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ABSTRACT

In this paper, we derived a semi-implicit hybrid method (SIHM) which
is a two-step method to solve special second order ordinary differential
equations (ODEs). The SIHM which is three-stage and fourth-order is
then trigonometrically fitted and denoted by TF-SIHM3(4). The method
is constructed using trigonometrically fitted properties instead of using
phase-lag and amplification properties. Numerical integration show that
TF-SIHM3(4) is more accurate in term of accuracy compared to the
existing explicit and implicit methods of the same order.

Keywords: Semi-Implicit Hybrid Method, Two-step Methods, Oscilla-
tory problems, Trigonometrically-fitted.
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1. Introduction

A lot of attention has been focused on the study of new methods for solving
the initial value problem (IVP) for special second order ODE in the form of

y′′ = f(ξ, y) , y(ξ0) = y0 , y′(ξ0) = y′0, (1)

in which the solution is periodic or oscillating in nature. This type of ODE
problems arise in the field of applied science such as satellite tracking, mechan-
ics, quantum chemistry, molecular dynamic, electronics, astrophysics and so
forth.

The popular methods that have been used to solve (1) numerically are
Runge-Kutta (RK) method, multistep method, hybrid method, Runge-Kutta
Nyström (RKN) method and many more. Many authors have developed and
modified these methods by focusing on constructing methods with reduced dis-
persion and dissipation to enhance the accuracy of the methods. The analysis
of dispersion error was first introduced by Bursa and Nigro (1980); dissipation
(amplification)error is define as the distance of the computed solution from the
cyclic solution and dispersion error (phase-lag) is the difference of the angle be-
tween the computed solution and the exact solution. D’Ambrosio et al. (2012)
usedthe exponentially fitting technique in developing RK methods for solving
ODE. Senu et al. (2014) have derived an explicit RK method with dispersion er-
ror of order infinity based on the method derived in Dormand (1996)for solving
first order ODEs.

While for RKN methods, Van de Vyver (2007) has proposed a symplectic
RKN method with minimize dispersion error. Many authors developed diag-
onally implicit RKN (DIRKN) methods with dispersion of higher order,such
work can be seen in Van de Houwen et al. (1987), Senu et al. (2010), Senu et
al. (2011), and Moo et al. (2014). In addition, by modifying certain coefficients
ofthe existing RKN methods; some authors such as Papadopoulos et al. (2009)
introduced a phase-fitted RKN method, while Kosti et al. (2012) developed
optimized RKN method and Moo et al. (2013) also develop phase-fitted and
amplification-fittedRKN methods. Zhang et al. (2013) developeda fifth-order
trigonometrically fitted RKN method to solve radial Schrödinger equation and
oscillatory problems. All the work mentioned above provedthat, having higher
order of dispersion and dissipation improve the accuracy of a method.

On the other hand, Franco (1995) has proposed that (1) can be solved
using a special multistep methods or explicit hybrid algorithms for solving
second order ODEs. Later, Franco (2006) proposed explicit two-step hybrid
methods up to order six for solving second order IVPs using the local truncation
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error and order condition developed by Coleman (2003). Several researcher
such as Samat (2012), Fang and Wu (2008), Ahmad et al. (2013), and Senu
et al. (2015), also work on developing and improving hybrid method using
dispersion and dissipation properties for solving second order ODEs. Fang
and Wu (2008), Ahmad et al. (2013), and Senu et al. (2015) have constructed
a new kind of trigonometrically fitted hybrid method, zero-dissipative phase-
fitted hybrid methods, and optimized hybrid methods respectively using the
existing hybrid methods in Franco (2006). Other work on semi-implicit hybrid
methods (SIHMs) with higher order of dispersion and dissipation relation can
be seen in Ahmad et al. (2013) followed by Jikantoro et al. (2015) for solving
oscillatory problems.

In order to use RK method to solve (1), the problem needs to be reduced to
a system of first order ODEs. Therefore, it is more efficient if (1) can be solved
directly using methods such as direct multistep method, RKN method and
hybrid method. Hence in this paper, we are going to develop a new three-stage
fourth-order SIHM then apply the trigonometrically fitting technique which
is similar to the approach used byFang and Wu (2008)for solving oscillatory
problems. The new method will be compared with several existing explicit
and also implicit methods to prove that it is more efficient than the existing
methods.

2. Derivation of New Trigonometrically Fitted
Semi- Implicit Hybrid Method

2.1 Development of The New Semi-Implicit Hybrid Meth-
ods

The general formula of semi-implicit hybrid method for solving IVPs is
given as

Yi = (1 + ci)yn − ciyn−1 + h2
s∑
i=1

aijf(ξn + cjh, Yj) (2)

yn+1 = 2yn − yn−1 + h2
s∑
i=1

bif(ξn + cih, Yi) (3)

where i = 1, · · · , s, and i ≥ j. The nodes are c1 = −1,and c2 = 0. We formulate
equations (2) and (3) as below:
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Y1 = yn−1, Y2 = yn, (4)

Yi = (1 + ci)yn − ciyn−1 + h2
s∑
i=1

aijf(ξn + cjh, Yj), (5)

yn+1 = 2yn − yn−1 + h2

(
b1fn1

+ b2fn +

s∑
i=3

bif(ξn + cih, Yi)

)
(6)

where i = 3, · · · , s, while functions fn−1 = f(ξn−1, yn−1) and fn = f(ξn, yn).
The coefficients of bi, ci , and aij can be written in Table 1. The coefficients
of the diagonal element (γ) are always equal for this method.

Table 1: s-stage semi-implicit hybrid methods

−1 0
0 0 0
c3 a3,1 a3,2 γ
...

...
...

. . . . . .
cs as,1 as,2 · · · as,s−1 γ

b1 b2 · · · bs−1 bs

In this section, we derive a three stage fourth-order SIHM based on the order
conditions, simplifying conditions and by minimizing of the error constant Cp+1

of the method. The error constant is defined by

Cρ+1 = ‖eρ+1(ξ1), · · · , eρ+1(ξk)‖2 (7)

where Coleman (2003) define that k is the number of order ρ+2(ρ(ξi) = ρ+2),
for the ρth− order method and eρ+1(ti) is the local truncation error. According
to Coleman (2003), the conditions up to order five are listed as follows:

Order2

s∑
i=1

bi = 1. (8)

Order3

s∑
i=1

bici = 0. (9)
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Order4

s∑
i=1

bic
2
i =

1

6
,

s∑
i=1

bic
2
i =

1

12
. (10)

Order5

s∑
i=1

bic
2
i = 0,

s∑
i=1

biciaij =
1

12
,

s∑
i=1

biaijci = 0. (11)

where value of i ≥ j ≥ k . The methods also need to satisfy the simplifying
condition for hybrid method which is:

s∑
i

aij =
c2i + ci

2
, i = 3, · · · , s. (12)

First, we use the algebraic order conditions up to order four (8)-(10), and also
equation of simplifying condition (12) to derive the new method and then solved
the equations simultaneously. We get the solution in term of free parameters
a32, a33, and c3 as follows:

a31 = −a32 − a33 +
c3
2

+
c23
2
, b1 =

1

6(1 + c3)
, b2 =

6c3 − 1

6c3
, b3 =

1

6c3(1 + c3)

By assuming coefficient of a32 = 19
24 , a33 = 11

600 , and c3 = 9
10 ; we minimize the

error constant from (7).

‖τ (5)‖2 = 1.88398× 10(−2). (13)

where ‖τ (5)‖2 is the norms of the principal local truncation error coefficient
for the fifth order method . Hence, we have the method semi-implicit hybrid
method with three-stage fourth-order denoted as SIHM3(4) which is given in
TABLE (2).

2.2 Adaption of Trigonometrically Fitted for Semi-Implicit
Hybrid Method

To apply the trigonometrically fitted properties to SIHM, we consider SIHM3(4)
in TABLE (2). The required internal stage (2) and the updated stage (3) are
integrated exactly using the linear combination of the function sin(vξ), cos(vξ)
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Table 2: The method SIHM3(4)

−1 0
0 0 0
9
10

9
200

19
24

11
600

5
57

22
27

50
513

for v ∈ R. Therefore, we get the following equations:

cos(c3ψ) = 1 + c3 − c3 cos(ψ) (14)
−ψ2 (a31 cos(ψ) + a32 + a33 cos(c3ψ))

sin(c3ψ) = c3 sin(ψ) + ψ2(a31 sin(ψ)− a33 sin(c3ψ)) (15)
2 cos(ψ) = 2− ψ2(b1 cos(ψ) + b2 + b3 cos(c3ψ)) (16)
b1 sin(ψ) = b3 sin(c3ψ) (17)

where ψ = vh as v is fitted frequency and h is step size. By solving the equation
(14) and (15) simultaneously with choice of coefficients c3 = 9

10 and a32 = 19
24 ,

we obtain a31 and a33 in term of ψ as below:

a31 = − 1

120

E

ψ2K
,

a33 = − 1

60

F

ψ2
(18)

where

E = 28311552 cos

(
ψ

10

)18

− 120324096 cos

(
ψ

10

)16

+ 212336640 cos

(
ψ

10

)14

−201277440 cos
(
ψ

10

)12

+ 110702592 cos

(
ψ

10

)10

− 35641344 cos

(
ψ

10

)8

+24320 cos

(
ψ

10

)8

ψ2 + 6488832 cos

(
ψ

10

)6

− 42560 cos

(
ψ

10

)6

ψ2

−624960 cos
(
ψ

10

)4

+ 22800 cos

(
ψ

10

)4

ψ2 − 3800 cos

(
ψ

10

)2

ψ2

+28560 cos

(
ψ

10

)2

+ 95ψ2 − 336,
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F = −60 + 15728640 cos

(
ψ

10

)18

− 66846720 cos

(
ψ

10

)16

+ 117964800 cos

(
ψ

10

)14

−111820800 cos
(
ψ

10

)12

+ 61501440 cos

(
ψ

10

)10

− 58368 cos

(
ψ

10

)9

+24320 cos

(
ψ

10

)9

− 19768320 cos

(
ψ

10

)8

+ 116736 cos

(
ψ

10

)7

−48640 cos
(
ψ

10

)7

ψ2 + 3548160 cos

(
ψ

10

)6

+ 31920 cos

(
ψ

10

)5

ψ2

−76608 cos
(
ψ

10

)5

− 316800 cos

(
ψ

10

)4

+ 18240 cos

(
ψ

10

)3

−7600 cos
(
ψ

10

)3

ψ2 + 10800 cos

(
ψ

10

)2

− 1140 cos

(
ψ

10

)
+ 475

(
ψ

10

)
ψ2,

K = −1 + 262144 cos

(
ψ

10

)18

− 1114112 cos

(
ψ

10

)16

+ 1966080 cos

(
ψ

10

)14

−1863680 cos
(
ψ

10

)12

+ 1025024 cos

(
ψ

10

)10

− 329472 cos

(
ψ

10

)8

+59136 cos

(
ψ

10

)6

− 5280 cos

(
ψ

10

)4

+ 180 cos

(
ψ

10

)2

.

Then, we solve the linear system (16)-(17) with an additional order condition
(8) for three-stage method which is

b1 + b2 + b3 = 1 (19)

to get b-values with choice of coefficient c3 = 9
10 . We get the value for b as

below:

b1 = −1

2

Q

Mψ2
,

b2 =
1

2

S

N1N2ψ2
, (20)

b3 = − T

Pψ2

where
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Q = 16384 cos

(
ψ

10

)14

− 8192 cos

(
ψ

10

)13

− 53248 cos

(
ψ

10

)12

+ 24576 cos

(
ψ

10

)11

+67584 cos

(
ψ

10

)10

− 28160 cos

(
ψ

10

)9

− 42240 cos

(
ψ

10

)8

+ 15360 cos

(
ψ

10

)7

+13440 cos

(
ψ

10

)6

− 4000 cos

(
ψ

10

)5

+ 16 cos

(
ψ

10

)4

ψ2 − 2064 cos

(
ψ

10

)4

+432 cos

(
ψ

10

)3

− 8 cos

(
ψ

10

)3

ψ2 + 148 cos

(
ψ

10

)2

− 12 cos

(
ψ

10

)2

ψ2

−16 cos
(
ψ

10

)
+ 4 cos

(
ψ

10

)
ψ2 − 4 + ψ2,

S = 1024 cos

(
ψ

10

)10

+ 512 cos

(
ψ

10

)9

− 2560 cos

(
ψ

10

)8

− 256 cos

(
ψ

10

)8

ψ2

−1024 cos
(
ψ

10

)7

ψ2 + 2240 cos

(
ψ

10

)6

+ 448 cos

(
ψ

10

)6

ψ2 + 672 cos

(
ψ

10

)5

−800 cos
(
ψ

10

)4

− 240 cos

(
ψ

10

)4

ψ2 − 160 cos

(
ψ

10

)3

ψ2 + 100 cos

(
ψ

10

)2

+40 cos

(
ψ

10

)2

ψ2 + 10 cos

(
ψ

10

)
ψ2 − 4− ψ2

T = 16384 cos

(
ψ

10

)14

− 61440 cos

(
ψ

10

)12

+ 92160 cos

(
ψ

10

)10

− 70400 cos

(
ψ

10

)8

+28800 cos

(
ψ

10

)6

+ 16 cos

(
ψ

10

)4

ψ2 − 6064 cos

(
ψ

10

)4

+ 580 cos

(
ψ

10

)2

−20 cos
(
ψ

10

)2

ψ2 − 20 + 5ψ2

N1 = 16 cos

(
ψ

10

)5

− 8 cos

(
ψ

10

)4

− 20 cos

(
ψ

10

)3

+ 8 cos

(
ψ

10

)2

+ 5 cos

(
ψ

10

)
− 1,

N2 = 1− 12 cos

(
ψ

10

)2

+ 16 cos

(
ψ

10

)4

,

M = 8192 cos

(
ψ

10

)14

− 4096 cos

(
ψ

10

)13

− 26624 cos

(
ψ

10

)12

+ 12288 cos

(
ψ

10

)11
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+33792 cos

(
ψ

10

)10

− 14080 cos

(
ψ

10

)9

− 21120 cos

(
ψ

10

)8

+ 7680 cos

(
ψ

10

)7

+6720 cos

(
ψ

10

)6

− 2016 cos

(
ψ

10

)5

− 1016 cos

(
ψ

10

)4

+ 228 cos

(
ψ

10

)3

+62 cos

(
ψ

10

)2

− 9 cos

(
ψ

10

)
− 1,

P = cos

(
ψ

10

)14

− 28672 cos

(
ψ

10

)12

+ 39424 cos

(
ψ

10

)10

− 26880 cos

(
ψ

10

)8

+9408 cos

(
ψ

10

)6

− 16 cos

(
ψ

10

)5

− 1568 cos

(
ψ

10

)4

+ 20 cos

(
ψ

10

)3

+98 cos

(
ψ

10

)2

− 5 cos

(
ψ

10

)
− 1.

We transform the above formulae into Taylor series expansions as below:

a31 =
9

200
− 189

12500
ψ2 − 19321

2500000
ψ4 − 33394877

11250000000
ψ6 +O(ψ8), (21)

a32 =
11

600
− 7917

400000
ψ2 − 658851

80000000
ψ4 − 60824490931

20160000000000
ψ6

+O(ψ8), (22)

b1 =
5

57
+

23

4560
ψ2 +

158653

5774560000
ψ4 +

2003803

114912000000
ψ6 +O(ψ8), (23)

b2 =
22

27
− 49

6480
ψ2 − 72973

272160000
ψ4 − 1383449

163296000000
ψ6 +O(ψ8), (24)

b3 =
50

513
+

31

12312
ψ2 − 4139

517104000
ψ4 − 556343

62052480000
ψ6 +O(ψ8). (25)

The values of a31, a32, b1, b2, and b3 are constants for constant v and h.
This new method is denoted as trigonometrically fitted three-stage fourth-order
semi-implicit hybrid method (TF-SIHM3(4)).

3. Problems Tested and Numerical Integrations

The new method is tested using set of linear and nonlinear test problems in
literature. Methods are tested for large interval [0, 10000] to indicate that the
new TF-SIHM3(4) is suitable for integrating oscillatory problems. We evaluate
the efficiency using absolute error which is defined by

Absolute error = max|y(ξn)− yn|
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where y(ξn) is the exact solution and yn is the computed solution. The problems
are listed as below:

PROBLEM 1 (Inhomogeneous system in Lambert and Watson (1976))

d2y1(ξ)

dξ2
= −v2y1(ξ) + v2f(ξ) + f”(ξ),

y1(0) = a+ f(0), y
′

1(0) = f
′
(0),

d2y2(ξ)

dξ2
= −v2y2(ξ) + v2f(ξ) + f”(ξ),

y2(0) = f(0), y
′

2(0) = va+ f
′
(0),

Analytical solution is given as y1(ξ) = a cos(vξ) + f(ξ) and y2(ξ) = a sin(vξ) +
f(ξ). The value of f(ξ) is equal to e(−0.05ξ) , v = 20 and a = 0.1.

PROBLEM 2 (Inhomogeneous system in Franco (2006))

y′′(ξ) =

 101
2 − 99

2

− 99
2

101
2

 y(ξ) = δ

 93
2 cos(2ξ) − 92

2 sin(2ξ)

93
2 sin(2ξ) − 92

2 cos(2ξ)


y(0) =

(
−1 + δ

1

)
, y′(0) =

(
−10

10 + 2δ

)
, δ = 10−3.

The Eigen-value of the problem are v = 10 and v = 2. The fitted frequency is
choose to be v = 10 because it is dominant than v = 2. The analytical solution
is given by

y(ξ) =

(
− cos(10ξ)− sin(10ξ) + δ cos(2ξ)
cos(10ξ) + sin(10ξ) + δ cos(2ξ)

)

PROBLEM 3 (Homogeneous studied in Chakravarti and Worland (1971))

y′′(ξ) = −y(ξ), y(0) = 0, y′(0) = 1.

The exact solution is y(ξ) = sin(ξ) and the fitted frequency is v = 1.

PROBLEM 4 (Inhomogeneous equation studied in Papadopoulos et al.
(2009))

y′′(ξ) = −v2y(ξ) + (v2 − 1) sin(ξ), y(0) = 1, y′(0) = v + 1.

The fitted frequency is v = 10. The analytical solution is y(ξ) = cos(vξ) +
sin(vξ) + sin(ξ).
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PROBLEM 5 (Two-Body problem studied in Papadopoulos et al. (2009))

y′′1 (ξ) =
−y1(ξ)
r3

, y′′2 (ξ) =
−y2(ξ)
r3

(26)

where r
√
y21 + y22 =, y1(0) = 1, y2(0) = 0, y′1(0) = 1, y′2(0) = 0 , and fitted

frequency, v = 1. The analytical solutions are y1(ξ) = cos(ξ) and y2(ξ) =
sin(ξ).

The notations that are used in Figure 1-5:

1. TF-SIHM3(4):Trigonometrically-fitted three-stage fourth-order Semi-implicit
hybrid method developed in this paper.

2. SIHM3(4):Three-stage fourth-order SIHM developed in this paper.

3. E-HM3(4):Explicit three-stage fourth-order hybrid method derived by
Franco (2006).

4. RKN4:Explicit three-stage fourth-order RKN by Hairer et al. (2010).

5. DIRKN3(4):Three-stage fourth- order DIRKN in Senu et al. (2010).

6. PFRKN4(4):Phase-fitted explicit four-stage fourth-order RKN by Pa-
padopoulos et al. (2009).

7. DIRKN(HS):Three-stage fourth-order DIRKN derived in Sommeijer (1987).

In analyzing the numerical results, the logarithm of the maximum global
error are plotted against the CPU time taken in second for all the meth-
ods. From Figures 1-5, we observed that TF-SIHM3(4) is the most efficient

Figure 1: The efficiency curves for problem 1 with h = 0.125

2i
, for i = 2, ..., 6
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method for integrating second order oscillatory ODEs, followed by PFRKN4(4),
DIRKN3(4), E-HM3(4), RKN4, DIRKN(HS), and SIHM3(4). This show that
Trigonometrically-fitting the method improve the accuracy of the original method,

Figure 2: The efficiency curves for problem 2 with h = 0.125

2i
, for i = 1, ..., 5

Figure 3: The efficiency curves for problem 3 with h = 0.125

2i
, for i = 2, ..., 6

Figure 4: The efficiency curves for problem 4 with h = 0.125

2i
, for i = 3, ..., 7
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SIHM3(4). Even though the new TF-SIHM3(4) is a semi- implicit method and
fairly expensive in terms of computational time, the method is noticeably better
in accuracy compared to other explicit and implicit methods .

4. Conclusion

In this research,atrigonometrically fitted three-stage fourth-order semi-implicit
hybrid method denoted as TF-SIHM3(4) is constructed and presented. The
new developedmethod is suitable for solving either linear or nonlinear oscil-
latory problems. From the result shown in Figures1-5, we can conclude that
TF-SIHM3(4) is very efficient in term of accuracy compared to other well-
known existing implicit and explicit methods of the same order in the scientific
literature.

References

Bursa, L. and Nigro, L. (1980). A one-step method for direct integration of
structural dynamic equations. Intern J. Numer. Methods, 15:685–699.

D’Ambrosio, R. Ferro, M. and Paternoster B. (2012). Trigonometrically fit-
ted two-step hybrid methods for special second order ordinary differential
equations. Mathematics and computers in simulation, 81:1068–1084.

Dormand, J. R. (1996). Numerical Methods for Differential Equations. CRC
Press, Inc., Florida.

Senu, N. Kasim, I. A. Ismail, F. and Bachok N.(2014). Zero-dissipative explicit
runge-kutta method for periodic initial value problems. International Journal

Figure 5: The efficiency curves for problem 5 with h = 0.125

2i
, for i = 0, ..., 4

Malaysian Journal of Mathematical Sciences 157



S.Z. Ahmad, F. Ismail, and N. Senu

of Mathematical, Computational, Natural and Physical Engineering, (9). 8:
1189–1192

Van de Vyver, H. (2007). A symplectic runge-kutta- nyström method with
minimal phase-lag. Physics Letters A, 367:16–24.

Van der Houwen, P. J. and Sommeijer, B. P.(2007). Explicit Runge-Kutta
(-Nyström) methods with reduced phase errors for computing oscillating so-
lutions. SIAM Journal on Numerical Analysis, 24:595–617.

Senu, N. Suleiman, M. Ismail, F. and Othman M.(2010). A fourth-order diago-
nally implicit Runge-Kutta- Nyström method with dispersion of high order.
ASM’10 Proceedings of the 4th International Conference on Applied Mathe-
matics, simulation, modeling, ISBN: 978-960-474-210-3. 78–82.

Senu, N. Suleiman, M. Ismail, F. and Othman M.(2011). A Singly Diagonally
Implicit Runge-Kutta Nyström Method for Solving Oscillatory Problems.
Proceeding of the International Multi Conference of Engineers and Computer
Scienticts, ISBN: 978-988-19251-2-1.

Moo, K. W. Senu, N. Ismail, F. and Suleiman M. (2014). Zero-
Dissipative Phase-Fitted Fourth Order Diagonally Implicit Runge-Kutta-
Nyström Method for Solving Oscillatory Problems. Mathematical Problems
in Engineering, 2014:1–8.

Papadopoulos, D. F. Anastassi, Z. A. and Simos T.E. (2009). A phase-fitted
Runge-Kutta Nyström method for the numerical solution of initial value
problems with oscillating solutions. Journal of Computer Physics Commu-
nications, 180:1839–1846.

Kosti, A. A. Anastassi, Z. A. and Simos T.E. (2012). An optimized explicit
Runge-Kutta Nyström method for the numerical solution of orbital and re-
lated periodical initial value problems. Computer Physics Communications,
183:470–479.

Moo, K. W. Senu, N. Ismail, F. and Suleiman M. (2013). New phase-fitted
and amplification-fitted fourth-order and fifth-order Runge-Kutta-Nyström
methods for oscillatory problems. Journal of Abstract and Applied Analysis,
2013:1–9.

Zhang, Y. Che, H. Fang, Y. and You X. (2013). A new trigonometrically fitted
two-derive Runge-Kutta Nyström method for the numerical solution of the
SchrÓ§dinger equation and related problems. Journal of Applied mathemat-
ics, 2013.

158 Malaysian Journal of Mathematical Sciences



Modelling Record Times in Sport with Extreme Value Methods

Franco J. M. (1995). An explicit hybrid method of Numerov type for second-
order periodic initial-value problems. Journal of Computational Applied
Mathematics, 59:79–90.

Franco J. M. (2006). A class of explicit two-step hybrid methods for second-
order IVPs. Journal of Computational Applied Mathematics, 187:41–57.

Coleman J. P. (2003). Order conditions for class of two-step methods for
y”=f(x,y). IMA Journal of Numerical Analysis, 23:197–220.

Samat, F. Ismail, F. and Suleiman M. (2012). High Order Explicit Hybrid
Methods for solving second-order ordinary differential equations. Sains
Malaysiana, 41:253–260.

Fang, Y. and Wu X. (2008). A Trigonometrically fitted explicit Numerov-type
method for second-order initial value problems with oscillating solutions.
Aplied Numerical Mathematics, 58:341–451.

Ahmad, S. Z. Ismail, F. Senu, N. and Suleiman M. (2013). Zero dissipative
phase-fitted hybrid methods for solving oscillatory second order ordinary dif-
ferential equations. Applied Mathematics and Computation,(19). 219:10096–
10104.

Senu, N. Ismail, F. Ahmad, S. Z. and Suleiman M. (2015). Optimized hybrid
methods for solving oscillatory second order initial value problems. Abstract
and Applied Analysis, 2015.

Ahmad, S. Z. Ismail, F. Senu, N. and Suleiman M. (2013). Semi implicit
hybrid methods with higher order dispersion for solving oscillatory problems.
Abstract and Applied Analysis, 2013.

Jikantoro, Y. D. Ismail, F. and Senu, N. (2015). Zero-dissipative semi-impicit
hybrid method for solving oscillatory or periodic problems. Applied Mathe-
matics and Computation, 252:388–396.

Lambert, J. D. and Watson I. A. (1976). Symmetric multistep methods for
periodic initial-value problems. J. Inst. Maths Applics, 18:189–202.

Chakravarti, P. C. Worland P.B. (1971). A class of self-starting methods for the
numerical solution of y”=f(x,y). BIT. Numerical Mathematics, 11:368–383.

Hairer, E. NÃ¸rsett, S.P. and Wanner, G. (2010). Solving Ordinary Differential
Equations 1. Springer-Verlag, Berlin.

Sommeijer B.P. (1987). A note on a diagonally implicit Runge-Kutta-Nyström
method. Journal of Computational and Applied Mathematics, 19:395–399.

Malaysian Journal of Mathematical Sciences 159


	Introduction
	Derivation of New Trigonometrically Fitted Semi- Implicit Hybrid Method
	Development of The New Semi-Implicit Hybrid Methods
	Adaption of Trigonometrically Fitted for Semi-Implicit Hybrid Method

	Problems Tested and Numerical Integrations
	Conclusion

