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Abstract: We investigate the numerical solution of the nonlinear Schrödinger equation in two spatial
dimensions and one temporal dimension. We develop a parametric Runge–Kutta method with four
of their coefficients considered as free parameters, and we provide the full process of constructing the
method and the explicit formulas of all other coefficients. Consequently, we produce an adaptable
method with four degrees of freedom, which permit further optimisation. In fact, with this method-
ology, we produce a family of methods, each of which can be tailored to a specific problem. We
then optimise the new parametric method to obtain an optimal Runge–Kutta method that performs
efficiently for the nonlinear Schrödinger equation. We perform a stability analysis, and utilise an exact
dark soliton solution to measure the global error and mass error of the new method with and without
the use of finite difference schemes for the spatial semi-discretisation. We also compare the efficiency
of the new method and other numerical integrators, in terms of accuracy versus computational
cost, revealing the superiority of the new method. The proposed methodology is general and can
be applied to a variety of problems, without being limited to linear problems or problems with
oscillatory/periodic solutions.

Keywords: (2+1)-dimensional nonlinear Schrödinger equation; partial differential equations;
parametric Runge–Kutta method; coefficient optimisation; global error
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1. Introduction

We consider the (2+1)-dimensional nonlinear Schrödinger (NLS) equation of the form:

iut + auxx + buyy + c|u|2u + du = 0,

u(x, y, t = 0) = u0(x, y),
(1)

where i =
√
−1, a, b, c, d ∈ R, u(x, y, t) : R3 → C is a complex function of the spatial

variables x, y and the temporal variable t and u0(x, y) : R2 → C. The term iut denotes the
temporal evolution, the terms auxx and buyy denote the dispersion with respect to x and y,
respectively, while c|u|2u is a nonlinear term, whose introduction is motivated by several
applications. Equation (1) can represent atomic Bose–Einstein condensates (BECs), in which
case u expresses the mean-field function of the matter-wave, or, if applied in the context of
nonlinear optics for the study of optical beams [1], u describes the complex electric field
envelope, t is the propagation distance, and x, y are the transverse coordinates [2,3].

The analytical solution of the NLS equation has attracted great interest in recent years,
especially when the solutions are solitons [4–7]. Additionally, the numerical computation
of the NLS equation is a critical part of the verification process of analytical theories.
Different strategies have been adopted to solve the NLS equation, its linear counterpart,
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or differential equations with similar behaviour. A very significant factor in the efficiency
of the computation lies in the time integrator; this is the case for both the scalar forms
and vector forms after applying the method of lines. Preferred time integrators for the
Schrödinger equation include Runge–Kutta(–Nyström) (RK/RKN) methods [8–11] and
multistep methods [12–15]. RK/RKN methods are especially well-established, with various
tools for achieving a high order of accuracy and obtaining intrinsic properties for specific
problems, e.g., in [16,17], specialised RK methods were developed and optimised with
differential evolution algorithms; in [18–21], RK/RKN methods were constructed for
problems with periodic/oscillatory behaviour using fitting techniques; finally, in [22], a
hybrid block method was produced for the efficient solution of differential systems. Many of
the aforementioned techniques are targeted towards linear differential equations, ordinary
differential equations, problems with oscillatory/periodic solutions or combinations of
these. Here, we propose a general approach that can be applied to a problem without these
limitations, and is tailored to a specific nonlinear partial differential equation that does not
always exhibit periodic behaviour.

Following our previous work in [9], where we investigated the numerical solution
of the NLS equation in (1+1) dimensions, here we extend this study to problems in (2+1)
dimensions; that is, two dimensions in space and one in time. However, since this is a
problem with increased significance that could be experimentally verified, we decided to
follow a different approach and develop a method that is tailored to the efficient numerical
solution of the problem. To achieve this, we initially developed a new parametric RK
method, with as many coefficients as possible treated as free parameters. In this way, we
produced an adaptable method with four degrees of freedom, which can be applied to a
plethora of problems and specifically tailored to their efficient solution. Subsequently, in
the case of problem (1), we selected the optimal values that correspond to the method with
the minimum global error when integrating the problem for various step sizes. We chose to
construct a method with six algebraic orders and eight stages, a maximised real stability
interval, and coefficients with similar orders of magnitude, to minimise the round-off error.

The structure of this paper is as follows:

• In Section 2, we present the necessary theoretical concepts;
• In Section 3, we show the construction and analysis of the new RK method;
• In Section 4, we report the numerical experiments and results;
• In Section 5, we provide a discussion of the results and future perspectives;
• In Section 6, we communicate our conclusions.

2. Theory
2.1. Explicit Runge–Kutta Methods

For the numerical solution of Equation (1),

let (x, y, t) ∈ [xL, xR]× [yL, yR]× [0, tR] and

un
l,m denotes an approximation of u(xl , ym, tn), where

xl = xL + l ∆x, l = 0, 1, . . . , L− 1, L = xR−xL
∆x + 1, ∆x > 0,

ym = yL + m ∆y, m = 0, 1, . . . , M− 1, M =
yR−yL

∆y + 1, ∆y > 0,

tn = n h, n = 0, 1, . . . , N − 1, N = tR
h + 1, h > 0.

(2)

An s−stage explicit Runge–Kutta method for the solution of Equation (1) is presented
below: 

un+1
l,m = un

l,m + h
s
∑

i=1
bi ki

ki = f (tn + cih, un
l,m + h

i−1
∑

j=1
aij k j), i = 1, . . . , s

or
c A

b
(3)
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where A = [aij] ∈ Rs×s is strictly lower triangular, b = [bi]
T ∈ Rs, c = [ci] ∈ Rs,

aij, bi, ci ∈ R, i = 1, 2, . . . , s and j = 1, 2, . . . , i− 1 are the coefficient matrices, h = ∆t is the
step size in time, and f is defined in u′ = f (x, y, t, u).

2.2. Algebraic Order Conditions

According to rooted tree analysis [23], there are 37 equations (q1 − q37) that must
be satisfied to obtain a Runge–Kutta method of sixth algebraic order and 7 additional
equations for an explicit Runge–Kutta method with eight stages (q38 − q44), with a total of
44 equations, as seen below in the set of Equation (4).

q1 = be− 1, q2 = bc− 1
2 , q3 = bc2 − 1

3 , q4 = bAc− 1
6 , q5 = bc3 − 1

4 , q6 = bCAc− 1
8 ,

q7 = bAc2 − 1
12 , q8 = bA2c− 1

24 , q9 = bc4 − 1
5 , q10 = bC2 Ac− 1

10 , q11 = bCAc2 − 1
15 ,

q12 = bCA2c− 1
30 , q13 = bAc3 − 1

20 , q14 = bACAc− 1
40 , q15 = bA2c2 − 1

60 ,

q16 = bA3c− 1
120 , q17 = b(Ac)2 − 1

20 , q18 = bc5 − 1
6 , q19 = bC3 Ac− 1

12 ,

q20 = bC2 Ac2 − 1
18 , q21 = bC(Ac)2 − 1

24 , q22 = bC2 A2c− 1
36 , q23 = bCAc3 − 1

24 ,

q24 = bCACAc− 1
48 , q25 = b(Ac)∗(Ac2)− 1

36 , q26 = bCA3c− 1
144 , q27 = b(Ac)∗(A2c)− 1

72 ,

q28 = bCA2c2 − 1
72 , q29 = bAc4 − 1

30 , q30 = bAC2 Ac− 1
60 , q31 = bACAc2 − 1

90 ,

q32 = bACA2c− 1
180 , q33 = bA(Ac)2 − 1

120 , q34 = bA2c3 − 1
120 , q35 = bA2CAc− 1

240 ,

q36 = bA3c2 − 1
360 , q37 = bA4c− 1

720 , qi+36 = (Ae− c)i, where i = 2(1)8.

(4)

Here, e = [1, . . . , 1]T ∈ Rs, the diagonal matrix C = diag(c) ∈ Rs×s has Cii = ci,
i = 1, 2, . . . , s, the operator ∗ denotes element-wise multiplication and, finally, the powers
of c, C and Ac are defined as element-wise powers, i.e., c3 = c ∗ c ∗ c, whereas the powers
of A are defined normally, i.e., A3 = AAA.

2.3. Stability

We consider the problem

u′ = iωu, u(0) = u0 ω, u0 ∈ R, (5)

with exact solution u(t) = u0 ei ω t, which represents the circular orbit on the complex plane
and ω its frequency.

Equation (5), solved numerically by the RK high-order method of Equation (3), yields
the solution un+1

m = Rnun
m, where R(v) = As(v2) + ivBs(v2) is called the stability polyno-

mial; v = ωh and As, Bs are polynomials in v2. The exact solution of Equation (5) satisfies
the relation ũ(tn+1) = ũ(tn) ei vn . For a generic v = vn, since |ei v| = 1 and arg(ei v) = v
we have:

Definition 1. For the method of Equation (3), if |R(vR)| < 1 and |R(vR − ε)| > 1, for every
v ∈ IR and every suitably small positive ε, then the real stability interval is IR = (vR, 0).

Definition 2. The stability region is defined as the set S =
{

z ∈ C : |R(z)| < 1
}

.

3. Construction and Analysis
3.1. Criteria

For the construction of the new method, we aimed to satisfy the following criteria:

1. Parametric method with as many as possible coefficients treated as free parameters.
2. Minimum global error when integrating problem (1) for various step sizes.
3. Sixth algebraic order and eight stages, which implies 44 equations (4).
4. Maximised real stability interval, based on Definition 2.
5. Coefficients with similar orders of magnitude, to minimise the round-off error.
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3.2. Parametric Method—General Case

We began the development by considering the 44 equations (4). There are 43 variables
involved in these equations, and we fixed 10 of these, namely

c3 =
1
6

, c6 =
1
2

, c8 = 1, b2 = 0, b3 = 0, a42 = 0, a52 = 0, a62 = 0, a72 = 0, a82 = 0. (6)

Of the remaining 33 variables, 29 are contained in S1 = {a21 , a31, a32, a41, a43, a51, a53,
a54, a61, a63, a64, a65, a71, a73, a74, a75, a76, a81, a83, a84, a85, a86, a87, b1, b4, b5, b6, b7, b8} and
4 are contained in S2 = {c2, c4, c5, c7}. We aimed to solve the system of 44 equations for
the 29 variables in S1, considering the 4 variables in S2 as free parameters, thus effectively
creating a general family of methods with 4 degrees of freedom. In order to solve the highly
nonlinear system of equations, we used the mathematical software Maple. In Table 1 we
solved the 29 equations in the specified order, solving for the variable mentioned after
the equation. The order of equations and the selected variables are important, and were
chosen so that the corresponding system after the variable substitution is the least complex.
Otherwise, the system solution has impractical computation times.

Table 1. The order in which the equations are solved, followed by the variable for which each one is
solved.

1. Solve q38 for a21 11. Solve q5 for b5 21. Solve q7 for a63
2. Solve q39 for a32 12. Solve q9 for b4 22. Solve q12 for a83
3. Solve q40 for a43 13. Solve q18 for b1 23. Solve q27 for a73
4. Solve q41 for a54 14. Solve q10 for a86 24. Solve q8 for a61
5. Solve q42 for a65 15. Solve q6 for a75 25. Solve q23 for a84
6. Solve q43 for a76 16. Solve q19 for a64 26. Solve q13 for a71
7. Solve q1 for b8 17. Solve q4 for a53 27. Solve q29 for a81
8. Solve q44 for a87 18. Solve q21 for a41 28. Solve q28 for a51
9. Solve q2 for b7 19. Solve q20 for a85 29. Solve q26 for a31

10. Solve q3 for b6 20. Solve q11 for a74

After solving the system of 29 equations, and due to our initial fixed values of 10 coef-
ficients, all 44 equations are now satisfied, including the ones we did not explicitly solve.
All coefficients, except for the initially fixed ones, now depend on {c2, c4, c5, c7}:

b1 = 10 c4c5c7−c4−c5−c7+1
60 c4c5c7

b4 = c5−1+c7
60 (c4−c7)(−1+c4)(c4−c5)(2 c4−1)c4

b5 = −c4+1−c7
60 (2 c5−1)c5(c5−c7)(c4−c5)(c5−1)

b6 =
(80 (2 c7−1)c5−40 c7+24)c4+(−40 c7+24)c5+24 c7−16

15 (2 c7−1)(2 c5−1)(2 c4−1)

b7 = c4+c5−1
(120 c7−60)(c5−c7)(c4−c7)c7(−1+c7)

b8 =
((10 c7−10)c5−10 c7+9)c4+(−10 c7+9)c5+9 c7−8

60 (c7−1)(c5−1)(−1+c4)

a21 = c2

a31 = −1+12 c2
72 c2

a32 = 1
72 c2

a41 = −3 c4
2 + c4

a43 = 3 c4
2

a51 = − (30 c4
3c5−10 c4

3−45 c4
2c5+15 c4c5

2+14 c4
2+6 c4c5−4 c5

2−3 c4+c5)c5

2 c4(5 c4
2−5 c4+1)

a53 =
90 c4

3c5
2+(−150 c5

2+12 c5)c4
2+(45 c5

3+33 c5
2−3 c5)c4−12 c5

3

30 c4
3−35 c4

2+11 c4−1

a54 = c5(15 c4c5−4 c4−4 c5+1)(c4−c5)
60 c4

4−70 c4
3+22 c4

2−2 c4

(7)
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a61=
1
48

(
((1200 c7−780)c5

2+(−900 c7+540)c5+150 c7−90)c4
4+((−2100 c7+1410)c5

2+(1590 c7−974)c5−285 c7+175)c4
3+

((1380 c7−945)c5
2+(−1029 c7+645)c5+195 c7−123)c4

2+((−399 c7+279)c5
2+(291 c7−188)c5−57 c7+37)c4+(42 c7−30)c5

2+

(−30 c7+20)c5+6 c7−4)
(

c5c4(10 c4c5c7−5 c4c5−5 c4c7−5 c5c7+3 c4+3 c5+3 c7−2)(5 c4
2−5 c4+1)

)−1

a63=
180 c4

4c5+(−300 c5+90 c7−66)c4
3+((−90 c7+225)c5−81 c7+63)c4

2+((69 c7−87)c5+15 c7−12)c4−12 (−1+c7)c5

8 (6 c4−1)(10 c4c5c7−5 c4c5−5 c4c7−5 c5c7+3 c4+3 c5+3 c7−2)(5 c4
2−5 c4+1)

a64=−75
(

c4− 1
2

) (
(2 c4−2 c5)(10 c4c5c7−5 c4c5−5 c4c7−5 c5c7+3 c4+3 c5+3 c7−2)(6 c4−1)c4(5 c4

2−5 c4+1)((
(c7− 3

5 )c5
2+
(
− 9 c7

10 + 31
60

)
c5+

1
5 c7− 3

25

)
c4

3+

(
(− 7

6 c7+
3
4 )c5

2+
(

c7− 11
18

)
c5−

11 c7
50 + 5

36

)
c4

2

+

((
5 c7
12 −

17
60

)
c5

2+
(
− 33 c7

100 + 19
90

)
c5+

7 c7
100−

41
900

)
c4+

(
− 7 c7

150 +
1

30

)
c5

2+
(

1
30 c7− 1

45

)
c5−

c7
150+

1
225

)−1

a65=
(2 c5−1)(2 c4−1)(15 c4c7−9 c4−6 c7+4)

48 c5(10 c4c5c7−5 c4c5−5 c4c7−5 c5c7+3 c4+3 c5+3 c7−2)(c4−c5)

a71=
10 c7

c5(c4
2−c4+

1
5 )(c4+c5−1)c4

((
( 2

5−c5)c7
2+
(
− 1

4+c5
2+ 1

10 c5

)
c7− 4

5 c5
2+

7 c5
20

)
c4

4+
(
(− 2

5+c5)c7
3+(− 7

20−c5
2+c5)c7

2

+

(
− 9 c5

2

10 −
1
10 c5+

23
60

)
c7+

13 c5
2

10 −
187 c5

300

)
c4

3+

(
(− 7

5 c5+
3
5 )c7

3+
(
− 31

300+
7
5 c5

2− 3 c5
20

)
c7

2+

(
23 c5
150 −

11
60−

3 c5
2

20

)
c7−

7 c5
2

10 +
53 c5
150

)
c4

2

+

(
(− 7

25+
3
5 c5)c7

3+
(
− c5

100+
43
300−

3
4 c5

2
)

c7
2+

(
21 c5

2

50 −
13 c5

75 + 2
75

)
c7+

11 c5
2

100 −
17 c5
300

)
c4+

3 c7
25

((
− 2

3 c5+
1
3

)
c7

2+(c5
2− 2

9 )c7− 3
4 c5

2+
11 c5

36

)
a73=

90 c7
(c4+c5−1)(6 c4−1)(5 c4

2−5 c4+1)

(
c4

4c5+(c7
2− 5

3 c5−c7+
2
15 )c4

3+
(
− 7

6 c7
2+c5+

7
6 c7− 1

6

)
c4

2+

((
1
2 c5+

7
30

)
c7

2

+
(
− 1

2 c5− 7
30

)
c7− 1

6 c5+
1
30

)
c4− 2

15 c7(−1+c7)c5

)

a74=−
300 c7(c4−c7)

(2 c4−1)(c4+c5−1)(c4−c5)(6 c4−1)c4(5 c4
2−5 c4+1)

((
(c7− 3

5 )c5
2+
(

13
60+

1
5 c7−c7

2
)

c5+
2
5 c7

2+ 1
75−

4 c7
15

)
c4

4

+

((
− 47 c7

30 +1
)

c5
2+

(
− 1

3 c7+
47 c7

2

30 −
133
360

)
c5− 2

3 c7
2+

103 c7
225 −

7
300

)
c4

3+

((
53 c7

60 −
3
5

)
c5

2+
(

47 c7
300 −

5
6 c7

2+ 139
600

)
c5+

19 c7
2

50 −
79 c7
300

+ 7
600 )c4

2+

((
− 131 c7

600 + 47
300

)
c5

2+

(
9 c7

2

50 −
13 c7
600 −

113
1800

)
c5− 1

600−
13 c7

2

150 +
107 c7
1800

)
c4+

(
− 3

200+
1
50 c7

)
c5

2+

(
11

1800−
c7

2

75

)
c5+

c7
2

150−
c7

225


a75=

c7(c5−c7)(c4−c7)(60 c4c5c7−36 c4c5−24 c4c7−24 c5c7+15 c4+16 c5+12 c7−8)
12(c5−

1
2 )c5(c4−c5)(c4+c5−1)

a76=
−4 (2 c7−1)(c5−c7)(c4−c7)c7(5 c4c5−2 c4−2 c5+1)

(2 c5−1)(2 c4−1)(c4+c5−1)

a81=

((
(−300 c5

2+450 c5−150)c7
2+(240 c5

2−315 c5+135)c7+30 c5−30
)

c4
4+
(
(750 c5

2−1080 c5+390)c7
2+(−600 c5

2+817 c5

−370)c7+30 c5
2−120 c5+90)c4

3+
(
(−705 c5

2+972 c5−360)c7
2+(600 c5

2−815 c5+362)c7−60 c5
2+156 c5−96

)
c4

2+
(
(297 c5

2

−381 c5+138)c7
2+(−267 c5

2+351 c5−147)c7+36 c5
2−78 c5+42

)
c4+(−42 c5

2+51 c5−18)c7
2+(39 c5

2−50 c5+20)c7−6 (c5−1)2
)

(
300 c5c7(c4

2−c4+1/5)c4

)−1(
((c5−1)c7−c5+

9
10 )c4+(−c5+

9
10 )c7+

9 c5
10 −4/5

)−1

a83=
−90 c4

4c5+(150 c5−90 c7+78)c4
3+((45 c7−135)c5+93 c7−78)c4

2+((−57 c7+72)c5−18 c7+15)c4+12 (−1+c7)c5

(10 c4c5c7−10 c4c5−10 c4c7−10 c5c7+9 c4+9 c5+9 c7−8)(6 c4−1)(5 c4
2−5 c4+1)

a84=300 (−1+c4)
(
(2 c4−1)(c4−c7)(c4−c5)(10 c4c5c7−10 c4c5−10 c4c7−10 c5c7+9 c4+9 c5+9 c7−8)(6 c4−1)c4(5 c4

2−5 c4+1)
)−1((

(c7− 3
5 )c5

2+
(

49
60−

7
5 c7

)
c5+

2
5 c7− 19

75

)
c4

5+

((
−c7

2+ 11
10−

16 c7
15

)
c5

2+
(
− 511

360+
22 c7

15 + 7
5 c7

2
)

c5− 2
5 c7

2+ 379
900−

2
5 c7

)
c4

4

+

((
− 1

5 c7+
5
3 c7

2− 37
60

)
c5

2+

(
373 c7

900 −
143 c7

2

60 + 33
50

)
c5+

113 c7
2

150 −
113 c7

450 −
17
120

)
c4

3+

((
−c7

2+
347 c7

600 + 23
300

)
c5

2

+

(
− 271 c7

300 +
853 c7

2

600 + 1
45

)
c5−

73 c7
2

150 +
39 c7
100 −

109
1800

)
c4

2+

((
− 31 c7

150 +
51 c7

2

200 + 11
600

)
c5

2+

(
− 103 c7

2

300 +
533 c7
1800 −

1
18

)
c5+

29
900

+
73 c7

2

600 −
221 c7
1800

)
c4+

(
− 1

300−
7 c7

2

300 +
13 c7
600

)
c5

2+

(
− 1

36 c7+
1

150+
17 c7

2

600

)
c5−

c7
2

100 +
c7
90−

1
300

)

a85=−
(−1+c4)(c5−1)

2(c5−
1
2 )c5(c5−c7)(c4−c5)

((
(c4− 2

5 )c7− 3
5 c4+

4
15

)
c5

2+

(
(−c4+

2
5 )c7

2+
(

1
10 c4− 1

15

)
c7+

7 c4
20 −

2
15

)
c5+

(
1
2 c4− 3

10

)
c7

2

+
(
− 9 c4

20 + 1
3

)
c7+

1
10 c4− 1

10

)(
((−1+c4)c7−c4+

9
10 )c5+(−c4+

9
10 )c7+

9 c4
10 −

4
5

)−1

a86=
160 (−1+c4)(c5−1)

(2 c7−1)(10 c4c5c7−10 c4c5−10 c4c7−10 c5c7+9 c4+9 c5+9 c7−8)(2 c5−1)(2 c4−1)

(((
c5− 1

2

)
c4− 1

2 c5+
3
10

)
c7

2+
(
(− 5

4 c5+
7
10 )c4

+
7 c5
10 −

9
20

)
c7+

(
3
8 c5− 1

4

)
c4− 1

4 c5+
7

40

)
a87=−

(c5−1)(−1+c4)(c4+c5−1)(−1+c7)
20(c7−

1
2 )(c5−c7)(c4−c7)c7

(
((c5−1)c4−c5+

9
10 )c7+(−c5+

9
10 )c4+

9 c5
10 −

4
5

)−1

(8)

3.3. Parametric Method—Optimal Case

After generating the parametric method, we aimed to identify the optimal method
with the best performance. In order to achieve this, we selected different step-lengths and
integrated problem (1). The optimal values of the four coefficients are considered the ones
that yield higher accuracy results for all different step-lengths. The latter were chosen to be
∆t = {0.1, 0.04, 0.01}, so that they can yield results with an accuracy of different orders
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of magnitudes. These step-lengths return results of above 4, 6.5 and 10 accurate decimal
digits, respectively. These accuracy values were selected to be above average while still
allowing for a plethora of feasible solutions/coefficient combinations, and will later be
used as benchmarks. We are interested in the quadruples

(c2, c4, c5, c7), where c2, c4, c5, c7 ∈ [0, 1],

for which the method has the highest accuracy. The optimisation process is as follows:

1. We evaluate the accuracy at each grid point of the mesh defined by

ci = j ∆c, i = {2, 4, 5, 7}, j = 0, 1, . . . , C− 1, C =
1

∆c
+ 1, ∆c > 0.

In the first iteration, we choose the coefficient step-length ∆c = 0.1 and integration
step-length ∆t = 0.1, and identify the regions with maximum accuracy. We observe
that all high efficient quadruples appear to satisfy the constraint

c2 ≤ c4 ≤ c5 ≤ c7,

as is also the case with the majority of RK methods. Thus, for the subsequent iterations,
we impose this constraint in advance, which drastically reduces the computation cost
without sacrificing the accuracy.

2. For the next two iterations, we use ∆c = 0.1, together with ∆t = 0.04 and ∆t = 0.01,
and follow the procedure of step 1. We identify the intersection of all regions for
which a certain quadruple has a higher accuracy than its corresponding benchmark.

3. We repeat this process for ∆c = 0.01 combined with ∆t = {0.1, 0.04, 0.01}, as de-
scribed in step 1, but only within the regions narrowed down by step 2, i.e.,

(c2, c4, c5, c7) ∈ [0.01, 0.16]× [0.18, 0.22]× [0.31, 0.45]× [0.52, 0.92].

4. We run the process one last time for ∆c = 0.001 combined with ∆t = {0.1, 0.04, 0.01},
within the regions updated by step 3, i.e.,

(c2, c4, c5, c7) ∈ [0.001, 0.010]× [0.205, 0.213]× [0.435, 0.445]× [0.909, 0.915].

The optimal quadruple is primarily chosen with respect to the accuracy, and secon-
darily considering the robustness of the solution. The latter is expressed by the absence of
sensitivity of the solution when a coefficient value deviates from the optimal value. This is
the reason why no further local optimisation is needed and why we stop at three decimal
digits of accuracy for the optimal coefficient values.

The optimal values returned by the optimisation process are {c2 = 0.007 , c4 = 0.208,
c5 = 0.441, c7 = 0.915}. These can be exactly expressed as rational numbers

{
c2 = 7

1000 ,

c4 = 26
125 , c5 = 441

1000 , c7 = 183
200

}
. By substituting these values to the other coefficients, we

obtain the particular case that is optimal for this problem, as seen below in Table 2.

Table 2. The Butcher tableau of the optimised Runge–Kutta method.

7
1000

7
1000

1
6 − 229

126
125
63

26
125

1222
15625 0 2028

15625
441
1000

19009080531
114608000000 0 − 66139404093

68324000000
282673503
227382272

1
2

498423839357
3017837416104 0 − 33701852355

35356371844
60281311022875
49428207837912

10922552000
159518175579

183
200 − 711091869877829

844775568000000 0 588657911761
177642400000 − 37397696814038267

56562846567552000 − 96981681064
12666142125

70978718489
10498312500

1 − 144640010763881
19166802690126 0 61948580865

2548536443 − 2761988623890181125
796823971990899034 − 1484898545416000

23819350452933
2715651824886

53337237643 − 36691083000000
42192182210017

114713
2098278 0 0 17382812500

46429926543 − 512500000000
803168516241

1034962
1072443

1300000000
4807323563 − 149203

5644782
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3.4. Error and Stability Analysis

We perform local truncation error analysis on the method of Table 2, based on the
Taylor expansion series of the difference

ε = un+1
l,m − u(xl , ym, tn+1).

The principal term of the local truncation error is evaluated as

ε =
227406522263

6682354278516000
u(7)(x) h7,

which implies that while, locally, the order of accuracy is seven, globally, the order of the
new method is six (see [23] for explanation).

Regarding the stability of the method, following the methodology of Section 2.3, we
evaluated the stability polynomial of the method presented in Table 2. The polynomial is
given by

R = 1 + z +
1
2

z2 +
1
6

z3 +
1
24

z4 +
z5

120
+

z6

720
+

156922488841 z7

954622039788000
+

948518207 z8

39775918324500
.

The stability analysis was carried out numerically in a mesh around the origin with
∆x = ∆y = 0.01, and the stability region is shown in Figure 1, as the grid points that
satisfy Definition 2. Furthermore, with a similar procedure performed on the real axis and
according to Definition 1, the real stability interval is (−3.99, 0).

-5 -4 -3 -2 -1 0 1

Re(v)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
(v

)

Figure 1. Stability region of the new Runge–Kutta method of Table 2.
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4. Numerical Experiments
4.1. Theoretical Solution and Mass Conservation Law

Equation (1) has a dark soliton solution given by

u(x, y, t) =
√
−γ

c
tanh

(√
γ

2β

(
k1x + l1y− 2at + ξ0

))
ei(k2x+l2y−c2t+η0) (9)

where β = ak2
1 + bl2

1 and γ = c2 + d− ak22 − bl2
2 [7]. We also choose, as in [7],

a = 1, b = 1, c = −1, d = 1, k1 = 1, k2 = 1, l1 = 0, l2 = 0, c2 = 2, ξ0 = 0, η0 = 0. (10)

For this particular case, the theoretical solution becomes

u(x, y, t) =
√

2 tanh(x− 2 t)ei(x−2 t) (11)

and ∣∣u(x, y, t)
∣∣2 = 2

∣∣tanh(x− 2 t)
∣∣2,

which is called density.
Furthermore, the solution u(x, y, t) of Equation (1) satisfies the mass conservation

law [4]:

M[u](t) =
∫
R2

|u(x, y, t)|2dxdy ≡ M[u](0). (12)

4.2. Numerical Solution

We performed a numerical computation of problem (1), utilising the method of lines
for (x, y, t) ∈ [−20, 30]× [−1, 1]× [0, 5]. We used Equation (11) for both the initial condition
and the boundary conditions. Regarding the semi-discretisation of uxx and uyy, we chose a
combination of 10th-order forward, central and backward finite difference schemes. Next,
we defined the maximum absolute solution error and the maximum relative mass error of
the numerical computation.

The maximum absolute solution error is given by

max
l,m,n

(|un
l,m − u(xl , ym, tn)|). (13)

where un
l,m denotes the numerical approximation of u(xl , ym, tn).

The maximum relative mass error over the region D is given by

max
n

∣∣∣∣∣Mn
D −M0

D
M0

D

∣∣∣∣∣
, (14)

where Mn
D is the numerical approximation of M[u](tn) over the region D = [−20, 30]×

[−1, 1] for t ∈ [0, 5], which provides a sufficiently constant density outside of it, as seen in
Figure 2.

In Table 3, the maximum absolute solution error and the maximum relative mass error
for different step sizes are shown. The ∆t is the maximum value that yields a stable solution
for the preselected values of ∆x and ∆y.

Table 3. The solution error and the mass relative error for different step sizes.

∆x ∆y ∆t Solution Error Mass Error

0.5 0.5 0.14 2.67 × 10−3 9.38× 10−6

0.2 0.2 0.024 1.20× 10−6 1.73× 10−9

0.1 0.1 0.006 1.72× 10−9 2.59× 10−12
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In fact, the errors in Table 3 correspond to the total error of both the finite difference
schemes for the semi-discretisation along x and y, and the integrator along time t. For the
purpose of eliminating the semi-discretisation error and to analyse the performance of the
time integrator alone, we used the second derivatives uxx, uyy of the solution (11) instead
of applying the finite difference schemes. We used ∆x = ∆y = 0.1 and ∆t = 0.01, and the
results are presented in Figures 2–7.

The numerical solution of the dark soliton, namely,
∣∣u(x, y, t = 5)

∣∣2, <
(
u(x, y, t = 5)

)
and =

(
u(x, y, t = 5)

)
when solved by the new method of Table 2, are presented in Figure 2,

Figure 3 and Figure 4 respectively. As expected from the physical properties of the dark
soliton, this preserves its form while moving from x = 0 (for t = 0) to x = 10 (for t = 5).

Figure 2. The graph of
∣∣u(x, y, t = 5)

∣∣2, evaluated numerically.

Figure 3. The graph of <
(
u(x, y, t = 5)

)
, evaluated numerically.
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Figure 4. The graph of =
(
u(x, y, t = 5)

)
, evaluated numerically.

Furthermore, we present the propagation of the dark soliton, namely
∣∣u(x, y = 0, t)

∣∣2,
<
(
u(x, y = 0, t)

)
and =

(
u(x, y = 0, t)

)
when solved by the new method, in Figure 5,

Figure 6 and Figure 7, respectively.

Figure 5. The graph of
∣∣u(x, y = 0, t)

∣∣2, evaluated numerically.

4.3. Error

We evaluated the error of the numerical approximation compared to the theoretical
solution. We used two different implementations: in the first one, we used the second
derivatives of the known solution and we chose ∆x = ∆y = 0.1 and ∆t = 0.01; in the
second one, we used finite difference schemes for the spatial semi-discretisation and we
chose ∆x = ∆y = 0.1 and ∆t = 0.006.
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Figure 6. The graph of <
(
u(x, y = 0, t)

)
, evaluated numerically.

Figure 7. The graph of =
(
u(x, y = 0, t)

)
, evaluated numerically.

More specifically, we present

• The maximum, along tn ∈ [0, 5], solution error max
n

(|un
l,m − u(xl , ym, tn)|) without and

with the use of finite difference schemes in Figure 8 and Figure 9, respectively;
• The maximum, along ym ∈ [−1, 1], solution error max

m
(|un

l,m − u(xl , ym, tn)|) without

and with the use of finite difference schemes in Figure 10 and Figure 11, respectively;
• The maximum, along xl ∈ [−20, 30], solution error max

l
(|un

l,m − u(xl , ym, tn)|) without

and with the use of finite difference schemes in Figure 12 and Figure 13, respectively;

• The mass error Mn
D−M0

D
M0

D
versus tn = [0, 5] without and with the use of finite difference

schemes in Figure 14 and Figure 15 respectively.

It is important to understand that, while Figures 8, 10, 12 and 14 represent the error of
the time-stepper alone, this is not the case for Figures 9, 11, 13 and 15, where we observe
the total error of the time-stepper in addition to the error of the space semi-discretisation
finite difference scheme. Furthermore, the error of the finite difference scheme is dominant,
and this is why the error in the second case is larger by approximately two orders of
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magnitude. We observe that, without the use of finite difference schemes for the spatial
semi-discretisation, the maximum error is located near the area of the initial centre of the
dark soliton x = 0, without being propagated along with the dark soliton centre itself,
as seen in Figure 8. However, with the use of finite difference schemes for spatial semi-
discretisation, the error is propagated differently along x and y, as seen in Figure 9, mainly
along the track of the soliton peak x ∈ [0, 10]. Regarding the error propagation in time, the
error without the finite difference schemes gradually increases, as seen in Figures 10 and 12,
while with the finite difference schemes it rapidly increases in the first time steps, then
slightly decreases and stays at the same order of magnitude with small oscillations, as seen
in Figures 11 and 13. This is due to the effect of the space semi-discretisation scheme on the
error, in combination with the time integrator. The oscillations are of a numerical nature
and are a known phenomenon caused by the linear finite difference schemes applied in the
spatial semi-discretisation. The same oscillations are also observed in the mass error with
finite difference schemes, as seen in Figure 15, but are absent in Figure 14, where no finite
difference schemes are applied.

Figure 8. The maximum, along t, absolute error of the solution versus x and y without the use of
finite difference schemes for the spatial semi-discretisation.

Figure 9. The maximum, along t, absolute error of the solution versus x and y with the use of finite
difference schemes for the spatial semi-discretisation.
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Figure 10. The maximum, along y, absolute error of the solution versus t and x without the use of
finite difference schemes for the spatial semi-discretisation.

Figure 11. The maximum, along y, absolute error of the solution versus t and x with the use of finite
difference schemes for the spatial semi-discretisation.

Figure 12. The maximum, along x, absolute error of the solution versus t and y without the use of
finite difference schemes for the spatial semi-discretisation.
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Figure 13. The maximum, along x, absolute error of the solution versus t and y with the use of finite
difference schemes for the spatial semi-discretisation.

Figure 14. The mass error versus t without the use of finite difference schemes for the spatial
semi-discretisation.

Figure 15. The mass error versus t with the use of finite difference schemes for the spatial semi-
discretisation.
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4.4. Efficiency

We measured the efficiency of the new method with other methods from the literature
and present the results in Figure 16 and Figure 17.

The compared methods are presented below:

• The new parametric method (2)
• The method of Papageorgiou et al. [24]
• The method of Kosti et al. (I) [9]
• The method of Dormand et al. [23]
• The method of Kosti et al. (II) [10]
• The method of Fehlberg et al. [23]
• The method of Triantafyllidis et al. [11]

Figure 16. The maximum absolute error of the solution versus the function evaluations, for all
compared methods.

Figure 17. The maximum absolute error of the solution versus the CPU time, for all compared methods.

The efficiency of all compared methods in terms of the maximum absolute solution
error, as expressed by (13), versus the function evaluations is presented in Figure 16.
The order of accuracy of each method is represented by the slope of its corresponding
efficiency line. Indeed, we verify that, except for two methods with fifth order and, thus,
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a smaller slope, five methods have sixth order, for which the lines are almost parallel.
Additionally, we present the maximum absolute solution error versus the CPU time in
seconds in Figure 17. In order to avoid fluctuations, we repeated each solution 10 times
and used the median CPU time. We observe that the two graphs are similar, as the main
contributor to the total computation time is the function evaluations. Furthermore, we
see that the new optimised method is more efficient than all the other methods for all
error orders.

5. Discussion

The numerical results are robust, exhibiting high efficiency among all step size values,
with and without the use of finite difference schemes for the spatial semi-discretisation.
Furthermore, the error propagation in time is typical of other explicit RK methods. The
time integrator error is better showcased when no finite difference schemes are used, as
in the case with finite difference schemes the error of the spatial discretisation method
is dominant.

In general, the development of new RK methods that are more efficient than estab-
lished methods in the literature is a challenging task, as one step of the method construction
involves the solution of a system of numerous highly nonlinear equations. This is espe-
cially true for high-order methods that require a high number of stages, where the only
way to solve the system is to use simplifying assumptions and/or fixed values for a set
of coefficients. To our knowledge, there have been no explicit RK methods with order
six or higher produced without the use of pre-determined coefficient values or simplifying
assumptions. The solution with hand calculations is impossible, even for methods that
use some assumptions, and even when using computer algebra software, as the solution
is limited by the available computer memory and computational power. Leaving some
variables free until the end of the system solution increases the complexity even further, but
allows for the parameterisation of the method. Here, we managed to find a combination of
a minimum number of fixed coefficients that still yields a solution with four free coefficients.
The latter provide the method with some adaptability due to the four degrees of freedom.
This versatility permits further optimisation, allowing for the construction of a method
tailored to the nonlinear Schrödinger equation. The proposed methodology is general and
can be applied to many problems, without being limited to linear problems or problems
with oscillatory/periodic solutions.

Although the methodology offers satisfactory results, it also has limitations, namely
the need to manually select the initially fixed coefficients and, most importantly, the actual
fixed coefficients themselves, which hinder the optimisation potential of the method’s
accuracy. Ideally, we aim to develop an optimisation process that concurrently maximises
the number of free coefficients, minimises the number of fixed coefficients, and leads to a
solvable system. Additionally, in our future work, we could combine this technique with
other established techniques for better results, e.g., fitting techniques for problems with
periodic solutions.

6. Conclusions

In this paper, we investigated the numerical solution of the (2+1)-dimensional non-
linear Schrödinger equation. We developed a parametric sixth-order eight-stage explicit
Runge–Kutta method with four of their coefficients treated as free parameters/degrees
of freedom, and we provided the full process of constructing the method and the explicit
formulas of all other coefficients. We optimised the new parametric method to obtain the
optimal Runge–Kutta method that performs efficiently by numerical testing. We performed
stability analysis, and we utilised an exact dark soliton solution to measure the global error
and the mass error of the new method. We also compared the efficiency of the new method
and other numerical integrators, revealing the superiority of the new method.
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