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Niet- lineaire modellen in het algemeen en kwadratische modellen in het bijzonder zijn 
breed inzetbaar in de ontwikkeling van effectieve Satisfiability algoritmes. Door gebruik 
te maken van de specifieke eigenschappen van binaire variabelen kunnen modellen van 
verschillende aard warden verkregen, elk met eigen specifieke toepassingen. 

Dit proefschrift. 

2 

We beschouwen Karmarkar's potentiaal reduktie algoritme voor combinatorische opti­
maliseringsproblemen. Om een dalingsrichting te berekenen client een lineair stelsel te 
warden opgelost . In [1] wordt gesteld <lat wegens de dichtheid van de betrokken matrix, 
het gebruik van directe factorisatie methodes niet praktisch is. Derhalve wordt een ef­
ficiente techniek voorgesteld om een dalingsrichting te berekenen die niet noodzakelijk 
aan de gestelde optimaliteits-eisen voldoet. 

Door gebruik te maken van het feit <lat de betrokken matrix de som is van een ijle matrix 
en een dichte matrix van rang een, kan een methode warden ontwikkeld die gebruik maakt 
van directe factorisaties , efficient de ijlheid benut en optimale oplossingen levert. 

[l] P.M. Pardalos en M.G.C. Resende. Interior point methods for global optimization. In: 
T. Terlaky, samensteller. Interior point methods for mathematical programming. Kluwer Aca­
demic Publishers, 1996. 
[2] E.D. Andersen, C. Roos, T. Trafalis, T. Terlaky en J .P. Warners. The use of low-rank up­
dates in interior-point methods. Manuscript , 1999. 

3 

De mate van effectiviteit waarmee HeerHugo in staat blijkt moeilijke Satisfiability pro­
blemen op te lossen, geeft aan <lat men het in <lit vak niet alleen figuurlijk , maar ook we! 
eens letterlijk in de breedte moet zoeken. 

J.F. Groote en J.P. Warners. The propositional checker HeerHugo. CWI rapport SEN-R9905, 
1999. Wordt gepubliceerd in deSAT2000 uitgave van Journal of Automated Reasoning. 
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Stelling 5.6.3 van dit proefschrift (pag. 103) kan warden aangescherpt tot 

w(G)-:; IC*I.::; i9(G) .::; , (G). 

Hier staat i9(G) voor het Lovasz 19- getal van de complement graaf van G. 

E. de Klerk, D.V. Pasechnik en J.P. Warners. Approximate graph colouring algorithms based 
on the 19-function. Manuscript, 1999. 
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Defini eer de familie van functies cp0 (x) = xT(Q - o:I)x - 2qrx, met Q E IR,m xm en q, 
:r E IR,m. De grootste en kleinste eigenwaarde van Q zijn Amax en Amin · Beschouw het 
N P-moei lij ke optimaliseringsprobleem 

mm cpo(x) 
s.t. x E {- 1, l}m, 

met optimale waarde opt(cp0 ). Laat N een bovengrens zijn van de functie cp0(x) over de 
hoekpunten van de m-dimensionale kubus. Verder is , voor o: > Amin , c0 = (Q - o:I) - 1q. 
Met c0 wordt een {-1 , l} vector sgn(c0 ) geassocieerd. Also: gekozen is zodat o: > Amin 
en llc0 - sgn(c0 )11 2

:::; m , dan geldt 

O < 'Po(sgn(co:)) - opt(cpo) < (Amax - Amin)m 
- N - opt(cpo) - N - Amin - cp0 (c0 ) 

H. van Maaren en J.P. Warners. Bounds and fast approximation algorithms for binary quadratic 
optimization problems with application to MAX 2SAT and MAXCUT. Rapport 97-35, Faculteit 
der Technische Wiskunde en Informatica, Technische Universiteit Delft , 1997. 

6 

Een vcrsterking van de semidefiniete relaxatie voor 3CNF problemen zoals beschreven in 
Sectie 5.6.3 kan worden verkregen door hem te relateren aan de polynomiale representatie 
van clauses (zie pag. 25, vergelijking (2.4)) . Er geldt <lat 

Middels deze gelijkheid kunnen additionele toegelaten gelijkheden worden geformuleerd 
en toegevoegd aan de relaxatie, met als gevolg <lat de relaxatie niet !anger noodzakelijk de 
triviale oplossing toelaat (vgl. Lemma 5.6.9). Deze tamelijk natuurlijke methode om de 
relaxatie te versterken is waarschijnlijk van cruciaal belang om op termijn semidefiniete 
programmering met succes toe te passen om Satisfiability problemen op te lossen. 

7 

Het feit <lat veel a lgoritmes extreme moeilijkheden ondervinden om te beslissen dat het 
pigeon hole probleem geen toegelaten oplossing heeft , is slecht voor het imago van de 
kunstmatige intelligent ie. 

Zie voor een omschrijving van het pigeon hole probleem pag. 100 van <lit proefschrift . 
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De hedendaagse, vaak zeer realistisch ogende en extreem gewelddadige computerspelen 
zijn als drugs: geestverruimend, verslavend en potentieel gevaarlijk voor de mens en zijn 
omgeving. 

9 

Gezien de enorme belangen die op het spel staan bij het hedendaagse voetbal enerzijds en 
het feit <lat men ter ontspanning wedstrijden bezoekt anderzijds, verdient het aanbeveling 
een extra scheidsrechter aan te stellen, die, indien nodig, aan de hand van videobeelden 
direct de scheidsrechter op het veld kan corrigeren. 

Hij die zichzelf overwint lijdt ook een nederlaag. 
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Preface 

The satisfiability problem of propositional logic (SAT) captures the essence of many dif­
ficult problems in disciplines such as artificial intelligence, computer science, electrical 
engineering and operations research. It concerns the problem of deciding whether or not 
a logical formula contains a contradiction . In general no (theoretically) efficient algo­
rithms are available to solve it; it is considered unlikely that such algorithms exist. As 
an exception, various specific classes of SAT allow efficient algorithms. In the nineteen 
nineties SAT has experienced a growing interest and activity, which has been spurred 
by several developments. On the one hand, the speed and memory size of contemporary 
computers has revived the interest for the classical satisfiability algorithms, but just as 
important is the discovery of new algorithms that in practice seem to suffer less from the 
combinatorial explosion. The latter include incomplete local search algorithms as opposed 
to complete systematic search algorithms. Complete algorithms give a definite answer as 
to the ( un)satisfiability of a formula, while incomplete algorithms are not capable of recog­
nizing contradictions. However, if a formula has a solution, it is often found much faster 
using an incomplete than using a complete algorithm. Thus many instances can be solved 
relatively @y one of the available state-of-the-art solvers, or by recognizing them as 
being a member of an efficiently solvable class and solving them as such. The problem 
sizes that can be handled by current algorithms and implementations have increased to 
such an extent that it is now possible to solve SAT encodings of real-world practical 
problems. Since many interesting problems can be modelled using propositional logic, an 
often successful approach is to solve them using a dedicated SAT algorithm rather than 
by spending much time and effort on developing special-purpose algorithms for each of 
them individually. 

To cope with SAT problems of ever larger sizes, algorithms (both complete and incom­
plete) and implementations are improved continually. Unfortunately, certain types of 
problems have remained very difficult to solve. It is commonly expected [116] that for 
making substantial progress on these problems new approaches are required. Either new 
algorithms need to be developed, or existing ones need to be enhanced with powerful 
tools to exploit special structures that are not exploited by current algorithms. The 
main subject of this thesis is the development and application of such new techniques 
(both complete and incomplete) for satisfiability (and related) problems. We make use 
of techniques and methods from the area of logic, artificial intelligence and mathematical 
programming, including semidefinite programming, both to enhance and to extend existing 
algorithms and to develop new algorithms for specific classes of SAT. 

XI 



xii Preface 

Organization of this thesis 

This thesis is subdivided in six chapters. The first and second of these give an introduction 
to the satisfiability problem, its complexity, some applications, a number of algorithms and 
models relevant for this thesis . Along the way, classes of difficult satisfiabili ty problems 
are encountered and some interesting and challenging phenomena in SAT solving are 
pointed out. These act as a motivation for the research described in the remaining four 
chapters. These chapters can be read independently, since all treat different aspects of 
and approaches to satisfiability solving. Where necessary they are cross-referenced. The 
chapters are based on several papers which are specified below. 

Chapter 3 Enhancing the DPLL algorithm using elliptic approximations. 

J .P. Warners and H. van Maaren. Solving satisfi ability problems using elliptic 
approximations - Effective branching rules. To appear in Discrete Applied Math­
ematics. 

H. van Maaren and J .P. Warners. Solving satisfiability problems using elliptic 
approximations - A note on volumes and weights. Technical Report 98-32 , Fac­
ulty of Information Technology and Systems, Delft University of Technology, 1998. 
Submitted. 

Chapter 4 A two-phase algorithm for a class of hard satisfiability problems. 

J.P. Warners and H. van Maaren. Recognition of tractable satisfiability problems 
through balanced polynomial representations. To appear in Discrete Applied Math­
ematics. 

J.P. Warners and H. van Maaren. A two-phase algorithm for solving a class of hard 
satisfiability problems. Operations Research Letters, 23(3- 5) :81- 88, 1998. 

Chapter 5 Semidefinit e relaxations of satisfiability problems. 

E. de Klerk and J.P. Warners. Semidefinite programming techniques for MAX-
2-SAT and MAX-3-SAT: Computational perspectives. Technical Report 98- 34, 
Faculty of Information Technology and Systems, Delft University of Technology, 
1998. Submitted. 

E. de Klerk , H. van Maaren, and J.P. Warners . Relaxations of the satisfiability 
problem using semidefinite programming. Technical Report SEN-R9903, CWI, 
Amsterdam, 1999. To appear in the SAT2000 issue of the Journal of Automated 
Reasoning 

Chapter 6 A nonlinear approach to combinatorial optimization. 

J.P. Warners. A nonlinear approach to a class of combinatorial optimization prob­
lems. Statistica Neerlandica, 52(2):162- 184, 1998. 

J .P. Warners. Nonconvex continuous models for combinatorial optimization prob­
lems with application to satisfiability and node packing problems. Technical Report 
SEN-R9710, CWI, Amsterdam, 1997. 

Appendix A Representing linear inequalities by CNF formulas. 

J .P. Warners . A linear- time transformation of linear inequalities into conjunctive 
normal form . Information Processing Letters, 68:63-69, 1998. 
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Notation 

For easy reference, we list the notation most frequently used in this thesis. Notation used 
locally in a single chapter only is not included. Also, some of the notation used locally 
differs slightly; this is indicated where necessary in the chapters themselves. 

n 

E(Ck) 

c,( li) 

Qij 

aki 
A E lR" xm 

ATE ]Rm x11 

ar 
diag(A) 

diag(a) 

b E JR" 

r E JR" 

w E lR11 

w 
(IPsAr) 

E(w) 

e 

er 

XT 

sgn(x) 

Tr A 

number of clauses of a given CNF formula. 

number of variables of a given CNF formula. 

m-dimensional Euclidian vector space. 

space of (n x m) real matrices. 

propositional formulas, usually in CNF. 

or, and , implication , bi-implication. 

(negated) propositional variable. 

literal; li = Pi or li = •Pi· 

clause k; Ck= V Pi V V •Pi· 
iEh iEJk 

length of clause k; €( Ck) = lh U Jkl-
number of occurrences of literal li in a given formula. 

entry ( i, j) of a square symmetric matrix Q. 

entry (k , i) of a non-square matrix A. 

(usually) clause-variable matrix; aki = l , -1, 0 if i E h, i E Jk, otherwise. 

transpose of a matrix A E lRn xm _ 

row k of matrix A. 

diagonal matrix containing the diagonal entries of A E lRm xm . 

diagonal matrix with the vector a E ]Rm on its diagonal. 

bk = 2 - E(Ck), 1 s; ks; n. 

rk = E(Ck)(e(Ck) - 2), 1 s; k s; n. 

vector of nonnegative clause-weights. 

diagonal matrix; W = diag(w). 

integer programming formulation of SAT; 

find x E {-1, l}m such that Ax~ b. 

weighted elliptic approximation of a given formula; 

E(w) = {x E lRm I xT ATWAx -2wT Ax s; rTw}. 

all-one vector of appropriate length. 

vector with ones in entries i ET and zeros elsewhere. 

vector x with its entries i ~ T set to zero. 

equals -1, 0, 1 if x is negative , zero, positive; 

on vectors and matrices sgn is taken component-wise. 
m 

trace of A E lRmxm; Tr A = I.:Aii · 
i=l 

IM I cardinality (number of elements) of the set M. 
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The Satisfiability Problem 

A short introduction to the satisfiability problem of propositional logic is 
given. We discuss its complexity, describe a number of applications, men­
tion the best known algorithms and give an indication of the effectiveness 
of a subset of algorithms on a set of standard benchmarks. Thus several 
interesting and challenging issues are revealed, which act as motivation 
for the development of new algorithms in this thesis. 

1. 1 Propositional logic , SAT and CNFs 

1 

We give a rather informal description of propositional logic. For a more formal treatment 
the reader is referred to e.g. van Dalen [35]. Given is a set {P,Po,Pi,P2, .. . ,q,r, .. . } of 
atomic propositions or variables. Each proposition can have one of two truth values: true 
or false. Propositional formulas can be constructed using a number of connectives: --, 
('not ' or 'negation '), V ('or ' or 'disjunction') , A ('and ' or 'conjunction'),-+ ('implication') 
and H ('equivalence' or 'bi-implication'). We assume these connectives to have their 
'natural ' interpretation, which for the sake of completeness we briefly review: 

• ,p denotes that p is false. Furthermore, ,( ,p) = p. 

• p V q means that at least one of p and q is true. 

• p A q implies that both p and q are true. 

• p -+ q means that if p is true then q must be true as well (if ,p, then q can have 
both truth values). 

• p H q implies that either both p and q must be true, or both must be false. 

Note that in the above p and q can both be atomic propositions or propositional subfor­
mulas. 

A literal is an atomic proposition or jts negation. Thus, the set of literals is {p, ,p, Po , 
• Po , ... , q, ,q, .. . }. Propositional (sub)formulas are denoted by <I> and 'l!. 

Example 1.1.1 An example of a propositional formula is 

1 



2 The satisfiability problem 

Here Po, p 1, p2 are the atomic propositions, p0 , ,p1, •Po etc. are the literals and <Po has 
five subformulas: (1) (Po+-+ •Pi), (2) ((·Po ➔ P2) I\ Pi), (3) (·Pi), (4) (·Po ➔ P2) and 
(5) (·Po). D 

Given a propositional formula <P , the satisfiability problem of propositional logic can be 
stated as follows. 

Find an assignment of truth values { true, false} to the propositional variables such that 
<P evaluates to true, or prove that no such truth value assignment exists. 

Henceforth we often use the abbreviation SAT for satisfiability problem. If the formula 
is true for all assignments to the variables, it is called a tautology, while if it is false for 
all assignments it is said to be a contradiction or unsatisfiable. Otherwise it is said to be 
satisfiable. Given a formula containing m propositional variables, there are 2m distinct 
truth value assignments to the variables that can be evaluated via a truth table. 

Example 1.1.2 For formula <Po we can set up the truth table as given in Table 1.1. 
All subformulas of <Po are evaluated separately in order to evaluate the full formula. By 
't' we denote true, by 'f' we denote false. Examining the truth table we conclude that 

Po Pi P2 ·Po ·Pi Po+-+ ·Pi ·Po ➔ P2 (·Po-tP2)/\p1 <Po 
t t t f f f t t t 

t t f f f f t t t 

t f t f t t t f t 

t f f f t t t f t 

f t t t f t t t t 
f t f t f t f f t 
f f t t t f t f f 

f f f t t f f f f 

Table 1.1: Truth table for evaluating <P 0 . 

<Po is neither a contradiction nor a tautology, but it is satisfiable. It has 6 satisfying 
assignments . D 

In this thesis, the satisfiabili ty problem is studied in conjunctive normal form (CNF). A 
CNF formula consists of a conjunction of disjunctions of literals. Each of the disjunctions 
is called a clause, in notation: 

n 

<P = C1 /\ . .. /\ C n = /\ ck , 
k=l 

where each clause Ck is of the form 

V l · = V p V V ,p· 1- t i, (1.1) 

with I; a literal. The length £(Ck) of a clause is defined as the number of distinct literals 
occurring in its minimal representation, i.e. tautological clauses reduce to true and have 
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no length, while doubled occurrences of identical literals in the same clause are reduced 
to a single occurrence. Hence we assume that h n Jk = 0, and that no entry occurs more 
than once in h c.q. k Then £(Ck) = lh U Jkl- Clauses Ck with £(Ck) = 1 are called 
unit clauses. 

Example 1.1.3 Examples of clauses are C1 = (p1 V ,p3 V p4 V p3 ) and C2 = (p2 V p6 V 

,p4 V p6 ). C1 is a tautology, while h = {2, 6} , h = {4}, hence £(C2 ) = 3. D 

A CNF formula in which the maximum clause length is equal to £ is referred to as an 
£CNF or £SAT formula. If all clauses have length exactly e, the formula is called a pure 
£CNF ( or £SAT) formula. The complexity of the SAT problem on CNF formulas is related 
to clause lengths. Some relevant complexity issues are briefly reviewed in the next section. 

Let us now argue that without loss of generality we can restrict ourselves to CNF formulas . 
First note that the H and ➔ operators can be eliminated using the well known De 
Morgan 's laws to obtain a CNF formula: 

(p H q) = (p ➔ q) /\ (p +- q) = ( ,p V q) /\ (p V ,q). 

Example 1.1.4 Using De Morgan's laws, <I>0 can be reduced to the CNF formula (Po V 
p1) /\ (Po V Pt V p2 ). The first clause dominates or subsumes the second; i.e. the second 
clause is always true when the first is true. Thus <I>0 = (Po V p1). Note that this is 
confirmed by the truth table 1.1. D 

In general, using these laws, transforming an arbitrary formula to CNF requires a number 1
1 

· 

of operations that is exponential in the length of the formula . However, using auxiliary 
variables, for any propositional formula a satisfiability-equivalent 3CNF formula can be 
constructed in linear time. .,._.., 

Definition 1.1.5 (Satisfiability-equivalent) The formulas <I> and I}! are said to be 
satisfiability-equivalent if either both are satisfiable or both are contradictory. 

Such a construction is believed to be first described by Tseitin [129] and therefore we refer 
to it as the Tseitin construction. We informally describe the Tseitin construction; see also 
[11, 58, 139] . Suppose we are given a propositional formula <l> . For any subformula I}! of 
<I> , introduce a new proposition P'11 and construct the following formula: 

I\ 

Here I}! <;;: <I> denotes that I}! is a subformula of <I> , and EB denotes one of the binary con­
nectives. Obviously, the number of subformulas is linear in the size of <I>, and since each of 
the logical expressions involved can be expressed in at most four clauses the construction 
is linear in the size of the formula. For completeness, we give an example of the result of 
translating a 'triple' (P'11 H (P'11, /\p'11 2 )) and a formula (P'11 H 'P'11,) to 3CNF form. We 
obtain (·P'11 V P'11,) I\ (·P'11 V P'11,) I\ (P'11 V •P'11, V •P'11 2 ) and (P'11 V P'11,) I\ (·P'11 V ·P'11,) , 
respectively. 

It is easy to verify that the original formula allows a satisfying assignment if and only 
if its associated 3CNF counterpart allows a satisfying assignment. More precisely, any 
satisfying assignment of the original formula can be (uniquely) extended to a satisfying 
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assignment of its associated 3CNF formula. Note that to obtain a slightly more concise 
formulation, the equivalence operators may be replaced by implications [139]. Thus satis­
fiability is maintained as well, but in case the original formula is satisfiable, the resulting 
formula possibly allows more satisfying assignments. 

Observe that if the original formula is a tautology, the resulting CNF formula is merely 
satisfiable. Since proving a formula to be tautologous is equivalent to proving its negation 
to be contradictory the tautology problem can still be approached using the construction. 

Example 1.1.6 Let us apply the Tseitin construction to <1> 0 (see Example 1.1.1) . As 
stated before, it has apart from the full formula, five subformulas. Introducing a new 
propositional variable P;+2 for subformula (i), we obtain 

(P<t>o H (p3 V p4)) I\ 

(p3 H (Po H p5)) I\ 

(p5 H ·Pi) I\ 

(p4 H (PG I\ Pi)) I\ 

(PG H (P1 -+ P2)) I\ 

(p7 H ·Po). 

This formula can be expanded to a CNF formula with 17 clauses which after addition 
of the unit clause P<t>o is satisfiability-equivalent to <1> 0 . Given a satisfying assignment 
of <l>o, for instance p0 I\ PI, this can be expanded to the satisfying (partial) assignment 
Po I\ PI I\ p4 I\ ,p5 I\ PG I\ ,p7 of its associated 3CNF formula. □ 

Remark: The terminology used may seem somewhat ambiguous. To avoid confusion we 
stress that 'SAT' , ' the SAT problem', 'SAT instance' and 'SAT formula ' all refer to the 
satisfiability problem of propositional logic, in either general form or in CNF. The latter 
is also referred to as 'CNF formula'. 

1.2 The complexity of satisfiability problems 

SAT is considered a difficult problem, as no methods are available that solve it 'efficiently' . 
To make this notion more precise, we rely on complexity theory. For a mathematically 
rigorous treatment of the complexity-theoretic issues involved , see Garey and Johnson 
[51]. Here we suffice with an informal discussion. 

An algorithm is a procedure to solve a (well-defined) problem. Thus, for satisfiability 
problems, given an instance of SAT, an algorithm should be able to determine whether 
the instance is satisfiable or contradictory. The worst-case complexity of an algorithm is 
defined as the maximal number of operations the algorithm has to perform to solve any 
instance of a 'class of problems, expressed as a function / of the sizes of the instance. We 
say that the complexity of the algorithm is O(J(s)). The size of an instance of SAT is 
usually measured as the number of distinct propositions occurring in it , or as the number 
of clauses. 

Example 1.2.1 Let <I> be a C 1F formu la consisting of n unit clauses on m variables. 
Using the truth table approach of the previous section, 2m distinct solutions have to be 
evaluated. The complexity of this approach is 0(2m). An alternative approach is to go 
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through the clauses in sequence. Each unit clause requires fixing its associated variable 
to its required truth value. As soon as a contradictory assignment is found for a some 
variable, the algorithm declares the formula a contradiction and it terminates. If no 
contradictory assignment is found , the algorithm terminates after the last clause has been 
processed. Then the fixed variables constitute a satisfying assignment. The complexity 
of this algorithm is O(n) . □ 

An algorithm is considered good if its runs in polynomial time, i.e. its worst-case complexity 
is a polynomial function of the input size. In the example, the second algorithm runs in 
polynomial time, while the truth table approach runs in exponential time. For sufficiently 
large problems, a polynomial algorithm is more efficient than an exponential algorithm. 
A problem is considered easy if it allows a polynomial time algorithm; if only exponential 
algorithms are known it is considered hard. This is fundamental for complexity theory. 

The class P is defined as the class of problems for which a polynomial time algorithm 
exists; accordingly, lCNF formulas are in P. The class NP is defined as the class of 
problems for which, given an instance and a particular solution, it can be verified in 
polynomial time that indeed the solution solves the instance1 . It follows that P ~ NP. 
Note that it is easy to see that SATE NP, since given an instance of SAT and a satisfying 
solution , it can be verified in polynomial time that the solution indeed satisfies all clauses. 
It is not known whether SAT E P. Or, more generally, a notorious and challenging open 
problem is whether or not P = NP. While this problem is still unsolved, it is commonly 
conjectured that P =f. NP; i.e. it is suspected that there are problems in NP that do 
not allow a polynomial time algorithm. The motivation for this conjecture relies on the 
notion of NP-completeness. To define the class of NP-complete problems, we require the 
notion of polynomial reducibility. A problem P' is polynomially reducible to a problem 
P, if for any instance of P' an instance of P can be constructed in polynomial time, such 
that by solving the instance of P, also the original instance of P ' is solved. Note that 
then P is at least as hard as P ' , since P ' is in fact a special case of P. A problem P 
is called NP-hard if any problem P ' E NP is polynomially reducible to P. It is called 
NP-complete if P E NP and P is NP-hard. Cook [26] proved that any problem in NP 
can be polynomially reduced to a satisfiability problem. Therefore SAT is NP-complete, 
implying that 

• any problem in NP can be solved as a satisfiability problem; 

• if SAT can be solved efficiently, then any other problem in NP can be solved 
efficiently. 

Since despite extensive research on many notoriously difficult NP-complete problems (in­
cluding SAT) no polynomial time algorithms have been found , it is conjectured that such 
algorithms do not exist for these problems. This implies that it is considered unlikely that 
an algorithm exists that can solve any given instance of SAT in polynomial time. There 
are exceptions; for example, the SAT problem on lCNF (see above) and 2CNF formulas 
is solvable in linear time (Aspvall et al. [6]). The SAT problem on £CNF formulas,£~ 3, 
is in general a hard problem. 

1 If the problem at hand is an optimization problem, a recognition problem is associated with it. It 
then must be verified that a solution indeed has a specified objective value. 
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1.3 Applications of satisfiability problems 

Since SAT is the original NP-complete problem it deserves thorough study. By complex­
ity theory, we know that any instance of an NP-hard problem can be modelled as a SAT 
formula; but more importantly, many NP-hard practical problems can be expressed as 
SAT problems in a natural way. A large number of applications of SAT are listed and 
referenced in the overview paper by Gu et al. [62] (section 14). In order to give the reader 
an impression of the expressive strength of propositional logic, we give a few examples be­
low. These examples are chosen due to their relevance for some of the actual applications 
considered in this thesis. First the design and testing of Boolean circuits is considered. 
Then, to support the claim that many combinatorial optimization problems have a quite 
natural SAT encoding as well , we consider as an example the Frequency Assignment Prob­
lem from mobile telecommunication. It may be noted that such optimization problems 
usually involve an objective function that does not seem to have a 'direct ' natural SAT 
encoding. By putting a bound on the objective function it can be treated as an addi­
tional constraint; the optimization problem is then turned into a feasibility problem. In 
Appendix A a construction is discussed to efficiently obtain a CNF formula representing 
a linear constraint. 

1.3.1 B oolean circuit synt hesis 

The Boolean circuit synthesis problem has applications in artificial intelligence, machine 
learning and digital integrated circuit design [17]. It arises when one needs to construct a 
logical circuit describing the behaviour of a black box system. Suppose we are given a set of 
sample inputs X = { x 1, ... , xn } for this system and a set of corresponding sample outputs 
Y = {y1, ... , Yn}, where Xi E { 0, 1 }m and Yi E { 0, 1 }k . The aim is to synthesize a function 
f, f : {0, l}m -+ {0, l}k, that describes the behaviour of the black box system with a 
prescribed accuracy c, i. e. it must hold that f(xi) = y; for at least (1- c)n input/output 
samples. The function f has a sum-of-products form, where the additions are assumed to 
be modulo 2. Each of the products is called a disjunct. The sums and products correspond 
to logical gates. Given a function f , its corresponding circuit can be represented via a 
directed acyclic graph; this is discussed in more detail in the next section. The problem 
of finding a function f with a specified number of disjuncts that accurately describes the 
system is NP-complete [17]. Note that the classical problem is to minimize the number 
of disjuncts of a function f that describes the input/output behaviour without errors 
(i.e. € = 0). Here we consider the case where the number of disjuncts is specified and we 
give as an example the parity function as described by Crawford et al. [32]. The general 
case is handled similarly; we refer to Karnath et al. [83, 84]. 

The parity function has at most m disjuncts , where each disjunct consists of exactly one 
element. Given a vector a E {0, l}m, it is defined as f: {0, l}m-+ {0, l} , f(x) = arx. 
The parity function f computes the parity of a subset of the components of x, namely 
the subset of the components for which aj = 1. The parity learning problem is now to 
determine on which bits the parity of ar xi is computed, with sufficient accuracy. Or, more 
formally, given sets of sample inputs X and sample outputs Y: find a vector a E {0, l}m 
such that I { i : aT Xi f. y;} I ~ rn. 
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We can encode this as a satisfiability problem in the following way. The m entries of 
sample input x; are denoted as x;J, 1 ::; j ::; m. Let us associate a propositional variable 
PJ with each aj, 1 ::; j::; m, Q;J with X;J, 1 ::; i::; n, 1 ::; j ::; m, and r; with y;, 1 ::; i::; n. 

The p/s are the unknown propositions; the q;/s and r;'s are known from the sample 
input/outputs. We associate the value 1 with true and 0 with false. The parity of each 
ar x; is computed separately. We introduce 'carry'-propositions C;J representing the parity 
of the first j terms of ar x;. For all 1 ::; i ::; n we have the logical expressions 

C;1 f-+ (P1 I\ q;1), 

C;J +--+ ( ,ci,J-I +--+ (PJ I\ QiJ)), 2 ::; j ::; m, 

S; +--+ •(Cim +--+ r;). 

The reader may want to verify that C;J, j 2'. 2, is true if and only if either Ci,J-I is true 

and aJXiJ = 0 or if ci ,J - l is false and aJXiJ = l. It is easy to verify that s; holds if and only 
if ar x; -=/= y;. Introducing subformulas of the above form for each of the sample inputs, 
we ultimately have n propositional variables s; of which at most en may be false. This 
can be expressed as a linear (inequality) constraint, which in turn can be translated to 
a CNF formula. We refer to Appendix A. If no errors are allowed, the above gives a 
complete formulation of the parity learning problem. In this case, unit clauses ,s; are 
added to the formula expressing that all input/output patterns are correct. The parity 
learning problem without errors is in fact polynomially solvable (see Chapter 4). Thus 
in polynomial time it can be checked whether a parity function exists that describes the 
system without inaccuracies. Ifit turns out that no such function exists (this might be due 
to inaccuracies in the data or to the restricted expressive power of parity functions), either 
a more complex function can be assumed and tested or some errors might be allowed. 

Example 1.3.1 Let us consider a very small example of the parity learning problem. 
In Figure 1.1 a system with three inputs and one output is depicted. Three sample 
inputs/outputs are given. Let us now construct the SAT formula associated with the 
parity-learning problem on 3 bits without errors. Consider the first input/output sam­
ple: x1 = (1, 1, 0) , y1 = 0. The associated formula simplifies to p1 +--+ p2 (using that 
q11 , q12 , ,q13 , ,r1 , ,s1) . Similarly, the SAT formula for the second input/output sam­
ple is ,(p2 +--+ p3 ) and for the third one p3 . Thus the unique satisfying assignment is 
,p1 I\ •P2 I\ p3 , or equivalently, a= [0, 0, 1]. The reader may want to verify that indeed 
this is an error-free parity function for the given inputs/outputs. D 

(
I O 0) 
I I 0 
0 I I 

f(x) 

? 
( 0 l l) 

Figure 1.1: Small example of the parity learning problem. 
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1.3.2 Test pattern generation 

To produce a reliable computer system, one must check whether its components are work­
ing correctly. Automatic Test Pattern Generation (ATPG) systems distinguish defective 
components from correct components by generating input sets that - via the correspond­
ing output - indicate that a certain fault is present. Successful ATPG systems are for 
example PODEM and Socrates [54, 114]. Larrabee [91] proposed to solve the problem 
of test pattern generation for single stuck-at faults in combinational circuits via a SAT 
problem. 

Suppose a piece of hardware implements a Boolean function f with m inputs and k 
outputs, i.e. f : {O, l}m --+ {O, 1y. The topological description of the circuit can be 
represented via a directed acyclic graph. Its internal nodes correspond to the logical gates 
and fan-out points , its source nodes correspond to the inputs and its sink nodes to the 
outputs, while its edges correspond to the wiring. Each edge has an associated propo­
sitional variable to represent the signal (either O or 1) transferred by the corresponding 
wire. Each node is tagged with a CNF formula describing its input/output behaviour. 
For example, if an internal node corresponds to an AND gate with two input wires labelled 
Pi and Pi and a single output wire with the label% , it is tagged with the CNF equivalent 
of% H (p;/\pj)- Taking the conjunction of all CNFs tagged to the internal nodes, a CNF 
formula describing the input/output behaviour of the circuit is obtained. Assigning truth 
values to the input variables , the values of the output variables are uniquely determined. 

Let us consider systems with a single output. A single stuck-at fault occurs when a single 
wire is stuck-at a particular value (either O or 1). To check whether a specified wire has 
this fault, a test (input) pattern is required that distinguishes the output of the correct 
circuit ( which is specified by !) and the output of the circuit with the faulty wire. To 
this end, construct the CNF formula Ill corresponding to the correct circuit and denote 
its output variable by r and construct the CNF formula Ill' corresponding to the circuit 
with the specified faulty wire; the output variable of the faulty circuit is denoted by r' . 
Because both circuits will have identical behaviour except at nodes affected by the fault, 
only the variables that are associated with wires on a path between the faulty wire and 
the output need to be renamed. Now consider the formula <I> = (Ill/\ Ill')/\ (r H ,r') . 
A satisfying assignment corresponds to a correct input/output pattern for both circuits , 
with different output. Hence the corresponding input pattern is a test pattern for the 
specified fault. If the formula is unsatisfiable, the fault cannot be tested. 

Example 1.3.2 Suppose we have a simple circuit with four inputs and a single out­
put as shown in Figure 1.2. The function represented by this circuit can be written as 
f(xi,-- · ,x4) = (x 1+x2+x1x2)(x3+x4+x3x4) (mod 2). Usingthelabellingofthewires, 
the corresponding Boolean formula is 

Suppose we want to test whether the wire corresponding to the variable q12 is stuck-at l. 
Then Ill' = ( r' H q34 ), hence 

<I> = Ill/\ (r' H Q34) /\ (r H ,r') , 

which yields the test pattern ,p1, ,p2 ,p3 , p4 : the correct circuit gives output ,r, while 
the faulty circuit has output r. Note that this test patterns is not unique; <I> allows more 
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satisfying assignments. □ 

Figure 1.2: Boolean circuit corresponding to the example. 

1.3.3 The Frequency Assignment Problem 

The Frequency Assignment Problem (FAP) occurs in practice when a network of radio 
links has been established. Frequencies need to be assigned to the radio links such that 
communication via these links does not interfere. Interference generally occurs when the 
same or close frequencies are assigned to links that are situated near each other. Various 
algorithms have been applied to the FAP; see for overviews Tiourine et al. [125], Cabon 
et al. [2 1] . The problem can be stated as follows. 

Given a set of radio links L , a set of frequencies F and a set of interference constraints, 
assign each radio link a frequency, without violating any interference constraint. 

A second objective might be to use as few dis t inct frequencies as possible in order to 
minimize usage of the frequency spectrum. An interference constraint is a triple (l, k, d1k), 
where d1k 2: 0 is the minimum distance required between the frequencies assigned to radio 
links l and k. In [138] various mathematical models for this problem are developed. Let 
us construct a valid SAT encoding. We introduce proposit ion letters p11 and qi for all 
l E £ , f E F ; p11 holds if and only if frequency f is assigned to link l , q1 expresses that 
frequency f is assigned to at least one link. Letting Fmax be the maximal number of 
frequencies to be used, the FAP is expressed as follows. 

First, each link must be assigned a frequency. 

V PlJ, l E £. 
f E F 

T he interference constraints can be modelled as implications: 

Pl!~ •Pkg , l, k E £ , f, g E F such that If - gl :::; d1k-

Finally, to express the objective to use no more than Fmax frequencies , we have the 
implicat ions 

PtJ ~ qf, l E £, f E F , 

with the additional constraint that at most Fmax propositions qi must be true. 
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Note that this constraint is not in CNF. However, it can be expressed as a linear inequality 
constraint, which in turn can be translated to a CNF formula; see Appendix A. In Chapter 
6 an algorithm for the FAP is developed that does not require the non-CNF constraint to 
be transformed to CNF first. 

Example 1.3 .3 In Figure 1.3 a small FAP is depicted. There are four links that have 
either three or four frequencies available, which are listed below the link number. If two 
links are connected, an interference constraint concerning these links must be satisfied. 
The edge labels specify the minimal required frequency distances. For example, the edge 
connecting nodes 1 and 2 indicates that the frequencies assigned to links 1 and 2 must be 
more than four apart. This gives rise to the following implications: (p1,2 ➔ ,p2,2) /\ (El,1--➔ 
·P2,4) I\ (Pt,4 -+ ·P2,2) I\ (Pt ,4 -+ ·P2,4) I\ (Pt,4 -+ ·P2,1) I\ (Pt,9 -+ ·P2,1) I\ (Pt,9 -+ ·P2,9) · 
To model all the interference constraints, 27 implications are required, involving 14 PiJ 

variables. For more details on this example, see Section 6.5.2. D 

6 

4 4 

Figure 1.3: Small FAP instance. 

1.4 Solving satisfiability problems 

We mention a number of algorithms and briefly discuss methods for comparing the perfor­
mance of algorithms. Then three types of algorithms are evaluated empirically to identify 
hard classes of SAT. 

1.4.1 Algorithms 

As stated before, any satisfiability problem can be solved by brute force, since via evalua­
ting all distinct truth value assignments (of which there are finitely many) to the variables 
the problem is solved. For a problem with m variables, 2m assignments need to be eval­
uated. Even for small m this is intractable, since this number grows exponentially with 
m. Unfortunately, SAT being NP-complete, it is unlikely that an algorithm exists that 
does much better than the brute force algorithm. Still , many SAT problems can often 
be easily solved when the proper algorithm is applied , even if its worst-case complexity 
is exponential. Therefore, many SAT algorithms have been developed; for a comprehen­
sive overview, see the article by Gu, Franco, Purdom and Wah [62] . Here we mention a 
number of the best known algorithms. Later on we try to provide the reader with some 
global overview as to the strength of a subset of these algorithms. 
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Most importantly, we can distinguish between complete and incomplete algorithms. 

Complete algorithms give a definite answer as to the unsatisfiability of a given formula. 
Examples of complete algorithms are 

• The 'brute-force method' c.q. truth- tables; 

• DPLL (Davis, Putnam, Loveland, Logemann [36, 37]), which is a depth-first search 
algorithm which implicitly enumerates all solutions, enhanced with unit resolution 
and monotone variable fixing (see also Section 3.3); 

• Resolution (Robinson [110]), which is similar to the classic Davis-Putnam algorithm; 

• Binary Decision Diagrams (Bryant [18]), using which all solutions of a given instance 
of SAT can be determined; 

• Stallmarck's algorithm [122] (see also [59]), which is a breadth-first search algorithm 
(as opposed to the DPLL algorithm) ; 

• Analytic tableaux (see e.g. [34]), which can be interpreted as being a variant of the 
DPLL method; 

• Branch and bound c.q. Branch and cut , which are essentially enhanced versions of 
depth-first search algorithms (see e.g. Blair et al. [11], Hooker and Fedjki [73]). 

Incomplete algorithms do not give a definite answer in all cases. Usually these are designed 
to find solutions quickly; if a solution is found , the formula is declared satisfiable and the 
algorithm terminates successfully. However, if it fails to find a solution, no conclusions 
can be drawn. Well-known incomplete algorithms for satisfiability are 

• Local search algorithms in various guises, such as introduced by Selman et al. [115, 
117] (GSAT, WalkSAT), Gu [60] and Resende and Feo (GRASP) [109]; 

• Gu's global optimization algorithms [61] ; 

• An interior point potential reduction approach by Karnath et al. [82, 83, 84] ; 

• Many other local search algorithms such as tabu search, simulated annealing and 
evolutionary algorithms (see articles in the books [42, 79]). 

In the above list, we do not include incomplete algorithms that are used as subroutines in 
complete algorithms, such as unit resolution (which is complete for Horn CNF formulas 
[41]) . 

1.4.2 The relative performance of algorithms 

Given the amount of different algorithms, it can be a difficult decision as to which algo­
rithm to use for solving a specific SAT instance, in particular when its solution is required 
at the shortest possible notice. As the very existence of all these different algorithms 
seems to suggest , there is in general no useful theoretical foundation available to prefer 
one algorithm to another in practice. For example, while theoretically a complete algo­
rithm seems to be preferable over an incomplete one at any time, in practice (incomplete) 
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local search algorithms can be very effective (albeit on satisfiable instances only) and thus 
they are extremely useful. 

In the literature, several methods to analyze and compare the performance of algorithms 
are proposed. We mention worst-case analysis, probabilistic analysis and polynomial sim­
ulation. While we emphasize that each of these methods can give valuable insights into 
understanding why algorithms do or do not perform well on specific instances, below we 
argue that they are not sufficient when it comes to practical satisfiability solving. 

Worst-case analysis 

While all complete algorithms require exponential time in the worst case, in a number of 
cases some distinction can be made: for instance, Schiermeyer [112] has shown that 3CNF 
formulas can be solved in 0(1.497m) operations rather than in 2m operations (improving 
on earlier upper bounds by Monien and Speckenmeyer [102] and Kullmann [89]). However, 
the worst case performance of an algorithm is usually only rarely achieved and algorithms 
with an extremely bad worst-case complexity might in practice often be very effective. 
Most notably, incomplete algorithms do not even terminate in the worst case. 

Probabilistic analysis 

A probabilistic analysis of an algorithm gives rise to the notion of average-case perfor­
mance (as opposed to worst-case performance). Thus it provides an indication of the 
time in which an instance can be expected to be solved. To this end, assumptions on 
the structure of the SAT instances under consideration need to be made. Usually, the 
instances are assumed to be randomly generated using some specific probabilistic model. 
Finding a representative probabilistic model is not trivial. Using the 'wrong' model may 
yield misleading results (as argued by Franco and Paull [47]). Also to our knowledge 
probabilistic analyses have been carried out for substantially simplified algorithms only. 
It appears that for more involved algorithms the analysis is too complex to handle with 
the currently available techniques. Specifically, for most algorithms mentioned in the 
previous section a probabilistic analysis is not available. Most results in this area are 
of a reassuring nature, stating that 'easy' instances can be easily solved (i.e. in average 
polynomial time) by a simple algorithm. An overview of results is contained in Gu et 
al. [62] (section 12). 

Polynomial simulation 

Polynomial simulation [28] is a tool to qualify the relative complexity of algorithms. By 
a proof of size s we mean the number of proof steps that has to be done to prove a 
formula contradictory (or satisfiable). Algorithm I is said to polynomially simulate or 
p-simulate algorithm II if there exists a polynomial P such that for every proof of size 
s using algorithm II, a corresponding proof (of the same formula) of size at most P(s) 
using algorithm I can be constructed. An approach to prove that algorithm I p-simulates 
algorithm II is to show that any reasoning step that can be done using algorithm I 
can be efficiently simulated using algorithm II. If an algorithm p-simulates another it is 
considered at least as good as the other. Two methods are polynomially equivalent if they 
p-simulate one another. They are said to be polynomially incomparable if they mutually 
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do not p-simulate one another. The usual way to prove that algorithm I does not p­
simulate algorithm II is by specifying a particular class of formulas that can be proved 
in polynomial time by II , while I requires exponential time. For an overview of results in 
this area, see Urquhart [132]. 

This notion is of particular use in the context of the existence of proofs of a certain size. 
In this thesis, the focus is on effective proof searching. Although the notion of polynomial 
simulation can be used here as well, we consider it less appropriate since the existence of 
a short proof is no guarantee that it can be found efficiently. In addition, even when an 
algorithm p-simulates another (and consequently it is considered better) , in practice it 
may perform substantially worse, since it is not clear how to exploit its stronger reasoning 
capabilities (for example, extended resolution [129] is in theory an extremely powerful proof 
system, but there are no practical implementations available). Finally, observe that an 
incomplete algorithm can never p-simulate a complete algorithm. 

Benchmarking 

For lack of a satisfactory theoretical method, we resort to a more ad hoc way of comparing 
algorithms in order to get a better intuition on their performance. The most commonly 
used evaluation method is to run the algorithms on a set of 'standard' benchmarks. Com­
paring the results should provide the user with an intuition based on which an algorithm 
can be chosen for 'new' instances. The choice of benchmarks is obviously rather arbitrary. 
In the SAT community there seems to be consensus that the DIMACS suite [128] (which 
contains a collection of benchmarks stemming from various sources, both practical and 
theoretical) and random 3CNF formulas are reasonably 'representative' benchmarks. 

The incentive for using random instances is twofold. It is easy to generate as many 
instances as considered appropriate, and algorithms performing well on hard random in­
stances will arguably be effective on other instances as well . The question is how to ensure 
that the randomly generated instances are sufficiently difficult. It has been shown em­
pirically that difficult random instances can be obtained using the constant clause length 
model: 3CNF formulas with m variables and o:m clauses are hard when o: ~ 4.3 (see 
Mitchell et al. [101], Crawford and Auton [31]). This is known as the threshold phe­
nomenon. For the mentioned clause-variable ratio it has been demonstrated empirically 
that roughly half of the instances are satisfiable and half are contradictory. For theoretical 
results in this area we refer to [62]. 

Note that the size of the instances plays a crucial role in the overall picture obtained. 
Small sized instances are often easy for any algorithm, while if instances get too large 
none of the algorithms might be capable of solving them. On the other hand, this also 
challenges the researcher to come up with algorithms that are capable of handling such 
large instances. Another issue is that the quality of the implementations of the algorithms 
and of the hardware they are executed on are of great influence on solution times, and 
thus should be taken into consideration when evaluating the performance. 

Ultimately, it is (merely) assumed that the results obtained give a representative view 
of the effectiveness of the algorithms over all instances of SAT. In any case, the results 
gathered in the next section are used as a guidance for our research, since they reveal 
certain gaps in our SAT solving capabilities. 
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1.4.3 Empirically comparing three types of algorithms 

In Table 1.2 a very rough indication of the effectiveness of three types of algorithms on 
standard benchmarks is given. As reference algorithms we restrict ourselves to algorithms 
of three different types: depth-first, breadth-first and local search. In the literature on SAT 
solving, the first and the third type of algorithm are the most frequently used and thus 
seem to be considered the most effective2

. 

• SATO3.0 (Zhang [141]) for the depth-first state-of-the-art. This implementation 
includes intelligent backtracking and the addition of newly derived clauses (see also 
[120]; more details on the DPLL algorithm and enhancements are given in Chapter 
3). 

• Bohm's solver (see Bohm and Speckenmeyer [12]), which is an implementation of 
a depth-first search algorithm without intelligent backtracking and the addition of 
newly derived clauses. This solver is an improved version of the solver winning a 
SAT competition in 1992 [19]. 

• Heer Hugo, which is an implementation of a breadth-first search algorithm by Groote 
at CWI (see [59]). This implementation is inspired by Stallmarck's algorithm [67, 
122]. It is enhanced with many reasoning capabilities. It appears that this type of 
algorithm is largely overlooked in the literature on practical satisfiability solving. 
As it appears to be remarkably effective on many sets of benchmarks it is included 
here. 

• A local implementation of a local search algorithm with adaptive clause-weights. Let 
us briefly describe this algorithm. To each individual clause a weight is assigned. 
Initially, all weights are set to one. Starting from a random truth value assignment , 
in each iteration a single variable is 'flipped' (i.e. set from true to false or vice 
versa). The variable to be flipped is chosen by cycling through the set of clauses. In 
each iteration the variables of the first unsatisfied clause are chosen as candidates 
(this is similar to the WalkSAT approach [115]) . The variable that yields the largest 
increase in the sum of weights of the satisfied clauses is flipped. If the increase is 
negative, the weights of the currently unsatisfied clauses are increased until the 
increase becomes positive. 

We used the following benchmarks to test the algorithms. For more details on the in­
stances we refer to Trick [128]. Here we give only some brief comments on the instances3. 

• The aim [4], dubois and pret instances are constructed 3CNF instances. The latter 
two turn out to belong to a class of polynomially solvable instances; see Chapter 
4. The size of these problems ranges from 20 to 200 variables and from 60 to 1200 
clauses. 

• The ii (inductive inference, [83, 84]) and par* [32] instances stem from the Boolean 
function synthesis problem as described in Section 1.3.1. Sizes range up to thousands 
of variables and clauses. 

2 Note that on specific applications involving non-CNF SAT problems, BDDs are reported to outper­
form the more classical approaches; see Puri and Gu [107], Uribe and Stickel [130]. 

3ftp : //dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/ . 
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• The bf and ssa instances are generated from circuit fault analysis (see also Section 
1.3.2). The first arise from checking 'bridge-faults', the second from 'single stuck-at' 
faults. The sizes range to thousands of variables and clauses. 

• The jnh instances are randomly generated instances, using the random clause-length 
model: as the name suggests , generating instances using this model clauses of dif­
ferent lengths can occur , as opposed to the constant clause-length model. These 
instances are fairly small , consisting of at most a few hundred variables and up to 
a thousand clauses. 

• The hole instances are instances of the notorious pigeon hole principle. Small-sized 
formulas are usually easily solved . Here we refer to moderately sized instances of 
h:::::: 15 holes. The number of variables is O(h2

), the number of clauses is O(h3
) . It 

is well known that efficient methods for these instances exist, for example by means 
of extended resolution ( Cook [27]) or cutting planes ( (another) Cook et al. [29]) 
(see also Buss [20]). On the other hand, Haken proved that no polynomial sized 
resolution proof exists [63]. More details on the pigeon hole principle can be found 
in Section 5.6.2. 

• The 3SAT instances are hard random 3SAT instances in general , generated according 
to the constant clause-length model. We refer to moderately sized instances of 300 
variables and 1290 clauses and to relatively large sized instances of 600 variables 
and 2580 clauses. 

• The celar instances are SAT encodings of large Frequency Assignment Problems; 
see Section 1.3.3. These instances have up to almost 20000 variables and over 400000 
clauses. 

In Table 1.2 we distinguish four degrees of effectiveness of the algorithms. A '++' means 
that the algorithm on average solves the instances easily in very short times; say, at most 
5 seconds. A '+' denotes that the instances are solved on average in a matter of minutes 
to an hour at the most. A '+/- ' implies that the algorithm is capable of solving the 
instances under consideration, but this requires in the order of hours up to a day. Finally, 
a '- ' means that the algorithm does not solve the instances within a day. The results are 
assumed to be obtained on a representative computer. In two cases (on the large celar 
instances) SATO terminated with an error message; hence the '?' in the table. The '*' 
is to emphasize the fact that, while many satisfiable 600-variable 3CNF instances were 
solved by the local search algorithm, we cannot be sure that all the satisfiable instances 
were solved (since we have no means to obtain a proof of unsatisfi ability of such formulas, 
as indicated in the table). 

1.4.4 Remarks and research purposes 

Before evaluating the results gathered in Table 1.2 let us stress again that it is intended 
to give a very rough indication of the effectiveness of the types of algorithms used. Con­
sidering the table, we first observe that many problems are handled in short time by at 
least one of the algorithms. Thus it appears that many classes of instances (at least at the 
sizes considered) do not pose any real challenge for the current state-of-the-ar t algorithms 
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Complete Algorithms Incomplete 

name SAT/UNSAT SATO3.0 Bohm Heer Hugo local search 

aim-50 SAT ++ + ++ ++ 
UNSAT ++ + ++ -

aim-100 SAT ++ +/- ++ ++ 
UNSAT ++ +/- ++ -

aim-200 SAT ++ +/- ++ ++ 
UNSAT ++ +/- ++ -

dubois UNSAT ++ +/- ++ -

pret UNSAT ++ +/- ++ -

ii8 SAT ++ ++ ++ ++ 
ii16 SAT + +/- /- +/- /- ++ 
ii32 SAT + +/- /- +/- /- ++ 
par8 SAT ++ ++ ++ ++ 

par16 SAT + +/- - + 
par32 SAT - - - -

bf UNSAT ++ +/- ++ -

ssa SAT ++ +/- ++ ++ 
UNSAT ++ +/- ++ -

jnh SAT ++ + + ++ 
UNSAT ++ + + -

hole UNSAT - - - -

3SAT-300 SAT + + - ++ 
UNSAT + + - -

3SAT-600 SAT - - - +· 
UNSAT - - - -

celar SAT ?/+/- - - + 

Table 1.2: Effectiveness of algorithms on selected benchmarks. 
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and implementations, both due to the quality of the algorithms and implementations and 
the chilling speed of contemporary computers. In this respect we observe the following. 

• It appears that almost any satisfiable instance can be rather easily solved using a 
local search algorithm. This suggests that given an instance of SAT it is always 
worthwhile to attempt solving it using a local search algorithm first. Obviously, 
the local search algorithm being an incomplete method solely capable of proving 
satisfiability, it fails on any unsatisfiable instance. 

• The enhanced DPLL algorithm implemented in SATO performs much better than 
the 'plain ' algorithm in Bohm's solver on most instances. It appears that HeerHugo 
in several cases outperforms Bohm's solver, but SATO3.0 has gained a reasoning 
strength that is at least comparable to that of Heer Hugo. 

However, with our increasing ability to solve SAT problems, the size of instances we want 
to solve grows just as explosively. Indeed, over the last ten years or so the size of non­
trivial practical SAT problems that can be solved grew from problems with less than 100 
variables to ones involving over 10,000 variables [116]. One could argue that the ever­
increasing speed of computers will facilitate solving larger instances. On the other hand, 
due to the exponentiality of the methods and the fact that even now (relatively small) 
instances exist that are still (too) hard to solve, research is required as well to improve 
and to design algorithms and implementations. The focus in this thesis is on algorithms. 
The research is mainly motivated by the following observations. 

• Unsatisfiable random 3SAT formulas on the threshold are (indeed) hard. It seems 
that for this kind of benchmark intelligent backtracking does hardly improve the per­
formance of the DPLL algorithm. In Chapter 3 we try to improve the performance 
of the DPLL algorithm by deriving new branching rules . 

• The par32 instances are not solved by any of the algorithms. In fact, solving these 
instances was posed as a challenge by Selman et al. [116]. In Chapter 4 we develop 
an extension of the DPLL algorithm which, in combination with a preprocessing 
method involving linear programming, is capable of solving these instances in a 
matter of minutes. 

• As stated before, the pigeon hole formulas are very hard for the algorithms con­
sidered. In Chapter 5 we show that a proof of their unsatisfiability can be com­
puted in polynomial time using semidefinite programming. Using this approach, 
no problem-specific additional information is required, whereas the construction of 
other polynomial size proofs requires explicit use of problem-structure. 

• Satisfiable formulas with thousands of variables are often rather easily solved by 
local search approaches (and in many cases by complete methods as well) . Solving 
unsatisfiable instances of the same sizes is in general far beyond the current state-of­
the art. Thus it appears that more research is required for proving unsatisfiability 
efficiently. An attempt in this direction was made by Franco and Swaminathan [48]. 
Other attempts are made in the Chapters 4 and 5 where linear and semidefinite 
programming formulations are given that express sufficient conditions for unsatisfi­
ability. 
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• Finally, the celar instances are hard due to their sheer size. In Chapter 6 a heuristic 
algorithm is developed that exploits a quite concise model. This algorithm provides 
feasible solutions in very short times. 



Models And Relaxations 

We discuss linear and nonlinear models and approximations of SAT prob­
lems. Weighted elliptic approximations are introduced which play a key 
role in this thesis. 

2.1 Introduction and notation 

2 

Many algorithms for SAT essentially operate on the symbolic model introduced in Section 
1.1, such as resolution and the Davis-Putnam algorithm or its variant known as DPLL. 
In this thesis we are interested in making use of mathematical models involving binary 
and/or continuous variables. In Table 2.1 a brief overview of the models considered is 
given . In the next sections the models are specified. 

Linear models Nonlinear models 

Exact Binary Linear Programming Smooth Continuous Functions 

Inexact Linear Relaxations Elliptic Approximations 

Semidefinite Relaxations 

Table 2.1: Models for SAT problems 

We will be mainly interested in making use of inexact, nonlinear models to obtain effective 
algorithms (both complete and incomplete) for various classes of SAT. 

Before considering the various models, let us introduce some notation. We associate the 
value -1 with false and the value 1 with true. Sometimes we use the value O as well to 
refer to false; this will be clear from the context and cause no ambiguities. With each 
propositional variable Pi, we associate a { -1, 1} variable xi, such that xi = 1 if and only if 
p; is true. Thus we have a one-to-one correspondence between { -1, 1} vectors x and truth 
value assignments to the propositional variables. In this thesis we will feel free to refer 
to both as assignments. In particular, if x is called a satisfying assignment of a formula 
<I>, then this means that the corresponding truth value assignment to the propositional 
variables satisfies <I>. Satisfying assignments are also referred to as solutions. Unsatisfying 
assignments are also referred to as contradictory assignments. 

The models introduced in this chapter rely on a matrix representation of CNF formulas. 
Let <I> be a CNF formula containing n clauses and m distinct variables. Its associated 

19 
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clause-variable matrix A has a row for each clause and a column for each propositional 
variable, hence A E lRn xm_ The entry of matrix A in row k, column i is denoted by aki· 
Recalling the representation of a clause (1.1), ak; is defined as follows: 

{ 

1 if i Eh, 

aki = -1 ifi E Jk, 

o if i ff. h u k 
(2.1) 

Here it is assumed that the propositional variables and the clauses are numbered consec­
utively from 1 to m, and from 1 to n respectively. 

Finally, by u(l;) we denote the number of occurrences of a literal l; in a formula <I> , i.e. 

e7(Pi) l{k I Pi E Cdl = l{k Ii E h}I = l{k I ak; = l}I ; (2.2) 

O"(•Pi) = l{k I •Pi E Cdl = l{k Ii E Jdl = l{k I aki = -1}1- (2.3) 

Example 2.1.1 The clause-variable matrix associated with the CNF formula 

4>1 = (P1 V ,p3 V ,p5) I\ (P2 V ,p3 V ,p4 V p5) I\ ( ·Pi V •P4) 

is given by 

[ 

1 o -1 o -1 l 
A= 0 1 -1 -1 1 . 

-1 0 0 -1 0 

The number of occurrences of the separate li terals can easily be extracted from A, for 
instance e7(p5 ) = u(,p5 ) = 1 (since the fifth column of A contains exactly one 'l' and 
exactly one '-1 '). □ 

2.2 Satisfiability and linear programming 

2.2.1 An integer linear programming formulation 

It is well known that with the SAT problem on a CNF formula <I> a binary feasibility 
problem can be associated (see e.g. Hooker [72]). A clause Ck can be represented by a 
linear inequality in the following way: 

I: x; - I: xj 2 2 - e(ck)-

Using the clause-variable matrix A, this can be rewritten as af x 2 2 - £(Ck), where a[ 
denotes row k of A. It is easy to verify that for a {-1 , 1} vector x, afx 2 2- £(Ck) 
if and only if the corresponding truth value assignment to the propositional variables Pi 
satisfies clause Ck. The minimal value of af x equals -C(Ck) and it is attained if and only 
if X; = -1 for all i E h and x; = 1 for all i E Jk; as soon as at least one x; = 1 for some 
i Eh or x; = -I for some i E Jk, a[ x 2 1 - (lh U Jkl - I)= 2 - C(Ck)-

Hence the integer linear feasibility problem (ILP) of the satisfiability problem can be 
stated as 

(IPsAr) find x E {-1 , l}m such that Ax 2 b, 

where b E lRn, with bk= 2 - £(Ck), 1::; k::; n. 
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2.2.2 Solving (IPsAr) 

The most common approaches to solve integer linear programming problems include 
branch and bound and branch and cut algorithms. The integrality constraints are first 
relaxed to linear constraints (i.e. x E {-1, l}m is relaxed to -e :::; x '.S e; e denotes the 
all-one vector of length m). The resulting linear program is known as the LP relaxation. 
We refer to the relaxation of (IP SAT) as (LP SAT). The LP relaxation can be solved using 
the simplex method or an interior point method (the latter of which runs in polynomial 
time [87]) . If it is infeasible, then the original ILP must also be infeasible, while if the 
solution to the LP relaxation is a { -1, 1} vector, it is feasible in the ILP formulation 
as well; in both cases we are done. Furthermore, in specific cases rounding schemes are 
available to efficiently round the (fractional) feasible solution to a feasible integer solution; 
an example is discussed in the next section. Additional classes of SAT that are solvable 
in polynomial time using LP can be found in the literature; see Conforti and Cornuejols 
[25], Chandru and Hooker [23] (see also Schlipf et al. [113]). 

Unfortunately, in general the solution of the LP relaxation will be fractional and there 
does not exist an efficent procedure to obtain a feasible integer solution using the fractional 
solution (note that the existence of such a procedure would in fact imply that P = NP). 
In particular, the LP relaxation may be feasible, while the original ILP is infeasible. If 
the LP relaxation is feasible , usually one or a combination of the following techniques is 
applied: 

1. Branch: a variable is chosen and two new LP relaxations are created: in one the 
variable is fixed at -1, in the other at +1. The (lower dimensional) LP relaxations 
are solved again. 

2. Cut: the LP relaxation is tightened by adding cuts and it is solved again. A cut is 
a linear inequality that is redundant in the ILP formulation, but it cuts off a part 
of the feasible region of the LP relaxation. 

These steps are repeated recursively until a feasible solution of the ILP is found, or until 
it can be decided that no solution exists. In general, such procedures will be effective only 
when the LP relaxations are sufficiently tight. An LP relaxation is called tight if the set 
of vertices of its feasible region coincides with the set of solutions of (IP SAT). Since LP 
algorithms provide a vertex solution , a tight LP relaxation guarantees that any solution 
to the LP is a solution to the ILP as well. Unfortunately, the LP relaxation of (IPsAT) 
is weak. Note that bk '.S O for any clause C k of length two or more, hence the trivial 
all- zero solution is always feasible when no unit clauses are present . In addition, since we 
are dealing with a feasibility problem, there is no natural objective function available to 
add to (LPsAT) in order to compute useful bounds. Thus in the absence of unit clauses 
(all of which can be processed in linear time [41] to reduce problem size) formulations of 
this type can be of use only to find incumbent solutions. 

To better suit the LP approach towards proving unsatisfiability, the LP relaxation can 
be tightened by adding cuts. Hooker [71, 72] shows that the resolution algorithm can be 
interpreted as the addition of cutting planes. Thus, as follows from the completeness of 
resolution [110], cutting planes give a complete method for solving SAT problems. Al­
though the cutting plane approach is theoretically powerful [29] (see also Section 5.6.2), 
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it is not entirely clear in practice how to construct strong cutting planes. Besides, expo­
nentially many cutting planes may be required to obtain a tight LP relaxation. Several 
studies on the application of LP in a branch and bound or branch and cut environment to 
obtain effective SAT algorithms are available in the literature ( e.g. Blair et al. [11], Hooker 
[71, 72], Hooker and Fedjki [73], Jeroslow and Wang [77]). The overall conclusion seems 
to be that although LPs do help in reducing the size of the search trees, they are mainly 
useful for finding solutions quickly on relatively small problems. However, local search 
algorithms appear to be more effective in this respect. This is mainly due to the fact that 
the complexity of solving a single LP is (at least) 0(3.5m), whereas one iteration in a local 
search algorithm usually requires linear time at the most. In practice, for determining 
unsatisfiability in non-trivial cases linear programming does not appear to be useful at 
all. In fact, in a recent paper by Selman et al. [116] it is posed as a challenge to show 
that LP approaches can be made practical for SAT solving. A successful application of 
LP to speedup SAT solving on a particular kind of benchmarks is discussed in Chapter 
4 of this thesis. The LP formulation introduced there models a sufficient condition for 
unsatisfiability. 

2.2.3 A class of SAT solvable using linear programming 

Let us now consider an alternative LP formulation of SAT problems that yields a sufficient 
condition for satisfiability. Consider the following primal and dual formulation. 

max s 

s.t . Ax 2'. se, 

-e :S: x :S: e. 

mm eTlzl 
s.t. ATw = z, 

eTw = 1,w 2'. 0. 

Denote the optimal value of (LPaut) (LDaut) by opt(LPaut) (opt(LDaut)). For linear pro­
gramming problems strong duality holds. It is easy to verify that (LP aut) and (LDaut) are 
both feasible, implying that opt(LP aut) = opt(LDaut) and that optimal solutions x, s and 
w, z exist. Observe that a valid lower bound of zero on the optimal value of (LP aut) is ob­
tained by taking x = 0, s = 0. If this lower bound is not optimal , then the corresponding 
formula must be satisfiable, as stated in the following theorem. 

Theorem 2.2.1 Let <I> be a propositional formula with associated LP formulation (LPaut)­
If opt (LPaut) > 0 then <I> is satisfiable. A satisfying assignment is obtained by taking 
y = sgn(x), where x denotes the optimal solution of (LPaut)-

Proof: Let (x ,s) be the optimal solu t ion of (LPaut)- The fact that a[x 2'. s > 0 implies 
that ak;X; > 0 for some 1 :S: i :S: m. From this we conclude that ak;sgn(x;) = 1. It follows 
that a[ y 2'. 1- (/!(Ck) - 1) = bk, for all 1 :S: k :S: n. □ 

Using the dual formulation (LDaut) we have an easy corollary. Note that the optimal 
value of (LDaut) can be zero only if AT w = 0 for some nonnegative w =f. 0. 

Corollary 2.2.2 If there is now 2'. 0, w =f. 0, such that AT w = 0, then the corresponding 
formula is satisfiable. 

Hence if there is no (nonnegative and nonempty) combination of clauses that yields the 
trivial linear inequality O 2'. 0, then <I> must be satisfiable. This is (obviously) a severe 
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constraint that cannot be expected to be satisfied often in SAT formulas . We observed 
empirically that on random 3SAT instances with a small clause/variable ratio (say, n ~ 
1.5m) satisfying assignments can be generated in this way. 

If the optimal solution xi= 0 (even ifs= 0), it is called a linear autarky [90], which is a 
special case of autarkness. This notion was first introduced by Monien and Speckenmeyer 
[102]. 

Definition 2.2.3 (Autarkness) A partial assignment of truth values is called an autark 
assignment of a f ormula <I>, if under this assignment <I> reduces to a formula '¥ with \JI C <I> . 

By iI1 C <I> we mean that \JI is a proper subset of <I> in the sense that iI1 contains clauses that 
are also in <I> only. It holds that <I> and 1¥ are satisfiability-equivalent. If W is satisfiable 
with an assignment x, then <I> is satisfiable by x extended with the autark assignment . On 
the other hand, if <I> is satisfiable, then the satisfying assignment is obviously also valid 
for w. Note that autarkness is a direct generalization of monotone variable fixing . If a 
certain variable p occurs only unnegated, then the partial assignment p is an autarky. 

Let us now define the linear autarky, which was introduced by Kullmann [90], generalizing 
on a theorem first proved in [99]. 

Definition 2.2.4 (Linear autarky) A vector x i= 0, x E JR,m, with Ax 2'. 0 is called a 
linear autarky. 

We verify that x gives rise to the autark assignment y = sgn(x). 

Theorem 2.2.5 The assignment y = sgn(x) is autark. 

Proof: Consider a single inequality: 

aI x = L x; - L x; 2'. 0. 
iE l k iEh 

There are two possibili ties: 

l. x; = 0 for all i E h U Jk· 

2. x; i= 0 for some i E h U Jk. 

Similar to the proof of Theorem 2.2 .1, the second possibility implies that af sgn(x) 2'. bk. 
Consequently, all clauses with property 2 are satisfied by y , while the other clauses remain 
untouched. □ 

Kullmann [90] shows that using the concept of linear autarkies, 2SAT and HornSAT are 
solvable in polynomial t ime by linear programming. In this thesis the concept of linear 
autarky occurs a number of times. 

2.3 Nonlinear models of SAT problems 

As suggested in the previous section, it is unlikely (unless P = NP) that in general one 
can efficiently construct continuous linear models exactly representing SAT problems. 
However, using nonlinear formulations, exact models can be constructed. Let us first 
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review a general scheme for obtaining smooth nonlinear models of satisfiability problems 
as given in [97, 98]. In principle the transformation techniques are not restricted to CNF 
formulas; general Boolean formulas could be handled. Here we will specifically consider 
CNF formulas: we discuss some examples and subsequently we explain how nonlinear 
models are used in this thesis. 

A transform T of a propositional formula <I> is defined as a mapping T : [-1 , l]m-+ [O, l] 
with the property that for all { -1, 1} vectors x it holds that 

T(x) 2: thtrue <==} x is a satisfying assignment of <I> ; 

T(x) :S: th false <==} x is a contradictory assignment of <I> , 

where thtrue and th false are threshold values that are determined by the choice of T. The 
satisfiability problem could be solved via the following equivalent mathematical program­
ming problem. 

max T(x) 
s.t. x E {-1 , l}m. 

If the optimal objective value of (PT) is below thtrue, then <I> is a contradiction. The 
integrality conditions may be relaxed to obtain a linear or a spherical relaxation. Such 
relaxations can also be used to compute certificates of unsatisfiability. Unfortunately, 
in general a formula may be a contradiction while the relaxation of its transform has a 
maximal value above thtrue· 

Let us specify an approach to constructing an appropriate function T( x). The idea is 
to first introduce a mapping Fk(x) : [-1 , 1r-+ [O, 1] that maps, for any {-1 , 1} vector 
x, a clause Ck to 1 if it is satisfied by x, and to O if it is not . Subsequently, a mapping 
G : [O, 1 in -+ [O, 1] maps the conjunction of clauses to 1 if and only if each clause is true, 
i.e. x is a satisfying assignment. Thus the transformation of a propositional formula <I> is 
given by 

T(x) = G (Fi(x)), ... , Fn(x)). 

Note that when the Fk are strictly monotone and the Fk and G are either both convex or 
both concave (this is posed as a condition in [98]) , the superposition of these functions is 
also convex or concave. In order to get a better understanding of these transformation, 
let us consider some specific examples. 

Example 2.3.1 We give three examples. 

1. Let the functions Ft : [-e, £] ➔ [O, 1] be defined as 

(hence Fe(x) = 0 if and only if x = -£; otherwise Fe(x) = 1). Transform a clause 
Ck of length e using the linear function af x and substitute this in Fe. Then it holds 
for {-1, 1} vectors x that F(af x) = 1 if and only if af x 2: 2 - £(Ck)- For the 
aggregation, use the function G: 

n 

G(xi, ... , Xn; Wi, ... , Wn) = L WkXk, 
k=l 
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where the wk's are strictly positive weights. We assume (without loss of general­
ity) that the weights sum to one. Thus T(x) = l if and only if x is a satisfying 
assignment. 

2. Another example is the polynomial or multilinear representation of SAT problems 
as used by Gu [61]. A clause Ck is represented as a polynomial function: 

m 

A(x) = II (1 - xi) II (1 +xi)= II (1 - akix;), (2.4) 
iE h i=l 

where it is required that Pk(x) = 0 for x to be a satisfying assignment of clause Ck. 
Use again the function G with associated weights of the previous example to obtain 
the weighted polynomial representation of SAT : 

n 

(WPR) find x E {-1, l}m such that P(x; w) = Lwk(l - Pk(x)) = l. 
k=l 

3. Van Maaren [96, 97] uses the following mappings. For £ > 0, the function A, 
(-oo, 1]-+ [0, 1] is given by 

A (x) = x + v'x2+E 
e l+Jf+c' 

and for r :S 1, r 'I 0, A : [0 , 1t-+ [0, 1] is defined by 

Note that A , is convex and monotone on the given interval, while Ar is concave. 
The (concave) transform of a clause Ck is given by 

l T 
Fk(x) = l - A(l - 2(£(Ck) + akx). 

It holds that Fk(x) = 0 if and only if x is a contradictory assignment; otherwise 
Fk(x) ;:;::; 1 (assuming£ is small). The transform of a formula <I> is obtained using 
T(x) = Ar(F1 (x) , ... , Fn(x)). The threshold value as a function of£ and r can 
be obtained by noting that Fk(x) > l - A,(0) for any satisfying assignment and 
substituting this in Ar· □ 

Although the transformations introduced above provide valid representations of SAT prob­
lems, it is not straighforward to exploit them to obtain computationally effective methods 
for solving SAT in general. Algorithms relying on nonlinear models have been developed 
by Gu [61] and Shang and Wah [118]; in Chapter 6 we discuss several similar algorithms. 
The results obtained using these algorithms are often remarkably good. However, due to 
the fact that the algorithms rely on optimizing nonconvex functions, it seems that they 
are useful to solve satisfiable instances only. 

We are interested in making use of nonlinear convex structures to facilitate proving both 
satisfiability and unsatisfiability. Functions of the type T(x) provide relatively concise 
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(single) expressions that exactly represent the formulas at hand. Thus a sensible ap­
proach seems to construct concise smooth approximations of T(x) which are convex and 
approximate T(x) with some accuracy. To this end, van Maaren [96, 97, 98] proposes to 
exploit first and second order Taylor approximations. Obviously, the approximation does 
not necessarily induce a strict separation of satisfying and contradictory assignments, but 
hopefully it still captures useful characteristics of the formula. For example, approximat­
ing the transform induced by A 0 and Ar in the above example, van Maaren obtains a 
( convex) ellipsoid, which under certain parameter settings contains all satisfiable assign­
ments and does not contain the average unsatisfiable assignment. In this thesis we make 
heavy use of a comparable elliptic approximation which was first introduced in [96]. An 
easy derivation is given in the next section. In Appendix B a derivation via second-order 
Taylor approximations is given. 

2.4 Weighted elliptic approximations 

2.4.1 A straightforward derivation 

Recall that an assignment x E { -1, 1 }m satisfies clause ck if and only if ar x 2'. 2 - €( Ck) . 
It follows that if x is a satisfying assignment, then 

1 - €(Ck)~ af x - l ~ €(Ck) - 1. 

Squaring this expression, we obtain an elliptic representation of a single clause. An 
assignment x satisfies clause Ck if and only if x E £k, where £k is defined as 

(2.5) 

Consequently, the satisfiability problem can be expressed as finding a {-1, l} vector x 

lying in the intersection of n ellipsoids, i.e. 
n 

XE n£k n{-l,l}m. 
k=l 

However, it is hard to characterize the intersection of two or more ellipsoids explicitly. 
We therefore need to find another way to aggregate the information contained in the 
n separate ellipsoids. We choose to take the sum over all these ellipsoids, which again 
yields an ellipsoid. Unfortunately, during summation the discriminative properties of 
the separate ellipsoids are partly lost . We speak therefore of an approximation of a 
propositional formula. Rather than weighting each clause equally in the summation, let 
us associate a nonnegative weight wk with each individual clause and associated ellipsoid. 
Then for any satisfying assignment x E {-1, l}m it must hold that 

n n 

"I:,wk(afx -1) 2 ~ "I:,wk(€(Ck) - 1)2. (2.6) 
k = I 

Let w E lRn , w 2'. 0, be a weight vector. Denoting W = diag(w), we define the quadratic 
function Q(x; w) as 

(2.7) 

Furthermore, let the vector r E ]Rn be such that rk = €( Ck)( €( Ck) - 2) , or equivalently 
rk = bk(bk - 2). We have the following theorem. 
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Theorem 2.4.1 Let <I> be a CNF formula with associated clause-variable matrix A and 
let w E lR,n be a vector of nonnegative clause weights. The elliptic region 

contains all satisfying assignments of <I>. 

Proof: Rewriting (2 .6) , we obtain 

n n n 

L wk(aI x) 2 
- 2 L Wkar X :SL Wkf(Ck)(f(Ck) - 2). 

k=l k=l k=l 

This is equivalent to 
xr ATW Ax - 2wr Ax :S rT w. 

The theorem follows immediately. □ 

The region £(w) is called an elliptic approximation. By construction it is convex. A 
corollary of Theorem 2.4.1 is the following. 

Corollary 2 .4. 2 A necessary and sufficient condition for x E { -1, 1} m to be a satisfying 
assignment of <I> is that x E £(w) for all w 2: 0, w -f 0. 

To verify this corollary, note that the necessity of the condition follows from Theorem 
2.4.1. Its sufficiency follows by observing that if x is a contradictory assignment, then it 
violates some clause Ck . As a consequence, taking wk = 1 and setting all other weights 
to zero, x ¢ £(w). 

In general , for any given w 2: 0, apart from the satisfying assignments some ( or even all) 
contradictory assignments might be contained in the ellipsoid as well. On the other hand, 
Corollary 2.4.2 indicates that by adjusting the clause-weights, one can attempt to improve 
the tightness of the elliptic approximation, i.e. to reduce the number of (unwanted) con­
tradictory assignments contained in it. In Section 2.4.3 we illustrate this via an example. 
Let us first show that for 2CNF formulas the ellipsoid is tight when w > 0. The elliptic 
approximation of a pure £CNF formula is denoted as Ee(w). 

Lemma 2.4.3 Let <I> be a (pure) 2SAT formula with elliptic approximation £2(w). For 
any { -1, 1} assignment x , it holds that x E £2 ( w) if and only if x is a satisfying assign­
m ent. 

Proof: By Theorem 2.4 .1 it is clear that any satisfying assignment x E £2 (w) . For a 2CNF 
formula, r :::::: 0, implying that the elliptic approximation reduces to (Ax - 2efW Ax :S 0. 
Note that for any satisfying assignment x in fact equality holds , since ar x E {0, 2}, 
1 :S k :S n . If x E {-1 , l}m violates a clause Ck , then (Ax - 2efW Ax 2: 8wk > 0 
(provided that w > 0) . □ 

As stated before, an alternative derivation of weighted elliptic approximations is given in 
Appendix B. 
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2.4.2 Entities involved in the elliptic approximation 

A CNF formula in conjunction with its vector of clause-weights has a number of problem­
specific entities associated with it that are accessible via the elliptic approximation . For 
easy reference we state these as lemmas. We restrict ourselves to the case where w = e, 
i.e. all clauses are assigned equal weights. 

Lemma 2.4.4 For any formula ct> with associated clause-variable matrix A , 

(AT A);; 
(AT e); 

a-(p;) + o-( ,p;) ; 
o-(p;) - o-(,p;). 

Proof: Since ak; = ±1 if and only if i E h U Jk, it holds that (AT A);; = Lk=l at. The 
first equality follows (see also (2.2-2.3)). The second equality is proved similarly. D 

In words , diagonal element i is equal to the total number of (weighted) occurrences (both 
negated an unnegated) of variable Pi- Similarly, element i of the linear term AT w is equal 
to the balance of positive and negative weighted occurrences of variable Pi- Also, the total 
number of variable occurrences can be computed through 

m 

I: (o-(p;) + o-(,p;)) 
i= l 

which is equal to 

k= l 

Combining these with Lemma 2.4 .4, we obtain the fo llowing equalities. 

Lemma 2.4.5 For any formula ct> and associated clause-variable matrix A , 

m m n 

I: (o-(pi) + o-(,p;)) = I: (AT A);;= I: e(ck)-
i= l i= l 

2.4.3 An example 

To illustrate the notions discussed above and the role of the clause weights, we include a 
small example of a CNF formula and its elliptic approximation. 

Example 2.4.6 The formula ct> consists of the conjunction of 6 clauses. 

C 1 (P1 V ,p4) 

C2 (·Pi V ,p4 V p5) 

C3 (p3 V p4) 

C4 (·P2 V ,p3 V p4) 

C5 (P2 V ,p3 V ,p5) 

C5 (p3 V ,p4 V p5). 
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Each clause Ck has a nonnegative weight wk associated with it. The corresponding elliptic 
approximation can be constructed using the matrix ATW A which is given by 

0 

the linear term 

0 

W4 -W5 -W4 

W3 + W4 + W5 + W6 W3 -W4 - W6 

Wt + W2 + W3 + W4 + W6 

Wt -W2 

-W4 + W5 

W3 - W4 - W5 + W6 

-Wt - W2 + W3 + W4 - W6 

W2 - W5 + W6 

and the (also weight-dependent) right hand side: 

-w2 

-W5 

W5 +w6 

-W2 - W6 

W2 + W5 + W6 

Let us first consider the unweighted case (w = e). In Figure 2.1 the 32 distinct as­
signments of <I> are evaluated, ordered according to their binary value (i.e. the all false 
assignment has index 1, the assignment x = (1, -1, -1, -1, -1) has index 2 and so on; 
the all true assignment has the highest index 25 = 32). The bars indicate the value of 
Q(x; w = e). Dark bars correspond to satisfying assignments (there are five of these) 
and white bars to contradictory assignments. Note that the approximation is 'tight ' in 
the sense that a satisfying assignment lies on its boundary. Of the 27 false assignments, 
9 are contained in the elliptic approximation. For instance, the assignment indexed 18 
(x = (1, -1, -1, - 1, 1)) has elliptic value Q(x; e) = 8 < 12 but it violates the third clause. 
As an example of a satisfying assignment, it can be easily verified that the solution with 
index 5, x = (-1 , -1, 1, -1, - 1) with Q(x; e) = 4, indeed satisfies all clauses. 

To illustrate that by adjusting the weights the tightness of the ellipsoid can improve, let 
us first distinguish between clauses of different lengths only. Consider w = [2, 1, 2, 1, 1, l]. 
Now the number of contradictory assignments contained in the ellipsoid reduces to just 
one which lies on the boundary of the ellipsoid; see Figure 2.2. The corresponding assign­
ment is x = ( -1 , 1, 1, -1, -1). The reader may verify that to push this solution out of the 
ellipsoid as well, a necessary condition is that -w2 + 3w4 - w5 - w6 > O; hence giving all 
clauses of length 3 equal weight can never work. However , taking w = [2, 1, 2, 1, 1, O] (note 
that we actually neglect the last clause), lo and behold a strict separation of satisfying and 
contradictory assignments is obtained! This is illustrated in Figure 2.3. Consequently, 
the last clause is redundant; it is implied by Ct /\ C 2 . Let us emphasize that in general 
it is not necessarily possible to obtain a strict separation of satisfying and contradictory 
assignments. D 
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Figure 2.1: Partial separation of assignments via unweighted elliptic approximation. 

35 

30 

' 

' 
AHS 

· ~ 

- - -
0 

' I II 
0 

10 15 20 25 30 --
Figure 2.2: Partial separation of assignments via weighted elliptic approximation. 

' 
20 

' 

0 1 
AHS 

' 

0 
[~ 

- - -

I■ 
15 20 25 30 

i,ok.llion• 

Figure 2.3: Strict separation of assignments via weighted elliptic approximation. 
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2.4.4 Furt her adjusting the ellipt ic approx imation 

As the example of the previous section highlights , the tightness of the ellipsoid can im­
prove vastly when the weights are adjusted. This suggests that by optimizing over the 
weights (provided a meaningful optimization problem is defined) , interesting and useful 
characteristics of the formula at hand can be discovered and exploited. Another observa­
tion that we can use to fur ther adjust the approximation is the following. For any vector 
u E JR. m and any binary vector x E { -1, 1} m, it holds that 

since xf = l for X; E { - 1, 1} . The introduction of the vector u has no effect on the 
separating quality of the elliptic approximation , but it is of great importance in deriving 
bounds, models and algorithms for binary quadratic optimization problems in general. 
Observe that u can be chosen such that the matrix ATW A - diag(u) is positive definite, 
negative definite or indefinite (for the reader who is uncomfortable with these terms 
some basic notions from linear algebra are reviewed in Section 3.2.2). Accordingly, the 
quadratic forms associated with it are of a different nature, although they are equivalent 
when restricted to {-1 , 1} variables. In this thesis , various choices of u are considered, 
which yield models exhibiting different characteristics for different purposes. 

• In Chapter 3 the model with u = 0 is considered. It is used to obtain branching rules. 
In addition, the problem of obtaining 'good' weights is addressed (in a simplified 
form). 

• Chapter 4 also uses the model with u = 0 to characterize and to recognize a specific 
class of polynomially solvable formulas. By optimizing over the weights , subformulas 
with the desired structure can be identified. 

• By taking both u and w to be variable, eigenvalue optimization problems arise. 
These can be cast as semidefinite programming problems, which are related to 
semidefinite relaxations of combinatorial optimization problems. This is the subject 
of Chapter 5. 

• In Chapter 6 a model is derived which is equivalent to the model obtained after sub­
stituting u = diag(ATW A) . The model thus obtained is nicely suited for the design 
of fast approximation algorithms for a special class of combinatorial optimization 
problems, which includes the Frequency Assignment Problem (see Section 1.3.3) . 
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Enhancing The DPLL Algorithm 
U sing Elliptic Approximations 

The most widely used complete search algorithm for SAT solving is the 
DPLL algorithm. The quality of the branching rule involved is crucial 
for its performance. Based on elliptic approximations of SAT problems, 
we devise new branching rules and relate them to the existing ones. To 
obtain weights for clauses of different lengths, we study the volume of the 
ellipsoids. Computational evidence to support the claim that the newly 
devised branching rule outperforms the existing ones in terms of node 
counts is provided. 

3.1 Introduction 

3 

One of the best known and most widely used algorithms for solving satisfiability (SAT) 
problems, is t he Davis-Putnam-Logemann-Loveland algorithm [36, 37]. This algorithm 
implicitly enumerates all solutions to the SAT problem at hand by setting up a binary 
search tree. At each node of the search tree , a variable must be chosen to branch on (i.e. to 
fix at true and J alse in the two subtrees) by some branching rule. The actual performance 
of the DPLL approach (for medium to large sized problems) depends on the effectiveness 
of the branching rule. For example, Dubois et al. [44] compare the performance of ran­
dom branching and guided branching. The search trees of the first are larger than that 
of the latter by orders of magnitude. As a consequence, to accommodate the solution of 
'hard' SAT problems (see e.g. [31, 101]), branching rules need to be identified that are 
computationally cheap and keep the search trees manageable. A number of widely used 
branching rules can be found in studies by Jeroslow and Wang [77], Hooker and Vinay 
[74], Freeman [49], Crawford and Auton [3 1], Dubois et al. [44] and Van Gelder and Tsuji 
[53]. 

To provide an intu itive motivation for a branching rule, often a hypothesis is posed that 
specifies which properties a branching variable must have, such that it is likely to yield 
a small search tree . Jeroslow and Wang [77] introduce the satisfa ction hypothesis , which 
asserts that a branching variable must be chosen such that the resulting subproblem is 
likely to be satisfiable. Later, Hooker and Vinay [74] argue that the simplification hy­
pothesis is more appropriate: rather than aiming for satisfiable subproblems, one should 
aim for relatively easy subproblems (either satisfiable or unsatisfiable). Essentially, we 
also take the simplification hypothesis as motivation. However, the way in which the 

33 
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hypothesis is interpreted to obtain branching rules differs completely from Hooker and 
Vinay's approach. Instead of (directly) counting variable occurrences, we use an elliptic 
approximation to capture the important characteristics of the CNF formula under con­
sideration in a single expression (from which variable counts can be extracted as well; 
see Section 2.4.2). The ellipsoid involved is a smooth approximation of the SAT problem 
under consideration. Using the particular structure of the ellipsoid branching variables 
with 'a great impact ' on the formula can be identified . Below we sketch how we aim to 
measure this impact via the ellipsoid. If a variable has great impact on the formula, the 
resulting subformulas seem likely to be relatively easy. This is the intuition behind the 
branching rules we devise. The design of a branching rule involves two major issues: 

• Assigning weights to clauses; 

• Specifying the actual branching rule. 

Let us discuss these issues in some detail. The problem of determining the relative impor­
tance of individual clauses can play a key-role for the actual performance of a branching 
rule. Many algorithms might benefit greatly from identifying 'important' clauses at an 
early stage during execution. Usually, the relative importance of clauses is measured 
solely by their lengths, and different weights are assigned to clauses of different lengths, 
where short clauses are weighted higher than long ones. The natural question is then how 
to choose these weights. As far as we know, mostly the weights are determined based 
on some rather intuitive probabilistic argument first stated by Jeroslow and Wang [77], 
or in an ad hoc experimental way (Dubois et al. [44], Crawford [30]). We propose to 
find weights, such that the elliptic approximation is in some sense 'tight ': as a measure 
of tightness, we use the volume of the ellipsoid. We experimentally determine weights 
which yield ellipsoids with small volumes. The weights deduced using this approach are 
confirmed to yield better results in the DPLL branching algorithm than the weights that 
are usually used in the literature, especially when a branching strategy is used that is 
based on the elliptic approximations as well. 

The other step is to devise the actual branching rule. Our approach is to find a branching 
variable such that after fixing this variable the elliptic approximation in lower dimension 
can be expected to be (relatively) smaller, and therefore tighter. Interestingly, using this 
approach, we obtain some new branching rules , but also rediscover well known branch­
ing rules such as proposed in [44, 53, 74] . These are now obtained with a geometrical 
motivation rather than a counting argument. In fact, these rules can be considered as 
approximations of the branching rules making full use of the elliptic structure. The latter 
outperform the old ones in terms of node counts (on hard random 3SAT instances) . 

This chapter is organized as follows. In the following section we discuss the preliminaries 
and review some basic notions from linear algebra. In Section 3.3 the DPLL algorithm 
is reviewed and we give a general framework to classify branching rules. Also some en­
hancements of the DPLL algorithm are mentioned. Section 3.4 is concerned with the 
derivation of various branching rules using the elliptic approximation. In Section 3.5 the 
problem of finding adequate weights is addressed. We report on computational results on 
hard random 3SAT problems in Section 3.6, and conclude with some remarks. 



3.2 Preliminaries and notation 35 

3.2 Preliminaries and notation 

In this section we briefly review the satisfiability problem and its elliptic approximation, 
and some notions from linear algebra which we need for deriving the new branching rules. 

3.2.1 SAT and elliptic approximations 

We use the notation introduced in the Chapters 1 and 2. We review the notation most 
relevant for this chapter. A CNF formula <I> is the conjunction of n clauses Ck , where 
each clause is a disjunction of a number of literals l;. A literal is a proposition ( or 
variable) Pi or its negation ,p;. By /!(Ck) the length of clause Ck is denoted. Let 
m be the number of distinct variables occurring in <I>. By A E Rn xm we denote its 
associated clause-variable matrix (see (2 .1)) . The associated right hand vector is denoted 
by b E Rn, where bk= 2-f!(Ck)- To each clause a nonnegative weight wk?: 0 is assigned. 
Let w = [w1, ... , wn] and W = diag(w). A (weighted) elliptic approximation of <I> (see 
Theorem 2.4.1) is given by 

E(w) = {x E Rm I xT ATW Ax - 2wT Ax~ bTW(b- 2e)}. 

This ellipsoid contains all satisfying assignments of <I>. In this chapter clauses with the 
same length are assigned equal weights. Considering the pure /!CNF problem, the expres­
sion for the ellipsoid reduces to (noting that b = (2 - f!)e) 

Ee= {x E Rm I XT AT Ax - 2eT Ax~ e(e - 2)n}. 

By u(l;) we denote the number of occurrences of literal l; in a formula <I>. It holds that 
(see Lemma 2.4.4) 

(AT A);; 

(AT e); 

a(p;) + a(,p;); 

a(p;) - a(,p;). 

3.2.2 Some basic linear algebra 

(3.1) 

(3.2) 

For easy reference we review some basic linear algebra. For a rigorous overview on the 
subject , see e.g. Strang [123]. Consider the quadratic function 

Q(x) = xTQx - 2qT x. 

Assume that Q E Rm xm is a symmetric, positive definite matrix, i.e. xTQx > 0 for any 
vector x E Rm. Then Q(x) is a convex function , which attains its unique minimum (with 
value equal to -qTQ- 1q ~ 0) in i = Q- 1q. The matrix Q has a spectral decomposition 
Q = SAST. Here the matrix A is a diagonal matrix with on its diagonal the m strictly 
positive eigenvalues of Q, and the matrix S contains a set of orthonormal eigenvectors 
corresponding to the eigenvalues; it holds that Qs; = >.;s;, 1 ~ i ~ m . Now consider the 
region 

E(r) = {x E Rm I Q(x) ~ r 2
}. 

This region is a bounded nonempty elliptic region, provided that r 2 ?: -qTQ-1q. This 
can be verified as follows. Letting y = x - i, we obtain 
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It may be verified that i'2 = r 2 + qTQ- 1q. We call r the radius of the ellipsoid. Using the 
change of variables z = sr y we find that 

m 

E(i') = {z E JRm I zTAz = I: ,\z; :S i'2}. 

i= l 

Since .\; > 0, 1 ::; i ::; m , it is easy to see that this is a bounded elliptic region. In z-space, 
the ellipsoid is centered at the origin and the axes point along the unit vectors. The 
lengths of the axes are equal to i' / A- It follows that in the original x-space the ellipsoid 
is centered at i , while its axes point along the eigenvectors. Note that the longest axis 
of the ellipsoid is the one corresponding to the eigenvector corresponding to the smallest 
eigenvalue. If the matrix Q has an eigenvalue zero (then it is only positive semidefinite) 
the region is not bounded. 

3.3 The DPLL algorithm and enhancements 

We first describe the basic ingredients of the generic branching algorithm that is most 
widely used to solve instances of satisfiabili ty: the DPLL algorithm. Subsequently, we 
give a framework in which most known branching rules can be systematically classified. 
This section ends with the description of some enhancements of the DPLL procedure. 

3.3.1 The original DPLL algorithm 

We describe the variant of the Davis-Putnam algorithm [37] introduced by Davis, Loge­
mann and Loveland [36] which is known as the DPLL-algorithm. The DPLL-algorithm 
is an implicit enumeration algorithm, that enumerates solutions by setting up a binary 
search tree. In figure 3.1 the DPLL-algorithm is summarized. 

procedure DPLL (<I>, depth) ; 
<I>:=uni t_resolution( <I>) ; 
<I>:=mon_var _fix ( <I>); 
if <I>= 0 then 

<I> is satisfiable: return(satisfiable) ; 
if ck = 0 for some ck E <I> then 

<I> is contradictory: backtrack; 
l:=branch_rule( <I>); 
DPLL(<I> U {I}, depth+l); 
DPLL(<I> U { ,I}, depth+l) ; 

return (unsatisfiable); 

Figure 3.1: The DPLL algorithm . 
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We discuss the DPLL algorithm in some more detail. 

• The procedure unit_resolution finds all unit clauses (i.e . clauses consisting of a 
single literal) and sets the corresponding literal to true. All clauses in which this 
literal appears are then satisfied, while all occurrences of the negation of this literal 
are eliminated. Note that performing unit resolution, new unit clauses can emerge; 
these are then added to the list of unit clauses and processed in turn. The procedure 
terminates when no unit clauses remain, or when the empty clause is derived. It 
can be implemented to run in linear time (Gallier and Dowling [41]). 

• The procedure mon_var_fix performs monotone variable fixing. If some variable 
occurs negated only ( or unnegated only) , it can be set to J alse (true) such that all 
clauses it appears in are satisfied. The remaining formula is obviously satisfiability­
equivalent to the original one. In fact, a monotone variable gives rise to an autark 
assignment (see Definition 2.2.3). Note that this procedure is often not included in 
current state-of-the-art implementations. 

• When the problem is not solved after exhaustively applying t he previous steps, a 
li teral is chosen to branch on. It is added as a unit clause to the formula in the left 
branch of the tree and subsequently the DPLL procedure is recursively called. If 
no solutions are found in the left subtree, on returning the negation of the literal is 
added as a uni t clause to the formula in the right branch of the tree, and again the 
DPLL procedure is recursively called. Obviously, in any solution the literal is either 
true or J alse; consequently the DPLL method is complete. 

As stated before, a very important step of the DPLL algorithm is the choice of the 
branching rule. If good branching variables are chosen, the search tree is kept relatively 
small. Several studies are concerned with (among other things) finding good branching 
rules , e.g. [44, 53, 74, 77]. In the next section we will discuss some well known branching 
rules, and in t he sections thereafter a number of new branching rules, based on the elliptic 
approximation, are derived. 

3.3.2 Uniform structure of branching rules 

In this section we devise a general framework to systematically classify the branching 
rules that are discussed in the li terature [31, 44, 49, 53, 74]. Most branching rules can be 
interpreted to consist of the following steps. 

1. Restrict . Determine a set P* <:;;; {p1 , ... ,Pm} of candidate branching variables. 

2. Compute. For each variable Pi E P* compute f (Pi) and!( •Pi), where the function 
J measures the 'quality of branching on (·)Pi '· 

3. Balance. For each variable Pi E P * balance the values obtained in the previous 
step using some balancing function g, i.e. bali = g(J(pi) , J(•Pi)). 

4. Choose. Take the index i that maximizes bali. If there is a tie, some rule needs to 
be specified to break it . In the left subtree, assume that p; is true if J(p;) 2 f(·Pi) , 
otherwise assume •Pi (i. e. add the unit clause Pi or •Pi respectively). 
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Let us consider these four steps in more detail. Branching rules can be motivated by the 
simplification hypothesis (Hooker and Vinay [74] argue that this is more appropriate than 
Jeroslow and Wang's satisfaction hypothesis [77]; in Section 3.4 we show that branching 
rules can also be motivated by geometrical reasoning). This means that the branching 
rules are aimed towards simplifying the subproblems occurring in the subtrees as much 
as possible. 

As a first step, it may be worthwhile to restrict the set of candidate branching variables 
in order to try and aim for deriving a trivially satisfiable formula. For example, if in some 
formula each clause contains at least one unnegated variable it is trivially satisfiable (by 
setting all variables to false). To aim for such a formula, only the variables that occur 
in all-positive clauses could be considered as candidates. 

The simplification of a formula is often measured by a counting argument. Basically, the 
idea is that if a variable occurs often, the subproblems obtained after branching on that 
variable should be relatively small. The usual choice for f is 

J(l;) = L w(Ck), 
l;ECk 

for some weight vector w. Usually w(Ck) = w(f(Ck)); i.e. the weights depend on lengths 
of clauses only. Then f reduces to ( denoting the number of occurrences of Ii teral l; in 
clauses of length £ by ae(l;)) 

lmax 

!ws(l;) = L weae(l;) , 
l=2 

a weighted sum of occurrences. By .€max the maximum clause length is denoted. Note that 
the actual value of we is not important; rather one should consider the ratio wefwe+i • 

The third step is made to try to 'balance ' the search tree. If f (p;) is large branching to 
p; in the left subtree is a good choice, according to the measure implied by f . However, if 
during backtracking the current node is visited again, this implies that in the right subtree 
one branches to •P; , which might a bad choice. Thus one likes to ensure that according to 
the measure used both branches are reasonable . This indicates that balancing is especially 
important when solving unsatisfiable formulas (since then each interior node of the search 
tree is visited twice). 

For the balancing function g the following choices occur most frequently in the literature. 

1. g+(J(p), J(,p)) = J(p) + J(,p). 

2. g.(J(p), J(,p)) = J(p). J(,p). 

3. ga(J(p), J(,p)) = max{J(p), J(,p)} + amin{J(p), J(,p)}. 

Observe that it is reasonable to require for the balancing function that g(J (p;), f ( ,p;)) 2: 
g(J(p1) , J(,p1)) if J(p;) 2: f(p1) and J(,p;) 2: J(,p1). All functions above satisfy this 
condition (provided a 2: 0). Note that 9+ corresponds to taking the arithmetical mean of 
two numbers, while g. computes the geometrical mean. 

Example 3.3.1 We consider branching rules from the literature and put them in the 
above framework. In all cases f ws is used in step 2; the weights vary and are specified. If 
not explicitly stated otherwise P* ={Pi, ... ,Pm}-
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• JEROSLOW-WANG [77]. Take we= 2-e and use balancing function 90 , a= 0. 

• FIRST ORDER PROBABILITY RULE [74]. Take We= 2-e and use balancing function 
g,, with a= -1. 

• 2-SIDED JEROSLOW-WANG [74]. Take again we = 2 - e, but now use balancing 
function 9+· Variations of this rule are known as max-occurrence, or maxscore [53] 
(then we= 1 for all e). 

• POSITIVE 2-SIDED JEROSLOW-WANG [74]. Same as the previous, but now p• 
contains variables occurring in all-positive clauses only. 

• MINLEN [53]. Take w2 = 1, we= 0 for£~ 3, and use balancing function 9 •. 

• SATO [141]. Similar to MINLEN, except P* is restricted to a subset of variables 
occurring in the shortest non-Horn (i .e. clauses with more than one positive literal) 
clauses and J(p) := J(p) + 1, J(,p) := J(,p) + l. 

• POSIT [49]. Similar to MINLEN , except as balancing function N · 9. + 9+ is used, N 
large (Freeman takes N = 1024). 

• DSJ [53]. Take we = 2-e for £ = 2, 3, 4 , we = we_ 1 for e ~ 5, and use balancing 
function 9 •. 

• B2 [44]. Take we = - log(l - l/(2e - 1)2), and use balancing function 90 with 
a = 2.5. It may be noted that the rule Be- SAT that is actually used by Dubois et 
al. uses a more sophisticated function J in step 2, namely 

f(li) = fws(l;) + L fws(•lj), 
l1El; Vl1 

• BOHM [12]. Take w2 = 1, we = 0 for e ~ 3. Use balancing function 90 with a= 2. 
In case of a tie, recompute f for the tied variables but now with w3 = 1, we= 0 for 
£ =/= 3. D 

Later on we devise branching rules and provide geometrical intuitions based on the elliptic 
approximation. First we mention two enhancements of the DPLL algorithm that have 
been shown to be quite effective on many classes of problems. 

3.3.3 Enhancements of the DPLL algorithm 

Dubois et al. [44] introduce an enhancement of the DPLL-algorithm based on (single) 
lookahead unit resolution. Instead of directly choosing a branching variable, first some 
probing is done for additional unit resolutions or pruning of the search tree. A subset of 
the variables is considered ( chosen according to some heuristic scheme). Each of these 
variables is set to true and fals e in turn , and subsequently unit resolution is performed. 
Obviously, if for some variable p the empty clause is derived when setting it to true (false) 
then this variable can be set to false (true) without losing any solutions. Moreover, if 
for some variable p the empty clause is derived for both truth values, the current branch 
can be closed and the algorithm backtracks. Note that for contradictory formulas, single 
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lookahead unit resolution reduces the size of the search trees by at least a factor of 
two. Schlipf et al. [113] prove that a simple version of single lookahead unit resolution 
is complete for extended Horn formulas. The algorithm is also used (in conjunction with 
additional enhancements) to obtain the O(l.497m) bound on solving 3SAT formulas [112]. 

A further enhancement of the DPLL algorithm is intelligent backtracking and the addition 
of valid new clauses as implemented by Marques Silva and Sakallah [120] (see also Zhang 
[141]). This is based on the observation that by carefully analyzing where the assumptions 
(i.e. branchings) leading to the current contradiction are made, sometimes large parts of 
the search tree can be pruned by 'back-jumping' over several levels (or 'depths') rather 
than backtracking one level. At the same time, new clauses are derived which may be 
added to the CNF formula. 

Suppose that pis the current branching variable and that after branching top and applying 
unit resolution the empty clause is derived. Then a new clause can be derived using a 
directed acyclic graph, which is called the implication graph. It is constructed as follows. 

1. Each source node is labelled with a branching variable. 

2. Each internal node is labelled with a unit li teral that is derived in a unit resolution 
phase. 

3. The predecessors of a node Pt are labelled with the unit literals implying Pt · For 
example, if a clause Pt V p2 V ,p3 is present and ,p2 and p3 have been derived or 
assumed, then the predecessors of node Pt are labelled ,p2 and p3 . 

4. The sink node is labelled with false. 

The negation of the conjunction of the literals labelling the source nodes ( one of which 
is labelled with p) is concluded to be a valid clause and can be added to the formula. 
Note that , given the current partial assignment (except p), applying unit resolution to 
the newly derived clause ,p is derived . Suppose that this branch again leads directly 
to a contradiction via unit resolution. Again the corresponding implication graph is 
constructed. As in the previous case, the unit literals labelling the source nodes are 
the source of the present contradiction ( observe that now ,p labels an internal node). 
Considering the depths at which these are set, it is easy to see that we can 'jump' back to 
the depth at which the last one of these was assumed. In many cases (for an indication 
see Table 1.2, section 1.4.2) this can lead to substantial reductions of search times. 

We do not incorporate these techniques in our implementation since they obscure the 
effect of the various branching strategies. (Note that on random 3SAT instances the 
improvement in search times seems to be negligible.) 

3.4 Branching rules using elliptic approximations 

In this section branching rules are derived using the elliptic approximation. First we 
consider the elliptic approximation and show that we may assume that it constitutes 
a bounded ellipsoid. Then branching rules making full use of the elliptic structure are 
derived and subsequently these are approximated to accommodate their incorporation in 
a potentially efficient DPLL implementation. 
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3.4.1 The elliptic approximation 

We use the following notation. 

41 

where each subformula <I>e is in CNF, and contains clauses of length exactly € only. It 
is assumed that no unit clauses are present. Each of the subformulas <I>e has an integer 
linear programming formulation (see also Section 2.2) 

(IPesAr) find x E {-1, l}m such that Aex 2 (2 - €)e, 

where Ae is the clause-variable matrix associated with subformula <I>e. Now let us denote 
the elliptic approximation by 

(3.3) 

where 

and 
lmax lmax lmax 

Q = L weAf Ae , q = L weAf e, r 2 = L we€(€ - 2)l<I>el -
e=2 e=2 e=3 

Here it is assumed that in some way nonnegative weights we are specified for clauses with 
length €. An approach to determine such weights using the elliptic approximations is 
discussed in Section 3.5; for the time being we leave them unspecified. Note that Q, q 
and r 2 are dependent on the weights, but this dependence is not explicit in the notation. 

From subsection 3.2.2 it is clear that E(w) is a bounded elliptic region if Q is positive defi­
nite. It is immediately clear that Q is positive semidefinite (since xT Af Aex = IIAexll 2 2 0, 
for all x). We show that we may assume Q to be positive definite. 

Theorem 3.4.1 Let <I> be a CNF formula with associated elliptic approximation {3.3). 
Suppose the matrix Q has an eigenvalue zero, with eigenvector s. Then s is a linear 
autarky. 

Proof: Each of the matrices Af Ae is positive semidefinite, hence Qs = 0 implies Af Aes = 
0 for all€= 2, ... , €max· This implies that sT Af Aes = IIAesll 2 = 0, for all€, which in turn 
implies thats is a linear autarky (Definition 2.2.4; since sis an eigenvector, s-:/= 0). D 

Recalling Theorem 2.2.5, we conclude that if the matrix Q is not positive definite, by 
computing and rounding the eigenvector(s) corresponding to the zero eigenvalue(s) a 
satisfiable subformula is detected. This can be removed to obtain a smaller satisfiability­
equivalent formula , whose associated matrix Q is positive definite . Thus we have estab­
lished that any formula can be reduced to an equivalent formula with bounded elliptic 
approximation. 

As stated before, the elliptic approximation does not strictly separate the satisfying and 
unsatisfying assignments. In particular, if <I> is a contradictory formula, the ellipsoid will 
in general not be empty. Still , we can use the ellipsoid irrespective of the constant term 
(right hand side) involved. Intuitively, the geometry of the ellipsoid contains useful infor­
mation on the formula at hand. For example, in [97] a branching rule is proposed that 
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uses the eigenvalues and -vectors of the matrix Q, and it is pointed out that the center 
of the ellipsoid (which obviously is also independent of the right hand side), provides a 
good heuristic for finding a satisfying assignment. In the next subsection we derive new 
branching rules using the elliptic approximation. 

3.4.2 Derivation of branching rules 

Let us now address the issue of how to exploit (3 .3) to obtain good branching rules. Mainly, 
we are interested in finding effective functions f to evaluate step 2 of the branching rule. 
No restrictions on the set of branching variables are made, while due to the symmetry 
of ellipsoids it is usually not necessary to do any further balancing. This implies that 
f (p;) = J ( •P;); therefore, to decide which branch to explore first , some additional rule 
has to specified. This is addressed later on. 

First note that ( using (3.1-3.2)) 

lmax lmax 

Q;; = L we(Af Ae);; = L we(ue(P;) + ue(•p;)) , (3.4) 
l=2 l=2 
lmax lmax 

q; L we(Af e); = L we(ue(P;) - ue(•P;)). (3.5) 
l=2 l= 2 

Thus we have that 

lmax 

L weue(P;) = fw,(P;), 

lmax 

½(Q;; - q;) = L Weue(•p;) = fw,(•P;). 
l=2 

Balancing these values using g+ and g. respectively, we conclude that 

• the MAXIMAL WEIGHTED OCCURRENCE RULE [44, 53, 74] can be expressed as 
finding the maximal diagonal element of Q. For a specific choice of weights this is 
the 2-SIDED JEROSLOW-WANG RULE [74] . We refer to this rule as MWO henceforth . 

• the PRODUCT OF WEIGHTED OCCURRENCES RULE amounts to maximizing the 
difference ( Q;;) 2 

- q;. For specific choices of weights this is the MIN LEN or DSJ rule 
[53] or the rule used in [31 , 49, 141]. We refer to it as PWO. 

First, we investigate some simple properties of the ellipsoid. 

• Consider the function Q(x; w) . Suppose that we want to find a good descent di­
rection from the center of the {-1, 1} unit hyper cube (which is the origin), in the 
direction of a satisfying solution. This amounts to maximizing the absolute gradient 
in the center. Thus we obtain 

For a specific choice of weights this is the first order probability rule [74]. 
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• Assume that from the center of the unit hyper cube x = 0, we want to make a 
step b.x along one of the axes, such that Q(x + b.x; w) is maximized. Denoting the 
ith standard unit vector by u;, we obtain (x + b.xf Q(x + b.x) - 2qT(x + b.x) = 
u[ Qu; - 2qT u;. Letting 

and using balancing function 9+, we obtain the MWO rule. Using g. a rule similar 
to (but not quite the same as) the PWO rule is obtained. 

Thus, using simple properties of the ellipsoid well known branching rules are rediscovered. 
Now let us use some more sophisticated properties to obtain more powerful branching 
rules. In [97] a branching rule based on an elliptic approximation is investigated, the 
maximal eigenvalue rule, with encouraging results. The idea is that moving along an 
eigenvector corresponding to the maximal eigenvalue, the value of Q(x; w) increases the 
fastest, i.e. the ascent is the steepest. Thus 'branching along this eigenvector' is likely 
to have great impact on the formula. Obviously, to obtain a branching variable, a single 
coordinate needs to be selected. A sensible choice is to use the in absolute value largest 
entry. 

Branching Rule 3.1 MAXIMAL EIGENVALUE RULE (MEV). Let smax be an eigenvec­
tor corresponding to the largest eigenvalue of Q . Use fmev(P;) = fmev(•P;) = lsf'axl. 
For symmetry reasons, no further balancing is performed in this rule. The MEV rule is 
illustrated in Figure 3.2. 

(-1,1) (! ,!):' 
~--------~ 

sl 

(-1,-1) 

Figure 3.2: The axes of the ellipsoid correspond to the eigenvectors of the matrix Q 
involved. The branching variable is the one corresponding to the largest element of the 
shortest axis. It is indicated by the arrows. 

Observe that we have not taken the center of the ellipsoid into account thus far. It appears 
there is no obvious way to do this in the context of the MEV rule. 



44 Enhancing the DPLL algorithm using elliptic approximations 

We now argue that the reasoning behind the MEY rule can be made more precise since 
it can be applied more specifically to { -1 , 1} variables. Instead of considering the eigen­
vectors of Q (which are the axes of the ellipsoid), we can also determine the axis of the 
unit hypercube parallel to which the ascent of the value of Q(x; w) is the steepest. Let us 
make this more explicit . By Ct: the center of the ellipsoid is denoted, hence Qci = q. The 
following theorem provides us with the tools to formalize this idea. 

Theorem 3.4.2 The range [x;nin , x;nax] of a variable x; over the ellipsoid with radius 
r2 ~ -qTQ- 1q is given by 

x;nin = (ct:); - rJ(Q-l );; ::::: X;:::; (ct:);+ rJ(Q- l );; = x;nax . 

Here i' is such that i'2 = r 2 + qTQ- 1q ~ O. 

Proof: Consider the following optimization problem. 

mm UTX 

s.t. xTQx - 2qr x:::; r 2 . 

By taking u equal to plus or minus a unit vector this is equivalent to minimizing or 
maximizing the value of one coordinate over the ellipsoid. A solution to (Pt:) is optimal 
if there exists µ ~ 0 such that 

µ(Qx-q)+u 0 

µ(xT Qx - 2qT x - r 2 ) 0. 

From the first we obtain x = Q- 1q - (1/ µ)Q- 1u, and substituting this in the second 
expression we obtain a value for µ, which we can use to eliminate it from the expression 
for x . We find 

Noting that Ct: = Q- 1q, and using that u is a positive or negative unit vector, we find 
that the optimal value to (Pt:) is equal to 

±(ct:); - rJ(Q- 1);;. 

In other words , to obtain the minimal value of x; over the ellipsoid, we need to compute 
the optimal value of (Pt:) with u equal to the ith positive unit vector. Hence we find 

x;nin = (ct:); -rJ(Q- 1);;. On the other hand , taking u equal to minus the ith unit vector, 
the optimal value of (Pt:) is equal to -x;nax_ This concludes the proof. D 

Note that if x;nin > -1 or x;nax < 1 variable fixings are possible, and if for some i both 
hold the formula under consideration is unsatisfiable (see also [96]) . This rarely occurs; 
only specific fixings recognizable via single lookahead unit resolution can be discovered. 

Using Theorem 3.4.2, we conclude that the steepness of ascent along axis i is proportional 
to 1/J(Q- 1) ;;. Thus we arrive at the following rule. 

Branching Rule 3.2 MAXIMAL RADIUS RULE (MR) . Let 

1 
fmr(P;) = fmr(•P;) = (Q- 1);;. 
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Furthermore, we can take into account the center of the ellipsoid Ct:- The minimal radius i' 
for which the intersection of the ellipsoid £(w) and the hyperplanes x; = ±1 is nonempty 
can be computed. To this end, set xfax = 1 or xfin = -1 respectively, and use Theorem 
(3.4.2) to find i'. The variable for which i' must be increased the most appears to be a 
good candidate. Thus we arrive at the most sophisticated rule to be derived from the 
elliptic approximation. 

Branching Rule 3.3 BALANCED MAXIMAL RADIUS RULE (BMR). Let 

and use balancing function g •. 

Figure 3.3 illustrates the BMR rule. When instead of balancing function g. , 9+ is used, 
the BMR rule reduces to the MR rule. 

<- 1.1i <1·1r<' 
....-~----,"~___,..--.9-, ._ ~ ,' I "', 

,"'.. ' 
.. /: ,' ,' \ 

/ ,>""-~~-/---,·,:-< 
,' .... ~, 

:._ ,,.: .... ~): 
;, .. __ ;., 

, /s2 
') .. 

(-1,-1) 

Figure 3.3: The radius i' is increased, starting from zero. The smallest ellipsoids having a 
nonempty intersection with the horizontal (vertical) lines (hyperplanes) are drawn. The 
respective intersections are highlighted with an 'o'. 

Note that one has to be careful if l(ce);I > l ; in the expression stating the BMR rule it 
is assumed that -e :S C£ :S e. If t his is not the case the rule should be modified in the 
obvious way. 

To get a first impression of the relative efficiency of the branching rules described above 
in terms of numbers of nodes of the search t ree, we used them to solve a number of 
randomly generated 3SAT instances of various sizes. For the weights we used w2 = 6w3 ; 

this is similar to the weights used by Dubois et al. [44]. A quick glance at Table 3.1 
demonstrates t hat the rules MR and BMR stand out from the others and it appears that 
the MR rule performs somewhat better than the BMR rule. Even though these rules 
seem to be good in practice in the sense that the search trees are kept small, they are 
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m = 50 m = 75 m = 100 m = 125 m= 150 

Rule mean std mean std mean std mean std mean std 

MWO 29.6 8.4 89.1 24.5 246 80 737 302 1805 716 

PWO 28.4 7.7 82.9 24.0 233 78 659 242 1591 729 

MEV 30.0 8.5 87.6 24.8 245 80 732 253 1704 743 

MR 26.5 8.4 78.1 24.0 211 68 617 198 1410 583 

BMR 26.2 7.7 77.2 21.4 213 69 640 235 1528 616 

Table 3.1: Average number of nodes and standard deviations taken over 100 unsatisfiable 
3SAT instances with n = 4.3m. 

(too) expensive to compute in the context of large scale satisfiability solving. Inverting an 
(m x m) matrix requires O(m3 ) operations while for the construction of the matrix Q each 
of the at most lmax · n literal occurrences has to be enumerated. For most other branching 
rules the latter only is sufficient, indicating that we cannot hope to find a branching rule 
based on properties of Q that yields a branching variable in better time. Note that in 
practice the complexity of branching rules can be reduced even further, since f ws(l) can 
be dynamically updated in each node; analogously Q can be dynamically updated. 

3.4.3 Approximation of the MR rule 

Let us now try to approximate (B)MR such that computing the branching variable requires 
O(n) time as well, while the approximated rule preserves the heuristic quality of the 
original rule. In the following we restrict ourselves to approximating the MR rule. We 
assume that lmax = 0(1) and n = O(m). Then Q can be regarded as a diagonally 
dominant matrix, by which we mean that 

O(L IQ;il) = O(Q;;), 1 :Si :Sm. 
jf.i 

We are interested in finding the index of the smallest diagonal entry of the inverse matrix 
of Q. It holds that (see e.g. [123]) 

I 1 ( .. ) (Q- );; = <let Q det Q" , 

where Qii denotes the matrix Q with row and column i removed. By definition, 

detQ = Q;;detQii + L (-l) i+iQ;idetQii. 
#i 

(3.6) 

(3.7) 

Thus the 'first-order' approximation would be to simply neglect the (second) sum, and 
to approximate <let Q by the product of the diagonal elements; this corresponds to ap­
proximating Q by its diagonal , i.e. Q ~ diag(Q). It is straightforward to verify that this 
approximation reduces the balancing function of the BMR rule to the ratio of g. and 9+, 
and the MR rule to the MWO rule. Note that if we assume that Q ~ diag( Q) and ce = 0, 
the rules MEV, MR, BMR, PWO and MWO in fact all coincide! In any case, the center 
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does not play a part in the rules MEY, MR and MWO (since the linear term q does not 
occur in these rules); this suggests that MWO is in fact an approximation of MEY, which 
in turn approximates MR. We conclude that by using a very crude approximation of Q 
our newly derived rules reduce to the most widely used branching rules. 

Now let us approximate (3.7) a bit more precise; instead of completely neglecting the 
second sum, we use a 'first-order ' approximation. For each j , det Qii is approximated by 
its dominant term, which is the term involving as many diagonal elements of the original 
matrix Q as possible. By construction, two original diagonal terms are removed from Qii 

(namely Q;; and Qii) which implies that the term involving m- 2 original diagonal terms 
is in this sense optimal. Thus we use as approximation 

yielding 

det Qii ~ Q;i det Qiiii ~ Q;i II Qkk , 
kfi,j 

det Q ~ Q;; det Qii - 1) Q;i )2 II Qkk 
j#i kfi ,j 

from which we obtain that 

det Q ~ Q;; _ L (Q;i)
2

. 

det Q" #i Qii 

Note that here we approximated det Qii by the product of its diagonal entries to obtain 
a nice expression again. Now using (3.6) and considering the MR rule, we specify its 
approximation as follows . 

Branching Rule 3.4 MAXIMAL APPROXIMATED RADIUS RULE (MAR). Let 

Recalling the assumption that n = O(m) and lmax = 0(1), the maximal number of 
nonzeros in Q can be computed to be m + ½lmax(lmax - l)n. Consequently, the MAR rule 
can be implemented to require O(n) operations. Now that we have specified a branching 
rule, let us address the issue of weighting clauses of different lengths. 

3.5 Weighting clauses of different lengths 

In the literature the weighting problem occurs often (albeit restricted to clauses of different 
lengths) , but usually not much attention is devoted to it. Jeroslow and Wang [77] argue 
that the ratio we/we+i should be taken equal to 2, since clauses of length £ rule out twice 
as many assignments as clauses of length £ + 1. This has been accepted more or less as 
the default in many later studies, see the rules mentioned in Section 3.3.2. Dubois et 
al. [44] use different weights we = - log( l - l /(2e - 1)2), and show empirically that these 
have a better performance than the previous in a DPLL algori thm. In other studies the 
weighting problem is circumvented by considering clauses of different lengths separately 
(see the examples in Section 3.3 .2). The only attempts that we are aware of to weight 
clauses individually are made by Crawford [30] and Mazure et al. [100]: weights are 
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computed by first running a local search algorithm several times to determine the 'hard­
to-satisfy' clauses. Also, in the Chapters 4 and 5 we define optimization problem with 
clause-weights as variables. 

In most of the references cited above, very limited attention is paid to the reasoning behind 
the choice of the weights; mostly the weights are chosen by experimentation (as far as 
we can tell). It is our aim to derive weights with (at least some) geometrical motivation: 
we argue that the volume of the elliptic approximations is an appropriate measure for 
computing relative weights of clauses. 

3.5.1 Using the volume as a measure 

The volume of the ellipsoid (3.3) can be computed by the following formula. 

where rm= (2w-'¥-)/mf(9) is a 'constant', depending on the dimension m. As motivation 
for using the volume as a measure for choosing weights, consider Figure 3.4. There a graph 
is depicted of the average (normalized) volume as a function of the number of clauses, for 
a set of 100-variable random 3SAT formulas on and around the threshold [31, 101]. In 
these experiments all clauses were given equal weight. Note the clear correlation between 
the volume and (un)satisfiability of the formula. Formulas with associated ellipsoids that 
have 'small' volume tend to be unsatisfiable, while those with 'large' volume tend to be 
satisfiable. Moreover, the volume of the elliptic approximation of an unsatisfiable formula 
is rarely larger than the average volume of the elliptic approximations of the satisfiable 
ones, and vice versa. 

Given a formula 4>, let us consider the volume of its associated ellipsoid as a function of the 
weights wk. Intuitively, choosing the weights such that the volume is minimized appears to 
be a sensible choice. Since for any choice of strictly positive weights all satisfying solutions 
lie in the interior or on the boundary of the ellipsoid, it appears reasonable to assume that 
one approximation is tighter than another if the volume of the first is smaller. Thus we are 
faced with the problem of computing the minimum of the function vol(£(w)) as a function 
of n variables. The solution to this problem can be approximated in polynomial time via 
semidefinite programming [134]. However, presently we restrict ourselves to distinguishing 
between clauses of different lengths only, and to simplify matters even further we consider 
the 2,3SAT-case only. This allows us to fix the weight for 3-clauses to one, and thus 
vol(£(w)) reduces to a function v in a single dimension w. Therefore we can compute 
an approximate stationary point by simple evaluating v(w) for various values of w. Now 
let us examine the graph of v(w) for a specific 2,3SAT instance, obtained after fixing one 
variable in a random 3SAT formula. A typical example of such a graph is given in Figure 
3.5. The 'optimal' weight is located near w = 11. Note that over the interval shown , 
v(w) is convex; a near-optimal weight can be determined by applying a binary search 
procedure on the interval [1, Wmaxl, for some sufficiently large Wmax· 

In the top picture of Figure 3.6 the approximately optimal weight as a function of the 
ratio of 2-clauses and total number of clauses for a large set of randomly generated test 
problems is shown (note that we restricted the weights to integral values). The problems 
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Figure 3.4: In the upper (lower) picture, the pentagons indicate the individual volumes 
of the ( un )satisfiable formulas and their average ( upper (lower) dashed line). Also, in the 
lower (upper) picture the average volume of the (un)satisfiable formulas is drawn (the 
solid line). In addition, the central dashed lines indicate the overall average volume. 
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Figure 3.5: A typical example of the volume function v(w). 

consisted of m = 80, 100, 120 variables and the number of clauses n was chosen to be 
equal to 4.1 , 4.2 ... 4.5 times m (i.e. on and around the threshold). Of each problem size 
10 instances were generated. The optimal weights were computed in each node of the 
DPLL search tree; in these experiments random branching was applied. 

On inspection of the graph, it is clear that the optimal weight is 'rooted ' at approximately 
10-11. For increasing ratios, the behaviour of the optimal weight appears rather wild. 
However, two clear tendencies can be distinguished. There is an upward tendency, which 
corresponds to the cases in which the 2SAT subformula 'tends to unsatisfiability' (i.e. its 
associated ellipsoid has a small volume) , and a downward one corresponding to the cases 
in which the 2SAT subformula ' tends to satisfiability'. Since it does not seem practical to 
capture both tendencies in one weight function or to compute an approximately optimal 
weight at each node of the search tree, it appears to be reasonable to fix the weight w at 
eleven. 

Although the behaviour of the optimal weight is rather wild , the behaviour of the optimal 
volume as a function of the ratio 2-clauses to total number of clauses is quite stable. This 
is demonstrated in the lower picture of Figure 3.6, which shows the optimal volumes in 
the nodes of the search trees for the same set of problems as before. Note that to enable 
comparison of volumes in different dimensions the volumes are normalized, using the 
volume of the unit hyper cube of appropriate dimension as reference. An obvious trend 
in this graph is the decrease of volume when the ratio increases. This is partly explained 
by the fact that the elliptic approximation for the 2SAT subformula is in fact an elliptic 
representation (see Lemma 2.4.3) , and thus tighter than the elliptic approximation of the 
3SAT subformula. When the size of the 2SAT subformulas increases, the overall volume 
decreases. 

We conclude this section by mentioning that using different branching strategies similar 
pictures emerge. 
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Figure 3.6: The approximately optimal weight (top) and the approximately optimal vol­
ume (bottom) as a function of the of ratio 2-clauses and total number of clauses. 
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3.5.2 Some computational experience 

Let us now check whether choosing w = 11 really performs better in a DPLL algorithm 
than choosing for example w = 2 (like Jeroslow-Wang [77]) or w = 6 (which is comparable 
to Dubois et al. [44]). In Figure 3.7 the average node counts as a function of w are given, 
for 50 random 3SAT problems with 200 variables and 860 clauses. The branching rule 
used is the MAR rule . Since this rule very much relies on the elliptic structure, it is of 
importance that the ellipsoid approximates the formula ( or rather its associated integral 
polytope) as good as possible. Examining the pictures it is clear that the best node 
counts indeed are situated on or near w = 11. This supports our opinion that the volume 
is a good measure for computing weights. This is also the weight that we use in the 
computations in the next section. 

Remark: We carried out a similar analysis for the mixed 3,4SAT case. This yielded w3 : 

w4 as approximately 100 : 1, indicating that according to this measure, the importance 
of 4-clauses relative to 3-clauses is negligible. 
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Figure 3.7: Average node counts for increasing weights on satisfiable (upper graph) and 
unsatisfiable formulas (lower graph). 
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3.6 Computational results 

Let us now compare the performances of a number of branching rules. We compare the 
MAR, PWO, MWO and Bohm's rule; the latter three being typical examples of branching 
rules that have been used in practice with good results. In order to do so we have decided 
to restrict ourselves to random 3SAT formulas on the threshold , i.e. formulas with con­
stant clause length 3 and n ~ 4.3m. Recalling Table 1.2 in Section 1.4, it appears this is 
a class of problems where other enhancements of the DPLL algorithm are not successful. 
We generated threshold problems ranging in size from 100 to 300 variables, and solved 
each of these with the four branching strategies mentioned. 

First, we have to decide which branch to explore first after a branching variable has been 
obtained. Obviously, this is of significance for satisfiable formulas only. The following 
reasoning turned out to give, on average, the best results. Since it is our aim to branch in 
the direction that is most likely to 'go towards a satisfiable assignment', a natural choice 
is to exploit the negative gradient of the function Q(x; w). Considering this in the center 
of the unit hyper cube suggests that we should first branch to xi = sgn(qi)- Recalling 
equation (3.5), this is equivalent to branching to Pi if fws(Pi) 2': fws(•P;), and branching 
to •Pi otherwise. 

Furthermore, we have to choose the weights we. As we are considering random 3SAT 
formulas, we can normalize the weight for clauses of length 3 to w3 = 1, and need only 
specify w2 . For the MWO and PWO rules, following Dubois et al. [44] we set w2 = 6, 
while for the MAR rule we take w2 = 11 as derived in the previous section. Note that for 
Bohm's rule no weight needs to be set [12]. 

We generated 50 instances of each problem size. The results on unsatisfiable and satis­
fiable instances are given separately in Tables 3.2 and 3.3. We report on average node 
counts and their standard deviation. The node count refers to the number of times the 
routine for computing t he branching variables was called. We do not report on computa­
tion times here. For MWO, PWO and Bohm's rule we used, and where necessary modified, 
Bohm's implementation. The MAR rule was implemented utilizing less sophisticated data 
structures. To give an indication of the relative speed of these implementations; using 
the same branching rule, our implementation is about four times slower than Bohm's on 
200-variable instances. 

Examining Table 3.2 it is clear that on unsatisfiable instances the MAR rule consistently 
outperforms the other rules as far as node counts are concerned . However, the compu­
tation times for this rule are still larger than for the other rules, at least for the size of 
instances that we have considered thus far. Concerning satisfiable instances, considering 
Table 3.3 it is hard to draw any firm conclusions. Overall MAR performs clearly better 
than the others; the standard deviations however are very large, indicating that neither 
of the rules perform in a very robust manner. 
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MAR PWO MWO Bi:ihm 

m mean std mean std mean std mean std 

100 247 93 252 93 273 108 263 73 

110 317 125 324 127 360 139 351 130 

120 447 145 487 145 544 159 547 170 

130 723 213 801 245 836 262 863 264 

140 1218 394 1285 460 1473 445 1400 443 

150 1658 687 1842 713 2056 743 1992 796 

160 2557 905 2830 769 3114 1004 3128 936 

170 3245 1258 3714 1319 3930 1445 4098 1330 

180 5456 1623 6199 1993 6762 2129 6557 1723 

190 7398 2867 8220 2738 9234 3571 9388 3152 

200 9987 4201 11951 5445 13461 5940 13229 5870 

210 16555 7543 19673 9098 22053 9735 22047 8948 

220 26366 8905 30186 8325 34170 10102 32787 8583 

230 36902 14724 44099 18873 48682 20062 49909 17951 

240 49725 22936 58337 24737 67608 30153 67240 28108 

250 82142 30042 97534 35480 112256 42696 110928 35825 

260 103882 36926 124156 40306 142880 54992 150452 52694 

270 150362 69275 184813 80584 208577 96182 221192 99251 

280 254648 106168 311969 141098 360071 168637 377618 159390 

290 415330 160495 514485 203959 606760 228171 575694 207819 

300 506006 221126 629219 266301 726155 298946 753994 299569 

Table 3.2: Average node counts and standard deviations for unsatisfiable random 3SAT 
formulas with n = 4.3m. 
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MAR PWO MWO Bohm 

m mean std mean std mean std mean std 

100 102 76 111 82 105 90 105 81 

110 204 134 213 140 222 137 217 151 

120 202 158 251 196 235 191 234 164 

130 282 240 338 367 334 307 425 423 

140 579 627 532 502 729 860 630 665 

150 396 544 441 371 384 439 491 461 

160 859 905 1057 1131 1123 1140 997 1294 

170 884 669 1263 1033 974 966 893 892 

180 2067 1543 1603 1735 2137 1975 1596 1806 

190 3312 2780 4282 3676 4336 4037 3321 3758 

200 3702 4116 3671 3110 3609 3674 3569 3403 

210 5282 6635 7424 7151 6999 7029 6556 6439 

220 7732 10899 7233 11597 8543 11976 8235 13148 

230 9620 9502 10510 12744 10042 11132 13540 13120 

240 25328 28050 26793 23017 37066 29523 34065 34301 

250 32219 33959 52885 46681 52085 37553 50754 56503 

260 44854 39082 54564 46668 59662 48905 52914 60002 

270 57696 59826 84391 87036 92362 104310 95508 103325 

280 78452 53778 85669 61354 102182 77483 88607 71524 

290 87573 86079 129594 114544 111281 105078 140353 190855 

300 156377 157384 198463 183506 220293 237197 362540 485458 

Table 3.3: Average node counts and standard deviations for satisfiable random 3SAT 
formulas with n = 4.3m. 
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Rule (3 

MAR .0543 

PWO .0552 

MWO .0554 

Bohm .0557 

Table 3.4: Results of fitting the node counts to a2f3·m 

In order to get a clearer impression of the growth rate of the number of nodes as a function 
of the number of variables for unsatisfiable formulas, we fit our results to the following 
function: 

# nodes = a2/3·m. 

In Table 3.4 the estimates of (3 for the various branching rules are given. The values of (3 
confirm that the growth rate for the MAR rule is the lowest . 

As indicated before (Table 1.2), local search algorithms turn out to be extremely effective 
on hard random satisfiable instances. To quantify this claim we include Figure 3.8 which 
depicts a plot of the logarithm of the solution times using the DPLL algorithm with the 
PWO rule (the upper solid line) and a local search algorithm (the lower solid line; the local 
search algorithm is briefly explained in Section 1.4.3) , on all satisfiable instances listed in 
Table 3.3. Also drawn are the times plus standard deviation (dashed). It appears that 
indeed the local search algorithm is several orders of magnitude faster than the DPLL 
algorithm. For increasing problem sizes, the difference becomes even more substantial. 

-~ 
C 
.2 
:i 
~ 
~ 
0 

.E 

10' 

l 
IO 

2 
10 

I 
IO 

0 
10 

' ' ' ' \• 

120 140 I 60 180 200 220 240 260 280 300 
number of variables 

Figure 3.8: Comparing solution times local search and DPLL 
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3. 7 Concluding remarks 

In this study we have shown that branching rules can also be motivated from a geometrical 
viewpoint instead of by a satisfaction [77] or simplification [74] hypothesis. We have spec­
ified branching rules based on the properties of an elliptic approximation of SAT formulas. 
Taking a first order (i.e. linear) approximation of the ellipsoid, well known branching rules 
that earlier were motivated by the simplification and satisfaction hypotheses, are rediscov­
ered. The most effective branching rule (in terms of size of the search tree) we have found 
is a second-order branching rule since it considers joint occurrences of variables rather 
than single occurrences. In this respect it has similarities with branching rules proposed 
by Hooker and Vinay [74] and Dubois et al. [44]. However, in these branching rules a 
combination of the clause- and variable- structure of a formula is considered, whereas in 
the elliptic approximation we ( can) only consider the variable structure. Our conclusion 
is that the use of 'higher-order' information does help solving satisfiability problems more 
efficiently. The effect becomes more apparent when the problem size increases. For the 
problem sizes that we have considered, in terms of computation times the first-order rules 
are still better; theoretically though, for very large-scale SAT problems we may expect the 
(second order) MAR rule to become faster , since its computational complexity is compa­
rable to that of the first order rules. On the other hand, even though the size of the search 
trees can be reduced quite significantly using these sophisticated branching rules, for large 
hard random 3SAT problems the number of nodes in the tree is substantial. This seems to 
justify the conclusion that the reduction in size is not sufficient to allow large-scale 3SAT 
solving as yet. Thus it appears that branching rules should exploit structure in formulas 
even more. Recently, implementations have become available that involve branching rules 
making explicit use of both the variable- and clause-structure of a formula by employing 
lookahead unit resolution. Li [92] reports that hard 3CNF problems up to a size of 500 
variables [92] can be adequately handled. 

As a byproduct, it has become clear that the 'default' choice of 2 for the ratio wef wt+ 1 

performs rather poorly, especially on hard unsatisfiable instances of SAT. This observa­
tion holds irrespective of the branching rule used . Our experiments suggest that this ratio 
should be chosen significantly higher. For the MAR rule, which attempts to make full use 
of the elliptic structure, the computation of weights via volumes (yielding w2 /w3 :::::: 11) 
results in a considerable reduction in search tree size. The rules PWO and MWO appear 
less sensitive to the choice of weights, although w2/w3 should be chosen to be at least 5. 
This suggests that the weighting problem is dependent on the branching rule used, rather 
than a separate problem. 
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4 

A Two-Phase Algorithm For A Class 
Of Hard Satisfiability Problems 

A specific class of polynomially solvable SAT problems is considered: the 
conjunctions of {nested) equivalencies {CoE). CNF translations of such 
formulas are extremely hard for branching and resolution algorithms. We 
derive a characterization of CNF translations of CoE formulas. Via this 
characterization, using linear programming certain CNF {sub)formulas 
that are equivalent to CoE formulas can be recognized in polynomial time. 
Thus several notoriously difficult benchmarks are found to be polynomially 
solvable. In addition, a set of previously unsolved benchmarks is solved 
in a matter of minutes, using the LP approach in conjunction with an 
extended version of the DPLL algorithm. 

4. 1 Introduction 

Since the satisfiability problem is NP-complete, it is in general hard to solve. However, in 
practice SAT problems can often be easily solved when the proper algorithm is applied, 
even if its worst-case running time is exponential. Furthermore, there are various specific 
classes of SAT formulas for which polynomial time algorithms exist. For example, 2SAT 
formulas (i.e. formulas in which each clause contains at most two literals), and Horn for­
mulas (in which each clause contains at most one positive literal) are solvable in linear 
time [6, 41], while various generalizations of these classes are polynomially solvable as well 
[15, 22, 23, 50, 113] . 

Given a CNF formula ~ it might be worthwhile to know whether ~ belongs to one of 
the polynomially solvable classes, or whether it is equivalent to a polynomially solvable 
formula. While establishing the first is mostly straightforward (although there are cases in 
which it is not clear how to establish membership of a certain class; for example extended 
Horn [113]) checking the second is difficult. Creignou proved that, given a CNF formula 
~ , the problem of the existence of an 'easy' equivalent formula is coNP-complete [33]. 

In this chapter we consider another class of polynomially solvable SAT problems, the con­
junctions of {nested) equivalencies (CoE). In the literature, CoE formulas are also known 
as XOR ('exclusive or') SAT formulas, which were shown to be polynomially solvable by 
Schaefer [111]. We address the problem of recognizing CoE formulas in CNF formulas. 
A special case arises from so-called balanced {CNF) formulas [43]. Balanced formulas are 
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balanced with respect to the number of variable occurrences, and positive and negative 
occurrences of individual variables. The notion of doubly balancedness [96] is related to 
joint occurrences of variables . Doubly balanced formulas can be concluded to be equiv­
alent to CoE formulas by means of their elliptic approximation such as introduced in 
Section 2. By making use of polynomial representations of satisfiability problems such as 
used by Gu [61], a more general characterization of CNF translations of CoE formulas 
is obtained. This involves balanced polynomial representations (BPR), a concept that we 
define later on. We will show that any CNF formula with BPR is equivalent to a CoE 
formula and as such can be solved efficiently. Moreover , using linear programming, a 
CNF formula can be checked to have BPR, while using the same formulation subformulas 
with BPR can be identified as well, both in polynomial time [87]. The solution of such 
a subformula can speed up the solution of the full formula substantially. To this end, 
the DPLL-algorithm is extended to solve conjunctions of CNF and CoE formulas (rather 
than plain CNF formulas). 

Even though CoE formulas can be solved in polynomial time by a special purpose algo­
rithm, their CNF translations are hard to solve for most algorithms. Indeed, Tseitin [129] 
introduced a specific kind of CoE formulas (in which each variable occurs exactly twice) 
to prove an exponential lower bound on the running time of regular resolution. In gen­
eral, balanced formulas are hard for branching and other resolution-like algorithms [43]. 
It turns out that several of the well known DIMACS benchmarks are in fact equivalent to 
CoE formulas and thus can be solved efficiently. Furthermore, several benchmarks have 
large subformulas with BPR. Some of these benchmarks were as yet unsolved; in fact, 
solving them was posed as a challenge by Selman et al. [116]. Using the solution of the 
CoE subformula as a first step, and subsequently applying the extended DPLL-algorithm, 
these benchmarks are solved within five minutes. 

It may be noted that specific CoE formulas, namely those arising from a particular kind 
of doubly balanced formulas, can also be solved efficiently by making use of the notion of 
symmetry as introduced by Benhamou and Sai"s [8, 44]. A CNF formula is said to contain 
symmetries if it remains invariant under a permutation of variable names. However, in 
general the CoE formulas need not be symmetric in this sense. 

This chapter is organized as follows. In the next section we introduce some notation and 
discuss the preliminaries. Subsequently we review an algorithm for solving CoE formulas. 
In Section 4.4 we address the problem of recognizing CoE formulas in CNF formulas. 
As a special case we consider doubly balanced formulas and show that by their elliptic 
approximation these can be seen to be equivalent to CoE formulas. Then the notion of 
doubly balancedness is generalized by making use of polynomial representations of satis­
fiability problems. In the subsequent sections we give a linear programming formulation 
to identify CoE (or unsatisfiable) (sub)formulas and describe the extended version of the 
DPLL to solve conjunctions of CNF and CoE formulas. The last sections of this chapter 
contain computational results on several DIMACS benchmarks and concluding remarks. 
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4.2 Preliminaries and notation 

We use the notion introduced in Chapter 1 (Section 1.1) and Chapter 2. Briefly, a CNF 
formula is a conjunction of n clauses C k, each of the form 

V Pi V V •Pi, 
iEh iEJ; 

and A E lRn xm is the associated clause-variable matrix (see eq. (2.1)). In addition, 
apart from CNF formulas, we also use CoE formulas , which are also known as XOR 
SAT formulas. Such formulas are solvable in polynomial time (Schaefer [111]) as opposed 
to CNF formulas which are in general NP-complete. In the next section a polynomial­
time algorithm for CoE formulas is reviewed. A CoE formula \[, is the conjunction of t 
equivalency-clauses, where each equivalency-clause Q k is a (nested) equivalency of literals 
or its negation. In the first case we refer to Qk as a positive equivalency-clause, otherwise 
it is called a negative equivalency-clause. In general, an equivalency-clause is denoted as 

Qk = H4::f+ Pi, (4.1) 
iES; 

where the square brackets indicate the optionality of t he negation. Note that to satisfy a 
positive equivalency-clause, an even number of li terals must be false , while for a negative 
one an odd number of literals must be false . In the following we associate an indicator 
6k with an equivalency-clause Q k, and let 6k = 1(-1) if Qk is a positive (negative) 
equivalency-clause. 

Example 4.2.1 An example of a (negative) equivalency-clause is 

•(P2 H P4 H P1 ), 

which is true if either one or all three of its literals are false. For t he reader who is 
unfamiliar with nested equivalencies/bi-implications, let us verify this. Note that Pi H Pi 
is true if and only if Pi and Pi have the same truth value (obviously •Pi H •Pi has the 
same set of solutions and thus any equivalency-clause can be reduced to the standard 
form (4.1)). Assuming that p2 and p4 have the same value, the equivalency-clause reduces 
to ,(true H p7 ) implying that p7 must be false, while if p2 and p4 have opposite values 
we find ,(! alse H p7 ) , so p7 must be true. In the first case either one (i.e. only p7 ) or 
three literals are false, while in the second case either p2 or p4 is false. □ 

4.3 Solving conjunctions of equivalencies 

Let us now review an algorithm for solving CoE formulas, which is in fact Gaussian 
elimination in IL2 [111]. Suppose we are given a CoE formula w. Obviously, for any 
satisfying assignment it holds that 

Pi H ( +t:frPi) , 
iES;\{j} 

(4.2) 

for a positive equivalency-clause Q k, 1 ::; k ::; t, and any j E Sk. If Qk is a negative 
equivalency-clause, the right hand side of (4.2) must be negated. This observation can 
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be exploited to obtain a polynomial-time algorithm. All but one occurrences of Pi can be 
eliminated by making use of equivalency (4.2), to obtain a formula ll!' that is equivalent 
to formula 1¥. Note that the value of Pi is uniquely determined by the values of the other 
variables in Qk. We call such a variable Pi a dependent variable. Initially, all the variables 
are said to be independent and contained in the set of independent variables I. Let us 
use the notation 

sk €£i S1 = (Sk u S1)\(Sk n Si). 

This is convenient, since when we use expression ( 4.2) to eliminate Pi from equivalency­
clause Q1 we obtain 

Note that if Sk = {j}, this substitution performs unit resolution ; the length of equivalency­
clause Q1 then reduces by one. If Sk €£i S1 = 0, while 8k = -81 an inconsistency is detected, 
implying that the formula under consideration is unsatisfiable. This occurs if and only if 
Qk is the negation of Q1. If no inconsistency is detected, the algorithm terminates when 
the CoE formula is rewritten to a form where each equivalency-clause contains exactly 
one dependent variable. After termination of the algorithm, all satisfying solutions can 
be constructed by assigning all possible combinations of truth values to the independent 
variables. Algorithm SOLVE_CoE is summarized in Figure 4.1. In the outer loop each 
equivalency-clause is considered at most once; after it is considered it is labelled. Note 
that at the end of each outer loop, unlabelled clauses consist of independent variables 
only, while any labelled clause either contains a dependent variable or is empty. The 
algorithm returns that 1¥ is a contradiction, or the rewritten formula 1¥ and the set of 
independent variables I using which all satisfying assignments can be constructed. 

Example 4.3.1 Let the formula 1¥ be given by 

Initializing, we have I= {p1,p2,p3,p4} and all clauses are unlabelled. 

Iteration 1 We choose l = 1, j = 1. Note that j ¢ S2 , but j E S3 , hence we carry out 
the substitution. We have that S1 (£) S3 = {2, 4} and 8183 = -1 , thus 

1¥ := (P1 H P2 H p3) A (P2 H p3 H p4) A ,(p2 H p4) , 

and I= {P2,P3 , p4} . 

Iteration 2 Now let us choose l = 2, j = 2 thus I:= {p3 ,p4 }. Performing the substitu­
tion for k = 1 and k = 3 we find 

Iteration 3 Finally l = 3, j = 3, hence I:= {p4}. We find 

1¥ := (P1 H p4) A ,(p2 H p4) A ,p3. 

Since JS3J = 1, the last action is equivalent to applying unit resolution. 
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Initialize the set I= {Pi, ... ,Pm}­
while not all clauses are labelled do 

choose an unlabelled clause Q1; 

choose a variable PJ E S1; 
I:= I\{P1}; 
for k = 1 to t do 

if j E Sk and k -:/- l then 
sk := sk EB S1; ok := oko1; 
if sk = 0 then 

if Ok= -1 return(contradiction); 
else label clause Qk; 

endif 
endif 

endfor 
label clause Q1; 

endwhile 
return(satisfiable, I , \JI); 

Figure 4.1: Algorithm SOLVE_CoE 
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All clauses are labelled now, hence the algorithm terminates. The single independent 
variable p4 can be arbitrarily set, and substituting it in \JI we can construct two satisfying 
assignments, corresponding to p4 and ,p4 respectively; (P1 /\ ,p2 /\ ,p3 /\ p4) and ( ·P1 /\ 

P2 /\ •P3 /\ •P4) · □ 

Let us consider the complexity of the algorithm. It requires min{ m , t} iterations, since 
each time the outer loop is executed the number of independent variables and the number 
of unlabelled clauses decrease. In each iteration all equivalency-clause are considered once, 
and the length of these clauses is bounded by m. Thus we have the following complexity 
bound. 

Lemma 4.3.2 The algorithm runs in O(mt • min{m, t}) time. 

We conclude that this algorithm solves CoE formulas in polynomial t ime. Let us now 
turn to the issue of recognizing CoE formulas by their CNF translation. 

4.4 Recognition of CoE formulas in CNF formulas 

First, we show that members of a specific class of CNF formulas can be concluded to be 
equivalent to CoE formulas. Subsequently we consider more general CNFs. 

4.4.1 A special case: doubly balanced formulas 

In this section we restrict ourselves to 3SAT formulas. We consider a specific class of 
3CNF formulas and show that these are equivalent to CoE formulas. Let us consider the 
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CNF equivalent of an equivalency-clause of length 3, say pH q H r, using De Morgan's 
laws. Then 

<I> = (p V ,q V ,r) I\ ( ,p V q V ,r) I\ ( ,p V ,q V r) I\ (p V q V r). ( 4. 3) 

Note the particular structure of this CNF formula. A formula with this structure is called 
doubly balanced [43, 96]. Doubly balanced formulas are defined as follows. 

Definition 4.4.1 A 3SAT formula <I> is called doubly balanced if 

1. Of each proposition p;, the number of unnegated and negated occurrences are equal; 
equivalently o-(p;) = a-( ,p;) or 

n 

L ak; = 0, i = 1, ... , m. 
k=l 

2. For any two propositions p; and Pi, the number of clauses in which both appear 
simultaneously with the same sign (i.e. both are negated or both are unnegated) is 
equal to the number of clauses in which both appear simultaneously with opposite 
signs (i.e . one appears negated and the other unnegated), or equivalently 

n 

L akiaki = 0, i, j = 1, ... , m, i -f. j. 
k= l 

Examining (4.3) suggests that doubly balanced formulas are equivalent to CoE formulas. 
That this is indeed the case is the main result of the present section. Let us state it as a 
theorem. 

Theorem 4.4.2 A doubly balanced formula is equivalent to a CoE formula and as such 
can be solved in polynomial time. 

The remainder of this section is concerned with proving this theorem. In the proof we 
make use of elliptic approximations of satisfiability problems; see Section 2. 

Lemma 4.4.3 Let <I> be a 3CNF-formula with associated clause-variable matrix A. The 
ellipsoid 

[3 = {x E lR.mlxT AT Ax - 2eT Ax :S 3n} 

contains all satisfying assignments of <I>. 

Proof: See Theorem 2.4.l. Let w = e and note that rk = 3. □ 

Considering the ellipsoid, it is clear that certain contradictory assignments x E { -1 , 1 }m 
may also be contained in it; therefore we speak of an approximation. In general most 
contradictory assignments are not contained in the ellipsoid, and thus using specific prop­
erties of the ellipsoid such as its eigenvalue structure and its center, effective branching 
rules and satisfiability tests are obtained; see the previous chapter and [97]. 

If the ellipsoid is normalized and centered, i.e. it is centered at the origin and its axes are 
parallel to the unit vectors, these heuristics do not distinguish between the variables and 
thus are of no use. However, the structure of such ellipsoids can be exploited in a different 
way. Note that for these ellipsoids AT A is diagonal, and AT e = 0. Let us first establish 
the following easy lemma. 
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Lemma 4.4.4 ct> is doubly balanced if and only if AT A is a diagonal matrix and AT e = 0. 

Proof: Follows straightforwardly from Definition 4.4.l. D 

We conclude that the elliptic approximation of a doubly balanced formula is normalized 
and centered. Normalized, centered ellipsoids have the following property. 

Lemma 4.4.5 Assume that the ellipsoid £3 is normalized and centered. Then each vector 
x E {-1, l}m lies on its boundary. 

Proof: Using that AT A is diagonal , ATe = 0 and xf = 1 for x; E {- 1, 1} , we find that 

m n 

XT AT Ax - 2eT Ax= IJAT A);;x; = L e(Ck) = 3n. 
i=l k= l 

Here we also used Lemma 2.4.5. D 

Corollary 4.4.6 If all assignments lie on the boundary of £3 , then for any satisfying 
assignment x E { - 1, 1 }m, a[ x equals either -1 or 3 for each k = 1, ... , n. 

Proof: First note that for any satisfying assignment a[ x E {-1, 1, 3} . Next, assume that 
for a satisfying assignment a[ x = 1, for some k. Then (Ax - ef(Ax - e) '.S 4(n - 1) , 
implying that xT AT Ax - 2eT Ax< 3n, thus arriving at a contradiction. D 

Hence, for each clause a satisfying assignment either satisfies exactly one of its literals or 
all three. This implies that each clause k can be regarded as a nested equivalence of its 
three literals. Let us state this in a lemma. 

Lemma 4.4. 7 The requirement that of a clause of length three Ck either one or all three 
literals must be satisfied is expressed by the equivalency-clause 

Qk = [·l+t:ft Pi, 
iESk 

where Sk = h U Jk and the negation operator is present (and 5k = - 1) if and only if llkl 
is odd. 

Proof: The correctness of the lemma is verified by the truth table in Table 4.1. The first 
three columns show all possible truth valuations of the three variables involved ( denoted 
by p , q , r) . The subsequent two columns indicate whether the associated equivalency­
clauses under the given assignments evaluate to true (t) or fal se (f). The last four 
columns indicate whether the associated clauses with llkl = 0, 1, 2, 3 negative literals and 
the additional requirement that exactly one or all three literals are true , evaluate to true 
(t) or fals e (f) . D 

We conclude that a CoE formula can be constructed that is fully equivalent to the original 
doubly balanced CNF formula, thus completing the proof of Theorem 4.4.2. Let us return 
for a moment to the example formula ( 4.3). The CNF formula ct> is doubly balanced and 
consequently (using Lemma 4.4.7) it is equivalent to 

ii, = (p H q H r) /\ (p H q H r) /\ (p H q H r) /\ (p H q H r) ' 

thus, indeed, ii, = pH q Hr. 
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p q r p +--+ q +--+ r -, (p +--+ q +--+ r) IJkl = 0 IJkl = 1 IJkl = 2 IJkl = 3 

t t t t f t f t f 

t t f f t f t f t 

t f t f t f t f t 

t f f t f t f t f 

f t t f t f t f t 

f t f t f t f t f 

f f t t f t f t f 

f f f f t f t f t 

Table 4.1 : Proof of Lemma 4.4.7. 

Note that the complexity of constructing the elliptic approximation is linear in the number 
of clauses, and thus checking whether a formula is doubly balanced can be done efficiently. 
In the next section we address the issue of recognizing CoE formulas in CNF formulas in 
general (i.e. not restricted to 3SAT and doubly balancedness). 

4.4.2 A general characterization of CoE formulas 

The ellipsoid considered in the previous section is in fact the second order Taylor trunca­
tion of a full representation of satisfiability problems (see Appendix B) . We now inves­
tigate such full polynomial representations of general CNF formulas which enable us to 
give a general characterization of CNF translations of CoE formulas. 

Let us first consider a polynomial representation of a CoE formula. Recall that with each 
proposition letter p; a { -1 , 1 }-variable x; is associated. It holds that the equivalency­
clause Qk is satisfied if and only if ( see ( 4.1)) 

Qk(x) = Ok IT x; = 1, 
iESk 

since this equation is satisfied if and only if Ok = 1 ( -1) and an even ( odd) number of 
x;, i E Sk, variables equal -1. Note that for any assignment x E {-1 , l}m, Qk(x) = ±1. 
Thus we have a concise alternative formulation of '11 . 

t t 

(CoE) find x E {-1, l}m such that L Qk(x) = L Ok IT X; = t. 
k=l k=l iESk 

Conversely, it is easy to see that any problem of the form (CoE) can be directly translated 
to a CoE formula. Let us now derive a condition under which a CNF formula <I> can be 
reduced to the form (CoE) (and thus is polynomially solvable). 

Consider a clause Ck and its associated linear inequality aI x 2'. 2 - £(Ck) - A {-1 , 1 }­
vector x satisfies aI x 2'. 2 - £(Ck) if and only if 

m 

Pk(x) = IT (1 - x;) IT (1 + xi) = IT (1 - ak;X;) = 0. ( 4.4) 
iElk jEJ; i= l 
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Indeed this equation is satisfied if and only if at least one x; 1, i E h or x; = -1, 
i E Jk· If x is not a satisfying assignment it holds that A(x) = 2l1kuJkl > 0. Denote 
M = { 1, ... , m} . In general , x E { -1, 1} m is a satisfying assignment of a formula <I>, if 
and only if 

n n 

P(x) = L Pk(x) = n + L (-1) 111 L II ak;X; = 0, 
k= l k=l iEl 

where in principal I runs through all subsets of M (I f. 0) . Note that the number of 
subsets that has to be taken into account can be restricted substantially, since in fact only 
subsets I ~ M for which I ~ h U Jk for some k = 1, ... , n need to be considered. In 
general, for a clause with length !!(Ck), 2e(Ck) - 1 coefficients need to be computed. 

Obviously, the multiplicative representation (4.4) remains valid when multiplied with a 
nonzero weight Wk- Let us associate a strictly positive real weight wk with each clause. 
We use the notation 

n 

c1(w) = (-I)l11I:wk II aki, (4.5) 
k=l iEl 

where I~ M. Then the satisfiability problem has the following weighted polynomial rep­
resentation (note that this formulation slightly differs from the one introduced in Section 
2.3): 

n 

(WPR) find x E {- 1, l}m such that P(x; w) = L Wk+ L c1(w) II x; = 0. 
k=l I<;;M iEI 

Observe that by construction P(x; w) 2: 0 for any x E { -1 , l}m. Strict inequality implies 
that the corresponding CNF formula is unsatisfiable. 

Now we can generalize the notion of doubly balancedness (that is restricted to 3SAT) to 
a notion of balancedness for general SAT formulas. Let us give a definition. 

Definition 4.4.8 Consider the weighted polynomial representation (WPR). We call the 
polynomial function P(x; w) balanced if 

n 

L lc1(w)I = L Wk -
I <;;M k=l 

Furthermore, P(x ; w) is called (strictly) positive if 
n 

L h(w)I < L Wk-
I <;; M k= l 

Assume we are given a SAT formula <I> and its weighted polynomial representation (WPR). 

• If P(x; w) is balanced, we say that <I> has balanced polynomial representation (BPR). 

• Similarly, if P(x; w) is positive, we say that <I> has positive polynomial representation 
(PPR). 

Example 4.4.9 Consider the formula <I>= (pVqVr)/\(pVqV,r)/\(,pV,q). <I> has BPR; 
assigning the weights½ , ½ and 1 to the clauses, it is easily verified that P(x; w) = 2+2xpxq . 
An example of a formula with PPR is <I>/\ (p V ,q) I\ ( ,p V q). Using the same weights as 
before and giving the additional clauses a weight of 1, we find that P(x; w) = 4. D 
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Lemma 4.4.10 If <I> has balanced polynomial representation, then it is equivalent to a 
conjunction of equivalencies. 

Proof: We need to show that for balanced weighted polynomials P(x; w), (WPR) (and 
hence <I>) can be reduced to the form (CoE). Note that if P(x; w) is balanced, then for 
any feasible vector x E { -1, 1} m it must hold that 

c1(w) IT x; = -lc1(w)I, 
iEl 

for all I ~ M. This implies that for all subsets I ~ M for which c1 ( w) =I= 0, 

Il x;= { 1 '.fc1(w) < O, 
iEI -1 1f c1(w) > 0. 

Enumerating the k = 1, . .. , t ~ n sets I ~ M for which c1 (w) =/= 0, we take 5k 
-sgn(c1 (w)) and Sk =Ito prove the lemma. D 

Example 4.4.11 Returning to the example for a moment, by Lemma 4.4.10 the formula 
<I> is concluded to be equivalent to the formula ,(pH q). □ 

Let us now state a theorem. 

Theorem 4.4.12 Given are a propositional formula <I> and its weighted polynomial rep­
resentation (WPR). 

• If <I> has a positive polynomial representation, it is unsatisfiable. 

• If <I> has a balanced polynomial representation, it is equivalent to a CoE formula and 
can be solved in in O(mn • min{m, n}) time, using algorithm SOLVE_CoE. 

• More general, if 
L lc1(w)I = n + 2z, 

a satisfying solution, or proof that no solution exists, can be found using a modified 
version of algorithm SOLVE_CoE with complexity 

Proof: The first statement follows from the fact that P(x; w) > 0 for any x E {-1, l}m; 
the second statement is clear from Lemma 4.4.10. Let us now consider the third state­
ment. Assume that all nonzero coefficients c1(w) equal ±1, and consider (WPR). For any 
satisfying assignment exactly z of the terms c1(w) ll;Ef x; must equal '1' instead of '-1' 
to imply that P(x; w) = 0. Thus z out of n + 2z sets I ~ M (with c1 (w) =I= 0) need to 
be chosen to contribute '+1 ' to P(x; w), and subsequently algorithm SOLVE_CoE can be 
applied. This concludes the proof. D 

Obviously, <I> having a positive polynomial representation is merely a sufficient condition 
for its unsatisfiability. Similarly, <I> having a balanced polynomial representation is a suf­
ficient condition only for it to be equivalent to a CoE formula. Furthermore, concerning 
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statement 3 of this Theorem, it may be interesting to mention that in specific cases, by 
making use of the particular numerical values of the coefficients cI(w), the complexity 
bound given might turn out to be somewhat pessimistic. We do not pursue this here. 

To avoid ambiguities in the terminology, let us stress the difference between BPR and 
CoE subformulas. If a CNF formula has BPR or a BPR subformula, this implies that it 
is equivalent to a CoE formula, or that it has a subformula that is equivalent to a CoE 
subformula. On the other hand, if a CNF (sub)formula is equivalent to a CoE formula, 
the CNF formula does not necessarily have BPR. 

To relate the result of the previous section with that of the present section, let us briefly 
consider 3SAT formulas , assuming that all weights are set to one. Then 

From this it is clear that doubly balanced formulas either have a balanced or positive 
polynomial representation ; the linear and bilinear terms vanish, while at most n (trilinear) 
terms remain (see Definition 4.4.1). However, 3SAT formulas need not be doubly balanced 
to have such a representation . Consider the following example. 

Example 4.4.13 Given is the formula <P. 

<P = (p V q V r) /\ (p V q V ,r) /\ ( ,p V ,q V ,s) /\ ( ,p V ,q V s). 

Obviously, <P is not doubly balanced in the sense of Definition 4.4.1, but (assuming that 
all weights are equal to one) 

P.i,(x) = 4 + 4XpXq ­

Thus, by Definition 4.4.8, P.1,(x) is balanced. □ 

Hence the notion of balanced polynomial representations is stronger than doubly balanced­
ness . Obviously, checking the first is, in general, also computationally more involved. If 
the maximum clause length is bounded by f_ it requires computing (at most) (2e - l)n 
coefficients; doubly balancedness can be checked by computing 4n coefficients. 

4.5 A two-phase algorithm 

To speed up solving satisfiability problems, it may be helpful to detect CoE subformulas, 
or even unsatisfiable subformulas. If an unsatisfiable subformula is isolated, obviously the 
full formula is also unsatisfiable. It may be noted that in random formulas the occurrence 
of BPR or PPR subformulas is unlikely; in SAT translations of practical problems on the 
other hand, often structure is present that might be detected in this way. In the next 
sections we discuss two of the main ingredients of our two-phase algorithm in detail and 
subsequently we outline the full algorithm. 

4.5.1 Finding subformulas with BPR 

We address the problem of finding a CNF (sub)formula that is equivalent to a CoE 
formula . Following the previous section , we search for a subformula with BPR. We can 



70 A two-phase algorithm for hard SAT problems 

make use of a linear programming (LP) formulation to find a BPR subformula of maximal 
weight. Since the construction of the LP can be done in polynomial time (assuming that 
the maximal clause length is bounded and fixed) , and LP problems are polynomially 
solvable [87], the PPR/BPR recognition problem can be solved in polynomial time. 

In the formulation the weights wk occurring in the weighted polynomial representation 
(WPR) are the main decision variables. Essentially, we want to find a set of non-negative 
weights wk and a slacks 2 0 such that (see Definition 4.4.8 and equation (4 .5)), 

(4.6) 

We allow the weights to be equal to zero; if wk = 0 for some k, this implies that clause k is 
not in the subformula, while if wk > 0 clause k is in the subformula. Our first goal should 
be to find a solution with s strictly positive (since then the associated subformula has 
PPR and is unsatisfiable) ; if no such solution exists, the goal is to identify a subformula of 
maximal weight with BPR. To check whether solutions with the desired properties exist, 
we first solve an LP with the objective of maximizing s, and if the optimal value of this 
LP is equal to zero, a second LP must be solved with the objective to maximize the sum 
of the weights. Consider the following LP. 

k=l 
n 

s.t. L (zt + zn - L Wk+ s = 0, 
! CM k= l 

i (rr ak;)Wk - zt + Zl = 0, 
k= l iE l 

0 '.S Wk '.S 1, 

zt, Z1 2 0, 

s 2 0. 

I~M , 

1 :S k '.S n, 
I~M , 

The two separate LPs are obtained by setting (3 = 0 and a = 0, s = 0 respectively. 
The first constraint evaluates expression ( 4.6) and in the subsequent set of constraints 
the c1(w) are computed (see (4.5)). The auxiliary variables zt and z1 associated with 
the (nonempty) set I are used to eliminate the absolute values in (4.6) in the usual way, 
i.e. [cr(w)[ = zt +z1, cr(w) = zt-z1. For a formula in which the clauses have a maximum 
length €, the numbers of variables and constraints are bounded by (2H 1 - l)n + 1 and 
(2e - l)n + 1 respectively. Let us state the properties of (LPwPR) in a lemma. 

Lemma 4.5.1 Assume we are given a formula <I> and its associated linear programming 
problem (LPwPR)- Denote by (s0

, w 0
) the optimal solution of (LPwPR) with (3 = 0. 

Similarly, wf3 denotes the optimal solution of (LPwPR) with a= 0, s = 0. 

• If s0 > 0 then <I> is unsatisfiable. The subformula obtained by extracting the clauses 
Ck with positive weight wf has PPR and is therefore unsatisfiable. 

• If wf3 > 0 then <I> is equivalent to a CoE formula. 
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• If wfl 'f 0, but wf > 0 for some clauses Ck , then the subformula consisting of all 
clauses with positive weight is equivalent to a CoE formula. 

Proof: All claims can be verified by carefully considering (LPwPR)- D 

If the second LP has a positive optimal value, the CoE subformula can be constructed 
by taking the conjunction of the equivalency-clauses associated with the sets I for which 
lc1(w)I = zt + z1 f. 0, with 51 = sgn(-c1(w)). If the optimal value of the second LP 
equals zero, no BPR (sub)formula exists . As stated before, this does not necessarily imply 
that no part of the formula is equivalent to a CoE formula. 

Note that a BPR subformula of maximal weight is not guaranteed to be a subformula of 
maximal size. In particular, if a CNF formula contains only clause-disjoint BPR subfor­
mulas, the LP approach will identify the maximal size BPR subformula (i.e. the union 
of the clause-disjoint BPR subformulas). If however some of the subformulas are not 
clause-disjoint, then the maximal weight BPR subformula does not necessarily coincide 
with the maximal size subformula. In this respect using an interior point method for solv­
ing (LPwPR) might be better than the simplex method, since an IPM yields an optimal 
solution with a maximal number of nonzero variables. 

In practice, heuristics that look for particular structures may often succeed in identifying 
BPR subformulas. Indeed, for the parity formulas solved in the last section of this chapter 
the following heuristic suffices. Considering the particular structure of CNF translations 
of equivalency-clauses (see (4.3)) , the strategy to look for ' blocks of clauses' with such a 
structure gives a large CoE subformula. However, if a subformula is 'well hidden', or does 
not conform this standard structure, using the LP approach described above will succeed 
in identifying it, whereas the heuristic methods are likely to fail. 

4.5.2 A DPLL algorithm for solving mixed CNF /CoE formulas 

One of the best known exact algorithms for solving CNF formu las is the variant of the 
Davis-Putnam algorithm introduced by Davis, Logemann and Loveland, which is known 
as the DPLL algorithm; see also Section 3.3. We can easily extend this algorithm to solve 
conjunctions of CNF and CoE formulas . In figure 4.2 the extension of the algorithm is 
summarized. 

Let us look a bit more closely at the algorithm. First we consider the unit resolution 
phase. When a unit literal is propagated through the formula, some clauses become true, 
while others reduce in length by one. For equivalency-clauses it holds that each in which 
the current unit literal occurs simply reduces in length by one. As usual, unit resolution is 
applied until no unit clauses remain , where it is noted that an equivalency-clause of length 
one can be regarded as a unit clause in the usual sense. After the unit resolution phase 
it is checked whether the current formula can be declared satisfiable or contradictory. If 
not, a branching or splitting variable l is chosen in some pre-specified way and the DPLL 
procedure is recursively called with this variable set to true and false respectively. Note 
that if a set I of independent variables is specified, it appears to be sensible to restrict 
the set of candidate branching variables to I; then the dependent variables are considered 
in the unit resolution phase only. 
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procedure DPLL (<I>= <I>cNF U <I>coE, depth); 
<I>:=uni t_resolution( <I>); 
if <I> = 0 then 

<I> is satisfiable: return(satisfiable); 
if ck = 0 for a ck E <I>cNF then 

<I> is contradictory: backtrack; 
if Q k = J alse for a Qk E <I>coE then 

<I> is contradictory: backtrack; 
l:=branch_rule( <I>) ; 
DPLL(<I> U {l}, depth+l) ; 
DPLL(<I> U { ,l}, depth+l ); 

return( contradiction); 

Figure 4.2: The DPLL algorithm extended for CNF /CoE formulas. 

Obviously, if in the extended algorithm <I>coE = 0 (then no equivalency-clauses are 
present) , the algorithm reduces to the usual DPLL algorithm. On the other hand, if 
<I>cNF = 0, the formula under consideration is a pure CoE. As the DPLL algorithm has 
exponential complexity, the formula should then rather be solved using the polynomial 
time special purpose algorithm S0LVE_CoE. 

4.5.3 Outline of the two-phase algorithm 

We now have all the ingredients to specify the two-phase algorithm. Let <I> be a CNF 
formula. The two-phase algorithm runs as follows. 

1. The LP for detecting PPR or BPR subformulas is constructed and solved. Using 
the optimal solution, one of the following actions is taken. 

• If a PPR (sub)formula is found , <I> is concluded to be a contradiction. 

• If <I> is fully equivalent to a CoE formula, the appropriate CoE formula is solved 
using algorithm S0LVE_CoE. 

• If <I> has a (nonempty) BPR subformula \JI , \JI is solved/rewritten to the CoE 
formula <I>coE using algorithm S0LVE_CoE and <I>cNF := <I> \ \JI . The algorithm 
proceeds with phase two. 

• If no BPR structure is detected , the algorithm proceeds with phase two (which 
in this case reduces to the usual DPLL procedure). 

2. The extended DPLL algorithm is applied to decide about satisfiability of the formula 
_<I> = <I>cNF U <I>coE· 

Note that the first phase of the algorithm runs in polynomial time, while the second 
phase has an exponential worst case complexity. The first phase may be considered as 
a preprocessing method. Furthermore, note that the CoE formula does not need to be 
solved separately for the modified DPLL algori thm to be valid. However, if it is solved, 
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and subsequently it turns out that some dependent variable Pi does not occur in the CNF 
part of the formula, this variable and the equivalency-clause it occurs in need not be 
considered in the DPLL search procedure, since the value of Pi is uniquely determined 
by this equivalency-clause. Therefore, during the execution of algorithm SOLVE_CoE, if 
we have the choice to transfer one of two independent variables p; and Pi from the set of 
independent variables to the set of dependent variables, it is worthwhile to check whether 
both appear in the CNF subformula as well. For instance, if only p; occurs in the CNF 
subformula, we choose to remove Pi from the set of independent variables. This allows 
us to reduce the problem size for phase two considerably. This is illustrated in Figure 
4.3: the rectangle depicts a CNF formula as a list of clauses. Left, it is discovered that 
a substantial part of the CNF formula is equivalent to a CoE formula. After first solving 
this formula, in the second phase only the highlighted part of the formula, depicted in the 
right hand figure, needs to be considered; the rest of the formula can be uniquely satisfied 
by extending a satisfying assignment of the highlighted subformula. 

CoE 

--­variables 

Figure 4.3: Reduction of the search space. 

4.6 Application to DIMACS benchmarks 

Let us now apply the two-phase algorithm to a number of benchmarks. In the DIMACS 
suite there are several formulas that are doubly balanced (and thus have a balanced 
polynomial representation as well) and thus are solved in the first phase of the algorithm, 
or have BPR subformulas. We start with considering some instances that can be solved 
in polynomial time by translating them to an equivalent CoE formula first. In the section 
thereafter some instances with large BPR subformulas are solved in two phases. 

4.6.1 Formulas solved in phase one 

It turns out that the dubois* . cnf and the pret* -* . cnf (which are all 3SAT formulas) 
can be proved a contradiction by Lemma 4.6.1. Also if this lemma is not used , these 
instances are solved within fractions of seconds by algorithm SOLVE_CoE. 
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Lemma 4.6.1 Let 'ii be a conjunction of equivalencies. If 

• each variable occurs an even number of times in 'ii, and 

• the number of negative equivalency-clauses is odd, 

then 'ii is unsatisfiable. 

Proof: Consider problem (CoE). A relaxation of this is, to find x E {-1, l}m that satisfies 

t 

II 5k II X; = l. 
k=l iESk 

If the number of occurrences of each variable is even, this reduces to the product over 
all Jk 's. If the number of negative equivalency-clauses is odd, a contradiction follows. 
Consequently, the formula under consideration is not satisfiable. □ 

In fact these formulas can be considered as special cases of the propositional formulas 
associated with Tseitin graphs [129], which Tseitin used to prove an exponential lower 
bound on the running time of regular resolution. For branching and other resolution-like 
algorithms these formulas are very hard , and the number of nodes required in the tree 
grows exponentially with the size of the formula . 

Yet another interpretation of these formulas is, that they are 3SAT translations of formulas 
of the form 

Here the '[,]' denotes that the negation operator is optional. Such formulas without any 
negations are known as Urquhart formulas [131]. To obtain dubois* . cnf- and pret*. cnf­
like formulas , an odd number of proposition letters must be negated, and subsequently 
the formula must be translated to 3SAT using auxiliary variables. When the number of 
negations is odd, the resulting formula is clearly unsatisfiable. 

4.6.2 Formulas solved in phase two 

In a recent paper by Selman et al. [116] ten challenges in propositional reasoning are 
formulated. Challenge 2 is stated as follows: 

Challenge 2: (2-5 years) Develop an algorithm that finds a model for the DIMA CS 32-bit 
parity problem. 

These instances arise from the parity learning problem on 32 bits and were generated by 
Crawford [32]; see also Section 1.3.l. In [116] it is stated that the instances "appear to 
be too large for current systematic algorithms, while they also defeat the hill-climbing 
techniques used by current local search algorithms. Given the amount of effort that has 
been spent on these instances, any algorithm solving them will have to do something 
significantly different from current methods." 

We apply the techniques discussed previously to solve the DIMACS par*-*-c. cnf in­
stances. These instances all contain a subformula with balanced polynomial representa­
tion. This subformula is a CNF translation of a CoE formula in which all equivalency­
clauses have length three. It is not strictly necessary to apply the LP approach to identify 
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this formula, since it can be easily found by inspection. For completeness we list the 
required time for constructing and solving the LPs in Table 4.2. These tests were run on 
a HP9000/C200 workstation, 200 MHz. CPLEX was used to solve the LPs, using the bar­
rier algorithm. The BPR subformulas are clause-disjoint, therefore the maximal size BPR 
subformula is identified by the LP approach. In Table 4.2 are listed, for each instance, 
the number of clauses n, the number of rows row and columns col in the corresponding 
LP, the time for constructing and solving the LP, and the value of the optimal solution 
(opt). By construction it holds that n + 2 *row= col; furthermore, due to the particular 
structure of the instances (cf. (4.3)), the number of equivalency-clauses t induced by the 
optimal solution is equal to opt/4. 

instance n row col time opt 

par8-1-e.enf 254 282 818 .16 224 

par8-2-e . enf 270 301 872 .18 240 

par8-3-e . enf 298 338 974 .19 268 

par8-4-e . enf 266 297 860 .17 236 

par8-5-e.enf 298 335 968 .19 268 

par16-1-e . enf 1264 1537 4338 1.37 1080 

par16-2-e.enf 1392 1692 4776 1.60 1208 

par16-3-e.enf 1332 1619 4570 1.75 1148 

par16-4-e.enf 1292 1567 4426 1.51 1108 

par16-5-e.enf 1360 1653 4666 1.81 1176 

par32-1-e.enf 5254 6524 18302 16.84 4632 

par32-2-e.enf 5206 6466 18138 16.08 4584 

par32-3-e.enf 5294 6574 18442 17.20 4672 

par32-4-e.enf 5326 6618 18562 15.12 4704 

par32-5-e . enf 5350 6648 18646 16.18 4728 

Table 4.2: Results of using the LP approach for identifying CoE subformulas 

The first and second phase of the algorithm were implemented in C and compiled using 
gee with the flag -02 set. The results reported in Tables 4.3 and 4.4 were obtained run­
ning the code on a SGI POWER CHALLENGE with a 200 Mhz RlOk processor. All times 
reported are in seconds. In Table 4.3 we report on the results of the first phase of the 
algorithm which consists of isolating (by inspection; this requires less than .01 second) 
and solving the CoE subformulas. The initial numbers of variables and clauses are given 
by m and n. The number of equivalency-clauses in the CoE subformula is denoted by t ; 
note that indeed t = opt/4, while the size of the remaining CNF is n - opt clauses. In 
the table we also indicate the number of independent variables determining the solutions 
of the CoE formula. The number of satisfying solutions for the CoE subformula equals 2III_ 
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instance m n t time III 
par8-1-c.cnf 64 254 56 .01 8 

par8-2-c . cnf 68 270 60 .01 8 

par8-3-c.cnf 75 298 67 .01 8 

par8-4-c.cnf 67 266 59 .01 8 

par8-5-c.cnf 75 298 67 .01 8 

par16-1-c.cnf 317 1264 270 .04 47 

par16-2-c.cnf 349 1392 302 .06 47 

par16-3-c.cnf 334 1332 287 .05 47 

par16-4-c.cnf 324 1292 277 .06 47 

par16-5-c.cnf 341 1360 294 .06 47 

par32-1-c . cnf 1315 5254 1158 4.49 157 

par32-2-c.cnf 1303 5206 1146 3.80 157 

par32-3-c.cnf 1325 5294 1168 4.50 157 

par32-4-c.cnf 1333 5326 1176 4.39 157 

par32-5-c.cnf 1339 5350 1182 4.62 157 

Table 4.3: Results of the first phase of the algorithm 

Before starting the second phase of the algorithm, as explained in Section 4.5.3 (with ref­
erence to Figure 4.3), first as many dependent variables and corresponding equivalency­
clauses as possible are removed. On branching strategies considering only the CNF subfor­
mula this has no effect as far as the node count is concerned; computation times however 
will reduce. The remaining numbers of variables, clauses and equivalency-clauses are 
given by m, n and t. Note that m = t+ III; each dependent variable occurs in exactly one 
equivalency-clause. We tested several branching strategies on the par16* instances, and 
used the one that appeared to be the most effective to solve the larger instances. In Table 
4.4 we report on the results. The branching strategy we arrived at is simply the maximal 
occurrence in shortest clause rule, with a lexicographic tie-break, where the candidate 
branching variables are restricted to the set of independent variables. Note that for deter­
mining a branching variable the equivalency-clauses are not considered. We report on the 
node counts obtained by first branching to I and ,l respectively. The node count gives the 
number of times that a branching variable was chosen. A typical phenomenon of DPLL 
algorithms that we also encountered here is that using different branching strategies the 
computation times and node counts may vary heavily. 

Examining the tables we conclude that the smaller instances are solved in fractions of 
seconds, while the largest take at most about four minutes. To the best of our knowledge, 
none of the current state-of-the-art implementations of the DPLL procedure are capable 
of solving the par32* instances in less than 24 hours, and often they require several days 
of computation time. Recently, it came to our attention that the instances were solved by 
an unspecified algorithm ('GT6') in two to four hours (Greentech Computing Ltd . [93]). 
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instance m n t nodes time nodes time 

par8-1-c . cnf 31 30 23 3 .00 1 .00 

par8-2-c.cnf 31 30 23 3 .00 1 .00 

par8-3-c.cnf 31 30 23 2 .00 1 .00 

par8-4-c.cnf 31 30 23 3 .00 3 .00 

par8-5-c.cnf 31 30 23 4 .00 4 .00 

par16-1-c . cnf 124 184 77 82 .02 67 .02 

par16-2-c.cnf 124 184 77 58 .01 144 .03 

par16-3-c . cnf 124 184 77 55 .01 137 .03 

par16-4-c . cnf 124 184 77 51 .01 131 .03 

par16-5-c.cnf 124 184 77 49 .01 85 .02 

par32-1-c.cnf 375 622 218 410634 193 130258 62 

par32-2-c . cnf 375 622 218 201699 90 335988 160 

par32-3-c.cnf 375 622 218 502747 248 6712 3 

par32-4-c . cnf 375 622 218 218021 101 267032 135 

par32-5-c.cnf 375 622 218 179325 84 328253 164 

Table 4.4: Results of the second phase of the algorithm 

4. 7 Concluding remarks 

The two-phase algorithm developed in this chapter provides (at least partial) answers to 
two of the challenges posed by Selman et al. [116]. Most notably, it efficiently solves the 
par32-c-* . cnf instances. Another challenge posed by Selman et al. is to make integer 
linear programming practical for satisfiability solving. The first phase of our algorithm 
partly relies on a linear programming formulation to detect formulas with BPR. With the 
help of this LP formulation, it is shown to run in polynomial time. Since the first phase 
is crucial for solving the parity instances, it appears that this is the first truly successful 
application of linear programming in SAT solving. 

As explained before, a similar LP formulation can be used to identify certain contradic­
tions, namely those that have PPR. Unfortunately, it appears that such contradictions do 
not occur at all in the standard sets of benchmarks. Thus, although pathological instances 
with PPR can be constructed that are very hard for the usual algorithms, it seems that 
the notion of PPR is mainly of theoretical interest. When considering random 3CNF 
formulas for example, the clause-variable ratio required to obtain formulas with PPR is 
large and increases with the number of variables. Still , the LP formulation does provide 
a polynomial time algorithm for such unsatisfiable random 3CNF formulas. However, the 
progress presented by Franco and Swaminathan [48] is likely to yield stronger results. 
They show that, under the assumption that a polynomial time approximation algorithm 
for the Hitting Set problem with sufficient guarantee is available (and they argue that 
the existence of such an algorithm is likely) , random 3CNF formulas with a large, but 
constant clause-variable ratio can be verified to be contradictory in polynomial time. 
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Semidefinite Relaxations Of 
Satisfiability Problems 

Motivated by recent theoretical results on approximating combinatorial 
optimization problems, we examine the use of semidefinite programming 
in SAT solving. Using the well-known Goemans-Williamson algorithm, 
and exploiting problem sparsity, a competitive algorithm for (small-sized) 
MAX2SAT problems is obtained. Subsequently, we derive a semidefinite 
relaxation of general satisfiability problems, and discuss its strength to de­
cide unsatisfiability. Using this relaxation, a certificate of unsatisfiability 
of the notorious pigeon hole and mutilated chess board problems can be 
obtained in polynomial time. In addition, the relaxation yields a polyno­
mial time algorithm for 2SAT and by slightly enhancing it polynomially 
solvable 3SAT problems can be identified. In general, the relaxation can 
be used in a branching algorithm to reduce the size of the search tree. 

5.1 Intro duction 

5 

In the early nineties , Goemans and Williamson introduced a new approximation algo­
rithm for MAXCUT and MAX2SAT using semidefinite programming (SDP) [56] . Since 
then much attention has been devoted to this field. Most of the research thus far fo­
cused on developing polynomial time algorithms for SDP problems, and on developing 
approximation algorithms for various combinatorial optimization problems. For example, 
semidefinite programming (SDP) relaxations - in conjunction with randomized rounding 
schemes - yield 7 /8 and 0.931 approximation algorithms for MAX3SAT and MAX2SAT 
respectively [86, 46]. In spite of these powerful theoretical results, it is not clear whether 
SDP can be used as a practical tool for solving MAX-SAT problems to optimality, or for 
solving general SAT problems. In this regard the usefulness of the SDP approach depends 
on two important issues: 

1. The tightness of the SDP relaxation. 

2. The efficiency with which SDP relaxations can be solved. 

In this chapter we address both of these issues. Due to the relatively short history of the 
area it is early to make definitive statements, hence some of the observations made are of 
a preliminary nature; yet, they show promise for the future. 

79 
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We first consider the Goemans-Williamson relaxation of MAX2SAT problems [56]. For 
any instance of SAT a MAX2SAT formula can be constructed whose optimal solution 
gives a certificate of (un)satisfiability of the original SAT instance. Based on the ellip­
tic approximation introduced in Chapter 2, a quadratic model for MAX2SAT is derived, 
whose 'standard' semidefinite relaxation is identical to the Goemans-Williamson SDP re­
laxation. Using this relaxation, a 0.879 approximation algorithm can be obtained. This 
bound was improved to 0.931 by Feige and Goemans [46] . We are interested in applying 
the SDP approach to obtain exact MAX2SAT solutions. Recent numerical studies indi­
cate that it is very hard to prove optimality for MAX2SAT by only tightening the SDP 
relaxation [81]. Therefore it seems necessary to incorporate the relaxation in some branch 
and cut framework. Until recently, the bottleneck for such an approach has been the 
computational cost of solving the SDP relaxations: it was unclear how to exploit sparsity 
in the SDP relaxations. In a recent breakthrough, Benson, Ye and Zhang [9] proposed 
to solve the dual of the SDP relaxation in order to exploit sparsity. They applied their 
method to obtain approximately optimal solutions for MAXCUT and other graph parti­
tion problems and reported a promising computational efficiency. We test a branch and 
cut procedure to solve MAX2SAT to optimality, in each node solving the dual of the SDP 
relaxation using Benson's implementation. The results of this approach are compared to 
the results of two other complete algorithms for MAX2SAT, namely an extended version 
of the DPLL algorithm (see also Section 3.3) and the LP based general purpose branch 
and cut solver MINTO [14, 103]. We show that using the SDP approach in a branch and 
cut scheme, instances of MAX2SAT with 50 variables and up to thousands of clauses are 
solved to optimality in a few minutes on a workstation, whereas the other methods tend 
to fail as problem sizes increase. Unfortunately, using our current implementation the size 
of problems that can be solved to optimality is not sufficient to attempt solving general 
SAT instances as MAX2SAT formulas, due to the increase in problem size when reducing 
SAT to MAX2SAT. 

Instead, we develop an SDP relaxation for general SAT problems whose size is more 
acceptable. Similar to the MAX2SAT relaxation, this relaxation is inspired by elliptic 
approximations of propositional formulas as well. Here they are used to characterize a 
sufficient condition of the unsatisfiability of a formula. This condition can be expressed in 
terms of an eigenvalue optimization problem, which in turn can be cast as a semidefinite 
program (see e.g. [38, 134]). (The MAX2SAT SDP relaxation also can be interpreted as 
an eigenvalue optimization problem.) Using duality theory, we show that the dual of our 
formulation is a semidefinite feasibility problem, which is closely related to the formula­
tion developed by Karloff and Zwick for MAX3SAT formulas [86]. However, rather than 
for finding approximate MAX-SAT solutions, our principal aim is to use it for proving 
unsatisfiability. We show that the relaxation provides a polynomial-time certificate of un­
satisfiability of the notorious pigeon hole problems in a truly automated way; i.e. without 
additional problem-specific tricks . As a byproduct , we obtain a new 'sandwich theorem' 
that is similar to Lovasz ' famous 19-function [94]. Furthermore, we show that the re­
laxation is exact for 2SAT formulas and we indicate how it can be used to help solving 
3SAT problems. In particular , a certain class of polynomially solvable 3SAT formulas can 
be recognized by adding an objective function to the dual formulation (namely doubly 
balanced 3SAT formulas; see Chapter 4) . 
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This chapter is organized as follows. In the next section we discuss the preliminaries 
and notation, and give a brief introduction to semidefinite programming. In Section 5.3 
the Goemans-Williamson relaxation is derived, and a technique to tighten it is discussed. 
Subsequently, Section 5.4 is concerned with obtaining exact solutions for MAX2SAT in­
stances. In Section 5.5, we derive a semidefinite relaxation of the satisfiability problem, 
give its dual formulation and mention a number of properties. The strength of the re­
laxation is investigated in Section 5.6, by considering several subclasses of satisfiability 
problems, namely 2SAT problems, a class of covering problems (to which the pigeon hole 
and mutilated chess board problem belong) and 3SAT problems. We conclude with some 
empirical observations and further remarks. 

5.2 Preliminaries and notation 

5.2.1 SAT and MAX2SAT 

As usual, we consider the satisfiability problem in conjunctive normal form (CNF); see 
Chapter l. Associating a { -1, 1 }-variable x; with each proposition letter p;, clauses can 
be written as a linear inequalities. Using the clause-variable matrix A (see (2.1)), the 
integer linear programming formulation of the satisfiability problem can be stated as 

(IPsAr) find x E {-1, l}m such that Ax 2: b. 

In an instance of MAX2SAT, all clauses have length less than or equal to two. Checking 
whether an assignment exists that satisfies all clauses can be done in linear time [6]; in 
general however, the MAX2SAT problem is NP-complete [52]. By complexity theory, this 
implies that any SAT problem can be solved as a MAX2SAT problem. For example, the 
most concise MAX2SAT representation of a 3-clause p V q V r is given by the following 
set of (weighted) 2-clauses (Trevisan et al. [127]): 

p Vs, p Vs, ,q Vs, q V ,s, ,r Vs, r V ,s, q V r, ,q V ,r, 

where s is an auxiliary variable. Note that if the original clause is not satisfied (i.e p, q 
and r are all false), then five out of eight clauses are satisfied; otherwise seven clauses 
can be satisfied (by giving s its appropriate truth value). Therefore, if the 3SAT instance 
has n clauses and m variables, the associated MAX2SAT instance has 7n weighted clauses 
and m + n variables. The original instance is satisfiable if and only if the optimal value 
of the weighted MAX2SAT instance equals 7n. 

5.2.2 An introduction to semidefinite programming 

Recently much attention has been devoted to the field of semidefinite programming. It was 
shown that efficient approximation algorithms for hard combinatorial optimization prob­
lems can be obtained using semidefinite relaxations (Goemans-Williamson [56], Alizadeh 
[l]), while there are also applications in control theory (Vandenberghe and Boyd [134]). 
Using interior point methods, semidefinite programs can be solved (to a given accuracy) 
in polynomial time. For the reader that is unfamiliar with semidefinite programming, we 
review some of the basic concepts. 
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The standard primal (SP) and dual (SD) semidefinite programming formulations can be 
denoted as (see e.g. de Klerk [38]) 

(SP) 

inf Tr ex 
s.t. Tr A;X = b; , 1 ::; i ::; n, 

X cO. 

(SD) 

sup bTy 
n 

s.t. LY;A; + Z = e, 
i=l 

Z c 0. 

In the above programs, the A;, e, X and Z are symmetric real (m x m)-matrices and b 
and y are n-vectors . The matrix X denotes the primal decision variables, while (Z, y) are 
the dual decision variables; the constraint X c O (resp. Z c 0) indicates that X (resp. Z) 
must be positive semidefinite. Positive semidefiniteness of a matrix can be characterized 
in several ways (see e.g. Strang [123]). A symmetric real matrix A E JR.m xm is said to 
be positive semidefinite if (i) xT Ax ;::: 0 for all x E JR.m , (ii) all the eigenvalues of A are 
nonnegative , (iii) there exists a matrix R such that A= RT R. Furthermore, Tr denotes 
the trace-operator. The trace of a matrix A is equal to the sum of its diagonal elements. 
A useful easy-to-check property of the trace operator is Tr AB = Tr BA, where A and 
B are matrices of appropriate sizes. Also, the trace of a matrix is equal to the sum of its 
eigenvalues. 

When all the data matrices involved in the pair (SP, SD) are diagonal matrices, the 
semidefinite programming problem reduces to a linear programming problem. Note that 
the (nonlinear) constraints X c 0, Z c O then reduce to nonnegativity constraints. 

The duality theory for semidefinite programming is similar to - but slightly weaker than 
- the duality theory of linear programming. For the pair (SP, SD) weak duality holds, 
i.e . bT y ::; Tr ex if X is feasible for (SP) and y is feasible for (SD). As in linear pro­
gramming, we call the nonnegative quantity Tr ex - bT y the duality gap. It is easy to 
show that the duality gap equals Tr XZ for feasible X, Z. 

We say that (SP, SD) are in perfect duality if their optimal values coincide, where we 
adopt the convention that Tr ex = oo if (SP) is infeasible, bT y = -oo if (SP) is un­
bounded, etc. Perfect duality is guaranteed if one of (SP) and (SD) is strictly feasible; 
(SP) (resp. (SD)) is strictly feasible if a strictly interior solution X >- 0 (resp. Z >- 0) 
exists. Infeasibility of one then implies unboundedness of the other. Note that perfect 
duality always holds in linear programming; in the semidefinite programming case patho­
logical duality effects can occur when, for example, (SP) is infeasible but (SD) has a finite 
optimal value. 

If both (SP) and (SD) are strictly feasible, then optimal solutions (X, Z) exist for (SP, 
SD) with duality gap zero (i.e. Tr XZ = 0). Such solutions are called complementary, 
since Tr X Z = 0 is equivalent to X Z = 0 for positive semidefinite matrices. In linear 
programming, all solutions to the primal and dual problems are complementary, but for 
semidefinite programming (SP) and (SD) may have optimal solutions with positive dual­
ity gap, if strict feasibility does not hold. We speak of strict infeasibility of (SP) if there 
exists an improving direction for (SD), and vice versa. If an improving direction of (SD) 
exists, then its objective function can be increased indefinitely, which means that (SD) 
must be unbounded if it is feasible. Improving directions for (SP) are defined similarly. 
Once again, strict infeasibility is the only kind of infeasibility which can occur in linear 
programming, but in semidefinite programming weak infeasibility is also possible. The 
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semidefinite programs we consider in this chapter cannot give rise to these pathological 
duality effects, and the duality relations used here will be no more complicated than in the 
linear programming case. For more details on semidefinite programming duality issues 
we refer to [38]. 

5.3 Goemans & Williamson's MAX2SAT algorithm 

In this section a quadratic model of the MAX2SAT problem is derived and relaxed to a 
semidefinite program. The quality of the relaxation and of the solutions obtained using the 
Goemans-Williamson algorithm is considered. Finally, we discuss techniques to tighten 
the relaxation. 

5.3.1 A quadratic model of the MAX2SAT problem 

We derive a quadratic model for the MAX2SAT problem. This model gives rise to the 
same semidefinite relaxation as the quadratic models given by Goemans and Williamson 
[56] and Delorme and Poljak [39]. However, our model follows very naturally from the 
linear model for 2SAT and allows recognition of a linear autarky (see Section 2.2) via the 
eigenvalues of the matrix involved. This may yield a reduction of problem size. 

Specifically applying the linear inequalities associated with clauses to clauses of length two, 
it is clear that a 2-clause ( ·)Pi V ( ,)pj is satisfied if and only if it holds that ( - )xi+ ( - )xi 2::: 
0. Similarly, a one-literal clause ( ·)Pi is satisfied if and only if ( - )xi 2::: 0, or equivalently 
(- )xi = 1. Such a clause is modelled as (-)2x; 2::: 0, which obviously is equivalent. Let 
A be the clause-variable matrix associated with a mixed 1,2CNF formula. Making use of 
the elliptic representation of 2SAT formulas as introduced in Chapter 2, we obtain the 
following result. This lemma is closely related to Lemma 2.4.3. 

Lemma 5. 3.1 Let cI> be a 2CNF formula with associated clause-variable matrix A. Let 
x E {-1, l}m be an assignment. The number of clauses that is not satisfied by x is equal 
to ½(xT AT Ax - 2eT Ax). 

Proof: Consider a single element of the vector Ax. By construction and the fact that 
x E { -1 , l}m this element is equal to -2, 0 or 2. In the first case the corresponding clause 
is not satisfied , in the other two cases it is satisfied. Note that the value 'O' cannot occur 
in the case of one-literal clauses. Now suppose that a vector x is such that it does not 
satisfy k clauses. It is easily verified that then the following holds: 

(Ax - ef (Ax - e) = (n - k) + 9k. 

Expanding the product (noting that eT e = n) and rearranging the terms gives the desired 
result. □ 

Thus we arrive at the following quadratic formulation . 

(M2S) 
min ½(xT AT Ax - 2eT Ax) 

s.t . x E {-1 , l}m. 

Denoting the optimal value to (M2S) by opt(M2S), from Lemma 5.3.1 we conclude that 
the maximum number of satisfied clauses is given by n - opt(M2S). Note that (M2S) also 
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models weighted MAX2SAT instances, since it is obviously also allows multiple copies of 
a clause in the matrix A. 

We have the following decomposition theorem. 

Theorem 5.3.2 If the matrix AT A has an eigenvalue zero, then the corresponding eigen­
vector s is a linear autarky. 

Proof: This is a special case of Theorem 3.4.1. D 

We have a straightforward corollary from this theorem. 

Corollary 5.3.3 If a 2SAT formula has more variables than clauses (i.e . m > n), it is 
satisfiable or decomposable. 

This implies that any 2SAT formula with m > n that is not directly seen to be satisfiable, 
can be solved by considering an appropriate subproblem, in accordance with Theorem 
5.3.2. 

Note that (AT A);j can be nonzero only if p; and Pi appear together in some clause. Thus 
the fraction of nonzeros of AT A can never exceed the ratio (2n + m) : m2

. For example, 
for a MAX2SAT instance with m = 100 variables and n = 400 clauses the upper bound 
on the density of AT A is 9%. We will show in later sections why this ratio is an important 
consideration when choosing an algorithm for solving the SDP relaxation. 

We conclude this section by mentioning a property of pure MAX2SAT problems (i.e. only 
clauses with length two are present) that can be easily derived from the quadratic model. 
If the matrix AT A is diagonal and the linear term AT e = 0 (this implies that the objective 
function contains purely quadratic terms only), the maximal number of clauses that can 
be satisfied is equal to 

l TT T l~ T l~ 1 3 
n - -(x A Ax - 2e Ax) = n - - L..,(A A);;= n - - L.., e(Ck) = n - -n = -n. 

8 8 i=l 8 k= I 4 4 

(here we used Lemma 2.4.5); in this case any assignment is optimal, which follows directly 
from the quadratic model. 

5.3.2 The semidefinite relaxation 

Let us now derive a semidefinite relaxation of (M2S). To this end, we first consider the 
following general homogeneous quadratic optimization problem over the unit hyper cube. 

(QP) 
mm xTQx 

s.t. XE {-1 , l}m. 

A lower bound for (QP) can be obtained by considering the spectral decomposition of Q, 
i.e. Q = SAST. Here A is the diagonal matrix containing the eigenvalues of Q (see also 
Section 3.2.2). Thus, 

m 

xTQx = xTSAST x = yT Ay = I:>.;y;, 
i=l 
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where y = sT x . Note that YT y = XT X = m. We assume that Amin = A1 ::; ... ::; Am = 
Amax · It is easy to .see that xTQx attains its minimum over the sphere xTx =minx= 
vmsmin (where Smin denotes an eigenvector associated with Amin), and the corresponding 
minimal value is Aminm. Since xT x = m for any x E { -1, l}m this gives a lower bound of 
(QP). 

Considering (M2S), note that if the linear term AT e =/c. 0 then (M2S) is not homogeneous 
quadratic and thus the eigenvalue bound is not immediately available. By introducing one 
auxiliary { -1, 1} variable, a problem with AT e i- 0 can be made homogeneous quadratic 
as follows. 

[ ]
T [ T T l [ l x A A -A e x T T T 

T = x A Ax - 2xm+le Ax. 
Xm+i -e A O Xm+I 

If (x; Xm+i) minimizes this quadratic form, then Xm+ix minimizes its non-homogenized 
form. 

Thus (M2S) can be cast as a homogeneous quadratic optimization problem such as (QP), 
where Q E JR,(m+t) x (m+l) is given by 

The optimal MAX2SAT solution can still be computed via n - opt(M2S). 

Let us now recall an observation earlier made in Section 2.4.4. Using the property that 
xl = 1 other equivalent formulations can be obtained: adding some vector u to the 
diagonal and subsequently updating the objective value by subtracting eT u leaves the 
problem essentially unchanged, since 

for any {-1, l} vector x. The vector u is called a correcting vector [39]. To obtain a tight 
lower bound, the minimal eigenvalue of Q + diag(u) can be maximized over all correcting 
vectors u. Thus we obtain an eigenvalue optimization problem, which can be expressed 
as a semidefinite program as follows . 

sup (m + l)A 

s.t. (Q + diag(u)) t Al, 

eTu = 0. 

To verify the validity of this formulation , note that ifµ is an eigenvalue of Q, thenµ - A 
is an eigenvalue of the matrix Q - Al. The associated dual formulation can be simplified 
to (using the standard primal-dual pair (SP, SD)) 

inf Tr QY 

s. t. diag(Y) = e, 

Y t 0. 
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It is easy to see that both (SDM2s) and (SPM2s) are strictly feasible; by duality theory it 
follows that their optimal values exist and are equal (see Section 5.2.2). As a consequence, 
the 'sup and 'inf' can be replaced by 'max' and 'min'. The optimal solutions can be 
computed (to a given accuracy) in polynomial time. 

An alternative derivation of the SDP relaxation of (M2S) is the following. Rewrite 

xTQx = Tr xTQx = Tr QxxT = Tr QY, 

where Y = xxr is a rank one matrix with ones on its diagonal (since x E {-1, l}m). 
Subsequently the rank one condition is relaxed to the condition that Y t 0, i. e. Y must 
be positive semidefinite. The latter is obviously a necessary condition since aT(xxT)a = 
(arx) 2 ~ 0 for any vector a. 

Note that in the relaxation all products x;xj are replaced by matrix entries Y;j. Given 
a Choleski decomposition of Y, say Y = vrv, one can write Y;j = ( v;f Vj where the 
v;'s are the columns of V. This means that the product X;Xj is in fact relaxed to a inner 
product (v;f Vj· This type of relaxation was originally suggested by Lovasz and Schrijver 
[95]. 

5.3.3 The quality of the SDP relaxation 

Goemans and Williamson [56] proved that 

n - opt(M2S) > 0.87856. 
n - opt(SPM2s) -

(5.1) 

As stated before, if all distinct clauses on m variables are included, then exactly ¾ of the 
clauses are satisfiable, i.e. opt(M2S) = ~- The SDP relaxation is then exact, since 

It is therefore reasonable to expect that the SDP relaxation will become even tighter 
than guaranteed by (5.1) as the ratio n/m grows. This can be observed from numerical 
experiments shown in Table 5.1, where the average ratio for the left hand side of expression 
(5.1) is given as a function of the number of clauses (for random MAX2SAT instances 
with 50 variables). 

Goemans and Williamson proposed the following randomized heuristic for use in conjunc­
tion with the SDP relaxation: 

• Solve the SDP relaxation (SPM2s) to obtain an €-optimal Y = vrv. 

• _Choose a random vector s E JR.m+I and normalizes. 

• Set x; = 1 if sr v; ~ 0 or set x; = -1 otherwise. 

This randomized algorithm yields an approximately optimal solution to MAX2SAT with 
expected objective value at least 0.87856 times the optimal value. 
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50 0.95658 

100 0.97502 

200 0.98538 

500 0.98911 

1000 0.99128 

2000 0.99258 

3000 0.99400 

4000 0.99503 

5000 0.99592 

Table 5.1: The average quality of the SDP relaxation improves as the number of clauses 
grows (50 variables). 

5.3.4 Tightening the relaxation 

Feige and Goemans [46] have shown that there exist instances of MAX2SAT where the 
ratio (5.1) is no better than 0.88889. They propose to strengthen the SDP relaxation 
(SPM2s) by adding a number of valid inequalities (cuts). The proposed cuts (called 
triangle inequalities) are based on the following observation. Let eijk be a vector whose 
entries are zero, except for the entries i, j and k, each of which is equal to either + 1 or 
-1. Then it is easy to see that for any {-1, 1} vector x, e'f;kx is odd. In particular, this 
implies that (e'f;kx) 2 2: 1, from which it follows that 

1 ~ (e'{;kx) 2 = (xTeijk)(e'{;kx) = Tr (eijke'{;k)xxr. 

Feige and Goemans have shown that adding a subset of such inequalities in conjunction 
with a modified rounding scheme, improves the quality guarantee of the SDP relaxation 
from 0.87856 to 0.93109 (cf. (5.1)). A bound on the worst-case approximation is 0.94513, 
i.e. there exist problems where the ratio (5.1) is no larger than 0.94513. To obtain this 
approximation result the following inequalities are added. For all ( i, j), 

Xm+1Xi + Xm+!Xj + X;Xj > -1 

-Xm+JXi - Xm+!Xj + X;Xj > -1 

-Xm+!Xi + Xm+JXj - X;Xj > -1. 

In the SDP relaxation these inequalities correspond to !m(m - 1) additional linear con­
straints of the form 

Tr (A;Y) 2: 1, 

where the A; are rank one matrices. If all distinct ~m(m2 
- 1) triangle inequalities 

are added, the quality guarantee remains 0.93109, but the worst-known behaviour now 
becomes 0.98462. In practice all these inequalities cannot be added beforehand because of 
the increase in problem size; it is more feasible to re-solve the SDP relaxation after having 
added (some of) the violated inequalities. Recently, Halperin and Zwick [64] reported 
that using outward rotations, an algorithm with the same performance guarantee can be 
obtained. Unfortunately, no details are provided. 
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5.4 Computing exact MAX2SAT solutions via SDP 

So far we have derived a semidefinite relaxation for MAX2SAT problems and considered its 
theoretical performance. Let us now try to use the relaxation to obtain exact (i.e. proven 
to be optimal) solutions. 

5.4.1 Solving the SDP relaxation of MAX2SAT 

The SDP relaxations mentioned so far can be cast in the generic form (SP, SD) , where the 
A;'s include the rank one matrices corresponding to the valid inequalities of Section 5.3.4. 
Let us consider the dual problem (SDM2s) in some detail, with cuts included. It can be 
rewritten as follows (here z = >.e + u and the equality constraint eT u = 0 is eliminated). 

max eT(y + z) 
t 

s.t. diag(z) + LY;A; + Z = Q, 
i=l 

y ~ o,z to. 

Note that the dual matrix Z will have more or less the same sparsity structure as Q, if the 
number of cuts t is small. Recall further that Q will be sparse in general, as discussed in 
Section 5.3.1, while the primal decision variable matrix Y will be dense in general. (Note 
that due to the homogenization, the upper bound on the density of Q is slightly higher 
than that of AT A, namely (2n + 3m) : (m + 1)2 . For n = 400, m = 100 this is less than 
10.8%.) This suggests to solve the dual problem instead of the primal in order to exploit 
this sparsity structure. 

Dual interior point methods are based on the dual logarithmic barrier function 

t 

fd(Z,y) = logdet(Z) + I:log(y;), 
i=l 

which can be added the dual objective function in order to replace the (matrix) inequality 
constraints Z t O and y ~ 0. Thus one can solve a sequence of problems of the form 

(SD;,ns) 

max eT(y + z) + µJd(Z , y) 
t 

s.t. diag(z) + LY;A; + Z = Q, 
i=l 

for decreasing values ofµ > 0. The projected Newton direction for this problem can be 
calculated from a positive definite linear system with coefficient matrix consisting of four 
blocks (see the collected works [3, 9, 38, 45, 69]): 

[ 
z-1 

o z-1 B] L ·-.- BT C 

where 'o' indicates the Hadamard (component-wise) product, and the entries (i,j) of the 
blocks B and C are respectively of the form 

b;j = Tr (A;z - 1eje3z- 1
) = e3 z - 1A;z- 1ej 
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where e1 is the jth standard unit vector, and 

Once z-1 is known, the computation of [z-1 o z-1];1, b;1 and c;1 all require only one 
multiplication and some additions. 

Benson, Ye and Zhang propose a method to quickly assemble the matrix L when all con­
straint matrices A; have rank one. This method does not require explicitly computing and 
storing z-1

. The complexity of each iteration is shown to be O(m3 + n2m + nm2 + n3), 

where n denotes the number of constraints (which is here equal to m+t). The computation 
per iteration is dominated by the solution of the linear system with coefficient matrix L. 
For comparison, Benson et al. note that the most efficiently computable primal-dual search 
direction (which is due to Nesterov and Todd [105]) requires O(n3m+n2 m2 +max{n, m}3) 
operations. Benson implemented a dual scaling method (using the search direction de­
scribed above) which requires 0( Jn + m) iterations for convergence; for details the reader 
is referred to [9]. This implementation is used in the numerical experiments below. The 
primal variable Y can be computed as a byproduct as necessary. It may be noted that 
currently only the constraints on the diagonal entries of Y are included in the implemen­
tation; additional rank-one constraints are not yet supported. 

To give an impression of the speed with which the relaxed problem can be solved using 
this approach, the average CPU-times (in seconds) for MAX2SAT relaxations of the (ran­
domly generated) benchmark problems from Joy et al. [80] are given in Table 5.2. The 
computation was done on a HP 9000/715 workstation. 

ratio time SDP time heuristic 

# clauses mean std mean std mean std 

180 0.9657 0.0050 3.40 0.39 0.27 0.02 

200 0.9698 0.0038 3.53 0.22 0.28 0.02 

220 0.9717 0.0030 3.74 0.39 0.29 0.01 

240 0.9729 0.0046 3.79 0.35 0.30 0.02 

260 0.9752 0.0049 3.95 0.30 0.32 0.01 

280 0.9724 0.0041 4.24 0.36 0.34 0.01 

300 0.9750 0.0037 4.28 0.34 0.35 0.01 

400 0.9780 0.0024 4.83 0.34 0.40 0.01 

Table 5.2: Average solution times and approximation ratio for the SDP relaxation of 
MAX2SAT and for the for the Goemans-Williamson heuristic on 100-variable problems. 

The column 'ratio' indicates the average ratio of the best obtained heuristic solution to 
n - opt(SP M 25). The ratio is consistently higher than 0.965 with low standard deviations 
(both in time and quality), indicating that near-optimal solutions are produced. It appears 
that the actual performance of the algorithm is mu<:h better than the expected worst case. 
Still, the solutions are not yet proven to be optimal. In general, computational experiences 
suggest that finding good solutions of MAX2SAT problems is not too difficult (note though 
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procedure node_procedure (<I>, lb, unsat) ; 
if (ub - unsat = l ) unit_resolution(<I>); 
(lbsdp, ubsdp):= SDP_relaxation(<I>) ; (*) 
ub := min{ub, unsat + ubsdp}; (*) 
lb:= max{lb, unsat + max{0, lbsdp} }; (*) 
if (ub - lb< l) return; 
p :=branch_rule(<I>) ; 
Set p = true and update <I>, unsat; 
if (ub - unsat 2: 1) node_procedure (<I>, lb , unsat) ; 
Set p =false and update <I>, unsat; 
if (ub - unsat 2: 1) node_procedure (<I>, lb, unsat); 

return; 

Figure 5.1 : Branch and cut framework for MAX2SAT 

that not all procedures provide a bound to measure the quality of the solution). The real 
computational challenge lies in proving optimality [80]. This is the subject of the next 
section. 

5.4.2 A branch and cut framework 

The SDP relaxations can be used in a branch and cut framework . The framework we have 
used for our numerical experiments is described in this section, with reference to Figure 
5.1. This algorithm is a straightforward generalization of the DPLL algorithm (Section 
3.3) suited for MAX-SAT problems. 

At any node in the branching tree , the current set of clauses ( obtained after partial 
assignment of the variables) is denoted by <I>, and lb and ub contain lower and upper 
bounds on the minimal number of unsatisfiable clauses respectively. The value unsat is a 
counter for the number of unsatisfied clauses by the current partial assignment . Note that 
lb and unsat are local variables that are valid in the current branch only; on the other 
hand, ub is a global variable which is valid for the whole search tree. At termination of 
the procedure, ub contains the optimal value of the instance. 

Before calling node_procedure the values lb, unsat, and ub must be initialized. One 
can take lb := 0, unsat := 0, ub := n. Following [13], unit resolution is applied if 
ub - unsat = l. Subsequently, the semidefinite relaxation of the current formula is 
solved to obtain upper and lower bounds ubsdp and lbsdp· The current bounds ub and 
lb are then updated (taking unsat into account) . If ub - lb < l , then the best known 
solution hitherto cannot be improved upon in the current branch, hence the algorithm 
backtracks. Otherwise a variable x is determined to branch on, which is set to true and 
false respectively. Since the presence of unit clauses improves the tightness of the bounds 
computed (see Trevisan et al. [127]) , the branching rule for fixing variables is as follows: 

Branching Rule 5.1 Choose the variable with the maximal occurrence in the longest 
clauses. 
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The formula <I> and unsat are subsequently updated; if ub - unsat < 1 this branch need 
not be further explored. In the other case node_procedure is recursively called. 

In each node, the steps marked ( *) can be repeated adding violated cuts as discussed in 
Section 5.3.4 to the relaxation, to obtain tighter bounds. 

5.4.3 Numerical experiments 

Let us now present some numerical results for the branch and cut SDP algorithm of 
the previous section. The results presented here are of a preliminary nature, and were 
obtained without adding extra cuts. The MAX2SAT benchmark problems are taken from 
Borchers and Furman [13]. As before, all reported CPU-times are in seconds on a HP-
9000/715 work station with 160MB internal memory. The SDP branch and cut method 
presented here are compared to 

• an extended DPLL algorithm, EDPLL, (see also Borchers and Furman [13]). This 
is basically the DPLL algorithm (Section 3.3), modified to accommodate MAX­
SAT solving (resulting in the algorithm explained in the previous section, obviously 
without the SDP relaxation included); 

• a mixed integer linear programming approach using the commercial solver Minto 
[103]. 

The respective CPU-times are shown in Table 5.3. 

SDP EDPLL Minto 

# clauses time nodes time time 

100 84 82 1.36 12.9 

150 69 64 5.1 18.0 

200 91 70 395 67.3 

250 118 92 2218 128 

300 170 128 29794 687 

350 127 91 >12hr 2339 

400 56 40 >12hr 1550 

450 276 210 >12hr 12634 

500 205 144 >12hr 8677 

2500 331 184 not run not run 

5000 663 399 not run not run 

Table 5.3: Solution times (in seconds) of MAX2SAT benchmark problems (m = 50) for 
different algorithms 

It is immediately clear that the SDP approach is distinctly superior to the other two 
approaches if the clauses/variables ratio exceeds 5. The reason seems to be that the SDP 
relaxation becomes tighter as this ratio grows, as discussed in Section 5.3.3. Note also 
that the SDP branch and cut algorithm solved each of the problems in a few minutes. It 
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therefore has a very robust performance in comparison to the other two methods. On the 
other hand, even though the approximate solutions in the root node are optimal or close 
to optimal, it appears that actually proving optimality requires a fair number of branches. 
Thus, even when an optimal solution is available, actually proving its optimali ty requires 
substantial computational effort. 

The second set of test problems consists of weighted MAX2SAT problems from Borchers 
and Furman [13] . The same observations hold as for the unweighted problems, although 
the difference is now somewhat less pronounced. All the algorithms perform somewhat 
better on these problems. The results are shown in Table 5.4. 

SDP EDPLL Minto 

# clauses time nodes time time 

100 101 125 1.36 12.9 

150 101 108 2.04 16.3 

200 58 61 23.5 34.1 

250 137 117 235 171 

300 61 44 874 149 

350 161 122 40285 2155 

400 100 82 20233 579 

450 53 44 > 12hr 1420 

500 118 76 > 12hr 3153 

Table 5.4: Solution times (in seconds) for weighted MAX2SAT benchmark problems 
(m = 50) for different algorithms 

5.4.4 Cutting planes 

The results from the previous section for MAX2SAT can be improved upon (at least 
in terms of node counts) by adding some of the cuts described in Section 5.3.4 to the 
relaxations. The influence of added cuts is illustrated in Table 5.5. These results were 
obtained using the SDP solver CUTSDP (Karisch [85]) in the branching scheme described 
in Section 5.4.2. The solution times are for proving optimality only, and are given for 
two MAX2SAT instances from Table 5.3 and two from Table 5.4 (weighted). The solver 
CUTSDP uses a primal-dual predictor-corrector algorithm. It also solves sparse Newton 
systems at each iteration of the solution of MAX2SAT relaxation, but the algorithm 
still requires additional computations involving the dense primal matrix variable. As a 
consequence it is less efficient than the dual scaling method. However, the purpose of this 
section is to illustrate the effect of cutting planes on the tightness of the relaxation and 
thus on the size of the search tree. The CUTSDP software automatically adds (some of) 
the violated triangle inequalities described in Section 5.3.4. 

It is clear from Table 5.5 that the introduction of cuts reduces the size of the search 
tree significantly, but increases the solution time of the relaxations at the nodes. The 
total solution times are not improved in general, and all the solution times are worse 
than those reported in Table 5.3 and Table 5.4 for the dual scaling method without cuts. 
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with cuts without cuts 

# clauses time nodes time nodes 

100 283 25 206 78 

450 396 38 403 191 

100 (weighted) 180 20 228 116 

450 (weighted) 270 28 80 40 

Table 5.5: Solution times (in seconds) for MAX2SAT benchmark problems (m = 50) for 
the CUTSDP method (with and without cuts) in a branching framework 

Nevertheless, since the number of branching nodes can be reduced significantly, it is a 
challenge to extend the dual scaling method to use cuts and to find the optimal trade-off 
between stronger relaxations and increased solution times. 

5.4.5 A note on solving SAT problems via MAX2SAT 

The computational results reported in the previous sections indicate that the SDP re­
laxation can be quite effective for obtaining exact MAX2SAT solutions and this yields 
promise for the future. Unfortunately, it appears that with the current general pur­
pose state-of-the-art implementations, solving larger problems is still beyond reach. To 
solve MAX2SAT problems with 100 variables and a varying number of clauses requires 
hours and more. Let us emphasize that by incorporating additional techniques in the 
algorithm, such as warm starts and early cutoffs, we expect the performance to improve 
significantly. However, using our current implementation, it is not feasible to solve 3SAT 
via a MAX2SAT approach, since (as pointed out in Section 5.2.1) a 3SAT formula with 
m variables and n clauses, has an associated MAX2SAT formulation with m + n vari­
ables and 7n weighted clauses. Moreover, when relating the performance guarantee for 
MAX2SAT to the original 3SAT formula, it reduces to a .801 approximation algorithm 
(see Trevisan et al. [127]). By using a relaxation more suited for 3SAT instances, Karloff 
and Zwick showed that a i approximation algorithm can be obtained [86]; see also Secion 
5.8. 

In the next section, we derive a semidefinite relaxation for the SAT problem in general. 
This relaxation, when specifically applied to 3SAT, will turn out to be a special case of 
the Karloff-Zwick relaxation. 

5.5 A semidefinite relaxation of the SAT problem 

5.5.1 A sufficient condition for unsatisfiability 

Again, we consider the elliptic approximation of SAT problems as introduced in Chapter 
2. Let <I> be a CNF formula with associated matrix A. Then 

E(w) = {x E lRm I xT ATWAx - 2wT Ax:::; rTw}, 

where w E lRn , W = diag(w) and rk = e(Ck)(e(Ck) - 2). 



94 Semidefinite relaxations of SAT problems 

As stated before (Lemma 2.4.3), if £(Ck) < 2 then the inequality may be replaced by 
equality. This is in fact the crucial observation for obtaining the MAX2SAT model derived 
in Section 5.3.1. 

Let us recall Theorem 2.4.1 and Corollary 2.4.2. These state that x E £(w) for all w 2: 0, 
w -/= 0, is a necessary and sufficient condition for any x E {-1, l}m to be a satisfying 
assignment (for 2SAT the condition can be relaxed to x E £2 (w) for any given w 2: 0). 
Thus, for any satisfying assignment x E { -1, l}m it must hold that 

(5.2) 

for all w 2: 0. Reversing this argument gives us a sufficient condition for unsatisfiability. 

Corollary 5.5.1 If for some w 2: 0 it holds that x ~ £(w) for all x E {-1, l}m, then <I> 

is unsatisfiable. 

Relaxing the integrality constraint to a spherical constraint we obtain an alternative 
sufficient condition for unsatisfiability. 

Corollary 5.5.2 If for some w 2: 0 it holds that x ~ £(w) for all x such that xTx = m , 
then <I> is unsatisfiable. 

Observe that the condition of the second corollary is weaker than that of the first, since 
x E { -1, 1 }m implies xT x = m, but not the other way round. 

Let us illustrate the usefulness of this approach with an example. 

Example 5.5.3 We consider the well known pigeon hole formulas , which can be stated 
as follows: given h + l pigeons and h holes, decide whether it is possible to put each pigeon 
in at least one hole, while no two pigeons are put in the same hole. 
For more details on this problem and its SAT encoding see Section 5.6.2. The set of 
clauses in such a formula can be divided into a set of long clauses and a set of short 
clauses. It can be shown that for the instance with h holes and h + 1 pigeons, when 
all long clauses are given a weight of one, and all short clauses a weight of h - l + h!i , 
the minimal value of (5.2) over the sphere xT x = m is equal to 4(h - 1 + h~l) > 0. 
These values can be explicitly computed using the specific structure of the eigenspace of 
the matrix Arw A associated with the pigeon hole formulas . Thus by Corollary 5.5.2 it 
follows that the pigeon hole formulas are unsatisfiable . We conclude that, even using just 
a low dimensional weight vector, pigeon hole formulas can be shown to be contradictory. D 

5.5.2 A certificate of unsatisfiability based on eigenvalues 

In this section we reformulate Corollary 5.5.2 to obtain a condition for unsatisfiability 
in terms of eigenvalues. To this end we rewrite (5.2). Introducing an additional { -1 , 1} 
variable Xm+l we obtain the inequality 

(5.3) 

Once again, if <I> is satisfiable then inequality (5.3) is satisfied by some { x 1, . .. , Xm+1} E 
{-1, l}m+l for all w 2: 0. 



5.5 A semidefinite relaxation of the SAT problem 95 

We can rewrite condition (5.3) as i;T Q( w )i; ~ 0, where i; := [x1 , . . . , Xm, Xm+il and Q( w) 
is the (m + 1) x (m + 1) matrix: 

This is valid , since x E { -1 , 1 }m implies that xT (r:w I)x = rT w. As before, we can further 
add a correcting vector u E lR,m to Q( w) to obtain 

It is easy to verify that i;TQ(w)i = i;TQ(u, w)i. 

By Corollary 5.5 .1 we are interested in minimizing i;T Q( u, w )i over them+ I- dimensional 
{-1 , !}-vectors. Following Corollary 5.5.2 we relax the integrality constraint to a single 
spherical constraint i;T i; = m + 1. In particular, if w 2:'. 0 and u exist, such that the 
minimal value of i;TQ(u, w)i under the spherical constraint is positive, then cf> cannot be 
satisfiable. This is equivalent to finding a pair (w 2:'. 0, u) such that the minimal eigenvalue 
of Q(u, w) is positive. 

Definition 5.5.4 A pair (w 2:'. 0, u) is called a (u, w)-certificate of unsatisfiability if the 
minimal eigenvalue of Q( u, w) is positive. 

Note that given a ( u , w )-certificate of unsatisfiability, its validity can be verified in poly­
nomial time by computing the minimal eigenvalue of Q(u, w). 

5.5.3 An eigenvalue optimization problem 

The problem of finding a ( u, w )-certificate of unsatisfiability can be expressed in terms of 
an eigenvalue optimization problem as follows. 

(SDsAr) 

sup (m + 1)>. 
s.t. Q(u, w) t >.I, 

w 2:'. 0. 

If Q(u, w) t >.I , then Q(u, w) - >.I t 0. Thus it follows that (w 2:'. 0, u) is a (u, w)­
certificate of unsatisfiability, if (and only if) >. > 0. We call the optimal value of op­
timization problem (SDsAT) the gap of the formula cf> (not to be confused with duality 
gap). 

Definition 5.5.5 The gap of a formula cf> is defined as the optimal value of the optimiza­
tion problem (SDsAT) -

gap(cf>) := sup (m+ 1)>.min (Q(u,w)). 
w2:0,u 

Thus, by Corollary 5.5.2, we have the following corollary. 
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Corollary 5.5.6 If a formula <I> has a positive gap, it has a (u, w)-certificate of unsatis­
fiability and there! ore <I> is a contradiction. 

We will show that the converse is also true if <I> is a 2- SA T formula. Furthermore, the 
formulas corresponding to a specific type of covering problems, which include the notorious 
pigeon hole problems and mutilated chess boards, have a positive gap. Let us emphasize 
that having a ( u, w )-certificate of unsatisfiability is still merely a sufficient condition for 
unsatisfiability. 

5.5.4 The dual relaxation 

We can obtain the dual of the optimization problem (SDsAT) via the primal- dual pair 
(SP, SD) (see Section 5.2.2). It can be simplified to the following semidefinite feasibility 
problem: 

(SPsAT) 

find Y E JR.m xm, y E JR.m 

s.t. a[Yak - 2a[ y :S rk, 1 :S k :Sn, 

diag(Y) = e, 
y C: yyT. 

Since (SP SAT) does not have an objective function , we adopt the convention that its 
optimal objective value is zero if a feasible solution exists, while it is +oo if (SP SAT) is 
infeasible. 

To verify that (SPsAT) is indeed the dual of (SDsAT), note that the constraint on the 
diagonal of Y follows by dualizing the constraints associated with the correcting vector, 
while the first set of constraints is obtained by rewriting the condition 

and using that diag(Y) = e. The last constraint of (SD SAT), 

y t YYT, (5.4) 

is referred to as the semidefinite constraint. It follows using the well known Schur com­
plement reformulation (see e.g. [75]): 

[ ;T ~ l c:: 0 ~ Y - YYT to. 

When a formula <I> is satisfiable with an assignment x, the solution Y = xxT, y = x is 
feasible in its associated dual relaxation (SP SAT); note that then 

aIYak - 2ary = (aix) 2 
- 2aix :S rk, 

which is exactly the elliptic representation of clause Ck (see (eq. 2.5)). Furthermore, 
x E {-1 , l}m, hence diag(Y) = e, while (5.4) clearly is satisfied as well. 

Rather than via dualizing (SDsAT), (SPsAT) can be derived directly from the elliptic 
approximations of clauses in the following way. Expanding (2.5), it can be written as 
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a[ xxT ak - 2a[ x ::::; rk. This equation can be linearized by replacing the variables x; by 
vectors v; E JR,m+l with the additional requirement that llvdl = 1, adding a homogenizing 
vector Vm+i' and letting y = VTV and y = VT Vm+I (here V is the matrix with the 
vectors v; as columns). The constraint on the diagonal of Y follows immediately, and 
the semidefinite constraint follows using that [V Vm+if[V Vm+i l t 0 and the Schur 
complement . If <I> allows the satisfying assignment x, a feasible solution in terms of V 
is constructed by setting all entries of the vectors v; to zero, except the first entries: the 
first entry of the vectors v; (1 ::::; i ::::; m) is set to x;, while the first entry of Vm+ l is set to 
one. 

Finally, note that (SPsAT) is closely related to the MAX3SAT relaxation proposed by 
Karloff and Zwick [86]. It appears to be slightly weaker, since in their formulation the 
constraints are further disaggregated; see also Section 5.8. In addition , we are interested 
in proving unsatisfiability, rather than in MAX- SAT solutions. 

5.5.5 Properties of the gap relaxations 

Let us now consider (SDsAT) and (SPsAT) to derive a number of properties of these 
formulations. First note that (SDsAT) is strictly feasible , since there exist w ~ 0, u and>. 
such that the matrix Q( u , w) - >.I is positive definite. Thus perfect duality holds, implying 
that unboundedness of (SDsAT) implies infeasibility of (SPsAT)-

Corollary 5.5.7 For any formula <I> , gap(<I>) is either zero or infinity. If gap(<I>) = oo, 
then there exists a ( u, w )-certificate of unsatisfiability, implying the unsatisfiability of <I> . 

We have an even stronger duality result. 

Lemma 5.5.8 For the primal- dual pair (SPsAT, SDsAT} exactly one of the following two 
duality relations holds: 

1. (SPsAT) is feasible and (SPsAT, SDsAT) have complementary optimal solutions; 

2. (SPsAT) is strictly infeasible and (SDsAT) is unbounded. 

Proof: 

1. Suppose (Y, y) is a feasible solution of (SP SAT) . The all- zero solution u = 0, w = 0, 
>. = 0 is feasible for (SDsAT)- This constitutes a complementary (and therefore 
optimal) solut ion. Thus strong duality holds. 

2. If (SP SAT) is infeasible, we conclude from the perfect duality relation that (SDsAT) is 
unbounded. Thus it allows a solution (w ~ 0, u) such that>.> 0. Using this solution 
an improving direction for the objective function of (SDsAT) can be constructed , 
since Amin ( Q( au, aw)) = a.Amin ( Q( u , w) ) . This implies that (SP SAT) is strictly 
infeasible (see Section 5.2.2) . □ 

Since either complementary solutions exist for (SDsAT) and (SP SAT), or (SP SAT) is strictly 
infeasible, we have t he following corollary (for a proof, see [38]) . 

Corollary 5.5.9 Using semidefinite programming, it can be decided in polynomial time 
which of the two duality relations holds. Thus the existence of a ( u, w )-certificate of 
unsatisfiability can be established in polynomial time. 
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Finally, we have a result on monotonicity of the gap. 

Lemma 5.5.10 Let <I> be a CNF- formula and let w ~ <I>. Then it holds that gap(\ll) ~ 
gap( <I>) . 

Proof: Consider (SDsAr) - Add to (SDsAr) the constraints that wk = 0 for all clauses 
Ck which occur in cI> only. Solving this modified version of (SDsAT ), gap(\ll) is obtained. 
Obviously, it is a more restricted version of gap(<I>), the lemma therefore follows. □ 

This leads immediately to the following corollary. 

Corollary 5.5.11 The gap is monotone under unit resolution. 

Proof: Unit resolution can be regarded as the addition of unit clauses to a formula . By 
the previous lemma, the gap cannot decrease. □ 

In the next sections the gap is investigated in more detail for some specific SAT problems. 

5.6 The gap for various SAT problems 

5.6.1 The gap for 2SAT problems 

In this section we prove that for 2SAT formulas cI> gap(cI>) = oo if and only if cI> is 
unsatisfiable. As stated before, it is well known that 2SAT problems are in fact solvable 
in linear time [6]. Therefore we do not claim that the algorithm presented in this section 
is computationally attractive (though it does run in polynomial time) ; our intention is to 
highlight some properties of the gap approach. We make use of the notion of minimal 
unsatisfiability. 

Definition 5.6.1 (Minimal unsatisfiability) An unsatisfiable CNF formula <I> is said 
to be minimal unsatisfiable if a satisfiable formula is obtained by omitting any given clause 
from <I> . 

By Lemma 5.5.10 we can restrict ourselves to the case that cI> is a minimal unsatisfiable 
formula, as any unsatisfiable subformula has a minimal unsatisfiable subformula. 

Lemma 5.6.2 If a formula <I> is minimal unsatisfiable, then A z l. 0 for all z f. 0, 
z ElR,m_ 

Proof: If the condition in this lemma does not hold , the formula has a linear autarky 
(see Definition 2.2.4), contradicting the fact that it is minimal unsatisfiable. □ 

From this lemma we have the following corollary. 

Corollary 5.6.3 If <I> is minimal unsatisfiable, then A is of full rank. 

Now we can prove the key lemma of this section; the main theorem follows . 

Lemma 5.6.4 Let <I> be a minimal unsatisfiable 2SAT formula. Then gap(<I>) = oo. 
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Proof: From the semidefinite constraint (5.4) we conclude that aTYa 2: (aT y) 2 for any 
vector a. This implies that 

(aI y) 2 
- 2ary :S aIYak - 2ar y :S rk = 0, 

since rk = 0 for 2SAT (for all k = 1, ... , n), from which it follows that O :S af y :::; 2. The 
minimal unsatisfiability of <P implies that y = 0. Hence, afYak = 0 for all k = 1, .. . , m. 
Since Y = VTV t O it must hold that O = afY ak = IIV ak 11 2

, or V ak = 0 implying 
that Yak = 0. The ak 's must therefore lie in the nullspace of and since A is of full rank 
(rank(A) = m) this implies Y = 0, contradicting the condition diag(Y) = e of (SPsAT)­
We conclude that (SP SAT) is infeasible, implying that gap( <P) = oo. □ 

Theorem 5.6.5 Let <P be any 2SAT formula . It holds 

gap( <P) = { oo if <P unsatisfiable; 
0 if <P satisfiable. 

Proof: Let <P be a unsatisfiable 2SAT formula and let \JI be a minimal unsatisfiable 
subformula of <P. By Lemma 5.6.4, we have that gap(\JJ) = oo and Lemma 5.5.10 implies 
that gap(<P) = oo. Conversely, assume that <P is a satisfiable 2SAT formula. Using any 
satisfying assignment x, a feas ible solution Y = xxT, y = x to (SP SAT) can be constructed , 
implying that gap(<P) = 0. □ 

If gap(<P) = 0 we can use the dual solution (Y, y) to construct a satisfying assignment x. 
First we set the entries of x corresponding to nonzero entries of y to x = sgn(y) as from 
the proof of Lemma 5.6.4 we know that y is an autarky. For all clauses that are not yet 
satisfied , a satisfying assignment can be constructed by considering Y* , which denotes 
the matrix Y restricted to the rows and columns corresponding to the zero entries of y. 
Note that af y = 0 implies that afYak = 0, so Y;1 = -akiakJ where h U Jk = { i, j} . Thus 
we can assume that each of t he rows and columns of Y* contains an off-diagonal element 
that is equal to ±1. Fixing all ±1 elements, such a matrix Y* can be completed to a rank 
one {-1 , 1} matrix that is feasible in (SPsAT)- From this matrix a {-1 , 1} solution x can 
easily be deduced. This construction is equivalent to the one given in [46]. 

To finish this section, let us consider the relation of (SP SAT) and (SP M 2s ). The latter is 
obtained by incorporating t he constraints a[Y ak - 2af y :::; 0 in the objective function. 
Accordingly, if (SP SAT) is feasible, there exists a solution of (SP M 2s) with non positive 
objective value. Feige and Goemans [46] show that for the extended MAX2SAT relaxation 
(i.e. the triangle inequali t ies are included), (SP M 2s) has objective value zero if and only 
if the instance under consideration is feasible. 

5.6.2 The gap for a class of covering problems 

In this section we consider SAT encodings of a particular class of covering problems, and 
show that these can be shown to be contradictory by our SDP approach. Let V be a 
set ofm propositional variables. Let S = {S1 , .•. ,SN} and T = {T1 , ••. ,TM} be sets 
of subsets of V. Both S and T form a partition of V. Furthermore, let us assume that 
M < N. Consider the following CNF formula <Pep. 

V Pi, 1 :S k :SN, 

•P; V ,p1, i,j E Tk ,i =/ j, 1 :S k :SM. 

(5.5) 

(5.6) 
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An equivalent generic formulation is considered by Impagliazzo et al. [76]. First, let us 
give two examples of problems that fit in this format. 

Pigeon hole formulas. Given h + 1 pigeons and h holes, decide whether it is possible to 
put each pigeon in at least one hole, while no two pigeons must be put in the same hole. 
We now argue that the standard encoding of the pigeon hole problem fits the format <Pep. 
For each pigeon- hole pair a proposition is introduced; thus, we obtain a total of h(h + 1) 
variables in the set V. The long (positive) clauses (5.5) now express that each pigeon is 
put in at least one hole; thus there are exactly N = h + 1 of such clauses that all have 
length h. The short (negative) clauses (5.6) model that no two pigeons must be put in 
the same hole simultaneously; for each hole there is a set of short clauses, giving rise to 
M = h separate sets n, each of size h + 1. It is easy to see that each proposition occurs 
both exactly once in the sets Sk and exactly once in the sets Tk, thus both S and T are 
a partition of V. 

The mutilated chess board problem. Given a chess board of size 2s x 2s squares. Two 
of its diagonally opposite vertices are removed. Decide whether it is possible to cover the 
resulting 'mutilated' chess board by rectangular dominoes of size 2 x 1 (i.e. a single domino 
covers exactly two adjacent squares), such that each square is covered exactly once. The 
standard satisfiability coding for this problem is obtained by introducing a proposition 
for each pair of adjacent squares; thus we need 4(2s2 

- s - 1) variables. For each square 
there is a positive clause ( of length 2, 3 or 4) expressing that it must be covered at least 
once, and a set of negative (2- )clauses expressing that it must be covered at most once. 
Taking a subset of this set of clauses, a formula of the form <Pep is obtained. For all the 
black squares we keep the positive clauses, while for all the white squares we use only the 
negative clauses. The first set corresponds to (5 .5) and the second set to (5.6). See also 
the graph in Figure 5.2; the nodes correspond to individual variables, the drawn edges 
indicate the positive clauses (all cliques with drawn edges constitute one positive clause) 
and the dotted edges the negative clauses ( each pair of nodes connected by a dotted edge 
corresponds to a negative clause). Again, it is easy to see that each variable occurs in 
exactly one of the N = 2s2 positive clauses, and in exactly one of the M = 2s2 

- 2 sets 
of negative clauses. 

Both of the above problems are easily concluded to be unsatisfiable. We verify that <Pep 
is unsatisfiable (when M < N), using cutting planes (this construction is well known, 
see e.g. [29]) . To this end we introduce some more notation. By es (e;1) we denote the 
vector with ones in the positions i E S ( i and j) and zeros elsewhere. The integer linear 
feasibility formulation can be stated as 

find x E {-1, l}m 

s.t. etx 2: 2 - 1sk1, 1 :::: k::; N , 

e'f;x ::; 0, i , j E Tk , i -1- j, 1 ::; k ::; M. 

Obviously, it is easy to find a solution of the linear relaxation of this problem (i.e. when the 
integrality constraints are relaxed to -e ::; x ::; e) , by setting all variables to 0. However , 
using cutting planes one can show that for { -1, 1 }-variables, the set of inequalities for a 
set Tk implies that 

(5.7) 



5.6 The gap for various SAT problems 101 

Figure 5.2: The mutilated chess board for s = 2. 

(see [29]). A cutting plane is obtained by taking nonnegative combinations of the con­
straints, and subsequently adjusting the right hand side of the resulting inequality such 
that it is as tight as possible. To determine this right hand side, we use the fact that the 
variables must be binary [24]. 

For completeness, let us review the derivation of (5.7). Taking a subset U ~ Tk, IUI = 3, 
and summing the (three) inequalities associated with this set, the inequality 2ejx::; 0 is 
obtained. Since for any { -1, 1} vector x it holds that ejx is odd, the right hand side can 
be rounded down to the largest odd integer smaller than zero, thus we find that ejx ::; -1. 
More generally, suppose we are given a set U C Tk and an inequality ejx ::; 2 - IUI. In 
addition let j E Tk \U, and denote V = U U {j} . Summing for all i E U the inequalities 
e'[;x ::; 0 (with weight 1) and the initial inequality with weight IUI - 1, we obtain that 
IUle;x::; (IUI -1)(2- IUI)- Dividing both sides by IUI , and rounding the right hand side 
down to the nearest integer with same parity as IVI (thus the right hand side becomes 
1 - IUI , which is valid, since ((IUI - 1)/IUl)(2 - IUI) < 3 - IUI) we obtain 

e;x ::; 1 - IUI = 2 - 1v1. 

We conclude that (5.7) is indeed implied by the inequalities in (!Pep). 

Summing all the inequalities (5.7), and using that T partitions V, we find that -m ::; 
er x ::; 2M - m. Similarly, taking the sum over the first set of inequalities in (IP GP), we 
have 2N - m ::; er x ::; m. Combining, we get 

2N ::; er x + m ::; 2M, (5.8) 

from which it follows that N ::; M , implying the infeasibility of (!Pep) and thus the 
unsatisfiability of <Pep when M < N. We conclude that using this cutting plane technique, 
a proof of unsatisfiability of <Pep can be constructed and verified in polynomial time. 
Surprisingly, other techniques often require large running times to solve formulas of this 
type. Indeed, Haken [63] proves that no short resolution proof of the unsatisfiability of 
pigeon hole formulas exists. The length of any resolution proof is exponential in the size 
of the formula. It is strongly conjectured that the mutilated chess board problem does 
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not allow a polynomial size resolution proof either , despite the absence of 'long' clauses 
[133]. 

Note that to find the cutting plane proof sketched above efficiently, additional problem­
specific information is used. In each step of the cutting plane proof, two linear inequalities 
are used to derive a new linear inequality. The cutting plane proof of the class ( <l>cp) 
is called a tree- like cutting plane proof [76], as each inequality is used only once. To 
construct such a short tree- like cutting plane proof additional searching is required, since 
the order in which linear inequalities are combined is crucial. For general CNF formulas, it 
is not clear how to efficiently find a (tree- like) cutting plane proof, even if it is known that 
one exists. It is our aim to show in this section that using our semidefinite programming 
approach formulas of the format <l>cp are proven to be contradictory in polynomial time, 
while no additional problem- specific information whatsoever is required. This is due to 
the fact that ( <l>cp) allows a ( u, w )-certificate of unsatisfiability whose existence can be 
computed in polynomial time (Corollary 5.5.9). 

Let us consider the semidefinite relaxation of <l>c p. The SDP relaxation can be denoted 
as (see also (SPsAr)) 

find YE JRmxm, y E JRm 

s.t. er_Yes. - 2er_y :S ISkl(ISkl - 2) , 1 :S k :SN 

e'fYeij + 2e'f;y :S 0, i , j , i =I= j E Tk , 1 :S k :S M 

diag(Y) = e, 

y t yyr. 

We prove the following theorem. 

Theorem 5.6.6 The semidefinite relaxation (SDcp) of <l>cp is infeasible (if M < N ) . 
Equivalently, gap( <l>cp) = oo . 

Proof: Note that from the semidefinite constraint (see ( eq. (5.4)) it follows that a TY a 2: 
( a Ty) 2 for any m-vector a. Thus it follows that 

(eI.y)
2 

- 2eI.y :S ef.Yes. - 2eI_y :S ISkl( ISkl - 2) , 

implying that 
(5.9) 

Now we consider the inequalities corresponding to the sets Tk. Taking the sum over all 
the inequalities corresponding to set Tk, k fixed, we find that 

e~.Yerk + (ITkl - 2)e~.diag(Y) + 2(1Tkl - l)e~.Y :S 0. 

To verify this, note that each diagonal element Y;;, i E Tk , occurs in exactly ITkl - 1 
inequalities; similarly, each linear term y;, i E Tk , occurs in exactly ITkl - 1 inequalities 
as well. Simplifying this expression using that diag(Y) = e, we obtain 

Using the semidefinite constraint again , we conclude that 
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implying that 
-ITkl S e~ky S 2 - ITk l, 1 S k SM. 

Summing these inequalities we find that -m S er y S 2M - m while from (5.9) we have 
that 2N - m S er y S m, implying that 2N S er y + m S 2M (note that this is equivalent 
to what we obtained using cutting planes, see (5.8)). Thus we conclude that (SDcp) is 
infeasible when N > M. □ 

Consequently, t he Corollaries 5.5. 7 and 5.5 .9 yield the following corollary. 

Corollary 5.6. 7 Using semidefinite programming, the unsatisfiability of <l>cp can be de­
cided in polynomial time. 

It may be noted that the proof of Theorem 5.6.6 and the cutting plane refutation of <l>cp 
are essentially very similar. Indeed, the cutting planes (5. 7) are automatically implied in 
(SDcp). 

Application to graph colouring 

A famous result of Lovasz is his 'sandwich' theorem [94], which states that for an undi­
rected graph G = (V, E) in polynomial time (using semidefinite programming) , a number 
-O(G) can be computed which is bounded from above by the graph's colouring number 
,(G) (i.e. the minimal number of colours required to colour the vertices of the graph such 
that no two adjacent vertices have the same colour), and from below by its clique number 
w(G) (i.e. the maximal complete subgraph of G). Applying our result from the previous 
section to the graph colouring problem (GCP) we obtain a similar result. 

Let G = (V, E) be an undirected graph and let C be a set of colours. We introduce 
a proposition for each vertex-colour combination . Then the GCP can be modelled as a 
formula <I>ccP containing a set of IVI long clauses, expressing that each vertex should be 
coloured by at least one colour, and a set of short clauses expressing that no two vertices 
must get the same colour. We can construct the semidefinite relaxation of <I>ccP in the 
usual way; we refer to it as (SDccP ). Now let C* be the smallest set of colours for which 
(SDccP) is feasible. Such a set must exist , since for IC*I 2: IVI the GCP and thus its 
relaxation (SDccP) are trivially feasible. We have the following theorem. 

Theorem 5.6.8 w(G) S IC*I S ,(G). 

Proof: First note for any set of colour C with ICI < w(G), <I>ccP has a subformula of the 
form <l>cp, hence by Theorem 5.6.6 and Lemma 5.5.10 it has gap infinity. This subformula 
corresponds to the set of clauses associated with a clique of size ICI + 1 or larger. Now 
consider set C*. It holds that IC*I 2: w(G), since otherwise (SDccP) would be infeasible. 
Also, since removing one colour from C* implies infeasibility of (SDccP) (by assumption), 
it holds that IC*I S 1(G). This proves the theorem. □ 

Hence, by applying a binary search on the size of C, a number similar to Lovasz 19- number 
can be compu ted. 
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5.6.3 The gap for 3SAT problems 

We have seen that two specific classes of CNF formulas can be efficiently handled by the 
gap approach. Let us now turn our attention to the most general class of CNF formulas, 
the 3SAT problems. First we have a negative result for pure 3SAT problems. 

Lemma 5.6.9 Let <I> be a pure 3SAT problem. It holds that gap (<I>) = 0. 

Proof: It is easy to verify that the solution Y = I , y = 0 is a feasible assignment of 
(SP SAT) since a[ ak = 3 = rk for all clauses. By duality, gap( <I>) = 0. D 

Corollary 5.6.10 No pure 3SAT formula allows a (u, w)-certificate of unsatisfiability. 

Note that the proof of this lemma and the corollary easily extend to general CNF formulas 
in which no clauses of length one and/or two occur. 

Of course the gap can be computed in nodes of a branching tree; during the branching 
process 2-clauses are created, thus allowing the SDP approach to provide a certificate of 
unsatisfiability in specific cases. Note that (also) in this respect , the SDP approach is 
stronger than the LP approach (as mentioned in Section 2.2) . However, computing the gap 
is computationally rather expensive, and especially in a DPLL-like branching algorithm 
(including unit resolution, although this can be simulated by the semidefinite relaxation as 
well) the overhead will be substantial with the current state-of-the-art implementations. 
Two possibilities in this respect are: 

1. Instead of using a primal-dual algorithm, it is possible to use a dual scaling algo­
rithm to exploit sparsity of Q to the full [9]. Furthermore, it can be used that all 
constraint matrices are of rank one, similar to the MAX2SAT case in Section 5.4. 
The computational experience in Section 5.4 with MAX2SAT problems indicates 
that for small sized problems this approach is competitive with other dedicated 
algorithms for the MAX2SAT problem. 

2. For larger problems, spectral bundle methods can be used to solve the eigenvalue 
optimization problem (SD SAT) [70]. These have been shown to be able to handle 
problems with thousands of variables. Such methods solve only (SDsAT ), so that 
the dual information is lost. 

For now, let us slightly reformulate our gap relaxation to provide a minor result for 3SAT 
formulas . Consider again the elliptic representation Ek associated with clause Ck (see 
eq. (2.5)). By introducing a parity-variable, the inequality is turned into an equality 
constraint. 

£f = {x E Rn,o ~ Sk ~ 1 J (afx-1)2 +4sk = 4}, 

where for all feasible { -1, 1} assignments x it holds that sk E {O, 1} . The ellipsoid £f has 
the semidefinite relaxation 

afYak - 2af y + 4sk = 3. 

Obviously, the trivial solution (Lemma 5.6.9), is still feasible when simply setting all Sk 
to 0. However, if we maximize the sum of the sk's , a solution other than the trivial one 
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may be obtained. Thus we define the parity gap. Consider the semidefinite optimization 
problem (SP par). 

n 

max Lsk 
k=I 

s.t. afYak - 2af y + 4sk = 3, 1 :S k '.Sn, 

diag(Y) = e, 

y t YYT, 

1 :S k '.Sn. 

Definition 5.6.11 The optimal value of optimization problem (SPpar) is called the parity 
gap of a formula <I>. 

We then have the following lemma. 

Lemma 5.6.12 If a formula <I> has parity gap zero it is equivalent to an XOR - SAT 
formula and as such efficiently solvable. 

Proof: If the parity gap is zero, sk = 0 for all 1 :S k :S n. Suppose that a solution 
x exists for which at least one clause is satisfied in exactly two literals, hence af x = 1. 
Using this solution , a solution Y = xxT , y = x of (SP par) can be constructed. Since 
afYak - 2af y = -1, sk = 1 implying that the parity gap is not equal to zero. If 
(SP par) has objective value zero, no such solution exists. This implies that if a satisfying 
assignment exists, then it must satisfy each clause in exactly one or three literals. Thus the 
formula is equivalent to an XOR-SAT formula. Such formulas are solvable in polynomial 
time [111]; see Section 4.3. □ 

A specific class of formulas that appears likely to have parity gap zero, is the class of 
doubly balanced formulas (see Chapter 4). By definition, for doubly balanced formulas 
it holds that AT A is a diagonal matrix and AT e = 0. Eliminating the sk variables from 
(SP par) it can be rewritten as 

min Th [ ~;: ~ATe ] [; ~] 

s.t . - 1 :S afYak - 2af y '.S 3, 1 :S k '.Sn , 

diag(Y) = e, 

y t yyT. 

It holds that opt(SP par) = ¾n - ¼opt(SP'par ). Note that the objective function of (SP 'par) 
is essentially the same objective function as that of (M2S) (see Section 5.3.1). Using 
formulation (SP'par) it is straightforward to prove the next lemma. 

Lemma 5.6.13 A doubly balanced formula has parity gap zero. 

Proof: By the definition of doubly balancedness and the constraint on the diagonal of 
Y the objective function of (SP 'par) reduces to the constant 3n, implying that the parity 
gap is equal to zero. □ 
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We also have an autarky result. 

Lemma 5.6.14 If all Sk > ¾, x = sgn(y) is a satisfiable assignment of <P. 

P roof: Note that 
(a[ y) 2 

- 2a[ y + (4sk - 3) :S 0. 

This implies that 
1-2~ :Sa[y:S 1+2~. 

If sk > ¾, then af y > 0. If all sk have this property, then y is a linear autarky. D 

Note that y might be a linear autarky while not all sk are larger than ¾- In this respect, a 
slightly stronger formulation is obtained by using a single slack variable t for all clauses, 
rather than a separate slack variable sk for each of the clauses. The objective then becomes 
to maximize t; all sk's must be replaced by t, and equality must be replaced by inequality. 
A drawback of this approach is that an optimum of zero implies only that a polynomially 
solvable subformula is present. On the other hand, solving this subformula first, may 
speed up solving the full formula (as demonstrated in Chapter 4). 

While it appears that the semidefinite relaxation as described in this chapter is not quite 
strong enough to solve 3SAT problems by itself, it can be exploited in various other ways. 
A couple of these are mentioned in the next section. 

5. 7 Some computational experiences 

5. 7. 1 Approximating M A X-SAT solutions 

Both the primal and dual solutions obtained by solving the semidefinite relaxations can 
be used for heuristic purposes. The dual solution (Y, y) might be used to try to obtain 
good approximate MAX-SAT solutions. To illustrate the quality of the solutions thus ob­
tainable, see Figure 5.3. We restricted ourselves to a set of random pure 3SAT formulas 
with 100 variables and a varying number of clauses, and used the dual formulation with 
a single slack variable. The SDPs were solved using the public-domain solver SeDuMi 
(Sturm [124]). Approximate solutions are constructed by (i) taking the dual solution 
and rounding y (the solid line), (ii) by applying a Goemans-Williamson-like randomized 
rounding procedure (the dashed line). For comparison we also included the solutions ob­
tained by simply drawing random solutions (dash-dot); note that this in fact corresponds 
to the Karloff-Zwick algorithm for approximating (pure) MAX3SAT solutions. To obtain 
a good ad hoc lower bound on the optimal solution we applied a greedy weighted local 
search procedure, which is briefly described in Section 1.4.3. Considering the results , it is 
clear that the local search procedure gives the best results, but interestingly enough the 
drawn line is consistently above the dashed line, implying that the deterministic one-step 
procedure of rounding y gives better solutions than the randomized rounding procedure, 
which in turn is better than drawing random solutions. 

Alternatively, using the primal optimal solution w, it is possible to identify hard sub­
formulas. To this end, the sum of the weights is bounded ( this corresponds to using a 
single slack variable in the dual formulation). Removing the clauses with 'small ' weights, 
a subformula is obtained that appears to be the 'core ' of the original formula. This yields 
a technique for finding approximately minimal unsatisfiable subformulas. 
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Figure 5.3: Comparison of MAXSAT solutions. 

5. 7.2 Reduction in size of search trees 
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Let us now consider the reduction of the search tree sizes when incorporating the relaxation 
in a branching algorithm. In Table 5.6 the average node counts for the DPLL with and 
without the SDP approach are given. The averages are taken over 20 problems of each 
size. On inspection of the table, we see that the size of the search trees decreases, but by a 
factor of two only. In addition, due to the generic method of counting nodes (i.e. a node is 
counted each time the branching rule is called) this number is deceptive. The number of 
SDPs that has to be solved is actually larger and therefore also included in the table. Thus 
it appears that the reduction of the search trees is somewhat disappointing; consequently, 
tighter SDP relaxations and/or improved branching rules are required, the latter possibly 
making use of the solution to the SDP. This is the subject of further research. In the next 
section we mention several approaches to obtain tighter relaxations. 

5.8 Constructing tighter relaxations 

So far we have considered a fixed quadratic clause-model based on elliptic approximations 
only. Obviously there exist many other quadratic clause-models. Generic procedures 
for deriving increasingly tighter models of growing dimensions for binary programming 
problems in general are given by Sherali and Adams [119] and Lovasz and Schrijver 
[95] . These models eventually describe the convex hull. While these results are of great 
theoretical interest, it is not entirely clear how to implement them in practice, due to 
the exponential size of the resulting relaxations. For now, let us restrict ourselves to the 
most general valid quadratic models for individual clauses. Such models must satisfy the 
following condition. If x is a satisfying assignment then 

m m m 

q(x) =LL %X;x1 + L qkxk + qo ~ 0. 
i= lj=l k=I 
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DPLL DPLL+SDP 

m SAT/UNSAT nodes nodes SDPs 

50 UNSAT 26.9 16.4 23.4 

SAT 19.6 13.5 17.7 

75 UNSAT 97.3 54.1 80.9 

SAT 38.1 26.4 32.8 

100 UNSAT 293 160 235 

SAT 92.4 56.1 77.8 

125 UNSAT 804 443 649 

SAT 211 122 171 

150 UNSAT 1764 974 1415 

SAT 300 169 233 

Table 5.6: Reduction of size of search trees using SDP. 

As an example, let us consider the clause C = p1 V p2 V p3 . Substituting the satisfying 
assignments of C in q(x) , a set of 7 inequalities is obtained. These inequalities, which are 
linear in the coefficients Qij and Qk , define a cone. The extreme rays of this cone give rise 
to the following generic set of valid quadratic cuts. 

X1X2 + X1X3 - X2 - X3 < 0 

X1X2 + X2X3 - Xt - X3 < 0 

X 1X3 + X2X3 - X1 - X2 < 0 

-X1X2 - X1X3 - X2X3 - 1 < 0 

-X1X2 + X1 + X2 - 1 < 0 

-X1X3 + X1 + X3 - 1 < 0 

-X2X3 + X2 + X3 - 1 < 0 

An equivalent set is given by Karloff and Zwick [86]. Each valid quadratic model of C 
is a positive linear combination of this set of inequalities. In particular , the elliptic ap­
proximation is obtained by taking the sum of the first three inequalities (see (2.5) and 
use that x 2 = 1 for x E { -1, 1}). Thus, our relaxation is an aggregated version of the 
Karloff-Zwick relaxation. 

Karloff and Zwick show that using the first three inequalities a 7 /8 approximation al­
gorithm for MAX3SAT problems can be obtained. Their relaxation has 4n inequality 
constraints where the coefficient matrices of the constraints are of rank 3. One can still 
solve the resulting problem by the dual scaling method (see [9]), but the assembly of 
the linear system at each iteration becomes more expensive, and its coefficient matrix 
becomes more dense. The question is therefore if these relaxations can be solved quickly 
enough to allow incorporation in a branch and cut scheme. 

Generic sets of valid quadratic cuts for clauses of length four and longer can be derived 
in a similar manner. Note that the sizes of these sets grow with increasing clause lengths. 
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For example, the generic set associated with 4-clauses contains 23 inequalities. Halperin 
and Zwick [64] show that thus a .8721 approximation algorithm for MAX4SAT can be 
developed. 

As stated before, the SDP relaxations can be further strengthened by adding valid in­
equalities. An example of such cuts are the triangle inequalities (see Section 5.3.4); note 
that many of these are in fact implied by the generic set given above (namely those con­
cerning variables that occur jointly in some clause). Another possibility is to construct 
elliptic approximations of pairs of clauses, for instance 

(5.10) 

All valid quadratic cuts may be derived for pairs of clauses as well. 
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A Nonlinear Approach To 
Combinatorial Optimization 

We consider combinatorial optimization problems, modelled as linear pro­
grams with binary variables. We discuss a m ethod to construct noncon­
vex optimization problems with continuous variables, such that its opti­
mal solutions yield f easible binary solutions of the original problem. Two 
applications are examined: the Satisfiability problem and the Frequency 
Assignment Problem. Minimization algorithms for solving the nonconvex 
model are discussed. As an indication of the remarkable strength of the 
proposed method, we conclude with computational experiences on both 
real-life and randomly generated instances of the frequency assignment 
problem. 

6.1 Introduction 

6 

Recent developments in optimization have lead to the application of nonlinear optimiza­
tion techniques to solve combinatorial optimization problems. For example, in several pa­
pers nonlinear models are used to obtain effect ive heuristic algorithms (see e.g. Karnath et 
al. [82], Karmarkar et al. [88], Gu [61]) for specific combinatorial optimization problems. 
Other applications include semidefinite relaxations such as discussed in Chapter 5. In the 
master 's t hesis [135] a nonconvex quadratic model for the frequency assignment problem 
(FAP) is developed. The FAP belongs to the class of so-called node covering problems. 
This a class of NP-complete problems to which also the stable set and graph colouring 
problems belong. Such problems are usually modelled using binary variables. The model 
developed in [135] involves a nonconvex quadratic objective function , which is optimized 
over the unit hyper cube under some additional equality constraints. It exhibits the prop­
erty that - provided that the FAP under consideration is feasible - its global optimal 
value is known , and any solution that is feasible in the original FAP is a globally opti­
mal solu tion of the quadratic model and vice versa; we call this the equivalence property. 
In the present chapter an alternative derivation of the quadratic model is given and we 
show that any fractional solution that is feasible in the quadratic model can be efficiently 
rounded to a binary solu tion that is at least as good in terms of objective values; we 
refer to t his as the rounding property. Thus, relaxing the binary variables to continuous 
variables yields no deterioration of the model. The model with continuous variables is 
essentially fully equivalent to the model with binary variables, as the rounding property 
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implies that the global minima of both models coincide. Note that usually (for example 
in the linear case) relaxing the integrality constraints deteriorates the model in the sense 
that it is difficult to obtain a satisfactory binary solution from a (fractional) solution of 
the relaxed problem. In general, the relaxation provides bounds on the optimal value of 
the original problem only. 

To find approximately optimal solutions of the model, in [135] a second-order interior­
point potential reduction algorithm is used. This algorithm is inspired by an algorithm 
developed by Karmarkar et al. [82, 88], who applied the method to several difficult opti­
mization problems, including the set covering problem [88] and the satisfiability problem 
[82]. The model they use is nonconvex quadratic as well. Similar to the model developed 
in [135] it exhibits the equivalence property; however, it does not feature the rounding 
property. Obviously, due to the models' nonconvexity, in either case the algorithms do 
not have a guarantee of finding a global optimum, but when a global optimum is found , 
it is recognized as such by construction. 

The aim of this chapter is twofold . 

• We give an alternative derivation of the model for node covering problems, and prove 
the rounding property. Subsequently, we address the problem of constructing non­
convex models with continuous variables that feature the equivalence and rounding 
property for more general combinatorial optimization problems (namely, all combi­
natorial optimization problems that can be modelled as binary linear programs). It 
turns out that such models involve pseudo-Boolean and multi-linear functions , which 
are in fact typically those functions that feature the rounding property. To obtain 
models with the desired properties, a technique first given by Granat and Hammer 
[57] can be applied. Unfortunately, the size of the reformulation may be intractable. 
It may be emphasized that for many important problem classes the reformulation 
can be done efficiently; for instance, both the node covering problems studied ear­
lier and the satisfiability (SAT) problem allow a linear-time reformulation. The 
model thus obtained for SAT problems, is in fact a well known and studied model 
[16, 55, 61, 140] . Alternatively, a generally efficient reformulation method can be 
obtained using the CNF representations of linear inequalities discussed in Appendix 
A. 

• We develop an algorithm that is based on the observation that the rounding property 
and its associated procedure can essentially be interpreted as a gradient descent 
algorithm. Thus, an efficient first-order descent algorithm is obtained, which on the 
instances we consider outperforms the potential reduction algorithm . 

This chapter is organized as follows. In the next section we describe the techniques to 
obtain the reformulation; we start with deriving the nonconvex model for node covering 
problems, and subsequently generalize the basic ideas to the general case. Some algo­
rithmic approaches to the given minimization problem are discussed, and we consider 
two special cases for which the reformulation can be done efficiently. We conclude with 
computational results on the frequency assignment problem and some remarks. 
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6.2 Preliminaries and notation 

We consider binary feasibility problems of the form (BFP): 

(BFP) find x E {O, l}m such that Ax Sb, Bx= d. 

Here A E lRn xm, BE lRp xm, b E lRn , d E ]RP and it is assumed that all data are integral. 
Note that we use {O, 1} variables here, rather than { -1, 1} variables which we have used 
elsewhere in this thesis. Obviously, theoretically this is completely equivalent; for our 
present purpose we feel that {O, 1} variables allow a more transparent presentation. Note 
that the property that x; = 1 for any x; E {-1 , l} has as {O, l} equivalent that x; = x;, 
i.e. {O, 1} variables are idempotent. 

Many combinatorial optimization problems can be put in the form (BFP) by modelling 
them as integer linear programming problems and, if required, adding a bound on the 
objective function value. It is our aim to model (BFP) as a (nonconvex) minimization 
problem (NCP) with continuous variables: 

(NCP) 

We require the following properties. 

min P(x) 
s.t. Cx Sc. 

Equivalence property. A {O, 1} solution x is feasible in (BFP} if and only if it is a 
global minimizer of (NCP) such that P(x) = 0. 

Rounding property. For any vector x such that Cx S c, via an efficient rounding 
procedure a binary vector [x] can be obtained such that C[x] Sc and P([x]) S P(x). 

We observe that in the case of box constraints (i.e. Cx S x denotes O S x S e), Granot 
and Hammer [57] call the function P(x) the resolvent of (BFP). They give a method to 
obtain such a resolvent; it is derived in Section 6.3.2. The term 'resolvent' emphasizes the 
close correspondence between logical formulas and feasibility (or optimization) problems 
with binary variables. Indeed, the method to obtain a resolvent can be interpreted as 
a method of constructing a SAT problem whose solutions coincide with the solutions of 
(BFP); the resolvent is in fact a logical formula in disjunctive normal form expressing 
which (partial) assignments cause infeasibility. An alternative (more efficient) method to 
construct a SAT problem to represent (BFP) is given in Appendix A. 

In the next section we concentrate on deriving P(x) without reference to the logical 
interpretation. Only in Section 6.5.1 we show explicitly that linear systems corresponding 
to CNF formulas have a direct resolvent. 

Let us introduce some additional notation. 

• By Qr the square matrix with row and column indices in T is denoted; 

• p( a) denotes the support ( the set of nonzero coordinates) of the vector a. 

Remark: To avoid potential confusion , it is emphasized that the matrix A above is in 
general not the clause-variable as used elsewhere in this thesis. 
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6.3 A nonconvex continuous model 

We first consider a specific kind of binary feasibility problems, the node covering problems, 
for which a model of the form (NCP) is derived [135]. The derivation of a model with the 
desired properties can, in part, be interpreted as an application of Granot and Hammer's 
method. Subsequently, we derive their method for finding a resolvent of (BFP) in its 
general form. Interestingly, the rounding property is not explicitly mentioned by Granot 
and Hammer. Their interest lies in applying and developing techniques using binary 
variables rather than continuous ones. Only in later work by various authors continuous 
variables are used; see for example [14, 16, 55, 61]. 

6.3.1 A special class of binary feasibility problems 

In accordance with [135], let us make some assumptions on the matrices involved in (BFP). 

Assumption 1 All elements of A and B are binary. 

Assumption 2 The right hand side vector b equals the all-one vector e. 

Assumption 3 The sets p( bf) are a partition of the index set { 1, ... , m}. 

Assumption 4 For each pair of an equality constraint k, 1 :S k :S p, and an inequality 
constraint l, 1 :S l :S n, we have that lp(bf) n p(a;)I :S 1. 

Let us denote the binary feasibility problem that satisfies these assumptions as (BFP0). 

By Ek we denote the support of equality constraint k , i.e. Ek = p(bf) . Also, Jk = p(af). 
From Assumption 1 it follows that the equality constraints are of the form 

1 :S k :Sp. 

Similarly, by Assumptions 1 and 2 the inequality constraints are of the form 

Furthermore, Assumption 3 implies the following proposition. 

Proposition 6.3.1 The matrix B is totally unimodular. 

Proof: It is easy to verify that each square submatrix of B has determinant O or 1. □ 

Using a property of totally unimodular matrices we state a corollary. 

Corollary 6.3.2 All vertices of the polytope Bx = d are integral (provided d is integral). 

Assumption 4 is required later on to prove the rounding property. 

Let us now have a closer look at the inequalities Ax :S b. If for some k , 1 :S k :S n, we 
have that IJkl 2: 3, the corresponding inequality is equivalent to a set of ½IJkl(IJkl - 1) 
inequalities: Xi + x1 :S 1, i < j E Jk . Note that inequality k can be obtained from this 
set of inequalities by means of Chvatal cutting planes [24]. Define the set 

M = {( i,j) I :3 k E {l , ... ,n} withi,j E Jk , 1 :Si <j :Sm}, 
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then we can rewrite (BFP0 ) as 

(BFP0) find x E {0, l}m such that Bx= d and x; + x1 -:; 1, (i,j) EM. 

The relaxation of (BFP0) is 

(RFP0) find x E [0, 1im such that Bx= d and x; + x1 -:; 1, (i,j) EM. 

A solution x to (RFP0) may be (at least partly) fractional and cannot be easily rounded to 
a feasible binary solution. However , if we replace the constraints x; + x1 -:; 1 by x;x1 = 0, 
thus obtaining the following feasibility problem 

(NFP;j) find x E [0, 1r such that Bx= d and X;Xj = 0, (i,j) EM , 

a solution X to (NFPo) can straightforwardly be rounded to the binary solution IX l for 
which we have that Ix; l I x1 l = 0 for all ( i, j) E M. From Ix l one easily can obtain 
one or more feasible solutions of (BFP0), as long as Assumptions 1 and 3 hold. Since 
Bis binary, it holds that B1xl 2: d. For each equality constraint, we can simply set 
variables with index in its support from one to zero, until it is satisfied (see also [135]). 
Note that this also directly follows using Proposition 6.3. l and its corollary. Applying the 
rounding procedure amounts to optimizing a linear objective function ( either 'min eT y' 
or 'max eT y'; in both cases the optimal value is eT d, which is attained for each feasible 
solution) subject to the linear constraints By = d and O -:; y -:; Ix l, where x denotes the 
(fractional) solution to (NFP0). Since B is totally unimodular, any basic solution y must 
be binary. 

Observe that the constraints x;x1 = 0 in (NFP0) are nonconvex; this makes them difficult 
to handle as constraints. Instead, they can be transferred to the objective function. Thus 
the following minimization problem is obtained: 

(NQP) 

min L x;x1 
(i,j)EM 

s.t. Bx= d, 

0-:::: X-:; e. 

Obviously, the optimal value of this minimization problem is nonnegative and when 
(BFP0) is feasible , it is equal to zero. Problem (NQP) inherits from (NFP0) that a 
fractional solution x with objective value zero can be rounded to (possibly many) dif­
ferent feasible solutions. Indeed, the number of solutions obtainable by rounding can be 
enormous (see [137, 138]). Note that for a given feasible binary solution the objective 
value is integral ; it is equal to the number of constraint violations in (BFP0). 
We introduce the (symmetric) matrix Q (see also [135]): 

Q = sgn [AT A - diag(AT A)], (6.1) 

where diag(AT A) denotes the diagonal matrix containing the diagonal entries of the ma­
trix AT A. Note that the matrix Q is similar to the matrices involved in the elliptic 
approximations introduced in Chapter 2. In fact, the inequalities Ax -:; e can be inter­
preted to be a 2CNF formula. Accordingly, the quadratic model (without taking into 
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account the equality constraints) derived in this section is the {O, 1} equivalent of the 
elliptic representation of 2CNF formulas. 

Due to Assumption 1, the matrix Q is binary. Denoting the entries of Q by Q;j, we have 
the following relation. 

Lemma 6.3.3 It holds that Q;j = 1, i::::; j, if and only if (i,j) EM. 

Proof: Denote by a; the ith column of A. We prove only the 'if' part here; the proof for 
the 'only if' part is similar and left to the reader. Suppose that Q;j = sgn(af aj) = l. By 
the definition of Q we know that i -I j and since A is binary and therefore nonnegative, 
there must exist a k E {1 , ... , n} such that i, j E Jk. Thus (i, j) E M . □ 

It is clear from this lemma that the number of nonzero entries of the matrix Q is equal 
to 2IMI. Due to the lemma, we can rewrite (NQP) as 

(NQP) 

min ½xTQx 

s.t. B x= d, 

0:::::: X:::::: e. 

Let us summarize our results hitherto in a theorem. 

Theorem 6.3.4 (Equivalence property) Consider the problems (NQP) and (BFP0). 

It holds that 

• The optimal value of (NQP) is zero if and only if (BFP0 ) is feasible. 

• A fractional solution of (NQP) with objective value zero yields multiple f easible (bi-
nary) solutions of (BFP0). 

If (BFP0) is infeasible, a global minimum of (NQP) will not be equal to zero. However , 
due to Assumption 4 (NQP) features the rounding property. Hence all strict minimizers 
(local and global) of (NQP) have integral objective values; in addition, each minimizer 
with integral objective value yields one ore more binary solutions with the same objective 
value. We will derive these facts below. 

Let us assume that x is a fractional feasible solution of (NQP). It is our aim to construct 
a feasible binary solution i; = x + box, such that the objective value of i; is at least as 
good as that of x. This amounts to finding a vector box such that x + box is binary and 

(6.2) 

where q is the gradient of the objective function in x, i.e. q = Qx. Such a vector could be 
found by solving the following minimization problem. 

(QPbo) 

min ½(boxfQ(box) + qT(box) 

s.t. Bbox = 0 

box; E { -x;, 1 - x;}, i = 1, ... ,m. 

Note that solving (QPbo) is equivalent to solving (NQP). Consequently, it is in general 
intractable to solve it directly. Under Assumption 4 however, an approximate solution 
that satisfies (6.2), can be found by solving a sequence of at most p subproblems that all 
can be solved in polynomial time. We first state a proposition. 
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Proposition 6.3.5 Under Assumption 4, QEk = 0, for all k, 1 :<::; k :<::; p. 

Proof: Denoting the ith column of A by a;, it holds that Q;1 = sgn(af a1), i # j, while 
by construction Q;1 = 0 for i = j. Let i, j E Ek , i # j. Then, by Assumption 4, there 
does not exist an l such that i, j E 11, implying that Q;1 = 0. □ 

Now consider the linear relaxation of (QP6), restricted to the variables 6x;, i E Ek , 
for some k E {l , ... ,p}. Using the last proposition, a linear program (rather than a 
nonconvex quadratic program) emerges. We use the change of variables y = (6x) + x, to 
find 

min 

s.t . ety = etx 

0 :<::; y :<::; e. 

It is well known that linear programming problems can be solved in polynomial time [87] . 
Furthermore, due to the total unimodularity of B , the next proposition follows. 

Proposition 6.3.6 (LPk) allows an optimal solution y* with yi.:k binary. 

Note that, using the structure of its constraints, (LPk) can be solved more efficiently than 
a general linear program. It is in fact the linear relaxation of an easy knapsack problem, 
whose structure allows an optimal solution with the property stated in the proposition. 
To find such a solut ion, it suffices to sort an array of IEkl elements. It is easily verified 
that the following strategy yields an optimal solution of (LPk)- Let Sk = { i1, ... , idk} 
be the set of indices corresponding to the dk lowest gradient entries q;, i E Ek, and let 
y* := x + (es. - xEk); this implies that Yi = x;, i r/:. Ek , Yi= 1, i E Sk, Yi= 0, i E Ek \Sk. 
It is easy to see that ety = dk = etx, thus feasibility is maintained. Now we are ready 
to prove the rounding property. 

Theorem 6.3.7 (Rounding property) Using any feasible solution x of (NQP), a fea­
sible binary solution i of (NQP) can be constructed, such that ½xTQi :<::; L½xTQxJ. 

Proof: Since the sets Ek are disjoint (Assumption 3), we can apply the same procedure 
for the variables occurring in each set Ek separately. Choose a k E {l , ... , p} for which 
XEk is not a binary vector. Solve the corresponding problem (LPk) - Above, an optimal 
solution y* to this problem is derived. It remains to show that the (optimal) objective 
value does not increase, or in other words that qT y* :<::; qT x. To this end, using the set Sk 
defined above, we introduce the scalar r 

We have that 

qT y* - qT X = qty• - qtx qt (y* - x) = qfk (e - x) - q~k ,skX 

< ~ [et(e - x) - et,skx] = ~ [dk - etx] = 0. 

Now let x := y*. Obviously, XEk is now binary. If x still contains fractional values, a new 
subproblem (LPk) for an appropriate k must be solved. This is repeated until a binary 
solution i has been constructed . Using the fact that any binary solution must have an 
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integral objective value , we conclude that fi7Qx:::; l½xTQxJ. D 

The proof of the rounding property is constructive and thus provides us with an efficient 
rounding procedure to round any fractional solution to a binary solution with improved 
objective value. This procedure requires at most p iterations, where in each iteration 
an array of on average m/p elements needs to be sorted. Note that if d = e, only the 
minimum of an array of on average m/p elements must be found. In section 6.4.2 the 
method for approximately solving (QPb.) is generalized to an efficient gradient descent 
algorithm for solving model (NQP). We have the following corollaries. 

Corollary 6.3.8 Given a fractional solution x with objective value less than one, the 
rounding property guarantees the existence of a binary solution with objective value zero, 
which is a f easible solution of (BFP0). This solution can be constructed efficiently using 
the rounding procedure. 

Note that the order in which the variables are rounded may influence the quality of the 
solution obtained. It is not clear beforehand which is the optimal order. 

Corollary 6.3.9 Since Q is binary, any strict minimum (local or global) of (NQP) has 
an integral objective value and corresponding binary minimizer. 

It is easy to see that the objective value is equal to the number of constraint violations 
in (BFP0) (as pointed out earlier). Note that the rounding property holds for any non­
negative matrix Q with the same nonzero structure as Q. This allows us to weight the 
constraints; if the constraint concerning the variables i 1 and j 1 is considered to be more 
important than the constraint concerning a pair of variables i2 and j 2 we can set Qiii, to 
a large value N, while setting Q;2h to one. We will exploit this observation in Section 
6.4.3. 

Corollary 6.3.10 Any (random) feasible solution x of (NQP) yields the upper bound 
l½xTQxJ on the minimal number of inequality constraint violations in (BF?fi). 

This corollary also follows directly from the rounding property. For example , assuming 
that d = r;,e, IEkl = m/p, for all k = 1, ... ,P, and r;, E IN, an easy to compute upper 
bound is 

maximum number of constraint violations= l ( ';::) 2 

IMlj . (6.3) 

Note that this is in fact the expected objective value of a random solution in which each 
variable is set to 1 with probability ';f and to O with probability 1- ;f. Thus, the rounding 
procedure provides us with a deterministic procedure to verify a probabilistic statement. 
This also follows from the probabilistic method (see Alon and Spencer [2]); we come back 
to this in the next section. For specific applications (such as the Frequency Assignment 
Problem; see Section 6.5.2) the ratio r;,p/m is relatively small, thus guaranteeing that a 
substantial fraction, namely 1 - (r;,p/m)2, of the constraints can be satisfied in polyno­
mial time. In this sense, our rounding technique can be regarded as an approximation 
algorithm with a performance guarantee. Note that due to the nature of the rounding 
procedure always solutions are produced that satisfy the equality constraints. 

Unfortunately, the performance guarantee, in most (non trivial) cases, will not be sat­
isfactory since we are interested in finding feasible binary solu tions of (BFP0). More 
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powerful minimization techniques for solving (NQP) must be used to obtain (hopefully) 
better solutions. Such techniques are developed in Section 6.4. To finish off this section, 
let us show that there exist instances for which the bound (6.3) is tight. 

Example 6.3.11 Consider the instance that is constructed as follows. For 1 ::; k ::; 3 = p , 

Ek= {2k - 1, 2k}, and M = {(1,3),(2,3),(1,4),(2,5)}. Furthermore, 1,, = 1. It is easy 
to verify that the assumptions 3-4 are satisfied. A solution of the feasibility problem of 
finding x E {O, 1} 6 with etx = 1, 1 ::; k ::; p, and X; + Xj ::; 1, (i,j) EM, is x2 = 1, 
x4 = 1, x6 = 1. Constructing the associated quadratic model and substituting the so­
lut ion x; = ½, we find that (1,,p/m) 2 IMI = 1, implying that after rounding at most one 
constraint will be violated. Note that xTQx = x 1(x3 + x 4 ) + x 2 (x3 + x 5 ) . Now consider 
the rounding procedure fork= 1, i.e. solve (LP1) . This amounts to minimizing x 1 + x2 

subject to x 1 + x 2 = l. Obviously, there are two binary optimal solutions. Choosing 
x 1 = 1, x 2 = 0 and propagating, a solution violating one constraint is obtained. Choosing 
x 1 = 0, x 2 = 1 and propagat ing, the feasible solution is found . D 

6.3.2 The general case 

In the previous subsection a nonconvex quadratic model equivalent to (BFP) has been 
derived under the assumption that the matrices A and B have a special structure. Let us 
now consider the more general case. But first , let us analyze the characteristics of model 
(NQP). We make three observations: 

1. For all k E { 1, ... , p} the following holds. If all variables X;, i ~ Ek, are fixed , while 
only the variables x;, i E Ek, remain free, the nonconvex quadratic function xTQx 
reduces to a linear function in the variables x;, i E Ek. 

2. The matrix B is totally unimodular. 

3. The sets Ek, k = 1, ... ,P, partition the index set {l , ... , m}. 

These observations are in fact crucial for obtaining the desired rounding property. Thus 
we aim for a model (NCP) that has similar properties. Note that for the first observation 
to hold , P(x) must be linear in each of its variables. Thus P(x) must be a multilinear 
function ; i. e. it must be of the form 

M 

P (x) = I::Ck IT x;, (6.4) 
k=l iE Jk 

where ck E JR, and the sets Jk are index sets. Multilinear functions are also known as 
pseudo-Boolean functions (Hammer et al. [57, 65, 66]). Clearly, the objective function 
of (NQP) is bilinear , hence it fits the form (6.4). The term 'multilinear' is explained by 
not ing that such a function takes its extrema (both minima and maxima) at vertices of the 
unit hyper cube. For completeness, we include this as a theorem (see also e.g. [14, 16, 61]). 

Theorem 6.3.12 (Rounding property) Let x be such that O ::; x ::; e. An effici ent 
rounding strategy is available to construct a binary solution [x] with the property that 
P ([x])::; P (x). 
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Proof: If xis binary, then let [x] = x. Otherwise, there is an i such that O < x; < l. Fix 
all variables at their current value, except the variable x; . Then P(x) reduces to a linear 
function in one variable, that reaches its minimum on the interval [0, 1] in either X; = 0 
or x; = l. Accordingly, fix x; at its appropriate value. Repeating this procedure for all 
fractional variables , a binary solution is constructed such that P([x]) ::; P(x) . D 

Thus, similar to the previous section, the rounding procedure to verify the rounding prop­
erty can be interpreted as optimizing a linear function over a (in this case one dimensional) 
polytope with integral vertices. In the previous section, by making use of the 'nice ' struc­
ture of a subset of the constraints, higher dimensional problems could be considered in 
the rounding procedure. In general, if the constraints (both equality and inequality) do 
not have such a structure, they can all be incorporated in the multilinear function P(x). 
Note that the Corollaries 6.3.8-6.3.10 can be straightforwardly generalized to the present 
case. 

As mentioned before, the rounding property also follows from the probabilistic method [2]. 
For a given x, 0 :::; x :::; e, the value of P(x) is the expected value of a binary solution y 
that is obtained by setting y; to 1 with probability x; and to O with probability 1 - x; . 
The probabilistic method specifies that there must exist a binary solution with this ex­
pected value. Moreover, the method of conditional probabilities yields such a solution in 
polynomial time [108]. This method coincides with the proof of Theorem 6.3.12 (albeit 
with different terminology) . 

Below we discuss how to construct a multilinear function that is the resolvent of a single 
inequality constraint. First, let us briefly consider equality constraints Bx = d. These 
can be processed in several ways. The preference for any of the methods below should 
depend on the particular structure of Bx = d. 

• Replace by Bx :::; d and Bx ~ d and treat as inequality constraints. 

• Add (Bx - df (Bx - d) to P(x), and use idempotency of the variables to eliminate 
the quadratic terms. Thus only bilinear and linear terms emerge; the rounding 
property remains intact. 

• Use Bx = d to eliminate a number of variables so as to reduce the problem size. 

• If the equality constraints can be used to lift the rounding procedure into higher 
dimension (as in the special case of the previous section) , then leave them intact . 

Let us now address the problem of constructing a resolvent P(x) with the desired prop­
erties. This construction was first given in [66]. Let us first consider some examples. 

Example 6.3.13 In the previous section inequalities of the form x1 + x2 ::; 1 were 
considered, with resolvent x 1x2 = 0. Clearly, it holds both for continuous and binary 
variables that x1x2 = 0 implies that x1 +x2 ::; 1. This shows that the nonlinear formulation 
is stronger than the linear one, as the converse is true for binary variables only. Now 
consider the following inequality: 

(6.5) 

Again, we must have that x 1x 2 x 3 x 4 = 0, but obviously this does not imply that (6.5) is 
satisfied, since at least two x; need to be equal to zero. Inequality (6.5) may be replaced 
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by the following four inequalities: 

+x2 +x3 +x4 :::; 2 

X1 +x3 +x4 :::; 2 

X1 +x2 +x4 :::; 2 
(6.6) 

X1 +x2 +x3 :::; 2 

Note that inequality (6.5) in fact can be interpreted as a Chvatal cut [24], that can be 
obtained by adding the four inequalities (6.6) and rounding the right hand side downwards. 
Recall that a cut forces the variables in the linear relaxation to integer values. For the 
integer formulation however , it is redundant . Accordingly, for a binary solution, we have 
that (6.6) is satisfied if and only if (6.5) is satisfied. Each of the inequalities in (6.6) is 
satisfied if at least one of the variables in it is zero, similar to the first case above. Thus 
we obtain the resolvent of (6.5): 

X2X3X4 + X1X2X4 + X1X3X4 + X1X2X3 = 0. 

If this equation is satisfied by a solution O :=; x :=; e, then system (6.6) is satisfied, implying 
that (6.5) is satisfied. D 

In the following we formalize what is exposed by the example. Let us first verify that all 
coefficients may be assumed to be nonnegative. Consider the inequality aT x :S a0. Define 
1+ = {i: ai > O} , 1- = {i: ai < O} and 1 = 1+ U 1-. Then it can be rewritten as 

a':;+x - a':;-(e - x) = a':;+x + la}- l(e - x) :=; a0 - e':;-a. 

Since e - x is binary if x is binary, we may assume without loss of generality that a 2: 0. 
We first consider inequalities of a particular form . By e we denote an all-one vector of 
appropriate length. 

Definition 6.3.14 The maximum violation v of an inequality eT x :=; r is defined as 

v = max eT x - r = t - r. 
xE{O,l}' 

Obviously, if v :=; 0, the associated inequality is trivially satisfied for any binary vector 
x. Therefore in the following we consider only inequalities that have a strictly positive 
maximum violation. Note that for the first inequality in the example v = 1, while for 
inequality (6.5) v = 2. For the inequalities (6.6) however, we have that v = l. 
Let us state and prove an easy lemma. 

Lemma 6.3.15 Let eTx :Sr denote an inequality with maximum violation v. Let x be 
such that O :=; x :=; e. Then v :=; 1 if and only if 

t 

p(x) = IJ Xi = 0 ⇒ er x :=; r. 
i=l 

Proof: Assume the implication holds. Then xi = 0 for some i. Thus er x :=; t - 1 :=; r. It 
follows that v = t - r :=; 1. On the other hand, suppose that v :=; 1. Assume that for some 
x it holds that p(x) = 0, thus xi= 0 for some i. Hence eTx :St - 1 = v + r - 1 :Sr. □ 

Lemma 6.3.15 suggests the approach to replace the inequality aT x :=; a0 by an equivalent 
set of inequalities having binary coefficients and maximum violation one. This can be 
done by means of minimal covers (see e.g. [104]). 
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Definition 6.3.16 (Minimal cover) A set M is called a minimal cover of inequality 
aT x S a0 , if for all i E M the following holds: 

For a given inequali ty, assume that we have found all its distinct minimal covers and 
stored these in the set M = { M 1 , M2 , . . . , M1M I}. With each minimal cover Mi E M we 
associate an inequali ty 

eitix S IMil - 1, 

and we denote the union of these inequalities by Ux s Ue - e. It is obvious that all 
inequali t ies in U x ::; U e - e have a maximum violation of one. Furthermore, we can prove 
the following equivalency. 

Lemma 6.3 .17 For binary x, aT x S a0 if and only if Ux S Ue - e. 

Proof: Assume we are given x such that aT x ::; a0 . Suppose that for some j = 
1, 2, .. . , IMI we have that ettix > I Mil - 1. This implies that x 2 eMi, from which 
it follows that aT x 2 attix = ettia > a0 . This contradicts the fact that aT x S a0 . We 
conclude that U x ::; U e - e. Conversely, assume we are given an x such that U x s U e - e. 
Let J = {i E J: x; = 1}. Suppose that aTx = a!J-x = e'!J-a > a0 . Sort the indices i E J 
such that a; 1 2 a;2 2 ... 2 a;m. Denote by ek the vector with ones in the first k posi­
tions, and zeros elsewhere. Now for some k it holds that ef a S a0 , while ef+i a > a0 . By 
construction, { i 1, i2, ... , ik+i} = Mi for some j , which leads again to a contradiction . □ 

Using these lemmas, we associate a multilinear function with an inequality aT x s a0 as 
fo llows. 

IM I IM I 
P(x) = L Pi(x) = L II x;. 

j=l j=l iEMj 

Hence each Pi(x) is associated with a distinct minimal cover. We are ready to prove the 
equivalence property. 

Theorem 6.3.18 (Equivalence property) Given are an inequality aTx::; a0 and its 
associated function P(x). For any x such that O s x s e, P(x) 2 0. If P(x) = 0, then 
aT[x] S a0 , where [x] denotes a binary solution that is obtained by rounding all fractional 
elements of x either up or down. Vice versa, if a binary x satisfies aT x ::; a0 , then 
P(x) = 0. 

Proof: By construction it is clear that P(x) 2 0 for any 0 ::; x s e. Also, if P(x) = 0 
for some 0 S x S e, then by construction P([x]) = 0 and thus Pi([x]) = 0 for all j. By 
Lemma 6.3.15 it follows that U[x]::; Ue - e, and hence using Lemma 6.3.17, aT[x]::; a0 . 

The proof of the converse statement is left to the reader. □ 

We state two corollaries. 

Corollary 6.3.19 The degree of the multilinear function associated with an inequality 
aT x S a0 is equal to the size of its largest minimal cover. 

Corollary 6 .3.20 From a (partly) fractional vector x, 0 S x S e, for which it holds that 
P(x) = 0, multiple binary solutions [x] such that aT[x] ::; a0 can be constructed. 
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Now it is easy to construct the resolvent of (BFP). Each inequality k is (if necessary) re­
placed by its equivalent set of inequalities with maximum violation one, and its associated 
multilinear function Pk(x) is constructed. Summing the functions Pk(x) , we conclude that 

n 

P(x) = L Pk(x) 
k=I 

is the resolvent of (BFP) and can be used as the objective function of (NCP). (BFP) 
is feasible if and only if the optimal value of (NCP) equals zero. By Corollary 6.3.20 a 
minimizer of (NCP) yields one or possibly multiple feasible solutions when it is rounded to 
a binary solution. If a binary solution has a positive objective value, it can be interpreted 
as follows. 

Corollary 6.3.21 The objective value of a binary solution x of (NCP) is equal to the 
number of minimal covers in the reformulation of (BFP) that is completely covered by x. 

Thus the objective value gives an upper bound on the number of constraint violations in 
the original formulation (BFP). Note that the formulation can be adjusted such that the 
objective value is equal to the number of constraint violations in the original problem; 
without going into details, to this end extended covers that cover sets of minimal covers 
need to be enumerated and evaluated. If the rounding property is applied to obtain 
approximation results this may be worthwhile. Here we do not pursue it. 

Example 6.3.22 Consider the inequality 

We rewrite this inequality as 

The inequality has 5 minimal covers of sizes 2, 3, 3, 3 and 4. The largest minimal cover 
has size 4; consequently, the polynomial P(x) has degree 4. The associated multilinear 
function is 

An add itional inequality is given by 3x1 + 5x2 + 2x3 - 6x5 :S:: 4, with resolvent 

Considering P(x) = P1(x) + P2(x) it is clear that x2 must be equal to zero. After 
substitution of x2 = 0, P(x) has 4 terms. Substituting x; = ½, i = 1, 3, 4, 5, we find 
P(x) = ½, implying that the rounding procedure must yield a feasible solution . Keeping 
to the lexicographic order we obtain the partial solution i: = (0, 0, 1, *, *), with P(i:) = 0, 
which yields fo ur distinct feasible solutions. □ 

Let us briefly consider the complexity of finding all minimal covers of a given inequality. 
For a constraint of length m of the form er x :S:: r, we can say more beforehand about the 
size of its set of minimal covers. 
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Lemma 6.3.23 The number of minimal covers of an inequality er x ::; r, is equal to 

IMI = ( m ) . 
r+l 

Proof: To construct all minimal covers of eT x ::; r, one needs to find all sets Mi such 
that IMil = r + l. This amounts to finding all combinations of r + 1 elements out of m 

elements. D 

For r = ½m, this number is exponential in m. In specific applications performing the 
procedure as previously described is therefore computationally intractable. However, 
using the linear time algorithm to construct CNF equivalents of inequalities as discussed in 
Appendix A, a polynomial time reformulation procedure can be obtained (see also Section 
6.5.1). The practical drawback of this algorithm is its requirement of the introduction of 
additional variables and constraints. 

In general, to find all minimal covers of a given inequality, implicit enumeration of all 
assignments to the variables occurring in the inequality is required. This can be done by 
setting up a search tree in the usual way; at each node a variable x; is set to one in its left 
branch and to zero in its right branch. First sorting the coefficients in descending order, 
the search tree can be kept relatively small by choosing variable x; as branching variable 
at depth i + 1. A branch is closed when the partial assignment is such that the constraint 
is violated. If a branch remains open, this can be used to prune the search tree. 

We conclude this section with observing that in special cases by making use of techniques 
from Boolean algebra, the resolvent P(x) can be much simplified; we refer to Hammer [65]. 
In the next section we discuss two (non-exact) algorithms for obtaining global minimizers 
of (NCP). These algorithms involve continuous variables. 

6.4 Two minimizat ion algorithms 

We describe two algorithms for solving nonconvex models of the form (NCP). We will 
be concentrating on the special case of Section 6.3.1. Let us stress that both algorithms 
can be adapted in a straightforward manner to be applied to general models of the form 
(NCP). Moreover, the algorithms can also be applied to models that do not stem from 
a specific binary application and/or do not feature the rounding property. For example, 
the algorithms have been used in the context of unsupervised neural network training 
(Trafalis et al. [126]). 

Let us recall the model (NQP). 

(NQP) 

min ½xTQx 

s.t. B x= d, 

0 ::; X::; e. 

We mm1m1ze (NQP) iteratively. In each step we attempt to find a new intermediate 
solution that is better than the previous one, until a minimum is reached. Thus a generic 
algorithm is the following. 
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Starting from a feasible point: 

1. Find a descent direction for the objective function. 

2. Find the minimum of the objective function along the descent direction to obtain 
the new iterate. 

3. If the new iterate has an objective value smaller than one, then use the rounding 
procedure to solve the problem, else go to step 1. 

4. If the new iterate has an objective value greater than one, while no improving 
direction can be found, the algorithm is trapped in a local minimum. Modify the 
problem in some way to avoid running in this local minimum again, and restart the 
process. 

The crucial element of the algorithm is step l; the computation of a descent direction. We 
will describe two methods to compute it. First we briefly discuss a potential reduction 
method, that is inspired by the method introduced by Karmarkar et al. [82, 88]. Full 
details on this method can be found in [135, 138]. This method makes use of second-order 
derivatives and is therefore computationally involved. The second method discussed uses 
only the gradient. It is inspired by the rounding procedure. The algorithm is related 
to the reduced gradient method (see for instance Bazaraa et al. [7]) , but no use is made 
of basic solutions and by exploiting the special structure of the model we can gain in 
efficiency. 

6.4.1 A potential reduction algorithm 

To solve (NQP) we introduce a logarithmic barrier function 

m 

1/J(x) = ½xTQx - µLlogx;(l - x;) , (6.7) 
i=l 

where the barrier parameter µ is positive. Note that 1/J (x) consists of two parts. The 
first is the objective function of (NQP), the second part is the logarithmic barrier func­
tion, which is mainly important for numerical reasons. It also exhibits good empirical 
properties. For brevity we denote the constraints O :S x :S e (and possible additional con­
straints) by Cx :S c. Without loss of generality, we assume that the equality constraints 
Bx = d are eliminated, or relaxed to inequality constraints. For techniques to deal with 
the equality constraints, see [135] . 

The idea of the algorithm is that minimizing 1/J (x) under appropriate constraints is equi­
valent to solving (NQP). Consider the nonconvex minimization problem 

(NQPt/! ) 
min 1/J (x) 

s.t. Cx :Sc. 

Since solving (NQP t/! ) is in general NP-complete, in each iteration it is approximated by 
a quadratic optimization problem over an ellipsoid, which can be solved in polynomial 
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time. Let xi be the current interior solution and let z; = c-Cxi be its slack vector. Using 
the notation Z = diag(zi) , the Hessian and gradient of 'I/; in x are 

h,p Qxi + µCT z- 1e; 

H,i, Q + µCT z - 2c. 

Denoting li.x = x - xi, the second order Taylor expansion of 7/J around xi is given by: 

As approximation of the polytope the Dikin ellipsoid [40]) is used , which is given by 

where for r < 1 the ellipsoid is inscribed in the feasible region. Note that this is a different 
ellipsoid from the one we introduced in Section 2.4; that ellipsoid circumscribes, rather 
than inscribes, the feasible region. We are now ready to formulate the polynomially 
solvable subproblem: 

(NQPt:) 
mm ½(llxf H,i, (li.x) + h~(li.x) 

s.t. (6.xfCTz - 2C(li.x) ~ r 2 . 

This problem is known in the literature as a trust region problem (see e.g. Sorensen [121]). 
The optimal solution li.x* to (NQPt:) is a descent direction of 'lj;(2l(x) from xi. A vector 
li.x* is an optimal solution of (NQPt:) if and only if A ~ 0 exists, such that: 

(H,i, + ,xcr z-2c)llx* 

A ((6.x*fcTz- 2C(li.x*) - r2 ) 

H,p + ,xcT z - 2c is 

-h,i, 

0 
positive semidefinite. 

(6.8) 

(6.9) 

(6.10) 

For a proof of the optimality conditions, see Karmarkar et al. [88]. The algorithm uses 
an effective search strategy to find a multiplier A and corresponding solution 6.x* , such 
that the optimality conditions are satisfied and the radius r of the inscribed ellipsoid 
is acceptable. This method is closely related to Sorensen 's algorithm. It may require 
verifying (6.10) and subsequently solving the linear system (6.8) repeatedly. After a 
descent direction has been obtained, the new iterate xi+i is computed by applying a line 
search to find the minimum of the potential function along the descent direction. 

To benefit from the computational effort required to compute the new iterate as much as 
possible , one or more, possibly problem-specific, rounding schemes are applied to obtain 
a (hopefully globally optimal) binary solution. This process is repeated until either the 
problem is solved, or a local minimum is reached. 

6.4.2 A gradient descent method 

This algorithm is inspired by the rounding property. It uses first-order derivatives only, 
whereas in the potential reduction algorithm also second-order derivatives are used. Again , 



6.4 Two minimization algorithms 127 

let xi denote the current feasible solution. Our aim is to produce a descent direction 6.x. 
Consider: 

min ½(6.xf Q6.x + qT 6. x 

s.t . B6.x = 0 

where q = Qxi is the gradient of the objective function. Note that (QP;) is in fact the 
linear relaxation of (QP6.) (see Section 6.3.1). Using decomposition and the rounding 
property, an approximately optimal solution to this problem can be computed in poly­
nomial time. Considering only the variables with index in the support p(bI) = Ek of a 
given equality constraint k, an optimal solution can be constructed in a straightforward 
manner, since then the quadratic term in the objective function is automatically annihi­
lated. We refer to this procedure as local gradient search; it performs the procedure to 
solve (LPk) (see Section 6.3.1). It is summarized, in a slightly modified form, in Figure 
6.1. The procedure sort , that is called in line 2, sorts the entries of the given vector in 
increasing order. In line 3 T is set equal to the dkth smallest element of q. Note that a 
(nonnegative) parameter c is introduced in the fourth line. This parameter prevents that 
too many variables are set to zero at once, thus forcing more variables to positive values. 
Intuitively this prevents the algorithm from running into a local minimum too easily. 

procedure locaLgradient (xi, c, k) 
q := Qx\ 
qsort:= sort (q1 I j E Ek); 
T := qsort(dk); 
sk := U E Ek I q1 ::; r + c}; 
Y ·-xi+..<i!L(e xi)· .- IS,I 5• - E, ' 

return (y) 

Figure 6.1: The Local Gradient algorithm 

Another possibility is to do a global gradient search. Neglecting the quadratic term in 
(QPi), an efficiently solvable linear programming problem is obtained: 

(LP;) s.t. B6.x = 0 

Our approach is to solve (LPi) and then to find the minimum of the objective function 
along the search direction 6.x*, where 6.x* denotes the optimal solution to (LPi). Due to 
Assumptions 2-4 (see Section 6.3.1) , this solution can be computed in strongly polynomial 
time. It is obtained by executing the procedure locaLgradient for each k = l, ... , p, 
with c = 0. Note that if we give c a (small) positive value, an approximate solution of 
(LPi) is obtained that, again intuitively, may better suit our purposes. To some extent, 
c performs the role of the barrier parameter µ. The function of both is to prevent the 
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iterates from converging to a vertex too fast. Observe that one might also choose to use 
the gradient of the potential function 'lf;(x) (6.7) as objective function in (LP;). This has 
no influence on the efficiency with which a descent direction can be computed. 

The objective function along the search direction xi + .6.x* as a function of o: is can be 
convex or concave. By simple calculations we compute the optimal value for o:: 

0(o:) =(xi+ o:.6.x*f Q(xi + o:.6.x*) = ((.6.x*f Q.6.x*)o:2 + 2(qT .6.x*)o: + constant. 

Therefore if (.6.x*f Q.6.x* s; 0 (i.e. 0(o:) is concave), we take o: equal to one, since that is 
the maximum step size maintaining feasibility. Otherwise, if (.6.x*f Q.6.x* > 0 we take 

o: := min { 1, - (.6.:~~;~x•}. 

It is easily understood that o: 2: 0 since qT .6.x* s; 0. 

If the gradient descent algorithm is employed to minimize the potential function 'lf; , one 
has to be careful in computing the optimal step length. Either the above sketched analytic 
approach may be used, with appropriate measures taken to ensure that the iterates stay 
in the interior of the feasible region, or a line search must be carried out to obtain a good 
approximation of the optimal step length. 

The gradient descent algorithm runs as follows. Starting from a feasible point , we apply 
the global gradient search until no sufficiently improving direction can be found. During 
this process the parameter c must be decreased to zero. Subsequently, we switch to the 
local gradient search, until either the problem is solved or a minimum is reached. In the 
latter case, the fractional solution is rounded to a binary solution, using the rounding 
property. 

6.4.3 Local minima 

There are several heuristics available to deal with local minima; see also [135]. In the 
computational results reported in this chapter, we use the following approach. Let xk 
be a local minimizer of the problem under consideration. The idea is to determine all 
constraints that are violated by r xkl' and to increase the corresponding weights. Let 

V = {(i,j) I (i,j) EM with x~xJ > O}, 

and modify the objective function of the problem (NQP): 

mm NL X;Xj + L X;Xj, 

(i ,j)EV (i ,j) EM \ V 

where N is a large number. Substituting the current locally optimal solution in this 
modified objective function, the objective value will now be increased to N times the old 
one. If N is sufficiently large the current solution is no longer a local minimum. The 
minimization procedure can be continued until another minimum is found . Observe that 
this procedure may be regarded as a local search procedure. In a sense it is assumed that 
the current solution is close to an optimal solution, and the algorithm will subsequently 
converge to solutions that are 'near' the current solution. Note that, if at some point 
in the process the algorithm gets stuck in a region where there appear to be many local 
minima, one might decide to restart the algorithm from a new starting point. 
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6.5 Two specific applications 

In this section we discuss two specific applications of the reformulation technique described 
in Section 6.3. It may be stressed that even though any problem of the form (BFP) can 
be transformed to a problem of the form (NCP), in general this will be worthwhile only if 
all constraints involved have one or at most few minimal covers. Moreover, the model is 
particularly suited to solve feasibility problems rather than problems in which some linear 
objective function needs to be optimized. In the next subsection Satisfiability (SAT) 
problems are considered and in the subsection thereafter we turn our attention to the 
Frequency Assignment Problem (FAP). 

6.5.1 The satisfiability problem 

Let us consider the satisfiability problem in CNF as introduced in Chapter 1. It is 
easy to see that using the notion of minimal covers a multilinear model for the SAT 
problem is derived that is equivalent to the unweighted variant of the model (WPR) used 
by among others Gu [61]; see also the Sections 2.3 and 4.4.2. Considering the linear 
inequality associated with a clause, it is easy to verify that it has maximum violation 
v = 1, hence Lemmas 6.3.15 and 6.3.17 and Theorem 6.3.18 apply. Thus we have the 
following implication. Let O ::; x :::; e, then 

Pk(x) = IT (1 - x;) IT x; = 0 
iE lk jEJk 

if and only if Ck is satisfied by [x] . As each inequality has exactly one minimal cover, 
it follows that for a given CNF formula one can straightforwardly construct a nonconvex 
minimization problem as described in Section 6.3.2. As pointed out there, for a given 
truth value assignment x, P(x) is equal to the number of unsatisfied clauses. We give an 
example. 

Example 6.5.1 For a specific class of contradictory formulas, the resolvent P(x) has 
the interesting property that it is exactly equal to one. It is therefore immediately clear 
that these formulas are not satisfiable, and that each truth value assignment satisfies all 
except one clause. Let the formula Ft be the formula containing all 2t distinct clauses 
on e variables that can be constructed using the propositions p1, ... , Pl· Clearly, Ft is 
not satisfiable. Now we show that the polynomial Pt(x) associated with Ft is equal to 
one, by induction on£. Fore= 1 we have F1 = p1 I\ ,p1, which implies that Pi(x) = 
(1 - x1 ) + x 1 = 1. Now assume that the claim holds for£. Consider Ft+l· Clearly, we 
have 

This implies that 
P1+1 (x) = (1 - xw)Pt(x) + xw Pt(X). 

Since Pt(x) = 1 we find that also PH 1 (x) = 1. In fact this is an example of formulas 
having positive polynomial representation (PPR) as introduced in Chapter 4. □ 

Gu [61] proposes several algorithms for solving the 'global optimization version ' of the 
satisfiability problem. One of these algorithms in fact uses the rounding procedure. The 
function P(x) is iteratively minimized by in each iteration choosing a variable and set­
ting this to either O or 1, according to which gives the biggest improvement in terms of 
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objective value. Note that this algorithm may be considered as a 'branching rule'; thus 
the global optimization algorithm is a branching algorithm (without backtracking). Back­
tracking can be incorporated to obtain a complete algorithm. The algorithms Gu propose 
prove to be quite effective. SAT instances up to a size of 50000 clauses and 5000 variables 
are solved in a matter of (fractions of) seconds [61]. Interestingly, Gu also compares his 
results with those obtained by Karnath et al. [82] who use the second-order potential 
reduction approach that is described in Section 6.4.1 to minimize the function xT(e - x) 
subject to the linear constraints associated with the clauses. It appears that this method 
is outperformed by Cu's algorithms. 

Another interesting observation is that the approximation algorithm for maximum satisfia­
bility problems proposed by Johnson [78] follows directly from the rounding property (this 
was earlier observed in [16, 140]). Using the polynomial representation of a pure £SAT 
formula (i.e. all clauses have length exactly£) with n clauses and substituting x = ½e, this 
solution has an objective value equal to n2-e (this is also the expected value of a random 
solution in which each variable is set to 1 with probability ½ and to 0 with probability 
½)- Via the rounding procedure a binary solution with objective value smaller than or 
equal to n2- e is obtained, implying that at least (1 - 2- e)n clauses are satisfied. This is 
the same bound as Johnson obtains. In fact the algorithms coincide although Johnsons 
does not make (explicit) use of a polynomial representation of the satisfiability problem. 
For general maximum satisfiability problems (i .e. unit clauses may be present) , the ap­
proximation ratio is ½. Goemans and Williamson [55] have obtained ¾ approximation 
algorithms making use of the polynomial representation in conjunction with randomized 
rounding of the solution of a linear programming relaxation of MAX-SAT. Their result 
has been improved upon by Asano [5] who has obtained a 0.77 approximation algorithm. 

Incidentally, it has been shown recently for pure 3SAT that no polynomial time algorithm 
with a better performance guarantee than Johnson's algorithm exists (unless P = NP) 
[68]; i.e. no efficient algorithm can approximate any given instance of MAX3SAT within 
a ratio of r As pointed out in Section 5.8 Karloff and Zwick obtained an optimal ap­
proximation algorithm for MAX3SAT. Thus there exist ~ approximation algorithms both 
for instances in which all clauses have length three or less and for instances in which 
all clauses have length three or more. Whether these approximation algorithms can be 
combined to obtain a ~ approximation algorithm for MAX SAT in general is still an open 
question. 

6.5.2 The frequency assignment problem 

As a second application, we consider the Frequency Assignment Problem (FAP) which is 
described in Section 1.3.3. We consider one particular class of the FAP: 

given a set of frequenci es :F, a set of links [, and a set of interference constraints, assign a 
frequency f E :F to each link l E [, such that all the interference constraints are satisfied, 
and the number of distinct frequencies used is minimal. 

In order to model the FAP, we introduce some additional notation. 

frequency domain of link l E £ (:Ft ~ :F) ; 

the assignment of frequency f E :Ft to link l E £ ; 

matrix indicating the required frequency distance for any two links. 
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If f Y l and g Y k , then it must hold that If - gl 2'. dik • Hence, if dik > 0, then links l 
and k can not be assigned the same frequency. 

Let us point out that the graph coloring problem, a well known NP-complete problem, 
can be solved as an FAP, implying that the FAP is NP-complete. Given the problem of 
colouring the nodes of a graph G = (V, E) this can be reduced to an instance of the FAP 
by letting £ = V and defining dik = 1 if (l , k) E E; otherwise dik = 0. The minimal 
number of frequencies required to construct an interference-free assignment is equal to 
the minimal number of colours required to colour the nodes of G. The FAP is more 
complicated than the graph coloring problem in the sense that an interference constraint 
does not just express that a pair of links must be assigned different frequencies, but it 
also specifies a minimal required distance. 

We have the following decision variables: 

ZJ = 

if f Y l , 

otherwise, 
l E £ , f Eh 

if the frequency f is assigned to at least one link, 

otherwise, 
f E :F. 

Thus, with reference to Section 1.3.3, the Xif variables are associated with the proposi­
tional variables p11 , the z1 variables with the q1 . We can straightforwardly associate a 
linear model with the SAT encoding. First , we need to assign a frequency to each link. 

e'&,,x = 1, l E £ . (6.11) 

Note that a linear inequality associated with a clause should have an inequality sign rather 
than an equality sign, but taking its interpretation into account it is obvious that equality 
suffices. The interference constraints are as follows : 

X iJ + Xkg ~ 1, (l, k) E £ , f E Fi , g E Fk , such that If - gl < dik• (6.12) 

Denoting the equali ty constraints (6.11 ) by B x= e and the inequality constraints (6.12) 
by Ax ~ e, the FAP can be expressed as the {0, 1} feasibility problem to find x E {0, 1 }m 
such that Ax ~ e and B x = e. 

The model can be extended to restrict the number of frequencies used. To this end, we 
add the variables z1 to the model and the constraint er z = Fmax, where Fmax specifies 
the number of frequencies to be used. Furthermore, we add the following constraints to 
the model: 

X1J - ZJ ~ 0, l E £ , f E Fi , (6.13) 

Now let t he set of linear inequalit ies (6. 13) be denoted by x - RT z ~ 0. The extended 
feasibility problem is expressed as 

find (x, zf E {0, l}m+IFI such that 
{ 

Ax~ e 
x - Rrz ~ 0 

B x= e 

eTz = Fmax· 
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Note that this problem no longer can be directly transformed to a SAT problem. The 
bound on the number of frequencies to use disturbs the required structure. However , 
the Assumptions 1-4 (Section 6.3.1) are satisfied by this model, thus enabling us to use 
formula (6.1) to obtain a nonconvex quadratic model for the FAP. To verify this, note 
that x - RTz :-=; 0 can be rewritten as x + RT(e - z) :-=; RTe = e, where we use that R 
contains exactly one nonzero element in each column. 

Let us now consider Corollary 6.3.10 and apply it to the FAP, in other words, let us 
determine the quality guarantee of the rounding procedure. To this end we take a closer 
look at the number of constraints present; the upper bound on the objective value that 
can be obtained using the rounding property is related to these numbers. We denote the 
number of interference constraints by ldl, i.e. ldl is the number of pairs of links for which 
dtk > 0. Assuming that all I.Fl frequencies are available for each link , these constraints are 
modelled using ,I.Flldl constraints of type (6.12), where the value 1 :-=; 1 :-=; I.Fl depends on 
the average required frequency distance . For 1 = 1, the FAP reduces to a graph colouring 
problem; for 1 = I.Fl none of the interference constraints can be satisfied. The number of 
constraints of type (6.13) is equal to I.CIIFI . 

For the moment, we consider only the feasibility version of the FAP (i.e. without the z1 
variables). By initially setting x; = 1/I.FI for all i, one can obtain a binary solution that 
satisfies at least a fraction 1- (1/I.Fl) 2 of the total number of constraints. (In the notation 
of Section 6.3.1 (see eq. 6.3) , K = 1, m/p = I.Fl .) To get a better understanding of its 
implications, this performance guarantee should be related to the number of interference 
constraints ldl; thus we find that at least (1 - ,/I.Fl)ldl interference constraints can be 
satisfied in polynomial time. For example, if 1 / I.Fl ~ .1 ( which is the case for the large 
benchmarks solved in the next section), then it is guaranteed that at least about 90% 
of the interference constraints are satisfied in polynomial time. In practice, the solutions 
obtained using the rounding procedure may be, and frequently are, even better. 

If we also take into account the bound on the number of frequencies to be used , substi­
tuting the average solution (x, z) gives the objective value (1/I.Fl)(,ldl + I.CIFma,c). To 
give a flavour of the implications, assuming that Fmax = ½I.Fl, ldl = 5I.CI, solutions can 
be constructed that satisfy at least 80% of the interference constraints. 

To illustrate the rounding property and algorithms of Section 6.4 let us consider an ex­
ample. In the next section we turn to computational results on larger instances of the 
FAP. 

Example 6.5.2 Let us again consider the instance depicted in Figure 1.3 in Chapter 1. 
It is defined by 

.C = {1, 2, 3, 4} and .F = {2, 4, 7, 9}; 

.1"1 = .r3 = {2, 4, 9}, .1"2 = .r4 = F 

The required frequency distances dtk are given by the following matrix: 
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The number of constraints of type (6.12) is 27, while the number of constraints of type 
(6.13) is 14. We do not take the latter into account in this example. Let us apply 
the algorithms discussed in Section 6.4 to this (very small) instance. We take as initial 
solution x~1 = I/I.rd, for all l E £, f E .r1. The objective value of x0 is 161/72, implying 
that an assignment can be constructed that violates at most 2 constraints. 

• The potential reduction algorithm (Section 6.4.1) finds after two iterations the frac­
tional solution x 2 = (.91 .02 .08; .20 .00 .12 .70; .22 .02 .76; .06 .48 .38 .09), with 
potential value 1.64. Here the ';' separates the variables corresponding to different 
links. By, for each link, setting the variable with maximal value to 1, the feasible 
assignment (2 '---t 1, 9 Y 2, 9 Y 3, 4 Y 4) is obtained. If no such rounding scheme 
is applied, in the third iteration a solution x 3 is found with potential value .87, 
guaranteeing the existence of a feasible solution (by the rounding property). The 
algorithm needs another 7 iterations to find a (near-binary) solution with potential 
value less than 10-3 . 

• The gradient descent algorithm (Section 6.4.2) finds a global optimum after three 
iterations. The parameter E is taken to be equal to zero. First two 'convex steps' 
are made (step sizes 29/41 and 43/116). The objective value of the intermediate 
solution x 2 is 1.66. Subsequently the algorithm takes a 'concave step' (i.e. step size 
1) to the global optimum which yields the feasible assignment that was also found 
using the potential reduction method. Thus, the instance is completely solved by 
the global gradient search and there is no need to switch to the local variant. 

• Let us now apply the rounding procedure to the initial solution x 0
. The reader 

may want to verify that by subsequently rounding the variables for links 1, 2, 3 and 
4, we arrive via the intermediate objective values 49/24, 17/12 and 3/4, at either 
the feasible assignment given above or the (also feasible) assignment (9 Y 1, 2 Y 

2, 2 '---t 3, 7 Y 4). It is interesting to note that by rounding the variables in reverse 
order, an infeasible assignment might be obtained. This concludes the example. □ 

6.5.3 Com putational results 

The aim of this section is to provide an indication of the effectiveness and robustness of 
the proposed algorithms. To this end, we report on some computational experience on 
the FAP. In Table 6.1 the characteristics of the instances considered are given. See for 
more information on these instances the benchmark overview paper [21]. CELAR (Centre 
d'ELectrique d'ARmement) provided a number of test instances. All other instances were 
generated using the TU Delft developed test problem generator GRAPH ( van Ben them 
[10]). All the tests were run on a HP9000/720 work station, 150 mHz. The implemen­
tation of the potential reduction algorithm is the same as used in [135, 137, 138]; it is 
implemented in MATLAB™ and it uses a number of FORTRAN routines provided by 
the linear programming interior point solver LIPSOL [142]. The same parameter settings 
and rounding schemes as in the above mentioned papers were employed. 

The gradient descent algorithm is implemented in MATLAB™ as well. Some preliminary 
experience with applying it to minimize potential function 'lf;(x) (eq. (6.7)) indicated that 
thus no better results are obtained than when using the 'plain' gradient (i.e. without 
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IJ name I-Cl JdJ I # frq. I # vars. II name JdJ I # frq. I # vars. II 
G16.6 16 28 6 232 TUD200.1 200 1071 12 4015 

G20.6 20 36 6 411 TUD200.3 200 1060 *18 3449 

G20.10 20 80 10 296 GRAPH0l 200 1034 18 3484 

G24.6 24 74 6 518 GRAPH02 400 2045 14 7336 

G26.8 26 72 8 387 GRAPH08 680 3417 *20 12838 

G30.8 30 84 8 562 GRAPH09 916 4789 16 18070 

G36.12 36 204 12 530 GRAPH14 916 4180 *10 18382 

G40.8 40 170 8 651 CELAR0l 916 5090 16 18124 

G50.12 50 240 12 592 CELAR02 200 1135 14 4026 

Gl00.12 100 502 10 1078 CELAR03 400 2560 14 7970 

Table 6.1: Characteristics of the instances. Given are, for each instance, its name, its 
number of links and interference constraints, its optimal (* best known) solution and the 
number of variables required to model it . The number of frequencies available for each 
link is typically 44. 

barrier). Therefore we use the plain objective function. In the implementation, the pa­
rameter c is initially set to .25, and after each global gradient search it is decreased by a 
factor 2. In the local gradient search it is set to zero. The algorithm switches from global 
to local gradient search when the first improves the objective value by less than .1. 

The computational tests were carried out as follows . The algorithm was provided with 
the value of the best known solution (i .e. the optimal value reported in Table 6.1), and ran 
until either a solution with the desired number of frequencies was found , or the number 
of local minima encountered exceeded some preset maximum Kmax· The value of Kmax 

was set to Kmax = 20. A local minimum was dealt with as described in Section 6.4.3, 
with the value of N set to 100. 

Each of the 'smaller' instances (G* .*) was solved with both algorithms, using 20 different 
starting points. The results of these runs are given in Table 6.2. The success of the algo­
rithms is to some extent dependent on the quality of the starting point . The percentages 
of the total number of runs in which an optimal solution was found are given ('Succes­
percentage'). The minimal, average and maximal solution times are also reported. It 
appears that the gradient descent algorithm is at least as efficient as the potential re­
duction algorithm and certainly faster. Even though one might expect the second-order 
derivatives to contain more information than the first-order , the gradient algorithm also 
seems to be more robust. The facts that the gradient algorithm consumes less computer 
memory and its execution is faster allow us to solve larger instances than using the po­
tential reduction algorithm. This, combined with its excellent performance on the smaller 
problems, justifies us to restrict ourselves to using the gradient descent algorithm to solve 
the larger problems; the reader is referred to [135, 138] for results on the larger problems 
using the potential reduction algorithm. In these papers further preprocessing methods 
are discussed, from which the potential reduction algorithm greatly benefits. Using the 
gradient algorithm, we succeeded in solving all the instances; the results are reported in 



6.6 Concluding remarks 135 

solved mm mean max 

name pr grad. pr grad. pr grad. pr grad. 

Gl6.6 95% 95% 1.3 0.4 43.5 2.7 236.0 6.0 

G20.10 90% 85% 3.0 0.8 6.6 9.3 13.6 32.2 

G26.8 60% 85% 6.6 0.8 109.6 7.3 714 .3 21.7 

G20.6 100% 90% 4.0 0.7 42.1 5. 1 128.0 14.3 

G24.6 100% 100% 6.5 0.8 14.6 1.8 37.0 4.2 

G36.12 85% 80% 70.6 1.1 96.3 10.6 153.7 41.2 

G30.8 65% 70% 6.4 4.0 21.5 12.4 62.3 29.4 

G40.8 90% 100% 48.0 1.6 151.5 7.1 910.2 36.6 

G50.12 10% 35% 325.2 1.4 769.9 13.0 1214.6 21.9 

Gl00.12. 15% 55% 73.6 13.6 251.1 59.0 535.8 201.1 

Table 6.2: 'Success-percentage', and minimal, average and maximal solution times for the 
potential reduction algorithm (pr) and the gradient descent algorithm (grad.). 

Table 6.3. In a small number of cases we improved on the best known solutions reported 
in [125], which were at the t ime the best known solutions. These are indicated with an •. 

6.6 Concluding remarks 

As the computational results reported in the previous section indicate, the gradient de­
scent algorithm is capable of solving large frequency assignment problems (containing 
over 18000 variables) within the hour on a HP9000/720 work station . These results 
are obtained using an experimental MATLAB™ implementation. Recently, an efficient 
implementation became available (Pasechnik [106]) . Computation times using this im­
plementation are 10-200 shorter; see Table 6.4. Comparing the resul ts to those in the 
overview paper by Tiourine et al. [125] it appears that the gradient descent algorithm 
outperforms the fastest methods mentioned there, which are taboo search and simulated 
an nealing. More importantly, these methods do not always find optimal solutions, while 
the gradient method does. In the same paper some comments on the effectiveness of the 
various approaches are made. Although comparison is hard since different hardware and 
different programming languages are used, some tentative conclusions are drawn. These 
rank the potential reduction method along with well known approximation algorithms 
such as simulated annealing, local search and genetic algorithms. Hence we conclude 
that the gradient descent algorithm introduced here is a valuable tool for solving hard 
combinatorial optimization problems as well. 
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II name I solved II min I mean I max II 
TUD200.3 (18) 85% 37 150 312 

TUD200.3 (16*) 60% 65 182 363 

TUD200.3 (14*) 25% 84 233 418 

GRAPH0l 100% 10 67 287 

TUD200.l 85% 30 273 591 

CELAR02 100% 15 48 115 

GRAPH02 95% 26 168 769 

CELAR03 15% 465 891 1304 

GRAPH08 (20) 100% 266 863 1647 

GRAPH08 (18*) 100% 361 481 716 

GRAPH09 70% 606 1503 2551 

CELAR0l 20% 1733 2468 3203 

GRAPH14 100% 93 753 1920 

Table 6.3: 'Success-percentage', and minimal, average and maximal solution times for the 
gradient method on the larger test instances. 

II name time II 
GRAPH0l 0.60 

CELAR02 2.25 

GRAPH02 4.82 

CELAR03 4.37 

GRAPH08 7.29 

GRAPH09 5.55 

CELAR0l 16.98 

GRAPH14 3.13 

Table 6.4: Solution times using Pasechnik's implementation of the gradient method. Table 
taken from [106]. 



Appendix A 

Representing linear inequalities by 
CNF formulas 

We consider the construction of a propositional formula whose satisfying solutions corre­
spond to feasible solutions of the inequality 

m 

arx = Laixi::; a0 , 

i=l 

where without loss of generality we assume that a 2: 0. Let us first give a brief outline 
of the idea of the transformation, which is essentially quite simple. On the lowest level , 
propositions and clauses are added to represent the single terms aixi, using the binary 
representations of the a;. The required logical expressions are derived from binary mul­
tiplication, and their CNF translations are added to the set of clauses. Then, on the 
next level , propositions are added to represent the sum (in binary notation) of disjoint 
pairs of terms, and logical expressions derived from binary addition are added to the set 
of clauses. On the subsequent level sums of, again disjoint , pairs of pairs of terms are 
represented in a similar way. This process is repeated until the top level is reached where 
a set of propositions is added that represents the sum, in binary notation, over all the 
terms of the inequality under consideration. During the process the logical expressions 
on a certain level operate exclusively on the propositions introduced on that level and 
those introduced one level lower. Finally, logical expressions that operate on the top level 
propositions are derived to ensure that the right hand side a0 of the inequality is not ex­
ceeded. To this end the binary representation of a0 is used . For example, let a0 = 26 and 
denote the top level proposition corresponding to bit i + 1 (i.e. the bit that contributes 
2i to the sum) by Pi· We define B(a0 ) to be the set containing all powers of two that 
contribute to the binary representation of a0 . Hence B(26) = {1 , 3, 4} and it follows that 
•Pi for i 2: 5, P2 ---+ ,(p3 I\ p4) and Po ---+ ·(P1 /\ p3 /\ p4). 

The resulting formula is satisfiable if and only if the original inequality allows a feasible 
binary solution. A satisfiable assignment restricted to the propositions associated with 
the original xi variables yields a feasible binary solution of the inequality. 

Below a formal recursive definition of the construction is given. Subsequently, we discuss 
it in more detail and show that its complexity is linear. Let us introduce some notation. 
By amax we denote the maximum entry of the vector a. Furthermore, we let M be such 
that 2M-l ::; amax < M or equivalently, M ::; 1 +2 log(amax)- We associate propositions 
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Px, with the (binary) variables x;, i = 1, ... , m, and introduce propositions P)i) for all 
j = 1, ... , M, i = 1, ... , m. In the following I is a set of indices. We use the sets lIJ ~ I 
and f Il c / for which the following holds: 

lIJ u fil = I; lIJ n fil = 0; llIJI 2: If Ill ; llIJI - If Ill :S 1. 

The sets lIJ and r Il are a partition of/. The propositions representing the sum I:iEI a;Xi, 

are denoted by {P)l)} where j = 0, 1, ... , M1 , with M1 = M + log(IIl)-

The transform of a linear inequality aT x '.S a0 is given by 

trans(aT x '.S a0 ) = trans(aT x) /\ trans(::; a0 ). 

The transformation of the sum of a;x; over the index set I -1- 0 is recursively defined as 

trans( L aix;) /\ trans( L a;x;) /\ T +( {P)I)}, {pf Jl }, {pf1l} ), 

trans(L a;x;) = 
iEI 

iEllJ iEr11 

if III> 1; 

Here the operator 7 + ( {pfl}, {pt)}, {pt)}) performs the addition of two numbers in 

binary notation pt) and pt), yielding the sum pfl. The operator T* ( {p)i)}, {p)i)}, PxJ 

performs the multiplication of a number in binary notation PY) with a binary number Px,. 
Later on we give explicit expressions for these operators. Furthermore, we have that 

trans(ai) = I\ PY)/\ I\ ,p;') (A.l) 
jEB(a;) jf£B(a;) 

Finally, let us define M = { 1, ... , m}. To process the right hand side a0 , we define 

trans(::; ao) = A (PJM ) ➔ -, A prr)) . 
jr/cB(ao) kEB(ao):k>j 

We have the following theorem. 

Theorem A.1 Assuming that amax is a priori bounded, the complexity of the transfor­
mation introduced above is linear in the length of the inequality. 

To prove the theorem, let us take a closer look at the number of additional variables and 
clauses we need to introduce to perform the transformation. To this end, we first specify 
the number of additional variables and clauses the binary multiplication and addition 
require. The following figure explains how to obtain the transformation operator T +(-). 
Let U =VU W. 

(V) 
PMu-1 

(V) 
PMu-2 

(V) 
P2 

(V) 
Pi 

(V) 
Po 

(W) 
PMu-1 

(W) 
PMu-2 

(W) 
P2 

(W) 
P1 

(W) 
Po + (A.2) 

(u) 
PMu 

(U) 
PMu-1 

(U) 
PMu-2 

(U) 
P2 

(u) 
P1 

(V) 
Po 
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For example, we have that pfl is true if and only if exactly one of the propositions 
p~v) and p~w) is true. This is expressed by (A.3). Thus the transformation operator 
T +( {pfl} , {ptl}, {prl}) with U = VU W , V and W nonempty, can be expressed as 
( using carry propositions qi,j+i) 

(pfl H(pt) H ·P~W))) I\ (A.3) 

( qafl H(pt) I\ P~W))) I\ (A.4) 

I\ MU) H(pt) H pr) H q;~l)) I\ (A.5) 
j=l, ... ,Mu 

I\ ( q;~L H ( (pt) I\ pr)) v (pt) I\ q;~l) v (pr) I\ q;~l))) I\ (A.6) 
j = l , ... ,Mu - 1 

(A.7) 

The logical expressions (A.3-A.7) can be readily rewritten to CNF formulas using De 
Morgan's laws. Then, taking N = max{IVI , !WI}, 2N new variables and at most 14N - 7 
clauses are introduced. 

The transformation operator T*(·) is obtained in a similar way, yielding 

(A.8) 

Note that, using unit resolution, this expression in conjunction with (A.I) reduces to 

I\ Mi) H Px,) I\ I\ •PY)· 
jEB(ai) iiB(a,) 

From this we see that the propositions py), j E B(a;) , can be eliminated by substituting 
them by Px, . Thus in the computations below these are not counted. Now let us denote by 
var m and elm the numbers of additional variables and clauses to transform an inequality of 
length m. The following lemma bounds these numbers. Observe that the lemma implies 
Theorem A.I. 

Lemma A.2 We have the following upper bounds on varm and elm­

varm < 2m(l + log(amax)) ; 

elm < 8m(l + 2 log(amax)) . 

Proof: If m = 2' for some natural number r the required number of variables and clauses 
can easily be computed: 

T 

L 2r-i(2(M + i - 1)) = 2(2'(M + 1) - (M + r + l)); (A.9) 
i=l 

T 

el2, = L 2'-i(14(M + i - 1) - 7) = 7(2'(2M + 1) - 2(M + r) - 1). (A.10) 
i=l 

To compute var m for arbitrary m, we use the following recursive formula: 

(A.11) 
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where k = max (B(m)) and e(var2.) denotes the length of the binary representation of 
var 2 •. By construction, we have that e( var 2.) = M + k. Substituting this and (A.9) in 
(A.11) we obtain 

varm = 2k+2 + 2k+1(M - 1) - 2 + varm- 2• • 

Using that B(m - 2k) = B(m)\{k} , we derive the following upper bound on varm: 

varm :::; 2[m(M + 1) - (M + IB(m)I + min(B(m))]. 

In a similar manner an upper bound on the number of clauses can be derived: 

elm :::; 7[m(2M + 1) - 2(M + /B(m)/ + min(B(m))) + l] + MM - /B(ao)/ , 

where the term MM - /B(a0 )/ is the number of clauses required to process the right hand 
side. The bounds stated in the lemma follow easily. D 

Using specific problem- dependent structures, a number of redundant additional variables 
and clauses can usually be directly eliminated; we refer to [136]. 

Binary linear programs with constant objective function can be transformed to CNF by 
applying the procedure described above to each of the inequalities separately. Note that 
it is important to keep track of negative coefficients: if a variable x; has a negative co­
efficient, then its associated proposition Px, must be negated in (A.8). Binary LPs with 
non-constant objective function can be transformed to CNF by adding a bound on the 
objective function and treating it as a linear inequality. Performing a binary search on 
this bound and repeatedly solving the corresponding satisfiability problems an optimal 
solution can be obtained. Since only the subset of clauses corresponding to the artificial 
bound on the objective function changes, the CNF formulas involved differ very little . 

We conclude this appendix by mentioning a modification of the transformation that re­
stricts the number of additional clauses. Consider again Figure (A.2). For example, we 
need for p~U) to be true, that either p~V) or p~W ) is true, which is expressed by (A.3) , 
i.e. we require equivalence. However , this may be relaxed to pf)+--(p~V) +-+ ,p~W)), as 
implication suffices. Similarly, we can replace the first equivalences by implications in ex­
pressions (A.4-A.7). Thus the number of additional clauses is , roughly speaking, halved 
[136]. Observe that the idea that is used here is similar to Wilson 's modification [139] of 
the Tseitin construction to construct CNF equivalents of logical formulas. 
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Taylor approximations and elliptic 
approximations 

In this appendix we explain the relation between the elliptic approximations introduced 
in Section 2.4 and the nonlinear models such as discussed in Section 2.3. Rather than 
making direct use of the linear inequalities associated with the clauses, the elliptic ap­
proximation is derived as a second-order approximation of an exact nonlinear model of 
satisfiability problems. For all notation, see the above mentioned sections. 

Let us consider the second order Taylor approximation of the function T(x). By straight­
forward calculus, we find the following expression of the first order partial derivative of 
T(x). 

~T(x) = t oG oFk. 
axj k=l aFk axj 

The gradient of T(x) in xis denoted by 'vT(x) . We have the following expression for the 
second order partial derivative: 

The Hessian of T(x) in xis denoted by f::..T(x). The second-order Taylor approximation 
of T(x) in xis given by 

T(x ) ~ T(x) + ('vT(x)f(x - x) + ½(x - xf(t::..T(x))(x - x). 

If T(x) is convex (concave) , its approximation is convex (concave) as well. If it is not 
convex, its approximation can be made convex using a property of { -1, 1} vectors. This 
is explained later on. 

To get some insight in the structure of the Taylor approximation we observe the following. 
In general , the partial derivative 

aFk 

OX; 

will be nonzero only if the associated proposition Pi occurs in the associated clause Ck. 
Similarly, the partial derivative 
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will be nonzero only if the associated propositional variables p; and Pi occur simultane­
ously in clause Ck . Thus, the gradient and Hessian are directly related (not unexpectedly) 
to occurrences and joint occurrences of variables in clauses. 

As an example we consider the second-order Taylor approximation of the weighted poly­
nomial representation (WPR) of the example in Section 2.3; see also Section 4.4.2. It 
holds that ( cf. ( 2 .4)) 

and, for j =I= l, 

Computing the partial derivatives in the center x = 0 of the { -1, 1} hyper cube, we 
obtain 

n 

('7P); = L Wkaki = (AT w); , 
k=l 

where w = [w1 , ... , wnl, and 

n 

(!:::.P);i = - L wkakiakj = -(ATW A);j, 
k=l 

where i =I= j and W = diag(w) . For i = j , (!:::.P);; = 0, due to the multilinearity of 
Pk(x) . This implies that f:::.P is indefinite. However, consider the second-order Taylor 
approximation around the center of the { -1, 1} hyper cube: 

By ATW A - diag(ATW A) we denote the matrix ATW A with all its diagonal entries 
set to zero (note the similarity with equation (6.1)). Multiplying p (2l(x; w) by -2 and 
expanding it, using that (by assumption) eTW e = eT w = 1, we obtain 

-2wT Ax+ xT ATW Ax - xT diag(ATW A)x 

(Ax - efW(Ax - e) - 1 - xT diag(ATW A)x. 

Let us now consider the last term; it is constant for any { -1, 1} vector x, since ( using 
Lemma 2.4.5) 

m n n m n 

xT diag(ATW A)x = LL wka%;x; = L wk La%; = L wkt'(Ck)-
i=l k=l k=l i = l k=l 

This property is in fact exactly the one mentioned in Section 2.4.4; there we observe that 
it can be utilized to obtain various equivalent models for binary quadratic optimization. 
In this case we use it to rewrite p (2l(x; w) as a 'nice' convex quadratic function. Now it 
is our aim to find a value for thi,ue, such that it holds that 

(Ax - efW(Ax - e) '.S thi,ue 
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for any satisfying assignment x E { -1, l}m. Analogous to the derivation in Section 2.4, 
such a thtrue can be found by using the integer linear programming formulation (IP s AT). 
For any satisfying assignment x, it holds that Ax 2'. b, while on the other hand it is easy 
to see that a[ x ::; €(Ck) , hence Ax ::; 2e - b. Combining and subtracting e we find that 

b - e ::; Ax - e ::; - ( b - e), 

from which it follows that ( using that w 2'. 0) 

(Ax - efW(Ax - e)::; (b - efW(b - e). 

Rewriting this expression, we find that for any satisfying assignment x 

Recalling the definition of the quadratic function Q(x; w) (see equation (2. 7)) and observ­
ing that the right hand side is equivalent to rTw (since bk= 2 - €(Ck)), we have again 
derived the weighted elliptic approximation that is first specified in Theorem 2.4.1. 

It may be noted that other nonlinear SAT representations such as mentioned in the ex­
amples in Section 2.3, give rise to similar elliptic approximations [96, 97]. 



144 Taylor approximations and elliptic approximations 



Bibliography 

[l] F. Alizadeh. Combinatorial optimization with interior point methods and semi­
definite matrices. PhD thesis, University of Minnesota, Minneapolis, USA, 1991. 

[2] N. Alon and J.H. Spencer. The probabilistic method. John Wiley and Sons, New 
York, 1992. 

[3] K.M. Anstreicher and M. Fampa. A long- step path following algorithm for semidefi­
nite programming problems. Technical report, Working paper, Department of Man­
agement Sciences, University of Iowa, Iowa City, USA, 1996. 

[4] Y. Asahiro, K. Iwama, and E. Miyano. Random generation of test instances with 
controlled attributes. In Johnson and Trick [79], pages 377- 393. 

[5] T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans­
Williamson. In Proceedings of the 3rd Israel Symposium on Theory and Computing 
Systems, pages 24- 37, 1997. 

[6] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear- time algorithm for testing 
the truth of certain quantified boolean formulas. Information Processing Letters, 
8(3) :121- 123, 1979. 

[7] M.S . Bazaraa, H.D. Sherali , and C.M. Shetty. Nonlinear programming: Theory and 
algorithms. John Wiley and Sons, New York, 1993. 

[8] B. Benhamou and L. Sai:s. Theoretical study of symmetries in propositional calculus 
and applications. In Proc. of the 11th Conference on Automated Deduction, pages 
281- 294, 1992. 

[9] S.J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs 
for combinatorial optimization. Technical report, Computational Optimization Lab, 
Department of Management Science, University of Iowa, Iowa City, USA, 1997. 

[10] H.P. van Benthem. GRAPH: Generating Radio link frequency Assignment Prob­
lems Heuristically. Master's thesis, Faculty of Technical Mathematics and Informa­
tics , Delft University of Technology, Delft , The Netherlands, 1995. 

145 



146 Bibliography 

[11] C.E. Blair, R.G. Jeroslow, and J .K. Lowe. Some results and experiments in pro­
gramming techniques for propositional logic. Computers and Operations Research, 
13(5):633- 645, 1986. 

[12] M. Bohm and E. Speckenmeyer. A fast parallel SAT-solver - efficient workload 
balancing. Annals of Mathematics and Artificial Intelligence, 17:381- 400, 1996. 

[13] B. Borchers and J. Furman. A two- phase exact algorithm for MAX- SAT and 
weighted MAX- SAT problems. Journal of Combinatorial Optimization, pages 299-
306, 1999. 

[14] E. Boros. Maximum renamable Horn sub- CNFs. Technical Report 5- 97, RUTCOR 
Research Report, Rutgers University, 1997. 

[15] E. Boros, Y. Crama, P.L. Hammer, and M. Saks. A complexity index for satisfiability 
problems. SIAM Journal on Computing, 23:45- 49, 1992. 

[16] E. Boros and A. Prekopa. Probabilistic bounds and algorithms for the maximum 
satisfiability problem. Annals of Operations Research, 21:109- 126, 1989. 

[17] R. Brayton, G. Hachtel , C. McMullen, and A. Sangiovanni-Vincentelli. Logic mini­
mization algorithms for VLSI minimization. Kluwer Academic Publishers, 1985. 

[18] R.E. Bryant. Graph- based algorithms for boolean function manipulation. IEEE 
Transactions on Computers, C- 35(8) , 1986. 

[19] M. Buro and H. Kleine Biihning. Report on a SAT competition. EATCS Bulletin, 
49:143- 151, 1993. 

[20] S.R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The 
Journal of Symbolic Logic, 52(4):916- 927, 1987. 

[21] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio Frequency 
Assignment Benchmarks. Constraints, 4(1) :79- 89, 1999. 

[22] V. Chandru, C.R. Coullard, P.L. Hammer, M. Montanez, and X. Sun. On renam­
able Horn and generalized Horn functions. Annals of Mathematics and Artificial 
Intelligence, 1:33- 47, 1990. 

[23] V. Chandru and J .N. Hooker. Extended Horn sets in propositional logic. Journal 
of the Association for Computing Machinery, 38:205- 221, 1991. 

[24] V. Chvatal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete 
Mathematics, 4:305- 337, 1973. 

[25] M. Conforti and G. Cornuejols. A class of logic problems solvable by linear pro­
gramming. Journal of the ACM, 42(5):1107- 1113, 1995. 

[26] S.A. Cook. The complexity of theorem proving procedures. In Proceedings of the 
3rd annual ACM symposium on the Theory of Computing, pages 151- 158, 1971. 

[27] S.A. Cook. A short proof of the pigeon hole principle using extended resolution. 
SIGACT News, pages 28- 32, Oct.- Dec. 1976. 



Bibliography 147 

[28] S.A. Cook and R.A. Reckhow. The relative efficiency of propositional proof systems. 
The Journal of Symbolic Logic, 44:36- 50, 1979. 

[29] W. Cook, C.R. Coullard, and G. Toran. On the complexity of cutting plane proofs. 
Discrete Applied Mathematics, 18:25- 38, 1987. 

[30] J.M. Crawford. Solving satisfiability problems using a combination of systematic and 
local search. Extended abstract, presented at Second DIMACS Challenge, Rutgers 
University, NJ , 1993. 

[31] J.M Crawford and L.D. Auton. Experimental results on the crossover point in 
random 3SAT. Artificial Intelligence, 81, 1996. 

[32] J.M. Crawford, M.J. Kearns , and R.E. Schapire. The minimal disagreement parity 
problem as a hard satisfiability problem. Manuscript, 1995. 

[33] N. Creignou. Complexity versus stability for classes of propositional formulas. In­
formation Processing Letters, 68:161- 165, 1998. 

[34] M. D'Agostino and M. Mondadori. The taming of the cut. Classical refutations 
with analytic cut . Journal of Logic and Computation, 4(3):285- 319, 1994. 

[35] D. van Dalen. Logic and structure. Springer- Verlag, Berlin, 3rd edition, 1994. 

[36] M. Davis, M. Logemann, and D. Loveland. A machine program for theorem proving. 
Communications of the ACM, 5:394- 397, 1962. 

[37] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal 
of the ACM, 7:210- 215, 1960. 

[38] E. de Klerk. Interior point methods for semidefinite programming. PhD thesis, Delft 
University of Technology, Delft , The Netherlands , 1997. 

[39] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. 
Mathematical Programming, 62:557- 574, 1993. 

[40] I.I. Dikin. Iterative solution of problems of linear and quadratic programming. 
Doklady Akademiia Nauk SSSR, 174:747- 748, 1967. Translated into English in 
Soviet Mathematics Doklady 8, 674- 675 . 

[41] W.F. Dowling and J.H. Gallier. Linear- time algorithms for testing the satisfiability 
of propositional Horn formulae. Journal of Logic Programming, 1(3):267- 284, 1984. 

[42] D. Du, J. Gu, and P.M. Pardalos , editors. Satisfiability problem: Theory and ap­
plications, volume 35 of DIMACS series in Discrete Mathematics and Computer 
Science. American Mathematical Society, 1997. 

[43] 0. Dubois. Lecture held at DIMACS conference, Rutgers University, New 
Brunswick, NJ , March 1996. 

[44] 0. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In Johnson 
and Trick [79] , pages 415- 436. 



148 Bibliography 

[45] L. Faybusovich. Semi- definite programming: a path- following algorithm for a 
linear- quadratic functional. SIAM Journal on Optimization, 6(4):1007- 1024, 1996. 

[46] U. Feige and M. Goemans. Approximating the value of two prover proof systems 
with applications to MAX 2SAT and MAX DICUT. In Proc. Third Israel Sympo­
sium on Theory of Computing and Systems, pages 182- 189, 1995. 

[47] J. Franco and M. Paull. Probabilistic analysis of the Davis- Putnam procedure for 
solving satisfiability. Discrete Applied Mathematics, 5:77- 87, 1983. 

[48] J. Franco and R. Swaminathan. Toward a good algorithm for determining unsatisfi­
ability of propositional formulas. Technical report , Computer Science Department, 
University of Cincinnati , Cincinnati, Ohio, USA, 1995. To appear in Journal of 
Global Optimization. 

[49] J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD 
thesis, Department of Computer Science, University of Pennsylvania, USA, 1995. 

[50] G. Gallo and M.G. Scutella. Polynomially solvable satisfiability problems. Infor­
mation Processing Letters, 29:221- 227, 1988. 

[51] M.R. Garey and D.S . Johnson. Computers and intractability: A guide to the theory 
of NP-completeness. W.H. Freeman and company, San Francisco, 1979. 

[52] M.R. Garey, D.S. Johnson , and L. Stockmeyer. Some simplified NP- complete graph 
problems. Theoretical Computer Science, 1:237- 267, 1976. 

[53] A. Van Gelder and Y.K. Tsuji. Satisfiability testing with more reasoning and less 
guessing. In Johnson and Trick [79], pages 559- 586. 

[54] P. Goel. An implicit enumeration algorithm to generate test sets for combinatorial 
logic circuits. IEEE Transactions on Computers, C- 30(3):215- 222, 1981. 

[55] M.X. Goemans and D.P. Williamson. 1ew ¾-approximation algorithms for the 
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7(4):656-
666, 1994. 

[56] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max­
imum cut and satisfiability problems using semidefinite programming. Journal of 
the ACM, 42(6):1115- 1145, 1995. 

[57] F . Granot and P.L. Hammer. On the use of boolean functions in 0-1 programming. 
Methods of Operations Research, 12:154- 184, 1971. 

[58] J.F. Groote and H. van Maaren. Equivalence of the concave optimisation method 
and d 'Agostino tableaux for propositional logic. In Proceedings of the 11th interna­
tional symposium on computer and information sciences (ISCIS- XI), pages 41- 51 , 
1996. 

[59] J.F. Groote and J.P. Warners. The propositional formula checker HeerHugo. Tech­
nical Report SEN-R9905, Centre for Mathematics and Computer Science (CWI) , 
Amsterdam, The Netherlands, 1999. Accepted for publication in the SAT2000 issue 
of the Journal of Automated Reasoning. 



Bibliography 149 

[60] J. Gu. Local search for the satisfiability (SAT) problem. IEEE Transactions on 
Systems, Man and Cybernetics, 23(4):1108- 1129, 1993. 

[61] J. Gu. Global optimization for satisfiability (SAT) problem. IEEE Transactions on 
Knowledge and Data Engineering, 6(3):361- 381, 1994. 

[62] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the satisfiability 
(SAT) problem: a survey. In Du et al. [42], pages 9-151. 

[63] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297-
308, 1985. 

[64] E. Halperin and U. Zwick. Approximation algorithms for MAX 4- SAT and rounding 
procedures for semidefinite programs. Technical report, Department of Computer 
Science, Tel-Aviv University, Tel-Aviv, Israel , 1998. 

[65] P.L. Hammer. Boolean elements in combinatorial optimization. Annals of Discrete 
Mathematics, 4:51- 71, 1979. 

[66] P.L. Hammer and S. Rudeanu . Boolean Methods in Operations Research and Related 
Areas. Springer-Verlag, 1968. 

[67] J. Harrison. Stallmarck's algorithm as a HOL derived rule. In J. von Wright, 
J . Grundy, and J. Harrison, editors, Proceedings of TPHOLs'96, volume 1125 of 
LNCS, pages 221- 234, 1996. 

[68] J. Hastad . Some optimal in- approximability results. In Proceedings of the 28th 
annual ACM Symposium on the Theory of Computing, pages 1- 10, 1997. 

[69] B. He, E. de Klerk, C. Roos, and T . Terlaky. Method of approximate centers for 
semi- definite programming. Optimization Methods and Software, 7:291- 309, 1997. 

[70] C. Helmberg and F. Rend!. A spectral bundle method for SDP. Technical Report 
ZIB Preprint SC- 97- 37, Konrad- Zuse- Zentrum, Berlin, 1997. 

[71] J.N. Hooker. Generalized resolution and cutting planes. Annals of Operations 
Research, 12:217- 239, 1988. 

[72] J.N. Hooker. Resolution vs. cutting plane solution of inference problems: some 
computational experience. Operations Research Letters, 7(1):1- 7, 1988. 

[73] J.N. Hooker and C. Fedjki. Branch- and- cut solution of inference problems in propo­
sitional logic. Annals of Mathematics and Artificial Intelligence, 1:123- 139, 1990. 

[74] J .N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated 
Reasoning, 15(3) :359- 383, 1995. 

[75] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press , 1985. 

[76] R. Impagliazzo, T. Pitassi , and A. Urquhart. Upper and lower bounds for tree- like 
cutting plane proofs. In Proceedings of the 9th Annual IEEE Symposium on Logic 
in Computer Science, pages 220- 228, 1994. 



150 Bibliography 

[77] R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals 
of Mathematics and Artificial Intelligence, 1:167- 187, 1990. 

[78] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of 
Computer and System Sciences, 9:256- 278, 1974. 

[79] D.S . Johnson and M.A. Trick, editors. Cliques, Coloring and Satisfiability: Sec­
ond DIMACS implementation challenge, volume 26 of DIMACS series in Discrete 
Mathematics and Computer Science. American Mathematical Society, 1996. 

[80] S. Joy, J. Mitchell , and B. Borchers. A branch and cut algorithm for MAX- SAT 
and weighted MAX- SAT. In Du et al. [42] . 

[81] S. Joy, J. Mitchell , and B. Borchers. Solving MAX- SAT and weighted MAX- SAT 
using branch-and-cut. Technical report , Rensselaer Polytechnic Institute, 1998. 
Submitted. 

[82] A.P. Karnath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. Com­
putational experience with an interior point algorithm on the satisfiability problem. 
Annals of Operations Research, 25:43- 58, 1990. 

[83] A.P. Karnath , N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A con­
tinuous approach to inductive inference. Mathematical Programming, 57:215- 238, 
1992. 

[84] A.P. Karnath , N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. An 
interior point approach to Boolean vector function synthesis. In Proceedings of the 
36th MSCAS, pages 185- 189, 1993. 

[85] S. Karisch . CUTSDP - A toolbox for a cutting- plane approach based on semidefi­
nite programming. User's guide/version 1.0. Technical Report IMM- REP- 1998- 10, 
Department of Mathematical Modelling, Technical University of Denmark, 1998. 

[86] H. Karloff and U. Zwick. A 7 /8- approximation algorithm for MAX3SAT? In Pro­
ceedings of the 38th Symposium on the Foundations of Computer Science, pages 
406-415, 1997. 

[87] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi­
natorica, 4:373- 395, 1984. 

[88] N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior point al­
gorithm to solve computationally difficult set covering problems. Mathematical 
Programming, 52:597- 618, 1991. 

[89] 0. Kullmann. A systematical approach to 3-SAT-decision, yielding 3-SAT-decision 
in less than 1.5045n steps. Technical report, Johann Wolfgang Goethe- Universitiit, 
Fachbereich Mathematik, 60054 Frankfurt , Germany, 1995. 

[90] 0. Kullmann. Investigations on autark assignments. Technical report , Johann 
Wolfgang Goethe- Universitiit, Fachbereich Mathematik, 60054 Frankfurt, Germany, 
1998. Submitted. 



Bibliography 151 

[91] T. Larrabee. Efficient generation of test patterns using Boolean satisfiability. IEEE 
Transactions on Computer-Aided Design, 11(1):4- 15, 1992. 

[92] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability 
problems. Technical report, LaRIA, Universite de Picardie Julves Verne, Amiens, 
France, 1999. 

[93] Greentech Computing Limited. GT6 algorithm solves the extended DIMACS 32-bit 
parity problem. Note available from http://www.research.att.com/ -kautz/ chal­
lenge/, 1998. 

[94] L. Lovasz. On the Shannon capacity of a graph. IEEE Transactions on Information 
Theory, 25:1- 7, 1979. 

[95] L. Lovasz and A. Schrijver. Cones of matrices and set- functions and 0- 1 optimiza­
tion. SIAM Journal on Optimization, 1(2):166- 190, 1991. 

[96] H. van Maaren . Elliptic approximations of propositional formulae. Technical Report 
96- 65, Faculty of Technical Mathematics and Informatics, Delft University of Tech­
nology, Delft, The Netherlands, 1996. To appear in Discrete Applied Mathematics. 

[97] H. van Maaren. On the use of second order derivatives for the satisfiability problem. 
In Du et al. [42], pages 677- 687. 

[98] H. van Maaren, J.F. Groote, and M. Rozema. Verification of propositional formulae 
by means of convex and concave transforms. Technical Report 95- 74, Faculty of 
Technical Mathematics and Informatics, Delft University of Technology, Delft, The 
Netherlands, 1995. 

[99] H. van Maaren and J.P. Warners. Bounds and fast approximation algorithms for 
binary quadratic optimization problems with application to MAX 2SAT and MAX 
CUT. Technical Report 97- 35, Delft University of Technology, The Netherlands, 
1997. 

[100] B. Mazure, L. Sa"is, and E. Gregoire. Boosting complete techniques thanks to local 
serach methods. Annals of Mathematics and Artificial Intelligence, 22:319- 331, 
1998. 

[101] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT 
problems. In Proceedings of the 10th National Conference on Artificial Intelligence 
(AAAI-g2J, pages 459- 465 , San Jose, CA, 1992. 

[102] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete 
Applied Mathematics, 10:287- 295, 1985. 

[103] G.L. Nemhauser , M.W.P. Savelsbergh, and G.C. Sigismondi. MINTO, a mixed 
integer optimizer. Operations Research Letters, 15(1):47- 58, 1994. 

[104] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley­
Interscience, 1988. 



152 Bibliography 

[105] Yu. Nesterov and M.J. Todd. Self-scaled barriers and interior-point methods for 
convex programming. Mathematics of Operations Research, 22(1) :1-42, 1997. 

[106] D.V. Pasechnik. An interior point approximation algorithm for a class of com­
binatorial optimization problems: implementation and enhancements. Technical 
report, Department of Technical Mathematics and Informatics, Faculty of Informa­
tion Technology and Systems, Delft University of Technology, 1998. 

[107] R. Puri and J. Gu. A BDD SAT solver for satisfiability testing: An industrial case 
study. Annals of Mathematics and Artificial Intelligence, 17:315- 337, 1996. 

[108] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating 
packing integer programs. J. Comput. System. Sci., 37:130- 143, 1988. 

[109] M.G.C. Resende and T.A. Feo. A GRASP for Satisfiability. In Johnson and Trick 
[79], pages 499- 520. 

[110] J.A. Robinson. A machine- oriented logic based on the resolution principle. Journal 
of the ACM, 12:23-41, 1965. 

[111] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th 
Symposium on the Theory of Computing, pages 216- 226, 1978. 

[112] I. Schiermeyer. Pure literal look ahead: An O(l.497n) 3-satisfiability algorithm 
(extended abstract). In J. Franco, G. Gallo, H. Kleine Biining, E. Speckenmeyer, 
and C. Spera, editors, Workshop on the Satisfiability problem, Siena, University of 
Koln, 1996. 

[113] J.S. Schlipf, F.S. Annexstein, J.V. Franco, and R.P. Swaminathan. On finding 
solutions for extended Horn formulas. Information Processing Letters, 54:133- 137, 
1995. 

[114] M.H. Schulz, E. Trischler, and T.M. Sarfert. Socrates: A highly efficient automatic 
test pattern generation system. IEEE Transactions on Computer-Aided Design, 
7:126- 137, 1988. 

[115] B. Selman, H. Kautz , and B. Cohen. Local search strategies for satisfiability testing. 
In Johnson and Trick [79], pages 521- 532. 

[116] B. Selman, H. Kautz , and D. McAllester. Ten challenges in propositional reasoning 
and search. In Proceedings of the 15th International Joint Conference on Artificial 
Intelligence (IJCAI-97), Nagoya, Aichi, Japan, 1997. 

[117] B. Selman , H. Levesque, and D. Mitchell. A new method for solving hard sat­
isfiability problems. In Proceedings of the 10th National Conference on Artificial 
Intelligence ( AAAI-92), pages 440- 446, San Jose, CA, 1992. 

[118] Y. Shang and B.W. Wah. A discrete Lagrangian-based global-search method for 
solving satisfiability problems. Journal of Global Optimization, 10:1- 40, 1997. 



Bibliography 153 

[119] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous 
and convex hull representations for 0- 1 programming problems. SIAM Journal on 
Discrete Mathematics, 3(3):411- 430, 1990. 

[120] J.P. Marques Silva and K.A. Sakallah. GRASP: A new search algorithm for propo­
sitional satisfiability. Technical Report CSE-TR-292-96, Department of Electrical 
Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 
USA, 1996. 

[121] D.C. Sorensen. Newton's method with a model trust region modification. SIAM 
Journal on Numerical Analysis, 19:409- 426, 1982. 

[122] G. Stallmarck. A proof theoretic concept of tautological hardness. Incomplete 
manuscript, 1994. 

[123] G. Strang. Linear algebra and its applications. Harcourt Brace Jovanovich, third 
edition, 1988. 

[124] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym­
metric cones. Technical report , Communications Research Laboratory, McMaster 
University, Hamilton , Canada, 1998. 

[125] S. Tiourine, C. Hurkens, and J.K. Lenstra. An overview of algorithmic approaches 
to frequency assignment problems. Technical report, CALMA project, Department 
of Mathematics and Computer Science, Eindhoven University of Technology, Eind­
hoven , The Netherlands, 1995. 

[126] T. Trafalis , T. Terlaky, J.P. Warners, A.J. Quist , and C. Roos. Unsupervised neural 
network training via a potential reduction approach. Technical Report 96- 172, 
Faculty of Technical Mathematics and Informatics , Delft University of Technology, 
Delft , The Netherlands, 1996. 

[127] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation and 
linear programming. In Proceedings of the 37th Symposium on the Foundations of 
Computer Science, pages 617- 626, 1996. 

[128] M.A. Trick. Second DIMACS challenge test problems. In Johnson and Trick [79], 
pages 653- 657. 

[129] G.S. Tseitin . On the complexity of derivation in propositional calculus. Stud­
ies in Constructive Mathematics and Mathematical Logic, part 2:115- 125, 1968. 
Reprinted in J. Siekmann and G. Wrightson (editors), Automation of reasoning vol. 
2, Springer- Verlag Berlin, 1983. 

[130] T.E. Uribe and M.E. Stickel. Ordered binary decision diagrams and the Davis­
Putnam procedure. In Proc. of First Conference on Constraints in Computational 
Logic, volume 845 of LNCS, pages 34- 49, 1994. 

[131] A. Urquhart. Hard examples for resolution . Journal of the ACM, 34:209- 219, 1987. 

[132] A. Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic 
Logic, 1(4):425- 467, 1995. 



154 Bibliography 

[133] A. Urquhart. Open problem posed at SAT'98, May 10- 14, Paderborn, Germany. 
1998. 

[134] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38:49- 95 , 
1996. 

[135] J.P. Warners. A potential reduction approach to the Radio Link Frequency Assign­
ment Problem. Master's thesis, Faculty of Technical Mathematics and Informatics, 
Delft University of Technology, Delft, The Netherlands, 1995. 

[136] J.P. Warners. A linear- time transformation of linear inequalities into conjunctive 
normal form. Information Processing Letters, 68:63- 69, 1998. 

[137] J .P. Warners , T. Terlaky, C. Roos, and B. Jansen. Potential reduction algorithms 
for structured combinatorial optimization problems. Operations Research Letters, 
21:55- 64, 1997. 

[138] J.P. Warners, T . Terlaky, C. Roos , and B. Jansen. A potential reduction approach to 
the frequency assignment problem. Discrete Applied Mathematics, 78(1- 3) :251- 282, 
1997. 

[139] J .M. Wilson. Compact normal forms in propositional logic and integer programming 
formulations. Computers and Operations Research, 17(3):309- 314, 1990. 

[140] M. Yannakakis. On the approximation of maximum satisfiability. In Proceedings of 
the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1- 9, 1992. 

[141] H. Zhang. SATO: An efficient propositional solver. In W. McCune, editor, Auto­
mated Deduction - CADE-14 , LNAI 1249, pages 272- 275 . Springer, 1997. 

[142] Y. Zhang. Solving large- scale linear programs by interior point methods under the 
MATLAB environment. Technical Report TR96- 01 , Department of Mathematics 
and Statistics, University of Baltimore County, Baltimore, Maryland 21222- 5398, 
1996. 



Samenvatting 

Het satisfiability problem (SAT) ('vervullings probleem') uit de propositie logica ligt aan 
de basis van veel als moeilijk beschouwde problemen binnen verschillende vakgebieden, 
zoals kunstmatige intelligentie, informatica, elektrotechniek en besliskunde. Het probleem 
betreft de vraag of een logische formule waar gemaakt kan worden door het toeken­
nen van geschikte logische waarden aan de variabelen, of dat zij een tegenspraak bevat. 
Het SAT probleem is NP-compleet. Derhalve zijn in het algemeen geen (theoretisch) ef­
ficiente oplosmethodes beschikbaar; het wordt onwaarschijnlijk geacht dat zulke methodes 
bestaan. Wei bestaan er verschillende specifieke klasses van SAT die een efficient (poly­
nomiaal) algoritme toestaan. 

In de afgelopen jaren is de belangstelling voor SAT aanzienlijk toegenomen. Dit is het 
gevolg van een tweetal ontwikkelingen. Ten eerste hebben de hedendaagse computers 
een zodanige snelheid en geheugencapaciteit dat men tegenwoordig in staat is om met 
de klassieke algoritmes enorme problemen op te lossen; ten tweede zijn nieuwe effectieve 
oplosmethoden ontdekt. De klassieke algoritmes behoren doorgaans tot de complete me­
thodes. Deze zijn altijd in staat te beslissen of een formule we! of geen tegenspraak bevat. 
Vee! van de nieuwe algoritmes zijn incompleet. Dat wil zeggen dat ze niet in staat zijn om 
te herkennen dat een formule een tegenspraak bevat; als een formule echter vervulbaar is, 
blijken dergelijke methodes vaak veel effectiever dan de complete methodes. Als gevolg 
van al deze ontwikkelingen zijn specifieke SAT instanties vaak relatief eenvoudig oplosbaar; 
het zij met behulp van een van de beschikbare algoritmes danwel door ze te herkennen als 
behorende tot een klasse van theoretisch efficient oplosbare problemen. Derhalve, mede 
gegeven de expressieve kracht van de propositielogica, is het mogelijk om SAT coderingen 
van praktijkproblemen van aanzienlijke omvang op te lossen. 

Om het hoofd te bieden aan SAT problemen van immer toenemende omvang, wordt 
steeds onderzoek gedaan naar het verbeteren van oplosmethodes en implementaties. On­
gelukkigerwijs zijn er nog altijd problemen ( ook relatief kleine) die zeer moeilijk oplosbaar 
zijn. De algemene verwachting is dat om ook vooruitgang te boeken bij het oplossen van 
deze problemen, nieuwe technieken moeten worden ontwikkeld. Zulke technieken zullen, 
beter dan de huidige, in staat moeten zijn om bepaalde structuren te benutten danwel 
gebaseerd moeten zijn op nieuwe benaderingen . In dit proefschrift worden dergelijke 
(zowel complete als incomplete) technieken ontwikkeld, waarbij gebruik wordt gemaakt 
van methoden uit de logica, kunstmatige intelligentie en mathematische optimalisering. 

In de eerste twee hoofdstukken van dit proefschrift worden de benodigde noties en notaties 
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gei:ntroduceerd en wordt getracht de lezer een indruk te geven van de stand van zaken op 
het gebied van de SAT algoritmiek. Zodoende wordt een aantal interessante fenomenen 
gei"dentificeerd. Deze fungeren als leidraad voor het onderzoek beschreven in de hoofd­
stukken drie tot en met zes. Voorts wordt in hoofdstuk twee de elliptische approximatie 
afgeleid; deze is van eminent belang voor de ontwikkelde technieken. Door bepaalde eigen­
schappen van binaire variabelen te benutten, kunnen uit deze approximatie verschillende 
modellen worden afgeleid , elk met een eigen aard en daaruit voortvloeiende toepassingen. 
In elk van de hoofdstukken wordt een dergelijk specifiek model nader belicht en gebruikt 
in de ontwikkeling van nieuwe algoritmes. 

In hoofdstuk 3 wordt een van de meest gebruikte algoritmes onder de loep genomen: het 
DPLL-algoritme. In dit algoritme worden impliciet alle mogelijke oplossingen van een 
formule getest (in een zogenaamde zoekboom) om zo te ontdekken of een aan alle voor­
waarden voldoet. We trachten de effectiviteit van dit algoritme te verbeteren, door met 
behulp van elliptische approximaties de impliciete structuur van een formule te benutten. 
Inderdaad wordt op deze wijze de grootte van de zoekbomen gereduceerd. 

In hoofdstuk 4 gaan we een stap verder door, wederom gemotiveerd door elliptische 
approximaties, expliciet een specifieke structuur te zoeken in formules. Indien een for­
mule de gezochte structuur heeft, kan zij eenvoudig worden opgelost met een speciaal 
algoritme. Het blijkt dat formules met de bedoelde structuur juist moeilijk zijn voor de 
meer gebruikelijke algoritmes. In het algemeen kan de structuur herkend worden met 
behulp van een geschikt lineair optimaliseringsprobleem. Een bepaalde klasse van test­
problemen, die met de voorheen beschikbare technieken onopgelost was gebleven, blijkt 
tamelijk eenvoudig oplosbaar met behulp van de voorgestelde technieken. 

Ook in hoofdstuk 5 wordt gebruik gemaakt van technieken uit de mathematische opti­
malisering. Recentelijk is er een grote belangstelling voor het gebied van de semidefiniete 
programmering. Dit is een generalisatie van lineaire programmering. Het is gebleken 
dat semidefiniete programmerings formuleringen theoretisch vaak sterke eigenschappen 
hebben. Ook wanneer toegepast op SAT problemen is dit het geval. We voeren experi­
menten uit met het baanbrekende Goemans-Williamson approximatie algoritme om een 
indruk te krijgen van haar praktische toepasbaarheid om effectief SAT problemen exact op 
te lossen. Vervolgens formuleren we een optimaliseringsprobleem, gebaseerd op elliptische 
approximaties, waarmee bepaalde contradicties herkend kunnen worden. Met behulp van 
deze formulering kan een aantal probleem-klasses effici"ent worden opgelost. 

In hoofdstuk 6 tenslotte worden combinatorische optimaliseringsproblemen gemodelleerd 
als minimaliseringsproblemen van niet-convexe functies over de eenheidskubus. Elke 
oplossing van het originele combinatorische optimaliseringsprobleem is een minimum van 
de herformulering en vice versa. Daarnaast heeft de herformulering de eigenschap dat 
elke gebroken oplossing eenvoudig kan worden afgerond naar een geheeltallige oplossing 
die tenminste even goed is. Met behulp van effectieve minimaliseringstechnieken kunnen 
oplossingen worden gevonden welke goede of zelfs optimale oplossingen zijn van het 
originele probleem. Een en ander wordt ge"illustreerd middels het frequentie toewijzings 
probleem. 

Het proefschrift besluit met twee appendices en een lijst met referenties. 
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