8 research outputs found

    A two-step trigonometrically fitted semi-implicit hybrid method for solving special second order oscillatory differential equation

    Get PDF
    In this paper, we derived a semi-implicit hybrid method (SIHM) which is a two-step method to solve special second order ordinary differential equations (ODEs). The SIHM which is three-stage and fourth-order is then trigonometrically fitted and denoted by TF-SIHM3(4). The method is constructed using trigonometrically fitted properties instead of using phase-lag and amplification properties. Numerical integration show that TF-SIHM3(4) is more accurate in term of accuracy compared to the existing explicit and implicit methods of the same order

    Two point block multistep methods with trigonometric−fitting for solving oscillatory problems

    Get PDF
    In this paper, we present the absolute stability of the existing 2-point implicit block multistep step methods of step number k = 3 and k = 5 and solving special second order ordinary differential equations (ODEs). The methods are then trigonometrically fitted so that they are suitable for solving highly oscillatory problems arising from the special second order ODEs. Their explicit counterparts are also trigonometrically fitted so that in the implementation the methods can act as a predictor-corrector pairs. The numerical results based on the integration over a large interval are given to show the performance of the proposed methods. From the numerical results we can conclude that the new trigonometrically-fitted methods are superior in terms of accuracy and execution time, compared to the existing methods in the scientific literature when used for solving problems which are oscillatory in nature

    Block hybrid method with trigonometric-fitting for solving oscillatory problems

    Get PDF
    In this paper, we develop algebraic order conditions for two-point block hybrid method up to order five using the approach of B-series. Based on the order conditions, we derive fifth order two-point block explicit hybrid method for solving special second order ordinary differential equations (ODEs), where the existing explicit hybrid method of order five is used to be the method at the first point. The method is then trigonometrically fitted so that it can be suitable for solving highly oscillatory problems arising from special second order ODEs. The new trigonometrically-fitted block method is tested using a set of oscillatory problems over a very large interval. Numerical results clearly showed the superiority of the method in terms of accuracy and execution time compared to other existing methods in the scientific literature

    An eighth-order exponentially fitted two-step hybrid method of explicit type for solving orbital and oscillatory problems

    Get PDF
    The construction of an eighth-order exponentially fitted (EF) two-step hybrid method for the numerical integration of oscillatory second-order initial value problems (IVPs) is considered. The EF two-step hybrid methods integrate exactly differential systems whose solutions can be expressed as linear combinations of exponential or trigonometric functions and have variable coefficients depending on the frequency of each problem. Based on the order conditions and the EF conditions for this class of methods, we construct an explicit EF two-step hybrid method with symmetric nodes and algebraic order eight which only uses seven function evaluations per step. This new method has the highest algebraic order we know for the case of explicit EF two-step hybrid methods. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order EF scheme is more efficient than other standard and EF two-step hybrid codes recently proposed in the scientific literature

    A Parametric Method Optimised for the Solution of the (2+1)-Dimensional Nonlinear Schrödinger Equation

    Get PDF
    open access articleWe investigate the numerical solution of the nonlinear Schrödinger equation in two spatial dimensions and one temporal dimension. We develop a parametric Runge–Kutta method with four of their coefficients considered as free parameters, and we provide the full process of constructing the method and the explicit formulas of all other coefficients. Consequently, we produce an adaptable method with four degrees of freedom, which permit further optimisation. In fact, with this methodology, we produce a family of methods, each of which can be tailored to a specific problem. We then optimise the new parametric method to obtain an optimal Runge–Kutta method that performs efficiently for the nonlinear Schrödinger equation. We perform a stability analysis, and utilise an exact dark soliton solution to measure the global error and mass error of the new method with and without the use of finite difference schemes for the spatial semi-discretisation. We also compare the efficiency of the new method and other numerical integrators, in terms of accuracy versus computational cost, revealing the superiority of the new method. The proposed methodology is general and can be applied to a variety of problems, without being limited to linear problems or problems with oscillatory/periodic solutions

    Multi-Value Numerical Modeling for Special Di erential Problems

    Get PDF
    2013 - 2014The subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]XIII n.s
    corecore