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Abstract: The construction of an eighth-order exponentially fitted (EF) two-step hybrid
method for the numerical integration of oscillatory second-order initial value problems (IVPs)
is considered. The EF two-step hybrid methods integrate exactly differential systems whose
solutions can be expressed as linear combinations of exponential or trigonometric functions
and have variable coefficients depending on the frequency of each problem. Based on the
order conditions and the EF conditions for this class of methods, we construct an explicit EF
two-step hybrid method with symmetric nodes and algebraic order eight which only uses seven
function evaluations per step. This new method has the highest algebraic order we know for
the case of explicit EF two-step hybrid methods. The numerical experiments carried out with
several orbital and oscillatory problems show that the new eighth-order EF scheme is more
efficient than other standard and EF two-step hybrid codes recently proposed in the scientific
literature.
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two—step hybrid methods.

1 Introduction

Orbital problems and oscillatory differential systems often arise in different fields of applied
sciences and engineering such as celestial mechanics, astronomy and astrophysics, quantum
chemistry, electronics, molecular dynamics and so on (see [1, 2]), and they can be modeled by
second order initial value problems (IVPs) of the form

y'(t) = f(t,y(t)), y(to) = Yo, y'(to) = v, (1)

in which the first derivative does not appear explicitly. The numerical integration of these
problems has been considered in the scientific literature by using different approaches, such
as general purpose numerical methods (they have constant coefficients) or codes specially
adapted to the oscillatory behavior of their solutions (they have variable coefficients depend-
ing on the frequency of each problem). The design and construction of methods with variable
coefficients has been considered by several authors (see [3-28] and references therein) with the
aim of using the available information on the solutions of the corresponding problems to de-
rive more accurate and/or efficient algorithms than the general purpose algorithms for such a
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type of problems. The most representative examples of such algorithms are the exponentially
or trigonometrically fitted methods (EF or TF methods) [9-28]. After the earlier works of
Gautschi [12] and others [9, 11, 13, 19], there is a well established theory on EF linear multi-
step methods and EF Runge-Kutta (RK)-type methods for first and second order differential
systems. A detailed survey including an extensive bibliography on this subject can be found
in Ixaru and Vanden Berghe [28].

Usually, the construction of EF methods consists of selecting the coefficients of the method
so that it integrates exactly a set of linearly independent functions which are chosen depending
on the nature of the solutions of the differential system to be solved. Several authors [9, 10, 13,
15, 16, 19] have derived EFRK methods with frequency-dependent coefficients that are able to
integrate exactly first or second order differential systems whose solutions belong to the linear
space generated by the set of functions {1,t,...,t* exp(£At),t exp(£At),... 17 exp(£At)},
where A is a prescribed frequency. In particular, the construction of explicit EFRK-Nystrém
methods has been considered in [11, 17, 22], and methods up to order five have been derived.
Very recently, some authors [26, 27], have investigated the construction of explicit EF two-
step hybrid methods of high order as an alternative to EFRKN methods, and they have
derived methods up to order seven. It is expected that these methods integrate oscillatory
problems more accurately than standard methods based on polynomial functions. In practical
applications, it has been shown that EF methods are more accurate and efficient than non-
fitted ones provided that the main frequency of the problem or a good approximation of it is
known in advance. Therefore, the problem of how to choose a good approximation of the fitted
frequency is crucial for an efficient implementation of these methods. Some procedures for the
frequency determination in EF methods have been analyzed in [20, 21], but this problem is
very difficult and it is still pending to be solved. Recently, Ramos and Vigo-Aguiar [24] have
shown that the fitted frequency strongly depends on several factors: the differential equation,
the initial conditions and the step-size.

Here, we consider the construction of explicit EF two-step hybrid methods with algebraic
order eight. These methods integrate exactly second-order differential systems whose solutions
can be expressed as linear combinations of the set of functions {exp(At), exp(—At)}, A € C,
or equivalently {sin(wt), cos(wt)} when A = iw, w € IR. One of the most important pro-
perties for an explicit method to perform efficiently is the accuracy versus the computational
cost. In general, this fact depends on the algebraic order and the number of stages (function
evaluations) per step used by the method. So, the purpose of this paper is the design and
construction of an eighth-order explicit EF two-step hybrid method so that the ratio number
of stages/algebraic order is as small as possible, which will lead to obtain an efficient code.
The paper is organized as follows: Section 2 is devoted to present the basic concepts on EF
two-step hybrid methods (EF conditions, algebraic order, stability) as well as the notation
to be used in the rest of the paper. In section 3 we derive an explicit EF two-step hybrid
method with symmetric nodes and algebraic order eight which only requires seven function
evaluations per step. This new explicit EF two-step hybrid method has the highest algebraic
order we know in the literature. The stability properties of the new method are also analyzed.
In section 4 we present some numerical experiments with several orbital and oscillatory IVPs
that show the efficiency of the new EF two-step hybrid method when it is compared with other
EF and standard two-step hybrid methods of high order proposed in the scientific literature
for solving this class of problems. Section 5 is devoted to present some conclusions.



2 EF two—step hybrid methods

In this section we present the EF two-step hybrid methods which are the aim of our study as
well as the notation to be used in the rest of the paper. We consider s-stage two—step hybrid
methods for solving the IVP (1), defined by the equations

S
Vi=(14c)yn — ciyn1 + h* D _aiif(tn +¢jh,Y)), i=1,...,s (2)
=1
S
Yntl = 2Yn — Yn—1 + h? Z bzf(tn + ¢c;h, Y;)’ (3)
i=1

where y,—1, Y, and y,4+1 represent approximations for y(t, — h), y(t,) and y(¢, + h), respec-
tively. The equations (2) will be referred to as the internal stages, and equation (3) as the
advance formula of the two—step hybrid method. These methods are characterized by the real
parameters b;, ¢; and a;j, and they can be represented in Butcher notation by the table

C1 ail - Q1s
c A
LT = Cs As1 -+ Qsg (4)
by - bs

or equivalently by the triplet (c, A, b).

The idea of constructing two-step hybrid methods (2)—(3) which integrate exactly a set of
linearly independent functions different of the polynomials consists of selecting the available
parameters in order to make the method exact for a linear space of functions with basis

F = {ur(t), ug(t), ..., up(t)), r<s.

In such case, the coeflicients of the two—step hybrid method are determined by the solution of
the following linear systems (see [26]):

s tn+h) — 2u(t, th—h
=1

® t h)— (14¢ tn s ug(ty, — h
Z ais (b + ¢; h) = up(to+cih) —( +c}32uk( )+ ¢ ug( )7 (6)
j=1

1=1,...,s8, k=1,...,r.

We note that the structure of the algorithm (2)—(3) indicates that it integrates exactly the
solutions of the ODE y” = 0 at the point ¢,.1 of the two-step interval, irrespective of what
are the coefficients. Therefore, a two—step hybrid method (2)—(3) satisfiying conditions (5)—
(6) is exact for the reference set of functions {1, ¢, ui(t), ua(t), ..., u,(t)}. When F contains
only polynomial functions up to a certain degree (u;(t) = t**1) the coresponding methods
are the standard two—step hybrid collocation methods. If F contains polynomial functions
and exponential or trigonometric functions, the resulting two—step hybrid methods are called
mixed collocation methods or EF methods.

The most usual case is to consider exponential or trigonometric functions as reference set
of functions:
F1 = {exp(At), exp(—At)} or Fy = {sin(wt), cos(wt)}.



The trigonometric case F3 is obtained from F; with A = iw. For the reference set of functions
F the linear systems (5)—(6) reduce to

° 2(cosh(z) — 1 &
Z b; cosh(c;z) = %, Z b; sinh(c;z) =0, (7)
i=1 o i=1

€ h(c; i cosh(z) — (1+¢

Z ai; cosh(c;z) = cosh(c;z) + ¢ cozs (z) —(1+¢ )’ i1 s (8)
j=1 :

- inh(¢;z) — ¢; sinh

Z a;j sinh(cjz) = sinh(c;z) 26 S (Z), i=1,...,8, (9)
— z

where z = Ah. The conditions defined by equations (7)-(9) characterize when a two-step
hybrid method (2)-(3) is exponentially-fitted, and therefore they will be called exponential
fitting conditions (EF conditions). A two-step hybrid method (2)-(3) which satisfies the EF
conditions (7)—(9) will be called an EF two-step hybrid method. These EF methods integrate
exactly IVPs whose solutions belong to linear spaces generated by the basis {1, ¢, exp(At),
exp(—At)} or {1, t, cos(wt), sin(wt)}, but for IVPs with more general solutions they present
local truncation errors. Therefore, an EF two-step hybrid method possesses algebraic order p
iff the local truncation error satisfies

Y(tns1) = Ynt1 =0 (hp“) : (10)

In general, the local truncation error for two-step hybrid methods (2)—(3) has been analyzed
by Coleman [29] by using the theory of B-series and this author has obtained an expansion of
the local truncation error in the form

Y(tns1) = Yng1 = > _ W ( > ej(Ti)F(Ti)(yn)) ) (11)
j=1 p(ri)=j+1
where F'(7;) denotes the elementary differential associated to tree 7;, and

a(7;)
(J+ 1)

ej(7;) = L+ () b1 (m)],  meD,  pm) =i+l (12)

with a(r;), p(7i), ©”(7;) and Ty defined in [29]. Therefore, having in mind that the coefficients
a;j and b; of an EF two-step hybrid method are frequency-dependent and vary as functions of
the step-size h (they vary as functions of z = A h), the necessary and sufficient conditions to
reach algebraic order p are given by (see Theorem 2.2 of [26])

ep(t;)-1(ti) = O (Zp+2_p(ti)) . V4 €Ty, with 2<p(t;) <p+1, (13)
or equivalently
bYW (1) = 1+ (-1 4 O (#42701)) | Wy €Ty, with 2<p(t;) <p+1. (14)

The p-th order conditions (13) or (14) up to order p < 6 are listed in [26].

The analysis of stability and phase properties is carried out by using the linear test model

y'(t) = —0*y(t), 6>0. (15)



Since the solutions of the test model (15) have oscillatory character we will consider EF two-
step hybrid methods with A = iw (the trigonometric case) where the parameter w represents
an estimate of the true frequency € which will be used in the fitting process. When an EF
two-step hybrid method of s stages is applied to solve the linear test model (15), the following
recursion is obtained

Ynt1 — S(H,v)yp + P(H,v)yp—1 =0, H=0h, v=wh, (16)
where the coefficients S(H,v) and P(H,v) are given by
S(H,v)=2—-H?*bl (I+ H?>A)" (e +c), (17)
P(H,v)=1-H*bT I+ H?A) ', (18)
and the vector e = (1,...,1)T € R*. If the EF method under consideration is explicit
(A*~1 = 0) then the coefficients S(H,v) and P(H,v) reduce to
SH,v)=2-bT(e+c)H*+bT A(e+c)H* — -+ (—1)* 'bT A2 (e +c) H* 2,
P(Hv)=1— (bl c)H*+ (b Ac)H* — -+ (=1)* 1 (b A*72¢c) H* 2,

The stability and phase properties of the methods are determined by the roots of the charac-
teristic polynomial of the recursion (16):

€2 —S(H,v)¢+ P(H,v). (19)

If the roots of (19) satisfy |£1(H,v)| < 1 and |&2(H,v)| < 1 there is no amplification of the
error in the numerical solution and the method shows a stable behavior. If the roots of (19)
are conjugate complex (S(H,v)? < 4 P(H,v)) and satisfy |¢12(H,v)| = 1, then the numerical
solution defined by the recursion (16) is periodic as the exact solution of the linear test model
(15). Otherwise, the method shows an unstable behavior.

The conditions |§1(H,v)| < 1 and |£&2(H,v)| < 1 are equivalent to
P(H,v) <1 and |S(H,v)| <1+ P(H,v). (20)
Analogously, the conditions |1 o(H,v)| =1 and S(H,v)? < 4 P(H,v) are equivalent to
P(H,v)=1 and |[S(H,v)| <2 (21)

Since the coefficients S(H,v) and P(H,v) of the characteristic polynomial (19) depend on
H = 0h and v = w h, the periodicity and stability intervals typical in the classical two-step
hybrid methods become two-dimensional regions in the (H, v)-plane. In order to clarify the
meaning of these two-dimensional stability regions we introduce the parameter
w—10
E = —_— 0, 22

. (22
which represents the relative error in estimating the true frequency € by the fitting frequency
w. Then we have the relation w = (1 +¢)60 or v = (1 + ¢) H, and the coefficients of the
characteristic polynomial (19) S(H,¢) and P(H,¢) can be expressed in terms of the variables
H and €. So, for EF two-step hybrid methods we use the following stability concepts:

e Ra={(H,e)| H>0, P(H,e) <1and |S(H,e)| <1+ P(H,e)} is the stability region.



e R,={(H,e)| H>0, P(H,e) =1 and |S(H,¢)| < 2} is the periodicity region.
e If R, =(0,00) X (—00,00), the method is A-stable.

o If R, = (0,00) X (—00,00), the method is P-stable.

In addition, the quantities

S(H,
¢(H,e) = H — arccos <2(P(I§,)s)> , d(H,e)=1—/P(H,¢), (23)

are called the dispersion error and the dissipation error, respectively. If these quantities satisfy
¢(H,e) = O(e H™'),  d(H,e) = O(e H'™), (24)

then the method is said to be dispersive of order q and dissipative of order r, respectively.

We note that for each value of € the stability interval is the horizontal segment inside the
stability region Rs and the periodicity interval is the horizontal segment inside the periodicity
region R,,. For example, for ¢ = —1 (v = 0) we obtain the periodicity and stability intervals
of the corresponding classical two-step hybrid methods, and for e = 0 (v = H) we obtain the
periodicity and stability intervals of the fitted methods in the case where the true frequency
0 is known. In addition, a necessary condition for the existence of a nonempty periodicity
region is P(H,e) = 1 as occurs in the case of symmetric or symplectic Runge-Kutta—Nystrém
methods.

3 Explicit EF two—step hybrid methods of order eight

In this section we analyze the construction of explicit EF two—step hybrid methods of order
eight with the help of the order conditions and the EF conditions from the previous section.
The construction of such methods is carried out by paying special attention to optimize the
number of function evaluations required in each step. So, we consider the class of explicit
two—step hybrid methods presented in [30]

Yi = yn-1, Yo=1uyn, (25)
i—1
Y; = (14 ¢)yn — ciyn_1 + h? Zaijf(tn +c;h,Y;), i=3,...,s (26)
j=1
S
Yn+1 = 2Yn — Yn—1 + h2 blfn—l + b2fn + Z bzf(tn + ¢;h, Yz) > (27)
=3

where f,—1 and f, represent f(t,—1,yn—1) and f(t,,yn), respectively, the two first nodes are

c¢1 = —1, co =0, and which can be represented by the table of coefficients
-1 0 0 0 .- 0
0 0 0 0 .- 0
c A C3 a3l asg 0 cee 0
b" Cs asy As2 -+ Ags—1 0
by ba bs—1 bs




These methods (after the starting procedure) only require s — 1 function evaluations in each
step, and therefore they can be considered as two—step hybrid methods with s — 1 stages per
step. In addition, we consider the case of methods with symmetric nodes and weights. These
symmetry conditions produce a significant simplification on the EF conditions (7) and on the
order conditions (14), which make easier the determination of the EF methods. For example,
these conditions imply that the second equation in the EF conditions (7) is satisfied as well
as the order conditions b” ¢*~1 = 0, j > 1. Examples of an explicit EF two-step hybrid
method with symmetric nodes and weights up to order seven are derived in [26].

3.1 Explicit EF two—step hybrid methods with s =8

In order to obtain eighth-order efficient methods we consider s = 8 so that the ratio number of
stages/algebraic orderis small. In addition, we consider the following simplifying assumptions:

f + ¢ .
by =0, j;aijiz 112’+O(22), i=4,....s, (28)

which give rise to a significant simplification of the eighth-order conditions. So, we analyze
the case of explicit two—step hybrid methods with symmetric nodes and weights which are
defined by the table of coefficients

-1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
C3 az; asg 0 0 0 0 0 0
cy asg1 aq2 a4z O 0 0 0 0
—Cy asy as2 as3 asg4 0 0 0 O
—C3 agr ag2 aez ass ags O 0 0
c3 ary ar2 ars arg ars arg 00
1 agy agz agy asse ags asg agy 0O
bl bQ 0 b4 b4 b6 b6 bl

In order to determine the weights we impose that the advance formula is also exact for the
reference set of functions {t2, 3, t*, 5, ¢5, 7}, in addition to EF conditions (7), and these
conditions reduce to

2(cosh(z) — 1) 1 1
b* cosh(cz) = 2 , b’ e=1, b’ c & b’ c 15 (29)
where
cosh(c z) = (cosh(ey 2), ..., cosh(c, 2))T.

Solving equations (29), the weights by, b, by and bg may be determined in terms of the
arbitrary parameters c3 and ¢4 and the variable z.

In order to determine the coefficients a;; we impose the EF conditions (8)—(9), the order
conditions (14) with p = 8 (algebraic order eight) and the simplifying assumptions (28). The
solution of these equations gives rise to the fact that the coefficients a;; (with j > 3) may be
considered independent of z and they can be determined in terms of the arbitrary parameters
c3, ¢4 and agy. In particular, the coefficients a;1 and a;2 (3 < ¢ < 8) may be computed from
the EF conditions (8)—(9) in terms of the arbitrary parameters c3, c4, ags and the variable z,



the coefficients a;3 (4 < ¢ < 8) may be computed from the simplifying assumptions (28) and
the rest of coefficients may be computed from the eighth-order conditions (14). Consequently,
these coefficients define a three-parameter family of eighth-order explicit EF two-step hybrid
methods which require seven function evaluations per step.

Now, we select the free parameters c3, ¢4 and ags so that the constants of the dispersion

and dissipation errors at z = 0 (¢ = —1) are small, obtaining the values
03:—2, C4=—é7 agy =0,
p(H,—1) = m + O(HYM) =9.005 x 1078 H? + O(H'Y),
d(H,—1) = 172551853;162 1;00 + O(HY?) =147 x 107" HY + O(H'?),

and the remaining coefficients are given by

 252% cosh(£) — 2522 cosh(22) — 48 (2 + 2% — 2 cosh(z))

bl - )
3222 (—128 + 150 cosh(Z) — 25 cosh(%) + 3 COSh(Z))
768 + 250 22 cosh(£) + 125 2% cosh(22) — 768 cosh(z) + 9 2% cosh(z)
2 = )
322 (—128 + 150 cosh(£) — 25 cosh(%) + 3 Cosh(z))
; 25 (32 (18 4+ 522) + 125 22 cosh(22) + 3 (—192 + 2?) cosh(z))
g = —
96 22 (—128 + 150 cosh(Z) — 25 cosh(%) + 3 cosh(z) )
y 25 (96 — 80 2% + 125 22 cosh(2) + 3 (—32 + 2?) cosh(z))
6 — )
96 22 (—128 + 150 cosh(%) — 25 cosh(%) + 3 cosh(z))
__2 _ 6L __1 __ 52
T 0 T 900 T 1500 YT T
1T L 4849 . 1079 L 9886
007 21225 0~ 12735 T 424507 T 21225
13453 233 L _ 805 L 23915
7 7 50940° 7 113207 7 5409’ 7 21636
L 2045 L2440
07 43272 87 5409’
5 sinh(22) — 3 sinh(z) 5 cosh(22) — 5 coth(z) sinh(22) — 2
azy = az2 =

5 22 sinh(z) ’ 522 ’



5 sinh(%) — sinh(z) + 53 2% sinh(%)

= 5 22 sinh(z) ’
450 cosh(Z) + 29 2% cosh(%) — (450 sinh(£) + 29 2 sinh(%)) coth(z) — 360
442 = 450 22 ’
_ 6(2% —150) sinh(Z) — 61 2% sinh(32) 4 180 sinh(z)
51 = 900 22 sinh(z) ’
_ 6(150 + 2?) cosh(Z) + (900 + 55 2% + 122 2? cosh(%)) coth(z) sinh(£) — 61 22 cosh(32) — 1080
452 = 900 22 ’
38205 sinh(z) — 16906 % sinh(£) 4 45 (52 22 — 1415) sinh(22)
a1 = 63675 22 sinh(z) ’
45 (1415 + 52 22) cosh(%2) + coth(z) (16906 22 sinh(Z) + 45 (1415 — 52 2?) sinh(%))
@62 = 63675 22
101880 + 65396 22 cosh(%)
63675 22 ’
51367 22 sinh(Z 22\ . . .
S 50040 (&) + (5 - 83?%1960) Smh(%) — 3 sinh(2)
e 522 sinh(z) ’
(509400 — 23433 22) cosh(22) — 203760 + 371794 22 cosh(Z)
2 = 509400 22
(2463 22 sinh(%) — 102734 22 sinh(Z) — 509400 sinh(%)) coth(2)
* 509400 22 ’
23915 (2 sinh(Z) — sinh(%))
8= 43272 sinh(z) ’
23915 coth(z) (2 sinh() — sinh(%) + 47830 cosh(Z) + 28005 cosh(%))
agz = —

43272

86544 (cosh(z) — 1)
43272 22

The new eighth-order explicit EF two-step hybrid method will be denoted as EFTSHMS and it
has the highest algebraic order that can be found in the literature for this type of EF methods.

We note that the advance formula of the new method EFTSHMS is exact for the basis
(1, t, 12, 13, ¢4, 17, 15, ¢7, exp(At), exp(—At)) or (1, t, 2, 3, t*, 2, 15 7, cos(wt), sin(wt)).
The coefficients for the trigonometric case (A = iw, w € IR) emerge having in mind the
relations cosh(iv) = cos(v) and sinh(iv) = isin(v), where v = wh. In addition, for small
values of |z| the formulas for the coefficients of the method are subject to heavy cancellations,
and when |z| < 0.1, series expansions for the coefficients must be used.
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Figure 1. Primary stability region for the new scheme EFTSHMS.

We also note that another way of expressing the coefficients of the method EFTSHMS is
to use the functions £(Z), no(Z), m(Z), ..., introduced by Ixaru in [31], and extensively used
in [28]. This fact remove the vulnerability of the coefficients of the method when |z| is small,
and the procedure for doing this is shown in the Appendix.

3.2 Stability of the new eighth-order method

Finally, we analyze the stability of the new eighth-order EF two-step hybrid method derived
above. We note that the new scheme is dissipative (P(H,e) < 1) and therefore it has a
nonempty stability region. In addition, the range of interest to analyze the stability properties
of fitted methods is |¢| < 1. If the relative error satisfies |¢| > 1, the estimate of the true
frequency 6 is very bad and then it is preferable to use a classical method (case ¢ = —1).
Figure 1 shows the primary stability region for the new EF method. This Figure shows that
for the case of ¢ = —1 (classical methods) the classical counterpart of scheme EFTSHMS has
stability interval (0, 2.97).

4 Numerical experiments

In this section we present some numerical experiments to test the numerical efficiency of the
new eighth-order explicit EF two-step hybrid integrator derived in section 3 when it is applied
to the numerical solution of several orbital problems and related oscillatory IVPs. The new
EF integrator EFTSHMS has been compared with the following standard and EF schemes
denoted by:

e ETSHMT7TEF: The seventh-order TF two-step hybrid method derived by of Kalogiratou
et al. [27].
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e EFTSHMT: The seventh-order EF two-step hybrid method derived in [26].
e TSHMS;: The eighth-order standard two-step hybrid method derived by Tsitouras [32].
e TSHMS8,: The eighth-order standard two-step hybrid method derived by Famelis [33].

The criterion used in the numerical comparisons is the usual test based on computing
the maximum global error in the solution (MGE = logig(max ||y(tn) — yn||)) over the whole
integration interval, and the numerical tests were carried out on a PC Intel Pentium computer.
The algorithms were implemented in python by using the mpmath library with a precision of
thirty two significant digits. Figures 2-5 show the maximum global error in the solution (MGE)
versus the computational cost measured by the number of f-evaluations (in logarithmic scale)
required by each method.

Problem 1. We consider the two-body gravitational problem (Kepler’s plane problem) de-
fined by the IVP

7 q1 /
@ =—"5535 @0)=1-e ¢(0)=0,
L@+ a3 !

/" q2 , 1+e
a2 (q% +q%)3/2 42(0) 42(0) V1%

where e (0 < e < 1) represents the eccentricity of the orbit and whose exact solution is a
2m-periodic elliptic orbit with semimajor axis 1 given by

q1(t) = cos(u(t)) —e, q@2(t) = V1 —e? sin(u(t)),

where wu(t) is the solution of Kepler’s equation: ¢t = u(t) — e sin(u(t)). The integration is
carried out on the interval [0,200 7] with fitting parameter w = 1 (A = iw), and we select the
eccentricity values e = 0.05 and e = 0.25. The numerical results obtained for this problem are
presented in Figures 2a and 2b.

Problem 2. We consider a perturbed Kepler’s problem defined by the IVP

q 2+ aq
A=t e agpr WO 4O=0
2 (2+90)q

where § is a small positive parameter and whose analytic solution is
q1(t) = cos(t+ 1), q2(t) = sin(t + 0 t).

The numerical results presented in Figure 3 have been computed with fitting parameter
w =1 (\ = iw), parameter of the perturbation § = 1072, and the problem is integrated up to
tend = 400.

Problem 3. We consider the two-dimensional semi-linear oscillatory second-order IVP

q'(t) = —% ( g g ) a(t) +9(a(?), q(0) = ( 1?; ) , d0)= ( _11/%5—_5//22 > ’
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where
k? 3 1 2 2 2 2
gla(®) = % (@1(t) - (1) (_1>, a=P Rl BB

and the parameters w >0, 0 < k < 1.

This oscillatory IVP represents a simple model consisting of two mass points connected
with a soft nonlinear spring and a stiff linear spring, and its analytic solution represents a
periodic motion in terms of trigonometric and Jacobi’s elliptic functions given by

1 ( cos (§ +wt) —sn(t; k) )

q(t) = NG cos (§ +wt) +sn(t; k)

In our test we choose the parameter values w = 50, k = 0.1, t.,q = 100, and the numerical
results are presented in Figure 4.

Problem 4. We consider the popular Bessel equation [33]

1
¢'(t) = (—100 + 4t2> q(t), q(1) = Jp(10), ¢'(1) = —0.5576953439142885,

where Jj is the Bessel function of the first kind of order zero and whose analytic solution is
q(t) = Vt Jo(10¢).

This oscillatory IVP is solved until finding the 100th root of the solution which occurs at
t = 32.59406213134967, and the numerical results are presented in Figure 5.

From the numerical results obtained in Figures 2-5 it follows that for the orbital problems
and oscillatory IVPs under consideration the new explicit EF two-step hybrid integrator of
order eight (EFTSHMS) shows a more efficient behavior than the other integrators used in the
comparison when high accuracy is required. Except in the case of Problem 1 with e = 0.05,
the new integrator EFTSHMS turns out to be the most efficient of all tested codes when
low or high accuracy is required. This is due to the fact that the scheme EFTSHMS has
a larger accuracy order than the fitted schemes ETSHM7TF and EFTSHM?7 and the same
accuracy order than the standard schemes TSHMS8; and TSHMS8,. In the case of orbital
problems (Problems 1 and 2) the fitted integrator ETSHM7TEF turns out to be slightly more
efficient than EFTSHM7. However, for highly oscillatory systems (Problem 3) the scheme
ETSHMT7TF gives the poorest results. Finally, we can observe (Figures 4 and 5) that for
oscillatory IVPs in which the linear terms are dominant (Problems 3 and 4) the eighth-order
standard methods TSHM8; and TSHMS, specially designed for solving oscillatory problems
may be more efficient than seventh-order fitted methods ETSHM7TF and EFTSHM?7 when
very high accuracy is required.

5 Conclusions

A study on the construction of eighth-order explicit EF two-step hybrid methods for solving
orbital problems and second-order oscillatory IVPs has been carried out. This study is based
on combining the EF conditions, the order conditions and a reduced number of stages (low
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13



MGE

MGE

-12

-10

-14

-16

T L
—&— EFTSHM8
—O— ETSHM7TF
* @ N =—f— EFTSHM7
PN -6- TSHM81
N N
s\ s\ _*,_TSHMS2

10"

log 10(f—eva|uations)

Figure 3. Efficiency curves for Problem 2.

10°

—e— EFTSHMS
—O— ETSHM7TF
—8— EFTSHM7
- ¢ - TSHMS8,

- = TSHMS,

5

10
log 10(f—(-:‘valuations)

Figure 4. Efficiency curves for Problem 3.
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cost) in order to obtain efficient methods. A new eighth-order explicit EF two-step hybrid
scheme which is not an EF version of a standard two-step hybrid method from the literature
is constructed. This new explicit EF two-step integrator shows to be a reliable alternative
to high-order standard [32, 33] and fitted [26, 27] two-step hybrid methods specially designed
for solving oscillatory problems. The numerical experiments carried out with several orbital
problems and related oscillatory IVPs show that the new eighth-order explicit EF two-step
integrator improves the computational efficiency obtained with standard and fitted two-step
hybrid methods of high order from the scientific literature.

Appendix

In order to avoid the vulnerability of the coefficients of the method EFTSHMS when |z|
is small, the special functions introduced by Ixaru in [31] which are extensively used in [28]
can be used.

So, we start with Ixaru function £(Z2),

cos(|Z|'/?), if Z <0,
(2) = (30)
cosh(|Z[Y/?), if Z >0,

(31)

(in [28] this is denoted n_1(Z)). Notice that this covers both trigonometric and hyperbolic
cases depending on the sign of Z but, instead of 179(Z), n1(Z), ..., we introduce the following
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set of functions:
wo(Z) = (2) = 1/Z,  wi(Z) = (wr(Z) = 1/20))/Z, i>1, (2)
with the following properties:

i) w;(0)=1/[2(:+1)]l, i>0.
ii) Series expansions: u;(Z) = Z zZE==1)(2k)), i > 0.
k=i+1

iii) Reverse relations: £(Z2) = Zug(Z) + 1, wi(Z)=Zuip1(Z)+1/[2( + 1)), i>0.
For an accurate computation of these functions you can fix a threshold (§) and use the defini-

tion formulas for |Z] > § and the truncated series for |Z| < ¢ (just over five terms are perhaps
sufficient in most computations).

Now we focus our attention on the coefficient b; on page 8 and express its denominator
and numerator in terms of these functions. We will see that a new factor Z appears as we
advance with i. The chain is stopped when the value at Z = 0 of the multiplying factor is
nonvanishing.

Denominator of b;:

>

Dem = 3222 <—128 + 150 COSh(%) — 25 cosh 3 )+ 3 cosh(z))

= 32Z[-128 + 150£(Z/25) — 25£(9Z/25) + 3£(Z))]

x Usewy(Z) (£(2)=Zup(Z)+1)

= 96 Z%[2uo(Z/25) — 3u0(92/25) + ug(Z)]

*  The expression in the square brackets is zero at Z = 0 then we go on with u;(2)
(wo(Z2) = Zu1(Z) +1/2!)

- % Z° [2u1(Z/25) — 27w (92/25) + 25u1 (Z)]

x  The expression in the square brackets is zero at Z = 0 then we go on with us(Z2)
(u1(Z) = Zuao(Z) + 1/4)

= % 74 2u9(Z/25) — 243 u5(92/25) + 625 us(Z)]

% The process is now stopped because the value of the expression in the square

brackets at Z = 0 is nonvanishing.

Numerator of b;: On applying the same technique we get

Num = 252> cosh(g) — 2522 cosh(g—;) — 48 (24 2% — 2 cosh(2))
= 2572E(2/25) — 252 E(92)25) — 48 (2 + Z — 2£(2))
= Z%[uo(Z/25) — 9uo(9Z/25) + 96 u1(Z)]
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- % 7% [ur(Z/25) — 81u1(9Z/25) + 2400 us(Z))]

- 6*;5 Z* [u2(Z/25) — T29u2(9Z/25) + 60000 us(Z)]

Finally, we obtain the coefficient

y _ _ua(Z/25) = T29us(9Z/25) + 60000 us(Z)
YT 96 [2ua(Z/25) — 243u2(92/25) + 625 uz(Z)]’

whose computation is uniformly accurate irrespective of the values of the positive/negative
Z, or, equivalently, for real/imaginary A. In a similar way, the rest of the coefficients of the
method EFTSHMS can be expresed in terms of the functions u;(Z). i > 0.
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