula are required for a proof, a consequence of the undecidability of provability

in FOL 7. In this work, we refer to these two rules as, unsafe quantifier rules.

Sequent, Goal A sequent φ1, . . . ,φn ` γ1, . . . ,γn is represented as a pair of formula

lists. A goal, which in turn, is a sequent, is represented as a pair of formula lists,

as follows:

type goal = form l i s t ∗ form l i s t

Proof state: is represented by the tuple,

(sgList,g, i),

where, sgList: list of sub-goals, g: main goal, i: a number, used to generate fresh

variables. The sub-goals are in turn, represented as sequents.

datatype s ta te = State o f Fol . goal l i s t ∗ Fol . form ∗ i n t ;

Data structure used to implement a sequence of proof states:

6An alternative to capture variables appearing in quantifiers and the proviso related issues described
above is using the notion of skolem functions. Roughly speaking, b?a1,...,?ak is treated as a (skolem)
function and it is treated as a term for the rest of the proof. Use of skolem functions is very popular par-
ticularly in the engineering of automatic theorem provers. But, it is has the disadvantage of destroying
the readability of the formula. Any standard text should provide details on this topic.

7This can cause a proof procedure to fail to terminate; first-order logic is undecidable.

7.5. Design overview of the HAL system 195

HAL uses a data structure called Seq to implement an unbounded list, with the

intended behaviour, as a lazy list 8.

The original code of HAL, uses an imperative implementation of the same, us-

ing references. We have modified this to a purely functional implementation

and have used the lazy option of Alice ML to take care of the lazy aspect of

the evaluation. The ML type signature is given in Listing 7.1. Note that in

a sequential execution mode, lazy evaluation is the only option to achieve the

desired behaviour of an unbounded list, while adhering to a purely functional

behaviour. For the rest of this chapter, we use the term sequence, to refer to this

data structure.

Listing 7.1: Code for the Sequence structure in HAL

s igna tu re SEQUENCE =

s ig

type ’ a t ; except ion Empty ;

va l empty : ’ a t ; va l cons : ’ a ∗ ’ a t −>’a t

va l t o L i s t : ’ a t −> ’ a l i s t ; va l f r omL i s t : ’ a l i s t −> ’ a t

end

s t r u c t u r e Seq :> SEQUENCE =

s t r u c t

datatype ’ a t = N i l | Cons of ’ a ∗ ’ a t ; except ion Empty ;

va l empty = N i l ; fun cons (x , x f) = Cons (x , x f) (∗ cons t ruc to rs ∗)

fun lazy t o L i s t N i l = [] | t o L i s t (Cons (x , xp)) = x : : t o L i s t xp

fun lazy f r omL i s t [] = N i l | f r omL i s t (x : : xs) = cons (x , f r omL i s t xs)

end

Demand-driven behaviour of lazy evaluation As described in detail in §5.5.2, the

use of lazy lists results in a demand-driven consumer-producer computation

model, where the producer produces data only if the consumer requests for it. As

we will see later in §7.6.1, this model is in contrast to a data-driven producer-

consumer pattern, that can be implemented using asynchronous computation.

Tactics in HAL: An LCF tactic represents a partial proof and is more commonly rep-

resented, by a function of type thm list→ thm. HAL differs from this practice

and implements the inference rules as functions on proof states, instead of func-

tions on theorems.

A tactic takes a proof state(s) and a number(i) as input and returns a sequence

(i.e. a lazy list) of states, the result of applying the tactic on the ith subgoal of the

8We explain this in detail here, as this is used heavily, in the subsequent sections, where we describe
the new concurrent tacticals that we have developed.

196 Chapter 7. Concurrent extensions for LCF style provers

given proof state s.

type t a c t i c = s ta te −> s ta te Seq . t

Application of a tactic: If it can be successfully applied, a tactic returns a sequence of

next possible states, else it returns an empty sequence, which denotes a failure.

Basic tactics provided in HAL:

Primitive inference rules All primitive inference rules of sequent calculus for

first-order logic without equality, are implemented as tactics, with self-

explanatory names as follows: conjL, conjR, disjL, disjR, impL, impR,

negL, negR, iffL, iffR, allL, allR, exL, exR. Note that we use these names

to refer to these tactics and their respective inference rules (rather than the

symbol-based names in Table 4.3), for the rest of this thesis.

basic Applying basic checks if a subgoal is a basic sequent (a sequent is called

basic if both sides share a common formula; such sequents are clearly

valid.); if it is, then, it is removed from the sub-goal list, else, the tactic-

application is considered to have failed (i.e. an empty sequence is returned).

unify Unification is implemented as a tactic (described in §7.5.3). Calling unify

attempts to solve a subgoal by converting it into a basic sequent

Safe tactics, unsafe tactics Corresponding to the notion of unsafe rules, we re-

fer to a tactic which involves variable instantiation or unification as an un-

safe tactic and a safe tactic otherwise. The order of application of the safe

tactics do not matter. Thus, for the basic tactics provided in HAL, the

Safe tactics are: basic, conjL, conjR, disjL, disjR, impL, impR, negL, negR,

iffL, iffR, allR, exL; and

Unsafe tactics are: allL, exR, unify

Other functions:

by The function by takes a tactic as argument, applies the tactic on the current

proof state and updates the current proof state, with the first element of

the sequence of states returned by the tactic. If the tactic fails, it prints an

appropriate message.

7.5. Design overview of the HAL system 197

initial For a goal p, calling initial p, creates a state containing the sequent ` p

as its only subgoal, p as main goal and 0 as variable counter.

final Given a state, the predicate final, tests for an empty subgoal list.

Tacticals: HAL has a suite of basic tacticals (implemented as higher-order functions)

to apply tactics, which are described in the next section. The implementation of

tacticals has been realised, via generic operators designed for the Seq structure

(described earlier in Seq structure).

7.5.2 Basic sequential tacticals in HAL

Tacticals are control structures, which apply tactics in different ways, e.g. choice oper-

ator, composition operator. As explained before, a HAL tactic uses the Seq structure to

return the sequence of next-proof-states. The control structures for applying the tactics,

in turn, are defined via corresponding operations of the the Seq structure. In this sec-

tion, we describe some of the basic sequential tacticals in HAL, with code-fragments

related to their implementation.

-- , composition operator: Applies tac1, followed by tac2. For a given proof state, x

and tactics, tac1, tac2, (tac1 -- tac2) x gives the sequence of sequences:

tac2(y1), tac2(y2), . . . ,, where,

tac1x = y1,y2, . . . ,

The operator returns the concatenation of all the individual sequences. It is worth

observing here that each individual sequence, tac2(yi) incorporates lazy evalu-

ation. Thus, though the sequences are concatenated, because of the lazy aspect

of the evaluation, the actual evaluation is triggered only when the result is de-

manded by another operation.

fun tac1 −− tac2 x = Seq . concat (Seq .map tac2 (tac1 x))

all, identity operator for --: Accepts all states unchanged, returns a singleton sequence

containing the given state

fun a l l x = Seq . f r omL i s t [x]

198 Chapter 7. Concurrent extensions for LCF style provers

||, choice operator: Commits to the first successful tactic with no backtracking. For

a given proof state, x and tactics, tac1, tac2, (tac1 || tac2) x does the following:

if (tac1 x) is non-empty, then returns (tac1 x), else returns (tac2 x)

fun (tac1 | | tac2) x = l e t

va l y = tac1 x

i n i f Seq . n u l l y then tac2 x else y end ;

|@|, less-committal form of choice operator: Combines the results of two tactics with

backtracking. For a given proof state, x and tactics, tac1, (tac1 |@| tac2) x returns

the concatenation of the sequences (tac1 x) and (tac2 x). However, due to the lazy

evaluation aspect, evaluation of tac2 is triggered only when the computation of

tac1 is completed.

fun (tac1 |@| tac2) x = Seq . concat (Seq . cons (tac1 x ,

(∗ delay a p p l i c a t i o n o f tac2 ! ∗)

Seq . cons (tac2 x , Seq . empty)))

no, identity operator for || and |@| : Returns the empty Sequence, for all cases.

fun no x = Seq . empty

try: For a given tactic tac1, try attempts to apply tac1

fun t r y tac = tac | | a l l ;

repeat: repetition operator: For a given proof state, x and tactic tac1, the result of

(repeat tac1 x) is the sequence of values obtained by repeated applying tac1 until

a further application of tac1 would fail.

(∗Performs no back t rack ing : q u i t s when stuck ∗)

fun repeat tac x = (tac −− repeat tac | | a l l) x ;

repeatDeterm: deterministic repetition operator: Considers only the first outcome

returned at each step

(∗ Repet i t i on , cons ider ing only the 1 s t outcome∗)

fun repeatDeterm tac x = l e t fun drep x = drep (Seq . hd (tac x))

handle Seq . Empty => x

i n Seq . f r omL i s t [drep x] end ;

7.5. Design overview of the HAL system 199

sleepTactic, a tactic for suspending the thread for a given duration: For a given

proof state, x and tactic, tac1, and time (in seconds), n, sleepTactic n tac1 does

the following: it suspends the executing thread for n seconds; resumes execu-

tion, returning the result of the application of tac1 on x. We added this tactic,

purely for illustrative purposes, to mimic a time-consuming tactic. Some of the

examples provided in subsequent sections, have been formulated using this tac-

tic.

fun sleepForNSeconds n = Thread . s leep (Time . fromSeconds (I n t I n f . f r omIn t n)) ;

fun s leepTac t i c n tac s t = (sleepForNSeconds n ; (tac s t))

7.5.3 Unification as a tactic in HAL

HAL provides a tactic called unify for applying unification on a goal (a sequent). A

general overview of the unification procedure was given in §4.7 and definitions of

terms used in this section can be found in §4.4 and §4.7. In this section, we provide

a description of the implementation of the unify tactic in the HAL system. In §7.8.3,

we discuss the limitations of this implementation and how the use of concurrent pro-

gramming techniques can address the same.

Unification algorithm used The unification algorithm used takes terms containing

no bound variables. For a given pair of such terms, the algorithm computes

a set of possible (variable,term) substitutions to make the given pair of terms

identical and reports that the terms cannot be unified when a suitable substitution

cannot be found. The pseudocode for the algorithm is given in Listing 7.2. The

implementation of unification in HAL is purely functional. It uses a recursive

version of the algorithm and incorporates the occurs check: If ?a occurs in t,

then the equation has no solution, for no term can properly contain itself. HAL

provides the unify tactic to apply unification on a given goal. See Listing 7.3, for

the code for the same.

Behaviour of the unify tactic:

• The unify tactic takes the following as arguments: (i, st), an integer and a

proof state respectively.

• It attempts to solve the ith subgoal, Gi (a sequent), of the state by applying

unification and converting it into a basic sequent.

200 Chapter 7. Concurrent extensions for LCF style provers

• If it can unify a formula on the left with a formula on the right then it

deletes the ith subgoal and applies the unifier thus found, to the rest of the

proof state.

• There may be several different pairs of unifiable formulae, thus giving sev-

eral possible unifiers and hence several possible next proof states, which in

turn, is returned as a sequence of possible next proof states. E.g., applying

unify to the subgoal

P(?a),P(?b) ` P(f(c)), P(c),

generates a sequence of four possible next proof states. However, only the

first of these is computed, with the others available upon demand, since

sequences are lazy ([Paulson, 1996, pg.423]).

Use of the notion of environments, for implementing unification

A code-fragment describing the implementation of the unification algorithm is

given in Listing 10 (in turn, used in the implementation of the unify tactic). This

returns the list of possible unifiers, for the given goal, as a list of environments.

The notion of an environment is defined as follows: it is a place-holder for the

mappings of variables and terms, [(?a1, t1), . . . , (?ak, tk)], where ?ai 6= ti, for

all i. A dictionary data structure holding values of type string is used for imple-

menting the notion of an environment.

An environment acts as an accumulator and is used to build the unifier as the

algorithm executes. It is not necessarily the final unifier, it may be subject to

addition of a variable-term mapping which can subsequently prove to be incom-

patible with the rest of the environment and will have to be removed. It is used

to apply the substitution to a term and in turn, to a goal.

Sequence of unifying environments, lazy evaluation The function unifiable in List-

ing 7.3, generates a sequence (lazy list) of unifying environments for a single

goal (via the Seq structure in Seq structure).

The tactic, unify, returns a sequence of next states: Each unifier can result in a pos-

sible next-proof state. The corresponding next-state for an unifier, is obtained by

applying the unifier (environment) to the entire proof, i.e. all the subgoals (in

Listing 7.3, the function inst applies a given unifier to a given goal and next

returns the corresponding proof state.).

7.5. Design overview of the HAL system 201

Listing 7.2: Unification algorithm for first-order logic. The algorithm works by comparing the structures of the
inputs, element by element. The substitution mu is built up along the way and is used to make sure that later
comparisons are consistent with bindings that were established earlier.

Uni fy (x , y) = U n i f y i n t e r n a l (x , y , [])

U n i f y i n t e r n a l (x , y , mu)

I f (mu = F a i l u r e) then r e t u r n F a i l u r e

I f (x=y) then r e t u r n mu

I f (I s a v a r i a b l e (x)) then r e t u r n U n i f y v a r i a b l e (x , y , mu)

I f (I s a v a r i a b l e (y)) then r e t u r n U n i f y v a r i a b l e (y , x , mu)

I f (Is a compound (x)) and (is a compound (y)) then

r e t u r n U n i f y i n t e r n a l (args (x) , args (y) , U n i f y i n t e r n a l (op (x) , op (y) ,mu)

I f (I s a l i s t (x)) and (I s a l i s t (y)) then

r e t u r n U n i f y i n t e r n a l (t a i l (x) , t a i l (y) , U n i f y i n t e r n a l (head (x) , head (y) ,mu)

r e t u r n F a i l u r e

U n i f y v a r i a b l e (var , x , mu)

I f (a s u b s t i t u t i o n value / var i s i n mu) then

r e t u r n U n i f y i n t e r n a l (value , x , mu)

I f (a s u b s t i t u t i o n value / x i s i n mu) then

r e t u r n U n i f y i n t e r n a l (var , value , mu)

I f (var occurs anywhere i n x) then r e t u r n F a i l u r e

Add x / var to mu and r e t u r n

Thus, when the unify tactic is applied to the ith goal, say gi, of the given proof

state, say s, it returns a sequence of possible next-states. The sequence can

potentially be empty if there is no unifier, in which case, by definition, the tactic

is considered to have failed.

9See §A 9 for code for the Unify structure

202 Chapter 7. Concurrent extensions for LCF style provers

Listing 7.3: Code fragment for the unification tactic in HAL 9

(∗The fu n c t i o n s use the Uni fy s t r u c t u r e which implements the standard u n i f i c a t i o n

opera t ions and

uses the no t ion o f environment , a va r iab le−term mapping , to hold a u n i f i e r . Environment

i s i n turn ,

implemented as a d i c t i o n a r y data s t r u c t u r e ∗)

(∗Generates a sequence of u n i f y i n g environments f o r a s i n g l e goal (sequent : a p a i r o f

formula l i s t s) ∗)

fun u n i f i a b l e ([] ,) = Seq . empty

| u n i f i a b l e (p : : ps , qs) = l e t fun f i n d [] = u n i f i a b l e (ps , qs) | f i n d (q : : qs) =Seq . cons (Un i fy .

atoms (p , q) , f i n d qs)

handle Un i fy . Fa i led => f i n d qs

i n f i n d qs end ;

(∗ This f u n c t i o n app l i es a given u n i f i e r to a given goal ∗)

fun i n s t env (gs , p , n) = State (map (Un i fy . ins tGoa l env) gs , Un i fy . instForm env p , n) ;

(∗ f o r so lvab le goals w i th u n i f i a b l e formulae on oppos i te s ides ∗)

fun u n i f y i (State (gs , p , n)) = l e t

va l (ps , qs) = L i s t . nth (gs , i −1) ; fun next env = i n s t env (sp l i ceGoals gs [] i , p , n)

i n Seq .map next (u n i f i a b l e (ps , qs)) end

handle Subscr ip t => Seq . empty ;

7.5.4 Sequential automatic proof search procedures in HAL

Using the basic tactics and control structures described above, the following automatic

proof search procedures are defined :

firstF:

The firstF tactic uses the choice operator —— (commits to the first successful

tactic, with no backtracking), to provide a convenient means of combining prim-

itive inference rules in different ways. It is used in the implementation of the

safe and safesteps tactic, described below.

fun ore lseF (tac1 , tac2) u = tac1 u | | tac2 u

fun f i r s t F t s = f o l d r ore lseF (fn => no) t s

safe, safeSteps:

The safe tactic applies one safe tactic to the goal (as defined in safe tactics). It

does not perform unification or variable instantiation and cannot render a prov-

able goal into unprovable subgoals.

7.5. Design overview of the HAL system 203

va l safe = f i r s t F

[basic , conjL , d is jR , impR , negL , negR , exL , a l lR , (∗1 subgoal ∗)

conjR , d i s j L , impL , i f f L , i f f R (∗2 subgoals ∗)]

The safeSteps tactic applies a nonempty series of safe tactics to a given subgoal

(as defined in safe tactics). Tactics that create one subgoal precede those that

create two subgoals. Apart from this, their order is arbitrary.

fun safeSteps i = safe i −− repeatDeterm (safe i)

quant:

The quant tactic applies both exR and allL, if possible. Expands at least one

quantifier in the given subgoal, maybe two: if allL succeeds, then it still attempts

exR too. Note that the composition operator -- is used in this implementation.

fun quant i = (a l l L i −− t r y (exR i)) | | exR i ;

step:

The step tactic refines the given subgoal, by using the safe tactics if possible,

otherwise it tries unification and quantifier expansion. —@— is used to combine

unify with the quantifier tactics. Thus, even if unification is successful, the search

may investigate quantifier expansions too.

fun step i = safeSteps i | | (u n i f y i |@| a l l L i |@| exR i)

Depth-first (automatic) proof search procedure, depth:

Given a subgoal, depth attempts to solve it by breaking down some formula

or by unification or by expanding quantifiers, using a depth-first-search based

approach (using the function depthFirst).

The function depthFirst explores the search tree generated by the given tactic, by

repeatedly applying the tactic until the given predicate, pred, is satisfied. Note

that the composition operator -- is used in this implementation.

fun d e p t h F i r s t pred tac x = i f pred x then a l l e lse (tac −− d e p t h F i r s t pred tac)

va l depth = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ;

204 Chapter 7. Concurrent extensions for LCF style provers

Quantifiers can be expanded repeatedly without limit; thus, the tactic may run

forever. However, the individual components of depth: (i.e. safeSteps, quant,

unify), are useful for interactive proof, especially when depth fails.

Iterative deepening: depthIt Applies the iterative deepening technique for search,

using the step tactic defined above

fun d e p t h I t d = d e p t h I t e r (f i n a l , d) (step 1)

7.6. New concurrent tacticals 205

7.6 New concurrent tacticals

In this section, we describe two new concurrent control structures to apply tactics (i.e.

concurrent tacticals), which we have developed and implemented in our prototype.

Each control structure encapsulates the application of a concurrent programming tech-

nique, as relevant to the application of tactics. These two new tacticals demonstrate

our multilayered approach to introduce concurrent techniques, of using abstractions to

implement the concurrent tacticals:

distComp, an asynchronous composition operator to apply tactics: This illustrates

the scope of harnessing asynchronous execution to (re-)implement established

tactic-operations (in this case, --, the composition operator for tactics), such that

it can handle scenarios that are beyond the scope of the corresponding sequential

implementations. We have used an asynchronous, data-driven execution model

to engineer distComp, addressing the limitations of the sequential composition

operator of HAL, imposed by the demand-driven aspects of lazy evaluation.

Fastest-first, a novel control structure, to return the fastest-returning tactic: This

illustrates the scope to utilise new computational patterns, made feasible by

asynchronous execution (in this case, fastest-first), to synthesise novel concur-

rent tacticals.

In §7.8, we describe crossTalk, a new implementation of unify, the unification tactic

of HAL. It uses a collaborative approach to the computation of the unifiers shared by

various sub-goals.

Application of these new tacticals to implement new automatic proof search proce-

dures in HAL is described in §7.9.2. Definitions and explanations of related parallel

programming and Alice ML terminology can be found in §4.8 and §5.6.

7.6.1 Distributed composition

In §7.6.1.1, we describe the limitations of the sequential composition operator, -- .

Examples highlighting the same are provided in §7.6.1.1. §7.6.1 describes the design

of the new asynchronous composition operator, distComp and how it addresses the

limitations of --. §7.6.1.3 summarises the efficacy of distComp, in comparison to

-- and provides an example proof illustrating the same. The data-driven evaluation

206 Chapter 7. Concurrent extensions for LCF style provers

model used in the implementation of distComp, has been realised via programming

abstractions and these are described in §7.6.1.2.

7.6.1.1 Limitations of the sequential composition operator

As explained before, for a given proof state, x and tactics, tac1, tac2,

tac1 -- tac2 gives the sequence of sequences:

tac2(y1), tac2(y2), . . . , where,

tac1x = y1,y2, . . . , and

each yi is a sequence, i = 1, 2, . . ., say, yi = yi1, yi2,

The -- operator returns the concatenation of all the individual sequences. Each indi-

vidual sequence, tac2(yi) incorporates lazy evaluation. Thus, though the sequences are

concatenated, because of the demand-driven behaviour of lazy evaluation, the actual

evaluation is triggered only when the result is demanded by another operation. The

execution is as follows :

• tac1 tries to get its first result, i.e. computation of y1 is triggered;

• tac2(y1) is computed and after application of tac2 on all members of y1 is com-

pleted,

• computation of y2 is triggered (because of lazy evaluation) and then,

• tac2(y2) is computed and after the computation is completed,

• computation of y3 is triggered and so on.

However, in an asynchronous execution model, we can implement the composition

operator, using a data-driven, producer-consumer computation model, i.e. the results

of tac1 are consumed by tac2, as they are produced (by tac1) . Here are some scenarios

where a data-driven computation model can benefit (compared to the demand-driven

execution model described above) :

1. Computation times of a producer (input data) is irregular

2. Computation times of a consumer function is irregular

3. The consumer function can process each input independently, thus making it

unnecessary to wait for the entire input to be available, before it can process the

first candidate

7.6. New concurrent tacticals 207

Examples

In this section, we present two examples (using the notation described above), where

the sequential mode of execution can inhibit the proof search process:

Example 7.1 Irregular data size

With the sequential execution described above, tac1 -- tac2 (x) ,
though the application of tac2 on each yi, is an independent computation, because of
the sequential nature of the execution and the demand-driven aspect of lazy evalua-
tion, computation of tac2(yi) gets triggered only after the computation of tac2(yi−1)
is completed.
tac1 -- tac2 (x) produces results in the following order:

y11,y12 . . . , y21, y22, . . . , . . .

This can prove to be limiting in many scenarios. For instance, if y1 is an infinite
sequence, then, computation of tac2(y1) will never complete and so, application of
tac2 to y2 will never start. Thus, even if application of tac2 to the very first element
of y2 solves the (sub-)goal, i.e. y21 is a solution, it will never be reached.

Example 7.2 Irregular computation times

Using --, the sequential composition operator, consider the scenario where tac2(yk)
is a solution; but, application of tac2 on the predecessors is taking a significantly
long time to complete i.e. suppose,

tac1(x) = y1, y2, . . . , , yk−1, yk, . . .
where, k-1: large

and some or all of tac2(yi), i = 1 . . .(k−1) are taking a significantly long time to be
computed. Thus, using --, there will be a significant delay in reaching the solution,
tac2(yk). This is the case despite the computation of the solution being independent
of the computation of the predecessors.

208 Chapter 7. Concurrent extensions for LCF style provers

7.6.1.2 Implementation of distComp and related programming abstractions

In the previous section, we highlighted the limitations of --. We have used asyn-

chronous execution to enable a data-driven evaluation model. Using this evaluation

model, we have implemented an asynchronous composition operator for tactics, called

distComp. It composes two functions, but the results are computed in a different order,

compared to the ones produced by the sequential composition operator, --.

Implementation of control structures to apply tactics in HAL, is dependent on the as-

sociated operations of the Seq structure. We have added new functions to the Seq

structure, to allow the following asynchronous operations, while still adhering to the

functional aspect. The code fragment in Listing 7.4 show these implementations. In-

line comments explain the purpose of each function. The new functions are:

distMap, distributed function application: The function distMap applies a given func-

tion on a sequence, in an asynchronous manner. It has been realised using the

spawn library function of Alice ML. (Recap: spawn e returns a future, a place-

holder for the result of the concurrently evaluated expression, e.)

Data-driven evaluation:

byTime The function byTime performs the merger of two sequences; it returns

the members, as they are computed, rather than in an order defined by the

concatenation operation.

sequencesByTime Takes a sequence of sequences, and merges in the order in

which items in the sequences are computed.

The data-driven evaluation model implemented by these functions share similar-

ities with the pipeline and producer-consumer programming abstractions found

in the parallel programming literature (described in §5.4.2.2 and §5.4.2.1 re-

spectively).

Using the asynchronous operations for Seq mentioned above, distComp is implemented

as follows:

(∗ sequen t ia l composi t ion opera tor ∗)

fun (tac1 −− tac2) x = Seq . concat (Seq .map tac2 (tac1 x))

(∗distComp opera tor ∗)

fun lazy (tac1 distComp tac2) x = Seq . sequencesByTime ((Seq . distMap tac2) (tac1 x))

7.6. New concurrent tacticals 209

Listing 7.4: Code for adding asynchronous operations to the Sequence structure in HAL

s t r u c t u r e Seq = s t r u c t

datatype ’ a t = N i l | Cons of ’ a ∗ ’ a t ; except ion Empty ;

va l empty = N i l ; fun cons (x , x f) = Cons (x , x f) ; (∗ cons t ruc to rs ∗)

(∗New f un c t i on s to a l low asynchronous opera t ions on ”Seq ” ∗)

fun lazy distMap N i l = N i l | distMap f (Cons (x , g)) = Cons (spawn f x , distMap f g)

(∗ This fn re tu rns the f a s t e s t r e s u l t s from two given sequences∗)

fun lazy byTime (s1 , s2) = l e t

fun lazy hdTl l = l e t va l a=hd l and b= t l l i n SOME(a , b) end handle Empty => NONE

va l h2 = spawn hdTl s2 ; va l h1 = spawn hdTl s1

i n

case (Future . awa i tE i t he r (h2 , h1)) o f

SND (SOME (a , b)) => l azy cons (a , byTime (b , s2)) | SND NONE => s2

| FST (SOME (a , b)) => l azy cons (a , byTime (s1 , b)) | FST NONE => s1

end

(∗Merges a sequence of sequences , i n the order i n which i tems are computed∗)

fun sequencesByTime (Cons (s1 , ss)) = byTime (s1 , (sequencesByTime ss)) | sequencesByTime

N i l = N i l

end

7.6.1.3 Utility of distComp

As explained in §7.6.1, the distComp operator implements a data-driven evaluation

model, to implement the producer-consumer scenario. Thus, using the distComp oper-

ator (as distComp(tac1, tac2) (x)), the results of tac1 can be consumed by tac2 as they

are produced, unlike the sequential composition operator --.

tac2 generates its results in an asynchronous manner too. Thus, in the case of Exam-

ple 7.1, when y1 is an infinite sequence, because of the asynchronous nature of the

distComp operator, the computation tac2(y2) can be spawned independently without

waiting for tac2(y1) to complete.

Also, the results of tac1 get picked up asynchronously. In the case of Example 7.2,

as (tac1x) is being produced, it is being consumed by tac2 . So, even though, the

computation of tac2(yi), i = 1 . . .k is taking too long, the computation tac2(yk) would

have been spawned already.

A concrete proof attempt using this operator, in HAL, is given in §7.10.1.

210 Chapter 7. Concurrent extensions for LCF style provers

7.6.2 Fastest-first: a novel choice operator using asynchronous

concurrent execution

As mentioned earlier in the thesis in §5.2.1, the use of asynchronous execution modes

opens up approaches that are not possible in a sequential mode of execution. One such

possibility is of enabling a novel choice operator to address scenarios where evaluation

of one candidate suffices. The novel form of choice is as follows: spawn the evalua-

tion of the choices simultaneously and choose the one whose computation terminates

earliest (a.k.a Fastest-first).

We have introduced the following new choice operators in HAL: FF and FFOnList.
The code fragment in Listing 7.5 outlines how these have been realised, using the

asynchronous operations of the Seq structure that we have developed (described earlier

in §7.6.1.2). FFOnList works on a list of tactics and commits to the first tactic that

comes back with a result.

Listing 7.5: Implementation of fastest-first tactic in HAL

(∗Uses the byTime f u n c t i o n def ined i n Seq s t ruc tu re , which re tu rns the

f a s t e s t r e s u l t s from two given sequences∗)

fun FF (tac1 , tac2) x = Seq . byTime (tac1 x , tac2 x)

(∗Uses the sequenceByTime f u n c t i o n def ined i n the Seq s t ruc tu re , which re tu rns

the elements o f a sequence of sequences i n the order o f t h e i r computat ion ∗)

fun FFOnList t L i s t s = Seq . sequencesByTime (Seq . f r omL i s t (L i s t .map (fn t => t s) t L i s t))

7.7 Integrating a SAT solver into HAL: counterexam-

ple finder and simultaneous proof and refutation at-

tempts for propositional goals

Incorporation of a SAT solver into an LCF prover, to solve propositional (sub-)goals

has been addressed in the literature, in a sequential setup, e.g. [Weber, 2006] re-

ports work on integrating zchaff, a DPLL based propositional solver [Yogesh Mahajan,

2004], into Isabelle [Nipkow et al., 2002]. We have integrated an external SAT solver

into HAL and engineered two new tactics as described below. We have used the SAT

solver as an oracle, i.e., its result is not independently verified by HAL. We have used

7.7. Simultaneous proof-refutation attempts using a SAT solver 211

the DPLL-based SAT solver (augmented with conflict-driven learning), implemented

in the SAT case study described in chapter 6, as the external SAT solver.

Counter example finder

We have engineered a new tactic called findCounterEx propGoal SAT. This tac-

tic tries to find a counter-example for a given propositional (sub-)goal, by invok-

ing an external SAT solver. Listing 7.6 shows the code fragment for the same.

For a given goal, , this tactic performs the following steps:

Is goal propositional? If ithG is not propositional, the tactic returns a status,

denoting failed application of the tactic, else, proceed, to try to find a coun-

terexample.

Try to find counterexample: Invoke the external SAT solver, dpllCDCLSAT,

with the negation of the propositional formula for the goal, ithG and return

a list of possible next goals, based on the outcome of the SAT-solver-call.

Counter-ex found: If the SAT solver call comes back with a true status,

i.e., a counter example has been found for the given goal, then, print

an appropriate message, with the goal and the counter example; raise

an exception with the goal and the counter example; this information

can be potentially used in other ways; in the current implementation,

the exception is handled merely by returning an empty sequence.

No counter-ex found: As an exhaustive search to find a counterexample

for the propositional goal (ithG) has been unsuccessful, ithG is true.

Listing 7.6: Code fragment for the SAT-based counterexample finding tactic in HAL; dpllCDCLSAT is the
external SAT solver.

except ion notPropGoal ; except ion counterexample o f (Fol . form ∗ (Fol . form l i s t))

fun f indCounterEx propGoal SAT i s = l e t

fun f indCounte rEx ge tGoa lL is t i thG= i f not (isGoalProp i thG) then (ra i se notPropGoal

) e lse

l e t va l propF = getPropFormForGoal i thG

va l neg propF = Fol . Conn (” ˜ ” , [propF])

va l (boolRes , assgn) = dpllCDCLSAT neg propF (∗ f i n d counter example∗) i n

i f boolRes then

(p r i n t ” Counter example found , goal , counter−Ex : ” ; D isp layFo l . goal i i thG ;

L i s t . app (D isp layFo l . form) assgn ; (r a i se counterexample (propF , assgn)))

e lse (p r i n t ”No counter examples found , f o r the goal : ” ; D isp layFo l . goal i i thG ; [])

end

handle notPropGoal => [] | counterexample (,) => []

i n propRule ” f indCounterExample ” f indCounte rEx ge tGoa lL is t i s end

212 Chapter 7. Concurrent extensions for LCF style provers

Simultaneous proof-refute attempts

Even when a (sub-)goal is propositional, it is hard to judge the likelihood of

the (sub-)goal’s truth-status, i.e. if a proof attempt should be attempted or an at-

tempt should be made to search for a counter-example. To address this challenge,

we have used asynchronous execution to synthesise a new tactic, called prove-

AndDisprove SAT. Listing 7.7 gives a code-fragment describing the high-level

design of this new tactic. For a propositional goal, this tactic:

• Spawns the following two simultaneously:

Try to prove: via an LCF-style proof attempt, using the automatic tactic,

depth, for this sub-goal (Note that the depth tactic is not invoked on

the entire proof-state).

Try to refute: using an external SAT solver, using the tactic, findCoun-

terEx propGoal SAT, described above.

• If counter example returns faster, it terminates the proof attempt by depth.

However, for propositional goals, the depth tactic can terminate, when no

more inference rules can be applied. So, the completion of the tactic does

not guarantee that the goal has been solved. So, the counter example finder

is not terminated10.

• For non-propositional goals, it returns an empty sequence, i.e., failure sta-

tus (in line with HAL’s convention to denote that a tactic cannot be applied).

Listing 7.7: Code fragment for implementation of SAT-based proof and refutation in HAL;

fun proveAndDisprove SAT i s t = l e t

va l i thG = L i s t . nth ((Rule . subgoals (s t)) , (i −1))

i n

i f not (isGoalProp i thG) then (ra i se notPropGoal) e lse

l e t

va l propF = getPropFormForGoal i thG

va l p roo fS t = Rule . i n i t i a l propF (∗make a l o c a l p roo f s t a te f o r t h i s c a l l o f

depth∗)

va l (t1 , f1) = Thread . spawnThread (fn () => (depth proo fS t)) (∗ Ca l l HAL ’ s depth∗)

va l (t2 , f2) = Thread . spawnThread (fn () => (f indCounterEx propGoal SAT i s t)) (∗
counter example∗)

i n

case Future . awa i tE i t he r (f1 , f2) o f

FST(r) => (msgBrd . pr in tToStrm ”\n Depth t a c t i c completed !\n ” ; r)

10The fastest-first tactic, FF, can be used here. However, in its current form, FF will terminate the
counterexample finder, which we don’t want.

7.8. Collaborative unification: using communication for unification 213

|SND(r) => (msgBrd . pr in tToStrm ”\n Counter ex f i n d e r completed\n ” ; Thread .

te rmina te t1 ; r)

end

end

Example

Example 7.3

Consider the negation of the associativity of the & operator, as follows:

goal ”¬ ((P & Q) & R → P &(Q&R))”

Application of the depth tactic i.e., by (Tac.depth), fails.
Application of findCounterEx propGoal SAT guides the user by showing a

counter example

7.8 Collaborative unification: using communication for

unification

We have investigation the scope of using collaborative exchange of partially evaluated

information by multiple asynchronous processes, to address a theorem proving sce-

nario. To this end, we have considered the concrete scenario of unification (the unify

tactic of HAL).

In this section, we describe the limitations of the sequential unify tactic in HAL, discuss

our proposed solution and its implementation as a new tactic called crossTalk.

crossTalk applies unification across a given list of sub-goals and orchestrates exchange

of partially-evaluated information. A detailed example which uses crossTalk within an

automatic proof search procedure is provided in Example §A 8.

7.8.1 Limitations of the sequential unify tactic in HAL

In the sequential implementation of the unify tactic in HAL (described in §7.5.3):

214 Chapter 7. Concurrent extensions for LCF style provers

• HAL provides the unify tactic to apply unification on a given goal. It attempts

to solve a subgoal by applying unification and converting it into a basic sequent.

If it can unify a formula on the left with a formula on the right then it deletes

the subgoal and applies the unifier thus found, to the rest of the proof state. This

new proof state is a possible next-proof-state.

• For a given (sub)goal, say, Gi (a sequent), there may be several different pairs of

unifiable formulae, thus giving several possible unifiers and corresponding possi-

ble next-proof-states. A next-proof-state corresponding to an unifier is computed

by applying the unifier across all the sub-goals of the given state. Given that the

next-proof-states are returned as a sequence, their computation is performed only

on demand.

E.g., applying unify to the subgoal

P(?a),P(?b) ` P(f(c)), P(c),

generates a sequence of four possible next proof states. However, only the first

of these is computed, while the others are available upon demand, because of the

lazy evaluation of sequences ([Paulson, 1996, pg.423]).

Note that the unifier list is not implemented as a lazy list though. Let the possible

unifiers produced by application of unify on Gi be: [Ui1,Ui2 . . .Uipi].

• Meta-variables can be shared across multiple sub-goals. When this happens, for

a Ui to lead to a successful proof, it needs to serve as a unifier for the other

sub-goals sharing its meta-variables. We will refer to such a unifier as a consis-

tent/consensus unifier, for the rest of this thesis.

• When used within an automatic proof search procedure, a suitable backtracking

mechanism will need to be employed to ensure that all the unifiers are consid-

ered. In the depth tactical in HAL (see §7.5.4 for details), unify is applied repeat-

edly along with other rules, within a depth-first-approach-based search strategy.

Given the sequential nature of the depth tactical, only one candidate from the

unify tactic gets considered at any given time. And because of the demand-

driven behaviour of the lazy list of states returned by unify, the next state gets

produced only when the depth tactic finishes computation of the earlier state

and requests the next state. When this happens, the ordering of the unifiers

produced ([Ui1,Ui2 . . .Uipi]) influences the behaviour of depth, as illustrated in

7.8. Collaborative unification: using communication for unification 215

the examples below.

• As explained above, the sequence of next-proof-states are produced by applying

the corresponding unifiers to the given proof state. However, application of an

unifier in the list (which appears before the consistent unifier) can lead to bottle-

necks in the proof attempt during the application of depth. Two such scenarios

are described below.

– Make one or more sub-goals unprovable, either because the unifier is not

consistent with the sub-goal or due to other reasons.

– Lead to a looping situation in the proof state. This happens in the example

described in Example §A 8. If this happens, the other unifier candidates

never get considered, thus sabotaging a possibly successful proof attempt.

The reasons for the occurrence of looping can be varied. Some examples

are:

∗ Duplications of sub-formulas can get added to the right hand side of

the goal sequent; this is the case in Example §A 8

∗ The quantification rules, allL and exR introduce meta-variables. In

backward proof, they do not remove any formulae from the goal. They

expand a quantified formula, substituting a term into its body; and

retain the formula to allow repeated expansion. It is impossible to

determine in advance how many expansions of a quantified formula are

required for a proof, a consequence of the undecidability of provability

in FOL. Thus, when these are applied after an unsuccessful application

of the unify tactic, it can result in the repetitive applications of the

two steps of meta-variable introduction and unification, without ever

terminating.

The limitations have particular significance when there are multiple (sub)goals in a

given proof state sharing a list of meta-variables, say, mVL. In a typical proof attempt

(automatic or interactive) inference steps get applied to each sub-goal during different

stages of the proof. When unify gets applied to a sub-goal, we want the resulting unifier

(as applicable to mVL) to be consistent with the unifier found for every other sub-goal.

Please note that we are not talking of solving the sub-goals, but only finding a unifier

that is consistent with all sub-goals. More inference steps may need to be applied to

216 Chapter 7. Concurrent extensions for LCF style provers

the individual sub-goals to progress the proof, even after the consistent unifier has been

found. This in turn, may result in the instantiation of more meta-variables, possibly

calling for further applications of unification.

7.8.2 Gist of our solution: asynchronous evaluation and collabo-

rative use of partially evaluated information

The gist of our solution (implemented as the crossTalk tactic) is to use partially evalu-

ated information in a collaborative manner to compute a list of unifiers each of which

is consistent across a given list of sub-goals:

1. The process of finding the unifiers is local to the sub-goal. So, it can be spawned

for the n sub-goals, in an asynchronous manner. Spawn independent computa-

tions in an asynchronous manner to apply unify on each sub-goal and post the

list of unifiers to a common location, say board. The unifiers are not applied to

the proof-state as yet.

2. The unifiers produced by each sub-goal are partially evaluated information as

they by themselves cannot guarantee the despatch of all the proof obligations.

We introduce a new process called referee agent. This uses the information

available in board to compute the consensus candidate(s), i.e. an unifier that

will work for all the sub-goals which share the meta-variables involved. This

approach has been implemented as the crossTalk tactic in HAL and is described

in the next section. It performs unification across a given list of sub-goals.

3. A referee agent collects the unifiers produced and computes the list of unifiers

that are consistent with all the sub-goals. If an agreement can’t be reached, then,

an empty list is returned.

4. The referee agent can choose to wait for each sub-goal to compute its entire

list of possible unifiers or it can choose to act as and when they are produced.

We have implemented only the former option, as with the latter option, the type

signature of tactic will not be adhered to.

Thus, crossTalk has the following advantages:

• The lazy aspects and the related problem of the order in which the unifiers are

produced are addressed

7.8. Collaborative unification: using communication for unification 217

• It allows us to make use of multiple threads/processes in an effective way.

• It offers a novel way of employing asynchronous computation techniques and

collaboration to compute unifiers, consistent across a list of sub-goals. Such an

implementation is not possible in a sequential mode of execution.

• In general, the search space is smaller when there are fewer meta-variables. A

goal which has a higher proportion of instantiated meta-variables can thus be

considered to be generally easier to solve. crossTalk returns only the consistent

unifiers. Thus, for subsequent steps after the application of the crossTalk tactic,

the sub-goals are easier to solve.

• By eliminating the unsuccessful candidates for the consensus, crossTalk prunes

the subsequent search space for the sub-goals.

• crossTalk is available at the top level as a tactic for interactive use and can be

used interactively and to code automatic proof searh procedures.

In Example §A 8, we describe an example where HAL’s depth tactic (which uses

unify) loops whereas depthCrossTalk (which is identical to depth with unify replaced

by crossTalk) succeeds in finding the proof.

7.8.3 CrossTalk: a new proof tactic implementing collaborative uni-

fication

In this section, we describe our implementation of the solution described above, as

a tactic: crossTalk. This tactic computes the consensus unifiers across a given list

of sub-goals and a given proof state. If given an empty list as the first argument,

it computes the consensus across all the pending sub-goals of the given proof state.

The type signature of crossTalk is given below 11. The Alice ML code fragment that

describes the implementation in detail is given in §7.8.3.2.

(∗Takes an i n t e g e r l i s t as parameter ; This g ives the indexes of the sub−goals to cons ider

to compute the consensus u n i f i e r . I f i t i s empty , a l l pending sub−goals are considered ∗)

va l crossTalk : (i n t l i s t) −> t a c t i c

11crossTalk takes an integer list and returns a tactic. But, in this work, we refer to crossTalk as a
tactic, as the behaviour is essentially the same as that of taking a state and returning a sequence of states

218 Chapter 7. Concurrent extensions for LCF style provers

In §7.8.3.1, we describe refereeAgent, the programming abstraction that we have im-

plemented. This abstraction addresses the generalised scenario for computing the list

of collaborative consensus candidates. In Listing 7.8, we describe the Alice ML code

fragment that implements the referee abstraction.

7.8.3.1 Referee abstraction

The approach described above can be viewed as a particular case of the following more

general case: There are p worker processes: G1,G2, . . .Gp. All the p agents need to

agree on something, say consensus. Each process produces some possible candidates

for the consensus as follows:

G1 : [U11,U12 . . .U1k1]

G2 : [U21,U22 . . .U2k2]
...

Gp : [Up1,Up2 . . .Upkp]

The task is to come up with a list of all consensus candidates. Clearly, we need to

consider all possible combinations, i.e. we need to consider (k1 ∗k2 ∗k3 ∗ . . .∗kp) com-

binations. This naturally fits into a model of information-sharing and asynchronous

execution. We have implemented the functionality of computing the consensus candi-

dates as a programming abstraction, refereeAgent. This scenario also holds potential

for applying constraint satisfaction techniques, which in turn, may offer scope for ap-

plying distributed techniques. This is a possible option for future work.

The implementation of the refereeAgent programming abstraction is as follows:

• Each worker process posts its results to a location, say board.

• A process, refereeAgent, monitors all the results posted by the agents.

• Each worker needs to know only the location of the board. It does not need to

know any information about the refereeAgent or other worker agents.

• The refereeAgent does not need to know any information about the identity of

the worker agents. Only the results of the agents are needed and their identity is

not needed.

• This allows for scope of distributing these processes over cluster-like network

7.8. Collaborative unification: using communication for unification 219

Listing 7.8: Code fragment for the referee abstraction in HAL

fun refereeAgent i n t e r s e c t i o n F n f i l t e r F n workL is t = l e t

va l ch = Channel . channel () ;

va l r e s L i s t = L i s t .map (fn (f , x) => spawn f ch x) workL is t

do L i s t . app (fn r => awai t r) r e s L i s t

va l consensus = getConsensus f i l t e r F n ch

i n consensus end

architectures that are designed for large scale distribution of work without high

levels of communication traffic. The multithreaded implementation shares the

same computational model. We have implemented a multithreaded implementa-

tion in our current prototype.

The refereeAgent abstraction, given in the code fragment in Listing 7.8, is parametrised

by the following:

workList: List of workers, provided as a list of functions. Each function performs a

computation and posts the results to the given location, say, board.

filterFn, getConsensus: The functionality of computing the consensus is abstracted

using the function getConsensus; it takes a location as argument, say, board and

performs the operation of computing the possible consensus candidates from the

data on board. filterFn allows for filters to be applied to the data considered for

processing the consensus.

In our current implementation, the referee waits for every process to finish and then

generates the list of consensus candidates. The results of all the agents are indeed

needed, as we are trying to compute the consensus candidates. So, there is no effi-

ciency loss by waiting for a potential candidate from each process. In terms of com-

putational models, message-passing may not be useful in most cases as it will lead to

a lot of traffic, when ‘n’ is large. Instead, information sharing achieved by posting to a

common location that is monitored by the referee agent autonomously is better suited

to address the scenario.

Referring to the code given in Listing 7.8, refereeAgent (i) waits for all agents to finish

(ii) pools all the results (iii) applies getConsensus and returns the list.

220 Chapter 7. Concurrent extensions for LCF style provers

7.8.3.2 CrossTalk: code

The Alice ML code for the crossTalk tactic is given in Listing 7.9. The high level

design of the same is as follows:

• Take an integer list (gNumList) and proof state (st) as arguments. gNumList

gives the indices of the sub-goals that the consensus unifiers has to be found for.

It returns the possible next-states as a sequence of states.

• Collect all the meta-variables (as mVList) in the list of sub-goals. If mVList is

empty, then, crossTalk returns an empty sequence.

• Compute the list of consensus unifiers and hence states by instantiating the refer-

eeAgent abstraction defined earlier, using a work function list and an appropriate

intersection function

• The function pseudoUnifyNonTactic, has type signature as given below. This

corresponds to the unifiable function of the sequential implementation of uni-

fication in HAL (see Listing 7.3). One important difference is that it does not

apply the unifier(s) to the goal (Hence the “pseudo” in the function name!). It

posts the unifier(s) using the myBroadcastFn to the given location: ch.

va l pseudoUnifyNonTactic : ((Fol . term S t r i n g D i c t . t) l i s t−>u n i t)−> i n t −>t a c t i c

Listing 7.9: Code fragment for crossTalk:collaborative unification in HAL

fun ge tL i s tO fConsUn i f i e r mVList gNumList s t = l e t

va l sGList = subgoals s t (∗sub−goal l i s t o f given proof s t a te ∗)

fun myBroadcastFn ch x = Channel . put (ch , x) (∗Broadcast fn , parametr ised by broadcast

l o c a t i o n ∗)

fun workFn ch g = pseudoUnifyNonTactic (myBroadcastFn ch) g (∗ch : broadcast l oca t i on , g

: (sub−) goal ∗)

va l g L i s t = L i s t .map (fn i=> L i s t . nth (sGList , (i −1))) gNumList

va l workL is t = L i s t .map (fn g =>(workFn , g)) g L i s t

va l f i l t e r F n = (not o (S t r i n g D i c t . isEmpty))

i n

refereeAgent (getConsensusForEnvList mVList) f i l t e r F n workL is t

end

fun crossTalk gNumList s t = l e t (∗ s t : cu r ren t proo f s t a t e ; gNumList : i nd i ces o f sub−goals

to be u n i f i e d ∗)

va l State (sGList , g , i) = s t (∗ sGList : subgoal l i s t , g : main goal ∗)

va l mVList = L i s t . f o l d r (∗meta−v a r i a b l e l i s t f o r a l l sub−goals ∗)

(fn (sGoal , mVListAccum) => Fol . goalVars (sGoal , mVListAccum)) [] sGLis t ;

7.8. Collaborative unification: using communication for unification 221

va l numOfSGoals = L i s t . l eng th sGList (∗num of subgoals ; STEP−1∗)

(∗Get the l i s t o f consensus proof s ta tes using above a b s t r a c t i o n ∗)

va l newSt = i f (L i s t . n u l l mVList) then Seq . empty e lse l e t

va l gNumListLocal= i f (L i s t . n u l l gNumList) then (∗ a l l sub−goals ∗)

(L i s t . t abu la te (numOfSGoals , (fn i =>(i +1)))) e lse gNumList

(∗Get l i s t o f consensus u n i f i e r s using a b s t r a c t i o n STEP−2.2 ,2.3 ∗)

va l u n i f E n v L i s t = ge tL i s tO fConsUn i f i e r mVList gNumListLocal s t (∗ ∗)

fun instSubGoals x= L i s t .map (fn sG => Uni fy . ins tGoa l x sG) sGList

va l s t L i s t = L i s t .map(fn env =>State ((instSubGoals env) ,g , i)) u n i f E n v L i s t

i n (Seq . f r omL i s t s t L i s t) end(∗STEP−3∗)

i n newSt end

7.8.3.3 Possible improvements

In this section, we outline some possible improvements that can be done in the im-

plementation of crossTalk, which we consider as possible future enhancements to the

prototype.

A better implementation of crossTalk will be where

• The referee agent posts its results as and when they are found, instead of waiting

for the entire list to be computed. I.e. the implementation of refereeAgent can

be as follows: To compute the consensus, the referee need not wait for a worker

process to finish computing all the possible candidates. It can start generating

consensus candidates as and when one full list of contributions from all workers

is available.

• Another possible improvement is for the referee to post the results as they are

being generated instead of returning them as a list. This will help the reaction

of subsequent steps which are dependent on the results being generated by the

referee.

Including these features changes the type signature of crossTalk to be different from

that of a tactic. This is because crossTalk will now be returning individual states rather

than a sequence of states and thus the type signature of tactic of returning a sequence

of states will not be adhered to. This can limit its plug-and-play usage as a tactic.

222 Chapter 7. Concurrent extensions for LCF style provers

Listing 7.10: Code fragment for depthCrossTalk: collaborative unification based automatic proof search

(∗Standard depth− f i r s t based automat ic t a c t i c i n HAL∗)

va l depth = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ;

(∗Use the crossTalk t a c t i c ins tead of u n i f y i n the above l i n e ; Pass [] as the f i r s t

argument

to crossTalk to u n i f y across a l l pending sub−goals ∗)

va l depthCrossTalk = d e p t h F i r s t f i n a l (safeSteps 1 | | crossTalk [] | | quant 1) ;

7.9 Novel automatic search procedures employing con-

current and collaborative approaches

In §7.6.1, §7.6.2, §7.8.3 and §7.7, we described novel concurrent tacticals that we

have implemented in our prototype. One of the key objectives of our multilayered ap-

proach has been to encapsulate the use of concurrent techniques as proof-tactics, so

that they can be use along with other sequential/concurrent tactics using the sequen-

tial/concurrent tacticals. To demonstrate this, in this section, we describe a few novel

automatic proof search procedures, which we have developed using the new proof-

tactics and concurrent tacticals described earlier.

7.9.1 Using crossTalk in an automatic search procedure

The modified version of unification, which we call crossTalk, is available at the top

level as a tactic for interactive use. It has also been used to generate a new automatic

search procedure based on the existing depth automatic tactic. The depth tactic em-

ploys the depth-first approach using a combination of propositional inference rules,

unification (the unify tactic) and quantification (the quant tactic) to generate the next

states (see §7.5.4).

We have used crossTalk instead of unify giving a new automatic tactic, which we call

depthCrossTalk. As we will see in §7.10.3, depthCrossTalk solves a problem which the

sequential automatic tactic, depth does not solve, as it gets stuck in a non-terminating

loop, during the search.

7.9. Novel automatic search procedures employing concurrent and collaborative approaches223

7.9.2 New depth-first automatic search procedures, using the dist-

Comp and FF operators

The depth tactic, described earlier in §7.5.4, uses the composition operator, in its

implementation, via the function, depthFirst. To study the scope of the utility of the

distComp operator here, we implementeddist depthFirst and distDepth, using the dist-

Comp operator described earlier. It is worth observing that the distDepth operator does

not implement the depth-first strategy any more, as the tree can grow depth and breadth

wise simultaneously due to the asynchronous operators.

(∗ Sequent ia l ve rs ion ∗)

fun d e p t h F i r s t pred tac x = i f pred x then a l l e lse (tac −− d e p t h F i r s t pred tac)

va l depth = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ;

(∗Using distComp∗)

fun d i s t d e p t h F i r s t pred tac x = i f pred x then a l l e lse distComp (tac , (d e p t h F i r s t pred

tac))

va l d is tDepth = d i s t d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ; 11)

Extending this line of exploration, we have synthesised a suite of experimental auto-

matic proof search procedures, using the primitives developed here. These listed in

§7.10.4.

7.9.3 Using SAT-based tactics in an automatic proof search proce-

dure

In this section, we describe an automatic tactic incorporating the proof-refutation tactic

described in §7.7. While the counterexample finding tactic can be quite useful in the

interactive mode, to guide the user, it can be embedded in automatic proof search

procedures as well. We describe two such procedures here.

Including the SAT helper as a safe tactic in depth: depth SAT

We have used the proveAndDisprove SAT tactic described in §7.7 to implement a

depth-first-approach-based automatic tactic. To accomplish this, we have followed the

same pattern of the implementation of the sequential depth tactic in HAL, with the

following modifications:

224 Chapter 7. Concurrent extensions for LCF style provers

• We have included proveAndDisprove SAT as a safe rule, referred to as safeSteps SAT,

in the code below.

• We have replaced safeSteps with safeSteps SAT, in the implementation of the

sequential depth tactic in HAL.

• This helps to deal with a propositional (sub-)goal, by simultaneously trying to

prove it by using HAL’s inference rules as well as to refute it, by invoking the

external SAT solver, to find counter examples.

• Thus, the automatic tactic, depth SAT makes the counterexample finder available

for use, within an automatic proof search procedure.

va l safe SAT =

f i r s t F [basic ,

conjL , d is jR , impR , negL , negR , exL , a l lR , proveAndDisprove SAT tact ic , (∗1 subgoal ∗)

conjR , d i s j L , impL , i f f L , i f f R (∗2 subgoals ∗)] ;

fun safeSteps SAT i = safe SAT i −− repeatDeterm (safe SAT i) ;

va l depth SAT = d e p t h F i r s t f i n a l (safeSteps SAT 1 | | u n i f y 1 | | quant 1) ;

fun step SAT i = safeSteps SAT i | | (u n i f y i |@| a l l L i |@| exR i) ;

fun depthI t SAT d = d e p t h I t e r (f i n a l , d) (step SAT 1) ;

7.10. Evaluation 225

7.10 Evaluation

As described in this chapter, we have developed a multilayered approach, to enable

sound, programmable extensions, incorporating concurrent approaches in an LCF style

prover, enabling engineering of concurrent proof search procedures and implemented

the same in the first-order LCF context.

There are arguably many possible approaches to applying concurrent techniques to an

LCF style theorem prover. Published research in this area focuses on approaches which

use a combination of heterogeneous provers and other systems (e.g., use of SAT solvers

and/or first-order theorem provers to tackle higher-order problems). The objectives of

these approaches are primarily geared towards tackling harder problems and/or solv-

ing problems faster. Our investigation has been geared towards programmability and

experimentation with new concurrent techniques to address difficult theorem proving

scenarios. While incorporation of external solvers is achievable using our approach

(see §7.7), it has not been the ultimate goal of our investigation. In this section, we

discuss how the objectives of our investigation have been met.

As described in 2, the object-level hypothesis for the LCF case-study is as follows:

A multilayered approach to application of concurrent techniques to an
LCF style first-order prover, using concurrent LCF-style tacticals, realised
via programming abstractions enables:

1. Programmable extensions (to the prover), incorporating concurrent
programming techniques, retaining the soundness guarantees.

2. Easy prototyping and evaluation of novel proof search techniques,
applying concurrent programming techniques, that can be tailored to
a given theorem proving application.

3. The novel proof search procedures use concurrent approaches to deal
with theorem proving tasks and in the process, address some of the
shortcomings of their sequential counterparts and fare better in some
test cases.

In §7.6, §7.7 and §7.8, we described the concurrent, programmable extensions that

we have implemented in the HAL system, using our multilayered approach. Each of

these extensions illustrates a different possibility of using asynchronous execution, to

synthesise new tacticals, as summarised below. In the rest of this section, we provide

examples of concrete theorem proving scenarios, which demonstrate the utility of these

extensions, by solving problems that cannot be solved by their sequential counterparts

226 Chapter 7. Concurrent extensions for LCF style provers

and/or where the sequential counterparts do a lot of unnecessary search to find the

proof.

At this point, it is worth pointing out to the reader, that these examples provide generic

scenarios, to give a sense of how these new concurrent extensions can be utilised. For

a given problem scenario, customised solutions can be tailored using these extensions.

However, the starting point for our investigation has not been the analysis of problem

scenarios. Analysis of a wider class of problems to find suitable concurrent approaches

for them merits further investigation and is a topic for future research. During the

exploratory investigatory phase, one can follow an iterative process of:

• finding examples which can potentially benefit from concurrent/parallel approaches;

• implementing the concurrent approaches, using the extensions developed;

• empirically studying the performance of the concurrent approaches and

• refining the concurrent approaches and/or their implementation.

Implementing existing functionality in a different way, using asynchronous exe-
cution: In the case of distComp, the starting point for our development was

an analysis of the limitations of the corresponding sequential operator and how

an asynchronous execution mode can be used to address the same. We used a

data-driven asynchronous execution model to address the limitations.

Introducing new approaches, using asynchronous execution: Fastest-first is a

novel choice operator for tacticals, returning the fastest-computing tactic (and

terminating the others), from a list of tactics, all of which are simultaneously

working on the (sub-)goal. This is an example of introduction of a new approach,

not necessarily based on an existing tactic/operator.

Simultaneous proof-refutation attempts on a propositional (sub-)goal: Use the

power of asynchronous execution to tackle a propositional (sub-)goal, by spawn-

ing proof and refutation attempts simultaneously, returning the fastest. An ex-

ternal SAT solver is used to perform the refutation attempt on the propositional

(sub-)goal.

Introducing new approaches, using collaborative exchange of (partially-evalu-
ated) information, between asynchronous processes:

When sub-goals share meta-variables,

7.10. Evaluation 227

• the sequential unify tactic in HAL performs unification for each sub-goal,

producing a list of unifiers, corresponding to possible choices for making

the left and right sides of the goal (sequent) the same (i.e. a basic sequent);

the sequence of proof-states returned by unify is generated by applying a

unifier from the list to the given proof state; compatibility of its unifiers

with other sub-goals (which share meta-variables with it) is addressed in

subsequent steps;

• crossTalk spawns independent unification attempts on each sub-goal, but

does not apply them to the proof-state; collects the unifiers produced by

each sub-goal (these are partially-evaluated information); produces a list of

unifiers that are compatible with all the sub-goals, if any (we refer to these

as consistent unifiers); returns a sequence of proof-states corresponding to

this list of consistent unifiers.

As mentioned in 2 above, ease of prototyping new concurrent proof search techniques

has been one of our claims, in this work. While it is hard to quantify ease of prototyping

as a performance-metric, in §7.10.4, we illustrate this aspect, with a list of novel

concurrent proof search procedures that we have engineered. These demonstrate the

range of experimentation, ease of prototyping and incremental development of new

proof search procedures using the asynchronous tacticals and operators implemented

in this prototype. In §7.10.5, we provide a brief discussion of how the developmental

hypothesis of this work has been demonstrated via this case study.

7.10.1 Utility of the distributed composition operator

As explained in §7.6.1, the distComp operator implements an asynchronous data-

driven evaluation model, enabling on-the-fly application of composition, as and when

the candidates are available, without waiting for the previous computations to com-

plete. In Example 7.4, we give a concrete case of a proof attempt performed in HAL,

where the distComp operator performs better than HAL’s sequential composition op-

erator.

228 Chapter 7. Concurrent extensions for LCF style provers

Example 7.4 Composition operation involving a time consuming tactic

Consider the following goal:

G: (g(a)∧ f (a))→ (f (a)∧g(a))

Application of the sequent rule impR on this gives the following sequent as the new
goal.

g(a)∧ f (a) ` f (a)∧g(a)

Applications of the following inference rules: conjL, conjR gives the following two
subgoals:

g1: g(a), f (a) ` f (a)
g2: g(a), f (a) ` g(a)

We want to illustrate the utility of the distComp operator compared to HAL’s
composition operator.

1. HAL’s composition operator: --,
2. The new distributed composition operator, distComp

For this purpose, we create a scenario of tactic application, using the following new
tactics (created from existing tactics):

Simulation of a time consuming tactic:

In HAL, a state includes a sub-goal list; a goal is a sequent, which in turn, is a pair
of formula lists, say lhs and rhs.

For a given string x, a number n and a tactic, t, we define a new tactic with the
following behaviour: If it finds x as a predicate symbol in any of the formulae in the
rhs of any of the goals, then, it sleeps for n seconds and then applies the tactic t; Else
it applies the tactic straight away. This is implemented by the function newTac, as
described below:

fun newTac n x t s = l e t
fun IsSt r InForm x (Fol . Pred (f , t L i s t)) =(f = x) | IsSt r InForm x = f a l s e
fun IsStr InRhsOfGoal x (g as (ls , rs)) = L i s t . e x i s t s (IsSt r InForm x) rs
fun I s S t r I n S t a t e x s t = L i s t . e x i s t s (IsStr InRhsOfGoal x) (subgoals s t)

i n
i f (I s S t r I n S t a t e x s) then (sleepForNSeconds n ; (t s)) e lse (t s)

end

We instantiate newTac with the basic tactic (see §7.5) and an arbitrary symbol
”f”, to give a new tactic newTacBasic. Thus, we now have a tactic that simulates the
behaviour of a tactic which can take a long time to complete, for some cases, and
finishes immediately for others.

va l newTacBasic = newTac 200 ” f ” (Rule . bas ic 1) ;

Possible proof states after application of basic:

7.10. Evaluation 229

Application of the tactic, basic, on g1 eliminates g1, leaving g2 as the only pending
sub-goal; this application returns a singleton sequence of next-possible-proof-state,
say, next-proof-state-1, as:

next-proof-state-1: State(G, [g(a), f (a) ` g(a)],)

Application of the basic tactic on g2 eliminates g2, leaving g1 as the only pending
sub-goal; this application returns a singleton sequence of next-possible-proof-state,
say, next-proof-state-2, as:

next-proof-state-2: State(G, [g(a), f (a) ` f (a)],)

Note that the proof state, next-proof-state-2 has a sub-goal which satisfies the cri-
teria of the presence of the predicate symbol ‘f’ on the rhs and hence the applica-
tion of newTacBasic to next-proof-state-2 will cause a delayed application of basic,
whereas, application of newTacBasic to the proof state, next-proof-state-1 will not
be delayed.

Append two applications of basic:

We now create a tactic, append2BasicApplications which appends these two appli-
cations of the basic tactic and thus will give the following sequence of proof states:
next-proof-state-2, next-proof-state-1.

fun append2BasicAppl icat ions s =(Rule . bas ic 2 s) |@| (Rule . bas ic 1 s)

When append2BasicApplications is composed with newTacBasic, the first element
of the sequence, i.e., next-proof-state-2, causes a delayed application of basic.

Comparing – and distComp:

We now consider the following two cases of applying the composition of the two
tactics: append2BasicApplications and newTacBasic:

va l tacOldComp = append2BasicAppl icat ions −− newTacBasic
va l tacDistComp = append2BasicAppl icat ions distComp newTacBasic

When given a time duration of 5 seconds, tacOldComp fails to complete, whereas
tacDistComp completes successfully, solving all the goals. This is because, in the
case of tacOldComp, next-proof-state-2 delays the application of newTacBasic,
which when applied on the second element, i.e., next-proof-state-1 will solve the
goal. Note that in this example, tacOldComp will complete successfully when given
enough time.

In the case of tacDistComp, we have used the distComp operator, which addresses
this scenario effectively and allows the application of newTacBasic on the second
element, next-proof-state-1, even though the application of the first tactic on next-
proof-state-2 has not yet completed.

va l goa lS t r = ” (g (a)& f (a))−−>((f (a)&g (a))) ” ; goal goa lS t r ;
by (Rule . impR 1) ; by (Rule . conjL 1) ; by (Rule . conjR 1) ;

(∗Using HAL ’ s composi t ion opera tor ∗)
t imeout (fn () => by tacOldComp , 5) ; (∗ f a i l s , f o r 5s t imeout ∗)

(∗Using the new d i s t r i b u t e d composi t ion opera tor ∗)
t imeout (fn () => by tacDistComp , 5) ; (∗Succeeds∗)

230 Chapter 7. Concurrent extensions for LCF style provers

The example provided illustrates a scenario, which can manifest in many other theorem

proving problem domains. An example from the inductive theorem proving domain

where the distributed composition operator can be applied gainfully is the frequently

occurring scenario of inductive rule synthesis. Here, the steps involved in the synthesis

need to be applied in a compositional fashion.

• Let tac1 be a tactic to identify induction rules, tac2 the induction strategy.

• Let y1, the first candidate produced by tac1 be a structural induction, which is

inadequate for the conjecture and does not terminate, and

• y2 the second candidate produced by tac1 be a more complex induction rule, one

that succeeds.

We are interested in the composition of tac1 and tac2. To accomplish this, consider the

following two scenarios:

Using the sequential composition operator, – : Using this operator, tac2 will be ap-

plied on y2, only after application of tac2 on y1 has completed. As this is a

non-terminating computation, computation of tac2(y2) will never be performed.

Using the asynchronous composition operator, distComp : Because distComp ex-

ecutes an asynchronous, data-driven evaluation model, tac2(y1) and tac2(y2)

will be spawned simultaneously. Thus, though tac2(y1) will never terminate, the

successful computation, tac2(y2) will still be performed.

7.10.2 Utility of the fastest-first tactical

As explained in §7.5.2, HAL provides two choice operators to address scenarios where

evaluation of any one candidate suffices, || and |@|. In §7.6.2, we described FF, the

fastest-first tactical for two or more tactics, a novel choice operator, which returns

the fastest computing tactic and terminates the others. In Example 7.5, we provide a

simple example, where use of each of the choice operators of HAL fails, whereas, FF
succeeds.

7.10. Evaluation 231

Example 7.5 Choice involving a time consuming tactic, FF succeeds, whereas ||
and |@| fail

Consider a simple example, with the following goal

G: a→ a

Application of the sequent rule impR on this gives the following sequent as the new
goal.

g1: a ` a

g1 above has identical left and right sides and so is provable by applying the basic
tactical of HAL, explained in §7.5.2.
We now create a contrived scenario of tactic application to illustrate the utility of
the FF choice operator compared to HAL’s choice operators. As mentioned before,
we use the tactic, sleepTactic, to simulate the behaviour of a time consuming tactic.
It may be recollected that the tactic all, returns the state unchanged. Now, consider
the following tactic, delayed all, where, the tactic all is applied after a time delay.
delayed all gives the effect of a time consuming tactic, but one that returns the state
unchanged and thus does not help in proving the goal.

fun d e l a y e d a l l n = s leepTac t i c n a l l .

Consider a scenario where a choice has to be made between application of de-
layed all 100 and basic. Obviously, application of basic is the faster tactic among
these two and in the case of g1, it helps to solve the goal as well. A choice operator
which picks the faster tactic among two given tactics can be helpful to address this
scenario, in a way not possible using the sequential choice operators, || and |@|.
To illustrate the utility of our new choice operator, FF, compare the outcome of a
proof-attempt involving use of HAL’s choice operators and FF as follows:

Using the FF operator, (delayed all 100) FF basic

fun a l l B as i c FF v e r s i on n = (d e l a y e d a l l n) FF (basic1) ;
by (a l l B as i c FF v e r s i on 10) (∗Proves∗)

Using ||, which commits to the first successful tactic with no backtracking;
(delayed all 100) || basic

fun a l l Bas ic HALvers ion n = (d e l a y e d a l l n) | | (basic1) ;
by (a l l Bas ic HALvers ion 10) (∗ F a i l s ∗)

Using the |@| operator, which combines the results of two tactics with possibil-
ities for backtracking; though this operator allows for backtracking, as de-
layed all eventually applies all successfully, no backtracking happens in this
case. (delayed all 100) |@| basic

fun a l l Bas ic HALvers ion2 n = (d e l a y e d a l l n) |@| (basic1) ;
by (a l l Bas ic HALvers ion2 10) ; (∗ F a i l s ∗)

Using HAL’s choice operators returns the result of delayed all and basic is never
applied, leaving the goal g1 unsolved. On the other hand, the FF operator picks the
faster tactic, which happens to be basic in this example and applies the same to g1
and solves the goal.

232 Chapter 7. Concurrent extensions for LCF style provers

Though this is an artificially synthesised example, it illustrates a scenario where the

computation times are irregular and where the FF operator leads to a successful proof

attempt, whereas the sequential choice operators of HAL do not.

Irregularity in computation times can manifest itself in many theorem proving situa-

tions, as it is hard to predict the time taken by a tactic on a (sub-)goal. A slow (and

possibly unsuccessful) tactic can block a potentially successful proof attempt. FF can

be optimally used to address such scenarios, by simultaneously considering all the

possible options and choosing the fastest.

7.10.3 Utility of the crossTalk tactic

In §7.9.1, we described depthCrossTalk, a depth-first-search-based automatic tactic.

depthCrossTalk is identical to depth, HAL’s depth-first-search-based automatic tac-

tic, except that it uses crossTalk instead of HAL’s unify tactic. A recap of depth and

depthCrossTalk is as follows:

fun d e p t h F i r s t pred tac x = i f pred x then a l l e lse (tac −− d e p t h F i r s t pred tac)

va l depth = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ;

(∗Use the crossTalk t a c t i c ins tead of u n i f y i n the above l i n e ; to u n i f y across

a l l pending sub−goalsPass [] as the f i r s t argument to crossTalk ∗)

va l depthCrossTalk = d e p t h F i r s t f i n a l (safeSteps 1 | | crossTalk [] | | quant 1) ;

We now provide an example illustrating the scenario of performing unification on a

proof-state, which has sub-goals with shared meta-variable(s). depthCrossTalk solves

the problem whereas depth does not. The detailed workings of the following example

are given in Appendix §A 8.

Example 7.6 Collaborative unification

GIVEN:For constants, p,q,r,
1. ∀x Q(x)∧R(x)→ P(x)
2. ∀x S(x)→ Q(x)
3. ∀x Q1(x)∧R1(x)→ P1(x)
4. R(p)∧R(q)∧R(r)
5. S(p)∧S(q)
6. Q1(q)∧R1(q)

GOAL: ∃x.(P(x)∧P1(x))

7.10. Evaluation 233

Proof state: Applying propositional and quantification rules on the above problem,

we get the following proof state with 6 sub-goals and meta-variables: ?_a,?_b,?_c:

Listing 7.11: Example illustrating the utility of crossTalk, the collaborative unification tactic. ‘connective’-
L/R to the left and right sequent calculus rules for ‘connective’; variables preceded with the ‘?’ symbol
denote meta-variables.

MAIN GOAL: (ALL x . S(x) −−> Q(x)) & ((ALL x . R1(x) & Q1(x) −−> P1(x)) &

(S(p) &

(S(q) &

(R(p) &

(R(q) &

(R(r) &

(Q(p) &

(Q(q) &

(Q1(q) &

(R1(q) &

(ALL x . R(x) & Q(x) −−> P(x)))))))))))) −−>
(EX x . P(x) & P1(x))

SUB−GOALS:

1 . P(? b) , R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) ,

R(p) , S(q) , S(p) ,

ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− P(? a) , EX x . P(x) & P1(x)

2 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,

S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− R(? b) , P(? a) , EX x . P(x) & P1(x)

3 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,

S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− Q(? b) , P(? a) , EX x . P(x) & P1(x)

4 . P(? c) , R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) ,

R(p) , S(q) , S(p) ,

ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− P1(? a) , EX x . P(x) & P1(x)

5 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,

S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− R(? c) , P1(? a) , EX x . P(x) & P1(x)

6 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,

S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,

ALL x . S(x) −−> Q(x) ,

ALL x . R(x) & Q(x) −−> P(x)

|− Q(? c) , P1(? a) , EX x . P(x) & P1(x)

234 Chapter 7. Concurrent extensions for LCF style provers

Next step: apply unification: Find a suitable unifier for the list of meta-variables:

?_a , ?_b, ?_c, which satisfies all the 6 sub-goals. As can be worked out easily,

the possible unifier(s) for each sub-goal (i.e. which make the left and right sides

of the sequent identical) are as follows:

1. ? a = ? b

2. ? b = (r,q,p) i.e. 3 candidates:(b,r), (b,q), (b,p)

3. ? b = (q,p) i.e. 2 candidates: (b,q), (b,p)

4. Unification cannot be applied successfully

5. ? c = (r,q,p) i.e. 3 candidates: (c,r), (c,q), (c,p)

6. ? c = (q,p) i.e. 2 candidates: (c,q) (c,p)

HAL’s depth tactic results in a non-terminating search:

When HAL’s sequential depth-first search tactic, depth is applied, the unify tactic

is used to tackle unification. As explained earlier, this tackles unification for

each sub-goal. In our example here, the first unifier produced by sub-goal-2, (b

= r), results in a looping situation, resulting in a non-terminating proof search.

In particular, here, the looping happens because new disjuncts are added to the

right hand side of the sequent.

Given the lazy nature of the list of states returned by the unify tactic used by

depth, (b = r) is applied across all sub-goals and execution of the depth tactic

is continued. This in turn, means application of the quant and safe tactics in

succession, on the state produced after the application of (b = r).

Even if just a re-ordering of variables may suffice to circumvent the problem

faced in our contrived example, it is easy to see that the problem can be rear-

ranged in a way that still poses the same problem. Furthermore, the effect of

ordering illustrates a problem that can appear in many other forms.

depthcrossTalk solves the goal:

Application of depthCrossTalk, the depth-first-approach-based automatic tactic

which uses the collaborative unification tactic, crossTalk (see §7.9.1), success-

fully solves the goal. A summary of the workings of the proof attempt by

depthCrossTalk is provided below. This illustrates the process of finding the

7.10. Evaluation 235

consensus unifiers, using the crossTalk tactic.

The unifiers are printed as Key-val pairs. e.g., for sub-goal 3, the two unifiers

are: [Key= b,Val= p] and [Key= b,Val= q]. Only the successful attempts at

finding a consensus are included in the listing below. The names of the native

inference rules being applied at each step are also included, should the reader

wish to work through the example.

The STEP numbers included can be tracked with the same in the crossTalk code

fragment given earlier (see Listing 7.9). Also, for sub-goal 4, unification cannot

be applied. crossTalk deals with such a situation by ignoring the sub-goal for the

purpose of finding the consensus unifiers. But, when the next-states are returned,

the unifier gets applied to all the sub-goals, including sub-goal 4.

Listing 7.12: Execution-trace of crossTalk, for given example; Finding the consensus unifiers

∗∗∗∗Apply ing crossTalk∗∗∗∗∗∗
STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (q , q , q)

STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (q , q , p)

STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (p , p , q)

STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (p , p , p)

STEP−3 Num of consensus u n i f i e r s : 4 ∗∗∗∗

Finding more consensus unifiers: As observed in the description of crossTalk ear-

lier, the states are returned as a sequence, to adhere to the type definition of

a tactic. Thus, in the rest of this trace, after the application of crossTalk, the

state corresponding to the first unifier in the list of consensus unifiers is used

to generate the corresponding next-proof-state. This proof state is used for the

subsequent inference steps.

Referring to the trace given above, the first candidate in the sequence of next-

proof-states is generated by applying the unifier (a , b , c) = (q, q, q). This is

applied to all the 6 sub-goals and execution of depthCrossTalk is continued on

the resulting state.

Listing 7.13: Execution-trace of crossTalk, for given example; Finding more consensus unifiers

∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[basic , basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R,

|−L , −−>−L , <−>−L , <−>−R, basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL ,

a l lR , &−R, |−L , −−>−L , <−>−L , <−>−R]

∗∗∗∗ Apply ing crossTalk ∗∗∗∗∗∗

236 Chapter 7. Concurrent extensions for LCF style provers

∗∗∗ ! ! ! STEP−1 Num of sub goals . . ! ! ! 3 ; ; ! ! ! Meta−v a r i a b l e l i s t : [] ! ! !

∗∗∗∗ Apply ing quant ∗∗∗∗∗∗ [a l l L , exR]

∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[bas ic &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , , &−R basic &−L , |−R, −−>−R,

˜−L , ˜−R exL , a l lR , &−R, |−L , −−>−L , basic , &−L , |−R, −−>−R, ˜−L , ˜−R,

exL , a l lR , &−R, |−L , −−>−L , <−>−L , <−>−R, basic , &−L , |−R, −−>−R, ˜−L ,

˜−R, exL , a l lR , , &−R, |−L , −−>−L , <−>−L , <−>−R]

∗∗∗∗ Apply ing crossTalk ∗∗∗∗∗∗
∗∗∗ ! ! ! STEP−1 Num of sub goals . . ! ! ! 5 ; ! ! ! Meta−v a r i a b l e l i s t : d , e , ! ! !

STEP−2.3 Consensus i s o f leng th . . 2 ; (d , e) = (q , q) ;

STEP−3 Num of consensus u n i f envs i s 1∗∗∗∗

Using the consensus unifiers : From the above, we get

(a , b , c, d, e) = (q, q, q, q, q)

Listing 7.14: Execution-trace of crossTalk, for given example; Using the consensus unifiers

∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R, |−L ,

−−>−L , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R, basic ,

basic , basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R,

|−L , −−>−L , <−>−L , <−>−R]

(ALL x . S(x) −−> Q(x)) & ((ALL x . R1(x) & Q1(x) −−> P1(x)) &

(S(p) &

(S(q) &

(R(p) &

(R(q) &

(R(r) &

(Q(p) &

(Q(q) &

(Q1(q) &

(R1(q) &

(ALL x .

R(x) & Q(x) −−> P(x)))))))))))) −−> EX x . P(x) & P1(x))

No subgoals l e f t !

Thus, depthCrossTalk, via application of the crossTalk tactic to perform unification

across the 6 sub-goals, with shared meta-variables has circumvented the looping situ-

ation caused by an incompatible unifier, which led the sequential depth tactic of HAL

(which uses the sequential unify tactic to perform unification) to a non-terminating

search.

7.10. Evaluation 237

7.10.4 Programmability: new concurrent proof search procedures

As mentioned in 2, ease of prototyping new concurrent proof search techniques has

been one of our claims in this work. While it is hard to quantify ease of prototyping as a

performance-metric, we illustrate this aspect, via a list of novel concurrent proof search

procedures which we have engineered, using the concurrent operators implemented in

our prototype. Some simple examples of the same were provided earlier in §7.9.2. In

this section, we provide more examples to demonstrate the range of experimentation,

ease of prototyping and incremental development of new proof search procedures using

the asynchronous tacticals and operators implemented in this prototype.

Distributed quantifier tactic and corresponding depth-first search: The sequential

tactic quant uses the composition operator -- to compose the unsafe quantifier

rules. Thus, it suffers from the limitations imposed by the demand-driven lazy

evaluation model. We have replaced -- with the distComp operator, to synthe-

sise a new tactic called dist quant. This applies the unsafe quantifier rules using

a data-driven evaluation model and thus, composition operations are performed

as and when the candidates are available, instead of waiting for the previous

computation(s) to complete. To enable use of this tactic in an automatic setting,

a depth-first search procedure has been engineered, by replacing the quant tactic

in the implementation of depth with the dist quant tactic.

fun quant i = (a l l L i −− t r y (exR i)) | | exR i ; (∗ O r i g i n a l quant t a c t i c ∗)

fun d i s t q u a n t i = ((a l l L i) distComp (t r y (exR i))) | | (exR i)

va l depth= d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ; (∗ O r i g i n a l

depth t a c t i c ∗)

va l dep th d i s t quan t = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | d i s t q u a n t 1) ;

Order of applying the unsafe quant rules: The order of application of the unsafe

quantifier rules is crucial for a successful proof search. However, this order can-

not be pre-determined. To address this, we have used the FF operator to try two

automatic searches with different orders of application of the unsafe quantifier

rules.

fun quant i = (a l l L i −− t r y (exR i)) | | exR i ; (∗ O r i g i n a l quant t a c t i c ∗)

fun q u a n t d i f f O r d e r i =(exR i distComp t r y (a l l L i)) | | (a l l L i) ; (∗ D i f f e r e n t

order o f r u l es ∗)

va l dep th quan t d i f fO rde r = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | |
q u a n t d i f f O r d e r 1) ;

238 Chapter 7. Concurrent extensions for LCF style provers

va l depth= d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ; (∗ O r i g i n a l

depth t a c t i c ∗)

va l depth fastest UnsafeQuantOrder ings = depth FF dep th quan t d i f fO rde r

Safe and unsafe tactics: One of the benefits of parallelisation is the scope to isolate

choice points where the order of application matters and use parallelisation at

such choice points. We use parallelisation to formulate a new way of applying

the safe and unsafe tactics, safeAndParallelUnsafe. It applies the safe rules till

they can’t be applied any more and then uses distComp to compose unify and

dist quant (also implemented using distComp). A depth-first-approach-based

automatic procedure has been synthesised using safeAndParallelUnsafe.

fun safeAndPara l le lUnsafe i =(safeSteps i) | | ((d i s t q u a n t i) distComp (u n i f y i))

va l depth safeAndPara l le lUnsafe = d e p t h F i r s t f i n a l (safeAndPara l le lUnsafe 1)

(∗Using distComp to handle i n t e r a c t i o n between u n i f y and quant∗)

va l depth distComp= d e p t h F i r s t f i n a l ((safeSteps 1) | | (u n i f y 1) distComp (quant 1))

Depth-first search using crossTalk and safeAndParallelUnsafe: To bring together

the benefits of crossTalk, the collaborative unification tactic and a data-driven

implementation of the unsafe rules, we have synthesised safeAndParallelUn-

safe crossTalk and a corresponding depth-first search.

va l sa feAndPara l le lUnsafe crossTa lk =(safeSteps 1) | | ((d i s t q u a n t 1) distComp (

crossTalk []))

va l depth safeAndPara l le lUnsafe crossTa lk= d e p t h F i r s t f i n a l (

sa feAndPara l le lUnsafe crossTa lk)

Fastest-first of depth and depth SAT In §7.9.3, we described depth SAT, the depth-

first search procedure, which uses the SAT-based counterexample checker for

propositional (sub-)goals. As it may be hard to judge the applicability of depth SAT

(i.e. the presence of propositional sub-goals), it may be hard to predict the per-

formance and/or success rate of depth SAT, in comparison to depth. So, we have

synthesised a new tactic, FF depth Or depth SAT using the FF operator

(∗Using the FF t a c t i c a l to r e t u r n the f a s t e s t r e t u r n i n g s t r a tegy ∗)

va l FF depth Or depth SAT = depth FF depth SAT

The new tactics described here demonstrate the multilayered approach of encapsulating

concurrent approaches as concurrent tactics and tacticals and using them incrementally

to prototype new procedures. As can be seen from the code samples, implementation

of these new concurrent search procedures, requires very little developmental effort.

7.11. Related work 239

Furthermore, as the details of concurrent programming have been abstracted away, the

user can focus on using these concurrent tools to tailor customised concurrent solutions

for their individual problem scenarios. As these extensions are guaranteed to be sound,

the proof guarantees of the LCF approach still hold, for the concurrent proof search

procedures.

If a user comes up with a requirement of a new concurrent technique to address her

problem scenario, an attempt can be made to use the existing concurrent machinery to

implement the same. Else, the abstraction based, multilayered approach demonstrated

in our prototype can be used to implement the new technique.

7.10.5 Developmental methodology

The multilayered approach that we have used to implement concurrent, sound, pro-

grammable extensions, for an LCF-style prover demonstrates our developmental method-

ology of using a functional programming language and programming abstractions. The

use of these features is an excellent fit for the LCF class of provers, in particular, given

the functional programming origins and the programmability focus of the LCF school

of theorem proving.

As described in previous sections, (§7.6, §7.8.3), keeping in line with our multilayered

approach, we have developed programming abstractions encapsulating the concurrent

techniques employed. We have kept our implementations purely functional. Since

these abstractions have been implemented as higher-order ML functions, they should

be readily portable, to other concurrent ML platforms, with little or no modification.

The portability should be extendable to other LCF systems as well, as long as the

implementation has avoided non-functional aspect or has abstracted them adequately

and they can be ported to an ML dialect with language-based concurrency support.

7.11 Related work

In the work described in this chapter, we have addressed the topic of applying paralleli-

sation to LCF-style theorem provers, by developing and implementing a multilayered

approach to incorporate concurrent techniques into an LCF-style theorem prover. As

demonstrated, this approach promotes programmability and ease of experimentation

240 Chapter 7. Concurrent extensions for LCF style provers

with new concurrent search procedures and these criteria have been the foci of our in-

vestigation. Implementation of the multilayered approach, in turn, is embedded within

the LCF prover and is coded in the implementation language of the LCF prover. As

explained earlier, the framework addresses our objectives in the following manner:

Use of programming abstractions Our multilayered approach employs programming

abstractions encapsulating concurrent techniques. This has been done to facili-

tate incremental development, portability and programmability.

Programmability, customisability, incremental development Allows for users to de-

velop their own extensions incorporating concurrent programming techniques.

The abstractions that form the first layer can be used by the user/developer to

build on the already implemented suite of techniques and to implement new

techniques.

Portability Porting to other development platforms and deploying on different com-

puting architectures.

Ease of prototyping and experimentation The multilayered approach helps to iso-

late design and implementation and enables faster experiment set-up with mini-

mal developmental effort.

As discussed in chapter 2, the field of automatic theorem proving has seen a fair

amount of published work related to the application of concurrent/parallel/distributed

approaches. For LCF systems, the focus has been primarily on automatic provers

and heterogenous systems (e.g., use of SAT solvers and/or first-order theorem provers

to tackle higher-order problems). Systems like OANTS (discussed in §2.2.3) provide

frameworks for combining heterogeneous systems like computer algebra systems, con-

straint solvers, automatic first-order provers and higher-order provers.

The objectives of these approaches are primarily geared towards tackling harder prob-

lems and/or solving problems faster. Our investigation has been geared towards incor-

porating concurrent, programmable, useful extensions to an LCF-style prover. While

incorporation of external solvers is achievable using our approach (see §7.7), it has

not been the ultimate goal of our investigation.

An orthogonal observation is that the majority of published research in this area have

involved significant developmental costs, which is not surprising, as concurrent-distributed

programming is notoriously hard to program, debug and to carry out performance anal-

7.11. Related work 241

ysis. A detailed discussion of these aspects was provided in chapter 5. These huge

developmental costs can be prohibitive and can stifle development of and experimen-

tation with novel techniques that were previously not possible in a sequential setup.

In §7.11.1 and §7.11.2, we try to draw out the similarities with and differences be-

tween our work and two other systems which adopt a similar (though not identical)

treatment as ours, to address the parallelisation of LCF systems:

• the metaPRL system [Hickey, 1999] and

• the Isabelle-PolyML project [Matthews and Wenzel, 2010; Wenzel, 2009].

7.11.1 MetaPRL: similarities and differences

The work discussed in [Hickey, 1999] implemented in the MetaPRL proof environ-

ment 12 is the only work we found in the literature, which shares some similarities with

our implementation, though the objectives were slightly different. It uses the ensem-

ble communication system, a proprietary communication system layer implemented in

the functional programming language, OCaml, to distribute the load of tactic imple-

mentation across processors. The distribution is handled as a separate layer above the

MetaPRL logical framework. The focus of the work has been to achieve fault tolerance

in the context of a distributed computing environment and this has been addressed by

using the fault tolerance capabilities of the ensemble communication layer.

They replaced the tactic implementation of the MetaPRL logical framework with a

functionally equivalent distributed tactic scheduler. This allowed for compatibility

with the other (sequential) members of the tactic base. Our approach achieves the

same effect, as all our distributed tacticals adhere to the same type as the sequential

tacticals. Thus, it allows for interoperability and compatibility.

From a developmental point of view, one drawback in the MetaPRL implementation

is the presence of multiple implementation layers to engineer the scheduling. Also,

the only main parallelisation technique used is scheduling of jobs and its application

is restricted. The distribution module is implemented as an independent layer with a

view towards not requiring the tactic library to be modified. But, this also restricts

possibilities in which the distributed tactical could be used: (i) there is no way that the

distributed tacticals can be used in an equivalent way as the original sequential tactical

12http://metaprl.org/

242 Chapter 7. Concurrent extensions for LCF style provers

as part of a proof (ii) this in turn inhibits the possibilities of the distributed tactical being

used as a primitive either to incorporate more sophisticated parallelisation techniques

and/or to use them to create novel proof search procedures and to reengineer existing

proof search procedures.

The key differences between our work and that of MetaPRL are as follows:

Communication between tactics: Given our use of Alice ML with its language-

integrated parallelism support, as opposed to using a communication layer for

handling parallelisation, we have been able to achieve communication between

tactics more effectively. MetaPRL allows only for raw parallelisation with a pre-

decided form of work distribution across processors. The unit work is a tactic

application. The emphasis is on capitalising the scheduling and fault-tolerant

capabilities of the ensemble communication layer. Our example of using the

crossTalk tactic within a depth-first based proof search procedure is an illustra-

tion of a scenario where we have implemented communicating tactics.

Granularity: Term level concurrency: As explained above, the only form of paral-

lelisation allowed is distribution of workload across processors. The crossTalk

tactic is an example where we have been able to implement term level concur-

rency as the instantiation of meta-variables spanning multiple goals is done using

a collaborative consensus mechanism.

Scope for user to develop extensions: Given the extra communication layer which

handles scheduling, there is very little scope for users to develop their own ex-

tensions. With our multilayered approach of programming abstractions for con-

current techniques, concurrent tacticals and novel proof search procedures, enti-

ties from each layer can be used in a mix-and-match mode to build new tacticals

and/or novel proof search procedures.

7.11.2 Isabelle-PolyML: similarities and differences

Our efforts to port Isabelle to Alice ML to develop the prototype of our multilayered

approach were described earlier in the chapter (see §7.4). As mentioned there, an early

work on the ideas of our project was presented in an Isabelle workshop which led to

a useful collaboration with one of the key Isabelle developers to facilitate changes in

the Isabelle architecture to address the issues that we had identified during our efforts

7.11. Related work 243

to port Isabelle to Alice ML. However, despite these modifications, we realised that

porting Isabelle-HOL to Alice ML would still require a lot of effort, due to the way

Isabelle builds HOL as a heap, a dump of the bindings in the top-level environment

of the ML platform. Also, there was not enough enthusiasm for supporting Alice ML

from the Isabelle developer’s side, because of Alice ML’s lack of support for truly

parallel system threads. It was observed that Alice ML’s runtime system does not

support this feature [Matthews and Wenzel, 2010].

The Isabelle-PolyML project that started subsequently shares some of our objectives:

of providing the concurrency support via the implementation language. The work dis-

cussed in [Matthews and Wenzel, 2010; Wenzel, 2009] report the details on the signif-

icant reworking of the ML layers undertaken to facilitate support for parallelism in Is-

abelle for the PolyML platform. A detailed review of this project was given in §2.2.2.

Crucially, this work has involved significant modifications to both the Poly/ML lan-

guage as well as the Isabelle architecture. Poly/ML and Isabelle are big and complex

software systems that have evolved over more than two decades. Thus, it is hardly

surprising that an effort to port Isabelle to a version of Poly/ML with parallelisation

support required comprehensive knowledge of the internals of each of the systems.

The work reported in [Matthews and Wenzel, 2010] has involved architects of both

the Isabelle and Poly/ML systems. And as reported in the work, the Poly/ML side of

the work has required reworking of many infrastructure layers: from low-level system

threads to high-level principles of value-oriented programming. Substantial reorgani-

sation of the Isabelle architecture has also been required.

The work aims to address the multicore architecture specifically. It is useful to point

out here that this project has addressed the development of the ML language level

(PolyML) support and the Isabelle modifications. Their approach has been to provide

support for concurrency primitives (which is richly supported already by Alice ML)

alongside many other tweaks on the PolyML design for optimal utilisation of multi-

core architectures. However, they do not address distributed architectures like clusters

and also lack message-passing provisions, both of which are supported by Alice ML

as discussed earlier in the thesis. In our view, the concurrency primitives provided

in PolyML are not very user-friendly from a developer’s perspective and lack many

features found in Alice ML. This in turn, can be possibly due to the evolving nature

of the parallel PolyML, given that this effort is the first version of parallel-PolyML.

However, more crucially, there is no support for distribution in their current version of

244 Chapter 7. Concurrent extensions for LCF style provers

parallel PolyML. This can be a serious limitation if one wants to perform experiments

on a distributed network.

Another key difference is that their main goal has been to provide parallel proof check-

ing capabilities in Isabelle via the PolyML platform. They have tried to leverage on the

proof structure present in Isar documents to facilitate implicit parallelism. On the other

hand, we have tried to provide a multilayered approach that can serve as an experimen-

tal workbench that gives the user the flexibility to quickly prototype experiments and

develop their own novel search techniques incorporating concurrency and distribution.

As discussed earlier in §7.2.3, development of and experimentation with concurrency

techniques is required in order to enable effective use of the same to engineer better

theorem provers. Given the varied nature of problem domains of theorem proving

problems and their differing structures, difficulty levels etc, it is important to tailor the

concurrency techniques to a given problem. Thus, we have aimed to address different

goals in our work, different from the objectives of the Isabelle-PolyML project.

7.12. Summary 245

7.12 Summary

In the work discussed here, we have proposed and explored the scope and utility of a

previously unexplored approach to use parallelisation for LCF provers: a multilayered

approach for developing sound, concurrent extensions to an LCF style theorem prover.

We have demonstrated a proof-of-concept prototype for the same and have set the

context for it to be ported to other LCF provers as well as allowing for incremental

development and further research. Our framework allows for rapid prototyping and

experimentation and incremental development of novel approaches to theorem proving

exploring parallel and co-routining possibilities and approaches.

LCF style provers are particularly well suited for a modular approach, given the mod-

ularity present in the well established techniques of tactics and tacticals. Tactics and

tacticals are an integral part of every LCF style prover and apart from the modular-

ity, they are also designed to guarantee soundness. Thus, an approach to incorporate

concurrent-distributed techniques while retaining the soundness aspects is particularly

well suited to the LCF style provers. In this case study, our focus has been to achieve

these objectives in the context of a concrete example of a prototypical LCF style first-

order prover.

We have developed a proof-of-concept prototype framework for HAL, an LCF style

first-order prover (without equality) that allows programmable, sound extensions, in-

corporating concurrent programming techniques and enables novel proof search pro-

cedures. This in turn, has been achieved by a clearly defined multilayered approach of

developing programming abstractions (see §7.2.1), using the abstractions in turn, to

implement distributed tacticals and using the distributed tacticals to implement novel

proof search procedures. We have discussed earlier in the chapter (in §7.6) the dis-

tributed tacticals and novel proof search procedures that have been implemented. We

have used Alice ML as the implementation language.

Our framework and the abstractions and novel tacticals developed have opened up

some novel approaches like fastest-first, data-driven asynchronous execution and col-

laborative unification that are not possible in a sequential setting. We have illustrated

scenarios where concurrency can be of use: by highlighting the limitations posed by

some of the sequential tactics in HAL (§7.6.1, §7.5.3) and how an asynchronous mode

of execution can help address the same. However, our current implementation runs the

246 Chapter 7. Concurrent extensions for LCF style provers

processes on the same machine. Enabling distribution is one of the priorities on our

agenda for further work.

Furthermore, our approach promotes programmability: offering users a set of concur-

rency primitives and abstractions, enabling them to use the same to synthesise new

tactics and new search procedures. Further research is required to rigorously ascertain

problem classes that will benefit from specific abstractions and concurrent techniques.

(§7.10) discusses some examples of theorem proving scenarios where our approaches

can benefit. The examples also illustrate the efficacy of the programmable aspects

of our framework by illustrating the ease of prototyping one’s own search techniques

incorporating concurrent techniques, to suit a particular theorem proving scenario.

We have also provided scenarios where collaborative approaches can be gainfully em-

ployed. We have implemented a novel tactic, crossTalk (§7.8.3) that performs unifi-

cation across multiple goals, comes up with a list that serve as unifiers for all of the

sub-goals. It uses collaborative exchange of partially evaluated information from asyn-

chronous computations. The information exchanged in this implementation is fairly

fine-grained, being at the term level and as such this is a good illustration of the utility

of Alice ML. crossTalk has been used within the depth automatic search procedure of

HAL to give a new automatic search procedure, which we have called depthCrossTalk

and solves an example that is not solvable by HAL’s depth tactic (§7.10.3s).

We have developed distributed programming abstractions (§7.10.5) that encapsulate

the different forms of parallelism and co-routining employed in developing the multi-

layered approach. The use of Alice ML has enabled us to develop these as higher-order

functions. The abstractions allow for portability to other LCF settings. Also, they can

be potentially reused to apply concurrent techniques to tackle other theorem proving

scenarios, both within and outwith LCF style provers. E.g., with appropriate parametri-

sation, the refereeAgent abstraction can be used to tackle scenarios where a task can be

decomposed as independent computations which need to agree on one or more things.

The modular nature of the abstractions allows us to modify the concurrency implemen-

tations (e.g., changing the target architecture) without having to modify other parts of

the system. The rich language support for concurrency and distribution provided in

Alice ML has helped us greatly to do rapid prototyping of and experimentation with,

these approaches.

The approach demonstrated in this prototype is applicable for any LCF prover. And

7.12. Summary 247

this is where our key contribution lies: using a simple prototype and a functional

programming language with language-based concurrency support, we have demon-

strated a previously unexplored approach to create an exploratory workbench that can

be adopted by even a highly sophisticated LCF style theorem prover.

Theorem proving problems come from a variety of domains and can vary a lot in prob-

lem structure, proof hardness, solution distribution etc and each of these can benefit

from application of different concurrent programming techniques. In view of this,

a one-solution-fits-all approach may not work always for attempts to use concurrent

programming techniques for engineering better theorem provers. Moreover, given the

nascent nature of the field, it will stand to benefit greatly by prototyping novel proof

search techniques, evaluating them empirically and using the feedback to reassess the

prototypes. Such experimentation is also important to evaluate and choose the right

technique. E.g., in the case of HAL, the application of the unsafe tactics : application

of the unsafe quant rules allL and exR and unify. If order of execution does not mat-

ter, then applying an abstraction like fastest-first is obviously not going to help. This

is contrast to scenarios where in the number of applications is itself potentially huge

and there in fact, the lack of dependence on ordering paves the way for bulk parallel

processing.

The rapid-prototyping and experimentation pros are the obvious advantages. Also,

such a setup is easier to reason about and to enable a plug-and-play style of experi-

mentation as well as to be able to exploit co-routining possibilities at the lowest levels

of granularities like what we have implemented in our crossTalk proof tactic.

We believe that we have merely scratched the surface of the spectrum of possibilities

that can be potentially realised with our multilayered approach. There are at least as

many ways of using these as there are distributed algorithms and techniques. New

primitives can be developed; new search procedures can be designed; the concurrent

features can be made available in an interactive setting. Developments from the field of

concurrent-distributed programming can be effectively employed to identify latent op-

portunities for concurrency/distribution and to implement techniques to leverage them.

In the next section, we outline some ideas for possible future work.

248 Chapter 7. Concurrent extensions for LCF style provers

7.13 Ideas for future work

Here are some possible next steps relating to the implementation details of the pro-

totype: In §7.8.3.3 and §7.8.3.1, we outlined some possible improvements that can

be done in the implementation of crossTalk, depthCrossTalk and the refereeAgent ab-

straction respectively. Earlier in the chapter, we had described how our current im-

plementation uses multiple threads on a single machine to perform the asynchronous

processes. One of the next steps for the prototype is for the computational model to

be extended to work on a distributed architecture, thereby opening up more options for

implementation and evaluation.

Provision of concurrent, parallel, distributed tacticals at the kernel level offers immense

potential, especially for a generic-prover-framework architecture like Isabelle as these

tacticals can be used by all the logics that are built on top of the (Pure) kernel. The

HAL architecture shares a lot in common with the Isabelle/Pure kernel in design and

many of the features implemented in our work can be readily ported to Isabelle. As

discussed earlier, the Isabelle-PolyML project aims to address something very similar,

specifically tuned for multicore architectures. Also, the PolyML concurrency support

is not very user-friendly and development of programming abstractions as we have

done in our work will be extremely tedious to program. Furthermore, there is no

support for distribution in PolyML, which is a serious limitation. As discussed in

§7.4, porting Isabelle-HOL(higher-order logic) to Alice ML (despite the modifications

done to Isabelle’s bootstrapping issues highlighted by us) may require considerable

effort. We experimented with some ways around to address this by using the Alice

ML component system. But, the dependencies and the bootstrapping process were too

arbitrary to manage. But, this is still a promising option to follow through. There could

be limitations to this depending on the latest developments and reorganisations done

to the Isabelle architecture. Porting Isabelle-FOL(first-order logic) to Alice ML may

still be possible and would be a good vehicle to port the abstractions developed in our

current prototype.

Porting HOL-light to Alice ML is a better possibility along these directions. HOL-light

is a more compact system than Isabelle and can hence be more amenable to modifica-

tions. It will require porting HOL-light to Alice ML. We have already done a OCaml-

Alice ML porting exercise in our porting of HAL to Alice ML and did not face any

irreconcilable incompatibilities.

7.13. Ideas for future work 249

Many theorem provers like Isabelle allow for possibilities for the user to interact with

the system using ML syntax directly. Using our approach, the user can extend such a

working style to a concurrent setting as well, e.g., by spawning a sub-goal to another

machine or by spawning a potentially resource-heavy computation or even a refutation

finder to another machine in an asynchronous manner while continuing with the rest

of the proof. This holds for the automatic setting as well for re-implementing existing

proof search procedures using the concurrent tacticals.

Another possible line of research is the identification of classes of problems and char-

acteristics of problems that are most likely to benefit by incorporating concurrency and

distribution. This can be part of an evolving iterative process of the study informing

the development of the primitives and tacticals and novel proof procedures and finding

new classes of problems that will fit the bill well for a given novel proof procedure.

A particular case of the above can be the investigation of mathematical formalisations

and mathematical proofs and identifying latent co-routining and parallelisation op-

portunities therein and coming up with specific abstractions and tacticals to tap those

opportunities.

The work on scientific community metaphor [Kornfeld and Hewitt, 1981] and the ac-

count of the dynamics of how a famous mathematical proof was discovered by the

synergetic interaction of a team of mathematicians as described in [Waerden, 1971]

provide a cognitive motivation to investigate this particular class of problems. This

could then make an interactive theorem prover, in its incarnation of mathematical as-

sistant to become more attractive to human mathematicians as it can potentially do

things that a human mathematician cannot do; e.g. of pursuing 10,000 possibilities all

at once and allowing for inter-process communication !

Chapter 8

Conclusions

In this thesis, we have proposed an implementation methodology for application of

concurrent techniques to theorem provers. The methodology is oriented towards fa-

cilitating, ease of prototyping of and experimentation with concurrent techniques, to

engineer novel proof search procedures. Our methodology advocates the use of :

• a functional programming language with language-based support for concur-

rency and distribution and

• programming abstractions to encapsulate the concurrent techniques used, en-

abling effective separation of design and implementation.

The advantages of the individual components of this methodology, are widely known

and acknowledged. However, published research in the theorem proving field does

not show evidence of widespread adoption of such an approach, in the context of the-

orem proving systems incorporating concurrent techniques. We hope that the work

discussed in this thesis adequately highlights and reiterates the advantages of these

features and initiates a move towards a wider adoption of these features in the imple-

mentation methodology used to parallelise theorem provers. Our approach is partic-

ularly relevant, in the exploratory investigation phase of developing parallel theorem

provers, because of the ease of prototyping and experimentation, facilitated by it. As

the approach facilitates an effective separation of design and implementation, once

a near-optimal approach has been identified, it can be ported/reimplemented in other

(production-quality) systems as well.

250

251

We used a concrete instance of this methodology: using Alice ML as the implemen-

tation language and encapsulating the concurrent techniques used, as programming

abstractions, via higher-order Alice ML functions. We demonstrated the utility of

our methodology, by applying it to explore some previously unexplored parallelisation

approaches/opportunities, in two diverse theorem proving flavours (SAT, LCF style

first-order theorem proving), developing proof-of-concept prototypes for the new ap-

proaches developed.

Each case study has been explored in line with the two-fold hypothesis of this work

(§3.1): developmental/implementation level and object-level. The object-level investi-

gation relates to the scope and efficacy of using concurrent approaches for the theorem

proving scenario considered and the consequent gains made. The developmental level

investigation focuses on illustrating the utility of our implementation methodology, in

terms of: ease of prototyping, experimentation, exploratory investigation and portabil-

ity.

Propositional satisfiability (SAT)

Hybrid SAT solver: We investigated the potential to synergetically use two

complementary SAT approaches (DPLL and Stalmarck), in a co-operative

manner. This approach has been implemented using an asynchronous mode

of execution and so, it enables dynamic exchange of information and allows

the solvers to be run independently on different machines, enabling optimal

utilisation of distributed architectures. Empirical data showed performance

gains over sequential counterparts. The programming abstraction devel-

oped encapsulates the asynchronous interaction of the two solvers. This

abstraction was (re)used to prototype and experiment with two further hy-

brid solvers, thus illustrating the utility of our implementation methodol-

ogy.

Concurrent Stalmarck: As a piece of exploratory research, a novel concurrent

algorithm for SAT was developed, by applying various concurrent tech-

niques to an established algorithm, the Stalmarck algorithm. A new ap-

proach to work partitioning for SAT (different from the guiding-path based

ones found in parallel SAT literature) has been realised in this implementa-

tion. Using the data-driven behaviour of Alice ML, work-consumption has

been implemented such that the overheads of communication are avoided

252 Chapter 8. Conclusions

and programming abstractions have been developed for the same. Em-

pirical data showed performance gains over sequential counterparts. An

abstraction encapsulating the concurrent approach adopted to implement

the saturation technique has been developed, allowing for it to be reused to

address similar scenarios.

LCF style first-order theorem proving: A multilayered approach, to incorporate con-

current techniques for proof search, in an LCF prover. The approach focuses par-

ticularly on programmability and portability. The programmability aspects allow

users to program their own novel proof search procedures using the facilities pro-

vided via the framework. Our proposed approach consists of the following three

layers:

Programming abstractions: encapsulating concurrent techniques

Concurrent tacticals: i.e. concurrent control structures for applying tactics, im-

plemented using the respective programming abstractions

Novel proof search procedures: engineered using the concurrent tacticals and

the sequential ones

8.1 Why and how to parallelise a theorem prover

In chapter 5, we provided arguments for the need for parallelisation of theorem prov-

ing, from the perspective of imperatives of the hardware field as well as the theorem

proving-domain perspective. We listed some of the specific challenges for paralleli-

sation, posed by the theorem proving domain, e.g. irregular search spaces, which in

turn, make effective work-partitioning and load-balancing difficult. In the same chap-

ter, we provided a prescriptive analysis of desirable criteria for implementing the novel

approaches enabled by the use of concurrent techniques. These can be summarised as

follows:

Exploratory research, programmability, easy prototyping: Theorem proving prob-

lems come from a variety of domains and even within the same formalism, prob-

lem classes can differ greatly in their structure, hardness and solution distribu-

tion. Potentially, each can benefit from employing a different set of concurrent

technique(s). Thus an iterative process of implementation and empirical eval-

8.1. Why and how to parallelise a theorem prover 253

uation on particular problem classes aimed at achieving an optimal design can

be of immense use. These call for the following two things: ease of experi-

mentation and programmability1. The need for the exploratory research phase is

further accentuated both by the sensitivity of parallel applications to implemen-

tation efficiency and the relatively nascent status of the field of parallel theorem

proving.

However, concurrent applications are notoriously hard to program, debug and

carry out performance analysis on. Thus, an implementation approach that aids

modularity and easy prototyping of application of concurrent techniques can

greatly aid the enterprise of exploration. Furthermore, it can also aid the evalua-

tion phase by facilitating easy prototyping of multiple systems, applying differ-

ent techniques, thereby enabling the analysis of the relative performance of the

systems.

Isolation of design and implementation, portability, incremental development: It is

important for the utility of a concurrent approach for a given theorem proving

scenario, to be investigated, separately from the effectiveness of a particular

implementation of that approach. This calls for an implementation approach

that aids effective isolation of design and implementation. An added advantage

of such an approach is the potential for portability of an approach to different

platforms, with minimal developmental effort. The rapid pace at which paral-

lel architectures are evolving further accentuates the need for portable imple-

mentations. Another desirable criteria is incremental development: to facilitate

building on existing functionality to incrementally develop variations and new

features.

These implementation considerations were addressed in our developmental hypothesis

given in §3.1, where we claimed that use of a functional language with language-

based support for concurrency enables easy prototyping of application of concurrent

techniques to theorem proving and the use of programming abstractions to implement

the concurrency techniques promotes portability, incremental development and aids

effective isolation of design and implementation.

In chapter 5, we explained the suitability of a functional programming language for im-

plementing concurrency. In particular, one that provides language-based (as opposed
1By programmability, we mean the provision of concurrency primitives and giving the user the

flexibility to easily prototype their own experiments with minimal developmental effort.

254 Chapter 8. Conclusions

to API based) support for concurrency and distribution. Another powerful feature that

fits naturally in a declarative concurrency setting is that of implicit dataflow synchro-

nisation which addresses the task of data synchronisation, a challenging issue for con-

current programmers. We explained how Alice ML, our implementation language in

this work, is a concrete example of one such language.

8.2 Novel concurrent approaches for SAT:

knowledge-sharing, lateral-thinking,

co-operative frameworks combining complementary

approaches, large scale parallelism

In chapter 6, the novel approaches developed for SAT were explained along with details

of implementations of proof-of-concept prototypes (developed in Alice ML), for the

same.

8.2.1 Hybrid SAT solvers

In the hybrid solver investigation, we had set out to investigate the utility of the Stal-

marck clause learner, when used along with the DPLL algorithm, with the two algo-

rithms working as independent processes, in an asynchronous manner, thus allowing

for dynamic exchange of learned clauses and potential pruning of search spaces. The

motivation behind the development of this solver was to

1. explore the scope of employing an asynchronous approach;

2. enable utilisation of multiple workstations by using a clause learner that can

work independently from the DPLL algorithm;

3. study the utility of the Stalmarck clause learner, to address DPLL’s inability to

leverage on implicit structural information; and

4. extract a co-operation framework (as a programming abstraction) where multiple

clause learners (possibly based on different approaches, but all working on the

same problem) can be used simultaneously.

8.2. Novel concurrent approaches for SAT:knowledge-sharing, lateral-thinking,co-operative frameworks combining complementary approaches, large scale parallelism255

We used asynchronous message-passing, for communication, in our implementation

and used an iterative (as opposed to recursive) implementation of the DPLL algorithm.

For the empirical tests, for comparing the behaviour of the hybrid SAT solver(s), we

considered three different problem classes: Pigeon-hole, Urquhart and Random3SAT.

The first two problem classes are known to be difficult for the stand-alone DPLL algo-

rithm, despite possessing implicit structural information, which the DPLL algorithm

fails to leverage on, an aspect where the Stalmarck algorithm is known to fare better.

Thus, a hybrid architecture where the Stalmarck clause learner works with the DPLL

solver, in a co-operative set up can benefit this scenario. This is confirmed by our em-

pirical data, where the hybrid solver shows uniform performance (time, size of search

space) gains for these two problem classes.

To further explore this topic of comparison of solvers, we developed another hybrid

solver, by replacing the DPLL solver, with DPLL-CDCL, a DPLL solver, augmented

with CDCL, an established clause-learning technique. This is an illustration of the

exploratory investigation aspect, one of the running themes of this thesis. Prototyping

of this solver was done using the abstraction (doDPLLwithHelper, §6.3), and required

minimal concurrent programming developmental effort.

We carried out further experiments to study the comparison of this solver with and

without the Stalmarck clause-learner and concluded that for these two problem classes,

the DPLL-CDCL-Stalmarck was the fastest, among the 3 solvers considered. How-

ever, there was not a significant difference between the DPLL-Stalmarck and DPLL-

CDCL-Stalmarck solvers. This tells us that the performance gains for these two prob-

lem classes, should be primarily attributed to the Stalmarck clause-learner, rather than

CDCL. This empirical behaviour can be explained as follows: the CDCL technique is

embedded within the DPLL algorithm, and thus suffers from the same limitations as

DPLL, with respect to these two problem classes.

With the Random3SAT, the behaviour was not uniform. And in some cases, the DPLL

algorithm performs better without the use of the CDCL technique, thus raising ques-

tions about the utility of a clause learner at all, for these problem instances. Manage-

ment of learned clauses is a known challenge for the use of clause-learners, with the

DPLL algorithm. Our focus in this work has been to compare the utility of the clause

learners, particularly in an asynchronous setup. To this end, the empirical data from

this problem class did not provide us a clear picture, with respect to the utility of the

256 Chapter 8. Conclusions

clause-learners.

Another orthogonal issue is that clause-learners that can work independently and au-

tonomously, can promote the utilisation of distributed architectures, e.g., a cluster of

workstations, as they can be run on different machines and the DPLL can be run on a

different machine. In our hybrid solver implementations, the Stalmarck clause-learner

works independently and autonomously. It works in an independent thread in the mul-

tithreaded version and on a different machine, in the distributed implementation. The

CDCL learning mechanism computes its learned clauses, by analysing the conflicts

arrived at, in the DPLL search tree. Thus, it is embedded within the DPLL algorithm

and it will not be effective to decouple the CDCL algorithm to work as an independent

clause learner, working on the same problem. Moreover, it spans the search space in

the same way, as the DPLL algorithm does and so, the learned clauses will arise from

the same search tree.

We can draw the following conclusion, from the DPLL-based, hybrid SAT solver(s)

investigation, that we have conducted:

• Use helpers (clause-learners) that address DPLL’s limitations

• Use helpers (clause-learners) that can work independently and autonomously

• When focusing on a particular problem class, identify an algorithm(s) that are

known to be successful for that class and try to build a clause-learner, based on

that algorithm, ensuring that the algorithmic features that favour that particular

problem class are retained.

• Use an abstraction based approach to building the hybrid architecture, so that

prototyping of new solvers can be done, with minimal effort, aiding the ex-

ploratory investigation phase

In these efforts, it was important to be able to easily prototype new solvers that com-

bined different techniques, and to quickly set up and easily analyse experiments. Our

methodology of using programming abstractions achieved their purpose in the incre-

mental development of new solvers, e.g. when there was a need to investigate the

behaviour of problem classes by adding a new technique, as in the DPLL-CDCL-

Stalmarck case mentioned earlier. The separation of design from implementation,

enabled by the methodology, helped in the performance analysis of the solvers as well.

8.2. Novel concurrent approaches for SAT:knowledge-sharing, lateral-thinking,co-operative frameworks combining complementary approaches, large scale parallelism257

A possible option for future work is to port the high-level design of the hybrid solver(s),

to a C-based state-of-the-art solver and study the empirical behaviour. Our empirical

data was collected using multithreaded versions of the hybrid solvers. In future, we

hope to run experiments for the distributed versions of the hybrid solvers. Of particular

interest is the DPLL-ConcurrentStalmarck implementation, described in §6.4. This

uses our novel algorithm, ConcurrentStalmarck (instead of the Stalmarck algorithm)

in the DPLL-Stalmarck architecture. ConcurrentStalmarck is amenable to large-scale

parallelism and thus is well-placed to utilise a distributed architecture.

8.2.2 Concurrent Stalmarck

Effective task-partitioning (for parallelisation) and work-allocation (load-balancing)

are crucial issues for optimal utilisation of distributed architectures, e.g. a cluster of

workstations. Most parallel SAT solver implementations, reported in published re-

search, are DPLL-based systems. DPLL is a tightly-coupled, state-based algorithm,

making effective task-partitioning, a challenging task. A vast-majority of DPLL-based

systems, use guiding-path as the task-partitioning technique, where the tasks are essen-

tially sub-trees, of the depth-first-search tree (of the DPLL algorithm). The irregularity

of the search spaces and inability to predict completely the hardness of a (sub-) prob-

lem, makes effective load-balancing very difficult, for this form of task-partitioning.

Our new algorithm, ConcurrentStalmarck, addresses these twin aspects.

ConcurrentStalmarck is a new algorithm that we have developed, by applying con-

current techniques, using asynchronous message-passing style communication. This

new algorithm is amenable to large scale parallelism and demonstrates a new form of

task partitioning and work-consumption. We implemented a proof-of-concept proto-

type of this algorithm, using Alice ML. In this prototypical implementation, the new

form of task partitioning and work-consumption were realised by using the features of

dataflow synchronisation and the data-driven behaviour facilitated by the incremental

evaluation feature of Alice ML. These features are central to functional languages that

provide language-based concurrency support, as opposed to API-based support.

The Stalmarck algorithm is a tautology checking algorithm. It assumes the given for-

mula to be true and tries to derive a contradiction. §4.5.3 gives a detailed descrip-

tion of the algorithm. The key insight for the design of our new algorithm has been

the fact that the recursive applications of the branch-merge rule can be flattened, as

258 Chapter 8. Conclusions

the operations are associative and thus independent of the order of execution. This

flattening step gives a pool of tasks (new form of task-partitioning for SAT). As the

order of execution of these tasks does not matter, we have implemented a simple form

of work-consumption (a.k.a work-stealing, in the literature), where by, any process

which becomes free, picks up a task from the pool of tasks mentioned earlier. Work-

consumption (load-balancing) related communication is thus negligible.

We carried out empirical tests by comparing the performance of the multithreaded ver-

sion of the concurrent prototype, with the sequential counterpart and observed signifi-

cant performance gains for the same. Given that the algorithm’s design is well-placed

to utilise a distributed architecture, in future, we hope to perform empirical tests on a

distributed implementation of this prototype.

The saturation technique, tries to extract new information, until no more new informa-

tion can be found, by applying a set of inference rules. In each round, it absorbs the

newly found information. However, in a sequential setting, application of the satura-

tion technique, involves waiting for the completion of the computation of all candidates

being considered in an iteration, before deciding to perform the next iteration.

We extracted a programming abstraction, from our concurrent implementation of the

saturation technique, used in the Stalmarck algorithm. This can be potentially used

to implement concurrent approached to tackling other saturation-based algorithms or

similar scenarios.

8.3 A multilayered approach to develop programmable,

sound extensions, for an LCF prover

In §7.3.1, our multilayered approach to tackle the specific issues for addressing usage

of concurrent techniques in an LCF prover were explained and implementation of a

proof-of-concept prototype of this approach was described. The importance of pro-

grammability was mentioned earlier. The LCF style of theorem proving, is a particu-

larly good candidate for providing concurrent programmable extensions. Programma-

bility forms a core focus of the LCF school of theorem proving. It provides tactics and

control structures to apply them to support interactive theorem proving, enabling the

user to program their own proof search procedures. This philosophy can be extended

8.3. A multilayered approach to develop programmable, sound extensions, for an LCF prover259

to include incorporation of concurrent techniques as well.

As mentioned before, we have accomplished this via a multilayered approach: use

programming abstractions to implement the concurrent techniques; use these to de-

velop novel tacticals (control structures to apply tactics), incorporating concurrent

techniques; and use these to develop novel proof search procedures.

It should be pointed out that the multilayered approach can be applied, to address

any LCF prover. In this work, this multilayered approach has been implemented as a

proof-of-concept prototype, implemented in Alice ML. The approach has been applied

to HAL, a prototypical LCF style first-order prover and provides a suite of concurrent

tacticals and novel proof search procedures. The following new concurrent tacticals

are provided:

Fastest first approach FF is a choice operator for applying tactics. It spawns con-

current evaluation of the options and picks the tactic that finishes first (a.k.a

fastest-first approach)

Distributed composition The data-driven behaviour facilitated by the incremental

evaluation feature of Alice ML was used to implement distComp, a novel op-

erator for composing two tactics, say t1, t2. Tactics take a state and return a

sequence (lazy list) of states, each of which is a possible next-state. Composi-

tion of t1 and t2 involves application of t2 on the sequence of states returned

by t1. However, in the sequential case, application of t2 on the ith element can

start only after application of t2 on all the previous elements have been com-

pleted. Using distComp, t2 gets applied as and when data is available and thus

application of t2 on the ith element starts as soon as it is available and does not

depend on the status of evaluation of the application of t2 on other elements of

the sequence.

Simultaneous proof-refutation attempts on a propositional (sub-)goal: Use the power

of asynchronous execution to tackle a propositional (sub-)goal, by spawning

proof and refutation attempts simultaneously, returning the fastest. An exter-

nal SAT solver is used to perform the refutation attempt on the propositional

(sub-)goal. The SAT solver developed in the SAT case study has been (re)used

here.

CrossTalk: using information exchange for unification In HAL, the unify tactic is

provided to perform unification on a (sub-)goal. It tries to unify a formula on

260 Chapter 8. Conclusions

the left with a formula on the right of the sequent. There may be several such

pairs and hence several possible unifiers. Thus, one goal can potentially produce

multiple candidates for the unifier. When there are multiple sub-goals involved

with shared meta-variables, a consensus unifier(s) needs to be computed that

will serve as a unifier for each sub-goal. The crossTalk tactic tackles this by

spawning the unification attempts concurrently and using a referee to compute

the consensus candidate.

This application is representative of the generic situation where a meta-variable

(a shared datum) is shared between multiple goals. Each goal can pose cer-

tain constraints on and/or post suggestions for the potential instantiation and

the suggestions have to be mutually consistent. The conflict resolution/consis-

tency decision is made in our implementation by a referee (§7.8.2). A similar

approach can be extended to tackle other scenarios, where a shared resource re-

quires instantiation. A variation of this, is a situation where partial instantiations

are communicated either in a peer-to-peer style or via a referee.

These tacticals were used within automatic proof search procedures based on the depth

first approach. The crossTalk tactic was used within a depth-first approach based au-

tomatic proof search procedure and fared better than the same procedure which used

HAL’s unify tactic.

Examples were provided to illustrate the power of programmable extensions. Some of

these are contrived examples, designed to illustrate the specific features of a concurrent

tactical or proof search procedure and the possible proof search procedures that can be

programmed to address the example. Nevertheless, they illustrate typical scenarios,

encountered often in interactive theorem proving.

As an example, consider a scenario where the user encounters a non-obvious choice

of inference rule-application. Our prototype allows the user to program their own

concurrent proof search procedure to tackle this scenario, with minimal developmental

effort, using the concurrent tacticals and operators provided in the prototype. There

are various ways proposed in published research for tackling the task of inference rule

selection, e.g. command-suggestion mechanism, proposed in [Benzmüller and Sorge,

2000; Benzmüller et al., 2008] (discussed in §2.2.3). However, we are using this

scenario, merely as an example to illustrate the power of programmable extensions,

realised via our multilayered approach and do not aim or claim to address inference

8.4. Utility of our implementation approach 261

rule-application choice, as such.

Our experience with this case study shows that given an ML language with language-

based support for concurrency and distribution, and an LCF prover, the prototyping

and implementation is relatively easy once a basic group of concurrent tacticals have

been implemented. In fact, the harder question is: how and where to use the concurrent

tacticals and what novel proof search procedures to engineer using them? This in turn,

is dependent on the theorem proving scenario being tackled and the problem class

being considered, thus reiterating the importance of programmability and exploratory

investigation.

8.4 Utility of our implementation approach

The use of Alice ML and abstractions has greatly enabled easy prototyping in both the

case studies. Furthermore, it greatly helped to setup experiments and analyse the em-

pirical behaviour, with relative ease. The modularity aspects and ease of prototyping,

promoted by the use of abstractions, allowed for fast setup of experiments, comparing

the performance of variants of a system, i.e. use the prototype of a system and set up

variants of the systems differing in certain specific conditions.

In §5.5.2, we explained how concurrency and distribution features can be included in

a declarative model and how Alice ML implements them. In particular, the Channels

feature of Alice ML is useful for implementing message-passing mechanisms. This

was used to implement message-passing mechanisms in DPLL-Stalmarck, Concurrent

Stalmarck and crossTalk.

In §5.5.2.1, we explained the data-driven behaviour exhibited by the incremental eval-

uation feature, a consequence of implicit data-flow synchronisation. In §5.6.2, we

explained how this is supported in Alice ML. The data-driven behaviour has been used

to address the following scenarios:

Concurrent Stalmarck: To implement work allocation, with minimal communica-

tion;

Distributed composition operator: As explained above.

Interaction of the solvers in the hybrid solver and implementation of the saturation

technique of the Stalmarck algorithm in a parallel setting were encapsulated as pro-

262 Chapter 8. Conclusions

gramming abstractions, thus promoting clarity of design, modularity and portability

and can thus potentially be ported to other platforms with minimal developmental ef-

fort.

The use of Alice ML is well-suited for the LCF case study given that it is an ML based

language. However, for the SAT case study, it may be better to make use of the easy

prototyping facilities to carry out an iterative process of development and evaluation

and when an optimal design has been arrived at, then, port the implementations to

optimised state-of-the-art (possibly C-based) SAT solvers, which given their advanced

state of optimisations can handle really large problems.

8.5 In a nut shell...

In this thesis, we have proposed an implementation methodology to incorporate con-

current techniques in theorem provers, by using a functional programming language,

with language-based support for concurrency and distribution and programming ab-

stractions to encapsulate the concurrent techniques employed.

We have shown the scope and efficacy of applying concurrent techniques, to synthesise

novel proof search procedures in two diverse theorem proving settings. The approaches

developed are better placed to utilise large scale parallel processing resources and em-

ploy novel computational patterns that are not possible in a sequential setting. The

novel procedures show performance gains, compared to their sequential counterparts,

in many cases and no significant slow down, in the other cases considered.

The proof-of-concept prototypes implementing these novel approaches, were devel-

oped in Alice ML and showed performance gains in some cases. These prototypes

and the exploratory investigations made feasible by them, illustrate the utility of our

proposed methodology, in terms of ease of prototyping, (with minimal developmen-

tal effort) and ease of experimentation, by enabling fast prototyping of variants of a

system, to carry out relative performance evaluations of the same. The separation of

design and implementation, facilitated by the use of programming abstractions, en-

ables the design of these approaches to be ported to other systems as well, e.g. once

a near optimal design has been arrived at, in the exploratory investigation phase, the

design can be ported to other (possibly state-of-the-art) systems.

8.6. Directions for future research 263

8.6 Directions for future research

8.6.1 Ideas for future work related to the case studies of SAT and

LCF

In §6.10, we outlined some future research possibilities arising out of the work carried

out as part of the SAT case study. These included ideas for the approaches adopted

as well as the implementation aspect. In §7.13, we outlined some possible ideas for

extending the approach implemented for LCF style proving. In the next few sections,

we provide some thought experiments for further applications of concurrent techniques

to theorem proving.

8.6.2 Proof and refutation

There are many situations in which the current (sub)conjecture is false and time spent

trying to prove it is wasted. This can happen even when the initial conjecture is true.

For instance,

• An intermediate lemma is speculated, say, by a critic, and instantiated in a way

that makes it false.

• A conjecture is over-generalised, say, by a critic.

• A case split, e.g. P∨¬P is made even though one of these cases, say P, is already

true in the current case. The ¬P case now contains contradictory hypotheses,

P∧¬P,. So, it is false. If this contradiction can be detected then this contra-

dictory case can be concluded. A similar behaviour has been implemented in

our hybrid solver, DPLL-Stalmarck, where the DPLL solver can possibly aban-

don the search of a sub-tree corresponding to a case-split, because that particular

literal has already been found to be false by the Stalmarck solver.

This pattern can be extended more generally to address scenarios where a proof

step is made that could have resulted in a false (sub-)conjecture. Then, it is worth

investing some effort in detecting this falsity without investing a lot of wasted

effort in trying to prove it. In a sequential system, it is usually worth investing

only a small amount of refutation effort. However, if the proof and refutation

264 Chapter 8. Conclusions

attempts can be spawned as asynchronous processes, preferably in different pro-

cessors, then the overheads introduced by the asynchronous refutation attempt

can be kept minimal.

Isabelle’s counter-example finder, Quickcheck can be used to address this scenario.

But, by itself, it does not provide an ideal solution. Firstly, Quickcheck may not find

the counterexample, whereas a more sustained search would. A lot of work may now

be spent on a doomed proof attempt. Secondly, Quickcheck will only work for purely

universally quantified (sub-)conjectures. False conjectures containing existential quan-

tification will require refutation, i.e., proof of their negations, not just counterexamples.

For both these reasons, a better solution would be to set up two parallel tasks: one to

continue the proof of the (sub-)conjecture and one to refute it, i.e. prove its negation.

By providing for resource management facilities, threads can be assigned priorities.

Now, a variety of heuristics could be used to decide how much resource should be

devoted to each task. For instance, Quickcheck might be given a high priority for

purely universal conjectures. If it fails to find a counter-example, the search for one

might continue, but with a very low priority. Moreover, these two complementary tasks

could be allowed to interact. For instance, if some cases of a proof attempt are suc-

cessful, then the search for a counter-example should be focused on the outstanding

cases.

8.6.3 A society of agents for inductive theorem proving

Many inductive proofs involve coming up with a well-founded ordering, which in turn,

involves speculation of the order and then proving the well-foundedness part. This is

then used for the application of induction. Coming up with the well-founded relation

is a key step in such scenarios, and not an obvious one, at that. So, it will be extremely

useful if this process can be semi-automated. The distributed paradigm can be used

gainfully here in the following manner:

1. Independent well-founded relation suggesting agent (this can be user-input to

start with or picked from a library of well-founded orderings); Communicates

with (2),(3)

2. Independent well-foundedness proving agent; Communicates with (1); Even if

it fails, can inform the rest of the proof.

8.6. Directions for future research 265

3. Hypothesis forming agent; Communicates with (4),(1)

4. Society of agents: {Base-case, step-case}

5. The interesting point to note here is that these can be independent and one can

spawn many threads of such speculations each of which can communicate with

the other threads.

8.6.4 Co-routining scope in Middle-out reasoning

The work reported in the thesis titled Proof Planning for Logic Program Synthesis

[Kraan, 1994] demonstrates how the combined techniques of middle-out reasoning

and proof planning [Bundy, 1998] can be exploited to automate logic program syn-

thesis. Middle-out reasoning is a term used to refer to the technique of representing

unspecified objects in the proof with meta-variables (as a least commitment mecha-

nism) and instantiating them via unification in the course of planning. Kraan’s project

implemented middle-out reasoning in proof planning for program synthesis, as an ex-

tension of the proof planning system CLAM [Bundy et al., 1990], a sequential proof

planning system and the extended system, Periwinkle was used to synthesise a variety

of programs.

Middle-out-reasoning gives a lot of opportunities for co-routining, dynamism and dis-

tribution, as explained below. Hence, a task involving application of middle-out rea-

soning and proof planning can be tackled more efficiently when a distributed proof

planning system is used.

The induction critics make a lot of use of meta-variables as a least commitment mech-

anism. For instance, consider the proof planning critic that does the job of lemma

speculation. Referring to the Rippling technique Bundy et al. [2005a], analysis of a

failed ripple can determine a lot of the structure of a missing wave-rule, but not all

of it. Those bits that cannot be fully determined are represented by meta-variables.

These meta-variables are subsequently instantiated by higher-order unification during

subsequent rippling. Similar remarks apply to the generalisation critic.

When the lemma speculation (or generalisation) critic is invoked there are two subgoals

266 Chapter 8. Conclusions

to be proved:

1. The original goal must now be proved with the aid of the lemma (generalised

goal).

2. The lemma (generalised goal) must be solved.

Either of these sub-proofs could cause the meta-variables to be instantiated. Note that

an instantiation that would suit the proof of one of the sub-goals might make the other

sub-goal unprovable (e.g. false). It is necessary to find instantiations that are com-

patible with both sub-proofs. In a sequential planner, it is easiest to arrange for one

sub-proof to be completed before the other is started. This can lead to a lot of wasted

effort if the instantiations made during the first sub-proof are incompatible with those

needed for the second sub-proof. Moreover, there might be a large branching factor

associated with some of these instantiations, leading to the need to search each branch

in turn,. It is more efficient to do the instantiations in the sub-proof with the lowest

branching factor, since this keeps the search space small. More generally, we might

want to co-routine between the two sub-proofs, instantiating meta-variables incremen-

tally and picking the sub-proof that offers the lowest branching factor at each phase

of the instantiation. For instance, F(x) might be instantiated to g(F ′(x)) by the first

process, then to g(h(x)) by the second. This kind of co-routining can be organised as

a multi-agent process with one agent for each of the sub-proofs. Note that the agents

must communicate their meta-variable instantiations to each other, with failure report-

ing if the instantiations made by one agent cause another agent’s sub-proof to fail.

Another opportunity is that often more than one critic may be applicable to a failed

ripple and these options can be tried simultaneously, e.g. speculating a lemma or trying

a different induciton rule.

8.6.5 The Dynamic Creation of Induction Rules Using Proof Plan-

ning

This section discusses the distribution opportunities in the work reported in the thesis

tittled The Dynamic Creation of Induction Rules Using Proof Planning [Gow, 2004]

and the work on program construction via deductive synthesis [Bundy et al., 2005b].

8.6. Directions for future research 267

The former was implemented as the Dynamis system, which used Lambda Clam, a se-

quential proof planning system, as its proof planner. For the purpose of program con-

struction via deductive synthesis, the induction rules to be used cannot be determined

from the usual heuristics. So, middle-out induction, as developed in the Dynamis sys-

tem is used. That is, a meta-variable is used to stand for the induction term. This

meta-variable is instantiated during rippling, fertilization, etc. A well-founded induc-

tion rule is then constructed that is based on the instantiated induction term. Details

can be found in the aforementioned citations.

This process effectively determines the step case of the induction. It is then neces-

sary to construct the remaining cases to cover the data-type; we will require base

cases and sometimes additional step cases. The induction rule must be shown to be

well-founded. Sub-syntheses may be required to construct sub-routines needed for the

original program. All these sub-goals may share meta-variables. To summarise, some

of the distribution possibilities are:

1. The process is initiated by the development of a step case with meta-variables

arising from the induction term being instantiated. In Dynamis, processing was

sequential, with this step case being completed before the other tasks were tack-

led. But we could, alternatively, start some of the other subgoals, in parallel, as

soon as the meta-variables are partially instantiated. Indeed, if there are choices

in this step case, we can explore them concurrently. Some subset of them might

be combined to form the final induction rule. There may be several alternative

ways of combining these step cases to provide alternative induction rules.

2. The rule must be proved well-founded. This involves finding a measure under

which the induction variable and the various induction terms are well-ordered.

This process can start as soon as the meta-variables standing for the induction

terms begin to be instantiated. This process can interact with process 1 above,

since the failure to show an induction term strictly well-ordered w.r.t the induc-

tion variable might cause a step case proof attempt to be rejected.

3. Missing cases must be detected and proved. Again, these detection and proof

processes can start as soon as the induction term meta-variables are partially in-

stantiated. In Dynamis, there was a lack of symmetry between the first step case

and the remainder, but this need not be the case in a concurrent implementation.

268 Chapter 8. Conclusions

4. Sub-synthesis of co-routines may be necessary. This is triggered by any proper-

ties that are required to be proved of residual meta-variables left after fertiliza-

tion. These properties become specifications to be satisfied. These sub-syntheses

can be initiated as soon as fertilization occurs and will contribute to the comple-

tion of the base and step cases.

All four of these processes involve shared meta-variables. Co-routining between them

provides the advantages discussed in §8.6.4. But it introduces the problem of exchang-

ing information about the instantiations of these meta- variables and the success and

failure of these instantiations.

Considering the scenario of inductive rule synthesis: in general, the steps involved

need to be applied in a compositional fashion and the distributed composition operator

described in §7.6.1 can be applied gainfully to address the same. One example of

such an application is as follows: Let tac1 be a tactic to identify induction rules, tac2

the induction strategy, y1, the first candidate produced by tac1 is a structural induction

which is inadequate for the conjecture and y2 the second candidate produced by tac1 is

a more complex induction that succeeds. We are interested in the composition of tac1

and tac2. The distributed composition operator can help to lead to a successful proof

whereas the sequential composition operator cannot, assuming tac1 does not terminate.

A 1. Parallel programming terminology 269

A 1 Parallel programming terminology

Threads, Pthreads, Java threads The term thread is used to describe an indepen-
dent flow of control within a process and is essentially an operating system re-
source. Programming involving multiple threads is referred to as multithreaded
programming.There are two main ways in which threads can be managed:

• Use them as an operating system resource for multithreaded programming,
using standardised libraries like Pthreads (POSIX threads) which provides
a suite of C library functions for thread management and synchronisation.

• Use them via higher level language objects as found in Java which offers
the thread class, which provides thread management and synchronisation
methods as part of the class. However, with high level languages, the
multithreaded programming model has to be adapted to the programming
paradigm of the language. For instance, in the case of Java, access and
management of threads has to be via an object.

Compiler directives: OpenMP The OpenMP API provides a set of compiler direc-
tives and library routines to express shared memory parallelism by providing
bindings for different languages via low level APIs. However, it requires a high
level of expertise to program these. Typically, the programmer is required to
annotate their sequential program with compiler directives, flagging the parts of
the program that must be executed concurrently and specifying synchronisation
points explicitly.

Sockets, MPI, PVM Sockets and their associated functions are mechanisms to estab-
lish channels of communication between two computers thus paving the way for
engineering distributed computing applications. Although programming with
sockets directly with the aid of C-based interfaces is possible, it is error-prone
and requires understanding of the low-level characteristics of the network. Fur-
thermore, it does not provide any mechanism for features like process manage-
ment, fault tolerance, task migration, which have become crucial for modern
parallel applications. Other options to handle socket programming are through
high-level programming languages like Java or by using APIs like MPI or PVM,
which are briefly described below:

PVM Parallel Virtual machine (PVM) consists of a runtime environment and
related APIs that support different concurrent programming paradigms in-
cluding the message passing paradigm with the distinguishing feature of
support for a heterogeneous network of machines. The APIs are language
specific and are in the form of primitives that have to be embedded in the
program. The supported languages are C, C++ and Fortran. This is not
being actively developed anymore.

MPI based APIs Message passing interface (MPI) is the de facto standard for
APIs providing inter process communication. Programs written in sequen-
tial languages are augmented with the API directives to enable sending and
receiving messages. In general, APIs are language-specific.

270 Chapter 8. Conclusions

RPC Remote procedure call (RPC) is a technique by which a program can cause the
execution of a non-local function, i.e. a function residing in another comput-
er/processor/address space; The target program need not be specifically altered
to enable this though as long as the language in question allows for RPC. RPC
is generally very expensive in terms of the communication traffic as the calls are
typically transmitted over a network.

HTTP Hyper Text Transfer Protocol is an application layer protocol for distributed
systems. It is a request-response standard, typical of the client-server model of
computation (a server provides a service which is used by one or more clients
with the clients and server computing over a network or possibly residing in the
same machine)

Data parallelism It is characterised by the parallel execution of the same operation
on different data or different parts of a large data set. Implemented on varied
architectures, the focus of data parallelism as a technique, is to be able to utilise
a huge array of processing units by introducing appropriate parallelisation into
the algorithms. The inter process communication is meant to be minimal. The
technique is targeted at extremely fine grained parallelism and is thus suited
for tightly coupled architectures as opposed to architectures that have slower
communication machinery like distributed systems. Functional programming
languages like Haskell are increasingly being used to implement data parallelism
as are other APIs like Map-Reduce. These are discussed later in the chapter.

Work stealing Technique used in concurrent programming where when a process be-
comes idle, it tries to take over part of the work of another busy process

Serialisation/Marshalling Serialisation/Marshalling also referred to as marshalling,
refers to the process of converting a data structure into a format such that it can be
stored in a memory and/or can be transmitted over a network to be reassembled
into the original data structure in a similar or different environment. It is a very
useful feature in the context of message passing based distributed systems.

Open programming the development of programs that support dynamic exchange of
higher-order values with other processes

A 2 Alice features

This is an enumeration of some of the language features of Alice ML that are relevant
to the work discussed in this thesis. For more details please see the webpage for the
Alice ML manual

Futures Concurrent programming in Alice ML is uniformly based on the model of
futures. A concurrent thread can be initiated by means of the spawn expression,
e.g.,: spawn 45*68 initiates the computation in a new thread and returns a future,
a place-holder for the result of the concurrent computation. Once the result
becomes available, the future will be globally replaced by the result. Threads

http://www.ps.uni-saarland.de/alice/manual/sitemap.html

A 2. Alice features 271

are said to be functional, in the sense that they have a result. Futures impose an
implicit form of dataflow synchronisation (see §5.6)

Data-flow synchronization Futures can be passed around as values. Once an oper-
ation actually requests the value the future stands for, the corresponding thread
will block until the future has been determined. This is known as data-flow syn-
chronisation and is a powerful mechanism for high-level concurrent program-
ming.

Channel A channel is a simple imperative message queue that allows asynchronous
communication between processes. An arbitrary number of messages may be
sent to a channel using put. The get operation takes the oldest message out of
the channel and blocks if none is available.

Component Alice ML introduces the notion of component as the unit of compilation
as well as deployment. A component contains a module expression that, when
evaluated, potentially imports modules from other components.

Package A package is a value encapsulating an arbitrary (higher-order) module and
its signature. Packages enrich the static type system of ML with a dimension of
dynamic typing: unpacking a package performs a dynamic type check. This ba-
sic mechanism is used to make all kinds of dynamic operations safe, particularly
exchange of higher-order data structures between different processes or export
to a file system (pickling). A save operation writes a package to a given file.

Pickles A pickle is a self-contained platform independent representation of the saved
package

Inter process communication: Pickling To allow for export and import of data be-
tween processes, Alice ML supports pickling, also known as Serialisation/Mar-
shalling, for export of language data structures. Using pickling, arbitrary data
can be pickled, including code and entire modules. Pickles are platform-independent
and are hence suitable for exchange across heterogenous networks, especially
the Internet. By pickling first-class functions, Alice ML processes can exchange
behaviour.

Distribution: Tickets Components and pickles already provide a primitive form of
distributed programming, since they may be imported or loaded from arbitrary
locations across a local network or even the Internet. But Alice ML also provides
high-level means for processes at different sites to communicate directly using a
feature called tickets. Tickets are in the form of ASCII strings and act as a global
means to access any language entity

The first mechanism that allows sites to establish peer-to-peer connections is
offer and take. A process can create a package and make it available to other
processes. Offering a package opens a communication port and returns an URI
for that port. The URI is called a ticket. Other processes can then obtain the
available package using the ticket. In general, take establishes a connection to
the communication port denoted by the ticket, and retrieves the offered package.

Distribution: Proxies Tickets are intended merely as a means to establish an initial

272 Chapter 8. Conclusions

connection between processes. All subsequent communication should be dealt
with by the functions in the offered package. Alice ML provides a very sim-
ple feature to enable this idiom: proxies. A proxy is basically an RPC(remote-
procedure-call) stub, a mobile reference to a stationary function that can be used
in place of the function it references.

Thread execution There is no explicit mechanism for implementing prioritisation of
thread execution. A thread will execute unless dependency is programmed ex-
plicitly.

Virtual machine Alice ML uses a virtual machine constructed on top of the SEAM in-
frastructure (Simple Extensible Abstract Machine), a portable infrastructure for
building virtual machines which implements generic services like memory man-
agement, thread management, pickling etc. SEAM implements threads purely in
software, using its own scheduling mechanism. It does not yet enable employ-
ment of system threads. Consequently, an Alice ML program cannot yet take
advantage of multi-processor machines and multi-core processors. SEAM and
the Alice VM have been implemented in C++, while the rest of the system is
almost entirely bootstrapped in Alice ML.

Components Components are the unit of compilation as well as the unit of deploy-
ment in Alice ML. A program consists of a potentially open set of components
that are created separately and loaded dynamically. Each Alice ML source file
defines, and is compiled into, a component: the contained sequence of SML
declarations is interpreted as a structure body, forming the export module. The
respective export signature is inferred by the compiler. A component can ac-
cess other components through a prologue of import declarations that specify
the name of the module to be imported and the location of the module. Loading
of imported components is performed lazily, and every component is loaded at
most once. Loading implies evaluation of the respective component.

A 3. Alice ML code for hierarchical threads 273

A 3 Alice ML code for hierarchical threads

Listing 1: Code for implementing a variant of the Alice ML threads to accommodate termination of child threads

(∗ This module i s as an a b s t r a c t i o n o f threads , designed to
handle the ch i l d−thread te rm ina t i on c o r r e c t l y .
Type : (thread , l i s t o f threads) : (baseThread , i t s c h i l d threads)
Terminat ion o f the baseThread t r i g g e r s te rm ina t i on o f
a l l c h i l d threads held i n the l i s t o f threads ∗)

s igna tu re H THR = (∗ h i e r a r c h i c a l threads ∗)
s ig

type hThrType
va l mySpawnThread : hThrType ∗ (u n i t −> ’ a) −> hThrType ∗ ’ a
va l myTerminate : hThrType −> u n i t
va l baseThread : hThrType

end

s t r u c t u r e h t h r :> H THR = s t r u c t
type hThrType = Thread . thread ∗ Thread . thread l i s t r e f
fun myTerminate (th , t h L i s t) =Thread . te rmina te th handle Thread . Terminated=>()

fun wrap (f , c h i l d r e n) () = f ()
handle (Thread . Terminate) =>
(L i s t . app

(fn h t => i f (Thread . s t a t e h t <> Thread .TERMINATED)
then (Thread . te rmina te h t) e lse ())

(! c h i l d r e n) ; r a i se Thread . Terminate)
fun mySpawnThread ((s e l f , c h i l d r e n) , f) = l e t

va l g randch i ld ren = r e f []
va l (ch i l d , x) = Thread . spawnThread (wrap (f , g randch i ld ren))

i n
(c h i l d r e n := c h i l d : : ! c h i l d r e n ; ((ch i l d , g randch i ld ren) , x))

end
va l baseThread = l e t

va l c h i l d r e n = r e f ([] : Thread . thread l i s t)
va l (t ,) = Thread . spawnThread (wrap (fn () => (∗ l azy ∗) () , c h i l d r e n))

i n
(t , c h i l d r e n)

end
end

274 Chapter 8. Conclusions

A 4 Alice ML code for the DPLL solver

Listing 2: Code for sequential, iterative implementation of the DPLL algorithm, with non-chronological backjump-
ing and learning

(∗ ===================================== ∗)
(∗ The Davis−Putnam−Loveland−Logemann procedures . ∗)
(∗ ∗)
(∗ Copyr ight (c) 2003−2007, John Harr ison
(∗ === ∗)
(∗ The Davis−Putnam and Davis−Putnam−Loveland−Logemann procedures . ∗)
(∗ ∗)
(∗ Copyr ight (c) 2003−2007, John Harr ison . ∗)

(∗ A l l r i g h t s reserved .
R e d i s t r i b u t i o n and use i n source and b inary forms , w i th or w i thou t
mod i f i ca t i on , are permi t ted provided t h a t the f o l l o w i n g cond i t i ons
are met :

∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r .

∗ R e d i s t r i b u t i o n s i n b inary form must reproduce the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r i n the
documentation and / or o ther ma te r i a l s prov ided wi th the d i s t r i b u t i o n .

∗ The name of John Harr ison may not be used to endorse or promote
products der ived from t h i s sof tware w i thou t s p e c i f i c p r i o r w r i t t e n
permiss ion .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING , BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT , INCIDENTAL ,
SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

∗)
(∗ === ∗)

impor t ” l i b ” ;
impor t ” i n t r o ” ;
impor t ” formulas ” ;
impor t ” prop ” ;
impor t ” propexamples ” ;
impor t ” de fcn f ” ;

open L ib ;
open I n t r o ;
open Formulas ;
open Prop ;
open DefCNF ;

fun o n e l i t e r a l r u l e clauses = l e t
va l u = hd (va lOf (L i s t . f i n d (fn c l => l eng th c l = 1) clauses)) ;
va l u ’ = negate u ;
va l clauses1 = L i s t . f i l t e r (fn c l => not (mem u c l)) c lauses

i n
smap (fn c l => sub t rac t c l [u ’] ord forms) clauses1 o r d f l

end
handle Option => clauses ;

A 4. Alice ML code for the DPLL solver 275

fun a f f i r m a t i v e n e g a t i v e r u l e clauses = l e t
va l (neg ’ , pos) = p a r t i t i o n negat ive (unions clauses ord forms)
va l neg = smap negate neg ’ ord forms
va l pos only = sub t rac t pos neg ord forms and neg only =
sub t rac t neg pos ord forms
va l pure = union pos only (smap negate neg only ord forms)
ord forms

i n
i f (pure = []) then ra i se (F a i l u r e ” a f f i r m a t i v e n e g a t i v e r u l e ”)

e lse
(L i s t . f i l t e r
(fn c l => ((i n t e r s e c t c l pure ord forms) = [])) c lauses)

end ;

fun posneg count c l s l = l e t
va l m = L i s t . l eng th (L i s t . f i l t e r (mem l) c l s)
va l n = L i s t . l eng th (L i s t . f i l t e r (mem (negate l)) c l s)
i n
m + n ;

end ;

(∗ −−− ∗)
(∗ I t e r a t i v e implementat ion w i th e x p l i c i t t r a i l i ns tead of recu rs ion ∗)
(∗ −−− ∗)

datatype t r a i l m i x = Guessed | Deduced ; ;

fun unassigned c l s t r a i l = l e t
fun l i t a b s p = case p of Not q => q | => p
fun smap temp f ord s = smap f s ord

i n
sub t rac t (unions (smap temp (smap temp l i t a b s ord forms)

o r d f l c l s) ord forms)
(smap temp (l i t a b s o f s t) ord forms t r a i l) ord forms

end ; ;

fun un i t subpropagate (c ls , p a r t i a l F n , t r a i l) = l e t
va l c ls ’ = L i s t .map (L i s t . f i l t e r
((not) o (def ined p a r t i a l F n) o negate)) c l s ;

va l uu = fn [c] => i f not (def ined p a r t i a l F n c) then
[c] e lse ra i se (F a i l u r e ” ”)

| => r a i se (F a i l u r e ” ”) ;
va l newunits = unions (m a p f i l t e r uu c ls ’) ord forms

i n
i f newunits = [] then (c ls ’ , pa r t i a lFn , t r a i l) e lse
l e t

va l t r a i l ’ = i t l i s t (fn p =>
fn t => (p , Deduced) : : t) newunits t r a i l

va l pa r t i a lFn ’ = i t l i s t (fn u => (u |−> ()))
newunits p a r t i a l F n

i n
un i t subpropagate (c ls ’ , pa r t i a lFn ’ , t r a i l ’)

end
end

fun un i t p ropaga te (c ls , t r a i l) = l e t
va l p a r t i a l F n = i t l i s t (fn (x ,) => (x |−> ()))

t r a i l undef ined
va l (c ls ’ , pa r t i a lFn ’ , t r a i l ’) =

un i t subpropagate (c ls , pa r t i a lFn , t r a i l)
i n

(c ls ’ , t r a i l ’)
end ; ;

fun backt rack t r a i l =
case t r a i l o f

(p , Deduced) : : t t => backt rack t t

276 Chapter 8. Conclusions

| => t r a i l ; ;

fun d p l i c l s t r a i l = l e t
va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l)

i n
i f mem [] c ls ’ then

case (backt rack t r a i l) o f
(p , Guessed) : : t t =>

d p l i c l s ((negate p , Deduced) : : t t)
| => f a l s e

e lse
case (unassigned c l s t r a i l ’) o f

[] => t r ue
| ps => l e t

va l p = maximize (posneg count c ls ’) ps
i n d p l i c l s ((p , Guessed) : : t r a i l ’) end

end

fun d p l i s a t fm = d p l i (de fcn fs fm) [] ; ;

fun d p l i t a u t fm = not (d p l i s a t (Not fm)) ; ;

(∗ −−− ∗)
(∗ With simple non−ch rono log i ca l backjumping and lea rn i ng ∗)
(∗ −−− ∗)

fun backjump c l s p t r a i l =
case (backt rack t r a i l) o f

(q , Guessed) : : t t =>
l e t va l (c ls ’ , t r a i l ’) =
un i t p ropaga te (c ls , (p , Guessed) : : t t) i n
i f mem [] c ls ’ then backjump c l s p t t e lse t r a i l end

| => t r a i l ; ;

fun dplb c l s t r a i l = l e t
va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l) i n

i f mem [] c ls ’ then
case (backt rack t r a i l) o f

(p , Guessed) : : t t => l e t
va l t r a i l ’ = backjump c l s p t t
va l d e c l i t s = L i s t . f i l t e r (fn (, d) => d = Guessed) t r a i l ’
va l c o n f l i c t = i n s e r t (negate p)
(smap (negate o f s t) d e c l i t s ord forms) ord forms
i n

dplb (c o n f l i c t : : c l s) ((negate p , Deduced) : : t r a i l ’)
end

| => f a l s e
e lse

case (unassigned c l s t r a i l ’) o f
[] => t r ue

| ps => l e t va l p = maximize (posneg count c ls ’) ps i n
dplb c l s ((p , Guessed) : : t r a i l ’) end

end ;

fun dp lbsa t fm = dplb (de fcn fs fm) [] ; ;

fun dp lb tau t fm = not (dp lbsa t (Not fm)) ; ;

A 5. Alice ML code for the Stalmarck solver 277

A 5 Alice ML code for the Stalmarck solver

Listing 3: Code for sequential, iterative implementation of the Stalmarck tautology checking algorithm, with mod-
ifications to make it to work as a clause-learning tool

(∗ === ∗)
(∗ Simple implementat ion o f Stalmarck ’ s a lgo r i t hm . ∗)
(∗ ∗)
(∗ NB! This a lgo r i thm i s patented f o r commercial use ∗)
(∗ (not t h a t a toy vers ion l i k e t h i s would a c t u a l l y be use fu l i n ∗)
(∗ p r a c t i c e) . See US patent 5 276 897 , Swedish patent 467 076 and ∗)
(∗ European patent 0403 454 f o r example . ∗)
(∗ ∗)
(∗ Copyr ight (c) 2003 , John Harr ison . ∗)
(∗ A l l r i g h t s reserved .
R e d i s t r i b u t i o n and use i n source and b inary forms , w i th or w i thou t
mod i f i ca t i on , are permi t ted provided t h a t the f o l l o w i n g cond i t i ons
are met :

∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r .

∗ R e d i s t r i b u t i o n s i n b inary form must reproduce the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r i n the
documentation and / or o ther ma te r i a l s prov ided wi th the d i s t r i b u t i o n .

∗ The name of John Harr ison may not be used to endorse or promote
products der ived from t h i s sof tware w i thou t s p e c i f i c p r i o r w r i t t e n
permiss ion .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING , BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT , INCIDENTAL ,
SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

∗)
(∗ === ∗)

(∗ to t ime t e s t s ∗)

impor t s t r u c t u r e BasicTimer from ” basicTimer ”
impor t s igna tu re MAP from ” x−a l i c e : / l i b / data /MAP−s ig ”

impor t ” l i b ” ;
impor t ” i n t r o ” ;
impor t ” formulas ” ;
impor t ” prop ” ;
impor t ” de fcn f ” ;

s t r u c t u r e Stalmarck =
s t r u c t

open L ib
open I n t r o
open Formulas
open Prop
open DefCNF

(∗ −−− ∗)
(∗ T r i p l e t t rans fo rmat ion , using f u nc t i o ns def ined e a r l i e r . ∗)
(∗ −−− ∗)

278 Chapter 8. Conclusions

fun t r i p l i c a t e fm =
l e t va l fm ’ = nenf fm

va l n = 1 + (overatoms (max varindex ” p ” o pname) fm ’ 0)
va l (p , defs ,) = maincnf (fm ’ , undefined , n)

i n
(p ,map (snd o snd) (funse t defs))

end

(∗ −−− ∗)
(∗ Automat i ca l l y generate t r i g g e r i n g ru l es to save w r i t i n g them out ∗)
(∗ −−− ∗)
fun atom l i t = i f negat ive l i t then negate l i t e lse l i t ; ;

fun a l i g n (p , q) =
i f ord forms (atom p) (atom q) then a l i g n (q , p) e lse
i f negat ive p then (negate p , negate q) e lse (p , q) ; ;

fun equate2 (p , q) eqv = equate (negate p , negate q) (equate (p , q) eqv) ; ;

fun i r redundan t r e l eqs =
case eqs of

[] => []
| (p , q) : : oth =>

i f canonize r e l p = canonize r e l q
then i r redundan t r e l oth

e lse i n s e r t (p , q) (i r redundan t (equate2 (p , q) r e l) oth) o r d p a i r

fun consequences ((p , q) as peq) fm eqs =
l e t

fun f o l l o w s (r , s) = tau to logy (Imp (And (I f f (p , q) , fm) , I f f (r , s)))
i n

i r redundan t (equate2 peq unequal) (L i s t . f i l t e r f o l l o w s eqs)
end

fun t r i g g e r s fm =
l e t va l p o s l i t s = i n s e r t True (map (fn p => Atom p) (atoms fm)) ord forms

va l l i t s = union p o s l i t s (map negate p o s l i t s) ord forms
va l pa i r s = a l l p a i r s (fn p => fn q => (p , q)) l i t s l i t s
va l npa i rs = L i s t . f i l t e r (fn (p , q) => atom p <> atom q) pa i r s
va l eqs = s e t i f y (map a l i g n npa i rs) o r d p a i r
va l raw = map (fn p => (p , consequences p fm eqs)) eqs

i n
L i s t . f i l t e r (fn (p , c) => c <> []) raw

end

(∗ to show computed t r i g g e r s ∗)
va l showTriggs =

l e t fun inden t () = p r i n t ” ”
fun showPair (f , g) = (p r i n t ” (” ; pr f ; p r i n t ” , ” ; pr g ; p r i n t ”) ”)
fun p r p a i r l i s t l =

l e t fun pp l [] = ()
| pp l [h] = showPair h
| pp l (h : : t) = (showPair h ; p r i n t ” , ” ; pp l t)
i n

p r i n t ”\n [” ; pp l l ; p r i n t ”]\n ”
end

fun showLine (a , b) =
(showPair a ; p r p a i r l i s t b)

i n
L i s t . app showLine

end

(∗ −−− ∗)
(∗ An example . ∗)
(∗ −−− ∗)

(∗
START INTERACTIVE ; ;
t r i g g e r s <<p <=> (q /\ r)>>;;

A 5. Alice ML code for the Stalmarck solver 279

END INTERACTIVE ; ;
∗)

(∗ −−− ∗)
(∗ Precompute and i n s t a n t i a t e t r i g g e r s f o r standard t r i p l e t s . ∗)
(∗ −−− ∗)

fun t r i g g e r z =
l e t

va l p = Atom (P ” p ”)
and q = Atom (P ” q ”)
and r = Atom (P ” r ”)

va l f1 = I f f (p , And (q , r))
and f2 = I f f (p , Or (q , r))
and f3 = I f f (p , Imp (q , r))
and f4 = I f f (p , I f f (q , r))

va l [t r i g and , t r i g o r , t r i g i m p , t r i g i f f] =
map t r i g g e r s [f1 , f2 , f3 , f4]

fun ddnegate fm = case fm of Not (Not p) => p | => fm

fun i n s t f n [x , y , z] =
l e t

va l subfn = f p f 2 [P” p ” |−−> x , P” q ” |−−> y , P” r ” |−−> z]
i n

ddnegate o propsubst subfn
end

fun i n s t 2 f n i (p , q) = a l i g n (i n s t f n i p , i n s t f n i q)
fun i n s t n f n i (a , c) = (i n s t 2 f n i a ,map (i n s t 2 f n i) c)
va l i n s t t r i g g e r = map o i n s t n f n

i n
case z of

(I f f (x , And (y , z))) => i n s t t r i g g e r [x , y , z] t r i g a n d
| (I f f (x , Or (y , z))) => i n s t t r i g g e r [x , y , z] t r i g o r
| (I f f (x , Imp (y , z))) => i n s t t r i g g e r [x , y , z] t r i g i m p
| (I f f (x , I f f (y , z))) => i n s t t r i g g e r [x , y , z] t r i g i f f

end

(∗ −−− ∗)
(∗ Compute a f u n c t i o n mapping each v a r i a b l e / t r ue to re l evan t ∗)
(∗ t r i g g e r s . ∗)
(∗ −−− ∗)
fun re levance t r i g s =
l e t

fun i n s e r t r e l e v a n t p t r g f = (p |−> i n s e r t t r g (t r y a p p l y l f p) o r d t r i g) f ; ;
fun i n s e r t r e l e v a n t 2 (((p , q) ,) as t r g) f =

i n s e r t r e l e v a n t p t r g (i n s e r t r e l e v a n t q t r g f)
i n

i t l i s t i n s e r t r e l e v a n t 2 t r i g s undef ined
end

(∗ −−− ∗)
(∗ Merging o f equiv c lasses and re levanc ies . ∗)
(∗ −−− ∗)
fun equatecons ord ord2 (p0 , q0) ((eqv , r f n : (’ ’ a ∗ ’ ’ c l i s t) l i s t FormMap .map) as e r f) =

l e t
va l p = canonize eqv p0 and q = canonize eqv q0

i n
i f p = q then ([] , e r f)
e lse

l e t
va l p ’ = canonize eqv (negate p0) and q ’ = canonize eqv (negate q0)
va l eqv ’ = equate2 (p , q) eqv

and sp pos = t r y a p p l y l r f n p and sp neg = t r y a p p l y l r f n p ’
and sq pos = t r y a p p l y l r f n q and sq neg = t r y a p p l y l r f n q ’

280 Chapter 8. Conclusions

va l r fn ’ = ((canonize eqv ’ p) |−> (union sp pos sq pos ord))
(((canonize eqv ’ p ’) |−> (union sp neg sq neg ord)) r f n)

va l nw = union (i n t e r s e c t sp pos sq pos ord)
(i n t e r s e c t sp neg sq neg ord) ord

i n
(i t l i s t (fn (x , y) => fn z => union y z ord2) nw [] ,

(eqv ’ , r fn ’)
)

end
end

(∗ −−− ∗)
(∗ Zero−s a t u r a t i o n given an equivalence / re levance and new assignments . ∗)
(∗ −−− ∗)
fun ze ro sa tu ra te e r f ass igs =

case assigs o f
[] => e r f

| (p , q) : : t s =>
l e t va l (news , e r f ’) = equatecons o r d t r i g o r d p a i r (p , q) e r f
i n

ze ro sa tu ra te e r f ’ (union t s news o r d p a i r)
end

(∗ −−− ∗)
(∗ Zero−sa tu ra te then check f o r c o n t r a d i c t o r i n e s s . ∗)
(∗ −−− ∗)
fun zero satura te and check e r f t r i g s =

l e t
va l ((eqv ’ , r fn ’) as er f ’) = ze ro sa tu ra te e r f t r i g s
va l vars = L i s t . f i l t e r p o s i t i v e (equated eqv ’)

i n
i f (L i s t . e x i s t s (fn x => canonize eqv ’ x = canonize eqv ’ (Not x)) vars)

then snd (equatecons o r d t r i g o r d p a i r (True , Not True) e r f ’)
e lse er f ’

end

(∗ −−− ∗)
(∗ Now we can q u i c k l y t e s t f o r c o n t r a d i c t i o n . ∗)
(∗ −−− ∗)

fun t r u e f a l s e pfn = canonize pfn (Not True) = canonize pfn True ; ;

(∗ −−− ∗)
(∗ I t e r a t e d equ iva lenc ing over a set . ∗)
(∗ −−− ∗)

fun equateset ord1 ord2 s0 eqfn =
case s0 of

a : : (b : : s2 as s1) =>
equateset ord1 ord2 s1 (snd (equatecons ord1 ord2 (a , b) eqfn))

| => eqfn

(∗ −−− ∗)
(∗ I n t e r s e c t i o n opera t ion on equivalence classes and re levanc ies . ∗)
(∗ −−− ∗)

fun i n t e r e l s ((eq1 ,) as e r f1) ((eq2 ,) as e r f2) rev1 rev2 e r f =
case e ls o f
[] => e r f

| x : : xs =>
l e t

va l b1 = canonize eq1 x and b2 = canonize eq2 x
va l s1 = apply rev1 b1 and s2 = apply rev2 b2

fun ord x y = t rue
va l s = i n t e r s e c t s1 s2 ord forms

i n

A 5. Alice ML code for the Stalmarck solver 281

i n t e r (sub t rac t xs s ord forms) e r f1 e r f2 rev1 rev2
(equateset o r d t r i g o r d p a i r s e r f)

end

(∗ −−− ∗)
(∗ Reverse the equivalence mappings . ∗)
(∗ −−− ∗)

fun reverseq ord domain eqv =
l e t va l a l = map (fn x => (x , canonize eqv x)) domain
i n

i t l i s t (fn (y , x) => fn f => (x |−> i n s e r t y (t r y a p p l y l f x) ord) f)
a l undef ined

end

(∗ −−− ∗)
(∗ Spec ia l i n t e r s e c t i o n tak ing c o n t r a d i c t o r i n e s s i n t o account . ∗)
(∗ −−− ∗)

fun s t a l i n t e r s e c t ((eq1 ,) as e r f1) ((eq2 ,) as e r f2) e r f =
i f t r u e f a l s e eq1 then e r f2
e lse i f t r u e f a l s e eq2 then e r f1 e lse
l e t

va l dom1 = equated eq1 and dom2 = equated eq2
va l comdom = i n t e r s e c t dom1 dom2 ord forms
va l rev1 = reverseq ord forms dom1 eq1 and rev2 = reverseq ord forms dom2 eq2

i n
i n t e r comdom er f1 e r f 2 rev1 rev2 e r f

end

(∗ −−− ∗)
(∗ General n−s a t u r a t i o n f o r n >= 1 ∗)
(∗ −−− ∗)

fun sa tu ra te n e r f ass igs a l l v a r s =
l e t va l ((eqv ’ ,) as e r f ’) = zero satura te and check e r f ass igs
i n

i f n = 0 ore lse t r u e f a l s e eqv ’ then er f ’
e lse

l e t va l ((eqv ’ ’ ,) as e r f ’ ’) = s p l i t s n er f ’ a l l v a r s a l l v a r s
i n

i f eqFP (eqv ’ ’ , eqv ’) then er f ’ ’
e lse sa tu ra te n er f ’ ’ [] a l l v a r s

end
end

and s p l i t s n ((eqv ,) as e r f) a l l v a r s vars =
case vars o f

[] => e r f
| p : : ovars =>

i f canonize eqv p <> p then s p l i t s n e r f a l l v a r s ovars e lse
l e t

va l e r f 0 = sa tu ra te (n − 1) e r f [(p , Not True)] a l l v a r s
and e r f1 = sa tu ra te (n − 1) e r f [(p , True)] a l l v a r s
va l ((eqv ’ ,) as e r f ’) = s t a l i n t e r s e c t e r f 0 e r f 1 e r f

i n
i f t r u e f a l s e eqv ’ then er f ’
e lse s p l i t s n er f ’ a l l v a r s ovars

end

(∗ −−− ∗)
(∗ Saturate up to a l i m i t . ∗)
(∗ −−− ∗)

va l showPar t i t i on = r e f f a l s e

fun sa tu ra te up to vars n m t r i g s ass igs =
i f n > m then

f a i l w i t h (” Not ” ˆ (I n t . t o S t r i n g m) ˆ ”−easy ”)
e lse

282 Chapter 8. Conclusions

(p r i n t s t r i n g (”∗∗∗ S t a r t i n g ” ˆ (I n t . t o S t r i n g n) ˆ ”−s a t u r a t i o n ”) ;
p r i n t n e w l i n e () ;
l e t
va l (eqv ,) = sa tu ra te n (unequal , re levance t r i g s) ass igs vars
va l = i f ! showPar t i t i on then p r i n t p n eqv else ()

i n
(t r u e f a l s e eqv) o re lse (sa tu ra te up to vars (n + 1) m t r i g s ass igs)

end
)

(∗ −−− ∗)
(∗ Overa l l f u n c t i o n . ∗)
(∗ −−− ∗)
fun sta lmarck fm =

l e t
fun i n c l u d e t r i g (e , cqs) f =
(e |−−−> union cqs (t r y a p p l y l 3 f e) o r d p a i r) f ; ;
va l fm ’ = p s i m p l i f y (Not fm)

i n
i f fm ’ = False

then t rue
else i f fm ’ = True

then f a l s e
e lse

l e t va l (p , t r i p l e t s) = t r i p l i c a t e fm ’
va l t r i g f n = i t l i s t (i t l i s t i n c l u d e t r i g o t r i g g e r)

t r i p l e t s undef ined3
va l vars = map (fn p => Atom p) (unions (map atoms t r i p l e t s) ord prop)

i n
sa tu ra te up to vars 0 2 (funset3 t r i g f n) [(p , True)]

end
end

(∗ −−− ∗)
(∗ Try the p r i m a l i t y examples . ∗)
(∗ −−− ∗)

(∗
START INTERACTIVE ; ;
d o l i s t (t ime sta lmarck)

[prime 5;
prime 13;
prime 23;
prime 43;
prime 9 7] ; ;

END INTERACTIVE ; ;
∗)

(∗ −−− ∗)
(∗ A r t i f i c a l example o f Urquhart formulas . ∗)
(∗ −−− ∗)
fun urquhar t n = l e t

fun uptoN 1 = [1]
| uptoN n = i f n < 1

then f a i l w i t h ” negat ive number not al lowed ”
e lse n : : (uptoN (n−1))

va l pvs = map (fn n => Atom (P(” p ” ˆ (I n t . t o S t r i n g n)))) (uptoN n)
i n

e n d i t l i s t (fn p => fn q => I f f (p , q)) (pvs @ pvs)
end

va l t ime = BasicTimer . t ime ;
fun tes tUrquhar t () = l e t fun f n=t ime (fn ()=>sta lmarck (urquhar t n))
i n map f [1 ,2 ,4 ,8 ,16] end
(∗START INTERACTIVE ; ;
map (t ime sta lmarck ∗∗ urquhar t) [1 ; 2 ; 4 ; 8 ; 1 6] ; ;
END INTERACTIVE ; ; ∗)
end

A 6. Alice ML code for the DPLL-Stalmarck solver 283

A 6 Alice ML code for the DPLL-Stalmarck solver

Listing 4: Code for the hybrid solver, DPLL-Stalmarck

(∗ === ∗)
(∗ Hybrid so l ve r based on the Davis−Putnam−Loveland−Logemann (DPLL) ∗)
(∗ and Stalmarck a lgor i thms .

∗)
(∗ The code f o r these sequen t i a l so l ve rs has been borrowed from the SML vers ions o f the

same , found i n the code r e p o s i t o r y accompanying a recent tex tbook on automated
reasoning , e n t i t l e d , \ t e x t i t {Handbook of P r a c t i c a l Logic and Automated Reasoning} \
c i t e p{har r ison−book} . The code can be found i n the f o l l o w i n g web pages : \h re f{h t t p : / /
www. c l . cam. ac . uk / ˜ j rh13 / atp / OCaml / dp . ml}{SML code f o r sequen t ia l DPLL} and \h re f{h t t p
: / / www. c l . cam. ac . uk / ˜ j rh13 / atp / OCaml / s t a l . ml}{SML code f o r sequen t ia l Stalmarck
tau to logy checker} and i s i n tu rn pro tec ted by the

f o l l o w i n g copy r i gh t no t i ce ∗)
∗)

(∗ Copyr ight (c) 2003−2007, John Harr ison . ∗)
(∗ A l l r i g h t s reserved .
R e d i s t r i b u t i o n and use i n source and b inary forms , w i th or w i thou t
mod i f i ca t i on , are permi t ted provided t h a t the f o l l o w i n g cond i t i ons
are met :

∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r .

∗ R e d i s t r i b u t i o n s i n b inary form must reproduce the above copy r i gh t
not ice , t h i s l i s t o f cond i t i ons and the f o l l o w i n g d i sc l a ime r i n the
documentation and / or o ther ma te r i a l s prov ided wi th the d i s t r i b u t i o n .

∗ The name of John Harr ison may not be used to endorse or promote
products der ived from t h i s sof tware w i thou t s p e c i f i c p r i o r w r i t t e n
permiss ion .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING , BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT , INCIDENTAL ,
SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

∗)
(∗ === ∗)

(∗ −−− ∗)
(∗ The DP procedure . ∗)
(∗ −−− ∗)

impor t s igna tu re CHANNEL from ” x−a l i c e : / l i b / data /CHANNEL−s ig ”
impor t s t r u c t u r e Channel from ” x−a l i c e : / l i b / data / Channel ”
impor t s t r u c t u r e Remote from ” x−a l i c e : / l i b / d i s t r i b u t i o n / Remote ”
impor t s t r u c t u r e Inspec to r from ” x−a l i c e : / l i b / t o o l s / Inspec to r ”

impor t ” l i b ” ;
impor t ” i n t r o ” ;
impor t ” formulas ” ;
impor t ” prop ” ;
impor t ” propexamples ” ;
impor t ” de fcn f ” ;
impor t ” s t a l− l i b ” ;

open L ib ;
open I n t r o ;

284 Chapter 8. Conclusions

open Formulas ;
open Prop ;
open DefCNF ;

fun o n e l i t e r a l r u l e clauses = l e t
va l u = hd (va lOf (L i s t . f i n d (fn c l => l eng th c l = 1) clauses)) ;
va l u ’ = negate u ;
va l clauses1 = L i s t . f i l t e r (fn c l => not (mem u c l)) c lauses

i n
smap (fn c l => sub t rac t c l [u ’] ord forms) clauses1 o r d f l

end
handle Option => clauses ;

fun a f f i r m a t i v e n e g a t i v e r u l e clauses = l e t
va l (neg ’ , pos) = p a r t i t i o n negat ive (unions clauses ord forms)
va l neg = smap negate neg ’ ord forms
va l pos only = sub t rac t pos neg ord forms and neg only = sub t rac t neg pos ord forms
va l pure = union pos only (smap negate neg only ord forms) ord forms

i n
i f (pure = []) then ra i se (F a i l u r e ” a f f i r m a t i v e n e g a t i v e r u l e ”)

e lse
(L i s t . f i l t e r (fn c l => ((i n t e r s e c t c l pure ord forms) = [])) c lauses)

end ;

fun reso lve on p clauses = l e t
va l p ’ = negate p and (pos , notpos) = p a r t i t i o n (mem p) clauses
va l (neg , o ther) = p a r t i t i o n (mem p ’) notpos
va l pos ’ = smap (L i s t . f i l t e r (fn l => l <> p)) pos o r d f l
and neg ’ = smap (L i s t . f i l t e r (fn l => l <> p ’)) neg o r d f l
fun temp union a b = union a b ord forms
va l res0 = a l l p a i r s temp union pos ’ neg ’

i n
union other (L i s t . f i l t e r (noN t r i v i a l) res0) o r d f l

end ; ;

fun reso lu t i on b lowup c l s l = l e t
va l m = L i s t . l eng th (L i s t . f i l t e r (mem l) c l s)
and n = L i s t . l eng th (L i s t . f i l t e r (mem (negate l)) c l s)

i n
m ∗ n − m − n

end ; ;

fun r e s o l u t i o n r u l e clauses = l e t
va l pvs = L i s t . f i l t e r p o s i t i v e (unions clauses ord forms)
va l p = minimize (reso lu t i on b lowup clauses) pvs

i n
reso lve on p clauses

end ; ;

(∗ −−− ∗)
(∗ Overa l l procedure . ∗)
(∗ −−− ∗)

fun dp clauses =
i f c lauses = [] then t rue else i f mem [] c lauses then f a l s e e lse

dp (o n e l i t e r a l r u l e clauses)
handle F a i l u r e =>

dp (a f f i r m a t i v e n e g a t i v e r u l e clauses)
handle F a i l u r e =>

dp (r e s o l u t i o n r u l e clauses) ; ;

(∗ −−− ∗)
(∗ Davis−Putnam s a t i s f i a b i l i t y t e s t e r and tau to logy checker . ∗)
(∗ −−− ∗)

fun dpsat fm = dp (de fcn fs fm) ; ;

fun dptaut fm = not (dpsat (Not fm)) ; ;

(∗ −−− ∗)

A 6. Alice ML code for the DPLL-Stalmarck solver 285

(∗ Examples . ∗)
(∗ −−− ∗)
(∗
START INTERACTIVE ; ;
t au to logy (prime 11) ; ;

dp taut (prime 11) ; ;
END INTERACTIVE ; ; ∗)

(∗ −−− ∗)
(∗ The same th i ng but w i th the DPLL procedure . ∗)
(∗ −−− ∗)

fun posneg count c l s l = l e t
va l m = L i s t . l eng th (L i s t . f i l t e r (mem l) c l s)
va l n = L i s t . l eng th (L i s t . f i l t e r (mem (negate l)) c l s)
i n
m + n ;

end ;

fun d p l l c lauses =
i f c lauses = [] then t rue else i f mem [] c lauses then f a l s e e lse
d p l l (o n e l i t e r a l r u l e clauses)
handle F a i l u r e =>

d p l l (a f f i r m a t i v e n e g a t i v e r u l e clauses)
handle F a i l u r e =>

l e t
va l pvs = L i s t . f i l t e r p o s i t i v e (unions clauses ord forms)
va l p = maximize (posneg count clauses) pvs

i n
d p l l (i n s e r t [p] c lauses o r d f l) o re lse d p l l (i n s e r t [negate p] c lauses o r d f l)

end ; ;

fun d p l l s a t fm = d p l l (de fcn fs fm) ; ;

fun d p l l t a u t fm = not (d p l l s a t (Not fm)) ; ;

(∗ −−− ∗)
(∗ Example . ∗)
(∗ −−− ∗)
(∗
START INTERACTIVE ; ;
d p l l t a u t (prime 11) ; ;
END INTERACTIVE ; ;
∗)
(∗ −−− ∗)
(∗ I t e r a t i v e implementat ion w i th e x p l i c i t t r a i l i ns tead of recu rs ion . ∗)
(∗ −−− ∗)

datatype t r a i l m i x = Guessed | Deduced ; ;

fun p r i n t T r a i l t = l e t
va l l i t s F r o m T r a i l = (L i s t .map (fn (a ,) => a)) t
fun p r i n t L i t e r a l l = case l o f (Not (p)) => (p r i n t ” ˜ ” ; (pr p) ; p r i n t ”\n ”) | p => (

pr p ; p r i n t ”\n ”)
i n

(p r i n t ”Beg\n ” ; L i s t . app p r i n t L i t e r a l l i t s F r o m T r a i l ; p r i n t ”Beg\n ”)
end ;

fun unassigned c l s t r a i l = l e t
fun l i t a b s p = case p of Not q => q | => p
fun smap temp f ord s = smap f s ord

i n
sub t rac t (unions (smap temp (smap temp l i t a b s ord forms) o r d f l c l s) ord forms)

(smap temp (l i t a b s o f s t) ord forms t r a i l) ord forms
end ; ;

fun un i t subpropagate (c ls , p a r t i a l F n , t r a i l) = l e t
va l c ls ’ = L i s t .map (L i s t . f i l t e r ((not) o (def ined p a r t i a l F n) o negate)) c l s ;

286 Chapter 8. Conclusions

va l uu = fn [c] => i f not (def ined p a r t i a l F n c) then [c] e lse ra i se (F a i l u r e ” ”)
| => r a i se (F a i l u r e ” ”) ;

va l newunits = unions (m a p f i l t e r uu c ls ’) ord forms
i n

i f newunits = [] then (c ls ’ , pa r t i a lFn , t r a i l) e lse
l e t

va l t r a i l ’ = i t l i s t (fn p => fn t => (p , Deduced) : : t) newunits t r a i l
va l pa r t i a lFn ’ = i t l i s t (fn u => (u |−> ())) newunits p a r t i a l F n

i n
un i t subpropagate (c ls ’ , pa r t i a lFn ’ , t r a i l ’)

end
end

fun un i t p ropaga te (c ls , t r a i l) = l e t
va l p a r t i a l F n = i t l i s t (fn (x ,) => (x |−> ())) t r a i l undef ined
va l (c ls ’ , pa r t i a lFn ’ , t r a i l ’) = un i t subpropagate (c ls , pa r t i a lFn , t r a i l)

i n
(c ls ’ , t r a i l ’)

end ; ;

fun backt rack t r a i l =
case t r a i l o f

(p , Deduced) : : t t => backt rack t t
| => t r a i l ; ;

fun d p l i c l s t r a i l = l e t
(∗++++++++++Search space t r a c k i n g +++++++++++∗)
va l (d p l l v i s i t e d N o d e s : (prop formula) Channel . channel) = Channel . channel () ;

fun dp l l v i s i t edNodesPu t1 e l t = Channel . put (dp l l v i s i t edNodes , e l t)

fun dp l l v i s i tedNodesGet1 () = l e t
va l tempCh = Channel . c lone d p l l v i s i t e d N o d e s
i n Channel . toL is tNB (tempCh) end ;
(∗++++++++++Search space t r a c k i n g +++++++++++∗)

(∗Timing ∗)
va l dp l lT ime = Timer . s ta r tRea lT imer () ;

fun dp l i ma in c l s t r a i l = l e t
va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l)

i n
i f mem [] c ls ’ then

case (backt rack t r a i l) o f
(p , Guessed) : : t t => (dp l l v i s i t edNodesPu t1 (negate p) ; (∗ search space t r a c k i n g ∗)

dp l i ma in c l s ((negate p , Deduced) : : t t))
| => f a l s e

e lse

case (unassigned c l s t r a i l ’) o f
[] => (p r i n t T r a i l t r a i l ’ ; t r ue)
| ps => l e t

va l p = maximize (posneg count c ls ’) ps ;
do dp l l v i s i t edNodesPu t1 p ;

i n
dp l i ma in c l s ((p , Guessed) : : t r a i l ’)

end
end ;

i n
(dp l i ma in c l s t r a i l , dp l l v i s i tedNodesGet1 () , (Time . t o S t r i n g (Timer . checkRealTimer

dp l lT ime)))
end

fun d p l i s a t fm = d p l i (de fcn fs fm) [] ; ;
fun d p l i t a u t fm = l e t va l (res , srchSpc , t) = (d p l i s a t (Not fm)) i n (not (res) , srchSpc , t)

end ; ;

(∗ −−− ∗)

A 6. Alice ML code for the DPLL-Stalmarck solver 287

(∗ With simple non−ch rono log i ca l backjumping and lea rn i ng . ∗)
(∗ −−− ∗)

fun backjump c l s p t r a i l =
case (backt rack t r a i l) o f

(q , Guessed) : : t t =>
l e t va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , (p , Guessed) : : t t) i n
i f mem [] c ls ’ then backjump c l s p t t e lse t r a i l end

| => t r a i l ; ;

fun dplb c l s t r a i l = l e t
(∗++++++++++Search space t r a c k i n g +++++++++++∗)
va l (d p l l v i s i t e d N o d e s : (prop formula) Channel . channel) = Channel . channel () ;

fun dp l l v i s i t edNodesPu t1 e l t = Channel . put (dp l l v i s i t edNodes , e l t)

fun dp l l v i s i tedNodesGet1 () = l e t
va l tempCh = Channel . c lone d p l l v i s i t e d N o d e s
i n Channel . toL is tNB (tempCh) end ;
(∗++++++++++Search space t r a c k i n g +++++++++++∗)

(∗Timing ∗)
va l dp l lT ime = Timer . s ta r tRea lT imer () ;

fun dplb main c l s t r a i l = l e t
va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l) i n

i f mem [] c ls ’ then
case (backt rack t r a i l) o f

(p , Guessed) : : t t => l e t
va l t r a i l ’ = backjump c l s p t t
va l d e c l i t s = L i s t . f i l t e r (fn (, d) => d = Guessed) t r a i l ’
va l c o n f l i c t = i n s e r t (negate p) (smap (negate o f s t) d e c l i t s ord forms)

ord forms
(∗ search space t r a c k i n g ∗)
do dp l l v i s i t edNodesPu t1 (negate p) ;
i n

dplb main (c o n f l i c t : : c l s) ((negate p , Deduced) : : t r a i l ’)
end

| => f a l s e
e lse

case (unassigned c l s t r a i l ’) o f
[] => (p r i n t T r a i l ; t r ue)

| ps => l e t
va l p = maximize (posneg count c ls ’) ps ;
do dp l l v i s i t edNodesPu t1 p ;

i n
dplb main c l s ((p , Guessed) : : t r a i l ’)

end
end ;

i n
(dplb main c l s t r a i l , dp l l v i s i tedNodesGet1 () , (Time . t o S t r i n g (Timer . checkRealTimer

dp l lT ime)))
end

fun dp lbsa t fm = dplb (de fcn fs fm) [] ; ;

fun dp lb tau t fm = l e t va l (res , srchSpc , t) = (dp lbsa t (Not fm)) i n (not (res) , srchSpc , t)
end ; ;

(∗ −−− ∗)
(∗ Examples . ∗)
(∗ −−− ∗)
(∗
START INTERACTIVE ; ;
d p l i t a u t (prime 101) ; ;
dp l b tau t (prime 101) ; ;
END INTERACTIVE ; ;
∗)

288 Chapter 8. Conclusions

(∗−−−−−−−−−−−−−−−−−−−−−−−DPLL Stalmarck−−∗)

type inboxE l t = prop formula l i s t

(∗
rSa tu ra t ion w i thEqvRetu rn ;
va l i t :

s t r i n g −> bool −> ’ a −> (Formulas . prop L ib . formula l i s t l i s t −> u n i t) −>
Formulas . prop L ib . formula −> ’ b −> i n t −> bool −> bool l i s t ∗ Time . t ime

∗)
fun tempHelperFun remote var Ind putTk t helperTime fm = l e t
fun putDednsAsEqFn () = ()
va l p = Remote . take putTkt
s t r u c t u r e s t = unpack (p) : (va l dp l l I nboxPu t : prop formula l i s t l i s t −> u n i t) ;
va l putDednsAsClFn = s t . dp l l I nboxPu t
va l r =

i f (helperTime <0) then
l e t va l (t , f) = Thread . spawnThread (fn ()=>rSa tu ra t ion w i thEqvRetu rn var Ind t rue ”

temp ” putDednsAsClFn fm putDednsAsEqFn 2 f a l s e)
i n f end

else
(va lOf (t imeout ((fn ()=>rSa tu ra t ion w i thEqvRetu rn var Ind t rue ” temp ”

putDednsAsClFn fm putDednsAsEqFn 2 f a l s e) , helperTime))
handle op t ion => ([] , Time . now ())

)
i n
()
end

fun boots t rapHelper remote var Ind putTk t helperFn fm helperTime = tempHelperFun remote
var Ind putTkt helperTime fm ;

(∗+++++++++++++++++++++++++++++++++∗)
fun tempHelperFun var Ind putDednsAsClFn helperTime fm = l e t
fun putDednsAsEqFn () = ()
va l (thrHandle , r) =

i f (helperTime <0) then
l e t va l (t , f) = Thread . spawnThread (fn ()=>rSa tu ra t ion w i thEqvRetu rn var Ind t rue ”

temp ” putDednsAsClFn fm putDednsAsEqFn 2 f a l s e)
i n (SOME t , f) end

else
(

l e t
va l (t2 , r2) = t i m e o u t t h r ((fn ()=>rSa tu ra t ion w i thEqvRetu rn var Ind t rue ” temp

” putDednsAsClFn fm putDednsAsEqFn 2 f a l s e) , helperTime)
i n

(t2 , (va lOf (r2) handle op t ion => ([] , Time . now ())))
end

)
i n

thrHandle
end

fun boots t rapHelper var Ind putDednsAsClFn helperFn fm helperTime = tempHelperFun var Ind
putDednsAsClFn helperTime fm ;

fun wrapUpHelper thrHandle = i f isNone thrHandle then () e lse Thread . te rmina te (va lOf
thrHandle) handle => () ;

(∗+++++++++++++++++++++++++++++++++∗)

fun d p l i s t a l helperFun helperTime fm c l s t r a i l = l e t

(∗ +++++++++++ STEP 1 +++++++++++++++ ∗)
(∗ make the l o c a l d p l l I n bo x channel ; Any ex te rna l agent can post a
message to t h i s ; As long as they know the appropr ia te t i c k e t :
which here i s i s Xdp l lTk t X ;
For example , the ex te rna l agents can be the Stalmarck agents ∗)

va l (d p l l I n b o x : i nboxE l t Channel . channel) = Channel . channel () ;

A 6. Alice ML code for the DPLL-Stalmarck solver 289

(∗ Funct ion to i n s e r t elements to dp l l I nb o x ∗)
fun dp l l InboxPut1 e l t L i s t = L i s t . app (fn y => Channel . put (d p l l I n b o x , y)) e l t L i s t ;

(∗ Al low f o r REMOTE INVOCATION of the above f u n c t i o n ∗)
va l dp l l InboxPutPack =
pack (va l dp l l I nboxPu t = Remote . proxy dp l l InboxPut1) :
(va l dp l l I nboxPu t : i nboxE l t l i s t −> u n i t)
va l d p l l P u t T k t = Remote . o f f e r dpl l InboxPutPack ;
do p r i n t d p l l P u t T k t ;

(∗ Funct ion to get elements from dp l l I nb o x
Note t h a t t h i s w i l l r e t u r n a l i s t o f c lauses ∗)
fun dp l l InboxGet1 () = l e t
va l tempCh = Channel . c lone d p l l I n b o x
i n Channel . toL is tNB (tempCh) end ;

(∗ Al low f o r REMOTE INVOCATION of the above f u n c t i o n ∗)
va l dpl l InboxGetPack =
pack (va l dp l l InboxGet = Remote . proxy dp l l InboxGet1) :
(va l dp l l InboxGet : u n i t −> i nboxE l t l i s t)
va l dp l lGe tTk t = Remote . o f f e r dpl l InboxGetPack ;
do p r i n t dp l lGe tTk t ;

(∗ +++++++++++ STEP 2 +++++++++++++++ ∗)
va l thrHandle = boots t rapHelper ” p ” dp l l InboxPut1 helperFun fm helperTime

(∗++++++++++Search space t r a c k i n g +++++++++++∗)
va l (d p l l v i s i t e d N o d e s : (prop formula) Channel . channel) = Channel . channel () ;

fun dp l l v i s i t edNodesPu t1 e l t = Channel . put (dp l l v i s i t edNodes , e l t)

fun dp l l v i s i tedNodesGet1 () = l e t
va l tempCh = Channel . c lone d p l l v i s i t e d N o d e s
i n Channel . toL is tNB (tempCh) end ;
(∗++++++++++Search space t r a c k i n g +++++++++++∗)

(∗Timing ∗)
va l dp l lT ime = Timer . s ta r tRea lT imer () ;

(∗DPLL∗)
fun d p l i s t a l m a i n c l s t r a i l = l e t
va l c lsL is tFromInbox = dp l l InboxGet1 () ;

va l re lClsFromInbox = dropDupl ica tesFromClsL is t (L i s t . f i l t e r (i sC lRe levan t (
vars InL is tOfC lauses c l s)) c lsL is tFromInbox)

va l c l s = L i s t .@(c ls , re lClsFromInbox) (∗Add re levan t Inbox clauses to problem∗)

va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l)
i n

i f mem [] c ls ’ then
case (backt rack t r a i l) o f

(p , Guessed) : : t t => (dp l l v i s i t edNodesPu t1 (negate p) ; (∗ search space t r a c k i n g ∗)
d p l i s t a l m a i n c l s ((negate p , Deduced) : : t t))

| => f a l s e
e lse

case (unassigned c l s t r a i l ’) o f
[] => (p r i n t T r a i l t r a i l ’ ; t r ue)

| ps => l e t
va l p = maximize (posneg count c ls ’) ps
(∗ search space t r a c k i n g ∗)
do dp l l v i s i t edNodesPu t1 p ;

i n
d p l i s t a l m a i n c l s ((p , Guessed) : : t r a i l ’)

end
end

i n

290 Chapter 8. Conclusions

(l e t
va l res = (d p l i s t a l m a i n c l s t r a i l , dp l l v i s i tedNodesGet1 () , (Time . t o S t r i n g (Timer .

checkRealTimer dp l lT ime)))
i n

(wrapUpHelper thrHandle ; res)
end

)
end

fun d p l i s t a l s a t helperFn helperTime fm = d p l i s t a l helperFn helperTime fm (defcn fs fm)
[] ; ;

fun d p l i s t a l t a u t helperFn helperTime fm = l e t va l (res , srchSpc , t) = (d p l i s t a l s a t
helperFn helperTime (Not fm)) i n (not (res) , srchSpc , t) end ; ;

fun d p l b s t a l helperFun helperTime fm c l s t r a i l = l e t

(∗ +++++++++++ STEP 1 +++++++++++++++ ∗)
(∗ make the l o c a l d p l l I n bo x channel ; Any ex te rna l agent can post a
message to t h i s ; As long as they know the appropr ia te t i c k e t :
which here i s i s Xdp l lTk t X ;
For example , the ex te rna l agents can be the Stalmarck agents ∗)

va l (d p l l I n b o x : i nboxE l t Channel . channel) = Channel . channel () ;

(∗ Funct ion to i n s e r t elements to dp l l I nb o x ∗)
fun dp l l InboxPut1 e l t L i s t =
L i s t . app (fn y => Channel . put (d p l l I n b o x , y)) e l t L i s t ;

(∗ Al low f o r REMOTE INVOCATION of the above f u n c t i o n ∗)

va l dp l l InboxPutPack =
pack (va l dp l l I nboxPu t = Remote . proxy dp l l InboxPut1) :
(va l dp l l I nboxPu t : i nboxE l t l i s t −> u n i t)
va l d p l l P u t T k t = Remote . o f f e r dpl l InboxPutPack ;
do p r i n t d p l l P u t T k t ;

(∗ Funct ion to get elements from dp l l I nb o x
Note t h a t t h i s w i l l r e t u r n a l i s t o f c lauses ∗)
un dp l l InboxGet1 () = l e t
va l tempCh = Channel . c lone d p l l I n b o x
i n Channel . toL is tNB (tempCh) end ;

(∗ Al low f o r REMOTE INVOCATION of the above f u n c t i o n ∗)
va l dpl l InboxGetPack =
pack (va l dp l l InboxGet = Remote . proxy dp l l InboxGet1) :
(va l dp l l InboxGet : u n i t −> i nboxE l t l i s t)
va l dp l lGe tTk t = Remote . o f f e r dpl l InboxGetPack ;
do p r i n t dp l lGe tTk t ;

(∗ +++++++++++ STEP 2 +++++++++++++++ ∗)
va l thrHandle = boots t rapHelper ” p ” dp l l InboxPut1 helperFun fm helperTime

(∗++++++++++Search space t r a c k i n g +++++++++++∗)
va l (d p l l v i s i t e d N o d e s : (prop formula) Channel . channel) = Channel . channel () ;

fun dp l l v i s i t edNodesPu t1 e l t = Channel . put (dp l l v i s i t edNodes , e l t)

fun dp l l v i s i tedNodesGet1 () = l e t
va l tempCh = Channel . c lone d p l l v i s i t e d N o d e s
i n Channel . toL is tNB (tempCh) end ;
(∗++++++++++Search space t r a c k i n g +++++++++++∗)

(∗Timing ∗)
va l dp l lT ime = Timer . s ta r tRea lT imer () ;

fun dp lb s ta l ma in c l s t r a i l = l e t
va l c lsL is tFromInbox = dp l l InboxGet1 () ;

va l re lClsFromInbox = dropDupl ica tesFromClsL is t (L i s t . f i l t e r (i sC lRe levan t (
vars InL is tOfC lauses c l s)) c lsL is tFromInbox)

va l c l s = L i s t .@(c ls , re lClsFromInbox) (∗Add re levan t Inbox clauses to problem∗)

A 6. Alice ML code for the DPLL-Stalmarck solver 291

va l (c ls ’ , t r a i l ’) = un i t p ropaga te (c ls , t r a i l) i n
i f mem [] c ls ’ then

case (backt rack t r a i l) o f
(p , Guessed) : : t t => l e t

va l t r a i l ’ = backjump c l s p t t
va l d e c l i t s = L i s t . f i l t e r (fn (, d) => d = Guessed) t r a i l ’
va l c o n f l i c t = i n s e r t (negate p) (smap (negate o f s t) d e c l i t s ord forms)

ord forms

(∗ search space t r a c k i n g ∗)
do dp l l v i s i t edNodesPu t1 (negate p) ;
i n

dp lb s ta l ma in (c o n f l i c t : : c l s) ((negate p , Deduced) : : t r a i l ’)
end

| => f a l s e
e lse

case (unassigned c l s t r a i l ’) o f
[] => (p r i n t T r a i l ; t r ue)

| ps => l e t
va l p = maximize (posneg count c ls ’) ps ;
do dp l l v i s i t edNodesPu t1 p ;

i n
dp lb s ta l ma in c l s ((p , Guessed) : : t r a i l ’)

end
end ;

i n
(l e t

va l res = (dp lb s ta l ma in c l s t r a i l , dp l l v i s i tedNodesGet1 () , (Time . t o S t r i n g (Timer .
checkRealTimer dp l lT ime)))

i n
(wrapUpHelper thrHandle ; res)

end
)

end

fun d p l b s t a l s a t helperFn helperTime fm = d p l b s t a l helperFn helperTime fm (defcn fs fm)
[] ; ;

fun d p l b s t a l t a u t helperFn helperTime fm = l e t va l (res , srchSpc , t) = (d p l b s t a l s a t
helperFn helperTime (Not fm)) i n (not (res) , srchSpc , t) end ; ;

292 Chapter 8. Conclusions

A 7 Code fragment for the abstraction for DPLL work-
ing with a helper

Listing 5: Programming abstraction of DPLL solver with helper

fun makeInboxAndGetAccessHandles () = l e t
va l (d p l l I n b o x : inboxEl tType Channel . channel) = Channel . channel () ;
(∗ Funct ion to i n s e r t a l i s t o f c lauses to d p l l I n bo x ∗)
fun dp l l InboxPut1 e l t L i s t = L i s t . app (fn y => Channel . put (d p l l I n b o x , y)) e l t L i s t ;
(∗ Funct ion to get elements from dp l l I nb o x ∗)
fun dp l l InboxGet1 () = l e t va l tempCh=Channel . c lone d p l l I n b o x i n Channel . toL is tNB tempCh end
(∗ Al low f o r remote invoca t i on o f the above f u n c t i o n s ∗)
va l dp l l InboxPutPack = pack (va l dp l l I nboxPu t = Remote . proxy dp l l InboxPut1)

: (va l dp l l I nboxPu t : inboxEl tType l i s t −> u n i t)
va l d p l l P u t T k t = Remote . o f f e r dpl l InboxPutPack ;
va l dpl l InboxGetPack = pack (va l dp l l InboxGet = Remote . proxy dp l l InboxGet1)

: (va l dp l l InboxGet : u n i t −> inboxEl tType l i s t)
va l dp l lGe tTk t = Remote . o f f e r dpl l InboxGetPack ;
i n

(dp l l I nbox , dp l l InboxPut1 , dpl l InboxGet1 , dp l lPu tTk t , dp l lGe tTk t)
end
fun doDPLLwithHelper d p l l S o l v e r inboxEl tType boots t rapHelper wrapUpHelper helperFun

helperTime fm = l e t
(∗ make the l o c a l d p l l I n bo x channel ; Any ex te rna l agent (e . g . , s ta lmarck agent)

can post to t h i s , as long as they know the appropr ia te t i c k e t ∗)
va l (dp l l I nbox , dp l l InboxPut1 , dpl l InboxGet1 , dp l lPu tTk t , dp l lGe tTk t) =

makeInboxAndGetAccessHandles ()
va l thrHandle = boots t rapHelper d p l l P u t T k t dp l lGe tTk t helperFun fm helperTime
(∗ +++++++++++ DPLL +++++++++++++++ ∗)
va l c l s = defcn fs fm ; (∗Convert ing to CNF∗) va l t r a i l = [] (∗ I n i t i a l value ∗)
va l res = d p l l S o l v e r dp l l InboxGet1 c l s t r a i l ; do wrapUpHelper thrHandle ;

i n res end

A 8. Code trace for the working of collaborative unification tactic 293

A 8 Code trace for the working of collaborative unifica-
tion tactic

In §7.9.1, we described depthCrossTalk, a depth-first-search-based automatic tactic.
depthCrossTalk is identical to depth, HAL’s depth-first-search-based automatic tac-
tic, except that it uses crossTalk instead of HAL’s unify tactic. A recap of depth and
depthCrossTalk is as follows:

fun d e p t h F i r s t pred tac x = i f pred x then a l l e lse (tac −− d e p t h F i r s t pred tac)
va l depth = d e p t h F i r s t f i n a l (safeSteps 1 | | u n i f y 1 | | quant 1) ;
(∗Use the crossTalk t a c t i c ins tead of u n i f y i n the above l i n e ; to u n i f y across
a l l pending sub−goalsPass [] as the f i r s t argument to crossTalk ∗)
va l depthCrossTalk = d e p t h F i r s t f i n a l (safeSteps 1 | | crossTalk [] | | quant 1) ;

We now provide an example illustrating the scenario of performing unification on a
proof-state, which has sub-goals with shared meta-variable(s). depthCrossTalk solves
the problem whereas depth does not. The detailed workings of the following example
are given in Appendix §A 8.

Example 0.1 Collaborative unification

GIVEN:For constants, p,q,r,
1. ∀x Q(x)∧R(x)→ P(x)
2. ∀x S(x)→ Q(x)
3. ∀x Q1(x)∧R1(x)→ P1(x)
4. R(p)∧R(q)∧R(r)
5. S(p)∧S(q)
6. Q1(q)∧R1(q)

GOAL: ∃x.(P(x)∧P1(x))

294 Chapter 8. Conclusions

Proof state: Applying propositional and quantification rules on the above problem,
we get the following proof state with 6 sub-goals and meta-variables: ?_a,?_b,?_c:

Listing 6: Example illustrating the utility of crossTalk, the collaborative unification tactic. ‘connective’-
L/R to the left and right sequent calculus rules for ‘connective’; variables preceded with the ‘?’ symbol
denote meta-variables.

MAIN GOAL: (ALL x . S(x) −−> Q(x)) & ((ALL x . R1(x) & Q1(x) −−> P1(x)) &
(S(p) &

(S(q) &
(R(p) &

(R(q) &
(R(r) &

(Q(p) &
(Q(q) &

(Q1(q) &
(R1(q) &

(ALL x . R(x) & Q(x) −−> P(x)))))))))))) −−>
(EX x . P(x) & P1(x))

SUB−GOALS:
1 . P(? b) , R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) ,

R(p) , S(q) , S(p) ,
ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− P(? a) , EX x . P(x) & P1(x)

2 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,
S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− R(? b) , P(? a) , EX x . P(x) & P1(x)

3 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,
S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− Q(? b) , P(? a) , EX x . P(x) & P1(x)

4 . P(? c) , R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) ,
R(p) , S(q) , S(p) ,
ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− P1(? a) , EX x . P(x) & P1(x)

5 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,
S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− R(? c) , P1(? a) , EX x . P(x) & P1(x)

6 . R1(q) , Q1(q) , Q(q) , Q(p) , R(r) , R(q) , R(p) ,
S(q) , S(p) , ALL x . R1(x) & Q1(x) −−> P1(x) ,
ALL x . S(x) −−> Q(x) ,
ALL x . R(x) & Q(x) −−> P(x)
|− Q(? c) , P1(? a) , EX x . P(x) & P1(x)

Next step: apply unification: Find a suitable unifier for the list of meta-variables:
?_a , ?_b, ?_c, which satisfies all the 6 sub-goals. As can be worked out easily,
the possible unifier(s) for each sub-goal (i.e. which make the left and right sides
of the sequent identical) are as follows:

1. ? a = ? b

2. ? b = (r,q,p) i.e. 3 candidates:(b,r), (b,q), (b,p)

3. ? b = (q,p) i.e. 2 candidates: (b,q), (b,p)

4. Unification cannot be applied successfully

A 8. Code trace for the working of collaborative unification tactic 295

5. ? c = (r,q,p) i.e. 3 candidates: (c,r), (c,q), (c,p)

6. ? c = (q,p) i.e. 2 candidates: (c,q) (c,p)

HAL’s depth tactic results in a non-terminating search:

When HAL’s sequential depth-first search tactic, depth is applied, the unify tactic
is used to tackle unification. As explained earlier, this tackles unification for
each sub-goal. In our example here, the first unifier produced by sub-goal-2, (b
= r), results in a looping situation, resulting in a non-terminating proof search.
In particular, here, the looping happens because new disjuncts are added to the
right hand side of the sequent.

Given the lazy nature of the list of states returned by the unify tactic used by
depth, (b = r) is applied across all sub-goals and execution of the depth tactic
is continued. This in turn, means application of the quant and safe tactics in
succession, on the state produced after the application of (b = r).

Even if just a re-ordering of variables may suffice to circumvent the problem
faced in our contrived example, it is easy to see that the problem can be rear-
ranged in a way that still poses the same problem. Furthermore, the effect of
ordering illustrates a problem that can appear in many other forms.

depthcrossTalk solves the goal:

Application of depthCrossTalk, the depth-first-approach-based automatic tactic
which uses the collaborative unification tactic, crossTalk (see §7.9.1), success-
fully solves the goal. A summary of the workings of the proof attempt by
depthCrossTalk is provided below. This illustrates the process of finding the
consensus unifiers, using the crossTalk tactic.

The unifiers are printed as Key-val pairs. e.g., for sub-goal 3, the two unifiers
are: [Key= b,Val= p] and [Key= b,Val= q]. Only the successful attempts at
finding a consensus are included in the listing below. The names of the native
inference rules being applied at each step are also included, should the reader
wish to work through the example.

The STEP numbers included can be tracked with the same in the crossTalk code
fragment given earlier (see Listing 7.9). Also, for sub-goal 4, unification cannot
be applied. crossTalk deals with such a situation by ignoring the sub-goal for the
purpose of finding the consensus unifiers. But, when the next-states are returned,
the unifier gets applied to all the sub-goals, including sub-goal 4.

Listing 7: Execution-trace of crossTalk, for given example; Finding the consensus unifiers

∗∗∗∗Apply ing crossTalk∗∗∗∗∗∗
STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (q , q , q)
STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (q , q , p)
STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (p , p , q)
STEP−2.3 Consensus i s o f leng th . . 3 ; (a , b , c) = (p , p , p)
STEP−3 Num of consensus u n i f i e r s : 4 ∗∗∗∗

296 Chapter 8. Conclusions

Finding more consensus unifiers: As observed in the description of crossTalk ear-
lier, the states are returned as a sequence, to adhere to the type definition of
a tactic. Thus, in the rest of this trace, after the application of crossTalk, the
state corresponding to the first unifier in the list of consensus unifiers is used
to generate the corresponding next-proof-state. This proof state is used for the
subsequent inference steps.

Referring to the trace given above, the first candidate in the sequence of next-
proof-states is generated by applying the unifier (a , b , c) = (q, q, q). This is
applied to all the 6 sub-goals and execution of depthCrossTalk is continued on
the resulting state.

Listing 8: Execution-trace of crossTalk, for given example; Finding more consensus unifiers

∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[basic , basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R,
|−L , −−>−L , <−>−L , <−>−R, basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL ,
a l lR , &−R, |−L , −−>−L , <−>−L , <−>−R]

∗∗∗∗ Apply ing crossTalk ∗∗∗∗∗∗
∗∗∗ ! ! ! STEP−1 Num of sub goals . . ! ! ! 3 ; ; ! ! ! Meta−v a r i a b l e l i s t : [] ! ! !

∗∗∗∗ Apply ing quant ∗∗∗∗∗∗ [a l l L , exR]
∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[bas ic &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , , &−R basic &−L , |−R, −−>−R,
˜−L , ˜−R exL , a l lR , &−R, |−L , −−>−L , basic , &−L , |−R, −−>−R, ˜−L , ˜−R,

exL , a l lR , &−R, |−L , −−>−L , <−>−L , <−>−R, basic , &−L , |−R, −−>−R, ˜−L ,
˜−R, exL , a l lR , , &−R, |−L , −−>−L , <−>−L , <−>−R]

∗∗∗∗ Apply ing crossTalk ∗∗∗∗∗∗
∗∗∗ ! ! ! STEP−1 Num of sub goals . . ! ! ! 5 ; ! ! ! Meta−v a r i a b l e l i s t : d , e , ! ! !
STEP−2.3 Consensus i s o f leng th . . 2 ; (d , e) = (q , q) ;
STEP−3 Num of consensus u n i f envs i s 1∗∗∗∗

Using the consensus unifiers : From the above, we get

(a , b , c, d, e) = (q, q, q, q, q)

Listing 9: Execution-trace of crossTalk, for given example; Using the consensus unifiers

∗∗∗∗ Apply ing safe ∗∗∗∗∗∗
[basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R, |−L ,
−−>−L , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R, basic ,
basic , basic , basic , basic , &−L , |−R, −−>−R, ˜−L , ˜−R, exL , a l lR , &−R,
|−L , −−>−L , <−>−L , <−>−R]

(ALL x . S(x) −−> Q(x)) & ((ALL x . R1(x) & Q1(x) −−> P1(x)) &
(S(p) &

(S(q) &
(R(p) &

(R(q) &
(R(r) &

(Q(p) &
(Q(q) &

(Q1(q) &
(R1(q) &

(ALL x .
R(x) & Q(x) −−> P(x)))))))))))) −−> EX x . P(x) & P1(x))

No subgoals l e f t !

A 8. Code trace for the working of collaborative unification tactic 297

Thus, depthCrossTalk, via application of the crossTalk tactic to perform unification
across the 6 sub-goals, with shared meta-variables has circumvented the looping situ-
ation caused by an incompatible unifier, which led the sequential depth tactic of HAL
(which uses the sequential unify tactic to perform unification) to a non-terminating
search.

298 Chapter 8. Conclusions

A 9 Implementation of unification in HAL - code

Listing 10: Code fragment for implementation of unification in HAL

s t r u c t u r e Uni fy = s t r u c t
except ion Fa i led ;
(∗Naive u n i f i c a t i o n o f terms con ta in ing no bound v a r i a b l e s ∗)
fun u n i f y L i s t s env = l e t (∗Chase v a r i a b l e assignments∗)

fun chase (Fol . Var a) =(chase (S t r i n g D i c t . lookup (env , a))
handle S t r i n g D i c t .E => Fol . Var a) | chase t = t
fun occurs a (Fol . Fun (, t s)) = occs l a t s
| occurs a (Fol . Param (, bs)) = occs l a (map Fol . Var bs)
| occurs a (Fol . Var b) = (a=b) o re lse (occurs a (S t r i n g D i c t . lookup (env , b))
handle S t r i n g D i c t .E => f a l s e) | occurs a = f a l s e

and occs l a = L i s t . e x i s t s (occurs a)
and u n i f y (Fol . Var a , t) = i f t = Fol . Var a then env else

i f occurs a t then ra i se Fa i led e lse S t r i n g D i c t . update (env , a , t)
| u n i f y (t , Fol . Var a) = u n i f y (Fol . Var a , t)
| u n i f y (Fol . Param (a ,) , Fol . Param (b ,)) = i f a=b then env else
ra i se Fa i led | u n i f y (Fol . Fun (a , t s) , Fol . Fun (b , us)) =
i f a=b then u n i f y l (ts , us) e lse ra i se Fa i led
| u n i f y = ra i se Fa i led

and u n i f y l ([] , []) =env | u n i f y l (t : : ts , u : : us) =
u n i f y L i s t s (u n i f y (chase t , chase u)) (ts , us) | u n i f y l = ra i se Fa i led i n u n i f y l
end

(∗ U n i f i c a t i o n o f atomic formulae
va l atoms : Fol . form ∗ Fol . form −> Fol . term S t r i n g D i c t . t ∗)

fun atoms (Fol . Pred (a , t s) , Fol . Pred (b , us)) = i f a=b then u n i f y L i s t s
S t r i n g D i c t . empty (ts , us) e lse ra i se Fa i led | atoms = ra i se Fa i led ;

(∗ I n s t a n t i a t e a term by an environment
va l instTerm : Fol . term S t r i n g D i c t . t −> Fol . term −> Fol . term∗)
fun instTerm env (Fol . Fun (a , t s)) = Fol . Fun (a , map (instTerm env) t s)
| instTerm env (Fol . Param (a , bs)) = Fol . Param (a , f o l d r Fol . termVars []

(map (instTerm env o Fol . Var) bs))
| instTerm env (Fol . Var a) = (instTerm env (S t r i n g D i c t . lookup (env , a))

handle S t r i n g D i c t .E => Fol . Var a) | instTerm env t = t ;

(∗ I n s t formula : va l instForm : Fol . term S t r i n g D i c t . t −> Fol . form −> Fol . form∗)
fun instForm env (Fol . Pred (a , t s)) = Fol . Pred (a , map (instTerm env) t s)
| instForm env (Fol . Conn (b , ps)) = Fol . Conn (b , map (instForm env) ps)
| instForm env (Fol . Quant (qnt , b , p)) = Fol . Quant (qnt , b , instForm env p)
| instForm env (Fol . Equal (t1 , t2)) =Fol . Equal (instTerm env t1 , instTerm env t2) ;

(∗ va l ins tGoa l : Fol . term S t r i n g D i c t . t −> Fol . goal −> Fol . goal end ; ∗)
fun ins tGoa l env (ps , qs) =(map (instForm env) ps , map (instForm env) qs) ;

end

References

Andersson, G., Bjesse, P., Cook, B., and Hanna, Z. (2002). A proof engine approach
to solving combinational design automation problems. In Proceedings of the 39th
annual Design Automation Conference, DAC ’02, pages 725–730, New York, NY,
USA. ACM.

Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley.

Armstrong, J. (1997). The development of Erlang. In ICFP ’97: Proceedings of
the second ACM SIGPLAN international conference on Functional programming,
pages 196–203, New York, NY, USA. ACM.

Armstrong, J. (2007). A history of Erlang. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 6–1–6–26, New
York, NY, USA. ACM.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Pat-
terson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick, K. A. (2006).
The landscape of parallel computing research: A view from berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

Avenhaus, J., Denzinger, J., Kuchlin, W., and Sinz, C. (2002). Teamwork-PaReDuX:
Knowledge-based search with multipleparallel agents. In Proceedings of the
International Conference onMassively Parallel Computing Systems (MPCS 2002),
Ischia, Italy. National Technological University Press, Fort Collins, CO, USA.

Beame, P., Kautz, H., and Sabharwal, A. (2003). Understanding the power of clause
learning. In In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pages 1194–1201.

Benzmüller, C. and Sorge, V. (2000). OANTS – an open approach at combining in-
teractive and automated theorem proving. In Kerber, M. and Kohlhase, M., editors,
Symbolic Computation and Automated Reasoning, pages 81–97. A.K.Peters.

Benzmüller, C., Sorge, V., Jamnik, M., and Kerber, M. (2008). Combined reasoning
by automated cooperation. Journal of Applied Logic, 6(3):318–342.

Biere, A., Heule, M. J. H., van Maaren, H., and Walsh, T., editors (2009). Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

299

300 References

Blochinger, W., Westje, W., Küchlin, W., and Wedeniwski, S. (2005a). ZetaSAT
– Boolean satisfiability solving on desktop grids. In Proc. of the Fifth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2005), vol-
ume 2, pages 1079–1086, Cardiff, UK.

Blochinger, W., Westje, W., Küchlin, W., and Wedeniwski, S. (2005b). ZetaSAT
– Boolean satisfiability solving on desktop grids. In Proc. of the Fifth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2005), vol-
ume 2, pages 1079–1086, Cardiff, UK.

Böhm, M. and Speckenmeyer, E. (1996). A fast parallel sat-solver - efficient workload
balancing. Ann. Math. Artif. Intell., 17(3-4):381–400.

Bonacina, M. P. (1992). Distributed automated deduction. PhD thesis, Department of
Computer Science, State University of New York at Stony Brook.

Bonacina, M. P. (1999). Ten years of parallel theorem proving: a perspective (in-
vited paper). In Gramlich, B., Kirchner, H., and Pfenning, F., editors, Notes of the
Third Workshop on Strategies in Automated Deduction, Second Federated Logic
Conference (FLoC99), pages 3–15.

Borälv, A. (1997). The industrial success of verification tools based on stalmarck’s
method. In CAV ’97: Proceedings of the 9th International Conference on Computer
Aided Verification, pages 7–10, London, UK. Springer-Verlag.

Bundy, A. (1998). Proof planning. Technical Report 886, School of Informatics,
University of Edinburgh.

Bundy, A., Basin, D., Hutter, D., and Ireland, A. (2005a). Rippling: Meta-level
Guidance for Mathematical Reasoning, volume 56 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press.

Bundy, A., Gow, J., Fleuriot, J., and Dixon, L. (2005b). Constructing induction
rules for deductive synthesis proofs. In Allen, S., Crossley, J., Lau, K., and Po-
ernomo, I., editors, Proceedings of the ETAPS-05 Workshop on Constructive Logic
for Automated Software Engineering (CLASE-05), Edinburgh, pages 4–18. LFCS
University of Edinburgh.

Bundy, A., van Harmelen, F., Horn, C., and Smaill, A. (1990). The Oyster-Clam
system. In Stickel, M. E., editor, 10th International Conference on Automated
Deduction, pages 647–648. Springer-Verlag. Lecture Notes in Artificial Intelligence
No. 449. Also available from Edinburgh as DAI Research Paper 507.

Butler, R. M. and Lusk, E. L. (1994). Monitors, messages, and clusters: the p4 parallel
programming system. Parallel Comput., 20(4):547–564.

Chrabakh, W. and Wolski, R. (2003). Gridsat: A chaff-based distributed sat solver
for the grid. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, page 37, Washington, DC, USA. IEEE Computer Society.

Cole, M. (1991). Algorithmic skeletons: structured management of parallel
computation. MIT Press, Cambridge, MA, USA.

References 301

Cole, M. (2004). Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming. Parallel Comput., 30(3):389–406.

Constable, R. L., Allen, S. F., Bromley, H. M., et al. (1986). Implementing
Mathematics with the Nuprl Proof Development System. Prentice Hall.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the Third IEEE Symposium on the Foundations of Computer Science, pages 151–
158.

Cope, M., Gent, I., and Hammond, K. (2001). Parallel heuristic search in Haskell. In
Trends in Functional Programming 2, pages 65–76. Intellect.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem
proving. Communications of the ACM, 5(7):394–397.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215.

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified data processing on large
clusters. In Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA.
USENIX Association.

Denzinger, J., Denzinger, O., Kronenburg, M., and Schulz, S. (1996). Discount - a dis-
tributed and learning equational prover. Journal of Automated Reasoning, 18:189–
198.

Denzinger, J. and Kronenburg, M. (1996). Planning for distributed theorem prov-
ing: The teamwork approach. In KI ’96: Proceedings of the 20th Annual German
Conference on Artificial Intelligence, pages 43–56, London, UK. Springer-Verlag.

Drechsler, R. and Becker, B. (1998). Binary Decision Diagrams: Theory and
Implementation. Springer.

Dubois, O. and Dequen, G. (2001). A backbone-search heuristic for efficient solving
of hard 3-sat formulae. In Proc. of the IJCAI01, pages 248–253.

Eén, N. and Sörensson, N. (2004). An extensible SAT solver. In Theory and
Applications of Satisfiability Testing, pages 333–336.

Falcou, J. (2009). Parallel programming with skeletons. Computing in Science and
Engineering, 11(3):58–63.

Feldman, Y., Dershowitz, N., and Hanna, Z. (2005). Parallel multithreaded satisfiabil-
ity solver: Design and implementation. In Electronic Notes in Theoretical Computer
Science (ENTCS), volume 128 of Proceedings of the 3rd International Workshop on
Parallel and Distributed Methods in Verification (PDMC 2004), pages 75–90.

Fisher, M. (1997). An open approach to concurrent theorem-proving. In Geller, K.
and Suttner, editors, Parallel Processing for Artificial Intelligence, pages 121–164.
Elsevier/North Holland.

302 References

Fisher, M. (2004). Multi-agent programming based on distributed deduction. In Zhang,
W. and Sorge, V., editors, Distributed Constraint Problem Solving and Reasoning in
Multi-Agent Systems, volume 112 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press.

Fisher, M. and Ghidini, C. (2002). The ABC of Rational Agent programming. In
First International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 849–856. ACM Press.

Forman, S. L. and Segre, A. M. (2002). Nagsat: A randomized, complete, paral-
lel solver for 3-sat. sat2002. In In Proceedings of Theory and Applications of
Satisfiability Testing, SAT02, pages 236–243.

Fuchs, D. and Denzinger, J. (1997). Knowledge-based cooperation between theorem
provers by techs. Technical Report SEKI-Report SR-97-11, University of Kaiser-
slautern.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (2002). Design patterns: ab-
straction and reuse of object-oriented design. In Software pioneers:contributions to
software engineering, pages 701–717, New York, NY, USA. Springer-Verlag New
York, Inc.

Gelder, A. V. (1999). Autarky pruning in propositional model elimination reduces
failure redundancy. J. Autom. Reasoning, 23(2):137–193.

Gent, I. P. and Walsh, T. (1993). Towards an understanding of hill-climbing procedures
for sat. In Proceedings of the eleventh national conference on Artificial intelligence,
AAAI’93, pages 28–33. AAAI Press.

Gent, I. P. and Walsh, T. (1994a). The SAT phase transition. In Proceedings of the
Eleventh European Conference on Artificial Intelligence (ECAI’94), pages 105–
109.

Gent, I. P. and Walsh, T. (1994b). The sat phase transition. In European Conference
on Artificial Intelligence (ECAI), pages 105–109.

Gil, L., Flores, P., and Silveira, L. M. (2008). PMSat: a parallel version of MiniSAT.
Journal on Satisfiability, Boolean Modeling and Computation, 6:71–98.

Giles, C. L., Bollacker, K. D., and Lawrence, S. (1998). Citeseer: an automatic citation
indexing system. In DL ’98: Proceedings of the third ACM conference on Digital
libraries, pages 89–98, New York, NY, USA. ACM.

Gomes, C., Selman, B., Crato, N., and Kautz, H. (2000). Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of automated reasoning,
24:2000.

Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting combinatorial search
through randomization. In Proceedings of the fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence, pages 431–
437, Menlo Park, CA, USA. American Association for Artificial Intelligence.

References 303

Gow, J. (2004). The Dynamic Creation of Induction Rules Using Proof Planning. PhD
thesis, University of Edinburgh.

Groote, J., van Vlijmen, S., and Koorn, J. (1995). The safety guaranteeing system
at station hoorn-kersenboogerd. In Computer Assurance, 1995. COMPASS ’95.
’Systems Integrity, Software Safety and Process Security’. Proceedings of the Tenth
Annual Conference on, pages 57 –68.

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science,
39(0):297 – 308. ¡ce:title¿Third Conference on Foundations of Software Technology
and Theoretical Computer Science¡/ce:title¿.

Halstead, Jr., R. H. (1985). Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501–538.

Hamadi, Y., Jabbour, S., and Sais, L. (2009). Control-based clause sharing in parallel
sat solving. In Proceedings of the 21st international jont conference on Artifical
intelligence, pages 499–504, San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Hamadi, Y. and Sais, L. (2009). ManySAT: a parallel SAT solver. Journal On
Satisfiability, Boolean Modeling And Computation (JSAT), 6.

Harrison, J. (1996). Stalmarck’s algorithm as a HOL derived rule. In LNCS 1125,
pages 221–234. Springer-Verlag.

Harrison, J. (2009). Handbook of Practical Logic and Automated Reasoning. Cam-
bridge University Press, New York, NY, USA, 1st edition.

Heule, M. and van Maaren, H. (2008). Parallel SAT solving using bit-level operations.
JSAT, 4(2-4):99–116.

Heyman, T., Geist, D., Grumberg, O., and Schuster, A. (2002). A scalable parallel
algorithm for reachability analysis of very large circuits. In Formal Methods in
System Design, pages 317–338.

Hickey, J. (1999). Fault-tolerant distributed theorem proving. In Proceedings of the
16th International Conference on Automated Deduction: Automated Deduction,
CADE-16, pages 227–231, London, UK, UK. Springer-Verlag.

Hooker, J. and Vinay, V. (1995). Branching rules for satisfiability. Journal of
Automated Reasoning, 15(3):359–383.

Hoos, H. H. and Stützle, T. (2000). SATLIB: An Online Resource for Research on
SAT.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, New York, NY, USA.

Hyvärinen, A. E., Junttila, T., and Niemelä, I. (2008a). Incorporating learning in grid-
based randomized sat solving. In Proceedings of the 13th international conference
on Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’08,
pages 247–261, Berlin, Heidelberg. Springer-Verlag.

304 References

Hyvärinen, A. E., Junttila, T., and Niemelä, I. (2008b). Strategies for solving SAT
in grids by randomized search. In Proceedings of the 9th AISC international
conference, the 15th Calculemas symposium, and the 7th international MKM
conference on Intelligent Computer Mathematics, pages 125–140, Berlin, Heidel-
berg. Springer-Verlag.

Intosh, D. J. M., Conry, S. E., and Meyer, R. A. (1991). Distributed automated reason-
ing: Issues in coordination, cooperation, and performance. IEEE Transactions on
systems, man and cybernetics, 21(6).

Jones, S. P. and Singh, S. (2008). A tutorial on parallel and concurrent programming
in Haskell. In Lecture Notes in Computer Science. Springer Verlag.

Karp, R. M. and Ramachandran, V. (1990). Parallel algorithms for shared-memory
machines. MIT Press, Cambridge, MA, USA.

Kaufmann, M. and Moore, J. S. (2009). Some key research problems in automated
theorem proving for hardware and software verification.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

Kornfeld, W. A. and Hewitt, C. E. (1981). The scientific community metaphor. IEEE
Trans on Systems, Man, and Cybernetics, 11(1).

Kraan, I. (1994). Proof Planning for Logic Program Synthesis. PhD thesis, University
of Edinburgh.

Kunz, W. and Pradhan, D. (1994). Recursive learning: a new implication tech-
nique for efficient solutions to CAD problems-test, verification, and optimization.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
13(9):1143–1158.

Leroy, X. (1996). Website for the Objective Caml (OCaml) programming language.
http://caml.inria.fr/.

Leroy, X. (2003). Website for work on MPI bindings for Objective Caml (OCaml)
programming language. http://forge.ocamlcore.org/projects/ocamlmpi/.

Marques-Silva, J. P. and Sakallah, K. A. (1996). GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 220–227.

Marques-Silva, J. P., Sakallah, K. A., Marques, J. P., Karem, S., and Sakallah,
A. (1996). Conflict analysis in search algorithms for propositional satisfiabil-
ity. In Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence.

Matthews, D. (2010). Website for the PolyML programming language.
http://www.polyml.org/index.html.

Matthews, D. C. and Wenzel, M. (2010). Efficient parallel programming in Poly/ML
and Isabelle/ML. In DAMP ’10: Proceedings of the 5th ACM SIGPLAN workshop

References 305

on Declarative aspects of multicore programming, pages 53–62, New York, NY,
USA. ACM.

McCune, W. (1994). Otter 3.0 reference manual and guide. Technical report, Argonne
National Laboratory, Argonne, IL.

Melis, E. and Meier, A. (2000). Proof planning with multiple strategies. In Lloyd, J.,
Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L., Sagiv,
Y., and Stuckey, P., editors, Computational Logic CL 2000, volume 1861 of Lecture
Notes in Computer Science, pages 644–659. Springer Berlin Heidelberg.

Melis, E. and Siekmann, J. (1999). Knowledge-based proof planning. Artif. Intell.,
115(1):65–105.

Milner, R., Tofte, M., and Macqueen, D. (1997). The Definition of Standard ML. MIT
Press, Cambridge, MA, USA.

Monien, B. and Speckenmeyer, E. (1985). Solving satisfiability in less than 2n steps.
Discrete Applied Mathematics, 10:287–295.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01).

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer.

Odersky, M. (2004). An overview of the scala programming language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland.

Okushi, F. (1999). Parallel cooperative propositional theorem proving. Ann. Math.
Artif. Intell., 26(1-4):59–85.

Paulson, L. C. (1989). The foundations of a generic theorem prover. Journal of
Automated Reasoning, 5:363.

Paulson, L. C. (1996). ML for the Working Programmer. Cambridge University Press,
2nd edition edition.

Robinson, A. and Voronkov, A., editors (2001). Handbook of automated reasoning.
Elsevier Science Publishers B. V., Amsterdam, The Netherlands.

Rossberg, A. (2007). Typed Open Programming - A higher-order, typed approach to
dynamic modularity and distribution. PhD thesis, Saarland University, Germany.

Rossberg, A., Botlan, D. L., Tack, G., Brunklaus, T., and Smolka, G. (2006). Alice
Through the Looking Glass, volume 5 of Trends in Functional Programming, pages
79–96. Intellect Books, Bristol, UK, ISBN 1-84150144-1.

Roy, P. V. and Haridi, S. (2004). Concepts, Techniques, and Models of Computer
Programming. MIT Press, Cambridge, MA, USA.

Sabharwal, A., Beame, P., and Kautz, H. (2003). Using problem structure for efficient

306 References

clause learning. In In Proceedings of the 6th International Conference on Theory
and Applications of Satisfiability Testing, pages 242–256. Springer-Verlag.

Schubert, T., Lewis, M., and Becker, B. (2005). PaMira - a parallel SAT solver with
knowledge sharing. In MTV ’05: Proceedings of the Sixth International Workshop
on Microprocessor Test and Verification, pages 29–36, Washington, DC, USA. IEEE
Computer Society.

Segre, A. M., Forman, S., Resta, G., and Wildenberg, A. (2002). Nagging: A scalable
fault-tolerant paradigm for distributed search. Artificial Intelligence, 140(1-2):71 –
106.

Selman, B., Kautz, H. A., and Cohen, B. (1996). Local search strategies for satisfiabil-
ity testing. In Johnson, D. and Trick, M., editors, Second DIMACS implementation
challenge : cliques, coloring and satisfiability, volume 26 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 521–532. Ameri-
can Mathematical Society.

Sheeran, M. and Stalmarck, G. (1998). A tutorial on Stålmarck’s proof procedure for
propositional logic. In Gopalakrishnan, G. and Windley, P., editors, Proceedings 2nd
Intl. Conf. on Formal Methods in Computer-Aided Design, FMCAD’98, Palo Alto,
CA, USA, 4–6 Nov 1998, volume 1522, pages 82–99. Springer-Verlag, Berlin.

Sheeran, M. and Stalmarck, G. (2000). A tutorial on Stålmarck’s proof procedure for
propositionallogic. Form. Methods Syst. Des., 16:23–58.

Singer, D. (2006). Parallel resolution of the satisfiability problem: A survey. In Talbi,
E.-G., editor, Parallel Combinatorial Optimization, pages 123–147. JohnWiley &
Sons, Inc.

Sinz, C., Blochinger, W., and Kuchlin, W. (2001). PaSAT - parallel SAT-checking with
lemma exchange:implementation and applications. In Kautz, H. and Selman, B.,
editors, LICS 2001 Workshop on Theory and Applications of Satisfiability Testing
(SAT 2001), volume 9 of Electronic Notes in Discrete Mathematics, Boston, MA.
Elsevier Science Publishers.

Sinz, C., Küchlin, W., Feichtinger, D., and Görtler, G. (2006). Checking consistency
and completeness of on-line product manuals. J. Autom. Reason., 37(1-2):45–66.

Spears, W. M. (1993). Simulated annealing for hard satisfiability problems. In In,
Workshop, pages 533–558. American Mathematical Society.

Speckenmeyer, E., Böhm, M., and Heusch, P. (1997). On the imbalance of distributions
of solutions of CNF-formulas and its impact on satisfiability solvers. In Du, D., Gu,
J., and Pardalos, P. M., editors, Satisfiability Problem: Theory and Applications,
volume 35 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 669–676. American Mathematical Society.

Speckenmeyer, E., Monien, B., and Vornberger, O. (1988). Superlinear speedup
for parallel backtracking. In Proceedings of the 1st International Conference on
Supercomputing, pages 985–993, New York, NY, USA. Springer-Verlag New York,
Inc.

References 307

Sripriya, G., Bundy, A., and Smaill, A. (2007). Concurrent/distributed theorem proving
in Isabelle/IsaPlanner. In The Isabelle Workshop 2007, CADE 07.

Stallman, R. M. and Sussman, G. J. (1977). Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Artificial
Intelligence, 9(2):135 – 196.

Stalmarck, G. (1992). A system for determining propositional logic theorem by apply-
ing values and rules to triplets that are generated from a formula. Swedish Patent
No. 467 076 (approved 1992), U.S. Patent No. 5 276 907 (1994), European Patent
No. 0403 454 (1995.

Stalmarck, G. (1994). A proof theoretic concept of tautological hardness. unpublished
manuscript. In Unpublished manuscript, Logikkonsult NP AB.

Stalmarck, G. and Saflund, M. (1990a). Modelling and verifying systems and soft-
ware in propositional logic. Technical report, University of Cambridge Computer
Laboratory.

Stalmarck, G. and Saflund, M. (1990b). Modelling and verifying systems and soft-
ware in propositional logic. Technical report, University of Cambridge Computer
Laboratory.

Steele, Jr., G. L. (2009). Organizing functional code for parallel execution or, foldl and
foldr considered slightly harmful. SIGPLAN Not., 44:1–2.

Sturgill, D. and Segre, A. M. (1997). Nagging: A distributed, adversarial search-
pruning technique applied to first-order inference. J. Autom. Reason., 19(3):347–
376.

Sutter, H. (2005). The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal, 30(3).

Syme, D., Granicz, A., and Cisternino, A. (2007). Expert F#. Apress.

Thiffault, C., Bacchus, F., and Walsh, T. (2004). Solving non-clausal formulas with
DPLL search. In Proc. 10th International Conference on Principles and Practice
of Constraint Programming (CP 2004), in: Lecture Notes in Comput. Sci, pages
663–678. Springer.

Tseitin, G. S. (1968). On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234–259. English translation of this vol-
ume: Consultants Bureau, N.Y., 1970, pp. 115–125.

Urquhart, A. (1987). Hard examples for resolution. Journal of the Association for
Computing Machinery, 34(1):209–219.

von Behren, R., Condit, J., and Brewer, E. (2003). Why events are a bad idea (for
high-concurrency servers). In HOTOS’03: Proceedings of the 9th conference on Hot
Topics in Operating Systems, pages 4–4, Berkeley, CA, USA. USENIX Association.

Waerden, B. L. v. d. (1971). How the proof of Baudet’s conjecture was found. In

308 References

Mirsky, L., editor, Studies in Pure Mathematics (papers presented to R. Rado on the
occassion of his 65th birthday, pages 252–260. Academic Press.

Walsh, W. E., Yokoo, M., and Hirayama, K. (2001). Market based on market-inspired
approaches to propositional satisfiability. IJCAI 2001, 0(0).

Walsh, W. E., Yokoo, M., Hirayama, K., and Wellman (2003). On market-inspired
approaches to propositional satisfiability. Artificial Intelligence, 144:125–126.

Weber, T. (2006). Integrating a SAT solver with an LCF-style theorem prover. Electron.
Notes Theor. Comput. Sci., 144:67–78.

Wenzel, M. (2009). Parallel proof checking in isabelle/isar. In ACM SIGSAM
Workshop on Programming Languages for Mechanized Mathematics Systems
(PLMMS 2009). ACM Digital Library, 2009. Parallel Poly/ML and Isabelle 10
2009/9/28.

Woolridge, M. (2001). Introduction to Multiagent Systems. John Wiley & Sons, Inc.,
New York, NY, USA.

Yelick, K. A. (1992). A parallel completion procedure for term rewriting systems.
In CADE-11: Proceedings of the 11th International Conference on Automated
Deduction, pages 109–123, London, UK. Springer-Verlag.

Yogesh Mahajan, Zhaohui Fu, S. M. (2004). Zchaff2004: An Efficient SAT Solver,
volume 3542, pages 360–375. Springer.

Zhang, H. (1997). Sato: An efficient propositional prover. In McCune, W., edi-
tor, Proceedings of the 14th Conference on Automated Deduction, number 1249
in LNAI, pages 272–275.

Zhang, H., Bonacina, M. P., and Hsiang, J. (1996). PSATO: a distributed propo-
sitional prover and its application to quasigroup problems. Journal of Symbolic
Computation, 21(4):543–560.

Zhang, H. and Stickel, M. E. (1994). Implementing the Davis-Putnam algorithm by
tries. Technical report, Artificial Intelligence Center, SRI International, Menlo.

Zimmer, J. and Dennis, L. A. (2002). Inductive theorem proving and computer algebra
in the mathweb software bus. In Proceedings of the Joint International Conferences
on Artificial Intelligence, Automated Reasoning, and Symbolic Computation, AISC
’02/Calculemus ’02, pages 319–331, London, UK, UK. Springer-Verlag.

Glossary

Cloud computing is focussed on the virtualisation of applications, thus allowing for
software to be provided as services running on huge commodity clusters 2..

Cluster A group of workstations that are interconnected by general purpose commu-
nication networks such as fast ethernet or other advanced forms of high-speed
connections.The terms GRIDS and clusters are used interchangeably and are
treated essentially as distributed systems in the context of the material discussed
in this work.

Concurrent program is characterised by more than one instruction sequence execut-
ing at the same time.

Concurrent programming In this thesis, this is used to refer to programming that
allows for asynchronous (concurrent) modes of execution, irrespective of the
architecture of implementation or the computational models used..

Data parallelism is characterised by the parallel execution of the same operation on
different data or different parts of a large data set. In this thesis, it is used to
refer to forms of computation where the same operation(s) is being performed
on multiple datum by different processes in parallel. Typically, the size of the
data set is huge and this computational model suits scenarios where bulk parallel
processing resources are available..

Dataflow variable declarative variables that cause the thread of execution to wait un-
til they are bound. Use of these allows for the order of execution to become
inconsequential..

Grid is a distributed network of often heterogeneous computing elements (CE)that
communicate using the infrastructure of the Internet.The terms GRIDS and clus-
ters are used interchangeably and are treated essentially as distributed systems
in the context of the material discussed in this work.

Lag tolerance the rest of the computation can continue while the result is being com-
puted..

2For more on cloud computing, the reader may want to read this url http://en.wikipedia.org/
wiki/Cloud_computing

309

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

310 Glossary

MIMD Multiple Instruction Multiple Data Stream, a category of classification of par-
allel architectures based on notions of instruction and data stream.

Open programming the development of programs that support dynamic exchange of
higher-order values with other processes.

Partial termination A thread of execution is said to have partially terminated if it
has not terminated completely yet. Further binding of inputs would cause it to
execute further,up to the next partial termination, and will execute no further if
no binding happens..

Partial value A dataflow variable that has not yet been bound.

Referential transparency It usually means that an expression always evaluates to the
same result in any context. This is the case in pure functional programming
languages, but need not be always the case in other functional programming
languages. Side effects like (uncontrolled) imperative update break this desirable
property..

Serialisation/Marshalling conversion of a data structure into a format such that it can
be stored in memory and/or can be transmitted over a network, to be reassembled
into the original data structure in a similar or different environment..

Stream is used in concurrent programming to refer to a list with an unbounded tail.
The term port refers to an abstraction used to manage a stream..

Thread An independently executing instruction sequence is called a thread.

Work stealing Common concurrent programming technique: when a process becomes
idle, it tries to take over part of the work of another busy process..

	PhD coversheet April 2012
	SriipriyaG-PhD-Thesis
	List of Figures
	List of Tables
	List of code samples
	Introduction
	Why should parallelisation of theorem provers be considered?
	Implementation methodology for application of concurrent techniques to theorem proving
	Case studies
	Parallelisation options investigated in this work
	Contributions
	Layout of the thesis

	Review of some parallel theorem provers
	Parallel SAT solving
	Overview of techniques used in modern DPLL solvers
	Search space partitioning, Dynamic load balancing
	Evaluation related challenges
	DPLL-Stalmarck
	Parallel SAT solver on transputers, PSATO, Guiding path
	Conflict driven clause learning for DPLL
	DPLL-based parallel SAT solvers using search space partitioning, dynamic workload balancing and CDCL
	PaModoc : a non-DPLL co-operative parallel SAT solver
	GRID based implementations
	Others
	Summary of key works on parallel SAT solving

	Interactive theorem provers
	MetaPRL
	Parallel theorem proving in Isabelle using PolyML
	OANTS

	Work partitioning approaches used in fully automatic theorem provers
	TEAMWORK
	Nagging: NAGSAT, DALI
	Other systems

	Parallel functional programming languages
	Conclusions

	Hypotheses and case studies
	Hypotheses
	Our approach and choice of case studies

	Background
	Formal logic: basics
	Propositional logic
	Syntax and semantics
	Validity, satisfiability and tautology
	More definitions and notations

	First-order logic
	Syntax and semantics
	Satisfiability, logical equivalence, validity

	Theorem proving
	Inference system
	Natural deduction
	Sequent calculus
	Backward proof and sequent calculus
	Interactive theorem proving
	LCF

	SAT solvers: some relevant background
	SAT algorithms: an overview
	DPLL
	Stalmarck's algorithm for SAT

	Relevant key characteristics of Stalmarck's algorithm
	First-order theorem proving: some relevant background
	Unification
	Sequent rules for classical first-order logic
	Meta variables

	Some relevant background on parallel computing
	Relevant architecture categories and some emerging architectures
	Computational models
	On implementing parallelisation

	Summary

	Why parallelise and how to?
	The free lunch is over
	Parallelisation of theorem provers: for the diverse opportunities that it can open up
	Enabling novel approaches
	Modeling of mathematical reasoning: automating the dynamics of proof discovery

	Some choices for introducing and implementing concurrency and parallelisation techniques for the theorem proving domain
	Object-level and developmental factors
	Issues to consider for effective parallelisation

	Parallelisation and programming abstractions
	Abstractions: what are they and how are they useful
	Some concurrent/parallel programming abstractions

	Using the functional programming paradigm for implementation of and experimentation with concurrent/parallel techniques in theorem provers
	Advantages of using functional programming to implement concurrency
	Language-integrated concurrency in a declarative setting
	Summary of advantages of dataflow variables and overview of how we have used it in our work

	Alice ML
	Support for thread-based programming
	Synchronisation in Alice ML
	Support for Stream-based programming
	Support for distributed programming and message-passing
	Ease of prototyping and developing abstractions in Alice ML
	 Suitability of Alice ML for implementing programmable parallel extensions for LCF-style provers
	Limitations of Alice ML

	Summary
	Conclusions and choice of case studies

	Novel concurrent approaches for SAT
	About this case study
	Implementation details for sequential SAT solvers based on DPLL and Stalmarck algorithm
	Hybrid SAT solver: DPLL-Stalmarck
	Why combine DPLL and Stalmarck ?
	How to combine the two ?
	Implementation

	Hybrid SAT solvers: DPLL-CDCL-Stalmarck, DPLL-ConcurrentStalmarck
	DPLL-CDCL-Stalmarck
	DPLL-ConcurrentStalmarck

	New concurrent algorithm for SAT, based on the Stalmarck algorithm
	Gist of our approach
	High level description of the Concurrent Stalmarck algorithm
	Stalmarck agents as services
	Workflow of the Concurrent Stalmarck implementation
	Producer-consumer pattern, Resource-management
	Abstractions developed

	Concurrent DPLL
	Evaluation
	DPLL-Stalmarck
	Concurrent Stalmarck
	Methodological criteria

	Related work
	Conclusions
	Future research

	Concurrent extensions for LCF style provers
	Introduction
	Multilayered approach to apply concurrency and distribution techniques, to an LCF style theorem prover
	Developing programmable, concurrent, sound extensions, for LCF provers: A multilayered approach
	Proof of concept
	Advantages of our proposed multilayered approach

	HAL as a representative prototype
	About HAL
	Why HAL ?

	Porting Isabelle to Alice ML
	Design overview of the HAL system
	Data structures, treatment of bound variables andmeta-variables, enforcement of quantifier-rule-provisos
	Basic sequential tacticals in HAL
	Unification as a tactic in HAL
	Sequential automatic proof search procedures in HAL

	New concurrent tacticals
	Distributed composition
	Fastest-first: a novel choice operator using asynchronous concurrent execution

	Simultaneous proof-refutation attempts using a SAT solver
	Collaborative unification: using communication for unification
	Limitations of the sequential unify tactic in HAL
	Gist of our solution: asynchronous evaluation and collaborative use of partially evaluated information
	CrossTalk: a new proof tactic implementing collaborative unification

	Novel automatic search procedures employing concurrent and collaborative approaches
	Using crossTalk in an automatic search procedure
	New depth-first automatic search procedures, using the distComp and FF operators
	Using SAT-based tactics in an automatic proof search procedure

	Evaluation
	Utility of the distributed composition operator
	Utility of the fastest-first tactical
	Utility of the crossTalk tactic
	Programmability: new concurrent proof search procedures
	Developmental methodology

	Related work
	MetaPRL: similarities and differences
	Isabelle-PolyML: similarities and differences

	Summary
	Ideas for future work

	Conclusions
	Why and how to parallelise a theorem prover
	Novel concurrent approaches for SAT: knowledge-sharing, lateral-thinking, co-operative frameworks combining complementary approaches, large scale parallelism
	Hybrid SAT solvers
	Concurrent Stalmarck

	A multilayered approach to develop programmable, sound extensions, for an LCF prover
	Utility of our implementation approach
	In a nut shell...
	Directions for future research
	Ideas for future work related to the case studies of SAT and LCF
	Proof and refutation
	A society of agents for inductive theorem proving
	Co-routining scope in Middle-out reasoning
	The Dynamic Creation of Induction Rules Using Proof Planning

	Appendices
	Parallel programming terminology
	Alice features
	Alice ML code for hierarchical threads
	Alice ML code for the DPLL solver
	Alice ML code for the Stalmarck solver
	Alice ML code for the DPLL-Stalmarck solver
	Code fragment for the abstraction for DPLL working with a helper
	Code trace for the working of collaborative unification tactic
	Implementation of unification in HAL - code

	References
	Glossary

