23 research outputs found

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Design Approaches to Enhance Power Density in Power Converters for Traction Applications

    Get PDF
    This dissertation presents a design strategy to increase the power density for automotive Power Conversion Units (PCUs) consisting of DC-DC and DC-AC stages. The strategy significantly improves the volumetric power density, as evident by a proposed PCU constructed and tested having 55.6 kW/L, representing an 11.2 % improvement on the Department of Energy’s 2025 goal of 50 kW/L for the same power electronics architecture. The dissertation begins with a custom magnetic design procedure, based on optimization of a predetermined C-core geometrical relationship and custom Litz wire. It accounts for electrical and thermal tradeoffs to produce a magnetic structure to best accomplish volume and thermal constraints. This work is coupled with a control strategy for the DC-DC converter whereby a variable-frequency Discontinuous Conduction Mode (DCM) control is used to further reduce the required values of the passive components, to provide an increase in power density and a large improvement of low-power-level efficiency, experimentally demonstrated at full power through an 80 kW Interleaved Boost Converter. Integration of this enhanced DC-DC stage to the DC-AC stage requires a DC-Link capacitor, which hinders achieving power density targets. Increasing the switching frequency is an established method of reducing the size of passives. However, it is the RMS current sizing requirements that diminishes any gains achieved by raising the switching frequency. A synchronous carrier phase shift-based control algorithm, that aligns the output current of the boost stage with the input current of an inverter, is proposed to reduce the RMS current in the DC-Link capacitor by up to 25% and an average 20% smaller capacitor volume. Lastly, a new electrothermal platform based on paralleled discrete devices is presented for a 50 kW traction inverter. Embedded capacitors within the vacant volume of the hybrid material thermal management structure enables higher power density (155 kW/L) and significantly reduces cost

    Design Approaches to Enhance Power Density in Power Converters for Traction Applications

    Get PDF
    This dissertation presents a design strategy to increase the power density for automotive Power Conversion Units (PCUs) consisting of DC-DC and DC-AC stages. The strategy significantly improves the volumetric power density, as evident by a proposed PCU constructed and tested having 55.6 kW/L, representing an 11.2 % improvement on the Department of Energy’s 2025 goal of 50 kW/L for the same power electronics architecture. The dissertation begins with a custom magnetic design procedure, based on optimization of a predetermined C-core geometrical relationship and custom Litz wire. It accounts for electrical and thermal tradeoffs to produce a magnetic structure to best accomplish volume and thermal constraints. This work is coupled with a control strategy for the DC-DC converter whereby a variable-frequency Discontinuous Conduction Mode (DCM) control is used to further reduce the required values of the passive components, to provide an increase in power density and a large improvement of low-power-level efficiency, experimentally demonstrated at full power through an 80 kW Interleaved Boost Converter. Integration of this enhanced DC-DC stage to the DC-AC stage requires a DC-Link capacitor, which hinders achieving power density targets. Increasing the switching frequency is an established method of reducing the size of passives. However, it is the RMS current sizing requirements that diminishes any gains achieved by raising the switching frequency. A synchronous carrier phase shift-based control algorithm, that aligns the output current of the boost stage with the input current of an inverter, is proposed to reduce the RMS current in the DC-Link capacitor by up to 25% and an average 20% smaller capacitor volume. Lastly, a new electrothermal platform based on paralleled discrete devices is presented for a 50 kW traction inverter. Embedded capacitors within the vacant volume of the hybrid material thermal management structure enables higher power density (155 kW/L) and significantly reduces cost

    Pem fuel cell modeling and converters design for a 48 v dc power bus

    Get PDF
    Fuel cells (FC) are electrochemical devices that directly convert the chemical energy of a fuel into electricity. Power systems based on proton exchange membrane fuel cell (PEMFC) technology have been the object of increasing attention in recent years as they appear very promising in both stationary and mobile applications due to their high efficiency, low operating temperature allowing fast startup, high power density, solid electrolyte, long cell and stack life, low corrosion, excellent dynamic response with respect to the other FCs, and nonpolluting emissions to the environment if the hydrogen is obtained from renewable sources. The output-voltage characteristic in a PEMFC is limited by the mechanical devices which are used for regulating the air flow in its cathode, the hydrogen flow in its anode, its inner temperature, and the humidity of the air supplied to it. Usually, the FC time constants are dominated by the fuel delivery system, in particular by the slow dynamics of the compressor responsible for supplying the oxygen. As a consequence, a fast load transient demand could cause a high voltage drop in a short time known as oxygen starvation phenomenon that is harmful for the FC. Thus, FCs are considered as a slow dynamic response equipment with respect to the load transient requirements. Therefore, batteries, ultracapacitors or other auxiliary power sources are needed to support the operation of the FC in order to ensure a fast response to any load power transient. The resulting systems, known as FC hybrid systems, can limit the slope of the current or the power generated by the FC with the use of current-controlled dc-dc converters. In this way, the reactant gas starvation phenomena can be avoided and the system can operate with higher efficiency. The purpose of this thesis is the design of a DC-DC converter suitable to interconnect all the different elements in a PEMFC-hybrid 48-V DC bus. Since the converter could be placed between elements with very different voltage levels, a buck-boost structure has been selected. Especially to fulfill the low ripple requirements of the PEMFCs, but also those of the auxiliary storage elements and loads, our structure has inductors in series at both its input and its output. Magnetically coupling these inductors and adding a damping network to its intermediate capacitor we have designed an easily controllable converter with second-order-buck-like dominant dynamics. This new proposed topology has high efficiency and wide bandwidth acting either as a voltage or as a current regulator. The magnetic coupling allows to control with similar performances the input or the output inductor currents. This characteristic is very useful because the designed current-controlled converter is able to withstand shortcircuits at its output and, when connected to the FC, it facilitates to regulate the current extracted from the FC to avoid the oxygen starvation phenomenon. Testing in a safe way the converter connected to the FC required to build an FC simulator that was subsequently improved by developing an emulator that offered real-time processing and oxygen-starvation indication. To study the developed converters and emulators with different brands of PEMFCs it was necessary to reactivate long-time inactive Palcan FCs. Since the results provided by the manual reactivation procedure were unsatisfactory, an automatic reactivation system has been developed as a complementary study of the thesis.En esta tesis se avanzo en el diseño de un bus DC de 48 V que utiliza como elemento principal de generación de energía eléctrica una pila de combustible. Debido a que la dinámica de las pilas de combustible están limitadas por sus elementos mecánicos auxiliares de control una variación rápida de una carga conectada a ella puede ocasionar daños. Es por esto que es necesario utilizar elementos almacenadores de energía que puedan suministrar estas rápidas variaciones de carga y convertidores para que gestionen de una forma controlada la potencia del bus DC. Durante la realización de pruebas de los convertidores es de gran importancia utilizar emuladores o simuladores de pilas de combustibles, esto nos permite de una forma económica y segura realizar pruebas criticas antes de conectar los convertidores a la pila. Adicionalmente una nueva topologia de convertidor fue presentada y ésta gestionará la potencia en el bu

    Soft-switching current-fed power converters for low voltage high current applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore