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Lay summary

Logic is the study of formal (symbolic) systems of reasoning (i.e. formal deductive inference) and of
methods of attaching meaning to them. Computers enabled(s) the automation of formal reasoning:
mechanised reasoning systems (theorem provers) are software systems which execute the reasoning
without or with (partial or step-by-step) human intervention. A typical problem scenario is: given a
set of assumptions/axioms (i.e. all the available relevant information about the given problem), A and
a conjecture/goal, G (the question being asked), can you find a proof of G, using A? The problem is
given to an automated reasoning system to work on until it arrives at an answer or until it runs out of
resources or the execution is terminated by the user. Theorem provers have a wide range of applications,
e.g. hardware and software verification. These provide significant challenges, in terms of size and
complexity of the problems, fueling the need for better theorem provers, capable of handling bigger and

more complex problems.

This thesis investigates the scope and efficacy of using concurrent/ distributed programming paradigms
to engineer better theorem provers (speed and/or ease of programmability, i.e. implementing one’s own
proof search procedures, using the system’s existing machinery). We have investigated this in the context
of two case studies of diverse, representative classes of theorem provers: the propositional satisfiability
problem, SAT (based on propositional logic; predominantly, fully automated systems; very popular
choice for industrial applications; and an active research field) and LCF style (first-order) theorem

proving (geared towards semi-automated, interactive theorem proving; focuses on programmability).

The improved accessibility of parallel computing power (e.g. multicore machines, GRIDs and better
software tools) and saturation of processor speeds of conventional single-processor computers has made
parallelisation and application of concurrent/distributed paradigms a popular choice and almost an im-
perative for engineering better/faster systems. Application of concurrent paradigms to theorem provers
can provide more processing power. More crucially, it can open up opportunities for implementing
novel approaches to address theorem proving tasks hitherto infeasible in a sequential setting. Some
such previously unexplored opportunities have been investigated in this thesis, for the two case studies
considered. Concurrent techniques have been developed to tap these opportunities and proof-of-concept
prototypes have been developed for the same. Empirical results show significant performance gains for

the criteria considered, as explained below.

An orthogonal focus of the work has been the implementation approach used to apply the techniques.
Here is why this has been investigated: Concurrent programming is an established field. However,
choosing the most effective concurrent technique to address a given task is a non-trivial task. Theo-
rem proving problems vary a lot in their structure and hardness and can depend on problem-domain,
logic of formulation, inference system used etc.. This in turn impacts the efficacy of a given concurrent
technique too. So, a generalised solution of concurrent-technique-application is unlikely to work for
theorem provers. This is in contrast to some other application domains which have adopted parallelisa-
tion, e.g., numerical computation, which possesses a fair amount of regularities which can be exploited
for parallelisation. For theorem proving, an iterative, experimental, developmental cycle of application
and empirical analysis is required to develop effective application of concurrent techniques, to address

specific theorem proving tasks. However, concurrent programming is notoriously error prone, hard to



debug and evaluate. Thus, implementation approaches which promote easy prototyping, portability,
incremental development and effective isolation of design and implementation can greatly aid the en-
terprise of experimentation. In this thesis, we have explored one such approach, by using Alice ML, a
functional programming language with support for concurrency and distribution, to implement the pro-
totypes. We have used programming abstractions, i.e. a programming construct that captures a (concur-
rent/sequential) computational pattern, to encapsulate the implementations of the concurrent techniques
used. These allow for easy prototyping and code reuse and incremental development. Functional pro-
gramming languages are known to be particularly well suited for concurrent programming and allow for
concise and effective expression of programming abstractions (as higher-order constructs). The utility
of this approach is illustrated via the proof-of-concept prototypes of concurrent systems developed for
the two diverse case studies of theorem proving investigated in this work, addressing some previously

unexplored parallelisation opportunities for each, as described below:

SAT: We have developed two novel, concurrent approaches for SAT and developed prototypes for
the same, using Alice ML and employing programming abstractions where appropriate: (1) DPLL-
Stalmarck is a novel hybrid approach for SAT and uses two complementary SAT-algorithms, DPLL
and Stalmarck’s, where the two systems run asynchronously and dynamic information exchange is used
for co-operative solving. Compared to the standalone DPLL solver, DPLL-Stalmarck shows significant
performance gains for two of the three problem classes considered and comparable behaviour other-
wise. As an exploratory research effort, we have developed a novel algorithm, Concurrent Stalmarck,
by applying concurrent techniques to the Stalmarck algorithm and early empirical results show signif-
icant gains, compared to the (sequential) Stalmarck algorithm. For DPLL-Stalmarck, the interaction
of the two systems in the asynchronous setting has been encapsulated as a programming abstraction
and has been used to experiment with variants of the algorithms used in the individual asynchronous
solvers . Implementation of the saturation technique of the Stalmarck algorithm in a parallel setting, as

implemented in Concurrent Stalmarck, has been encapsulated as a programming abstraction.

LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques
to specific theorem proving scenarios. We have developed a multilayered approach to support pro-
grammable, sound extensions for an LCF prover: use programming abstractions to implement the con-
current techniques; use these to develop novel tacticals (control structures to apply tactics; a tactic
is an encapsulation of an inference rule), incorporating concurrent techniques; and use these to de-
velop novel proof search procedures. This approach has been implemented in a prototypical LCF style
first-order prover, using Alice ML. New tacticals developed are: fastest-first; distributed composition;
crossTalk: a novel tactic which uses dynamic, collaborative information exchange to handle unification
across multiple sub-goals, with shared meta-variables; a new tactic, performing simultaneous proof-
refutation attempts on propositional (sub-)goals, by invoking an external SAT solver (SAT case study),
as a counter-example finder. Examples of concrete theorem proving scenarios are provided, demonstrat-
ing the utility of these extensions. Synthesis of a variety of automatic proof search procedures has been
demonstrated, illustrating the scope of programmability and customisation, enabled by our multilayered

approach.



Abstract

Theorem provers are faced with the challenges of size and complexity, fueled by the increasing range
of applications. The use of concurrent/ distributed programming paradigms to engineer better theo-
rem provers merits serious investigation, as it provides: more processing power and opportunities for
implementing novel approaches to address theorem proving tasks hitherto infeasible in a sequential set-
ting. Investigation of these opportunities for two diverse theorem prover settings with an emphasis on

desirable implementation criteria is the core focus of this thesis.

Concurrent programming is notoriously error prone, hard to debug and evaluate. Thus, implementation
approaches which promote easy prototyping, portability, incremental development and effective isola-
tion of design and implementation can greatly aid the enterprise of experimentation with the application
of concurrent techniques to address specific theorem proving tasks. In this thesis, we have explored one
such approach by using Alice ML, a functional programming language with support for concurrency
and distribution, to implement the prototypes and have used programming abstractions to encapsulate
the implementations of the concurrent techniques used. The utility of this approach is illustrated via
proof-of-concept prototypes of concurrent systems for two diverse case studies of theorem proving: the
propositional satisfiability problem (SAT) and LCF style (first-order) theorem proving, addressing some

previously unexplored parallelisation opportunities for each, as follows:.

SAT: We have developed a novel hybrid approach for SAT and implemented a prototype for the same:
DPLL-Stalmarck. 1t uses two complementary algorithms for SAT, DPLL and Stalmarck’s. The two
solvers run asynchronously and dynamic information exchange is used for co-operative solving. Inter-
action of the solvers has been encapsulated as a programming abstraction. Compared to the standalone
DPLL solver, DPLL-Stalmarck shows significant performance gains for two of the three problem classes
considered and comparable behaviour otherwise. As an exploratory research effort, we have developed a
novel algorithm, Concurrent Stalmarck, by applying concurrent techniques to the Stalmarck algorithm.
A proof-of-concept prototype for the same has been implemented. Implementation of the saturation
technique of the Stalmarck algorithm in a parallel setting, as implemented in Concurrent Stalmarck, has

been encapsulated as a programming abstraction.

LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques
to specific theorem proving scenarios. In this case study, we have developed a multilayered approach to
support programmable, sound extensions for an LCF prover: use programming abstractions to imple-
ment the concurrent techniques; use these to develop novel tacticals (control structures to apply tactics),
incorporating concurrent techniques; and use these to develop novel proof search procedures. This
approach has been implemented in a prototypical LCF style first-order prover, using Alice ML. New
tacticals developed are: fastest-first; distributed composition; crossTalk: a novel tactic which uses dy-
namic, collaborative information exchange to handle unification across multiple sub-goals, with shared
meta-variables; a new tactic, performing simultaneous proof-refutation attempts on propositional (sub-
)goals, by invoking an external SAT solver (SAT case study), as a counter-example finder. Examples of
concrete theorem proving scenarios are provided, demonstrating the utility of these extensions. Synthe-
sis of a variety of automatic proof search procedures has been demonstrated, illustrating the scope of

programmability and customisation, enabled by our multilayered approach.
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Chapter 1

Introduction

The tools that we use have a profound influence on our thinking habits and therefore

on our thinking abilities
-Edsger Dijkstra

In a similar vein, it can be said that our thinking habits inspire the tools that we create
and more pertinently so for a domain like mechanised reasoning systems. Our thinking

patterns are not always sequential or linear, why should the tools that we create be so?

1.1  Why should parallelisation of theorem provers be

considered?

The field of mechanised reasoning systems (theorem proving), with its ever increasing
applications, is faced with challenges of complexity and size, i.e. harder and bigger
problems. This calls for exploration of research directions that enable engineering of
better theorem provers that can tackle these challenges. Most theorem prover imple-
mentations and the underpinning techniques were developed for a sequential mode of
execution, which, in turn, has limited the possibilities of the approaches employed as

well as their implementations.

Application of concurrent and distributed programming techniques ! to engineer faster

applications is fast becoming an ubiquitous trend across application domains. A strong

'In this work, we use the terms concurrent and parallel synonymously to refer to asynchronous pro-
cesses that execute simultaneously and possibly interact with one another. We use the term distributed
to refer to the special case where the processes run on different physical machines.
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motivation for this approach is the saturation of processor speeds which in turn, means
that applications can no longer expect to achieve speedups purely by virtue of being
run on a faster processor, a phenomenon discussed in a much cited recent paper ti-
tled The free lunch is over [Sutter, 2005]. This trend has been fueled by the surge in
the accessibility and availability of a wide variety of parallel and distributed comput-
ing architectures aided by the emergence of new paradigms of computing and related

software that enable optimal utilisation of these emerging computing architectures.

In addition to providing more processing power, the concurrent and distributed pro-
gramming paradigms can open up novel ways of tackling problems that are not possi-
ble in a sequential mode of execution. E.g., consider the following scenario: There are
multiple choices of computation that can be pursued, the solution possibly occurring
in any one of them and where a judgement on the speed of each computation cannot
be made beforehand. Tackling this using a sequential mode of execution would typ-
ically entail execution of each computation one at a time. This does not help if e.g.,
the first computation takes a very long time and the solution happens to be in a subse-
quent computation. However, in a concurrent asynchronous programming paradigm,
we can spawn all the computations simultaneously and pick the fastest returning com-
putation. With the improved accessibility and the diversity of emerging architectures,
it becomes more interesting now than ever before to investigate novel ways of using
these technologies to tackle the challenges faced by today’s theorem provers and to
identify latent parallelisation, distribution and collaboration opportunities present in
theorem prover implementations. This need is echoed in a recent work [Kaufmann and
Moore, 2009], where Parallel, Distributed and Collaborative Theorem Proving is cited

as being one of the key research problems for automated theorem proving.

1.2 Implementation methodology for application of con-

current techniques to theorem proving

Theorem proving systems are diverse in the logics and proof calculi they implement
and theorem proving problems come from a variety of domains and vary vastly in
their problem structure, hardness and solution distribution. These factors influence
the scope for applying the new programming paradigms and utilising the emerging

architectures. For the effective application of concurrent technologies to tackle the
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challenges of size and complexity faced by theorem provers, a one-solution-fits-all ap-
proach is unlikely to work and an iterative developmental life cycle of implementation
and experimentation involving empirical studies and analysis is required. However,
this experimentation phase can often be stifled by the difficulties of implementation
as concurrent programming is notoriously error prone and difficult to program. Thus,
it will be hugely beneficial to adopt an implementation methodology that allows for
rapid prototyping of and experimentation with, application of concurrent techniques to

theorem provers.

Over the years, parallelisation has been explored among many of the theorem proving
flavours. We discuss some of these in chapter 2. Most of these systems have relied
on complicated OS level thread and socket programming for implementing the con-
currency features. From a software engineering perspective, the concurrency features
used are very much tied to their individual application and this does not encourage
incremental development or code-reuse. A recent review paper on trends in parallel
computing and multi-core technologies [Asanovic et al., 2006] emphasises the need
for effective software implementations that will enable optimal utilisation of the avail-
able processing power in emerging architectures. To the same end, the authors also

argue for the need for powerful

“distributed programming abstractions that can capture the common re-
quirements of classes of applications which are related but have quite dif-
ferent computational methods at a lower level of granularity.”

In this thesis, we discuss an implementation methodology that addresses these issues of
ease of prototyping and experimentation, facilitation of incremental development and
code reuse. Our approach uses distributed programming abstractions to encapsulate
the concurrent techniques applied to address theorem proving tasks and a concurrent
functional programming language, Alice ML [Rossberg et al., 2006], for implemen-
tation. The abstractions, in turn, are implemented as higher-order functions in Alice
ML. Using this methodology, we have developed novel proof search approaches using

concurrent techniques.

1.3 Case studies

The discussion of the developmental approach is aided by our experience of develop-

ment and experiments with two diverse case studies of theorem proving: the proposi-
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tional satisfiability problem (SAT) and LCF style (first-order) theorem proving. These
are representative of two vastly different styles of theorem proving, the former being
brute-force, machine-oriented search while the latter is closer to human reasoning and
is thus a good vehicle for testing the utility of our developmental approach for a wide

range of scenarios of the application of concurrent techniques.

As part of the development of these prototypes, we have developed concurrent pro-
gramming abstractions. These abstractions can be used in a variety of theorem proving

scenarios, examples of which we discuss later in the thesis.

1.4 Parallelisation options investigated in this work

In particular, in this thesis, we focus on applying the following parallel programming

techniques to tackle the challenges of theorem proving:

Task parallelisation Use of multiple asynchronous computational processes operat-
ing simultaneously to achieve a task by effectively partitioning the work between

them.

Dynamic exchange of information between concurrent processes Co-operative ap-
proaches to solving a task by harnessing the opportunities of (possibly partially
evaluated) information exchange between processes working on the same prob-

lem or sub-problems

Use asynchronicity to synthesise novel computational patterns Some examples are:
spawn multiple computations and return the fastest returning computation; data-
driven execution, i.e. perform computations on the data as and when they are

available.

Computational model There are various computational models for concurrent and
distributed programming. In this thesis, we focus on the local-state, message-
passing model and the use of higher-order programming abstractions for imple-

mentation of concurrent techniques.
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1.5

Contributions

Implementation methodology

SAT

A prescriptive discussion of desirable features of an implementation approach
that will allow for rapid prototyping of and experimentation with, novel ap-
proaches to theorem proving that can be achieved by applying concurrent pro-
gramming techniques and aid portability and incremental development. This

thesis focuses on one such approach:

e Use a functional programming language with language-based support for
concurrency (as opposed to API based) to implement the concurrent tech-

niques. We have used Alice ML as the implementation language.

e Use programming abstractions to encapsulate the concurrent techniques.
In particular, we have developed the programming abstractions as higher-

order functions in Alice ML.

The utility of the approach in terms of the ease of prototyping and experimenta-
tion and the portability and incremental development criteria are demonstrated
via two case studies representing diverse styles of theorem proving: SAT and
LCF style first-order proving. The case studies serve an orthogonal purpose of
investigating previously unexplored opportunities of applying concurrent tech-
niques to the respective systems and the key contributions arising from these are

described below.

DPLL-Stalmarck a hybrid approach for SAT has been developed using two
different, but complementary SAT algorithms: DPLL and Stalmarck.
A prototype that implements this approach has been developed in Alice ML
and uses solvers based on the two algorithms in an asynchronous setting
and uses dynamic information-sharing to enable co-operation between the
solvers. The DPLL solver is the main solver and the Stalmarck solver acts
as a clause-learning process and supplies the learned clauses to the DPLL
process, thereby helping the DPLL process to potentially prune its search

space.

Concurrent Stalmarck As an exploratory research effort, a novel concurrent

algorithm,Concurrent Stalmarck has been developed. This algorithm has
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been developed by applying concurrent techniques to the original Stal-
marck algorithm. It demonstrates an alternative to the task-partitioning
techniques observed in existing parallel SAT solvers (which are largely
DPLL-based) and is well suited for implementing on architectures with
large scale parallel processing resources, e.g. large clusters.

A prototype implementing this new algorithm has been developed in Al-
ice ML. The implementation demonstrates a novel form of implementing
work distribution using the declarative concurrency features of Alice ML

and uses minimal communication to achieve work distribution.

Concurrent programming abstractions for the following:

e Implementation of the saturation technique (used in the Stalmarck al-

gorithm) in a concurrent setting.

e Encapsulation of the interaction of DPLL with the external solver, al-
lowing for it to be extended to incorporate one or more external solvers

as helpers.

e We have developed a multilayered approach to introduce sound extensions

to an LCF prover by applying concurrent programming techniques to syn-
thesize novel concurrent tacticals (control structures for applying tactics).
The multilayered approach involves implementation of the concurrent tech-
niques as abstractions which are in turn, used to implement the concurrent
tacticals and which in turn, can be used interactively as well as within au-

tomatic proof search methods.

We have developed a prototype in Alice ML, as a proof-of-concept for this
multilayered approach. HAL, a prototypical LCF style first-order theorem
prover [Paulson, 1996], was ported to Alice ML and the multilayered ap-
proach was applied to it to introduce a variety of novel concurrent tacticals.
These concurrent tacticals are available for interactive and automatic use.
They have been used within the automatic proof search procedures as well,

resulting in some novel and interesting proof search methods.

Asynchronous, collaborative implementation of the unification tactic within

HAL has been developed. Multiple goals (sharing the same meta-variables
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asynchronously) compute the unifiers and subsequently collaborate to come
up with the unifier compatible with all the goals. This implementation
is illustrative of a co-operative approach between multiple goals working

asynchronously, sharing partially evaluated information.

1.6 Layout of the thesis

In this section, we signpost the material discussed in the thesis.

In chapter 2, we provide an overview of a selection of published research on paralleli-
sation of theorem proving. Though by no means an exhaustive list, it spans a broad
range of theorem proving flavours as well as parallelisation approaches. The field of
parallel SAT solving has had a relatively high proportion of published research in com-
parison to parallelisation of other flavours of theorem proving and is covered in detail
in §2.1. In §2.5, we provide a discussion of the state of the field of parallelisation of
mechanised reasoning systems in the light of the works discussed in the chapter and
identify the scope for further investigation of the topic, setting out an agenda for the

work reported in this thesis.

In §3.1, we give a concise statement of the hypothesis of the work reported in this

thesis, giving the rationale for our choice of the case studies used.

In chapter 4, we provide the relevant background related to theorem proving, in partic-
ular, SAT and LCF style theorem proving. Also included are explanations of relevant

parallel programming terminology used in this thesis.

In chapter 5, we give a detailed discussion of why parallelisation of theorem proving
should be considered. This discussion includes perspectives of hardware imperatives
as well as theorem proving specific issues that motivate the need. This chapter also in-
troduces the developmental methodology proposed in this thesis. This is done by pro-
viding a discussion of how parallelisation can be implemented, formulating desirable
criteria for the same. In §5.4.1, the notion of concurrent programming abstractions
is introduced and its applicability in the context of the work reported in this thesis
is explained. Also included are explanations of a few relevant standard concurrent
programming abstractions. In §5.5.1, the advantages of using a functional program-
ming language for implementing concurrency are listed. The chapter ends with §5.6,

explaining how Alice ML, the implementation language used for implementing the
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prototypes discussed in this thesis, serves as a good vehicle to implement the proposed

developmental methodology.

In chapter 6, we report our investigation of the focus of this thesis for the case study
of the propositional satisfiability problem (SAT). In §6.1, we set out the agenda for
the two novel approaches of application of concurrent techniques to SAT that we have
developed. Details of the approaches and the implementation of their proof-of-concept
prototypes are provided in §6.3 and §6.5. Details of the empirical evaluation carried
out for these prototypes are provided in §6.7. Conclusions and pointers to future work

are provided in §6.9.

In chapter 7, the investigation of LCF style first-order proving is reported. The mul-
tilayered approach developed for the same is explained with the aid of the proof-of-
concept prototype of HAL, a LCF-style first-order theorem prover. The novel concur-
rent tacticals developed are explained with examples. Automatic proof search proce-
dures implemented using these novel tacticals are described including proof attempts

in HAL where they outperform their sequential counterparts.

In chapter 8, we provide a unified picture of the aims of the thesis and how they have

been achieved in the light of the material described earlier in the thesis.



Chapter 2

Parallelisation of mechanised

reasoning systems: An overview

Theorem proving, with its ever increasing suite of applications, is faced with the chal-
lenges of problem size and complexity. New avenues of exploration are crucially
needed to tackle these challenges. One such direction is parallelisation. Recent years
have seen a huge increase in the availability and accessibility of a variety of paral-
lel processing architectures including multicore machines and a variety of distributed
computing environments. Appropriate (re)engineering of applications is crucial to har-
ness the power of these emerging architectures. There are a variety of possibilities for
parallelisation of an application domain like theorem proving which has an established
set of algorithms (a detailed discussion on parallelisation techniques is provided in

chapter 5).

Parallelisation has been explored in the context of many theorem proving approaches
using a variety of parallel and distributed architectures, including, but not limited to:
propositional satisfiability (SAT) solvers (e.g. [Singer, 2006]), term rewriting based
systems (e.g. [Yelick, 1992]), equational deduction based systems (e.g. [Denzinger
et al., 1996]), model checking (e.g. [Heyman et al., 2002]), resolution based systems
(e.g. [Bonacina, 1992]) and natural deduction based systems (e.g. [Benzmiiller et al.,
2008]).

The availability and accessibility of technological infrastructure often tends to define

the directions and boundaries of research whose ultimate end products are system

9
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implementations. The body of published research in the field of application of par-
allelisation techniques to theorem proving and automated reasoning too reflects this
phenomenon: from the early work on parallel Prolog efforts designed for transput-
ers (e.g. [Bohm and Speckenmeyer, 1996]) to SAT solvers designed for grids (e.g.
[Chrabakh and Wolski, 2003]) to higher-order theorem provers for multicore machines
(e.g. [Matthews and Wenzel, 2010]).

The parallelisation approaches used have been diverse. In this chapter, we provide a

discussion of some of these approaches and related implementations !

e Search space partitioning, information sharing ( §2.1.7, §2.3, §2.2.1)

Use of heterogeneous reasoning systems ( §2.2.3)

Portfolio-based approaches that use multiple solvers, matching the problem with
the solvers ( §2.1.10, §2.3.2)

Approaches using concepts and notions of agent based systems ( §2.2.3)

Approaches targeted at specific architectures e.g. grids, employing techniques

for effective load-balancing and utilisation of idle resources ( §2.1.9)

In the work reported in this thesis, we focus on the following two flavours of theorem
proving: SAT solvers and LCF style provers (see §4.4.6 for more details about LCF).
In §2.1, we provide a survey of key published research on parallelisation for the SAT
domain, highlighting the techniques that have formed the basis of the parallelisation ef-
forts and the major issues faced in engineering efficient parallel SAT solvers. In §2.2,
we provide a discussion of the parallelisation approaches adopted by interactive theo-
rem provers. In §2.3, we provide a discussion of some work partitioning approaches
used in parallel automatic theorem provers. An orthogonal dimension of relevance
is the implementation platform and developmental methodology used to incorporate
concurrent techniques into theorem provers. To this end, in §2.4, we consider the
implementation viewpoint with a discussion of parallel functional languages as imple-
mentation languages. We end the chapter with a summary of the different flavours of
parallelisation, with a discussion of the issues related to the implementation method-

ologies adopted by the various systems and our observations on what more can be done

!Given the growing list of published research in this field, the authors would like to emphasise that
this list is by no means exhaustive.
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to promote easy prototyping of and experimentation with the application of concurrent

techniques to tackle theorem proving challenges.

2.1 Parallel SAT solving

Parallelisation has been investigated widely for the SAT domain in the past few years.
In this section, we discuss some representative work related to parallelisation of SAT

solvers, in relation to our SAT case study, discussed in chapter 6.

In §2.1.1, we provide an overview of some key techniques used in many state-of-the-
art (sequential) DPLL-based SAT solvers, some of which are used in the parallelisation
approaches reviewed in this chapter. In §2.1.2, we discuss some of the specific chal-
lenges posed by the SAT domain for effective parallelisation. In §2.1.5, we describe,
in detail, two concepts that have been widely used in the DPLL-based parallel SAT
solvers reviewed in this section: guiding path (GP), which has been used extensively
for search space partitioning and conflict driven clause-learning (CDCL), which has
been used in many systems that use collaborative learning. Among the non-DPLL
solvers, in §2.1.4.2, we discuss the work on using the DPLL and Stalmarck’s algo-
rithm in a synergetic manner, as part of a heterogeneous proof engine. In §2.1.8, we
review an early work based on a non-DPLL algorithm that uses collaborative learning.
In §2.1.10, we review portfolio-based systems that use multiple solvers on the same

problem.

2.1.1 Overview of techniques used in modern DPLL solvers

Many of the state-of-the-art, complete solvers of today continue to use variants of the
DPLL algorithm, augmented with various techniques. Over the past decade or so, a
huge amount of research has been invested in formulating a variety of techniques that
have enabled modern DPLL-based SAT solvers to push their tractability threshold.
These have included developing various heuristics, novel techniques to prune search
spaces and effective data structures and implementations. We enumerate some of these

below, with appropriate references for the interested reader.

Efficient data structures, efficient unit propagation, watched literals [Zhang and Stickel,

1994] introduced tries, an efficient data structure for the CNF based SAT prob-
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lem and related algorithms enabling a very efficient form of unit propagation
and was implemented successfully in the SATO system [Zhang, 1997]. Work re-
ported in [Moskewicz et al., 2001] built on this further and introduced the notion

of watched literals.

Better branching heuristics A wide variety of effective static and dynamic branching
heuristics have been developed ranging from the maximal occurring variable to
more sophisticated ones based on a function of the current variable and search-
state. A detailed survey of branching heuristics can be found in [Hooker and
Vinay, 1995].

Backjumping, conflict driven clause learning Non-chronological backtracking is a
common technique used in most modern SAT solvers. It allows for jumping to a
decision level, based on the reason for the conflict rather than merely tracing the

way back up the search tree in a chronological order.

The size of the search tree is exponential for the DPLL algorithm. So, heuristics
to prune the search space are crucial to make the approach to work in prac-
tice. Conflict driven clause learning (CDCL) [Marques-Silva et al., 1996], was
introduced to address these and was implemented in the SAT solver, GRASP
[Marques-Silva and Sakallah, 1996]. CDCL is discussed in detail in §2.1.6.

Randomised restarts It has been identified that even for some relatively easy in-
stances certain orders of search may take the algorithm into parts of the search
space that do not produce useful conflict clauses, leaving it floundering. Restarts
were proposed in [Giles et al., 1998] as an approach to deal with high variance
in running times over similar instances [Gomes et al., 2000]. A restart is the op-
eration of throwing away the current partial assignment (excluding assignments
at decision level zero), and starting the search process from scratch or with a
(new) randomly chosen assignment. A restart is performed after a certain num-
ber of unsuccessful backtracks (in the execution of the DPLL algorithm). The
clauses learnt are retained and the original problem is augmented with them for

the restart.

Structural information, Formula preprocessing DPLL relies crucially on the CNF
format and hence a given problem has to be converted to CNF, to be used with a

DPLL-based SAT solver. This conversion often destroys the implicit structural
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information that may be present in the problem instances. Hence, DPLL-based
solvers fail to capitalise on the implicit structure, often observed in SAT in-
stances derived from real world problems [Thiffault et al., 2004]. This issue has
been addressed in different ways: by trying to identify and exploit the struc-
tural symmetry present in some problem instances; by introducing techniques
to extract the structural information from the CNF problem or from the native
problem format in a pre-processing stage and use it as auxiliary information for
the DPLL to use in its branching heuristics [Sabharwal et al., 2003] and also to

enhance the performance of clause-learning algorithms.

Runtime variations, Benchmarking, Phase transition The search spaces as spanned
by the DPLL algorithm are highly irregular as it is hard to predict the effect of
unit propagation. This irregularity is further accentuated in the SAT cases as the
time taken to find the satisfying assignment can vary hugely for even different
instances of the same class of problems. A rigorous analysis of runtime dis-
tributions of backtrack procedures for propositional satisfiability and constraint
satisfaction has been carried out in [Gomes et al., 2000]. This shows the huge
variation that is observed in the time taken to solve the same instance, by vary-
ing the order of branching (the branching is done using randomisation and the
random seed is varied). Benchmarks have been developed for the SAT domain,
e.g., SATLIB [Hoos and Stiitzle, 2000] provides a wide variety of CNF format

benchmarks spanning random instances and real-world instances.

2.1.2 Search space partitioning, Dynamic load balancing

Functional partitioning and data partitioning (described in §4.8.3) are two common
techniques adopted in parallel programming, to perform work decomposition. The
former is not a viable option for parallelisation of the DPLL algorithm, because, the
DPLL algorithm relies on the coherence of the state updates performed sequentially
by the various functions. The latter, achieved in the case of the DPLL algorithm, by
partitioning the search space using efficient techniques and heuristics is the approach

adopted by many of the parallel SAT solvers based on the DPLL algorithm.

However, it is hard to predict the time needed to solve a given branch, as the effect

of unit propagation in reducing a problem cannot be predicted always. This irreg-
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ularity in the search spaces poses a significant challenge for performing static work
decomposition (partitioning the search space) for effectively parallelising SAT solvers
implemented using the DPLL algorithm. To address this, efficient dynamic workload
balancing strategies have to be used, making it an important focus area especially for
parallel SAT solvers which focus on optimally utilising bulk parallel processing re-

sources by distributing work amongst them.

One approach to tackle such scenarios is to do some form of dynamic search space
partitioning as evidenced by many parallel SAT solver implementations [Bohm and
Speckenmeyer, 1996], [Zhang et al., 1996], [Sinz et al., 2001], [Blochinger et al.,
2005a]. This introduces the need for effective dynamic load-balancing strategies for
optimal utilisation of idle resources, without the load-balancing related communication
causing too much of an overhead. Another approach is to use heuristics to pick a subset
of variables and use assumptions based on them as units of work for parallelisation,

e.g. as seen in [Gil et al., 2008].

2.1.3 Evaluation related challenges

Issues related to evaluation of parallel SAT solvers have been investigated in [Speck-
enmeyer et al., 1988], [Speckenmeyer et al., 1997]. One of the issues considered in
this work is the anomalies in the super-linear speedups produced by some parallel
implementations of backtracking search procedures. This is attributed to the non-
deterministic treatment of the search tree by a parallel execution. The work also
discusses the irregularity of the distribution of solutions for the SAT cases and the
need to separate SAT and UNSAT cases for the purpose of evaluation of parallel SAT
solvers based on DPLL. Irregular distribution of solutions, SAT vs UNSAT cases and
architecture dependency make the task of comparison of sequential and parallel imple-

mentations of SAT very difficult.

2.1.4 DPLL-Stalmarck

In §2.1.4.1, we describe a well known drawback of the DPLL algorithm for SAT, its
inability to use implicit structural information. In §2.1.4.2, we review a work that uses

the DPLL algorithm along with other algorithms within a proof engine framework.
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2.1.41 Using implicit structural information in the problem

Real world problems often possess a lot of implicit structure. However, much of this
is lost in the process of encoding them as SAT problems, mostly by virtue of the CNF
conversion process. However, this is unavoidable since the DPLL algorithm relies cru-
cially on the CNF format. This drawback of the DPLL algorithm has received a lot
of attention in the literature in recent years, e.g., see [Thiffault et al., 2004]. Different
approaches have been proposed to address them: using non-clausal solvers [Thiffault
et al., 2004], extracting structural information after the CNF conversion by exploiting
variable dependency and/or symmetry, e.g., [Dubois and Dequen, 2001], [Beame et al.,
2003], [Sabharwal et al., 2003].

Stalmarck’s algorithm [Sheeran and Stalmarck, 1998], [Borilv, 1997] addresses the
problem by avoiding the need for CNF conversion and by using relations between sub-
formulas as the basis for the inference rules in the algorithm. It adopts a breadth-first

search approach. The algorithm is described in detail in §4.5.3.

2.1.4.2 A compositional approach, using the DPLL and Stalmarck algorithms

DPLL adopts a depth-first approach and Stalmarck’s algorithm adopts a breadth-first
approach. The complementary nature of these approaches means that they explore
different parts of the search space and thus there is potential to engineer a co-operative

framework using the two approaches.

The work described in [Andersson et al., 2002] uses these two algorithms in a com-
positional manner, to solve SAT. It uses a proof engine framework approach to solve
combinational design automation problems encoded as SAT problems. The approach is
to engineer different proof techniques as strategies, i.e. functions between proof states
and allow for composition of the strategies. Each strategy also takes an additional pa-
rameter which determines the time it is allowed to run. Both the DPLL and Stalmarck
algorithms have been implemented as strategies in this system. The framework is es-
sentially a sequential compositional system and hence the Stalmarck strategy has to be
run for a pre-defined period of time and then composed with the DPLL strategy. Thus,
it does not allow for dynamic interaction and cooperative information-sharing between

the two techniques. In effect, it works as a pipeline of the different solvers used, each
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solving a sub-problem independently.

The information produced by the Stalmarck process is independent of the DPLL’s
search-state. Thus, the Stalmarck process(s) can run autonomously and communicate
their result dynamically to the DPLL solver. The results in turn, can potentially help
to prune the DPLL’s search space. So, there is clearly scope here for the two processes
to be running concurrently. However, this is not the case in the work reviewed above
[Andersson et al., 2002]. We have addressed these opportunities in our work on a hy-
brid SAT solver, based on the DPLL and Stalmarck algorithms, described later in the
thesis, in §6.3.

2.1.5 Parallel SAT solver on transputers, PSATO, Guiding path

One of the early works on parallelising SAT using workload balancing is described
in [Bohm and Speckenmeyer, 1996]. This work describes a parallel SAT solver de-
ployed on a message-passing based parallel architecture, a transputer system (every
processor is connected with at most 4 other processors) with upto 256 processors. Each
processor runs a copy of a highly optimised sequential Davis-Putnam algorithm based
SAT solver and solves small subformulas. A naive way of search tree decomposition
is used as a starting point. It employs a dynamic workload balancing strategy based on
a technique for estimating the workload for a sub-problem, based on a problem-class
dependent constant and the number of unset variables in its partial truth assignment.
The strategy is varied depending on the architectures and it involves the overhead of
communication. The work focused primarily on UNSAT instances. It reports good
performance with near linear speedup for the class of UNSAT formulas considered:
random 3-CNF UNSAT instances.

Another pioneering parallel SAT solver implementations is PSATO [Zhang et al.,
1996], a parallel SAT solver, based on SATO [Zhang, 1997], a highly efficient (se-
quential) implementation of the Davis-Putnam algorithm for SAT. A key contribution
of this work is the introduction of the notion of a guiding path (GP), a technique useful
for dynamically partitioning the search space into non-overlapping portions. GPs have
since been used as a key technique for work distribution in many of the parallel SAT
solvers, [Sinz et al., 2001], [Blochinger et al., 2005a], [Feldman et al., 2005].
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2.1.5.1 Guiding path

A Guiding path (GP) is the path in the search tree from the root to the current node,
with additional information attached to the edges as follows: Considering the binary
search tree generated by the recursive calls to the DPLL algorithm, at a given choice
point (i.e. a case-split on the truth values of the variable), the GP records the list of
variables which have been assigned a value till that point. Each case-split corresponds
to an entry in the GP along with the following information (i) Literal L, , which was
selected at level d (i1) A flag indicating if both branches have been explored (closed)
or not (open), 1.e. if backtracking is not needed or is needed respectively. An entry in
the GP with an open flag is a potential candidate for search space division, as at some
point, the algorithm will need to backtrack to that point and explore the subtree rooted
at the other branch, say, 7. E.g., if a process P has a node N, given by < L;,open >,
then another process, say, P, can come along and take up the work of exploring the

subtree 7" and the flag for node N, at process P; is updated to closed.

GPs also provide a way of recording work that has been done already. E.g., if the solver
halts unexpectedly (e.g, by running out of memory, occurrence of some extraneous
fault), with the following guiding path, (< xj,0pen >, < x5,closed >, < x3,closed >),
then, when the solver is restarted with this guiding path as the input, the information in
the GP can be used to avoid parts of the search space that have been explored already,

such as (< xj,0pen >, < xs,0pen >,...).

It allows for dynamic work load balancing by providing a means to divide the search
space on-the-fly. If a process, say IP, becomes idle , it can potentially ask another busy
process, say BP, for a sub-problem from its search-space. BP can then pick a new
variable from its GP to generate a new and unexplored (sub-) problem and give it to
IP and the variable that was picked can now be closed, thus removing the sub-search

space that has been given to IP from its own work.

To use GPs in these ways, a SAT solver should be able to start at any point within the
search space enocoded in the given GP. This typically calls for modifications to the

system.
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2.1.5.2 Distinguishing features of PSATO

The main objective of this work was to utilise idle resources in a network of work-
stations, e.g., during out of work hours. In view of this, PSATO provides for start-
suspend-resume facilities. This was realised by using GPs as a way of accumulating
intermediate results of separate runs of the prover on the same problem. These facili-
ties also allow for possibilities of a solver working on a particularly hard problem over

many days or longer durations even, with possible interruptions.

PSATO adopts a master-slave model of distributed computation. A slave process is a
Davis-Putnam algorithm based SAT solver that accepts as input a problem and a GP.
For a given guiding path, the solver process picks a node from the GP to proceed, us-
ing a case-splitting rule as the guide to make the choice. The master takes care of task
partitioning among slaves. The slave reports to the master upon task completion/in-
terruption, with a result in the former case and a GP in the latter case. The master
process maintains a list of GPs with the number of GPs being 10% higher than the
number of slaves. If it falls below that, the GPs are split and work is distributed to the
slaves. PSATO ran on a network of workstations and used a public domain distributed
language, called P4, developed at the Argonne National Laboratory, [Butler and Lusk,

1994]. P4 provided a C library for programming a variety of parallel machines.

[Zhang et al., 1996] also discusses the inherent difficulties of evaluating the perfor-
mance of a parallel SAT solver, because of the rapid fluctuations in the hardness of
the problem. This work reports experiments on random 3-CNF UNSAT cases drawn
from the quasi-group problem domain with a clause-variable ratio of 4.25 , which has
been known to be the phase transition boundary [Gent and Walsh, 1994a] for SAT. The
experiments were run for a number of variables = 100, 150, 200, with 50 cases for each
and the average time was taken. The number of workstations used for the experiments
were 1, 5, 20. The work reports better performance on speedup and overhead, for the
harder cases, which is explained by the fact that the master got more chance to manage

GPs and balance workloads, thus being able to score gains over the sequential version.



2.1. Parallel SAT solving 19

2.1.6 Conflict driven clause learning for DPLL

The size of the search tree is exponential for the DPLL algorithm. So, heuristics to
prune the search space are crucial to make the approach to work in practice. Conflict
driven clause learning (CDCL) [Marques-Silva et al., 1996], was introduced to address
these. CDCL is a technique that grew out of Al research on explanation-based learn-
ing [Stallman and Sussman, 1977]. Whenever a conflict occurs in the DPLL algorithm
and the algorithm is forced to backtrack, the system derives a reason for the conflict in
the form of a new clause, by employing a powerful conflict analysis procedure which
analyses the implication structure generated by the unit propagation procedure of the
DPLL algorithm. The clause(s) thus derived, often referred to as the learnt clauses
can be added to the problem, thus ensuring that the same assignment (that led to the

conflict) is not made again.

CDCL was originally introduced to enable non-chronological backtracking. It has been
further augmented with effective techniques for caching and reuse of learnt clauses,
which can be added to the original set of clauses (i.e. the given problem). It is in this
form that it has been widely employed in the context of parallelising DPLL-based SAT
solvers. CDCL, along with other efficient implementation techniques, has boosted the
tractability threshold of SAT solvers by a huge margin and is currently used as a stan-

dard technique in many of the state-of-the-art SAT solvers.

Clause length and potentially exponential number of learnt clauses (a learnt clause
is generated for every conflict) are related issues of importance. Thus, the topic of
management of learnt clauses is an important focus area for effective use of CDCL, as

adding all of them to the problem will quickly exhaust the memory.

Though CDCL was introduced in the context of sequential SAT solvers, the resulting
possibilities of information sharing have been exploited by many recent parallel SAT

solvers primarily as a tool to prune search spaces. This is discussed in §2.1.7.

In the parallel SAT solver scenario, management of clauses assumes high significance.
E.g. for systems that rely on the Message Passing Interface (MPI), communicating
vast amounts of data per worker over a whole range of workers can significantly in-

crease the communication overhead and can slowdown the master process as well, thus
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significantly affecting the overall performance of the system. Heuristics have to be em-
ployed to balance the length of the clauses and the number of clauses communicated

and tradeoffs have to be made in communicating them.

Information sharing is especially useful if the shared information is consistent through-
out the problem, and not for a particular context (e.g, for a particular case-split) and it
is advantageous if the information-finding work can be autonomously organised with-
out interfering with the main algorithm, as it helps to avoid bottlenecks. The potential
of information sharing has been explored in a non-DPLL setting without using CDCL

as well, as discussed in §2.1.8.

2.1.7 DPLL-based parallel SAT solvers using search space parti-

tioning, dynamic workload balancing and CDCL

Use of search space partitioning invariably necessitates that some form of dynamic
workload balancing strategy. Search space partitioning along with workload balancing
were the prominent directions pursued in the early works on parallelisation of SAT. A
large proportion of published research on parallel SAT which use the DPLL algorithm
employ a GP related notion for search space partitioning. More recently, CDCL is
being used with different forms of clause sharing, catering to different parallel com-
putational models and architectures and a variety of heuristics have been developed to
filter the clauses. In this section, we provide a discussion of some of these, mentioning

their distinguishing features and performance.

PaSAT [Blochinger et al., 2005b] describes a parallel DPLL solver, using GPs based
search-space partitioning and exchange of lemmas derived using CDCL. It is imple-
mented on a proprietary distributed computing platform called DOTS (Distributed
Object-oriented threads system). It uses C++ as the implementation language, message-
passing for communication between the threads and works on distributed computing
environments like clusters. It implements a form of distributed learning and restricts
the length of the clauses that can be shared. Parameters are used for workload balanc-
ing by employing a work stealing strategy. However, a high level of communication
is required to accomplish this form of load balancing. The clauses are exchanged be-

tween the individual sub-processes and thus the traffic can become prohibitively high.
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It is a crucial consideration for any parallel system to keep the inter process communi-

cation low.

PaMiraXT [Schubert et al., 2005] uses MPI technology, CDCL and GPs to implement
a form of distributed learning and is targeted at distributed computing environments. It
uses MiraXT as the core solver. MiraXT is a thread based parallel SAT solver desgined
for shared memory architectures (see §4.8.2 for defintion). PaMiraXT uses a shared
clause-database which stores all the learnt clauses and the workers can choose the rele-
vant clauses that they want to use from this database. This reduces the message latency

and also eliminates the need to restrict the length of the conflict clauses generated.

PMSat [Gil et al., 2008] is a parallel implementation for SAT solving, based on the
MiniSAT SAT solver [Eén and Sorensson, 2004], targeted at distributed computing
environments like clusters. This has been implemented in C++ using MPI. MiniSAT
is a DPLL-based SAT solver that incorporates many recent developments in heuris-
tics and allows for satisfiability search based on a given set of assumptions (a set of
literals set to True). This feature is crucial for the PMSat implementation. The par-
allelisation effort adopts a search space partitioning approach as follows: A subset
of the set of variables of the given problem is chosen and assumptions are generated
based on these variables. An assumption defines an implicit subspace of the problem’s
original search space. These assumptions form the units of work for the parallelisa-
tion effort. The solver is based on a master-slave architecture. The master explicitly
distributes the work as described above to the workers. The workers are instances of
the MiniSAT solver. The workers work on their individual subspace using the DPLL
algorithm and report their result to the master. The workers are not given any time
restrictions and are assumed to work in the absence of infrastructure fault. In the case
of SAT, the satisfying assignment is communicated and the master stops with the an-
swer. In the case of UNSAT, a clause is derived based on the conflict and the worker’s
assumptions using the notion of GP as described in [Zhang et al., 1996]. This is then
communicated to the master along with the UNSAT status. The master maintains a
database of learnt clauses received from different workers and uses it to prune search
spaces of unexplored units of work (assumptions which are in turn, subspaces) or in
some cases to eliminate complete units of work. Performance statistics of comparisons
of sequential MiniSAT and PMSAT for 25 instances drawn from the SATLIB bench-
marks show super linear speedups for some SAT instances. The authors also discuss

the difficulties involved in making a conclusive empirical analysis of the gains of par-
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allelisation based on these speedups. However, no explicit load balancing strategies
have been implemented. Work allocation is explicitly done by the master when there
is an idle worker. This requires the master to incorporate mechanisms for monitoring
the workers. Communication of learnt clauses happens via the master and there is no

peer-to-peer clause sharing.

2.1.8 PaModoc : a non-DPLL co-operative parallel SAT solver

[Okushi, 1999] describes a parallel propositional theorem prover called Parallel Modoc,
based on the system Modoc [Gelder, 1999]. The spirit of this approach has been to
use communication as a vital part of the algorithm and not just as a means of load-
balancing. Modoc adopts a backward-chaining, goal-oriented, model-elimination ap-
proach to SAT. It uses the notion of autarkies, first introduced in [Monien and Speck-
enmeyer, 1985], which are partial truth-assignments with pruning information encoded
in them and Modoc uses these to prune unfruitful branches. Furthermore, Modoc also
records lemmas based on its sub-refutation attempts. Parallel Modoc executes multi-
ple instances of Modoc as separate processes, one for each goal clause. The processes
cooperate in finding a solution by sharing lemmas and autarkies via a shared data
structure called the blackboard. The work reports speedup over the sequential version

of Modoc on SAT encodings of planning problems.

There is an obvious limitation to this work, in that it targets a very specific imple-
mentation, i.e. Modoc, and thus cannot be used in conjunction with other DPLL-based
systems and is unable to benefit from the huge advances made in the DPLL solver
related techniques and heuristics. Nevertheless, it holds conceptual significance, as
it adopts a different emphasis and direction compared to other trends in parallel SAT

solving.

The availability of information that can be readily used, without any preconditions
on their applicability, is very desirable for the purpose of effective and instantaneous
information-sharing and to allow for autonomous agents to work on the same problem.
However this is not the case in this work. Not all autarkies found can be immediately
used by other processes, as they have associated preconditions that have to be met.
Furthermore, there can be scenarios wherein there are conflicts between the autarkies

themselves and a conflict-resolution policy needs to be in place. In the work on par-
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allel Modoc, the policy adopted has been to give priority to the ones already on the
blackboard over to those contributed by an individual Modoc process. This leads to
both wasted effort as well as the additional time spent on working out what the relevant
autarkies are. But, it is an indispensable step as given Modoc’s approach and the fact
that autarkies are the shared information that 1s communicated via the blackboard, it
becomes necessary to check the preconditions to produce consistent information to put
on the blackboard. There is no published research available on further work on this

system.

2.1.9 GRID based implementations

The SDSAT (Simple Distributed SAT) approach [Hyvirinen et al., 2008b], exploits
the phenomenon of variation in the run times for the same instance (see §2.1.1) to run
randomised SAT solvers in a grid-like distributed environment. CL-SDSAT (Clause
Learning Simple Distributed SAT) is a parallel implementation specifically targeted
to address the aspects of a grid-like computing environment. It uses a master-worker
(a.k.a master-slave) architecture. The master process distributes the same problem
instances to the workers each of which run instances of a randomised clause learn-
ing SAT solver based on the solver MiniSAT [Eén and Sorensson, 2004] (using ran-
domised restarts and randomised branching decisions). The master stops when one of
the workers finishes. However, unsuccessful workers (due to exhausting the allocated
resources) transfer some or all of their learnt clauses to the master. These classes are
added to the problem instance that is given to subsequent workers. Thus, this allows
for a way of both accumulating and reusing the learnt clauses. But, the clause learning
process itself is still based on CDCL and hence tied to the DPLL algorithm. Also, the
learnt clauses cannot be communicated to workers that are already running. In partic-
ular, this work does not use any search space partitioning. The paper reports results
of solving previously unsolved problems from the SAT 2007 competition, by using a

version of CL-SDSAT deployed on a production level GRID environment.

zetaSAT [Blochinger et al., 2005a] is a solver using the same ideas as PaSAT, with
some modification and re-engineered to address GRID specific issues. GRIDSAT
[Chrabakh and Wolski, 2003], is a DPLL-based solver designed for the GRID, using
the highly successful and optimised zchaff [Yogesh Mahajan, 2004] as the individual
solver at each node of the GRID. Being a GRID application, the focus is on dynamic
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resource allocation for optimal management of resources.

2.1.10 Others

ySAT [Feldman et al., 2005] is a parallel multithreaded DPLL-based SAT solver on
a single multiprocessor workstation with a shared memory architecture. Though the
core algorithm is DPLL, this system incorporates many of the optimisation techniques
introduced in recent years. The emphasis has been on providing an efficient portable
implementation using the computation model of shared memory architecture. It also
demonstrates the disadvantages of parallel execution of a backtrack search procedure,
like DPLL, on a shared memory architecture, e.g. a multiprocessor machine, due to

issues related to increased cache-misses.

ManySAT [Hamadi and Sais, 2009] adopts a portfolio based approach aimed at shared
memory architectures such as multicore architectures, and is targeted at addressing
the sensitivity to parameter tuning exhibited by modern DPLL-based sequential SAT
solvers. The implementation uses a portfolio of complementary sequential SAT solvers,
obtained from careful variations of the DPLL algorithm. Restarts are used and are ex-

ecuted using heuristics based on the potential backjumping effect of learnt clauses.

[Cope et al., 2001] investigates parallelisation of SAT in a functional setting using the
recursive version of the DPLL algorithm along with CDCL. It uses GpH (Glasgow Par-
allel Haskell, a parallel dialect of Haskell) as the implementation language and relies
on asynchronous evaluation of both the branches at each case-split. It reports better
performance for hard instances but no speedup for others, but the experimental results

provided are fairly limited and there has been no subsequent published work on it.

NAGSAT [Forman and Segre, 2002] describes a SAT solver based on a more general
technique called nagging (described in §2.3.2). In brief, the nagging technique al-
lows for asynchronous solvers to work on reformulations of the same (sub-) problem.
The NAGSAT system uses this technique with a DPLL-based solver, using the 3-SAT
problem specification. The sub-problems that the worker gets is typically a sub-tree of
the search tree of the master’s current state. The worker applies one of the following
reformulations to the sub-tree: (1) Reorder the list of variables that are awaiting assign-

ment (i) Randomly flip the logical meaning of the variables, thereby switching the
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order in which the positive and negative literals will be split upon. The work reports
sub-linear speedup for 64 nodes and compares it with the performance in the 2-node

case speculating that the framework is quite scalable.

The 32/64 bit architectures of modern computers enable 32/64 1-bit operations to be
performed simultaneously. [Heule and van Maaren, 2008] discusses work on using this
feature to boost the performance of the DPLL algorithm by modifying assignments to
variables in parallel. This is applied to an incomplete procedure on the lines of the one
described in WalkSAT [Selman et al., 1996]. The payoff of modifying assignments in

parallel is big here due to its high reliance on assignment modifications.

There has been work along lines of applying interdisciplinary approaches, e.g., of using
market-inspired approaches to SAT. [Walsh et al., 2001, 2003] discuss approaches of
formulating the SAT problem as production on a supply-chain and use the distributed

market protocol for supply-chain management to solve the SAT problem.

2.1.11 Summary of key works on parallel SAT solving

In this section, we provide a summary of the work discussed above.

As we have seen in this section, in relation to complete methods for SAT solving, the
vast majority of parallelisation efforts have been along the lines of either or both of the

following

e Use (dynamic) search-space partitioning techniques primarily. Most of these
systems employ load-balancing strategies using the guiding path technique [Zhang
et al., 1996]

e Use DPLL with conflict-driven clause learning(CDCL) [Marques-Silva et al.,
1996] in a distributed setting, often referred to as distributed learning in the

literature.

e [t is instructive to observe that all these parallel systems are based on the DPLL

algorithm 2.

There has been work on parallelising incomplete methods. Among complete methods, almost all
the parallelisation efforts have focused on the DPLL algorithm. We do not address incomplete methods
in this work.
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e An orthogonal direction of research is the use of portfolio based approaches of
using multiple SAT solvers and published research in this category report on
systems where all the solvers in the portfolio use DPLL as the core algorithm.

Other techniques include:

e Exploring alternative formulations of the problem asynchronously using a DPLL

implementation

e Using a non-DPLL method with collaborative learning using the notion of au-

tarkies.

Thus, though in comparison to parallelisation of other forms of theorem proving, there
has been relatively large amount of published research in parallel SAT, there are still
opportunities that merit serious investigation. Some of these are listed below and have

been addressed in the SAT case study, discussed in this thesis, in chapter 6.

DPLL and need for other complementary players DPLL has been the dominant al-
gorithm among complete algorithms for SAT and has been used in highly opti-
mised implementations with sophisticated heuristics. However, as discussed in

§2.1.4.1, DPLL suffers from a fundamental inability to leverage on implicit
structural information present in real world problem instances [Thiffault et al.,
2004]. This is due to its heavy reliance on the CNF encoding and the loss of
structural information that happens as a result of the process of conversion to
CNF. Recent works have tried to address this by supplying the structural infor-
mation as an auxiliary input. However, this approach entails bespoke and often
complicated domain specific analysis is required to enable mining of structural
information for a given class of problems [Beame et al., 2003]. Despite these
limitations, tremendous amount of research and development has been invested
in the development of heuristics and efficient implementations of DPLL-based
solvers. Thus, it makes sense to capitalise on the advanced technology available
for DPLL-based solvers and use complementary solvers along with it. These

complementary solvers should be chosen so as to address DPLL’s shortcomings.

An additional desirable characteristic, particularly in the context of designing
hybrid solvers will be solvers that enable exploration of the search space in a

manner complementary to that of DPLL’s search method. The depth-first and
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breadth-first search are known to be complementary approaches. Thus, a hy-
brid co-operative system building on algorithms based on these two approaches
holds a lot of potential. As discussed earlier, [Andersson et al., 2002] describes
a sequential compositional system that uses the DPLL and Stalmarck solvers,
along with other solvers in a proof engine framework. The sequential nature of
the framework did not allow for asynchronous running of solvers, thus making

dynamic information sharing infeasible.

Asynchronous running of the solvers and dynamic information sharing can be
powerful tools in the context of creating a co-operative solver based on one or
more algorithms, in view of both enabling effective forms of interaction and
being able to use distributed computing architectures. Furthermore, information
sharing is especially useful if the information-finding work can be autonomously
organised without interfering with the main algorithm, thus avoiding bottle-
necks. These opportunities have been addressed in our work on the hybrid SAT
solver, engineered by combining the DPLL and Stalmarck algorithms, discussed
in §6.3.

Information sharing and learning in non-DPLL solvers The clause-learning tech-
nique employed in the collaborative SAT solvers reviewed in this section is based
on the conflict-driven clause learning technique of §2.1.6. Though CDCL has
proved to be effective in boosting performance for sequential solvers, in the con-
text of using it as an information provider for a concurrent co-operative archi-
tecture for SAT solving, its efficacy can be restricted for the following reasons.
CDCL is embedded with the DPLL framework and this influences the clause-
learning process itself, which can now learn only by spanning the search tree in
the same way as the DPLL and does not bring any alternative viewpoints of the
problem. Furthermore, the learning process also suffers from one of the main
drawbacks of the DPLL algorithm, its inability to use implicit structural infor-
mation §2.1.4.1. Added to this is the issue of the number of clauses generated
by CDCL, as discussed in §2.1.6. To address this, it is useful to investigate
alternative forms of learning clauses, independent of the DPLL algorithm and
preferably in a way that can capitalise on the structure. Furthermore, it can be
beneficial, if this learning is based on complementary approaches that can poten-

tially span the search space in different ways. We have explored one such possi-
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bility in our development of the hybrid solver, DPLL-Stalmarck, as discussed in
§6.3.

Asynchronous solvers and dynamic interaction Asynchronous running of the par-
ticipating solvers and enabling dynamic information sharing can be powerful
tools in the context of creating a co-operative hybrid solver. These can en-
able effective forms of dynamic interaction, potentially pruning search spaces
and also enable optimal use of distributed computing architectures. This is not
feasible in a sequential, compositional approach,e.g., as the one discussed in
the compositional approach described above, [Andersson et al., 2002]. Fur-
thermore, information sharing is especially useful if the shared information is
consistent throughout the problem and if the information-finding work can be
autonomously organised without interfering with the main algorithm, thus avoid-
ing bottlenecks. These aspects have been addressed in our work on the hybrid

approach, described in §6.3.

Need for exploring work partitioning in non-DPLL solvers Effective work partition-
ing either in terms of task decomposition or data decomposition (see §4.8) is of
crucial importance for effective parallelisation of an application. Thus, to enable
effective parallelisation of SAT and utilisation of large scale parallelisation capa-
bilities like those provided by clusters of workstations, developing effective work
partitioning techniques for SAT is of tremendous importance. The vast majority
of DPLL-based implementations use work decomposition by allocating subtrees
to multiple parallel processes. The tasks of decomposition, allocation and man-
agement of subtrees and load balancing related communication, incur overheads.
These overheads are offset, if the number of subtrees is significant and/or the av-
erage computational cost (time,space) of the subtrees is significantly high. It
is well known that the search spaces of many of the SAT problem classes are
irregular, thus making work decomposition very difficult. This in turn, proves
as a serious limitation to parallelisation approaches using work decomposition
based on subtrees. To address the difficulties posed by DPLL-based solvers for
effective work decomposition, a useful line of investigation is the exploration
of work-partitioning possibilities for algorithms other than DPLL. We have ex-

plored this for the Stalmarck algorithm, as discussed in §6.5.

Developmental/developmental aspects The features discussed above relate to the

object-level aspects of parallelisation of SAT (as discussed in §5.3.1). Of par-
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ticular importance to the objectives of this thesis are the developmental/develop-
mental aspects. For the SAT domain and particularly for DPLL-based solvers,
use of an implementation language like C has become the default choice. This
choice has been motivated by the possibilities of employing techniques like ef-
fective cache optimisations etc. Almost all the works described in published
research on parallel SAT solvers have been developed using C++ or C, a trend
dictated by and shared with the state-of-the-art in sequential SAT solvers. These
use APIs to manage the spawning of processes and inter-process communica-
tion. As discussed in §5.5.2, §5.5.1 and §5.4.1, these impose the following
limitations: prohibitive developmental costs hampering the ease of prototyping
and experimentation; less scope for portability and incremental development.
F Our work has used Alice ML as the implementation language. This choice
has enabled: easy prototyping, potential porting possibilities to a C-based im-
plementation e.g. and development of distributed programming abstractions that

can be used to address other theorem proving scenarios.

Of particular interest to the material discussed in this thesis are the developmen-
tal aspects of these systems. As can be gathered from the preceding descriptions
of the various systems, almost all of them are based on fine tuned implemen-
tations of DPLL. In almost all cases, this entails use of a C like programming
language and there are justified reasons for these choices, in terms of speed and
machine-level fine tuning of the sequential implementations. However, for the
purpose of parallelisation, these platforms may not always be conducive to easy
prototyping and experimentation. Also, concurrent programming for imperative
programming languages is known to be extremely difficult. Almost all the par-
allel SAT systems discussed here have used C or C++ and some form of MPI
style communication. Also, there has been negligible contribution on portable
techniques reported in any of the works, as speed and success rate have been
the primary objectives for these systems. Consequentially, there has not been
much of incremental development of the systems either. Given the vast body
of work done on efficient implementations of SAT in C-like platforms, it is un-
likely and perhaps not very efficient for the state-of-the-art to move to functional

programming language platforms. However, a middle path can be the following:

e Have an experimental prototype system in a functional setting with sup-

port for concurrency and distribution (e.g. using a functional programming
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language like Alice ML [Rossberg et al., 2006])

e Use this to prototype to apply concurrent and distributed techniques to ad-
dress SAT

e Use programming abstractions to implement the concurrent techniques, fo-
cusing on portability and ease of implementing new techniques and proto-

typing new experiments

e Use the prototype to conduct experiments and perform empirical evaluation

and to iteratively improve the concurrent approach employed

e Once a particular concurrent approach has been found to be effective, it can
be implemented in other parallel SAT solvers with the aid of the abstraction
used for the implementation. In particular, these target parallel SAT solvers

can be ones that use a C-like platform with parallelisation support.

We have adopted this implementation methodology in the prototypes reported in

this work.

2.2 Interactive theorem provers

In this section, we discuss some of the works that address parallelisation in the context

of interactive theorem provers.

2.2.1 MetaPRL

[Hickey, 1999] discusses a prototype distributed proving architecture implemented
within the MetaPRL logical framework, a system derived from the Nuprl proof de-
velopment system. It aims to provide a distribution mechanism for general purpose
tactics, thus making it theoretically feasible for it to be applied to any definable logic.
The focus is on fault tolerance: for cases where large proofs are run on a cluster and
proofs should not be lost due to machine failure or network failure. The distributed
tactic module replaces the sequential tactic module, which is an intermediate layer be-
tween the tactic library and the logic engine, in the context of the MetaPRL logical

framework.
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The prototype was implemented using Ensemble 3, a generic communications toolkit
developed using OCaml, an ML dialect. It treats two different parallellisation options
at the level of sub-goal generation: (i) and-parallelism, the case when all sub-goals
have to be proved for the goal to be proved (ii) or-parallelism, the case when proving
any one of the sub-goals is sufficient. The parallelism opportunities considered are
those provided by the compositional and choice related tacticals (control structures for

applying the individual tactics).

A scheduler is used and a client submits a job to it. A job consists of a goal and
a tactic that needs to be applied to it. The scheduler maintains a constant number
of threads in its thread pool and allocates the jobs to the individual threads from the
thread pool. Ensemble provides an implementation of the global shared memory ab-
straction to maintain a queue of pending jobs and to provide a space for the individual
threads to post their progress to; the scheduler adds jobs to this queue. Every process
in MetaPRL holds a copy of this shared memory and locks are used to manage the

read-write conflicts.

The scheduler can perform the following communication operations with the threads:
issue a new job, cancel a running thread, ask a thread for an unfinished job, receive a
result from a thread. It does similar communication operations with the client: receives

a job, sends the results back, accepts a job cancelation request from the client.

The scheduler maintains a pending-job pool and a running-job pool. When a new job is
submitted by a client, the scheduler places the job in the pending-job pool, and enters
the scheduler loop in which it allocates jobs from the pending-job pool to idle threads
and updates the running-job pool. If the pending-job pool is free, it requests all threads
to return part of their proof trees to the scheduler. This can be considered as a form of
work stealing. When a thread completes, the result is used to prune the proof tree of
which its goal was a node. The pruning of the proof tree is done depending on: (i) the
success and failure of the job, i.e. the application of the given tactic to the given goal

and (ii) if it was or-parallelism or and-parallelism.

The difficulties faced in implementation are discussed. The Ensemble toolkit was not

designed to support multiple threads. This necessitated communication between the

3nttp://dsl.cs.technion.ac.il/projects/Ensemble/
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MetaPRL processes and the Ensemble processes to be routed through a (physical)
shared memory. The limited serialisation capabilities of OCaml were used as com-
munication mechanisms for communicating tactics as functions. This required careful
engineering of mechanisms to make the right choices of variables (e.g., bound vari-

ables should not be sent as part of the message).

Results comparing the unthreaded sequential prover and the distributed architecture are
discussed for: (i) fully automatic proofs for the pigeon hole problem and a first-order
logic formulation of proof of ancestry in a large genealogical database. (i1) automated
replays of proof transcripts for interactively generated proofs for domains related to
the Nuprl type theory. The work reports good speedups for an ensemble group of 5

processors.

The genealogical case showed super linear speedup and the work cites attributes this to
the fact that the random scheduling algorithm performed better than the default depth-
first search performed by the unthreaded prover. However, the number of cases tried
are fairly small as are the problem sizes: the results presented are only for individual
instances from each problem, for instance for the pigeon hole problem with the number
of holes as 3 and 4. The problems considered are fairly small and it is hard to get a
clear picture of the efficacy of the architecture, because, as the problem size grows, the

communication overheads and workload increase.

2.2.2 Parallel theorem proving in Isabelle using PolyML

The work discussed in [Wenzel, 2009], [Matthews and Wenzel, 2010] aims to pro-
vide parallelisation support for Isabelle via the PolyML (an ML dialect) platform. It
addresses the multicore architecture specifically. It reports the details on the signif-
icant reworking of the ML layers undertaken to facilitate support for parallelism in
the PolyML platform. It lays out a few possible scenarios where the PolyML’s parallel
features can be used for the Isabelle/Isar system. The work reports experiments on par-
allel theory loading. However, no concrete case studies or examples of parallel proof

checking are provided.

e The authors have focused on facilitating PolyML to support multicores and
runtime systems that support (to use the authors’ words) truly parallel system

threads. They further state that Alice ML’s runtime system does not support
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this feature. However, Alice ML provides good support for high level language
constructs that facilitate rapid prototyping, experimentation, modularity, incre-
mental development and allows for programming abstractions to be synthesised
as higher-order functions and can thus be an ideal choice to base a prototypical

experimental workbench on.

e The focus of this work has been to enable implicit parallelism leveraging on the
Isabelle/Isar document structure rather than enabling explicit parallelism and/or
giving the user the choice and flexibility to develop their own parallel implemen-
tations. Large Isabelle-Isar proof documents possess some structure in their col-
lection of theories (a directed acyclic graph (DAG) to be specific). Thus, there
is scope for independent nodes in that graph to be loaded in parallel [Wenzel,
2009].

e The work reports significant reworking of the PolyML internals. Though not
covered in detail in the papers, the work has entailed significant reworking of
Isabelle’s stateful bootstrapping process which relies on the notions of heap (a
dump of the bindings at the ML top level environment) and usage of a non-
standard ML feature use. As discussed in §7.4, our efforts to port Isabelle to
Alice ML helped to highlight some of these issues. The Isabelle reorganisation
entailed is echoed in the conclusion of the work reported in [Wenzel, 2009] as

follows:

“impure programming might well be considered as premature optimi-
sation from the past that is better avoided in highly parallel programs
- if correctness and performance matter. The sources for Isabelle/ML
was already almost purely functional. We merely had to throw out a
small amount of stateful code that had crept in over the years.”

e Given the diversity in structure and solution space of theorem proving problems,
the scope of applying concurrent techniques in a fruitful manner can vary vastly
from one problem class to another. Thus, providing the user with the flexibil-
ity to develop their own extensions enabling them to develop novel proof search
procedures tailored to address specific problem classes can be a very useful fea-
ture. However, this is not addressed in this work as the emphasis is on parallel

proof checking rather than on parallel proof search.
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2.2.3 OANTS

The OANTS project [Benzmiiller and Sorge, 2000; Benzmiiller et al., 2008] builds
on the OMEGA system [Melis and Siekmann, 1999]. It aims to provide a flexible
framework for integrating (specialist) external reasoners in a central theorem proving
environment. Proof rules, tactics, methods and external systems are encapsulated as
single reasoning agents. The central proof object plays a pivotal role in the system,
for the purpose of exchanging results with the external reasoners. The heterogeneous
setup allows for multiple proof attempts to be executed in parallel, by possibly different
reasoners. Furthermore, the design allows for parallelisation opportunities potentially
on different levels: term level and proof search level. The term level possibilities are
explored in the implementation of the command suggestion mechanism in OANTS,
which is discussed below. The use of external reasoning systems can be interpreted
as parallelisation at the proof search level. The system has been developed in Allegro
Common Lisp and uses its parallelism support. In the following sections, we sum-
marise the distinguishing strands of investigation explored in OANTS, which utilise

asynchronous modes of execution.

e The integration of reasoning systems aspect is portable to other systems. But, the
command suggestion mechanism is highly dependent on the proof object/proof

data structure of the OMEGA system and thus does not allow for easy portability

e Use of agent based mechanisms for the interaction and orchestration of hetero-

geneous reasoning systems

e The central proof object allows for translations of contributions from external

reasoners into it.

2.2.3.1 Flexible integration of heterogeneous reasoning systems

The heterogeneous reasoning systems addressed include: Higher-order and first-order,
model generators and computer algebra systems. It uses the MathWeb software bus
[Zimmer and Dennis, 2002] primarily for distribution and communication. Some key

distinguishing aspects of this strand of the project are:

e One of the key features is the use of a central proof object. This is used for

exchanging information from and with the main proof and the external reasoners.
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e The system uses a declarative framework aimed to allow for integration of rea-

soners in a customisable and resource adaptive manner.

e The co-operation between two integrated systems has been realised via an infer-

ence rule.

e A concurrent hierarchical blackboard architecture is used for orchestrating co-
operation between the various agents. Problems and sub-problems are posted to
the blackboard from where they can be picked up by an external reasoner which
can then contribute to the overall solution either by solving the problem that it

has picked up or generating sub-problems for the same.

e The idea of using a prover and counter-example generator has been explored, for

instance using the automatic first-order prover, Otter [McCune, 1994].

e Experiments have been reported converting first-order problems into higher-
order and using a higher-order and first-order prover collaboratively outperform-

ing first-order provers for some instances.

e Allows for suspend-resume functionality on a higher-level for resource optimi-
sation: E.g., when a proof state has only first-order goals, the agents for higher-

order rules are switched off.

2.2.3.2 Command suggestion mechanism within the OMEGA system

The command suggestion mechanism within the OMEGA system, has been realised
by employing an agent-oriented approach incorporating concurrent consideration of
the various possible next steps followed by a weighted analysis of the same using
goal-directed heuristics. Originally developed to support the user in interactive theo-
rem proving by searching for possible next proof steps during user interaction, these
suggestions are computed by inference parameters extracted from the proof state which

inform the search for applicable inference rules.

e The individual agents are of two types: command agents and suggestion agents.
The command agents post arguments to the argument-blackboard, triggering
suggestion agents to post possible suggestions to the suggestion-blackboard.
Agents suggest arguments of inference rules and they are assessed by an in-

dependent agent on the basis of heuristics. The suggestion agents autonomously
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search for suggestions, as background processes. The suggestion agents co-
operate by exchanging results via a blackboard architecture. The ranked results
are shown to the user as they are computed, thus preventing the potential bottle-
neck of long user waiting times. The background processes allow for utilisation

of idle resources and application of resource-adaptive strategies.

The approach has aimed to capitalise on the implicit information (typically relat-
ing the arguments of the rules: premises, conclusions and additional parameters)
present in rules and tactics in a natural deduction setting. Each inference rule
has its own associated agent society and its own associated blackboard. Each

external reasoner is also encapsulated by an agent.

In the context of OANTS and the heterogeneous setup, the suggestions can in-
clude calling external reasoners apart from the routine ones: application of tac-
tics, specific calculus rules and proof methods. To be precise, using the informa-
tion from the proof state, the applicability of the rules, tactics etc are tested and

the appropriate parameter instantiations are suggested for the same.

The system can work in two modes: presenting the suggestions to the user, leav-
ing the ultimate decision to the user or in an automatic mode, where the system

makes the choice and stores the others for possible backtracking.

2.2.3.3 Exploration of multiple strategies

OANTS has also been used within the multi strategy proof planner MULTI [Melis and

Meier, 2000] in the following ways:

e To determine the applicability of proof planning methods in the context of inter-

active proof planning.

e To check for applicable theorems from the mathematical knowledge base.
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2.3 Work partitioning approaches used in fully auto-

matic theorem provers

2.3.1 TEAMWORK

[Denzinger and Kronenburg, 1996] proposes the teamwork approach, to tackle the dif-
ficult problem of work partitioning for automatic theorem proving. It is advocated by
the authors as a useful technique for scenarios where the description of the task shows
no obvious ways of distribution. It is inspired by the team dynamics of a modern organ-
isation, in particular, where the teams can be reconfigured. It uses techniques from the
Al planning domain. Three categories of computational components are introduced:
expert, referee and supervisor. It is a hierarchical structure where each expert reports
to a referee and the referee reports to the supervisor who is responsible for steering the

subsequent processing. An iterative process is specified as follows:

e Experts are allocated individual tasks during the work phase and report to its

referee upon completing the task

e The referee produces a report for each of its experts and chooses which of the

results may be of interest to other experts and reports them to the supervisor

e In the next phase (referred as ream meeting), the supervisor aggregates all the
information that it has and evaluates the performance of the individual experts
(referred as short term memory) and also augments its knowledge about the ref-
erees, in terms of their dependencies and incompatibilities (referred as long term
memory). Based on the knowledge that it has, the supervisor performs the reac-
tive planning task of choosing the experts for the next round and their resource
allocations. It also chooses the results that will benefit the majority of the experts

and adds it to the problem instance for the next round.

Mechanisms are proposed for accomplishing the steps involved in this iterative pro-
cess: judgements made by the referees; information used by the supervisor to make

the decisions of devising a new plan, revising a plan and allocation of resources.

The teamwork approach is fundamentally a competitive approach. By using a reactive
planning architecture to devise and revise a plan, it addresses the problem of not being

able to effectively partition the work apriori for a given problem. By using multiple
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experts working on the same problem, it allows for the same problem to be tackled us-
ing different approaches. However, there is a level of redundancy, as each expert holds
a copy of the problem. Also, there is no explicit knowledge-sharing or co-operation
between the processes. The authors claim to facilitate implicit co-operation as after
each round, only the results that will benefit the majority of the experts go to the next
round. The work reports results where the whole system fares better than the individual

experts.

The teamwork approach was developed initially for the domain of equational deduction
by completion [Denzinger and Kronenburg, 1996]. It has subsequently been used to
parallelise strategies based on the unfailing completion procedure using a combination
of the teamwork approach and the PaReDuX system [Avenhaus et al., 2002], a strategy-
compliant parallel implementation of the unfailing completion method. The approach
has also been used in the TECHS system [Fuchs and Denzinger, 1997], where it is

used to engineer a heterogeneous reasoning system.

2.3.2 Nagging: NAGSAT, DALI

[Segre et al., 2002; Sturgill and Segre, 1997] propose a generic parallel search-pruning
technique called nagging, in which asynchronous solvers work on different reformu-
lations of the same problem or sub-problems. This is aimed at exploiting a given
solver’s sensitivity to the problem’s formulation. E.g., an alternative reformulation
of the N-queens problem can be a 90-degree board rotation. The technique adopts
a master-worker (a.k.a master-slave) approach. The master carries out a sequential
search. A problem transformation function is specified for each worker to map search
trees to alternate search trees. The workers work on the alternative formulation (using
its problem transformation function) of a sub-space of the search space that the master

is working on.

The possible scenarios of interaction between the master and worker are as follows: (i)
If the master backtracks beyond the sub-tree given to the worker (thus rendering the
worker’s work redundant), then, it issues a call to the worker to quit and the worker
becomes idle and goes into the loop to request for more work from the master. (ii) If
the worker completes before the master, then it communicates its results to the master
and depending on the result, the master uses it either to complete the problem or to

prune its own search space and continue working. Nagging shows real benefits when
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(i1) happens often and (i) happens rarely.

The technique is designed to be inherently fault-tolerant and scalable. It does not re-
quire explicit load balancing as whenever a worker becomes idle, it goes and fetches
work. A serious limitation of this work is that there is no information sharing between
the workers. Furthermore, it crucially hinges on the availability of effective problem
reformulation techniques, which in itself requires highly tuned heuristics. The tech-
nique has been implemented for a SAT solver [Forman and Segre, 2002] and for a

resolution style first-order prover [Sturgill and Segre, 1997].

2.3.3 Other systems

The DARES (Distributed automated reasoning system) [Intosh et al., 1991] applies
ideas from the distributed problem solving domain to theorem proving. It is based on
resolution style automated theorem proving. The objective of this work is to come up
with a co-operative problem solving strategy that works by using independent agents
working on a problem with the caveat that no agent has sufficient knowledge to solve
the problem. The solution proposed aims to deliver a co-operative strategy where each
agent works on its own incomplete knowledge and uses heuristics for co-operation.
The co-operation is in the form of requesting other agents for information, the decision

to make the request being determined by its own assessment of its current state.

[Fisher, 1997; Fisher and Ghidini, 2002] discuss early ideas on a computation model
for concurrent theorem proving using asynchronous, autonomously executing objects
(referred as agents in this work). It is based on the notions of broadcast message pass-
ing and grouping the agents to minimise communication and structure the agent space.
In the context of theorem proving, formulae are distributed to the agents and an appro-
priate logical deduction mechanism is encapsulated within the execution machinery
of the agent. The agents use broadcast message passing for communication and each
agent listens to the messages being broadcast and takes appropriate action. However,
the focus of the work is to apply the ideas and the related computational model to
complex distributed systems rather than utilise concurrent programming techniques
to engineer better theorem provers. Moreover, the work does not include details on
system implementations and/or empirical results for a concurrent theorem prover. No

further work has been done applying these ideas to engineer better theorem provers®*,

4Personal email communication with the author



40 Chapter 2. Review of some parallel theorem provers

though there is published research available on application of the ideas to multiagent
systems [Fisher, 2004].

2.4 Parallel functional programming languages

It is well recognised that the functional programming languages are a good substrate
for implementing concurrency. In recent years, many functional programming lan-
guages with concurrency support have emerged. In this section, we provide a summary
of some of the advantages of using a functional programming language to implement
a concurrent system and enumerate some key concurrent functional programming lan-
guages. More details are provided later in the thesis in §5.5.1.

Some of the key advantages of functional programming languages are °:

e Immutable state

Lack of side effects

Referential transparency

Allows for composition

Ease of synchronisation, one of the biggest challenges faced by a programmer
using concurrent techniques. Many imperative languages use explicit synchro-
nisation, i.e. the mechanisms of synchronisation have to be completely handled
by the programmer and require careful use of locks, semaphores etc. One of
the established techniques that circumvents the need to use these devices is that
of implicit data flow synchronisation (explained in detail in §5.5.2.1). This
technique fits naturally into the declarative concurrency paradigm and hence a

functional programming language is well placed to support this.

e A functional programming language equipped with concurrency support pro-
vides the perfect setting for development of concurrent programming abstrac-

tions as higher-order programming constructs that can be composed and reused.

Some functional languages that provide concurrency support are:

>Some of these apply only for pure functional programming languages
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Erlang Erlang [Armstrong, 1997, 2007] has been used in real-time telecommunica-
tions applications at the Ericsson laboratories, Sweden. Its computational model
treats processes as black boxes with message-passing as the sole form of com-
munication. The emphasis is on robustness and fault-tolerance, driven by the
target domain of real-time applications. However, it does not have support for

type inference.

Haskell Haskell is a pure functional programming language and various libraries have
been developed to provide support for parallel programming [Jones and Singh,
2008]

Scala Integrates features of object-oriented languages and functional programming

languages and uses static typing [Odersky, 2004]

F# F# [Syme et al., 2007] provides language-integrated support for asynchronous

functional programming with a focus on reactive event-driven programming

OCaml OCamIMPI [Leroy, 2003], is an implementation of bindings for OCaml (a
functional programming language [Leroy, 1996]), based on the message-passing
interface standard (MPI). MPI bindings allow for restricted forms of program-
ming models. In particular, the multithreaded model is not possible with MPI

bindings

Alice ML Alice ML [Rossberg et al., 2006] is a standard ML based language with
support for concurrency and distribution. It provides static typing while allowing
for dynamic type checking of higher-order modules loaded at runtime. This is

the implementation language used in this work and is described in detail in §5.6
and Appendix §A 2

PolyML Provides support via libraries for a small selection of asynchronous program-
ming features like futures. The focus is to use multicore machines using native

threads [Matthews, 2010]. It does not provide support for distribution.

PolyML vs Alice ML In PolyML, support for concurrent programming is not very
developer friendly (compared to e.g. Alice ML). It is still fairly primitive and
has only a very limited set of features. This can prove to be a serious limitation
even to be able to develop modest experiments to use these features for proof
checking. The current support provides an ML view on the original C versions of

the well known Posix Threads (or pthreads) library using the following features:
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Encapsulation of a concurrent computation The fork operator creates a new
thread and executes the given computation but cannot give a return value.
Also, there is no join operation. The authors state that to simulate a return
value, side-effects will need to be used together with appropriate synchro-
nisation. Alice ML provides concurrent computations (encapsulated by the
thread structure) as first class values. This feature together with the pow-
erful support for implicit (dataflow) synchronisation (for more details, the
reader is referred to §5.6, §5.5.2.1), allows for asynchronous computations

to be passed around as futures, which stand for the pending computations.

Dataflow synchronisation Unlike Alice ML, there is no support for implicit
(dataflow) synchronisation (see §5.6, for more on the support provided
by Alice ML). The work has made an attempt to wrap up the pthreads
based synchronisation primitives (mutex, condition variable). The authors
state that this is a higher-order representation of conditional critical sec-
tion. However, from the details described in the paper, the operations pro-
vided are fairly restrictive and it requires the programmer to handle many
of the synchronisation relation operations: e.g., consider the key synchro-
nisation primitive called guarded_access; this has to be supplied with an
explicit guarding predicate and a state update function; a change in state
is broadcast to the waiting threads; though the broadcast operation is done
automatically, the waiting threads have to take the responsibility for estab-
lishing some semantic conditions for sychronisation; the primitive cannot
make distinctions between state changes while signalling; furthermore, the
broadcast operation is a source of bottleneck, when the number of depen-

dent processes are large.

2.5 Conclusions

In this chapter, we discussed some key directions in which research has been pur-
sued to address parallelisation of theorem proving, focussing on some prominent rep-
resentative systems, most relevant to the work discussed in this thesis. The discussion
highlights the diversity of the theorem proving flavours tackled and the parallelisation
techniques employed. Among the systems discussed, most of them have attempted

to use effective work partitioning and load balancing for optimal utilisation of re-
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sources. Other technologies adopted are: agent based methodologies ( §2.2.3); using
asynchronous solvers ( §2.3.2, §2.3.1); using techniques from other fields like those
employed by the Teamwork project; using asynchronous proof attempts on multiple
reformulations of the problem. Some key issues that emerge as important for effective

application of concurrent and distributed techniques for theorem proving are:

p—

. Search space partitioning

2. Dynamic load balancing

3. Effective information sharing

4. Identifying and addressing sources of bottlenecks

5. Overheads: Scheduling and locking/unlocking are known to be two main over-
heads affecting parallel implementations. In particular, when the individual sub-
problems created as a result of work partitioning are small, the cost of creating a
thread and allocating a task to a thread can be many orders of magnitude higher
than the work performed by the computation. In the case of shared memory,

locking/unlocking account for a significant part of the overhead.

6. Scalability, i.e. the more processors there are, the faster the computation is per-
formed (i.e. the faster the solution is found). Most of the parallel implementa-
tions imply a proportional increase in communication overheads with an increase

in the number of processors. This becomes an inhibiting factor for scalability.

7. Evaluation difficulties: in particular, given the sensitivity of distributed systems
to the effectiveness of a particular implementation, it becomes very hard to make
a uniform empirical evaluation. Another related issue is that of evaluation of a

particular implementation vs evaluation of the techniques employed.

The work reviewed in this chapter exhibit the diversity in focus areas of system devel-
opment which in turn, influence the design decisions. One possible classification of

the focus areas is as follows:

Architecture oriented Optimal utilisation of machine architectures and hence devis-
ing techniques to address their strengths and weaknesses, e.g., utilisation of idle
resources in a distributed network of computers, like grids. For such a scenario,
fault-tolerance capabilities and optimal work stealing techniques become very

crucial for the success of the system. Related work discussed earlier are PSATO,
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GRIDSAT, and metaPRL. A primary concern for these systems has been to ad-
dress the scenario where workstations fail so as to enable productive use of work
done till that point. Another objective has been that it should not cause bottle-
necks and that it should not compromise the soundness and consistency of the

system.

The field of SAT (which has seen a huge surge in published research on paral-
lelisation efforts in recent years) provides a good illustration of the issue of ar-
chitecture dependency and how the parallelisation efforts invariably are oriented
towards making the most of and/or circumventing problems posed by the domi-
nant architectures of the day. One of the earliest published work in parallel SAT
was targeted at transputers [Bohm and Speckenmeyer, 1996]. A more recent
work, separated by a decade from this is tailored towards the grid [Hyvérinen
et al.,, 2008a] and thus focuses on the utilisation of idle-resources and adopts
techniques for making judgements on the work required by using techniques

from the research on distribution of solutions.

Application oriented The various systems have tried to achieve different objectives
related to the particular flavour of system, using parallelisation and some of these

are:

e SAT: To improve the tractability threshold which in turn, includes space
and time. However, most works focus on improving the time taken to solve

a problem.

e Portfolio based systems use characterisations of strengths of particular solvers
with respect to problem classes. A distributed setup is used to run multiple

solvers, matching the solvers with the problems.

e Heterogeneous systems aim to leverage on the strengths of different rea-
soning systems. The OANTS system ( §2.2.3) discusses how the applica-
tion domain of mathematical formalisations stands to gain from a heteroge-
neous approach employing distributed architectures. E.g., a proof attempt
in a higher-order formalisation can generate problems that are very appro-

priate to be tackled by a first-order prover or a SAT solver.

e Exploit the effect of alternate formulations of the same problem by running

asynchronous solvers on the different formulations. This has been investi-
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gated in the context of SAT and automatic first-order proving in the work

on the nagging technique e.g. as discussed in §2.3.2.

Theorem proving problems come from a variety of domains and they vary vastly in
their problem structure, hardness and solution distribution. A one-solution-fits all ap-
proach is unlikely to work as each problem class and/or problems may stand to benefit
by application of different concurrent techniques. Thus, the ease of prototyping and
experimentation is of crucial importance for the effective investigation of the scope for
applying concurrent techniques to theorem proving scenarios and to assess their effi-
cacy. An iterative developmental life cycle is required addressing the following stages:
implementation/prototyping, empirical studies, analysis and refinement of the system.
However, the experimentation phase can often be stifled by the difficulties of concur-
rent programming which is notoriously error prone and difficult to program. Thus,
it will be hugely beneficial to provide a prototypical system for the theorem prover
under consideration such that it provides the building blocks and allows the user to
build on them to quickly prototype new techniques, conduct experiments and carry out

empirical analysis on the same.

Considering the various systems reviewed in this chapter, an almost uniform picture
that emerges is the limited scope for portability and lack of incremental development.
Given the changing nature of the architectures today, the issue of architecture depen-
dency highlighted earlier is very relevant. This further accentuates the importance of
producing portable implementations. On an implementation level, most of the systems
reviewed in this chapter have used API based approaches which are not exactly con-
ducive to portability. Also, there is little cross pollination of techniques employed, e.g.
from one theorem proving flavour to another, or even within the same flavour, in many

cases.

Another important issue is that of empirical evaluation. As discussed in [Bonacina,
1999], empirical evaluations conducted in the field of parallel theorem proving are not
always indicative of the true potential of the implemented techniques. Because, as is
imperative for empirical evaluations, they tend to be done for specific implementations
rather than the strategies implemented. This speaks further for a flexible framework

that allows for an effective isolation of design and implementation.
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Use of the well established software engineering practice of effective programming
abstractions of the concurrent techniques can help achieve this as well as aiding porta-
bility of the same. Use of domain specific programming abstractions for application
of concurrent techniques has been advocated by leading experts in the field of con-
current programming as well [Asanovic et al., 2006] and has been adopted by many
application domains. However, there has been no work towards producing concurrent
programming abstractions that will be widely applicable to various theorem proving
scenarios. This is in contrast to approaches adopted by other fields that have used
concurrency and parallelism to build better applications. E.g., image processing [Fal-
cou, 2009] uses the notion of algorithmic skeletons [Cole, 1991] to address this need.

Further discussion on this topic can be found later in the thesis, in chapter 5.

Thus, the development of systems that allow for rapid prototyping of and experimenta-
tion with, novel proof search procedures merits serious investigation. The availability
of the same can greatly help the development of effective application of concurrent and
distributed techniques to theorem proving. In particular, it is worth exploring the use
of programming abstractions for implementing the concurrent techniques as it can help
effective isolation of design and implementation and promote: portability, incremental

development and reuse of the abstractions across various theorem proving scenarios.

SAT solving and LCF style theorem proving are representative of two diverse schools
of theorem proving. Among other things, SAT represents the style of brute-force search
with little scope for human intervention and the LCF style is representative of inter-
active style of theorem proving and a style of reasoning closer to the way humans
reason. Thus, these two are good candidates for testing the utility of an experimental
workbench, to explore the scope and efficacy of using previously unexplored or little
explored concurrent and distributed techniques to implement novel search procedures
in the respective contexts of SAT and LCF style. An LCF style first-order prover can
prove to be a good candidate to base a prototype on to apply concurrent techniques. In

this chapter, we reviewed systems addressing parallelisation for these two flavours.

We summarised the state of parallel SAT and identified some possibilities for explo-
ration of different directions in §2.1.11. Among the LCF style provers, the dominant
research direction has been the use of heterogeneous provers, an example of which
is the OANTS system discussed in §2.2.3. The metaPRL project adopts a different

direction (discussed in §2.2.1) and addresses the topic of using idle workstations to
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implicitly parallelise tactic application in a predefined way. However, it does not pro-
vide for information sharing and it does not provide the scope for the user to build their
own concurrent techniques. LCF provers are ideal vehicles for developing sound, pro-
grammable extensions that incorporate concurrent and distributed techniques. They
also provide scope for ML level user interaction. Thus, using a functional program-
ming language with concurrency support to address this potential merits serious in-
vestigation. Giving the user the flexibility to develop their own extensions can greatly
promote the possibilities of prototyping of and experimentation with novel proof search

procedures that apply concurrent and distributed techniques.

In the next chapter, we present a concise statement of the hypothesis of this project and
give an overview of how we have addressed the developmental aspects via the two case
studies of SAT and LCF style prover and development of the respective prototypes.
The SAT case study explores the opportunities identified in §2.1.11 and the LCF style
prover enables sound and programmable extensions that in turn, can be used to develop

novel proof search procedures.
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Hypotheses and case studies

3.1 Hypotheses

In this section, we state the hypotheses of this work. These are explained in detail in

the next section, which includes the rationale for our choice of case studies.

Developmental level hypothesis

Using a functional programming language with language-based (as
opposed to API based) support for concurrency and distribution, en-
ables easy prototyping of applications of concurrent and distributed
techniques to theorem proving. Use of programming abstractions, to
implement the concurrency techniques aids portability, promotes in-
cremental development and allows for isolation of design and imple-
mentation.

The utility of the developmental approach described above, is illustrated via proof-
of-concept prototypes of application of concurrent techniques to address two diverse
case studies of theorem proving: the propositional satisfiability problem (SAT) and
LCF style (first-order) theorem proving. Furthermore, the individual case studies, ad-
dress the scope and utility of applying concurrent techniques in specific ways, by ex-
ploiting previously unexplored parallelisation opportunities within the case-studies, as

described below.
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Object level hypothesis

49

1. For the propositional satisfiability problem (SAT), use of an
asynchronous mode of execution enables the development of two
novel approaches to SAT:

(a)

(b)

A hybrid solver using an asynchronous combination of two
distinct SAT approaches: the DPLL [Davis et al., 1962]
and Stalmarck [Sheeran and Stalmarck, 2000] algorithms.
In comparison to the stand alone DPLL solver, the hybrid
solver performs better for some problem cases and does not
show significant slowdown for other cases examined.

As an exploratory research effort, a novel algorithm has been
developed by applying concurrent techniques to the Stal-
marck algorithm. The new algorithm is well placed to utilise
large scale parallel processing capabilities and demonstrates
a novel form of work-partitioning approach for SAT.

2. A multilayered approach to application of concurrent techniques
to an LCF style first-order prover, using concurrent LCF-style
tacticals, realised via programming abstractions enables:

(a)

(b)

(c)

Programmable extensions (to the prover), incorporating con-
current programming techniques, retaining the soundness
guarantees

Easy prototyping and evaluation of novel proof search tech-
niques, applying concurrent programming techniques, that
can be tailored to a given theorem proving scenario

The novel proof search procedures use concurrent ap-
proaches to deal with theorem proving tasks and in the pro-
cess, address some of the shortcomings of their sequential
counterparts and fare better in some test cases.

3.2 Our approach and choice of case studies

In the last section, we set out the hypotheses of this thesis. In this section, we elaborate

on the same, with a brief outline of how they have been addressed, in this thesis. The

rationale for choosing the case studies is also explained.

Developmental level A prescriptive analysis of the implementation aspects, as out-

lined in §3.1 above, is discussed, in detail, in chapter 5). In concrete terms, here

is how we have realised the same, in this project:
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Choice of platform Alice ML [Rossberg et al., 2006], a functional program-
ming language with rich, lightweight, language-based (as opposed to API-
based) support for concurrency and distribution has been used to implement
the concurrent and distributed techniques. The rationale for this choice is

covered in detail in §5.5 and §5.6.

Use of programming abstractions Programming abstractions have been devel-
oped, for the concurrent techniques implemented. The abstractions have
been developed as higher-order functions in Alice ML, in a way that pro-
motes reusability, portability and incremental development and allows for
separation of design and implementation. This aspect is covered in detail

in §5.4.1.

Object level The desirable developmental methodological criteria, gathered from our
analysis, have been applied to implement prototypes of application of concurrent
techniques to two diverse case-studies of theorem proving flavours: SAT and
LCF style first-order theorem proving. The applications of concurrent techniques
considered, aim to exploit previously unexplored parallelisation opportunities
and are described respectively in chapter 6 and chapter 7. In brief, they are as

follows:
SAT

e Implementation of a hybrid approach to SAT using asynchronous SAT
solvers, based on combining the depth-first approach based DPLL al-
gorithm [Davis et al., 1962] with the breadth-first approach based Stal-
marck’s algorithm [Sheeran and Stalmarck, 2000]

e Implementation of a novel distributed algorithm based on Stalmarck’s
algorithm for SAT [Sheeran and Stalmarck, 2000]

e Development of programming abstractions for the techniques employed

e Evaluation of the implementations using standard benchmark prob-

lems
LCF style prover

e Development of a multilayered approach for developing programmable

extensions (to an LCF prover), such that the extensions incorporate
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concurrent and distributed techniques and retain the soundness guar-
antees of the LCF prover. In particular, the multilayered approach we
have developed is as follows: Use programming abstractions for the
concurrent techniques and use them to develop concurrent tacticals

and use them in turn, for developing novel proof search procedures

e Use a LCF style, first-order prover, to develop a proof-of-concept pro-

totype, for this multilayered approach

e Evaluation of the implementation, assessing their scope of addressing

the limitations of their sequential counterparts

The case-studies serve the following purposes:

e They help us to understand the efficacy of our approach to implementation, in

terms of ease of prototyping and experimentation and portability.

e They help us to understand the performance gains/losses made by exploiting the

particular parallelisation opportunities. Performance metrics include

Speed, size of search space In comparison to their sequential counterparts in

the average case scenario

Scope, Success rates Can handle complexity and size better and/or can handle

problems that are not tractable by the sequential counterparts



Chapter 4

Background

In this chapter, we provide details deemed relevant for the purpose of understanding
work discussed in this thesis and an enumeration of notations and terminology used in
this thesis. Definitions of a purely technical nature and/or definitions that are not ex-
plicitly used, but still relevant to the thesis, are provided in the glossary accompanying
this thesis. In this thesis, we use Alice ML [Rossberg et al., 2006] syntaxl, to describe

code fragments”. Topics addressed in this chapter include the following:
e Propositional logic, in §4.2.3 and first-order logic, in §4.3

e Propositional satisfiability (SAT) solvers, in §4.5, relevant for understanding the

material discussed in chapter 6

e The prototype first-order theorem prover discussed in chapter 7 is an LCF style
prover and uses sequent calculus. To this end, §4.4 provides a general overview
of theorem proving, covering natural deduction, sequent calculus and the LCF

style of theorem proving.

e §4.7 provides background material that is specific to first-order theorem prov-
ing and addresses unification, meta-variables and an enumeration of the sequent

calculus rules for first-order logic.

e For a broader introduction to theorem proving and/or details on specific aspects,

the following sources are recommended: [Huth and Ryan, 2004], [Harrison,

Iwhich in turn, is based on standard ML (SML) [Milner et al., 1997]
Many definitions covered in this chapter include recursively defined structures and functions and
we use code-fragments as an aid to describe these, along with verbal descriptions.
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2009], [Robinson and Voronkov, 2001]. Many of the definitions provided in

this chapter are sourced from the first two texts.

e Relevant information on parallel, concurrent, distributed programming is pro-
vided in §4.8. Appendix §A 1 provides some more details on this topic as does

chapter 5. [Andrews, 2000] is a recommended source for more on this topic.

4.1 Formal logic: basics

Logic is widely understood as the study of formal (symbolic) systems of reasoning
and of methods of attaching meaning to them. In formal logic, a clear distinction is

maintained between the formal (symbolic) expressions and what they stand for.

Syntax of a logic sets out a precisely defined language that provides the building
blocks for the language (giving its alphabet and grammar) and the rules for a
well-formed statement (often referred to in the literature as a well-formed for-

mula (wff)). In this thesis, we use just formula to refer to a wif.
Semantics is concerned with the meaning of these formal (symbolic) expressions.

Interpretation maps expressions to their meanings, thus connecting the syntax and

semantics of the given logic.

In the next two sections, we describe the syntax and semantics of propositional logic
and first-order logic and associated terminology. Also included are descriptions of the

notions of validity, tautology and satisfiability for the two logics.

4.2 Propositional logic

In propositional logic, formulas are intended to represent propositions, i.e. assertions
that may be considered true or false (often referred to as truth-values). In the rest of
this section, we describe the syntax and semantics of propositional logic and describe

related definitions and terminology used in this thesis.
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4.2.1 Syntax and semantics

Syntax Formulas in propositional logic are built using the following:
Constants ‘True’ (T), ‘False’ (L) 3

Atoms Atomic propositions, also referred to as propositional variables or just

variables.

Logical connectives A logical connective is an operator that takes a fixed num-
ber (referred to as arity) of formulas as arguments and gives a compound
formula as the result. Formulas in propositional logic are built using the
following connectives, given below in the descending order of precedence,
with examples illustrating their usage. For each connective, the symbols

used to denote them are also given®.

Negation, -, Not : —p, where p is a variable
Conjunction, A\, And : p /g, where p, g are variables
Disjunction, V, Or : pV g, where p, g are variables
Implication, —, Imp : p — g, where p, g are variables

Double-implication, <>, Iff : p <> g, where p, g are variables

Propositional formula A propositional formula ¢ is defined over a set of propo-
sitional variables, x1,x3,...,X;, using the standard propositional connec-
tives, 0, V, A, —, <>. Listing 4.1 gives a datatype definition in Alice ML,
for a well-formed formula (wff) in propositional logic. In Backus Naur

Form, the definition of a propositional formula can be given as

Ox=L|T|p[=0[0NO[OVO[O— 0[O
where p stands for any propositional variable.

Notation In this thesis, we use lower case and upper case alphabets to denote

variables and formulas respectively

3We use the capitalised words to refer to the constants
“4For each connective, the abbreviated English word is used in code fragments and the symbol is used
in infix formulas.
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Listing 4.1: Datatype definition in Alice ML, for wff in propositional logic

datatype (’'a) formula = False

True
Atom of ’a
Not of (’'a) formula

|
|
|
| And of (’a) formula = (’a) formula
|
|
|

Or of (’'a) formula % (’a) formula
Imp of (’a) formula * (’a) formula
Iff of ('a) formula * (’'a) formula

Semantics The semantics of propositional logic is captured via the following defini-

tions:

Valuation determines the assignment of truth-values to the atoms. It is a func-

tion from the set of atoms to the set of truth-values.

Truth-table, meaning of connectives The semantics of logical connectives can
be explained using truth-tables®. Truth-tables (as used in propositional
logic) are used to compute the truth-value of a given propositional for-
mula, for each combination of truth-values taken by its constituent vari-
ables. Thus, if a given formula F' has n propositional variables there will
be 2" rows (to account for the 2" possible combinations of truth-values of
the »n variables) and n + 1 columns (to account for the n variables and F') in

the truth-table. An example is provided in Table 4.1.

P|d|pPAg
T T T
T L] L
L] T]L
L)L

Table 4.1: Truth-table for conjunction of two variables

Truth-value of a formula Since propositional formulas are intended to repre-
sent assertions that may be true or false, the ultimate meaning of a formula
is just one of the two truth-values, ‘True’ or ‘False’ and it depends on the
truth-values assigned to the atomic propositions and the constants and con-

nectives present in the formula.

>More on this line of explanation can be found in one of the references provided earlier
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Given a formula F and a valuation v, the overall truth-value of the formula
can be computed by the recursively defined function, eval, given in List-
ing 4.2. This function also clarifies the semantics of the logical connectives

mentioned above.

Listing 4.2: Truth-value of a propositional logic formula, F, for a valuation, v

fun eval F v =
case F of
False => false
True => true
Atom(x) => v(x)
Not(p) => not(eval p v)

Or(p,q) => (eval p v) orelse (eval q v)

|
|
|
| And(p,q) = (eval p v) andalso (eval q v)
|
| Imp(p,q) => not(eval p v) or (eval q v)

|

1ff(p,q) = (eval p v) = (eval q v);

4.2.2 Validity, satisfiability and tautology

We say that a valuation v satisfies a formula F if

evalFv =T

A formula is said to be:
e a tautology or logically valid, if it is satisfied by all valuations
e satisfiable, if it is satisfied by some valuation(s)
e unsatisfiable or a contradiction, if no valuation satisfies it.
Some related observations:
e A tautology is also satisfiable.
e A formula is unsatisfiable precisely if it not satisfiable

e For a given formula F, for any valuation, v,
eval (—F) vis false iff eval F v istrue

So, F' is a tautology if and only if —F is unsatisfiable
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e Intuitively speaking,
— tautologies are ‘always true’
— satisfiable formulas are ‘sometimes (but possibly not always) true’

— contradictions are ‘always false’

4.2.3 More definitions and notations

Literal A literal is a variable, v or the negation of a variable. We use —v to denote the

negation of the variable v.

Clause A clause is a disjunction of literals. It can be written as

LVhV.. Vi,

where each /; is a literal. It follows trivially from the definition that for a clause
to be true, at least one of the literals has to be true and it is false if all the literals

are false.

Empty clause, unsatisfiability for a clause An empty clause, i.e. a clause with no
literals is taken to be trivially unsatisfiable. A clause can thus be unsatisfiable
either when it has no literals or when all the literals in the clause take the value
false.

Unit clause A clause is said to be a unit clause, if it contains exactly one literal.

Conjunctive normal form (CNF) A propositional formula is said to be in conjunc-
tive normal form (CNF), if it is a conjunction of clauses. Here are some more

definitions related to CNF that are used later in this thesis, in chapter 6.

3-CNF When each conjunct contains a disjunction of at most three literals, the
formula is said to be in 3-CNF.

Conversion to CNF Given an arbitrary boolean formula F, there exists a poly-
nomial algorithm to convert it to a CNF formula, F’, such that it is equisat-
isfiable, i.e. F' is satisfiable if and only if F is [Tseitin, 1968].

CNF and satisfiability It follows from the definition that a given CNF formula

18 satisfiable iff all its clauses are satisfiable.
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Pure literal Used mostly in the context of a CNF representation, a literal is said
to be pure (in the context of the given formula) if its negation does not

occur in the formula.

Empty problem An empty CNF problem, i.e a CNF problem with no clauses

is valid.

Set representation In the material discussed in this thesis, we represent a SAT

problem in CNEF, as a set of clauses and a clause as a set of literals.

SAT Given a propositional formula, the problem of finding whether there exists a
variable assignment such that the formula evaluates to true is called the propo-
sitional satisfiability problem, also referred to as boolean satisfiability problem
and is abbreviated as SAT.

Tautology checking As defined earlier, a given formula is a tautology if its negation
is unsatisfiable and it is not a tautology if the negation is satisfiable. Thus, the
problem of finding if a given propositional formula F is a tautology is equivalent

to finding if —F is unsatisfiable.

4.3 First-order logic

Propositional logic allows us to build formulas only from propositional variables. First-
order (predicate) logic extends propositional logic by accommodating the following

(described in detail below):
e Variables refer to individual entities, rather than truth values

e Propositions can be built from non-propositional (domain) variables and con-

stants using functions and predicates
e Quantifiers, universal and existential : ¥,
e Bound variables: non-propositional variables can be bound with quantifiers

This section describes relevant background related to first-order logic, useful for un-

derstanding material discussed in this thesis, in particular chapter 7.



4.3. First-order logic 59

4.3.1 Syntax and semantics

Syntax The following notions describe the syntax of first-order logic
Vocabulary A first-order logic vocabulary consists of three sets. A set :

e P, of predicate symbols, each with its associated arity, i.e. the number

of arguments it expects

e T, of function symbols, each with its associated arity, i.e. the number

of arguments it expects

e (, of constant symbols. Constants can be interpreted as 0-arity func-
tions and so, the set of constant symbols can be subsumed in the set of
function symbols. Thus, in most cases, the set of constant symbols is

not specified explicitly in the vocabulary.
Variable is a place-holder for any, or some, unspecified objects/concrete values.

Term is used to refer to an object that we are talking about and terms can be:
variables, constants and functions applied to those. In pseudo Backus Naur

form, we may write a term, ¢, as follows:

t i=x|c|ft, ..., 1)
where x ranges over var, a set of variables, ¢ over O-arity function symbols
in F, and f over those elements of # with arity n > 0.
It is important to note that
o the first building blocks of terms are constants and variables

e the notion of terms is dependent on the set #. If it is changed, the
set of terms also changes. The same holds true for the set of formulas
(defined below), when ¥ is changed.

Predicate takes a fixed number (referred to as arity) of terms as arguments. It
evaluates to a truth-value, when its arguments evaluate to domain elements

and a valuation function for the variables is given.

Function takes a fixed number (referred to as arity) of terms as arguments. It is

a term and evaluates to an element of the domain, when its arguments do.
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Formula In pseudo Backus Naur form, a first-order logic formula, P, is as fol-

lows:
P:=P(t1,t, ..., 1,) | " P|PANP|PV P|
P — P|P < P|VYxP|3xP

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and x

is a variable.

Connectives are operators that takes a fixed number (referred to as arity) of for-
mulae as arguments giving a compound formula as result; the compound
result has a truth value determined by the connective and the truth-values of
the arguments. Classical first-order logic without equality builds on propo-
sitional logic with the following additional constructs called quantifiers:

Vv, d, that are used with variables and terms.

Quantifiers The formula, VxP, where x is a variable and P any formula, means
intuitively, ‘for all values of x, P is true’. For this reason, V is referred to
as the universal quantifier. The analogous formula Jx. P, means intuitively,
‘there exists an x such that P is true’, i.e. ‘P is true for some value(s) of
x’. For this reason, 3 is referred to as the existential quantifier. In the

formulas, VxP and dx. P, P is referred to as the scope of the quantifier. It is

worth observing here that in first-order logic, quantifiers cannot be applied
to functions or predicates. Logics where quantification over functions and

predicates is permitted are said to be second-order or higher-order.

Bound variables, Free variables The quantifier is said to bind instances of x
within its scope and these variable(s) are said to be bound. It is useful to
note that renaming the bound variables does not affect the meaning of a
formula. Instances of variables that are not within the scope of a quantifier
are called free variables. Intuitively speaking, a bound variable is just a
placeholder referring back to the corresponding binding operation, rather

than an independent variable in the usual sense.

Signature, language When we talk of a signature of first-order logic, we refer
to the pair of sets, of functions and predicates, both as name-arity pairs and
the corresponding language as the sets of terms and formulas that can be

built using only functions and predicates appearing in that signature (but
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any variables)®.

Terms vs Formulas In first-order logic, a syntactic distinction is made between
Jormulas and terms. Formulas are intended to be frue or false. Terms stand
for objects in the domain of discourse and are in turn, built from variables

using functions.
Notation

e We use lower case letters for variables and arity and upper case letter

for all other symbols.
e The order of precedence of symbols in a formula is as follows:
— —, Vy and dy bind most tightly
— Vand A
- =, &

Substitution Given a variable x, a term ¢ and a formula ¢, a substitution, 0[¢ /x|,
is defined to be the formula obtained by replacing each free occurrence of

the variable x in ¢, with z.

More concretely, a substitution is a finite set of replacements [#; /x1, ..., f;/xk]
(a function from variables to terms), where x, ..., x; are distinct variables

and tq,...,# are terms.

The finite set xp,...,x; is called the domain of the substitution. A given
substitution, ¢, can be defined to apply over arbitrary terms and formulae,

by defining x¢ = x if X not in domain ¢.

A given substitution ¢ can be extended to accommodate terms, constants
and literals as well by augmenting the definition with x¢ = xVx ¢ domain(9).
A pair t; /x; is called a binding for x;. The extension, composition and equal-

ity operators are defined in a natural way.

Substitution and free variables While performing the substitution ¢[z/x], the
term ¢ may contain a variable y, such that the occurrences of x in ¢ are under
the scope of Jy or Vy in ¢. In such cases, as a result of the substitution, the

value y, which might have been fixed by a concrete context, gets caught in

The exact formal definitions of language and signature vary in the literature. The key objective
though is that the concept of a term or formula being in a restricted language is clear
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the scope of a quantifier. So, we use a capture-avoiding substitution, where

such bound variables are renamed, before carrying out the subsitution.

Semantics As with a propositional formula, the meaning of a first-order formula is
defined recursively and depends on, and varies with, the actual choice of values
and the meaning of the predicate and function symbols involved. To describe the

notion of semantics for first-order logic, we require the following definitions

Interpretation, valuation In first-order logic, the variables, function symbols
and predicate symbols all need to be interpreted. It is customary to separate
these concerns, and define the meaning of a term or formula with respect
to both an interpretation, which specifies the interpretation of the function
and predicate symbols, and a valuation, which specifies the meanings of
variables. Mathematically, an interpretation M consists of the following

three parts:

Domain A nonempty set D called the domain of the interpretation. The

intention is that all terms have values in D.

Interpretation of functions A mapping of each n-ary function symbol f

to a function fy; : D" — D.

Interpretation of predicates A mapping of each n-ary predicate symbol
P to a boolean function Py, : D" — {false,true}. Equivalently, we

can think of the interpretation as a subset Py; C D".

Value of a term The value of a term in a particular interpretation M and valu-
ation v is defined by recursion, taking note of how all variables are inter-

preted by v and function symbols by M:

termval Mvx = v(x),

termval M v(f(t1, ..., tn)) = fu(termval M vy, ... termval M vt,)

4.3.2 Satisfiability, logical equivalence, validity

Whether a formula holds (i.e. has the value ‘true’) in a particular interpretation M and
valuation v is defined by recursion and mostly follows the pattern described earlier for
propositional logic. The definitions are given below. The main added complexity is

specifying the meaning of the quantifiers. We intend that forall.x P(x) should hold in



4.4. Theorem proving 63

a particular interpretation M and valuation v, precisely if the body P(x) is true for any
interpretation of the variable x, i.e. if we modify the effect of the valuation v on x in

any way at all.

holds Mvl = false
holds MvT = true
holds Mv (R(t1, ..., t;)) = Ry(termval Mvty, ..., termval M v ty)
holds M v(—p) = —(holds Mv p)
holds Mv(p A q) = (holds M v p)and (holds Mv q)
holds Mv(p V q) = (holdsMvp)or(holdsMvgq)
holds Mv(p — ¢q) = (not (holdsM v p))or (holds Mvq)
holds Mv(p <> q) = (holdsMvp = holdsMvq)
holds Mv(V.xp) = foralla € D, (holds M((x — a)v)p)
holds Mv(3.x p) = forsomea € D, (holds M((x — a)v)p)

Validity, logical equivalence By analogy with propositional logic, a first-order for-
mula is said to be logically valid if it holds in all interpretations and and all
valuations. If p <> ¢ is logically valid, we say that p and ¢ are logically equiva-

lent.

Satisfiability We say that an interpretation M satisfies a formula P, or simply that P
holds in M, if for all valuations v, we have holds M v p = True. Similarly,
we say that M satisfies a set of formulas, or that S holds in M, if it satisfies each
formula in the set. We say that a first-order formula or set of first-order formulas

is satisfiable if there is some interpretation that satisfies it.

Model An interpretation that satisfies a set of formulas I" is said to be a model of T.
The notation I = P means ‘P holds in all models of I'". When I is the empty

set, we just write = P

4.4 Theorem proving

We use the term automated/mechansied reasoning systems with the following interpre-

tation: (1) reasoning is understood as formal deductive inference as practiced in formal
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logic (ii) the term automated/mechansied systems is used to broadly include classes of
software systems that are capable of performing the reasoning without or with (partial
or step-by-step) human intervention. We use the terms automatic/fully automatic and
interactive systems to refer to the two classes respectively. A theorem proving problem

is typically specified in a given logic, say, L, as follows:

Given a set of axioms (assumptions), A and a conjecture (goal) G to prove,
is there a proof in L of G from the given axioms, A?

where A, G are specified in the given logic.
For a typical problem scenario, this translates to:
e the assumptions capture all the relevant available information
e the conjecture expresses the question being asked

The problem is given to an automated reasoning system to work on until it arrives at

an answer or until it runs out of resources or the execution is terminated by the user.

4.4.1 Inference system

An inference/deduction system is a mechanism that allows for the construction of valid
logical statements from other valid ones by purely syntactic means. An inference rule
gives a method of deriving valid formulas (conclusions), from a set of given formulas

(premises), by purely syntactic means, i.e. without using any semantic information.

A proof calculus is the formalisation of the deductive machinery of choice. A given
automated reasoning system implements a specific deductive machinery via a partic-
ular proof calculus. The inference rules that are part of the proof calculus are called
basic inference rules in contrast to the rules that can be derived, which are referred as
derived rules. The emphasis is on the use of purely synfactic means, i.e. based purely

on the form, hence the alternative name formal rules/systems.

The choice of a proof system depends, amongst other things on: the logic, the applica-
tion domain, the intended mode of operation of the system (automatic, interactive etc).
Natural deduction based systems, sequent calculus, axiomatic systems and tableaux
systems are examples of inference systems. We describe the natural deduction system
and the sequent calculus in §4.4.2, as these are relevant to the material discussed in

the first-order theorem proving case study discussed later in the thesis.
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4.4.2 Natural deduction

Natural deduction is a style of inference that captures the reasoning patterns used by
humans, more closely than axiomatic systems, hence the qualification natural. It con-
sists of rules for introducing and eliminating each of the logical connectives and quan-
tifiers. Despite the natural tag, the deduction still is a formal system as in: it allows us
to manipulate formulae and derive conclusions by purely syntactic means, regardless

of their meaning.

As an example, consider the following, for the case of propositional logic: suppose
that, by assuming P is true, Q can be shown to be true, by virtue of some intervening
proof steps. Then, by making a semantic argument using the truth table for the connec-
tive —, we can conclude that P — Q holds. This conclusion does not depend on any
assumption. The assumption of P being true was made within the proof and was dis-
charged in the process of going from Q to P — Q. This is an illustration of a method
for introducing the connective — and implicitly generating a new formula. Similar
arguments follow for eliminating the connectives from a formula. E.g., the elimination
rule for — captures the well known modus ponens. It says that if you know P — Q and
you know that P is true, then Q holds. Similar such rules can be formulated for other

connectives.

4.4.3 Sequent calculus

In natural deduction, proofs are constructed by fitting the rules together, in the form of
a tree. As in ordinary reasoning, temporary assumptions may be made, in the course of
the proof and then discharged by incorporating them into the conclusion. The proof-
tree form of proofs in the natural deduction system, in their crude form, do not lend
themselves well to reasoning about them and/or to incorporate them in a software sys-
tem etc.. Sequent calculus addresses this well. It is a less pictorial and more algebraic
formulation of natural deduction in which the role of assumptions is made more ex-

plicit. It provides a means of reasoning about proofs and axiomatising deduction.

Natural deduction and sequent calculus, by virtue of capturing the behaviour of the
logical connectives (independent of the logic), gives us the opportunity to generate
different logics by varying the rules. This has led to their use in the engineering of the-

orem provers aimed at providing a generic theorem prover approach [Paulson, 1989].
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Definitions

Sequent Though the rules of sequent calculus affect logic formulae, the objects of

manipulation are not logic formulae, but sequents. A sequent is of the form:

01,02,...,0, = W1, W2, ..., ¥y, where:

o 01,02,...,0, and Y1,Vn,..., ¥, are lists of formulae.

e A formula appearing by itself on either side of the turnstile symbol denotes

a singleton set.
e For a given interpretation, if the sequent holds, it means the following:
If all ¢;s are true, then, at least one of the ;s is true.

Premises, conclusion For convenience, a sequent is often represented as
' A,

where both I" and A are (possibly empty) sets of formulae. I' is the sequent’s

antecedent/premises and A its succedent/conclusion. A special case is

-y
, which has the same meaning as y.

Role of Sequent It is useful to note that a sequent is not a formula and the symbol
(known as turnstile is not a connective. Furthermore, the sequent captures the
intention of being able to apply inference rules to the premises, repeating the

process if necessary, to eventually obtain the conclusion.

Valid sequent A valid sequent is one that is true under every interpretation. Thus,
referring to the above point on the role of a sequent, we can say that a valid

sequent gives the intention of the status of certainty.

Basic sequent A sequent is called basic if both sides share a common formula. Such

sequents are clearly valid.

Left rules, right rules Sequent calculus rules come in pairs, to introduce each con-
nective on the left or right of the - symbol. For first-order logic, there are :left
and :right for each connective and quantifier. The sequent calculus rules for

classical first-order logic without equality are given in Table 4.3.
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4.4.4 Backward proof and sequent calculus

Though the inference rules given in Table 4.3 render themselves to forward-reasoning
at first glance, such a usage to find a proof for a given conjecture entails enumeration of
all the possible derivations using the given premises. This approach is used in fableaux
based methods and is not addressed in this work. An alternative approach is to find a

proof using a backward style of proving, often referred to as refinement or backward
proof:

e Start from the initial goal, i.e. the given sequent that is to be proved. At this

stage, this is the root of the proof tree and its only leaf is this goal

e Apply a sequent rule to one of the leaves. Here, the leaf (goal) plays the succe-
dent and the application of the rule generates sub-goals, which are in turn, the
antecedents of the applied rule. Thus, the leaf is now transformed into a branch

node with one or more leaves (sub-goals).

e The above step is performed recursively until all the leaves are basic sequents

(success) or when no rules can be applied to a leaf any more (failure).

e For propositional logic, this procedure must terminate, though this is not the case

for first-order logic.

4.4.5 Interactive theorem proving

In interactive theorem proving systems, the human user guides the proof process, with
the possible assistance of the machine (possibly to do some of the tedious/mundane
bits or to marshal the power of automation using encodings of specific proof search
procedures and heuristics), while the system still ensures that no mistakes are made,

1.e. that the proof produced eventually, is sound.

The interactive aspect naturally fed the need for programmability of the theorem prover:
the user should be able to extend the built-in automation as much as desired, while still
being able to allow only extensions that are sound. In the next section, we describe LCF
(Logic for Computable Functions), which started as a system that addressed the dual
needs of interactive aspects and programmability and has gone on to become one of

the most influential foundations of interactive theorem proving. It has formed the basis



68 Chapter 4. Background

for many successful interactive theorem provers, e.g. Isabelle [Nipkow et al., 2002],
Nuprl [Constable et al., 1986]. In this work, we use the terms LCF based approaches,
LCF style provers to refer to such systems and use the following terms synonymously:
programmable theorem provers, tactic-based theorem provers and LCF-style theorem

provers.

446 LCF

In the LCF approach,

e The commands are embodied in a language that has an expressive functional

subset 7.

e Each inference rule of the logic is expressed as an ML function, which has as its
result a value of the special abstract type (say, thm). This special abstract type,
which stands for proved theorems in the implementation language, is in fact one
of the key LCF ideas.

e The only constructors of the abstract type thm correspond to approved inference
rules. This ensures that anything of type thm, must by construction, have been

proved rather than simply asserted.

However, the user is given full access to the implementation language and can use any
programming techniques of the implementation language to engineer more sophisti-
cated ways of orchestrating the basic inference rules. As thm is an abstract type with
specific constructors as discussed above, any result of type thm, in which ever way
it was arrived at, must ultimately have been produced by correct application of the
primitive rules. This holds no matter how complex the means of arriving at that was.
Thus, it allows for both programmability of the prover as well as guaranteeing the
soundness of the programmed extensions. In practice, the implementation language

for most interactive theorem provers is usually a flavour of ML (Meta language).

LCF style provers use a predominantly goal-directed, backward-chaining style of proof

( §4.4.4). The notion of ractics helps to realise this in an efficient manner. Tactics,

7LCF and the functional programming language ML (Meta Language) are very closely related, with
the latter having had its genesis in the development of (Edinburgh) LCF; ML was the precursor to
Standard ML (SML)
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are essentially the rules of inference, with intended usage in the backwards direction,
equipped with extra book-keeping mechanisms. Using tactics, we can formalise the
idea of working backwards from a goal to (possibly simpler) sub-goals. This equips us

with the tools to program some general purpose problem solving strategies.

Another feature of LCF is the following: when a rule gets used (in the backward style),
giving a list of sub-goals, the justification, the reason why it was a legitimate step (i.e.
the name of the inference rule), has to be kept track of. In LCEF, this is taken care of by
tactics. Tactics are thus functions which encapsulate an inference rule and maps a goal

to a list of sub-goals while maintaining the justification.

Thus, a typical step in an LCF prover will involve: finding a tactic (rule) whose conclu-
sion can be made to match the goal (sub-goal) and read off the premises of the rule thus
found to give the sub-goals. Keep using this basic strategy until all sub-goals reduce
to axioms or previously proved theorems. The challenge that this introduces is that at
each step there will be many matches (of tactics). So, an efficient search mechanism
will be required to make sure that we try all possibilities. Tacticals provide the tools to

address this aspect.

Tacticals are encapsulation of control structures, for applying the tactics in various

ways (sequencing, conditional operation, repetition etc).

LCF systems have a kernel, which consists mechanisms to apply the basic inference
rules. All other proof rules are defined in terms of these rules. Thus, it suffices to just
trust the small kernel. This is a very desirable feature, particularly for prototyping of
and experimentation with sophisticated techniques. We have used one such system for

first-order logic, in our case study discussed in chapter 7.

4.5 SAT solvers: some relevant background

The propositional satisfiability problem, often abbreviated as SAT, was the first prob-
lem to be shown as being NP-complete [Cook, 1971] and thus is of significant theoret-

ical importance. Despite its NP-complete status, many industry-standard SAT solvers
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have been developed that have been used to tackle real world problem instances of up

to a million variables.

SAT solvers are being used increasingly in a wide range of application domains. Re-
cent advances have pushed the tractability threshold of industry-standard SAT solvers
both in terms of problem-size (number of variables) and complexity. The electronic
design automation (EDA) industry has increasingly adopted SAT engines for a wide
variety of testing and verification tools like automatic test pattern generators, equiva-
lence checkers, property checkers. SAT is also increasingly being used for software
verification and debugging. Outwith the hardware and software verification commu-
nity, SAT has also been used widely for other domains like: configuration management
such as resolving software package dependencies and checking consistency of techni-

cal documentation [Sinz et al., 2006].

Key propositional logic related definitions and notations used in this thesis were pro-
vided in §4.2.3. In this section, we provide the following aspects of SAT related

background that are particularly relevant to the work described in this thesis:
e Detailed descriptions of the DPLL and Stalmarck algorithm

e Overview of some key techniques used in state-of-the-art DPLL-based SAT

solvers

For more details about SAT related background and recent advances, the reader is
referred to [Biere et al., 2009]. [Harrison, 2009] is a good reference for general back-

ground on SAT and details on the workings of the Stalmarck algorithm, in particular.

4.5.1 SAT algorithms: an overview

Algorithms for SAT can be broadly classified as below.

Complete algorithms These algorithms can prove both satisfiability and unsatisfia-

bility. Some complete SAT algorithms are:

e Resolution based algorithms: DP [Davis and Putnam, 1960], DPLL [Davis
et al., 1962]

e Stalmarck’s method [Sheeran and Stalmarck, 1998, 2000]

e Recursive learning [Kunz and Pradhan, 1994]
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e Algorithms based on Binary Decision Diagrams (BDDs) [Drechsler and
Becker, 1998]

Incomplete algorithms These algorithms cannot prove unsatisfiability. Some of these
algorithms apply probabilistic techniques to solve the SAT problem and some
consider the SAT CNF problem as a discrete optimisation problem of maximis-
ing the number of satisfied clauses. Examples of algorithms in this category

are:

Local search [Selman et al., 1996]

Randomised restarts [Gomes et al., 1998]

Simulated annealing [Kirkpatrick et al., 1983; Spears, 1993]
e Hill climbing [Gent and Walsh, 1993]

In the work described in this thesis, we consider parallelisation for only the complete
category. We describe the DPLL and Stalmarck algorithms in detail in the following

sections.

4.5.2 DPLL

In this section, we describe the DPLL algorithm [Davis et al., 1962] and provide an

overview of key techniques used in modern DPLL-based SAT solvers.

4.5.2.1 The DPLL algorithm

The long established and popular DPLL algorithm [Davis et al., 1962], follows a depth
first search approach. It uses branching, unit clause propagation and pure literal de-
tection. An informal description of the algorithm is given below. A code fragment
describing a functional implementation of a recursive version of this algorithm is given

later in the thesis in Listing 6.2.

1. Branch Given a CNF formula, the algorithm heuristically selects an unassigned
variable and assigns it either true or false. This is referred in the literature (syn-

onymously) by any of the following terms: case-split, branching, decision-point.

2. Apply inference rules The solver then tries to deduce the consequences of the as-

signment made using the following inference rules:
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Unit clause rule Let C be a unit clause consisting only the literal, v. Obviously,
C is true iff v is true. In the context of the CNF representation, this becomes
a powerful inference rule to apply to reduce the problem, during the search
for a satisfiable assignment. Because, for the CNF formula to be true, every
clause has to be true, including the unit clauses and this in turn, implies
that the sole variable in the clause has to be true. This is added to the
assignment and applied throughout the problem which can in turn, reduce
the problem further. Iterated exhaustive application of the unit clause rule
(i.e. until it can no longer be applied) is performed. This is referred to as
unit propagation. This is the key inference rule for the DPLL algorithm.
As evident from the description, the unit clause rule and consequently, the

DPLL algorithm relies crucially on the CNF representation.

Pure literal rule For the purpose of finding a satisfiability assignment for a
CNF formula, pure literals can be assigned the value True and the clause
of occurrence (which is now true) can be dropped from the problem. This
is also used in an iterative, exhaustive manner, but has been dropped out of
most modern SAT solvers as it is observed to slow down the algorithm and

the benefits of its use are not sufficient enough, to justify its use.

3. Satisfying assignment found/Backtrack After applying the inference rules, the

algorithm can reach a state with the following 3 possibilities:

SAT The problem is empty, i.e. all clauses have been satisfied. The algorithm
terminates with the answer SAT with the current assignment as a possible

satisfying assignment.

Conflict, Backtracking When the algorithm encounters an empty clause, i.e.
the problem has been rendered unsatisfiable by the current assignment, a
conflict is said to have occurred. Occurrence of a conflict means that a
satisfying assignment cannot be reached by using the current assignment.
So, the algorithm backtracks, to try a different branch value for the most
recent decision level. If both branches have been explored at that level, it
backtracks to the earlier decision level and continues applying the infer-
ence rules, i.e. applies Step-2 as above. If there are no more variables to
branch on and/or no more decision levels to backtrack to, it means that the

entire search space has been explored without finding a satisfying assign-
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ment. So, the algorithm terminates with the answer UNSAT. It is useful
to observe here that the original algorithm thus incorporates what is now
termed chronological backtracking, relying only on the nesting level of the

tree.

It is worth observing here that from an implementation point of view, there
are significant number of state related operations that happens here, as the
algorithm has to throw away the current problem state and use the assign-
ment at the level to which it has backtracked, along with the original prob-

lem instance.

Unknown If the application of the inference rules did not lead to either SAT or

conflict, the algorithm continues with Step-1, i.e. branching.

4.5.3 Stalmarck’s algorithm for SAT

Stalmarck’s algorithm [Sheeran and Stalmarck, 2000; Stalmarck, 1992; Stalmarck and
Saflund, 1990a] is an algorithm for checking if an arbitrary propositional formula (not
necessarily in CNF) is a tautology or not. For the case of SAT, one can equivalently

check if the negation of the given formula is a tautology.

Stalmarck’s method is a proof procedure for classical propositional logic and has been
implemented in a suite of commercial tools called NP-Tools, engineered by the com-
pany Prover Technology (www.prover.com). This suite has been successfully used in
real world industrial verification projects containing millions of sub-formulas in the
areas of telecom service specification analysis, analysis of railway interlocking soft-
ware, analysis of programmable controllers and analysis of aircraft systems [Borilv,
1997]. Furthermore, Stalmarck’s method has been found to perform better than BDD
based methods and the Otter prover [McCune, 1994] for some classes of real world
verification problems [Groote et al., 1995]. The implementation related aspect of rep-
resenting a propositional logic formula as a set of triplets, which plays a pivotal role in

the Stalmarck procedure, is covered by a patent [Stalmarck, 1992].
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Definitions

For a given formula X, let S(X) be the set containing all subformulas of X, including
True (T), False (L) and the complements of subformulas of X. Then, a formula rela-
tion on X is defined as an equivalence relation with domain, S(X), with the following

additional qualifications and notations:

e A ~ B means that A and B are in the same equivalence class and must have the

same truth value
e If A~ B, then -A ~ =B

e A ~ Bis encoded as —A ~ B, thus allowing for encoding of both equalities and

inequalities between subformulas

e R(A = B) refers to the least formula relation containing R and relating A and B;

A = B is referred to as an association.

e X refers to the identity relation on S(X), placing each element of S(X) in its
own equivalence class; X ' refers to X*(X = T); X is defined in a similar way
Note that X " constitutes a partial valuation and plays an important part in the

algorithm

e [f a formula and its complement are in the same equivalence class, it signals an

explicit contradiction
e Union and intersection of the equivalence classes are defined in the standard way.

e These equivalence classes are of particular interest when (i) T is a member (i1)

1 is a member.

Notion of triplets

The algorithm uses a data structure called triplets to represent compound formulas.

This is explained via the definitions and example below.

e A triplet (x,y, z), for a connective &, is an abbreviation for
X ybz

where @ can be any boolean connective, and the variable x represents a sub-

formula of the original formula.
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e Any arbitrary propositional formula can be reduced to a set of triplets by intro-
ducing new variables (when needed) to stand for subformulas. For the purpose of
this thesis, we make a distinction between these newly introduced variables and
the variables present in the given formula by referring to them as riplet variables

and original variables respectively. An example is provided in Example 4.1.

Example 4.1 Triplets

The formula p — g — p gives the following triplets, for the connective, —:
(bl, g, p) (b2, p, bl)

where p, q are the original variables and bl and b2 are the triplet variables,

with bl standing for the subformula ¢ — p and b2 for the entire formula

e When a given triplet (X, y, z) is explicitly contradictory i.e. it signals a contradic-
tory propositional formula when expressed as x <> y @z, it is said to be a terminal

triplet. E.g., the triplet (T, T, L), is a terminal triplet for the — connective.

For the sake of convenience, we adopt the convention that for the connective —,
the only terminal triplets are (T, T, L), (L,x, T), (L, L,x). Itis easy to see that

any explicitly contradictory triplet is equivalent to one of these forms.

The triplet representation plays an important part in the algorithm. The algorithms
works by assigning truth values to the triplets (i.e. to the subformulas) and deriving
the consequences by using the inference rules and recording equivalences between the
triplets (subformulas). Thus, it serves as a shorthand notation to capture (sub)formula

relations.

Simple rules

For each connective, a set of simple rules, also referred to as trigger rules are defined,
using the notion of triplets. Intuitively, for a given triplet (p, g, r), a simple rule captures
the obvious deductions when p is equivalent to another formula, including True ('T') and

False (_L). The unifying pattern for the rules is the following:

If all the preconditions hold, then the conclusions must hold.



76 Chapter 4. Background

The simple rules for the connective A are given in Table 4.2. Similar rules apply for

other propositional connectives as well.

If ... Then ...
p=—q|g=Tandr=_1
p=-r|g=Llandr=T
q=r p=r

g=—r | p=1

p=1T |g=Tandr=T
q=1T | p=r

gq=1L | p=1

r=1T |p=gq

r=1 | p=1

Table 4.2: Stalmarck trigger rules for the connective A, i.e. for the formula, p <+ gAr

Applying a simple rule to a set of triplets gives a new set of triplets obtained by substi-
tuting the newly derived variable instantiations if any. A small example illustrating this
is given below (see Example 4.2). The simple/trigger rules, along with the dilemma
rule described below ( §4.5.3) provides a complete proof system for classical proposi-

tional logic [Sheeran and Stalmarck, 2000].

Example 4.2 Application of simple rules

Referring to Example 4.1 above, let us assume b2 (which corresponds to the entire
formula p — g — p ) to be False and apply the simple trigger rules.
For the triplet (b2, p,b1),if b2 = 1 then p =T and b1 = L. Substituting this newly
derived information to the triplet (bl, q, p) gives (L, q, T), which is a terminal
triplet.

Thus, we started with the assumption that p — g — p is false and we have
derived a terminal triplet, i.e. a contradiction. So, we conclude that the formula is
valid.

Using the equivalence classes

The equivalence classes on subformulas defined earlier is used in the following ways,

in the context of the Stalmarck procedure:
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¢
¢ A Ap
C-p C,
¢ A (CpNCyp)

Figure 4.1: Branch-merge rule: applies a case-split and garners conclusions from the

two branches

e It extends the scope of possible derivations: instead of just deriving some formu-
las to be true or false, one can also derive the knowledge that certain (sub)formulas
are equivalent, i.e. certain sets of formulas have the same truth value. This fea-

ture gives more power to the simple rules and consequently the proof procedure.

e From the point of view of a refutation procedure, the derivation of a contradictory
formula relation from X |, constitutes a refutation of the formula X. This notion

can be extended to tautology checking by attempting to refute X .

e The equivalence classes also play a pivotal role in the algorithmic description of

the dilemma rule as defined below.

e If an explicit contradiction (see §4.5.3 for definition) has been derived in the
course of a derivation, the relation can be deemed to be equivalent to that with a

single equivalence class and the derivation can be stopped.

A desirable by-product of the use of (sub)formula relations is the potential scope to
gainfully exploit the implicit structural information present in many real world SAT
instances. As discussed in §2.1.1, DPLL-based SAT solvers do not fare well in this

aspect of utilisation of implicit structural information [Thiffault et al., 2004].
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R

R1: the derivation R(A = B)
R2: the derivation R(A = —B)
R TR,

Figure 4.2: Dilemma rule, a branch-merge rule, implemented using equivalences, I

denotes intersection

Dilemma rule

The dilemma rule (Figure 4.2) is a branch and merge rule (Figure 4.1). For a given

formula relation R, application of the dilemma rule involves the following steps:

e Choose A and B from different (and non-complementary) equivalent classes in
R.

e Obtain the derivations R and R;, obtained by exhaustive application of the sim-

ple rules to the two independent branches: R(A = B) and R(A = —B) respectively.

e Extract R 1R, i.e. the conclusions that are common to both branches (merge

operation) with I defined as below
o R MR, is defined as:
— Ry if Ry is explicitly contradictory
— Ry if R, is explicitly contradictory
— R N R, otherwise, where M is understood as set intersection

e Choosing B =T gives the case of the two branches beingA =T and A = 1, i.e.
one where some propositional variable is assumed to be true and one where it is

assumed to be false

e Thus, intuitively, the dilemma rule can be understood as: any information that
holds for both the truth values of a propositional formula, i.e. when X is true
and when x is false, must hold independent of the value of x, i.e. it is (univer-
sally) consistent information. Thus, the knowledge derived in the course of the
Stalmarck algorithm can be used by another algorithm applied to the same prob-
lem. This is a valuable feature which we use in our hybrid SAT solver which we

describe in chapter 6.
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Saturation procedure

Figure 4.3: 0-saturation procedure of Stalmarck’s algorithm

Fy T

[For all wvariables do:

1=F
Fact-set-T Fact-set-F
S

lIntersection

TR
S -

\//

If no new facts
RETURN
else

Figure 4.4: 1-saturation procedure of Stalmarck’s algorithm

Listing 4.3: Recursive saturation procedure for Stalmarck’s algorithm

saturate (R,k+1) = repeat
L := Sub(R); R’ :=R
for each | in L
do
R1 saturate (R(| equiv FALSE) k)
R2 saturate (R(! equiv TRUE) ,k)
if contradictory (R1) and contradictory (R2)
then return R1 union R2

else if contradictory (R1)
then R = R2
else if contradictory (R2)
then R = R1
else R = R1 intersect R2
until R* = R
return R
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In the Stalmarck algorithm, the proof system consisting of the simple rules and the
dilemma rule is embedded in a saturation framework, i.e. exhaustive application of
the rules until no more new information (no more new equivalences) can be derived.
This allows for the following valuable feature: recursive learning and incorporation of

information gathered.

Given an equivalence relation, i.e. a set of equivalences between (sub) formulas, 0- sat-
uration tries to derive as many new equivalences as possible, by exhaustively applying
the simple rules and using the properties of symmetry, transitivity and involution of

negation where applicable.

In practice, O- saturation starts with an equation (between two triplets), applies a re-
lated simple rule and derives the consequences (which are in the form of equations
themselves). It continues to apply the simple rules on those triplets whose variables
were affected by the consequences of the earlier application(s). The process continues
until no further simple rules can be applied. It augments the equivalence relation with
the newly derived consequences. Example 4.2 provides a simple example illustrating
0- saturation. Listing 4.3 gives the pseudocode for k+ /-saturation, defined in terms of

branching and k-saturation.

4.6 Relevant key characteristics of Stalmarck’s algorithm

Some of the key strengths of the method that have contributed to its success in the

hardware domain and other industrial applications [Borilv, 1997] are as follows:

e Ability to exploit the structure of the given formula via (sub)formula relations, a
key benefit compared to the CNF based methods like DPLL where the CNF con-
version often entails loss of (implicit) structural information. E.g., it is known to
fare much better than DPLL for Urquhart problems [Urquhart, 1987] and pigeon
hole problems [Haken, 1985]. Both these classes of problems are easy for a hu-
man to solve because of the inherent structure, but yet, they have been proved
hard for DPLL-based solvers.

e The recursive saturation algorithm which allows for continuous gathering of
information in the form of formula relations. This has enabled the algorithm to
efficiently search for shallow sub-formula proofs and this in turn, has turned to

be an efficient strategy to tackle many industrial problems.
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e The saturation aspect further distinguishes the algorithm from both breadth-first-

search and iterative deepening [Sheeran and Stalmarck, 2000].

e Intuitively, the dilemma rule can be understood as: any information that holds
for both the truth values of a propositional formula (when x is True and when x
1s false) must hold independent of the value of x, i.e. it is (universally) consistent
information. Thus, the knowledge derived in the process of the Stalmarck algo-
rithm can be shared by a different algorithm applied to the same problem. This

is a valuable feature which we use in our hybrid SAT solver.

e The learning mechanism used in the Stalmarck algorithm has the following
key advantages compared to the popular conflict driven clause learning (CDCL)
[Marques-Silva et al., 1996] based techniques which are DPLL-based.

— Stalmarck’s algorithm learns by spanning the search tree in a breadth-first
fashion whereas the DPLL-based CDCL techniques are restricted to the
depth-first search space exploration. This makes it an ideal candidate to be

used as a complementary learning mechanism with a DPLL-based solver.

— The above mentioned point about loss of structural information applies to
the CDCL techniques as well as they are DPLL-based and Stalmarck’s al-

gorithm fares better on this aspect.

e The method is more sensitive to the hardness degree of a formula (see §4.5.3,
[Sheeran and Stalmarck, 2000]) than to its size in terms of number of variables or
connectives. This makes it a good choice for application for real-world problems

of a large scale as well.

Hardness criteria

Stalmarck’s algorithm has an associated notion of proof hardness based on a novel
proof-theoretic notion of proof depth which translates to minimum number of nested
instances of the branch/merge rule required in any proof of a problem (formula).
Roughly speaking, a formula’s satisfiability is decidable by n-saturation, if it is de-
cidable by the primitive rules and at most n-deep nesting of case-splits. A formula
decidable by n-saturation is said to be n-easy, and if it is decidable by n-saturation but
not (n-1)-saturation, it is said to be n-hard. For more details, the reader is referred to
[Sheeran and Stalmarck, 2000; Stalmarck, 1994; Stalmarck and Saflund, 1990b].
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The notion of proof hardness is of interest to us in this thesis for the following reason:
With respect to this notion, the Stalmarck procedure is exponential in the hardness of
the formula, but polynomial in the size of the formula, assuming a maximum degree of
hardness [Stalmarck, 1994]. Thus, the method is much more sensitive to the hardness
degree of a formula than to its size, in terms of the number of variables or connectives.
Problems encountered in many real world applications have been found to have low

degrees of hardness, typically less than 2 [Borilv, 1997].

4.7 First-order theorem proving: some relevant back-

ground

Definitions related to first-order logic were provided in §4.3. In this section, we pro-
vide background material related to relevant logical inference methods for first-order
logic. For the purpose of the prototype prover discussed in this thesis (chapter 7), we
consider classical first-order logic without equality and the material discussed in the

rest of this section is to be taken in this context.

4.7.1 Unification

As described in §4.3, a substitution in first-order logic allows for free occurrences
of variables in a formula to be replaced by terms®. The process of finding substitu-
tions that make different logical expressions identical, is called unification and is a key

component of all first-order inference algorithms.

Informally speaking, a unification algorithm gives a syntactic procedure for deciding
on appropriate instantiations to make terms match up correctly when it is possible to
do so and reports failure, when otherwise. An often cited analogy is that of solving a
system of simultaneous equations in ordinary algebra. Just as a set of equations may
not have a solution, so may a unification problem. A code-fragment is provided in
Listing 4.4, describing a particular unification algorithm for classical first-order logic
without equality. This has been used in the prototypical first-order prover discussed

later in chapter 7.

8Given a variable x, a term ¢ and a formula 0, a substitution, ¢[¢/x], is defined to be the formula
obtained by replacing each free occurrence of variable x in ¢ with 7.
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Listing 4.4: Unification algorithm for first-order logic. The algorithm works by comparing the structures of the

inputs, element by element. The substitution mu is built up along the way and is used to make sure that later

comparisons are consistent with bindings that were established earlier.

Unify (x, y) = Unify_internal(x, y, [])

Unify_internal (x, y, mu)

If (mu = Failure) then return Failure

If (x=y) then return mu

If (Is_a_variable(x)) then return Unify_variable(x, y, mu)

If (Is_a-variable(y)) then return Unify_variable(y, x, mu)

If (Is.a_.compound(x)) and (is.a.compound(y)) then

return Unify_internal( args(x), args(y), Unify_internal (op(x),op(y).mu )

If (Is.a_list(x)) and (Is_a_list(y)) then

return Unify_internal ( tail(x), tail(y), Unify_internal(head(x),head(y),mu)

otherwise return Failure

Unify_variable (var, x, mu)

If (a substitution value/var is in mu) then
return Unify_internal (value, x, mu)

If (a substitution value/x is in mu) then

return Unify_internal (var, value, mu)

If (var occurs anywhere in x) then return Failure

Add x/var to mu and return

A unifier of two formulas P and Q is a substitution ¢ that makes
Poc=0c

A given pair of expressions may have several unifiers or none. The substitution G is
more general than ¢ if

0 =000
for some substitution 0 and o is the composition operator. A substitution G is the most
general unifier (MGU) of terms tq, ..., 1y if:
e G unifies ¢, ..., t; and

e G is more general than every other unifier of #1, ..., #

The practical implication of the notion of MGU is the following: by using the compo-
sition operation, the MGU can generate all unifiers of the terms. In general, unification
algorithms focus on finding the MGU for a given set of formulas. MGU for a given set

of formulas is unique, up to renaming.



84 Chapter 4. Background
4.7.2 Sequent rules for classical first-order logic

Sequent calculus is used in the implementation of the prototype first-order theorem
prover used as the baseline system in the case-study discussed in chapter 7. §4.4.2 and
§4.4.4 covered sequent calculus and backward proof. Table 4.3 provides an enumera-

tion of the sequent rules for classical first-order logic without equality.

4.7.3 Meta variables

Scenarios involving quantifiers pose a challenge in terms of the appropriate substitu-
tion for the variables. In particular, consider the sequent rules V : left and 3 : right
from Table 4.3. A successful instantiation of the term will be one that will ultimately
generate subgoals and a successful proof. An application of the rules thus amounts
to predicting one such candidate. However, this prediction is clearly not possible and
a feasible solution is to postpone the commitment and apply a systematic process of
trying out various possibilities along with other heuristics etc to synthesise value(s) for
the candidate. °. This calls for a suitable device to capture this pending value and yet
be able to continue with the rest of the proof. One such device is the introduction of
meta-variables, which act as placeholders for terms which require their instantiation
to be postponed/kept pending. In this thesis, we use the following notation to denote

meta-variables: precede the variable with a question mark symbol, e.g. 7a;.

As will be discussed later in the thesis in chapter 7, implementation of the unifica-
tion procedure for first-order logic described earlier, benefits from the notion of meta-

variables.

4.8 Some relevant background on parallel computing

Parallel computing is a rapidly evolving field, both in terms of the machine architec-
tures and the software and tools to use them. In this section, we provide an overview of

some related concepts, which are of relevance to the material discussed in this thesis.

This is analogous to the way mathematical reasoning works: try out multiple candidates for a
particular variable that will allow for the proof to be finished or while trying to give a value to a variable
which will fit the rest of the proof.
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Definitions of the terms used are provided in Appendix §A 1. [Andrews, 2000; Karp

and Ramachandran, 1990] are good sources for further details on related background.

4.8.1 Relevant architecture categories and some emerging archi-

tectures

In this section, we enumerate some of the major hardware architectures, with an overview
of where various emerging computing platforms fit in this taxonomy. An overview of
related software tools that support programming for these architectures is also pro-
vided.

4.8.1.1 Classification of architectures

The conventional taxonomy for classifying parallel architectures is based on notions
of instruction and data stream. However, today’s processors have built-in parallelism
in the way they execute instructions. The architecture of interest in this work is the
Multiple Instruction Multiple Data (MIMD) category. MIMD systems are further clas-
sified into the following two categories. A feature-wise comparison of the two is given
in Table 4.4.

Multi processor All processors have direct access to all memory

Multi computer a.k.a Distributed systems Each processor has its own local mem-
ory and access to non-local memory; remote access to memory requires the use

of some form of message-passing mechanism

4.8.1.2 Emerging computing architectures

Some relevant emerging architectures are described below.

Multicore architectures contain two or more independent units(cores) that can read
and execute instructions, all housed in the same physical unit. Shared-memory
is the most common memory model though inter-core communication models
are also used. The term many core is used when the number of cores is very

high, typically in the order of a million cores.
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GPGPUs stands for General Purpose computation on Graphics Processing Units. It is
also referred to as GPU Computing. Originally designed for high-performance
graphics, GPUs are increasingly used as many-core processors, capable of sup-
porting implementations with a high degree of parallelism. This has been aided
by the availability of accessible development tools and interfaces. These are
very well suited for operations like stream processing, i.e. to do the same job
on a large data set, where the jobs themselves do not need to communicate with

each other.

Distributed computing architectures came into existence with the advent of net-
works and thus has been around for a very long time. In this time, it has assumed
many identities, some of which are described below. All of them use a group of
computing elements (CEs), often called workstations and rely on the message-
passing computational model rather than the shared-memory model. In addition,

each variant has its own specifics that need to be catered to, as explained below:

Clusters A group of CEs that are interconnected by general purpose communi-
cation networks such as fast ethernet or other advanced forms of high-speed

connections like a local area network.

Grid A distributed network of often heterogeneous CEs that communicate using
the communication infrastructure of the Internet. Grid- like environments
pose the following specific challenges in comparison to e.g., a cluster of

locally connected CEs:

e higher message latency due to the widely distributed nature of the net-

work and the reliance on relatively low-speed bandwidths

e limitations posed on the access to a CE; e.g. in most cases, due to se-
curity reasons, access is via a gateway machine and the operations that
can be performed on a CE are limited to submitting a job, querying the
status and retrieving the results; for the same reasons, communication

between the CEs is not possible always

e resource limitations imposed by scenarios where a given CE may be

scheduling multiple jobs

e higher likelihood of interruptions and hence higher degree of fault-

tolerance is required
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e inter-operability issues borne out of the heterogeneous nature of the

network

e a CE might fail, making robust fault-tolerance capabilities, an impor-

tant consideration

Cloud computing Cloud computing '° is focussed on the virtualisation of ap-
plications, thus allowing for software to be provided as services running
on huge commodity clusters. Cloud computing works on a pay per use ba-
sis and is operated by dedicated, special purpose, large and homogeneous
data centres with virtualized services. The individual application develop-

ers/users can buy more processing power as and when needed.

Both clusters and grids provide enormous potential for idle-resource-utilisation strate-
gies. These architectures are ideal deployment vehicles for distributed programming
applications with different parts of a given application running on various nodes with
load balancing strategies to make the most of the idle time of nodes and/or employing
collaborative problem solving approaches and they are very well suited for algorithms
adopting the message-passing computational model. Multiprocessor machines are bet-
ter suited for algorithms that adopt a shared-memory computational model. GPGPUs

are specifically targeted at data parallelism.

4.8.2 Computational models

Exploring the scope and efficacy of employing these new computing paradigms and
architectures to address the challenges of an application domain entails effective ad-
dressing of a variety of issues. Some of these are: effective task decomposition, coor-
dination mechanisms, resource allocation strategies, choice of computational model(s)
etc.. Increasingly, no single computation model fits all the requirements of an applica-
tion and quite often a combination of models are used. In this section, we describe two

main computational models relevant to this thesis.

A concurrent program contains simultaneously executing threads that are orchestrated

1%For more on cloud computing, the reader may want to read this url http://en.wikipedia.org/
wiki/Cloud_computing
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in predefined ways to perform a task. The threads can use inter-process communication
and/or synchronisation to accomplish a task. Thus, concurrent programming encom-
passes programming for both multiprocessor and distributed systems. Shared memory
programming and distributed programming/message-passing based programming re-
fer to two specific ways of writing a concurrent program and are most commonly used

in the context of multiprocessor and distributed memory models respectively.

Shared memory programming assumes that all the processes have access to all parts
of the memory. Thus, conceptually they are very similar to sequential programming,
except for the asynchronous nature of the processes. There are obvious factors to deal
with, in the form of race conditions and synchronisation of memory, owing to possible

scenarios of concurrent access of the same memory location.

On the other hand, distributed programming relies on message passing for its com-
munication and is faced with the challenges of: message latency, heterogeneity of the
architectures and/or operating systems of the individual workstations, optimal load-

balancing strategies (to keep all the processing units as busy as possible).

An additional distinction that is sometimes made in the literature, particularly in the
context of high-performance applications, is parallel programs. It is used to refer to a
subset of concurrent programs that are specifically targeted at reducing the execution
time, compared to the sequential counterpart. Both shared memory programming and
distributed programming can be used to write parallel programs and is usually dictated
by the target architecture. However, in this thesis, we use the term parallel programs

with no particular specialised usage.

In the next section, we discuss some relevant parallelisation techniques.

4.8.3 On implementing parallelisation

Typically, the starting point for a parallel algorithm is to take a sequential algorithm
and parallelise it using an appropriate parallelisation strategy. The process of choosing

an appropriate strategy entails making choices about the following:

1. Number of processors to use
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2. Using some form of decomposition of work for distribution across processors
3. Load-balancing strategies

4. Choosing the computational model in conjunction with all these factors and the

associated overheads of communication and synchronisation

To address the decomposition aspect of a given algorithm, the following two ap-

proaches are generally adopted:

Functional decomposition/Task parallelism Splits the algorithm into more or less
independent procedures that can be executed in parallel, essentially giving rise

to a new algorithm which may share some similarity with the original algorithm.

Domain decomposition/data parallelism This focusses on the data set used in the
execution of the algorithm, enabling concurrent processing of independent sets
of input, internal or output data. The typical case of data parallelism is when the

same operation is performed on a huge data set.

The rationale for picking an implementation choice for parallelisation is a function of
the application domain, the particular target system, algorithms, target architecture(s)

and the techniques of parallelisation employed. e.g.
Parallelisation technique Data parallelism, co-routining, hybrid approaches
Computational models Shared memory, distributed memory, hybrid memory models

Target architectures of deployment Clusters, grids, multicore machines, GPUs

Choices for implementation

In Table 4.5, we summarise some of the commonly used implementation approaches

to incorporate parallelisation in shared and distributed memory models.

Language-based parallel programming

Use of API based approaches like openMP and MPI give access to parameters closer
to the machine architecture. However, they do not offer abstraction, from the program-

ming point of view and are notoriously hard to program and debug. The developer has
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Option Shared memory model Distributed memory model
Smart compilers Use a parallelising compiler that automatically | Not used
converts a sequential program to a parallel one.
This is very language dependent and has to be
tuned to work for specific memory models
Use OS based resources Processes, threads, semaphores Sockets
Parallel libraries: Used by sequen- | OpenMP PVM, MPI

tial languages
Parallel languages: Most cater to

multiple programming models

Ada, Cilk, HPF, NESL, Java, C#, PolyML

Java, C#, Ada, Linda, Alice ML

Table 4.5: Commonly used programming approaches to incorporate parallelisation in shared and distributed memory models
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to take care of all the low level details like lock synchronisation and thread schedul-
ing. Architectures are changing, with greater internal concurrency (multi-core), better
fine-grained concurrency control (threading, affinity), and more levels of memory hi-

erarchy. This topic is addressed in greater detail in chapter 5.

Performance measurement

Speedup: is defined as the ratio of the CPU time of the sequential version and the

parallel version

Efficiency: is the dual of speedup and is defined as the ratio of speedup and the num-
ber of processors; this gives rise to notions of linear, sub-linear and super-linear
speedups, depending on efficiency being equal to 1.0, less than 1.0, greater than

1.0 respectively

Scalability Speedup and efficiency are relative measures and the empirical behaviour
can fluctuate depending on the number of processors. Also, a program may
display different behaviours with respect to speedup and efficiency depending
on problem sizes. The notion of scalability tries to address these anomalies. A
program is said to scale if the efficiency behaves consistently over a large range

of values of the number of processors and problem sizes

Overhead: is defined as the ratio of the extra CPU time and the sequential CPU time,
where the extra CPU time is the difference between the total CPU time of all
the machines in the parallel version. This metric serves as a performance indica-
tor taking into account time spent on communication, workload balancing, data

structure creation/re-creation etc..

Sources of overheads The main sources of overhead in a concurrent/parallel program

are:
e Process creation and scheduling
e Inter-process communication
e Synchronisation

All the aforementioned notions are bound to machine-level parameters. An alterna-
tive language-based performance measurement technique has been used informally in

teaching and prototyping. This uses the following two measures (more abstract than
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running time of the processors etc): work and depth: work is defined as the total num-
ber of operations executed by a computation, and depth is defined as the longest chain
of sequential dependencies in the computation [Karp and Ramachandran, 1990]. How-

ever, this cannot account for locality issues and other overheads.

4.9 Summary

In this chapter, we provided background material useful for understanding material
discussed in this thesis along with notations and terminology used in the thesis. Propo-
sitional logic and first-order logic were introduced with descriptions of their syntax,
semantics and associated definitions. A brief introduction to theorem proving was
provided and details were given for specific proof systems used later in the thesis.
Bacckground material related to SAT solvers was discussed, covering the DPLL and
Stalmarck’s algorithm in detail, with an overview of key techniques used in optimised
DPLL-based SAT solvers. The discussion of first-order theorem proving methods fo-
cused on sequent calculus, unification and meta-variables. Finally, some relevant ma-
terial related to distributed programming was provided. A description of Alice ML,
the implementation language used in this thesis and and programming abstractions is

given in chapter 5.
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Why parallelise a theorem prover

and how to do it

5.1 The free lunch is over

A much cited recent paper titled The free lunch is over [Sutter, 2005], provides some
significant insights on why parallelisation is not just a choice, but is an imperative to
enable performance gains in the future. The paper talks of how, until now, applications
have been seeing performance gains, without any significant redesign, simply by virtue
of the advances in hardware technology and how the performance lunch is not going to
be free any more. With the physical limitations of processor speeds reaching saturation
levels, parallel architectures are becoming the default choice to provide more compu-
tational power and engineering better applications is set to be accomplished in fun-
damentally different ways compared to the past. These emerging architectures come
in varied forms from multicore machines to different kinds of distributed computing

architectures.

Theorem proving with its inherently vast search spaces is facing challenges in terms
of both problem size and complexity, fueled by the increasing range of applications
that theorem provers are being used to tackle. Engineering better theorem provers
with improved speed and/or improved success rates for both more complex and big-
ger problems, is thus a pressing need. With the imperative trends of parallelisation

and the increasing ease of accessibility of emerging architectures and availability of

95
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a wide variety of related software tools, it becomes more interesting now than ever
before to investigate novel ways of using parallel technologies to identify and harness
latent parallelisation, distribution and co-routining/collaboration opportunities present
in theorem proving tasks. This need is echoed in a recent book [Kaufmann and Moore,
2009], where parallel, distributed and collaborative theorem proving is cited as being

one of the key research problems for the future of automated theorem proving.

5.2 Parallelisation of theorem provers: for the diverse

opportunities that it can open up

While the imperatives dictated by the limitations of processors and the concurrent/-
parallel nature of emerging architectures is a strong motivation for investigating appli-
cation of concurrent approaches to theorem proving, the use of these techniques can
enable novel approaches to reasoning that are not possible in a sequential mode of

execution. In this section, we describe some of these possibilities.

5.2.1 Enabling novel approaches

The origin and development of logic from early on, was motivated by the desire to
understand reasoning. In fact, not just understand, but to be able to reduce reasoning
to calculation/computation. The advent of computers facilitated the automation of the
reasoning, paving the way for the field of automated reasoning. However, sequential

computers have been used predominantly for building automated reasoners.

Use of parallel computer infrastructure to perform the automation of (the inference
involved in) reasoning holds promise for implementing novel ways of automated rea-
soning and potentially to introduce new automated patterns of reasoning. Here are
some examples, some of which we have used in the case studies discussed in this

thesis (signposted in the material below):

Fastest first A fastest-first approach for performing a reasoning step E.g. if there are
multiple OR-choices for the next inference step to be applied (where any one
successful step suffices), a concurrent setting allows one to do the following:

spawn threads for each choice and choose the one that returns first. We have
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used this approach in the context of an LCF prover to introduce novel tacticals.
This is described in detail in §7.6.2.

Asynchronous implementation of least-commitment strategies Meta-variables (see
§4.7) are a standard technique used in theorem provers. A meta-variable is a spe-
cial variable that acts as a device for implementing a least commitment strategy
as follows: it stands for a pending choice whose instantiation is made later in the

proof.

Scenarios using least commitment strategies like meta-variables are a good place
to employ asynchronous modes of execution. Because, with the parallel model,
one can now spawn an asynchronous process to find a suitable choice for the
candidate of the least commitment technique, while carrying on with the rest of

the computation.

Asynchronous implementation of proof and refutation steps Another possibility that
one would not normally consider in a sequential model, is to spawn proof and
refutation steps asynchronously. There could be other variations like spawning
refutation step(s) for one or more part(s) of the proof (e.g., for proving/disprov-

ing a lemma).

Variables shared across multiple goals A parallel model opens up new possibilities
for devising proof procedures for tackling scenarios where variables are shared
between multiple goals: e.g., using message-passing and asynchronous execu-
tion. We have used this approach in the context of an LCF prover to use exchange
of partially evaluated information across multiple goals. This is described in de-
tail in §7.8.3.

5.2.2 Modeling of mathematical reasoning: automating the dynam-

ics of proof discovery

Mathematical assistants refer to theorem provers applied to the mechanisation of math-
ematics and/or discovery of proofs. Compared to sequential algorithmic search-based
mathematical assistants, a system that has been augmented with support for concur-
rency and parallelism, can open up novel opportunities for a radically different treat-
ment to mimic the dynamics of proof discovery. In the next section, we explain the

term dynamics, as used in this thesis.
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5.2.2.1 The dynamics of proof discovery

There are not many accounts of how mathematicians actually discover proofs, as the
published work invariably is a polished result and the details of the process of discovery
are seldom documented. The publication, How the proof of Baudet’s conjecture was
found [Waerden, 1971], is a rare account of a mathematician’s attempt to explain the

process by which a proof was constructed.

It is an illustrative exposition of a phenomenon that is quite often encountered during
the discovery of most proofs, whether it is by an individual or by a group of mathemati-
cians. This account illustrates the dynamics of proof discovery, i.e. the interaction and
communication between the different processes that happens in the course of the dis-
covery of a proof by human mathematician(s): trial and error, proposal of an induction

hypothesis, modification and learning from failure.

5.2.2.2 How to automate the dynamics of proof discovery?

One possible approach to model the interactive nature of the process of finding a proof
is by using agent-oriented mechanisms incorporating notions of utility functions for
proof processes (agents) and associated notions of rational approaches that try to max-
imise the utility etc ([Woolridge, 2001] is a good reference for background on agent
based systems). As discussed in §2.2.3, the OANTS system [Benzmiiller et al., 2008],
uses an agent-oriented approach to implement a command suggestion mechanism for a

tactic based LCF prover, with the possibility of using heterogeneous external provers.

Another possibility is to use approaches that draw inspiration from other fields which
display similar dynamics, as seen in the TEAMWORK approach [Denzinger and Kro-
nenburg, 1996], discussed in §2.3.1. It uses the dynamics involved in a hierarchical
team setting, as observed e.g. in a typical (competitive) workplace: a hierarchy of
experts, who are workers with specialised expertise, managers and supervisors. The
dynamics involved is as follows: an iterative setup is provided and workers work asyn-
chronously on pre-allocated tasks; a clear system of evaluation is performed by the
supervisors and managers; this in turn,, is used to perform resource allocation for the

workers for the next iteration.

Here is another possibility: we can try to mimic the dynamics at the inference level of
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a proof, in the context of a single individual or a team of human beings working on a
proof (similar to the dynamics in the process of discovery of the mathematical proof
described above) !. With the various possibilities of inter-process communication and
asynchronous execution, application of concurrency and parallelisation techniques to
engineer theorem provers can offer a whole new set of possibilities for enabling such

an approach to mimic the dynamics of a proof.

It can make mechanised mathematics assistants more powerful, by providing better
facilities to mimic a human mathematician’s reasoning. Furthermore, it can also allow
for forms of reasoning that are not within the scope of human mathematicians. E.g.,
consider the possibility of executing an inference step that involves a million inter-
related sub-steps. Now, consider the scope for potentially executing all the million
inter-related sub-steps asynchronously and allowing them to communicate and share
information and/or return the fastest computation, a task certainly beyond human ca-
pabilities. If mechanised mathematical assistants are provided, capable of performing
such concurrent computations, it can lead to new possibilities for enabling a mecha-

nised mathematical assistant for use beyond the role of a computational assistant.

5.3 Some choices for introducing and implementing con-
currency and parallelisation techniques for the the-

orem proving domain

Above, we saw the importance of the application of concurrent programming tech-
niques and the adoption of emerging architectures to engineer better theorem provers.
We then provided some thought experiments on how these techniques can enable novel
approaches to theorem proving that hitherto were not possible in a sequential mode of

execution. In this section, we address the topic of implementation.

"Here, the term dynamics, refers to the interaction that happens between multiple proof steps/pro-
cesses spanned in the course of finding a proof.
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5.3.1 Object-level and developmental factors

Parallelisation of a theorem prover entails significant challenges along the following
two dimensions and an effective redesign of theorem provers to incorporate concur-

rency and parallelisation has to address both these issues in an efficient manner:

Object-level: how to apply concurrent techniques to a theorem prover Itis a non-
trivial task to identify opportunities to apply concurrent and parallel techniques
to a theorem prover and to make the right choices for implementing them. Some

key questions are:

1. Where are the points in an algorithm/system with latent opportunities for

effective employment of these techniques?

2. What form of parallelisation should be used: functional decomposition/-

data decomposition?
3. What form of communication/task co-ordination should be used?
4. What are the overheads and tradeoffs?

These are in turn, influenced by the particular theorem proving system under
consideration: the underlying logic, the proof system and the intended mode of

operation. We refer to this strand of investigation as object-level.

As discussed later in §5.3.2, the theorem proving domain poses some specific
challenges for parallelisation in terms of irregular solution spaces and shortage
of uniform hardness criteria, which makes load balancing very difficult. The
effective application of parallel techniques to the domain of theorem proving is
still at a fairly nascent stage and it can thus stand to gain by more exploratory re-
search involving an iterative process of experimentation at the algorithmic level

and empirical analysis.

Developmental level: how to implement the concurrent techniques The experimen-
tation phase referred to above can often be stifled by the difficulties of concurrent
programming, which is notoriously error prone and difficult to program. This
can prove to be a huge barrier for application of concurrent and parallel tech-
niques to a domain, where, exploratory research is particularly needed. To this

end, implementation techniques should ideally support the following:

e Rapid prototyping
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e Ease of experimentation
e Portability
e Programmability and scope for incremental development

In addition to the criteria mentioned above, an approach that incorporates the
use of effective high-level programming constructs that abstract the low level
implementation details allows for separation of design and implementation.
Such an approach allows the theorem prover designer to focus effectively on the
exploration and experimentation aspects, in working towards synthesising novel

proof search procedures, using concurrent and parallel techniques.

A detailed discussion of the use of high-level programming constructs, as an
implementation approach is given in §5.4.1. We have adopted this approach in
the case studies described later in the thesis. We have developed parallel/con-
current/distributed programming a bstractions, which we will henceforth refer to
as programming abstractions for the theorem proving domain. These have all
the advantages mentioned above and potential to be employed in other theorem

proving scenarios other than those implemented in the work described here.

5.3.2 Issues to consider for effective parallelisation

In this section, we discuss important considerations for effective parallelisation, spe-

cific to the theorem proving domain.

Domain related challenges for theorem proving Parallelisation of theorem proving
poses challenges that are different from other scientific computing domains, e.g.,
numerical computation, a domain that has seen widespread adoption of paralleli-
sation approaches. Numerical algorithms possess a fair amount of regularities
that can be exploited for the purpose of parallelisation. But, this is not the case
with most symbolic algorithms found in theorem proving systems. Parallelisa-
tion of theorem proving entails a different set of challenges and requires different

solutions, in many instances. Some of the challenging issues are:

e Irregularity of search spaces makes it hard to estimate the time needed for
a computational step. A uniform characterisation of the difficulty of a sub-

problem is not always possible. This calls for a dynamic form of task
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decomposition and interaction.

e Effective work partitioning is hard for most theorem proving domains, e.g.

SAT solvers (see §2.1.11 for a discussion on this)

e Another related issue is that of performance variation. A small variation in
a problem can potentially have drastic effects on its hardness and hence the
time taken to compute it. This makes it very difficult to perform evaluation

of the efficacy of a particular parallelisation approach/technique.

e Theorem proving problems come from a variety of domains and in turn,
differ in their structure, difficulty levels and distribution of solution spaces.
Thus, the utility of concurrent techniques can vary a lot depending on the
problem class as well, apart from the theorem proving flavour under consid-
eration. Thus, it is important for the user to have the flexibility to customise
the suite of concurrent techniques, to a particular problem class. We have
implemented one such approach for an LCF prover and have provided a
suite of concurrent tacticals that allows the user to build on them to imple-
ment their own novel proof search procedures. This is described in detail
in §7.2.1.

e The predominant flavour of parallelisation of theorem provers, particularly
for the case of automatic theorem provers has been the use of some form
of decomposition of work (see §4.8.3), for distribution across processors.
However, parallelisation of theorem proving need not stop at being decom-
position of one form or another. As we will see later in the thesis, there are
many more useful ways in which concurrency, parallelisation and asyn-
chronicity can be put to use. E.g., some theorem proving scenarios can
benefit from the use of co-routining techniques, collaborative approaches
and sharing of (partially evaluated) information, spanning multiple proof

attempts or proof attempts of sub-goals for the same proof.

Efficiency criteria for algorithms: sequential vs parallel It is well known that de-
signing better parallel algorithms requires a different set of considerations. It is
not always the case that the primary criteria that make a sequential algorithm ef-
ficient necessarily carry forward to making a parallel algorithm efficient. E.g., a
key criterion for an efficient sequential algorithm is the effective reuse of previ-

ously computed data and avoiding repetitions in computation. But, the priorities
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are different for a parallel algorithm. Redundant computations are often per-
formed to reduce communication costs and to effectively harness a huge array of
machines/processors and similar considerations hold for space requirements as
well [Steele, 2009].

In the light of this hugely important aspect, parallelisation of theorem proving
needs development of novel parallel algorithms as well as reusing existing se-

quential algorithms and adopting ways of decomposing the computation.

Implementation choices Some of the key considerations are:

The concurrent programming techniques and computational models to em-

ploy

e Choice of granularity, to apply these techniques on

e Target machine architecture, e.g., multi-core(shared memory), clusters (dis-

tributed memory) etc.

e Choices for implementation: use APIs, a functional programming lan-

guage, an imperative language etc.

e Programmability: is the user going to be able to extend and further develop
the concurrent techniques implemented? Do soundness criteria have to be

considered for extensions?

e Use of APIs vs language-integrated parallelism: §4.8.3 gives some of the
commonly used options for implementation of parallelisation. A quick
glance at these reveals that the options to implement concurrent algorithms
are spread along the spectrum of decreasing proximity to the machine level
and operating system level resources and increasing ease of programming.
This draws a not totally surprising parallel with the world of programming
languages from the machine level languages to intermediate languages to
higher level languages which can equally be placed on a similar spectrum
of speed and access to machine level resources to ease of programming,

portability and implementation
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5.4 Parallelisation and programming abstractions

As mentioned earlier, parallel programming is notoriously difficult to program. It is
error-prone, hard-to-debug and performance analysis is extremely difficult. From the
point of a theorem prover developer, this is not a desirable situation. The developer’s
effort is better invested in the investigation of how to apply the new computational
paradigms of concurrency, parallelism and distribution to their given application or al-
gorithm rather than trying to deal with how to implement it. Thus, the need to separate
design and implementation is of critical significance for effective adoption of these
new paradigms of programming. This in turn, can enable novel algorithmic solutions
that hitherto were infeasible in a sequential model of computation. In this work, we
have used concurrent programming abstractions as a device to achieve this separation.

They are described in detail in this section.

5.4.1 Abstractions: what are they and how are they useful

In the world of sequential programming, design patterns [Gamma et al., 2002], are
used to capture recurring patterns of computation. A similar notion extended to the
world of parallel programming, is provided by the notion of algorithmic skeletons,
introduced in the book [Cole, 1991]. It is based on the observation that applications
from diverse domains employ parallelism in the form of a few recurring patterns of
computation and communication. Algorithmic skeletons are higher-order program-

ming constructs that encapsulate these patterns with appropriate parametrisations.

For the purpose of this work, we use the terms programming abstractions and ab-
stractions synonymously to refer to the following: capturing recurring patterns of
computation, independent of an individual algorithm or program, as a higher-order

programming construct with appropriate parametrisations. >

A simple example is the rask farm skeleton, parametrised by: task-supply function
(say, fI), task-doer-function (say, f2), data-location(s). This captures the following
recurring pattern of computation: input data is generated (independently) by fI; f2

works (independently) on the generated data.

2 Algorithmic skeletons, as used in the parallel programming literature, includes various compiler
translations and optimisations for the abstraction. We exclude these aspects in our usage and treat the
abstraction aspect alone.
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The utility of skeletons is two fold:

e From a software engineering perspective, it offers: modularity, ease of prototyp-
ing and development, code reuse and the potential for incremental development,

facilitated by the compositional nature of the algorithmic skeletons

e With a focus on resource utilisation: it allows for engineering efficient APIs,
tailored for particular parallel programming languages. Furthermore, skeletal
programming advocates the following: the abstractions should transcend the ar-
chitectural variations and architecture tuning should be handled at the implemen-
tation level [Cole, 2004].

Use of domain specific programming abstractions, for application of concurrent tech-
niques has been advocated by leading experts in the field of concurrent programming

as well [Asanovic et al., 2006] and has been adopted by many application domains.

As mentioned before, the speed at which the parallel computing architectures and
paradigms are emerging further accentuates the need for an abstraction based approach,
especially from an application point of view. Tying oneself down to a particular archi-
tecture or a particular implementation, can potentially make the work obsolete and
extracting the crux of the implementation and porting it to another system may not be

possible always.

In the context of an LCF style theorem prover, introducing parallelism and co-routining
using programming abstractions, is particularly attractive as it is very much in tune
with the essence of LCF approach of a trusted kernel of rules as the primitives with ev-
erything else built around it. The LCF style of theorem proving captures this separation

very well compared to other schools of theorem proving.

To conclude this discussion, we provide an enumeration of the advantages of using
programming abstractions to apply concurrent programming techniques to theorem

proving:
e Allows for the separation of design and implementation
e [s independent of the target machine architecture
e Allows for portability to a wide range of platforms and languages

e Being higher-order functions, they can be composed and nested, thereby allow-

ing for incremental design and development of richer and more sophisticated
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abstractions

e Facilitate code reuse: scope for one abstraction to tackle multiple scenarios, via

appropriate parametrisations
e Improves the clarity of design

e The modularity and reasoning power given by the abstractions make it easier to

address issues related to formal notions of correctness

Using abstractions and high-level constructs comes at some cost to the developer in
terms of losing control over the low-level (machine-level, OS-level) choices that could
potentially be made. This is due to the significant abstraction gap between the design
(high-level abstractions) and the implementation (low-level details). But, the benefits
could potentially outweigh the costs for a domain like theorem proving and particularly
so at the experimental stage, where dealing with low level APIs etc requires specifi-
cation of too many details and can prove to be highly detrimental to the enterprise of
experimentation. It can often obscure the meaning of the algorithm/technique being

used as well.

5.4.2 Some concurrent/parallel programming abstractions

In this section, we describe some well-known programming abstractions that we have

used in our case studies discussed in this thesis.

5.4.2.1 Producer-consumer

Producer-consumer is a commonly used parallelisation pattern and is commonly im-
plemented using streams. A thread (the producer), puts data onto a stream (say data
stream). The consumer threads read the data off the data stream and can read the da-
tums off as and when they are generated. The code fragment given in Listing 5.1 is an

illustration of the producer-consumer pattern.

Some of the advantages are: (i) to address scenarios where the data generation step
is time consuming and/or unpredictable (ii) allows for data parallelism, by virtue of
multiple consumers working on the data. This model can be used typically to replace
iterative computations by using multiway data decomposition and aggregation of data

(as opposed to dealing with singular decomposition and accumulation).
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We discuss how we have used this to address particular theorem proving scenarios for

SAT and LCEF style first-order theorem proving in §6.5 and §7.6 respectively.

5.4.2.2 Pipeline

Pipeline is an abstraction that captures the following scenario: multiple computations
need to be performed in sequence, with the output of one, serving as the input for the
next computation. A simple example is the computation of the composition of multiple
functions. It is an extension of the producer-consumer abstraction, to include more
than two computational threads, with intermediate streams between any two threads.
Each computation is performed in its own thread and has an input stream and an output
stream. A discussion on how we have used this in our work on LCF style first-order

theorem proving is given in §7.6.

5.4.2.3 Barrier

Barrier 1s an abstraction used to capture the following computational pattern that com-
monly occurs in many iterative algorithms. Typically, the same computation is per-
formed on all elements (of the input), allowing for a simple multi-way decomposition
with multiple threads working on each element. The key factor is that each thread
cannot start its next iteration until all the others have completed the current iteration.
This is due to the mutual dependency on the data computed by the concurrent threads
in the current iteration. The computation times may be different for each of thread, as
each of them is working on different data. Barriers are commonly used to capture this

pattern of forced waiting.

For the set of the concurrent threads participating in a computation, a barrier point is
defined in the algorithm. Upon reaching the barrier point, each thread has to wait until
all other threads have reached the point. Different languages and APIs implement this
abstraction in a variety of ways. For the purpose of this work, we use the term to refer

to the computational pattern captured by it.

The field of numerical algorithms is an application class with many cases of barrier-like
patterns, e.g. in algorithms computing better approximations to an answer. In theorem
proving, a similar behaviour can be found in algorithms which use the saturation tech-

nique of performing an inference step iteratively until no more new inferences can be
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found and where the (n+ 1) iteration has to wait for the results of the n'" iteration to
be fully computed, before it can commence its own computation. We have investigated
the possibility of utilising a barrier-like computational pattern in the implementation
of a novel concurrent algorithm for SAT that we have developed. This algorithm is

particularly amenable to large scale parallelism. This is discussed in detail in §6.5.6.

5.4.2.4 MapReduce

MapReduce is an abstraction that has gained a lot of attention in recent research,
partly because of it being championed in a big way by Google, which has developed
its own implementation of the abstraction to run on its huge commodity clusters. For
more details of Google’s implementation, the interested reader is referred to [Dean
and Ghemawat, 2004]. The abstraction sets out a specific programming pattern with
the claim that many algorithms for generation and processing of large data sets can be

re-cast to fit into the pattern, with appropriate parametrisations.
A high-level description of the abstraction is as follows

e A user-specified map function processes a key-value pair to generate an interme-

diate set of key-value pairs (an iterative operation)

e A reduce function groups the intermediate values by the key and merges them

(an aggregation operation)

It 1s targeted at optimal utilisation of distributed clusters. The specific implementa-
tion (e.g. Google’s implementation) takes care of the details of load balancing, fault-
tolerance etc. Various APIs implementing the abstraction are available, with variations
in the resource utilisation strategies employed and their implementations, as well as

the architectures targeted.

Among other things, the popularity of the abstraction is due to the simplicity of the
control structure, widespread availability of implementation APIs for a variety of lan-
guages and platforms, availability of technical infrastructure to deploy them as well as

effective dissemination of the APIs promoted by organisations like Google.

The MapReduce abstraction has not been applied in the prototypes discussed in this
thesis. But, a possible opportunity for its application in the concurrent Stalmarck’s

algorithm for SAT is discussed in §8.6.
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5.5 Using the functional programming paradigm for im-
plementation of and experimentation with concur-

rent/parallel techniques in theorem provers

In §5.5.1, we outline some features of the functional programming paradigm which
make it a good choice for implementing concurrency/parallelism. In §5.5.2, we dis-
cuss some techniques for introducing some key concurrent/parallel programming de-
vices to a functional programming model, for communication and synchronisation,

while retaining the pro-parallelism factors of the functional programming paradigm.

In §5.6, we provide an overview of Alice ML, the implementation language for the
case studies discussed later in this thesis. Alice ML is a functional programming lan-
guage, augmented with support for concurrency and distribution and provides robust
support for type-inference, in the distributed context as well. This discussion provides
an illustration of a concrete instance of a programming language that implements the
features discussed in §5.5.2. Furthermore, it also serves as an illustration of the de-
sirable features of a concrete concurrent/distributed programming language that meets

the criteria outlined in §5.3.1.

It is useful to draw the attention of the reader to the following: this discussion aims
at general theorem proving as the target candidate, but is especially geared towards
LCF style programmable provers. The work described in this thesis addresses only
two case studies of SAT solvers and a first-order LCF style (programmable) prover.
Thus, the entire spectrum of features discussed here, have not been put to full use in
our experiments with these prototypes. Nevertheless, we believe that the description
here serves a purpose of its own and provides the context for some of the work that we

have outlined in the future work section, (see §8.6).

5.5.1 Advantages of using functional programming to implement

concurrency

The advantages of functional programming are well known: easier to reason about,
easier composition etc. It turns out that functional programming languages are a good

substrate for implementing concurrency. Some of the key advantages of functional
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3
Immutable state
Lack of side effects
Referential transparency

Allows for composition

Ease of synchronisation, one of the biggest challenges of concurrent program-
ming. Many imperative languages use explicit synchronisation, i.e. the mech-
anisms of synchronisation have to be completely handled by the programmer
and requires careful use of locks, semaphores etc. One of the established tech-
niques that circumvents the need to use these devices is that of implicit data flow
synchronisation (explained in detail in §5.5.2.1). This technique fits naturally
into the declarative concurrency paradigm and hence a functional programming

language is well placed to support this.

A functional programming language equipped with concurrency support, pro-
vides the perfect setting for development of concurrent programming abstrac-

tions as higher-order programming constructs that can be composed and reused.

Some functional languages that have tried to provide concurrency support are:

Erlang has been used in real-time telecommunications applications at the Ericsson

laboratories, Sweden [Armstrong, 1997, 2007]. Its computational model treats
processes as black boxes with message-passing as the sole form of communi-
cation. The emphasis is on robustness and fault-tolerance, driven by the target
domain of real-time applications. However, it does not have support for type

inference.

Haskell is a pure functional programming language and various libraries have been

developed to provide support for parallel programming [Jones and Singh, 2008].

Scala integrates features of object-oriented languages and functional programming

languages and uses static typing [Odersky, 2004].

F# provides language-integrated support for asynchronous functional programming

with a focus on reactive event-driven programming [Syme et al., 2007].

3Some of these apply only for pure functional programming languages
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OCaml is an established functional programming language [Leroy, 1996]. OCamIMPI
[Leroy, 2003], an implementation of bindings for OCaml is available, based on
the message-passing interface standard (MPI). MPI bindings allow for restricted
forms of programming models. In particular, the multithreaded model is not

possible with MPI bindings.

PolyML provides support via libraries for a small selection of asynchronous program-
ming features like futures. The focus is to use multicore machines using native

threads [Matthews, 2010]. It does not provide support for distribution.

Alice ML is a standard ML based language with support for concurrency and dis-
tribution [Rossberg et al., 2006]. It provides static typing while allowing for
dynamic type checking of higher-order modules loaded at runtime. This is the

implementation language used in this work and is described in detail in §5.6.

5.5.2 Language-integrated concurrency in a declarative setting

The term declarative concurrency is used to refer to a model of deterministic concur-
rency that is compatible with declarative programming. For a detailed discussion on
this topic, the reader is referred to [Roy and Haridi, 2004]. A formal definition of the

term, declarative concurrency, as given in [Roy and Haridi, 2004] is as follows:

A concurrent program is declarative if the following holds for all possible inputs. All
executions with a given set of inputs have one of two results: (1) they all do not ter-
minate or (2) they all eventually reach partial termination * and give results that are
logically equivalent (i.e. though the order of computation may be different, the end

result is same)

Enabling declarative concurrency in a language, by using libraries, can make it very
cumbersome to use °. Declarative concurrency needs low-level support on the level
of individual assignments and conditional checks. Provision of support for declarative
concurrency by using libraries will require library calls to achieve each of these steps

and to manage their interdependencies. The more natural solution is for the support

4A thread of execution is said to have partially terminated if it has not terminated completely yet.
Further binding of inputs would cause it to execute further, up to the next partial termination, and will
execute no further if no binding happens.

5 A discussion on this with contributions by one of the authors of [Roy and Haridi, 2004] can be
found here: http://lambda-the-ultimate.org/node/458
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to be incorporated into the language definition and system, i.e. language-integrated

declarative concurrency.

In the rest of this section, we discuss some key concurrent/parallel programming tech-
niques and constructs, that can be introduced within a functional programming model,

while still ensuring that the declarative aspects are retained.

5.5.2.1 Dataflow synchronisation

Some of the main challenges related to writing concurrent programs are: maintain-
ing consistency of data across threads/processes, race-conditions, locks, synchronisa-
tion and shared state in data structures. Synchronisation is a fundamental concept in
concurrent programming. When a thread needs the result of a computation done by
another thread, it waits until the result is available, i.e. it synchronises on the avail-
ability of the result. Many imperative languages use explicit synchronisation, wherein
the mechanisms of synchronisation have to be completely handled by the program-
mer. This requires skilful handling of various concurrent programming techniques like

locks. This is one of the many reasons that concurrent programming is very difficult.

An alternative approach to handle synchronisation is referred to as implicit synchroni-
sation. Here, the synchronisation operations are part of the operational semantics of

the language.

Use of dataflow variables is one of the established techniques to implement implicit
synchronisation. The motivation for dataflow variables is as follows: what happens
if an operation tries to use a variable that is not yet bound? It would be nice if the
operation would simply wait. Perhaps some other thread will bind the variable, and
then the operation can continue. This behavior is known as dataflow and the conse-
quent implicit synchronisation that happens is referred to as dataflow synchronisation.
The variable in question is referred to as a dataflow variable. An unbound dataflow

variable is said to have a partial value.

The following consequences of the dataflow behaviour are particularly well-suited to

concurrent programming:

Incremental evaluation, a.k.a Data-driven evaluation allows for incremental eval-
uation, i.e. if the input is given incrementally, the program will compute the

output incrementally. See Listing 5.1 for an example.
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The code given in Listing 5.1 is a concurrent program. But, in a situation without
dataflow variables, list/ will need to be computed completely before the func-
tion consumelnt can even start. Given the time delay in this contrived example,
the computation of list] takes at least 10,000s, before the first result gets printed.
On the other hand, with the dataflow variable situation, the consumelnt func-
tion starts as soon as the first element becomes available (after 1000s, in this

example).

If in the example, list] is a stream of data, then, we get a scenario where the
call to consumelnt will never terminate completely, leading to what is referred
to as partial termination. It will kick in every time further binding (of list/)
happens, i.e. further elements start appearing in the stream [list/. This feature
of partial termination is a unique consequence of employing dataflow variables
and facilitates incremental evaluation. We use the term data-driven evaluation

synonymously to refer to this phenomenon.

Incremental evaluation vs Lazy-evaluation I.e. data-driven vs demand-driven eval-
uation: It is useful to observe here that while the above example share some
similarities with lazy evaluation, a closer examination will highlight the follow-

ing differences:

e lazy evaluation does a form of lock-step execution alternating between the

producer and consumer
e it is demand-driven, rather than data-driven

e a producer cannot keep generating data unless the previous data have been
consumed, in contrast to our example, where the producer can keep gener-
ating data, even if say, there is a delay in the computation of the consumer

function

Order of execution does not matter The result of a program remains the same whether
the program is executed concurrently or otherwise. E.g., if a program contains
the following as concurrent computations (and hence without a deterministic or-
der of execution/evaluation): a=b + 2 and b = 3, then with the dataflow variables
scenario, the end result will be always same, as the order of execution does not

matter.
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Listing 5.1: Simple example illustrating incremental evaluation using dataflow variables

% Enumerate integers from low to high, giving a
% pause of 1000s in each iteration
fun producelnt low high = let
do sleep 1000s
in
if low > high then [] else low :: (producelnt low+1 high)

end

%Print the square of each element of the given list

fun consumelnt source = List.map (fn x => print x * x) source

%Spawn a thread to compute list1

val list1 = spawn (fn _ => producelnt 1 10);

%Spawn a thread to apply the function consumelnt to list1

do spawn consumelnt list1

5.5.3 Summary of advantages of dataflow variables and overview

of how we have used it in our work

Here is a summary of some key advantages of the use of dataflow variables, in relation

to concurrent/parallel programming:

e [t is a powerful tool for enabling implicit synchronisation for concurrent pro-

grams

e [t allows for static dependencies between different parts of a program (as speci-
fied by the code) to be replaced by dynamic (data-driven) dependencies, allowing

for incremental evaluation and parallelisation

e [t allows for the output of one part of the program to be passed as input to the
next part, independent of the order in which the two parts are executed, as the

in-built synchronisation takes care of the dependencies

e The same behaviour makes it a good device for distributed programming, where
communication is handled across machines and issues like latency need to be
taken into account. By virtue of the dataflow behaviour, implicit communication

of the result of a computation happens

e [t is very useful for addressing scenarios, where all the information needed for a

computation is not available, by considering the end result as a complete value
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with gaps (unbound variables) that need to be filled

We have used the powerful feature of incremental evaluation and the resulting data-

driven behaviour in our case studies described later in the thesis in the following ways:

To implement waiting for work, in a work-partitioning scenario for SAT Inthe SAT
case study, we describe the implementation of a novel concurrent algorithm for
SAT that is amenable to large scale parallelism ( §6.5). In this implementation,
the work allocation mechanism is organised as a data-driven execution, thus
allowing for effective work stealing without the costly overheads of communi-
cation to achieve work stealing that is often observed in the literature in other

systems.

To implement asynchronous composition of tactics, for an LCF prover Inthe LCF
prover case study, we have used the data-driven behaviour to implement a novel
control structure for applying two tactics one after another®. The shortcom-
ings of a sequential implementation of composition and how the data-driven be-

haviour helps to address them is described in detail in §7.6.1.

5.5.3.1 Language constructs for concurrent/parallel programming in the declar-

ative model

A thread is an independently executing instruction sequence. If the language support
for threads adheres to the dataflow principle, then all the benefits of dataflow syn-
chronisation are carried over, paving the way for declarative concurrency based thread

programming.

5.5.3.2 Message-passing and distribution mechanisms

The free lunch may be over (see §5.1), in terms of the memory speeds and what the
architecture can offer, but certainly, there is scope for improvements in the network
speeds, which are still steadily increasing. This has, in fact, paved the way for emerg-
ing paradigms such as cloud computing. As the network speeds go up and become
more reliable, implementation techniques like message passing, remote procedure call
(RPC) and related distributed memory models can provide a wide range of possibili-

ties, in terms of parallelisation techniques. This extends to trends in supercomputers as

®When applied (to a proof state), a tactic returns a list of next-possible proof states.
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well, which are increasingly adopting the road of connecting a massive array of CPUs
with an extremely fast interconnect. Thus, the use of message-passing techniques for

parallelisation of theorem proving deserves serious investigation.

The declarative concurrent model can be augmented with a message passing mech-
anism using streams. In concurrent programming parlance, a stream refers to a list
with an unbounded tail. When used for message passing, streams are used to hold
the messages and posting a message to a stream corresponds to extending the list by
one element. Treating the tail as an unbounded dataflow variable enables us to include
streams within the declarative concurrent model. Furthermore, streams allow for im-
plementing asynchronous communication models, making the send and receive (read)
actions independent of each other. In this work, we use the channels feature of the
Alice ML library, to implement streams and use the two terms synonymously in the

exposition.

Serialisation, also referred to as marshalling, refers to the process of converting a data
structure into a format, such that it can be stored in memory and/or can be transmitted
over a network, to be reassembled into the original data structure in a similar or dif-
ferent environment. It is a very useful feature in the context of message-passing based

distributed systems, particularly in the context of the declarative model.

5.6 Alice ML

Alice ML [Rossberg, 2007] is a standard ML(SML) [Milner et al., 1997] like functional
programming language with support for two seemingly contrasting features: dynamic
exchange of higher-order values with other processes and strong static typing, thus
enabling type-safe distributed programming. This is achieved by the provision of the

following features:
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Higher-order modules and dynamic type checking achieved with the aid of pack-

ages
Higher-order serialisation accomplished with the aid of pickling
Concurrency related features realised with the aid of threads and futures
Distribution support using tickets, pickles, proxies

In addition to the above features, Alice ML includes optional /azy evaluation which can
be enforced on an expression by prefixing it with the keyword lazy. Exceptions are also
included as part of the language definition. The declarative nature of the language and
language-integrated support for concurrency and distribution make it an ideal vehicle
for rapid-prototyping and experimentation. The suite of concurrency/distribution prim-
itives facilitates the expression of programming abstractions in a concise way, allowing
for code reuse, portability and incremental development, all highly desirable features
for applying concurrent techniques to theorem proving, as discussed in §5.3.1. These
factors assume special significance for LCF style programmable provers, as discussed

later in the thesis in chapter 7.

In the rest of this section, we describe the features mentioned above as well as the
support provided by Alice ML for the features discussed in §5.5.2. A consolidated
listing of the relevant language constructs is provided in Appendix §A 2. A thorough
discussion of the technical details related to type checking etc can be found in [Ross-
berg, 2007]. Another source of comprehensive information on the language specific
features is the web page for the Alice ML manual,

http://www.ps.uni-saarland.de/alice/manual/sitemap.html.

5.6.1 Support for thread-based programming

Operating system threads are computationally expensive as they involve allocation/deal-
location of system resources and stacks. For this reason, the use of language-based
lightweight threads is highly recommended [von Behren et al., 2003]. Alice ML pro-
vides support for lightweight threads. Furthermore, creation of threads in Alice ML
is relatively straightforward, a positive aspect, from the development perspective. Pre-
fixing an expression with the keyword spawn results in the creation of a concurrent

computation (thread), evaluating the expression.
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The result of the computation thus spawned is a future, a placeholder for the result of
the asynchronous computation that has been spawned. As soon as the thread termi-
nates, its result globally replaces the future. Thus, the result of a thread’s computation
(a future) can be referred to, before the computation is complete and the operational se-
mantics of future will implicitly take care of the synchronisation. Futures are explained
in detail in §5.6.2.

Threads are treated as first class values in Alice ML. This allows for pending compu-
tations to be communicated over a network, allowing for effective distribution. This
feature, along with Alice ML’s robust support for dynamic typing for distribution, can
be of great use for using distributed computing resources for theorem proving. E.g.,
in the context of theorem proving, the notion of futures can be used for implementing
constructs like holes in proofs, which can be used to stand for a pending computation.
The distribution support can be used for using grids and clusters to execute parts of the

proof or to outsource a heavy-duty computation to a remote (powerful) server.

Alice ML supports lightweight threads. This enables thread-based programming, even
on machines with modest resources. From a prototyping and experimentation point of
view, it allows for multiple threads to be run on a single processor machine. The simple
constructs provided for thread-based programming, along with the support for dataflow
synchronisation make Alice ML a developer-friendly language for doing thread-based
programming. This is of crucial importance to us, as theorem provers are complex
systems and the development efforts required for introduction of concurrent techniques
should not be too high as it can stifle ease of prototyping of complex techniques and

experiments.

5.6.2 Synchronisation in Alice ML

In §5.5.2.1, we described the importance of synchronisation for concurrent program-
ming and the options for implicit synchronisation facilitated in a functional setting. In

this section, we describe how Alice ML supports these features.

5.6.2.1 Implicit synchronisation

Effective devices to implement synchronisation between threads is a fundamental ne-

cessity for concurrency support in a programming language. In §5.5.2, we saw the ad-
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vantages of language-integrated implicit synchronisation using the dataflow behaviour.
Alice ML uses the concept of futures to provide implicit synchronisation and com-
munication between threads 7. It is defined as follows: A future is a transparent
place-holder for an (as yet) undetermined value that allows for implicit synchroni-
sation based on data flow. Alice ML provides an additional language construct called

promises, which is explained below. Alice ML offers four kinds of futures:

Concurrent future Place-holder for the result of an expression computed in its own
thread. In functional programming terminology, it is a place-holder for the result
of a concurrently evaluated expression. For the purpose of this work, we use the

term future, to refer to concurrent future unless specified otherwise

Lazy future It is very similar to concurrent future, in being a place holder for the
result of a concurrently evaluated expression. However, the computation is de-
layed until another thread actually requires its result. Thus, it is useful to model
a demand-driven computation. In Alice ML, an expression can be made lazy by

prefixing it with the keyword lazy

Promised future It is created through an explicit handle called a promise. A promised
future is eliminated by fulfilling the associated promise through an explicit op-
eration. Promises are akin to single-assignment variables or logic variables and
allow for the construction of data structures with holes. Promises are created

uninitialised, but may be assigned only once.

Failed future Replaces a future that could not be eliminated because the associated
computation terminated with an exception. Whenever a failed future is accessed,

the respective exception will be re-raised in the thread accessing it.

A thread might want to create a future without making a commitment to the way the
information is obtained. Promises are useful for addressing such scenarios, as they
separate the operations of creation and elimination of futures. A promise is an explicit
handle for a future. A suitable value determining the future will be made available at
some later point in time and this is done explicitly using the operation fulfill. While
it is still a form of dataflow synchronisation, the key difference between promises and
concurrent futures is the use of the operation fulfill. A corresponding fail operation is

also provided, yielding a failed future carrying the corresponding exception.

"The original idea of futures has its origins in the parallel language, MULTILISP [Halstead, 1985]
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Futures can be passed around as values. Once an operation actually requests the value
that the future stands for, then the corresponding thread will block until the future has
been determined. This serves as a powerful mechanism for high-level concurrent pro-
gramming. It also allows for lag tolerance: the rest of the computation can continue
while the result is being computed. In the context of LCF-style theorem provers, fu-
tures and promises can be used to spawn proof attempts of sub-goals in a concurrent
manner. The implicit synchronisation will allow for the rest of the proof process to

continue without having to wait for these proofs to be completed.

5.6.2.2 Explicit synchronisation

Alice ML provides support for explicit synchronisation using the following two con-

structs:

await It triggers the computation of the argument, waits until the computation has
been completed and then returns the result.

val await : 'a—> ’a

awaitEither Implements non-deterministic choice: triggers computation of two fu-
tures and blocks until at least one has been determined. This simple primitive

can be used to encode complex synchronisation with multiple events.

(x alt refers to the standard SML datatype;
datatype (’'a,’b) alt = FST of 'a | SND of ’'b x)
val awaitEither : 'a * 'b —> (’a,’b) alt

5.6.3 Support for Stream-based programming

Alice ML provides the construct channels, a fully concurrent imperative abstraction
for streams 8. Also provided are associated operations to insert elements into and to
take elements off the channel. A consumer takes elements available at the beginning
of the channel and a producer inserts elements in the channel, either at the beginning
(LIFO) or at the end (FIFO).

8Streams are used in concurrent programming to refer to a list with an unbounded tail.
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In Alice ML, channels are thread-safe: many consumers and producers can operate
concurrently on the same channel. However, channels contain implicit locks. Thus,
stopping a thread while it is manipulating a channel, may cause all further access to

the same channel to block, until the thread is restarted.

The elements of a given channel can be obtained as a list using the operations toList
and toListNB (explained in Appendix §A 2). Both functions return a lazy list with the
elements of the channel.The latter returns an empty list, if there are no elements in the
channel and the former waits, till the channel gets populated. If the list is evaluated,
then the current elements of the channel are emptied and form the elements of the list
returned (lazy semantics), while the tail of the list still refers to the tail of the channel.
Thus, a subsequent operation of insertion of an element to the channel results in an
insertion of the element to the list when the list is evaluated (lazy semantics). A list
can also be cloned. The cloning operation returns a new channel initialized with the

elements of the given channel.

5.6.4 Support for distributed programming and message-passing

As mentioned earlier, Alice ML provides support for dynamic exchange of higher-
order values with other processes and strong static typing, thus enabling type-safe dis-
tributed programming. A language that allows for encapsulation of modules as first-
class values and allows for them to be exchanged over a network, ensuring type safety,
is a very desirable choice for implementing a distributed theorem prover. e.g., it can
open up an entire spectrum of potential opportunities of using richer message-passing
techniques, where the messages can have higher-order content. The type-safety guar-
antees make it an ideal choice to use, to extend an LCF style prover with sound ex-
tensions incorporating concurrency, parallelism and distribution. In the rest of this

section, we briefly describe the mechanisms used by Alice ML to enable distribution.

Pickling A generic mechanism for import and export of language-level data struc-
tures, including code. A pickle is a self-contained, platform-independent, exter-

nal representation of an Alice ML value.

Proxy Remote procedure calls (RPCs) (see Appendix §A 1 for definition) are the main
means of inter-process communication in Alice ML. A thread in an Alice ML

process can call a function that actually resides in another process. To perform
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RPCs, Alice ML employs the notion of a proxy function. A proxy is a (mo-
bile) wrapper for a stationary function. It can be pickled and transferred to other
processes, independent of the wrapped function. When a proxy is invoked/ap-
plied, the proxy is evaluated in the process that it was created in, irrespective of
which process the proxy was invoked from (see [Rossberg et al., 2006],[Ross-
berg, 2007] for more information). Proxies help to address two key scenarios

encountered in distributed programming:

Establishing/retrieving connections, Tickets Connections can be provided by
offering a module containing proxies on the network. Tickets are URLs
which are globally-unique and dynamically generated at the time of of-
fering a module. These are used to retrieve a module, achieved using an
operation called take. The ticket identifies the machine/process where the
module is located. The module itself is wrapped in an Alice ML language

construct called a package.

Remote execution Spawning processes remotely is achieved using the notion
of components and the functions provided in the Alice ML library, Remote.
Components are the units of compilation and deployment in Alice ML.
The export of a component is a module expression that will be evaluated
when executing the component. The remote library provides a function run,
which enables remote execution and performs most of the low-level steps
needed. It takes as arguments: the target machine name and the component.
It connects to the given remote machine, using a low-level service like ssh.
It then starts a fresh Alice ML process on the remote machine, as a worker.
The worker immediately connects to the master (the machine that invoked
the run function) to receive the component argument, and evaluates the

component, giving a package, which is sent back.

Dynamic type checking The notion of packages was mentioned briefly above. This
is the device that is used to perform dynamic type checking, in relation to dis-
tribution. A package is a value encapsulating an arbitrary (higher-order) module
and its signature. It has two associated operations: pack and unpack. Unpacking
a package performs a dynamic type check. Thus, along with tickets, packages
enable the realisation of distributed dynamic exchange of higher-order values
with other processes and strong static typing, enabling type-safe distributed pro-

gramming
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Listing 5.2: Sample code for some concurrent programming abstractions in Alice ML

(xHigher—order barrier x)

fun barrier fs = map await (map (fn f . spawn f ()) fs)

(*xTime—out x)

exception TimeOut

fun timeOut time f =

case awaitEither (f, spawn sleep time) of
| FST f —> x

| SND {_} —> raise TimeOut

(xFastest—first: Returns the computation that complets first terminates the otherx)
fun fastestFirst f1 f2 =
let

val (t1,r1) = Thread.spawnThread f1 («t1: Thread, r1: result, a future=x)
val (t2,r2) = Thread.spawnThread f2
in
case (Future.awaitEither(r1,r2) ) of
FST({-}) —> (if (Thread.state(t2) <> Thread.TERMINATED) then Thread.terminate(t2);r1
)
| SND({-}) —> (if (Thread.state(t1) <> Thread.TERMINATED) then Thread.terminate (t1);r2
)

end

Network transparency A process can obtain references to values in another process
(remote values), which are handled in (almost) the same way as local values.
Hence the same abstraction mechanisms and idioms can be applied for local and

remote operations and communication.

5.6.5 Ease of prototyping and developing abstractions in Alice ML

The language-integrated support for key concurrent programming primitives are ex-
pressive enough, to engineer concurrent programming abstractions, as higher-order
functions. We provide code samples of some abstractions in Listing 5.2. As high-
lighted earlier, Alice ML provides support for network transparency in the context of
distribution. Hence the same abstraction mechanisms and idioms can be applied for
local and remote operations and communication. The utility of developing effective
concurrent/distributed programming abstractions for theorem proving is highlighted in

both the case studies discussed in this thesis. See chapter 6,chapter 7 for more details.
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5.6.6 Suitability of Alice ML for implementing programmable par-

allel extensions for LCF-style provers

The following features of the LCF paradigm make it very well-placed to take advan-
tage of the Alice ML features of type-safe distributed programming, implicit synchro-

nisation and ease of developing abstractions:

LCF feature Alice ML feature

Theorem as an abstract data type | Implicit synchronisation, type-safe
with restricted constructors and a | distributed programming

trusted kernel

Modularity Components

Programmability The power of ML with support for

concurrency and distribution

Table 5.1: Match between features of Alice ML and the LCF paradigm

5.6.7 Limitations of Alice ML

Not suited for Multi-core Alice ML uses a virtual machine constructed on top of
the SEAM infrastructure (Simple Extensible Abstract Machine), a portable in-
frastructure for building virtual machines which implements generic services
like memory management, thread management, pickling etc. [Rossberg, 2007].
SEAM and the Alice virtual machine have been implemented in C++, while
the rest of the system is almost entirely bootstrapped in Alice ML. SEAM im-
plements threads purely in software, using its own scheduling mechanism. It
does not yet enable employment of system threads. Consequently, an Alice ML
program cannot yet take advantage of multi-processor machines and multi-core
processors. As the langage is not being actively developed any more, it is unclear

if support for these features will be included, in the near future.

Overheads of distributed programming mechanisms In §5.6.4, we described how
Alice ML supports type-safe distributed programming. However, our develop-
ment experience shows that using these facilities comes at a significant cost due

to the cloning and proxy operations performed at the various nodes of the dis-
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tributed architecture. The tradeoff of using these facilities in relation to their

utility needs to be considered for effective use of these techniques.

Non-deterministic thread scheduling For the same reasons mentioned above, thread
scheduling is non-deterministic. The runnable threads are scheduled in a round-
robin fashion. Thus, execution of priority mechanisms needs to be implemented

via explicit coding.

Possible space leaks This is related to the garbage collection mechanism in Alice ML.
Proxies represent a form of inter-process reference in Alice ML. Currently, a
function for which a proxy has been constructed can never be collected, thus

potentially creating a space leak.

Termination of child threads When a thread (that has spawned many other child
threads) is terminated, the child threads are not terminated. We have addressed
this problem by implementing, what we have called hierarchical threads. This
inherits the Alice ML thread structure, but with facilities to handle termination
of the child threads when the parent thread is terminated. This has been done by
implementing bookkeeping to ensure that the parent thread’s identifier is visible

to the child threads and vice versa. See Listing 1 and Appendix §A 3.

Interactive top-level support Alice ML is an extension of Standard ML, and the Al-
ice interactive top-level works in a similar fashion to those of other SML based
systems. However, certain under-specified/unspecified features of Standard ML,
like use, are not implemented. Thus, a system that has been written in some
dialect of SML which assumes such implementations, faces these limitations,
when being ported to Alice ML. We ran into one such limitation, in our efforts
to port the theorem prover Isabelle [Nipkow et al., 2002] to Alice ML. More

details about this are explained in §7.4.

Other incompatibilities An enumeration of incompatibilities with SML is maintained
in the Alice ML project webpages. It needs to be added that most of these have
easy workarounds as we discovered both in our efforts to port Isabelle to Alice

ML as well as in porting a prototype first-order theorem prover (see chapter 7).


http://www.ps.uni-saarland.de/alice/manual/limitations.html

126 Chapter 5. Why parallelise and how to?

5.7 Summary

In this chapter, we briefly touched upon the imperatives of the hardware world driving
the paradigm shift in the programming techniques used for engineering better appli-
cations and how these hold for the theorem proving domain too. We then set out an
agenda for application of concurrent techniques to theorem proving (see §5.3.1). This
agenda makes a distinction between the object-level focus and the developmental fo-
cus. A set of criteria for desirable implementation methodologies was provided. These
criteria are geared towards enabling easy prototyping of and meaningful, non-trivial ex-
perimentation with the application of concurrent techniques to theorem proving. This
in turn, can lead to the synthesis of effective novel proof search procedures incorporat-
ing concurrency and parallelism and enable optimal utilisation of emerging computing

paradigms and novel computing architectures.

Also presented was an overview of the advantages of functional programming and
some related concurrency features, in a declarative setting. Alice ML was presented as
a concrete example of a real language that supports these concurrency features. Some
possible theorem proving applications of the Alice ML features were alluded to, with

references to details discussed later in this thesis.

Another topic that was discussed was the importance of developing effective program-
ming abstractions (higher order programming constructs that capture concurrency pat-
terns) for specific theorem proving scenarios, that can particularly be applied to address
more than one theorem proving task. The use of abstractions ticks many boxes of the
desirable criteria for implementation: portability, code-reuse, ease of programming,

separation of design and implementation.

5.7.1 Conclusions and choice of case studies

The question of how to parallelise a theorem prover is too broad in scope, to tackle in
a PhD project, given the particular challenges posed by the theorem proving domain.
As seen in chapter 2, the introduction aspect in terms of the spectrum of techniques
employed, the implementation and the empirical studies have all been vastly different
across the flavours of theorem proving. Thus, the question certainly needs to be con-
sidered in the context of a given flavour of theorem proving: logic used, proof system

used, mode of usage.
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However, what certainly holds in all cases, is the need for an implementation method-
ology that will facilitate rapid prototyping of and experimentation with the application
of concurrent/parallel techniques, facilitating the development of novel proof proce-

dures and re-engineering of some existing proof procedures.

Some important considerations for the effective employment of the parallel paradigm

to engineer better theorem provers are:

e Provision of frameworks that will allow for rapid prototyping and experimenta-

tion with and incremental development of novel parallelisation approaches

e There is a lot of similarity in the problem scenarios encountered and the algo-
rithms used in different theorem provers. Thus, an effective implementation of
parallelisation to tackle one scenario can be reused to tackle another similar sce-
nario. Likewise, parallelisation approaches employed to improve/redesign an
existing algorithm can be extended to another similar, if not identical algorith-
m/implementation. Thus, extracting these generic patterns can be extremely use-
ful to facilitate portability, reuse and incremental development and it is desirable

for implementation efforts to address these issues.

e The use of language-integrated parallelism offers a completely different set of
possibilities for applying concurrent and co-routining approaches to theorem
proving. Particularly, in the case of LCF style theorem proving, language-
integrated parallel programming, as opposed to API-based parallel program-

ming, allows for introduction of programming abstractions at the kernel level.

In the rest of the thesis, we discuss two specific case studies of theorem proving, where
we have applied the object-level/developmental agenda set out here: (1) SAT, the propo-
sitional satisfiability problem (discussed in chapter 6) (i) HAL, a prototypical LCF-
style classical first-order prover without equality (discussed in chapter 7). These case
studies were chosen to give a balanced view of the object-level possibilities in two dis-
parate and representative flavours of theorem proving: (i) automatic, axiom-oriented
style and (ii) interactive, human-reasoning oriented style. The developmental aspects
have been effectively addressed and an enumeration of the abstractions developed and

how they can possibly be reused are discussed in the respective chapters.
The SAT case study has identified opportunities for:

e Using two asynchronous communicating SAT solvers, each with a different ap-
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proach to spanning the search space, with one learning from another, allowing it

to possibly prune its search space.

e Recasting an existing recursive breadth-first search algorithm for SAT (the Stal-
marck algorithm), giving a new algorithm that is more amenable to large-scale

parallelisation
The HAL case-study has

e Showcased a multilayered approach to introducing concurrency/parallelism for

LCF-style provers, focussing on programmability

e Give end users and theorem proving developers the opportunity to experiment
with and develop novel proof search procedures as well use the primitives and

abstractions to re-engineer existing search procedures.



Chapter 6

Novel approaches to SAT solving:
lateral thinking, co-operation,
concurrency and large scale

parallelism

Given a propositional formula, the problem of finding whether there exists a variable
assignment such that the formula evaluates to true is called the propositional satisfia-
bility problem, often abbreviated as SAT. In this thesis, we have investigated the use of
concurrent/distributed programming techniques for theorem proving, by considering
two independent case studies of SAT and first-order theorem proving. SAT is the topic
of discussion of this chapter. Relevant background material on propositional logic and

SAT solvers were provided in §4.2.3 and §4.5 respectively.

Despite its NP-complete status, recent years have seen great advances in the devel-
opment of new techniques and effective implementations for SAT. These advances
have pushed the tractability threshold of SAT solvers in terms of size, hardness and
complexity. However, the increasing suite of application domains present bigger and
more complex problems and create a need for better SAT solvers that can handle the
challenges of size and complexity, a phenomenon shared with the wider theorem prov-
ing world. As discussed in chapter 5, utilising emerging concurrent architectures and
developing new ways of using concurrent/ distributed techniques to address these chal-

lenges for the domain of theorem proving, merits serious investigation.

129
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6.1 About this case study

§2.1 provides a detailed review of published research related to the field of parallel
SAT solvers. §2.1.11 distills this review and identifies some of the unexplored oppor-
tunities that merit investigation, in the context of applying concurrent approaches to

engineering efficient SAT solvers, some of which are addressed in this case study.

As explained in §3.1 and §5.3.1, in this thesis, for each case study, we have explored

the following two strands of investigation:

Object-level aspects: previously unexplored or little-explored ways of using concur-
rent/distributed techniques for the particular theorem proving flavour considered

in the case study

Developmental aspects: developmental effort required, ease of prototyping and ex-

perimentation, scope for incremental development and portability

In this case study, addressing the object level strand of investigation, we discuss two
novel ways of using concurrent/distributed programming techniques for SAT, using
the DPLL [Davis et al., 1962] algorithm and the Stalmarck algorithm [Sheeran and
Stalmarck, 1998, 2000].

DPLL: As described in §4.5.2.1, DPLL is a depth-first search based complete algo-
rithm for SAT, used in many successful state-of-the-art sequential SAT solvers

and many parallel SAT solvers are also based on the DPLL algorithm.

Stalmarck algorithm: As described in §4.5.3, the Stalmarck algorithm is a tautology
checking algorithm. For the purpose of the prototypes developed in this project,
we use the algorithm to compute learned clauses (described in §6.3.3.1). In the
rest of this exposition, use of the term Stalmarck algorithm in the context of the

hybrid solver, refers to this clause learner, unless specified otherwise.

While the DPLL method is a depth-first search approach, the Stalmarck algo-
rithm can be interpreted as a breadth-first search approach, spanning all possible

trees in increasing depth, with several enhancements.

An additional strength of this algorithm is its ability to leverage on the structure
of the given propositional formula. Some of the key strengths of the method
that have contributed to its success in the hardware domain and other industrial

applications [Borilv, 1997] were enumerated in §4.6.
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These novel concurrent approaches for SAT have been implemented in proof-of-concept
prototypes, developed in Alice ML [Rossberg et al., 2006]. On a developmental level,
programming abstractions encapsulating the concurrent techniques employed in the
implementation, have been developed as higher-order functions in Alice ML. These

can be ported to and/or used along with other SAT solvers.

Coarse granularity, DPLL-Stalmarck, a hybrid solver: In §6.3, we discuss the de-
velopment of a novel co-operative hybrid approach to SAT. This combines the
depth-first approach based DPLL algorithm and the breadth-first approach based
Stalmarck algorithm, in an asynchronous setting. This allows for dynamic inter-

action and exchange of information, enabling dynamic pruning of search spaces.

multithreaded and distributed versions of this hybrid solver have been imple-
mented. Empirical results show performance gains for the hybrid solver, com-
pared to the stand-alone DPLL solver for two of the three problem classes con-
sidered. The behaviour of the third class was more random and non-uniform, but
largely the hybrid solver was slower than the DPLL. In fact, the DPLL solver
fared better without the CDCL. These are discussed in §6.7.1, with an analysis

of the empirical behaviour.

An abstraction dodpllWithHelper, has been developed. This can be used to
implement a DPLL solver with one or more external solvers that work asyn-
chronously, acting as information providing helpers for the DPLL process. We
have used doDPLLwithHelper to engineer two more hybrid solvers,
DPLL-CDCL-Stalmarck and DPLL-ConcurrentStalmarck.

Fine granularity, Concurrent Stalmarck: In §6.5, we describe a novel algorithm
that we have developed, by applying concurrent techniques to the Stalmarck
algorithm. This is amenable to large scale parallelism. It provides an alternative
approach to tackling task partitioning, different from the ones used by DPLL-

based methods in the literature.

An abstraction has been developed to implement the saturation technique used
in the Stalmarck algorithm (see §4.5.3). This abstraction uses the computa-
tional pattern captured by the standard barrier abstraction found in concurrent

programming literature (see §5.4.2.3).

A novel form of work allocation has also been implemented using the power of

data-driven evaluation. A proof-of-concept prototype of this new algorithm, has
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been implemented in a multithreaded setting and early empirical results for the

multithreaded version are provided.

At this point, it is worth drawing the attention of the reader to the following: the objec-
tives of the investigation and prototypes discussed in this chapter have not been geared
towards building an industry-standard SAT solver, but, rather, focuses on conduct-
ing exploratory investigations: identifying latent opportunities of applying concurrent
techniques in novel ways, with a focus on the developmental aspects of using program-

ming abstractions in a way that promotes portability and incremental development.

6.2 Implementation details for sequential SAT solvers

based on DPLL and Stalmarck algorithm

In this section, we provide details of two independent sequential systems based on the

DPLL and Stalmarck algorithms, implemented in Alice ML.

The code for these sequential solvers has been adapted from the SML versions of
the same, found in the code repository accompanying a recent textbook on automated
reasoning, entitled, Handbook of Practical Logic and Automated Reasoning [Harrison,
2009]. The code can be found in the following web pages: SML code for sequential
DPLL and SML code for sequential Stalmarck tautology checker. The full Alice ML
code for the sequential SAT solvers, based on the DPLL and Stalmarck algorithms, are
provided in full in Appendix §A 4 and Appendix §A 5 respectively and include the
relevant copyright notices. Brief, high-level descriptions of the data structure and the

DPLL implementation are given in Listing 6.1, Listing 6.2 and Listing 6.3.

We ported the SML code to Alice ML and used the two sequential solvers as base-
line systems to develop our parallel prototypes and to compare performances of the
sequential and parallel versions. In particular, the Stalmarck solver provided by the
above source is a tautology checker. We ported the code to Alice ML and did fur-
ther modifications (described below) to engineer a clause-learning tool based on the

Stalmarck algorithm, for use in DPLL-Stalmarck, our hybrid SAT solver.

In the rest of this section, we describe, in brief, some of the key features of the sequen-

tial versions, relevant for understanding the rest of the discussion. !.

'For a more detailed presentation on the sequential implementations, the reader is referred to the


http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/dp.ml
http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/dp.ml
http://www.cl.cam.ac.uk/~jrh13/atp/OCaml/stal.ml
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Some non-trivial features of the sequential Stalmarck implementa-

tion

In this section, we describe some non-trivial features of our Stalmarck implementation,
in relation to the modifications that we have done in the ported Alice ML implementa-

tion, for use in our hybrid solver.

Equivalences An efficient key-value based data structure (using finite maps) is used
for representing equivalences between formulas and this enables fast lookup, ad-
dition and deletion of equations 2. Associated operations of insertion, equality
are provided along with Stalmarck specific operations: checking for contradic-

tions in an equivalence and intersection of equivalence classes

Trigger rules Trigger rules or simple rules that are used by Stalmarck’s algorithm
to derive equivalences between (sub)formuals. These are generated for a given

formula, as a one-time operation.

Implementing zero-saturation As explained in §4.6, zero-saturation, one of the key
components of the Stalmarck’s algorithm is the exhaustive application of the
trigger rules to derive new equivalences from existing ones.. This is implemented
by the function zero_saturate in the original code. It takes an equivalence and
a variable assignment as input and returns a new equivalence, augmented with
the deductions derived as a result of the application of the simple rules. We
have retained this implementation in our clause learner based on the Stalmarck

algorithm and the concurrent Stalmarck prototype.

Implementing detection of contradiction Implemented by the function truefalse, which

checks for the presence of a contradiction, i.e. an equation of the form T = L

k-saturation Uses two mutually recursive functions: saturate takes new assignments,
O-saturates to derive new information from them and repeatedly calls splits which
in turn, splits over each variable in turn,, performing (k-1) saturations and inter-

secting the results

textbook [Harrison, 2009] which includes a detailed description of the Stalmarck algorithm as well.
Zhttp://www.ps.uni-saarland.de/alice/manual/library/map.html
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Listing 6.1: Code fragment for data structures used by sequential DPLL and Stalmarck solvers

datatype ('a)formula = False | True | Atom of 'a | Not of ('a) formula
| And of (’a)formulax('a)formula | Or of (’a) formulax('a)formula
| Imp of (’a)formulax('a)formula

Listing 6.2: Code fragment for an iterative implementation of the DPLL algorithm, using an explicit trail

datatype trailmix = Guessed | Deduced;; (xExplicit trail )

fun backtrack trail= case trail of

(p,Deduced) :: tt => backtrack tt | - => trail;

fun dpli cls trail=let val (cls’,trail ")=unit_propagate(cls,trail) in

if mem [] cls’ then case (backtrack trail) of

(p,Guessed) ::tt = dpli cls ((negate p,Deduced)::tt) | _=>false

else case (unassigned cls trail ') of [] = true |ps =>let

val p=maximize (posneg_count cls’) ps in dpli cls ((p,Guessed)::trail’) end
end

fun dplisat fm = dpli (defcnfs fm) []; fun dplitaut fm = not(dplisat(Not fm));

Listing 6.3: Code fragment for iterative implementation of the DPLL algorithm, with non-chronological backjump-

ing and learning

fun backjump cls p trail=case (backtrack trail) of (qg,Guessed)::tt=>let
val (cls’,trail ’) = unit_.propagate (cls,(p,Guessed) ::tt) in
if mem [] cls’ then backjump cls p tt else trail end | - => trail;

fun dplb cls trail=let val (cls’,trail ')=unit_propagate (cls,trail) in

if mem [] cls’ then case (backtrack trail) of

(p,Guessed) :: tt => let

val trail '=backjump cls p tt; val declits=List.filter (fn (.,d)=>d=Guessed)trail ’;
val conflict=insert (negate p) (smap (negate o fst) declits ord_forms) ord_forms
in dplb (conflict::cls) ((negate p,Deduced) ::trail ’) end

| - => false

else case (unassigned cls trail ’) of [] => true

|ps=> let val p=maximize(posneg_count cls’) ps in dplb cls ((p,Guessed)::trail ') end

end;

fun dplbsat fm = dplb (defcnfs fm) [];fun dplbtaut fm = not(dplbsat(Not fm));
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6.3 Hybrid SAT solver: DPLL-Stalmarck

As discussed earlier, there is a need for exploring non-DPLL algorithms, so as to:
e address the limitations posed by DPLL solvers;
e cxplore the use of other complementary algorithms, alongside DPLL solvers;
e cnable knowledge sharing between complementary approaches.

We have explored these possibilities by engineering a hybrid solver, by combining the
Stalmarck algorithm with the DPLL algorithm. The rest of this section describes this
hybrid solver, DPLL-Stalmarck.

6.3.1 Why combine DPLL and Stalmarck ?

As explained in §4.6, the Stalmarck algorithm has many distinguishing features, which
make it a good candidate to be used along with the DPLL algorithm. A hybrid SAT
solver that combines the breadth-first approach of the Stalmarck algorithm with the
depth-first approach of DPLL in a co-operative manner, can enable the solver to span
the search space in two different ways and will endow the hybrid solver with multiple,
complementary viewpoints of the same problem (lateral thinking!). Furthermore, as
the Stalmarck algorithm leverages on the structure of a given formula (see §4.5.3), it
can help to offset the loss of implicit structural information, suffered by DPLL-based

solvers.

6.3.2 How to combine the two ?

In our prototype of the hybrid solver, we have combined the two solvers in an asyn-
chronous computational model. This allows for dynamic sharing of information and is
well placed to prune the search spaces of the DPLL solver in a dynamic manner. Fur-
thermore, the two solvers can work concurrently and independently on the problem, as
autonomous, asynchronous computational processes. They communicate only when
there is information to be shared, thus avoiding bottlenecks as well as being able to
make the most of distributed architectures. The whole setup works in a co-operative
manner by sharing the information found (which is one-way, from Stalmarck to DPLL,

in our current implementation).
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6.3.3 Implementation

In this section, we describe the implementation of the hybrid solver, DPLL-Stalmarck.
§6.3.3.1 describes the Stalmarck-algorithm-based clause-learning tool that we have

developed.

6.3.3.1 Using the Stalmarck algorithm, as a clause-learning tool

As described in §4.5.3, in the original Stalmarck (tautology checking) algorithm, after
transforming the given formula to triplets, v; = L is taken as an initial assumption,
where v;, a literal, stands for the entire formula. Using this as a starting point, the
algorithm derives the consequences using the dilemma rule, zero-saturation and the
saturation procedure; Obviously, if the given formula is a tautology, a contradiction

will be derived as one of of consequences.

At this point, it is useful to observe that the key building blocks of the original Stal-
marck algorithm of (i) equivalence relations between the formulas (ii) the dilemma rule
(iii) zero-saturation and the k-saturation procedures are independent of the tautology
checking in itself. In fact, for a given formula, the saturation Stalmarck algorithm can

be used to derive the consequences, for a given list of assumptions.

To use the Stalmarck algorithm as a clause-learning tool for SAT, we use v; = True as
the initial assumption, where v;, a literal, stands for the entire formula and derive the
consequences, which are in the form of equivalences between (sub)formulas, of the

form:

p =gqie.p < q,
where p, q can be any of the following: literal, sub-formula, T, L.

We have implemented this modification to the original Stalmarck algorithm and use the
modified version as an engine that generates the consequences, as mentioned above.
The consequences are converted to clausal form and constitute the learned clauses,
for our purpose. Given that formula structure plays a pivotal role in the derivation of
these consequences, these learned clauses also stand to benefit from the same. In our
implementation, p = ¢q is converted to clausal form. This modified algorithm is used
as a clause-learning mechanism and has been combined with the DPLL algorithm, in
our hybrid solver, DPLL-Stalmarck.
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If a contradiction is derived as a consequence by the Stalmarck algorithm, with the ini-
tial assumption of taking the original formula to be True, then it means that the original
formula is UNSAT. This will get detected by the DPLL algorithm as the contradiction
will be passed as an empty clause as part of the learned-clauses, to the DPLL algo-
rithm, which will subsequently render the problem to be UNSAT. Furthermore, the
Stalmarck algorithm can derive many consequences in one iteration. This further adds

to the power of using this as a clause-learning mechanism.

6.3.3.2 Interaction between DPLL and Stalmarck

A high level description of the implementation of the hybrid solver, DPLL-Stalmarck,
is given in Listing 6.4°. In our implementation of DPLL-Stalmarck, the main process
is the sequential DPLL algorithm, that computes the final answer. The Stalmarck algo-
rithm based solver is used in its clause learning form (as described above) and works as
an independent process working on the same problem and supplies the learned clauses
to the DPLL process. It thus acts as a helper, and supplies information to the DPLL

process.

DPLL |
(Depth first approach) |

DPLL Inbox:
This is the main | consstent

Clauses fed from

algorithm It uses a helper S CREe

that supplies information |
as clauses |

1 1
1 |
1 |
1 ® i 1
| .. bAw Saturation 1
1 procedure, aform | |
1 of recursive I
1/ learning: 1
| c- (o3 I:: I|:| h
1 1
1 |
I 1
1 |
1 1

" ;
~TanrC ‘ Repeat if new
$A(C»NGC) knowledge has
Recursive application been learned,
of Dilemma Rule: absorbing all
Branch and Merge knowledge

Figure 6.1: High level interaction diagram for DPLL-Stalmarck

3For DPLL-Stalmarck, helper should be interpreted as one or more Stalmarck processes.
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Listing 6.4: High level design of implementation of DPLL solver with helper

type inboxElt = prop formula list (xClause: represented as a list of prop formulasz)

fun bootstrapHelper putTkt getTkt helperFn fm helperTime = tempHelperFun putTkt getTkt
helperTime fm;

fun makelnboxAndGetAccessHandles () = let
val (dplllnbox : inboxEIt Channel.channel) = Channel.channel ();
(x Function to insert a list of clauses to dpllinbox x)
fun dpllinboxPut1 eltList = List.app (fn y => Channel.put(dpllinbox ,y)) eltList;
(* Function to get elements from dpllinboxx*)
fun dpllinboxGet1 ()=let val tempCh=Channel.clone dpllinbox in Channel.toListNB tempCh
end
(* Allow for remote invocation of the above functions )
val dpllinboxPutPack = pack (val dpllinboxPut = Remote.proxy dpllinboxPut1)
(val dpllinboxPut : inboxEIt list —> unit)
val dpllPutTkt = Remote. offer dpllinboxPutPack;
val dpllinboxGetPack = pack (val dpllinboxGet = Remote.proxy dpllinboxGet1)
(val dpllinboxGet : unit = inboxEIlt list )
val dpllGetTkt = Remote. offer dpllinboxGetPack;
in
(dpllinbox , dpllinboxPut1, dpllinboxGet1, dpllIPutTkt, dpllGetTkt)
end

fun doDPLLwithHelper helperFun helperTime fm = let
(x make the local dplllnbox channel; Any external agent (e.g., stalmarck agent) can
post to this, as long as they know the appropriate ticketx)
val (dplllnbox, dpllinboxPut1, dpllinboxGet1, dpllPutTkt, dpllGetTkt)=
makelnboxAndGetAccessHandles ()
val thrHandle = bootstrapHelper dpllIPutTkt dpliGetTkt helperFun fm helperTime

(* %) (xDPLLx)
val cls = defcnfs fm; (xConverting to CNFx) val trail = [] (xInitial valuex)
fun dpli_stal_main cls trail = let

val clsListFromlnbox = dpllinboxGet1 (); (xGet clauses from Inboxx)
val relClsFromIinbox = dropDuplicatesFromClsList
(List.filter (isCIRelevant (varsinListOfClauses cls) ) clsListFromlnbox)
val cls = List.@(cls,relClsFromlnbox) (xAdd relevant Inbox clauses to problems:)
val (cls’,trail ') = unit_.propagate (cls,trail)
in
if mem [] cls’ then case (backtrack trail) of
(p,Guessed) ::tt = dpli-stal_-main cls ((negate p,Deduced) ::tt) | - => false
else case (unassigned cls trail ’) of [] => true
|ps=>let val p=maximize (posneg.-count cls’) ps in dpli_stal_-main cls ((p,Guessed) ::trail

) end
end
(* *) (xDPLLx)
val res = dpli_stal_-main cls trail;do wrapUpHelper thrHandle;
in
res

end
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Some key features of the DPLL-Stalmarck solver are as follows :

dpllInbox A dplilnbox is created, using Alice ML’s Channels, an abstraction for
an unbounded list. Using the Alice ML’s library functions of remote execu-
tion, the tickets to remotely access dpllInbox are provided (get, put operations:
dpllinboxGet and dpllinboxPut). See §5.6 and §A 2 for explanation of Alice
ML related terminology.

Bootstrapping, spawning of the helper process: Bootstrapping of the helper func-
tion is executed. The helper is spawned as an independent process. In the mul-
tithreaded version, this is executed in its own thread. In the distributed version,
the helper is executed in a different machine. The dpllInbox access functions
(or the respective tickets, where the helper is a remote process) are passed to the
helper process . Different options to execute the helper are provided, as given

below. These options are provided mainly for experimentation.

e Fully asynchronous: a helper is spawned and the execution of the rest of
the solver is continued. In our implementation, this is achieved by giving

-1 as the time for the helper.

e Compositional: a helper is spawned with the given time and posts its re-
sults to dplllnbox when the time is over. The main thread of execution of
DPLL proceeds after this. By increasing the time parameter appropriately,
this helps to address the scenarios where the helper is either too slow or a

particular problem (class) is too difficult for the helper.

The helper posts the information as clauses. It can post any clause, because as
described below, the DPLL process takes care of filtering out the relevant clauses

from the contents of dpllInbox.

Dynamic pruning of the DPLL search space, using the helper info Atevery branch
point, before descending in to the branch, the DPLL algorithm looks up the con-
tents of dplllnbox and adds the relevant clauses from dpllInbox to its current
problem. Here, we use the term relevant clause to refer to a clause which shares
some variable with the current problem, i.e., the problem state at that branch
point. We do this, because, adding other clauses does not help to reduce the

problem.

The addition of the relevant learned clauses can potentially prune search spaces,
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when unit propagation is carried out subsequently. Also, dpllInbox can be popu-
lated at any point during the execution of DPLL algorithm, thus allowing for the
helper clauses to be posted as they are produced, enabling dynamic interaction

between the DPLL process and the helper.

6.3.3.3 Other key features of the hybrid solver

Computational model: dpllinbox,which holds the information from the helper, does
not share any memory with the DPLL process. Thus, it can potentially reside
in a different OS process and possibly even in a remote machine and the DPLL
process too can access it using the appropriate tickets, just as the helper process
does. However, we have chosen to have it within the DPLL process (though
it still does not share any memory with the DPLL process) for the following
reason: Remote lookups are expensive in terms of computational time and the
DPLL process performs the operation of lookup of the dpliInbox at every case
split. Our implementation uses an asynchronous message passing model. The
helper process posts the information to the dpllinbox, but neither process waits

for the other’s actions.

Performance and overheads: The hybrid implementation does incur some overheads
in terms of the dpllInbox setup, lookups and associated processing. But, as men-
tioned above, the information from the helper can potentially prune the search
spaces. Particularly so, since the information is being populated on-the-fly by
the asynchronous helper(s), the DPLL process gets a chance to use possibly new
information at each step. The speed at which the helper generates and posts the

information to the dpllInbox is also crucial for the performance.

The utility of the information from a helper and the tradeoffs of the utility vs
overheads is a topic that needs to be investigated more closely. A rigorous anal-
ysis of the same, possibly matching problems with a helper (as done in portfolio
methods in SAT e.g. [Hamadi et al., 2009]) can greatly benefit the implementa-

tion. This is a possible option for future work.

Programming abstraction: Listing 6.5 gives the code fragment for doDPLLwith-
Helper, the programming abstraction that we have developed for the implemen-

tation of a DPLL solver with a helper. The full code is given in Appendix 5.
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The abstraction is parametrised by the following:

e Dpll solver of choice

Helper function of choice

Time parameter for helper

Type of learned clauses supplied by the helper

Functions to bootstrap and wrap up the helper

Listing 6.5: Programming abstraction of DPLL solver with helper

fun doDPLLwithHelper dpllSolver inboxEltType bootstrapHelper wrapUpHelper helperFun
helperTime fm = let
(xmake the local dpllinbox channel; Any external agent (e.g., stalmarck agent)
can post to this, as long as they know the appropriate ticketx)
val (dpllinbox, dpllinboxPut1, dpllinboxGet1, dpllPutTkt, dpllGetTkt)=
makelnboxAndGetAccessHandles ()
val thrHandle = bootstrapHelper dpllPutTkt dpliGetTkt helperFun fm helperTime
(¢ +++++++++++ DPLL +++++++++++++++ *)

val cls = defcnfs fm; (xConverting to CNFx) val trail = [] (xInitial valuex)

val res = dpllSolver dpllinboxGet1 cls trail ;do wrapUpHelper thrHandle;

in res end

In tune with the motivation of the development of an abstraction, this allows for

any helper to be used alongside the DPLL process.

e The only information that the helper needs is the problem and a handle to

access dpllInbox.

e The helper is an independent process and is not dependent on the execution
of the DPLL process. Depending on the user’s preference, it can either be
run asynchronously or run for a predefined time, before the execution of

the DPLL process begins.

e The abstraction allows for a plug-and-play style of experimenting with dif-
ferent helper implementations. Even the user can become a helper agent
by populating dpllInbox with information. This may or may not be use-
ful in practical situations depending on the problem class considered, but,
nevertheless, illustrates the potential of the abstraction and the ease of pro-

totyping by adopting such an approach.

Multiple helpers As described earlier, the doDPLLwithHelper abstraction makes our
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implementation generic enough to incorporate any helper, as any process can
post information to dpllInbox as long as it knows the appropriate tickets. Thus,
the implementation allows for multiple helpers, which can possibly be based on

different algorithms as well.

6.4 Hybrid SAT solvers: DPLL-CDCL-Stalmarck,

DPLL-ConcurrentStalmarck

As mentioned earlier, the doDPLLwithHelper abstraction allows for quick prototyping
of a DPLL solver with a helper, with minimal developmental effort. To illustrate of the
utility of this abstraction, we have used it to engineer two new hybrid solvers. These

are explained in this section.

6.4.1 DPLL-CDCL-Stalmarck

The DPLL solver used in our hybrid solver, DPLL-Stalmarck, does not use the CDCL
clause learning technique. CDCL has been widely adopted in most modern SAT
solvers which are based on the DPLL algorithm. It can be useful to combine the power
of CDCL and Stalmarck, by engineering a hybrid solver which uses the Stalmarck
clause learner as a helper (as in the DPLL-Stalmarck architecture), and uses the DPLL
algorithm, augmented with CDCL, as the main solver. To this end, we have engineered
a new hybrid solver, DPLL-CDCL-Stalmarck. Empirical results for this are provided
in §6.7. This solver has been developed by using the abstraction doDPLLwithHelper

(described in §6.3.3.3), with the following parametrisation:

Dpll solver of choice: a sequential DPLL sat solver, augmented with CDCL, (see
Listing 6.3 for a high-level design of this solver)

Helper function of choice: As in DPLL-Stalmarck
Time parameter for helper: Asin DPLL-Stalmarck
Type of learned clauses supplied by the helper: As in DPLL-Stalmarck

Functions to bootstrap and wrap up the helper: As in DPLL-Stalmarck



6.4. Hybrid SAT solvers: DPLL-CDCL-Stalmarck, DPLL-ConcurrentStalmarck 143

6.4.2 DPLL-ConcurrentStalmarck

This solver has been developed by using the abstraction doDPLLwithHelper (described
in §6.3.3.3), with multiple helpers, as explained below.

Concurrent Stalmarck is a piece of exploratory research approach that we have devel-
oped by applying concurrent techniques to the Stalmarck algorithm and is described
in detail, later, in §6.5. The concurrent Stalmarck implementation uses multiple pro-
cesses to tackle the problem. Each of these processes is independent of the others,
works on the same problem and can generate learned clauses on its own. These learned
clauses can be used by the DPLL solver, in the same way as the ones from the Stal-

marck clause learner. Thus, each process can be used as a helper for the DPLL process.

In the case of using the concurrent Stalmarck algorithm as a helper, the bootstrapping
stage involves: posting the problem to a pre-defined location; posting the units of
work (combinations) to a predefined location and triggering the user specified number
of agent services which are already running on remote hosts. A diagram describing
the high-level design of DPLL-ConcurrentStalmarck is given in DPLL-ConcurrStal-

interactionDiagram.
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6.5 New concurrent algorithm for SAT, based on the

Stalmarck algorithm

As mentioned in §6.4, as a piece of exploratory research, we have developed Con-
current Stalmarck, a novel algorithm applying concurrent techniques to the Stalmarck
algorithm. The novel algorithm is amenable to large-scale parallelism and has allowed

us to employ a producer-consumer approach and thus is well placed for optimal utilisa-

tion of bulk parallel processing resources. We have implemented an abstraction, which

implements the saturation technique, a key component of the Stalmarck algorithm (see
§4.5.3).

6.5.1 Gist of our approach

As described in §4.5.3, Stalmarck’s algorithm uses the recursive saturation procedure
(see Listing 4.3), which in turn, uses the O-saturation (see Figure 4.3) and the branch-
merge rule (see Figure 4.1). As described in Listing 4.3, saturate(P.k+1), performs a
recursive application of the procedure, with 0-saturation serving as base-case for the

recursion.

The key insight for the design of our new algorithm has been the fact that the recursive
applications of the branch-merge rule can be flattened, as the operations are associa-
tive and thus independent of the order of execution. However, in a sequential setting,
application of the saturation technique involves waiting for the completion of the com-
putation of all candidates being considered in an iteration, before deciding to perform

the next iteration.

This pattern of computation is similar to the barrier pattern found in the concurrent
programming literature (see §5.4.2.3). We have implemented the application of the

saturation technique as a programming abstraction, similar to the barrier abstraction.
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Flattened recursion: explore
combinations of variables;
Amenable to large scale
parallelism

Figure 6.3: Gist of the concurrent Stalmarck implementation
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Figure 6.4: Stalmarck Agent
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P-s: Holds the problem
C-s: Holds the units of work, i.e, combinations
D-s: Location to post the deductions

Figure 6.5: Interaction diagram for the concurrent Stalmarck implementation
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6.5.2 High level description of the Concurrent Stalmarck algorithm

In this section, we provide a high-level description of the algorithm, Concurrent Stal-
marck. The description is given in a top-down fashion, with key operations described

individually.

concurrStal(P,n,k)
1. e Let P be the problem; number of variables: n; saturation level : r;

o Let DednChannel be a channel that can hold equivalences. In Alice
ML, Channels operate as a stack data structure and the ger and put
operations behave accordingly. Let the top element of DednChannel

be top(DednChannel).
e Insert a dummy equivalence into DednChannel.

2. Convert the given problem into triplets and compute the associated simple
rules (triggers). The triplicate conversion which introduces new variables
will give the variable representing the whole problem, say, v,,,. Let the
initial assignment be A;. As explained earlier in §6.3.3.1, to use the solver
as a tautology checker, we set the negation of the formula to false and aim
to derive a contradiction; to use it as a clause-learning process, we set the
formula to true and pass the derived consequences as the learned information

and hence A 1S vprop = T OF =Wy = L as required.

3. The concurrent saturation procedure for a given problem , P, with n variables
and with recursion depth, r : concurrSaturationForGivenDepth(P,n,r) is
computed by iteratively exploring combinations for i =0, 1,...,r using ex-
ploreCombnsAndSaturateForLevel_k(prob,n,k) that was described above

with equivalences deduced at each level getting passed to the next level.
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Concurrent saturation procedure for level k:

exploreCombnsAndSaturateForLevel k(P,n,k)

e For a problem with n variables, for depth k, explore all possible (Z) combi-
nations, C;,(3,...,C () using the function, exploreASingleCombn, defined

above.

e Let Ec; denote the deductions that have to necessarily hold for the combina-

tion of variables, C;.

n

e Let Ej = (equivalence) union of Ec,, j =1,2,...,(}) . Post E, to Ded-

nChannel.

e Check if new information has been found by comparing the original equiv-
alence, Ey and the equivalence in DednChannel. If yes, then, repeat the
processing of combinations. l.e. go to the processing of combination step,

i.e. exploreASingleCombn(P,n,C))

e In the step where equivalences are posted, the equations between
(sub)formulas held in each E¢ : is valid for the entire problem. Thus, the pro-

cessing required for a given combination can be carried out independently.
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Function to derive the consequences of the given combination of variables, C;:
exploreASingleCombn(P, n, C)):
For the combination, C;, consider all possible truth-value assignments (i.e. 2k ag-

signments): A1,Az,...,Ax.

e For each assignment, say, A,, Apply O-saturation to the problem using the
following input: the equivalence given by rop(DednChannel) and the as-
signment A, . Get the deductions from the application of O-saturation, in the

form of the augmented equivalence, say Ey,,.

As explained in §6.2, O-saturation takes an equivalence and a variable as-
signment, applies the simple rules, augments the given equivalence with the

deductions obtained and returns the new equivalence.

e The assignments, A, —s, p = l,...,2k are arranged as a truth-table, with
two consecutive members differing in one column. Take the intersection of
the equivalences Ey , forg =1,2,... ,2k. Call this Ec;. The intersection is

performed as follows to account for saturation at multiple levels:
— Let eqvAssList be the list (E4,,Ag), forg=1,2,...,2

— For every two consecutive members of eqvAssList, say (Ea;,A;) and
(Ea;,Aj), do the following:

x Perform zero saturation for the pair and obtain the intersection of

the resulting equivalences

x If the new equivalence is different from the original one, repeat the
above step, else return the new equivalence along with baseAss;;,
the assignment with the last column dropped. A; and A; differ in
their last column. Thus, dropping the last column takes us one

level down the saturation tree

— Repeat the above step of pairwise reduction to progressively reduce
eqvAssList to a single equivalence. This is the intersection of the truth-

table assignments, with saturation performed for every branch-merge
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As mentioned in the description above, the processing of an individual combination
can be performed by an independent process (agent). Thus, a shared-memory com-
putational model is not required. Furthermore, the individual processes are not tightly
coupled and do not need to communicate very often. The only information that an
agent needs is top(DednChannel) and access to post to DednChannel. This gives the
freedom of allowing these agents to run on many different processes and possibly dif-
ferent workstations, without any dependencies on the state of the other processes and
without creating any bottlenecks for other processes that use the agent’s results. Our
implementation can be considered to be an implicit form of a message-passing compu-
tational model, because, though the computational agents do not communicate directly
with each other, they do so via DednChannel. We have used Alice ML’s channel fea-
ture (see §5.6) to implement DednChannel. We refer to this agent as the Stalmarck

agent service and it is described in detail in the next section.

6.5.3 Stalmarck agents as services

A single Stalmarck agent can be described as a service that is running as an indepen-
dent process that computes exploreASingleCombn(P,n,C;), as described above. In a
multithreaded setup, the processes run on the same machine. In the distributed setup,
they can run on different machines and their functions can be invoked remotely. The
computation carried out by the service is described below. The Stalmarck agent ser-
vices are bound to the following three channels (as given in Figure 6.4) at the time of

its creation:

e A work stream (implemented using Alice ML channel feature), say Combn-
sChannel. This is the placeholder for the units of work (combinations) to be

processed.
e A problem stream, where the problem gets posted, say ProbChannel.

o A third stream is created where the agents post their deductions, say DednChan-

nel.

The data-driven consumption model enabled by the incremental evaluation behaviour
implemented in Alice ML (described in §5.5.2.1, §5.5.2.1, §5.6.2) have been used
to engineer the facilities of waiting for work. The computation performed by the Stal-

marck agent proceeds as follows:
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Waits on ProbChannel, where the problem will appear.

Once a problem appears, the service will proceed to the next step, to fetch a

combination from CombnsChannel; if there is no combination it will wait.

After fetching a combination successfully, it will apply the same to the problem

and post the deductions, if any, to DednChannel.

The DPLL agent or another Stalmarck agent can access the location, DednChan-

nel, where the deductions are provided.

Furthermore, at each stage, the relevant results from DednChannel are applied
to the problem. In some cases, this can dramatically reduce the problem. By rel-
evant results, we mean only literals that have a presence in the current problem,
i.e. a unit clause with literal / is relevant only if either / or —/ is present in the

problem.

6.5.4 Workflow of the Concurrent Stalmarck implementation

The workflow of the Concurrent Stalmarck implementation is as follows:

l.

The problem and initial assignment are posted in the ProbChannel and the indi-
vidual combinations which constitute independent units of work are posted in a

CombnsChannel.

. A user-specified number of Stalmarck agents are spawned. These workers are

parametrised by: ProbChannel, CombnsChannel, DednChannel.

. A worker picks a unit of work from the work stream and processes it and reports

its results to the data-repository location.

. Upon finishing its work, the worker picks up the next piece of work from the

work stream location, if available, and waits otherwise.

. When all the units of work are exhausted, a referee makes a check to identify if

any new results have been deduced compared to the original state. If it is so, then
the work stream is re-populated with the original content, the original assignment
is augmented with the new information and the entire cycle is repeated. If no new

results have been posted, the original process is terminated.
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6.5.5 Producer-consumer pattern, Resource-management

The Stalmarck agent service implementation can be viewed as an instance of the
producer-consumer abstraction as described in §5.4.2.1. As described above, once
triggered, the computation of the agent acts as a consumer and picks a combination
from CombnsChannel, the producer. It works on it and upon finishing the work, posts
the results to DednChannel and waits for the next combination from the stream Comb-
nsChannel. As described above, the data-driven consumption model enabled by Alice
ML’s incremental evaluation facilities have been used to implement the waiting fea-
ture. Any agent that has completed its computation picks the next unit of work from
CombnsChannel without needing any explicit communication. No explicit communi-
cation to individual workers is involved either as all units of work are posted on to the
same work channel. If CombnsChannel is empty, the agent waits for it to be populated
with an element (the semantics of Alice ML’s Channel library means that this wait-
ing continues till CombnsChannel is closed explicitly). Thus, the need for expensive
communication to facilitate work stealing and load balancing is avoided, achieving an
implicit form of resource management. Furthermore, the flexibility on the number of
agents working on the problem allows for enforcing resource-management techniques,
as the user can specify the number of Stalmarck agents depending on the computa-
tional resources available. E.g., if the solver is deployed in a network of workstations,
then the number of Stalmarck agents can be adjusted to optimally utilise the available

number of idle workstations.

6.5.6 Abstractions developed

We have built on standard abstractions found in the parallel programming literature to
address the particular scenarios in our implementation of the Stalmarck-based concur-

rent algorithm, as explained below.

Abstraction for the saturation technique, adaptation of barrier We have developed
saturation_abstraction, an abstraction for implementing the saturation technique
of Stalmarck’s algorithm in a parallel setting. This involves Step 1, Step 2
and Step 5 of the above work flow given in §6.5.4. The code fragment for
this abstraction is given in Listing 6.6. The saturation procedure is a technique

that is used in other theorem proving scenarios as well and thus this abstraction
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can potentially be reused to tackle those as well. Furthermore, the saturation
technique is a form of recursive learning: one of deriving information and re-
peating the small steps in the light of the newly derived information, until no new
information can be derived. The saturation abstraction can be reused/extended
to address other scenarios of recursive learning as well. saturation_abstraction
shares similarities with barrier, a standard abstraction found in concurrent com-
puting literature (explained in §5.4.2.3). It involves waiting for all the com-
binations to finish their computation (i.e. compute consequences as equations
between (sub)formula) before making the decision to perform the next iteration
(if new information has been found by one or more combination) or not (no new

information was derived).

Computational pattern used in deduction performed by each worker As explained
in the earlier sections, in our implementation of the Concurrent Stalmarck algo-
rithm, each agent works on a unit of work, i.e. a combination of variables and
computes the deductions that have to compulsorily hold for that combination of

variables. The deduction process of each worker in turn, involves:

e Application of the simple rules for all the possible truth assignments for the

given combination of variables, giving the corresponding deductions.

e Aggregation of the deductions from all the truth assignments and compu-

tation of their intersection.

e The intersection thus computed is the required output for the given combi-

nation, problem and assignment.

Our implementation of this deduction process can be considered as an instance of
the standard Map Reduce abstraction found in concurrent programming literature
(see §5.4.2.4) as follows:

e The data is the list of truth assignments being considered.

e The map operation is the application of the simple rules to a given truth

assignment.

e The reduce operation is the intersection operation over the results of the

map operation carried out over the list.
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Listing 6.6: Alice ML code for saturation abstraction

fun saturation_abstraction compareFn getState getAll takeStockFn agFnList=let
fun saturation_abstraction2 compareFn getState getAll takeStockFn agFnList =let
val oldState = getState();
do returnWhenAllDone agFnlList;
val reslList = getAll(); do takeStockFn resList oldState;
val newState = getState();
in
if not(compareFn oldState newState) then
saturation_abstraction2 compareFn getState getAll takeStockFn agFnList
else ()
end
in
Exn.catch (Exn.reraise)
(fn () = saturation_abstraction2 compareFn getState getAll takeStockFn agFnList)
end
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6.6 Concurrent DPLL

This solver uses the standard DPLL algorithm, in an asynchronous setting. At each
choice-point, two threads are spawned asynchronously to explore the respective sub-
trees. The thread that comes back first with a satisfiable assignment terminates the
other thread. Furthermore, termination of a thread terminates all the sub-threads spawned
under it. Alice ML’s implementation of threads does not support automatic termination
of child threads. We have implemented a modified version which does terminate the

child threads; the code for the same is given in Appendix §A 3.

This implementation can show performance gains in cases where the satisfiable assign-
ment is at a shallow level on one of the branches and exploration of the other branch
takes a very long time. The gains made by this feature can be analysed by comparing
the performance of: DPLL, DPLL with orders-flipped at choice-points and concurrent-

DPLL. The code outline for this solver is given below.

Listing 6.7: Concurrent-DPLL

fun takeFastestAndKillOther (t1,r1) (t2,r2) =
case (Future.awaitEither(r1,r2) ) of

FST(Sat(-)) => (Thread.terminate (t2);r1)|FST(Unsat) => r2
| SND(Sat(-)) => (Thread.terminate(t1);r2)|SND(Unsat) => r1
fun doConcurrent_.DPLL prob : result = let
fun solveAssign(prob, lit): result = let

val rProb = doAllUnitCl (doAllPurelLit(remTauts (prob,lit)))
in
case testProb(rProb) of
Sat sat_assign => Sat sat.assign|Unsat => Unsat
[UNKNOWN => branch (rProb, pickBranchingLit (rProb))
and
branch ( prob, lit) : result = let

(*Spawn two searches with orders of traversal flipped )

val (t1,r1)= spawnThread (solveAssign (prob, lit) );(xr1 _future =)
val (t2,r2)= spawnThread (solveAssign (prob, “lit));(xr2 _future =)
in do takeFastestAndKillOther (t1,r1) (t2,r2) end

in  solveAssign prob end
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6.7 Evaluation

As described in 1, our object-level hypothesis for SAT is as follows:

Use of an asynchronous mode of execution enables development of two
novel algorithms:

1. A hybrid solver, based on the DPLL and Stalmarck algorithms, which
shows gains in some test problem classes considered and does not
show significant slowdown in some other problem cases examined
in this work.

2. A novel concurrent algorithm based on applying concurrent tech-
niques to the Stalmarck algorithm, such that it is amenable to large
scale parallelism.

In this chapter, we have described these new approaches to engineer SAT solvers,
made feasible by an asynchronous mode of execution. Proof-of-concept prototype
implementations of these approaches were also described. In this section, we report on

experiments conducted on these prototype solvers, using different problem classes.
We claim the following:

1. In comparison to the DPLL-CDCL solver, the hybrid SAT solver DPLL-Stalmarck,
by virtue of using the Stalmarck solver as an asynchronous clause learning pro-

cess, uses the learned clauses dynamically to:
e Prune its search space;
e Reduce the time taken to find an answer (SAT or UNSAT).

2. In comparison to the sequential Stalmarck, Concurrent Stalmarck enables a pre-
viously unexplored, novel way of applying concurrency and distribution, to en-
gineer a new algorithm, based on the original Stalmarck algorithm. Used as a
tautology checker, the concurrent version reduces the time taken in comparison

to the sequential Stalmarck.

In §6.7, we describe the limitations to the empirical evaluation conducted. In §6.7.1
and §6.7.2, we explain our process of evaluation of the prototypical implementations
of DPLL-Stalmarck and Concurrent Stalmarck respectively. For each of these, we give

the following:
e Rationale for design;

e Why we expected it to work;
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e Choice of empirical tests to test the performance;
e Empirical results and an analysis of the same.

We end the section with an assessment of how the prototypes fare on the other aspect
of our hypothesis, i.e. the methodological criteria of : use of abstractions that aid

portability, ease of prototyping and incremental development.

Platform imposed limitations to empirical evaluation

Both the prototypes described in this chapter use a message-passing style of communi-
cation and do not use shared-memory. Thus, they are ideally placed for multithreaded
implementations and distributed computing architectures. However, Alice ML’s distri-
bution and remote invocation facilities incur a significant overhead in terms of compu-
tational time as they involve cloning of data structures and proxy function calls. This
drawback of Alice ML as a platform proved a limiting factor in our empirical evalua-
tion of distributed versions of the prototypes described in this chapter. So, we restricted
ourselves to multithreaded versions of the prototypes for the purpose of empirical eval-

uation.

Thus, though the use of a functional approach via Alice ML serves as an excellent
implementation platform choice in terms of high-level language support for developing

abstractions and ease of prototyping, it has limited the scope of our experiments.

6.7.1 DPLL-Stalmarck
In this section, we explain our evaluation process for the prototypical implementation
of the hybrid approach for SAT, explained in §6.3.
Rationale for design
e Combination of complementary approaches.
e [t can derive many clauses simultaneously.

e Using the concurrent variant of Stalmarck’s algorithm that we have imple-
mented, we can organise the learning process as a collection of distributed

processes, thus enabling optimal utilisation of distributed architectures.
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e This new form of distribution gives an alternative to the current work-
partitioning methods found in the literature on parallel SAT solvers almost
all of which are DPLL-based and use a variant of the guiding path tech-

nique for search space partitioning.
Why we expected it to work?

e The manner of spanning the search tree is different from that of DPLL and
the process of learning is not conflict-driven unlike the CDCL techniques
embedded in DPLL.

e Stalmarck algorithm’s clause-learning mechanism is different from that
of CDCL (conflict-driven clause learning) based DPLL solvers [Marques-
Silva et al., 1996].

e [t does not rely on the DPLL arriving at a conflict in its search tree and
learning a clause from the conflict. 1t explores the search tree in a breadth
first manner and uses the formula relations and hence the structure in the
given formula, to derive the learned clauses, with the aid of the dilemma

rule and the saturation technique.

e The hybrid architecture is generic enough for any information providing
agent to be plugged in and relies only on message-passing. Thus, the state-
of-the-art in DPLL can still be used and the hybrid design can be ported
to other solvers, achieving the separation in design and implementation

mentioned in our developmental hypothesis.

6.7.1.1 Details of experiments: problem classes, solvers, metrics

Problem classes: We describe below the classes of problems that we have used to
compare the performance of our hybrid solver, DPLL-Stalmarck, with that of
DPLL-CDCL.:

Pigeon hole problems: For a given n, the well known pigeon hole problem,
PHole(n), states that (n+1) pigeons cannot fit n holes. Our encoding gives
n* (n+ 1) propositional variables and (n+ 1) +n* (n* (n+1)/2) clauses.
This is UNSAT for all n. We have conducted experiments forn = 2, 3, ..., 13

Urquhart problems: Originally described in [Urquhart, 1987] as a hard class
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of problems for resolution, Urquhart(k), for a given k, is a chain of equiva-

lences of the form
hebes. .. oheolhobhe. .o,

Urquhart(k), when converted to CNF (using a naive conversion procedure),
has k variables and 2¥~! clauses. This is a tautology for all k, with the trivial

assignment of setting all variables to True. We have conducted experiments
fork = 2,3,...,13,15,20, ..., 50

Uniform Random-3-SAT: Uniform Random-3-SAT is a family of SAT prob-
lems distributions obtained by randomly generating 3-CNF formulae in the
following way: For an instance with n variables and m clauses, each of the
m clauses is constructed from 3 literals which are randomly drawn from the
2n possible literals (the n variables and their negations) such that each pos-
sible literal is selected with the same probability of 1/2n. Clauses are not
accepted for the construction of the problem instance if they contain multi-
ple copies of the same literal or if they are tautological (i.e., they contain a
variable and its negation as a literal). Each choice of n and m thus induces
a distribution of Random-3-SAT instances. Uniform Random-3-SAT is the
union of these distributions over all n and m. One particularly interesting
property of uniform Random-3-SAT is the characterisation of hardness of
a problem of this class, using the clause-variable ratio, i.e. m/n [Gent and
Walsh, 1994b].

Solvers used

DPLL-CDCL: Sequential SAT solver based on DPLL algorithm, augmented
with CDCL.

DPLL-Stalmarck: Our novel hybrid SAT solver, combining the DPLL and

Stalmarck algorithms
1. Fully asynchronous mode

2. With a pre-set time for the helper to work on, before the DPLL process

starts

DPLL-CDCL-Stalmarck: Same as DPLL-Stalmarck, but with DPLL-CDCL,
instead of DPLL.
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Metrics used: Time taken by the solver to compute the answer and size of search-
space spanned by the solver. By size of the search space, we refer to the number

of case-splits performed by the solver.
Concurrent implementation considered for empirical results multithreaded version

Platform specifications Intel(R) Xeon(TM) CPU 3.60 GHz, 3.86 GB RAM, running

Scientific Linux release 6.3 (Carbon); Alice ML version: 1.4
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Random3SAT, Time taken, Clause-var ratio=4.0, Asynchronous mode
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Figure 6.11: Test data (time taken) for Random3SAT; Clause/Var=5.0; n=20,30,...,80;
From top: using an asynchronous Stalmarck-helper, compositional approach, with an

initial time of 200s, 500s for the Stalmarck-helper
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Random3SAT, Time taken, Clause-var ratio=5.0, Asynchronous mode
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Figure 6.12: Test data (time taken) for Random3SAT; Clause/Var=5.0; n=20,30,...,80;
From top: using an asynchronous Stalmarck-helper, compositional approach, with an

initial time of 200s, 500s for the Stalmarck-helper
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6.7.1.2 Analysis of empirical results

Urquhart Figure 6.6 and Figure 6.7 give the relevant data for the comparison, with
the helper working in the fully asynchronous mode and Figure 6.8 gives the
data, with the helper given an initial time of 60s. We tried a few different values,
lesser and more than 60s. The lesser values did not help for the bigger problems
and increasing the time did not make a difference for the problem parameters
considered. So, we chose 60s as the value for the helper time, for all the problem

parameters considered. The data can be summarised as follows:

DPLL-Stalmarck vs DPLL-CDCL This comparison gives an evaluation of the

efficacy of the CDCL learning technique and the Stalmarck clause learner.

DPLL-Stalmarck outperforms the DPLL-CDCL solver, in terms of both
search space and time. For n > 9, in the fully asynchronous mode and
for n > 3, in the compositional approach, with a helper time of 60s, the
DPLL-Stalmarck solver uniformly outperforms the DPLL-CDCL solver,

in a significant manner.

Thus, the empirical data above confirms that for this problem class, when
used with the DPLL algorithm, the clause learner based on the Stalmarck
algorithm, used in our hybrid solver, DPLL-Stalmarck, fares better than the
CDCL technique.

DPLL-Stalmarck vs DPLL-CDCL-Stalmarck This comparison informs us about
the efficacy of the interplay between the CDCL and Stalmarck clause-
learning mechanisms. The test data shows that the DPLL-Stalmarck solver
is faster than the DPLL-CDCL-Stalmarck solver, for n < 13 and is slower

forn > 13 . The search space size shows a similar behaviour.

Thus, the empirical data above leads us to conclude that for large n, for this
problem class, the combined power of CDCL and Stalmarck fares better
than the stand-alone Stalmarck clause learner, when used within a DPLL-
CDCL solver.

The Urquhart problem class is known to be difficult for the DPLL algorithm as
it has to search through almost all possible cases [Urquhart, 1987]. It is also an
example of a problem class, whose implicit structure is lost in the CNF conver-

sion process and thus the CDCL learning technique will also fail to capitalise
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on the implicit structure. This problem class has been proved to be of hardness
class 2 for the Stalmarck algorithm [Stalmarck, 1994], partly due to the ability of
the Stalmarck algorithm to capitalise on the formula structure. Though hardness

class 2 is not very easy, it is tractable, for relatively large problems.

A point worth observing here is that CDCL is embedded within DPLL and Stal-
marck is an external clause learner. Thus, there is no way to decouple the learner
from the DPLL algorithm and execute it as an independent process as in the case

of the Stalmarck learner.

Pigeon hole Figure 6.9 gives the relevant data for this problem class, comparing the
DPLL-Stalmarck solver, with the DPLL-CDCL solver. The DPLL-Stalmarck
solver outperforms the DPLL-CDCL solver, for n>5.

It is well known that this problem class is hard for DPLL. Resolution proofs
for pigeon hole problems are exponential in n [Haken, 1985]. It is also a good
example for the phenomenon of loss of implicit structural information as a result

of CNF conversion.

Random 3 SAT We have tested for clause-variable ratio = 4.3, 4.0, 5.0. Unlike the
above two problem classes, there is no uniform behaviour, in the asynchronous
case. However, when the helper is given an initial time of 500s, the behaviour
shows a more uniform pattern. Relevant data for the same is provided in Fig-
ure 6.10, Figure 6.11 and Figure 6.13, for clause-variable ratio = 4.3, 4.0, 5.0,

respectively.

6.7.2 Concurrent Stalmarck

In this section, we report early results conducted using the proof-of-concept prototype
of the novel concurrent-distributed algorithm for SAT, explained in §6.5. This has
been developed by applying concurrent techniques to the original Stalmarck algorithm

and enabling a producer-consumer style of processing.

Rationale for design As explained in §6.5, in our design of the concurrent-Stalmarck
algorithm, we flattened the recursion involved in the saturation component of the
original Stalmarck’s algorithm. The individual processes are not tightly coupled
and do not need to communicate very often. So, we exploited this latent op-

portunity for parallelisation in designing a new concurrent solver based on the
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Stalmarck algorithm. Our design allows for employing producer-consumer style
parallelisation and relies only on implicit message-passing without any require-
ments for shared memory. Thus, it allows for optimal utilisation of distributed
computing environments like clusters and grids. However, in our current work,
we have tested it only on multithreaded versions and a local cluster. Another
orthogonal point is the following: It gives a new way of task decomposition
compared to others seen in the DPLL-based systems in the literature (e.g., guid-
ing path as in PSATO [Zhang et al., 1996]).

Why we expected it to work?

e For a given saturation level, r, the number of candidates for computation
are all the possible combinations, i.e. Y, nCj, j =1,2,...,r. The saturation
aspect of the procedure means that the combinations need to be processed
repeatedly if new knowledge has been found. Thus, the number of times
an agent performs the computation can be significant, particularly for prob-
lems where the number of variables is high. However, the communication
needs are less. Thus, a distributed implementation using indirect message-

passing is a promising candidate to show gains in speed.

e We have used task decomposition and have organised it as a data-driven
execution, thus allowing for effective work stealing without the costly over-
heads of communication to achieve work stealing that is often observed in

the literature in other systems.

Empirical results

We have used a multithreaded implementation for the purpose of these experiments on
the Urquhart problem class 4. These early results show significant performance gains

for the concurrent implementation, in comparison to the sequential implementation.

40ur prototypes are designed to support a large scale parallel computing environment and we have
tested these prototypes on a local cluster of workstations. However, as discussed earlier in §6.7, the
limitations imposed by the Alice ML platform has meant that we include empirical results only for a
multithreaded implementation.
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Prob-param Stalmarck Concurrent-Stalmarck
3 1.395s 0.040s
4 2.155s 0.055s
5 3.367s 0.070s
6 3.263s 0.087s
7 4.157s 0.106s
8 5.097s 0.125s

Table 6.1: Comparison of time taken by Stalmarck and our novel algorithm, Concur-

rentStalmarck, for Urquhart problems

Stalmarck vs Concurrent-Stalmarck, Time taken, Urquhart

® Stalmarck ™ Concurrent-Stalmarck
5.097
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Figure 6.13: Test data for Urquhart problems, comparing sequential Stalmarck solver

and the novel concurrent Stalmarck implementation
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6.7.3 Methodological criteria

As explained in §6.3.3.3, the doDPLLwithHelper abstraction allows for easy prototyp-
ing of a hybrid solver allowing for flexible integration of one or more external infor-
mation providing agents, with the flexibility of even using heterogeneous solvers as
helpers. This has been realised using our approach of using programming abstractions
and the additional advantage of using a functional programming language has enabled

us to implement the abstraction as a higher-order function.

Our approach has allowed us to make an effective isolation of design and implemen-
tation as illustrated by our analysis of the criteria for the helper to be effective in the
context of the DPLL-Stalmarck implementation. Our approach enabled easy perfor-

mance analysis and easy prototyping of alternate experiments.

The use of the doDPLLwithHelper abstraction enables clarity of design with respect
to the interaction between the solvers. It encapsulates the mechanism used by the
DPLL process to use the clauses provided in dpllinbox. The mode of provision of the
information is thus separated from how it is used. This allows for easy porting of the

design to other platforms.

We have demonstrated the utility of using the abstraction to promote incremental devel-
opment via our prototypes, DPLL-CDCL-Stalmarck and DPLL-ConcurrentStalmarck,
as explained earlier in this chapter. We developed the abstraction doDPLLwithHelper
to implement the hybrid solver DPLL-Stalmarck. This abstraction was used to engineer

the solvers,
e DPLL-CDCL-Stalmarck, by using DPLL-CDCL as the main solver.

e DPLL-ConcurrentStalmarck by replacing the Stalmarck solver with the imple-

mentation of our novel algorithm Concurrent Stalmarck.

In the Concurrent Stalmarck implementation, we have developed a programming ab-
straction that is similar to the barrier abstraction found in concurrent computing litera-
ture (see §5.4.2.3). This implementation also employs a novel form of work allocation
using the data-driven behaviour enabled by the use of incremental evaluation facili-
tated by the use of Alice ML. This prototype illustrates the scope of applying concur-
rent techniques via programming abstractions to existing algorithms to develop novel

algorithms that are better placed to utilise large scale parallel processing resources.
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Our use of a high-level language approach to implement concurrent techniques (as
opposed to an API based approach), using abstractions thus greatly enables portability
and aids incremental development. It also promotes an iterative development lifecycle

as follows :

Use a high level programming language and programming abstractions to
engineer an experimental workbench to prototype and experiment with ap-

plying concurrent techniques to engineer a better SAT solver;

Perform empi