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Block Hybrid Method with Trigonometric-Fitting for Solving Oscillatory Problems
(Kaedah Blok Hibrid dengan Penyuaian-Trigonometri untuk Menyelesaikan Masalah Berayun)

FUDZIAH ISMAIL*, SUFIA ZULFA AHMAD, YUSUF DAUDA JIKANTORO & NORAZAK SENU

ABSTRACT

In this paper, we develop algebraic order conditions for two-point block hybrid method up to order five using the approach 
of B-series. Based on the order conditions, we derive fifth order two-point block explicit hybrid method for solving 
special second order ordinary differential equations (ODEs), where the existing explicit hybrid method of order five is 
used to be the method at the first point. The method is then trigonometrically fitted so that it can be suitable for solving 
highly oscillatory problems arising from special second order ODEs. The new trigonometrically-fitted block method is 
tested using a set of oscillatory problems over a very large interval. Numerical results clearly showed the superiority 
of the method in terms of accuracy and execution time compared to other existing methods in the scientific literature.
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ABSTRAK

Dalam kertas ini, kami membangunkan syarat  peringkat aljabar kaedah blok  hibrid dua titik sehingga peringkat kelima 
menggunakan pendekatan siri-B. Berdasarkan syarat peringkat tersebut, kami menerbitkan kaedah blok hibrid tak tersirat 
dua titik peringkat kelima untuk menyelesaikan persamaan pembezaan biasa (PPB) khas peringkat kedua, dengan kaedah 
hibrid tak tersirat sedia ada peringkat kelima digunakan sebagai kaedah pada titik pertama. Kaedah ini kemudiannya 
difasa-suaikan secara trigonometri supaya sesuai untuk menyelesaikan masalah berayun yang timbul daripada persamaan 
pembezaan khas peringkat kedua. Kaedah baru blok trigonometri fasa-suai ini diuji menggunakan satu set masalah 
berayun bagi selang yang sangat besar. Keputusan berangka dengan jelas menunjukkan keunggulan kaedah tersebut 
daripada segi ketepatan dan masa pengiraan berbanding kaedah sedia ada yang lain dalam kepustakaan saintifik.

Kata kunci: Kaedah blok hibrid tak tersirat; masalah berayun; Siri-B

INTRODUCTION

In this paper, we focus on special second order ordinary 
differential equations (ODEs) in the form, 

	 yʺ = f(x, y), y(x0) = x0, yʹ(x0) = y0ʹ,		  (1)

in which the function does not depend on the derivative 
of y. A class of this type of differential equations is known 
to be highly oscillatory, further details can be obtained in 
Papadopoulos et al. (2009), hence it is quite difficult to 
get their numerical solutions accurately. When solving 
oscillatory problems, there are two types of errors that 
we need to focus on apart from the local truncation error 
that is due to the algebraic order of the method. They are 
phase-lag error which is defined as the difference of the 
angles of the computed solution and the exact solution and 
dissipation error, which is the distance of the computed 
solution from the cyclic solution. Numerical methods can 
adapt to the special structure of the oscillatory problem, 
such techniques, for that purpose, are trigonometrically-
fitted and phase-fitted techniques. Franco (1995), in his 
work, has proposed that (1) can directly be solved using 
explicit hybrid algorithms or special multistep methods 
for second-order ODEs. By using the local truncation 

error and the algebraic order conditions from Coleman 
(2003), Franco (2006) constructed explicit two-step 
hybrid methods of orders four, five and six for solving the 
second-order ODEs. Works on hybrid method for solving 
oscillatory problems have also been done by Samat et al. 
(2012), where they developed higher order hybrid method 
for solving oscillatory problems. Jikantoro et al. (2015) 
developed zero-dissipative trigonometrically fitted hybrid 
method for numerical solution of oscillatory problems.
	 Lots of researches on block methods for solving 
second order ODEs have been done, for instance, the work 
of Fatunla (1995), in which he developed block multistep 
method for directly solving special second order ODEs. 
Anake et al. (2012) have derived one-step implicit hybrid 
block method for the direct solution of general second order 
ODEs. Ismail et al. (2009) have derived explicit and implicit 
3-point block multi-step methods using linear difference 
operator for solving special second order ODEs. Ramos et 
al. (2005) developed an optimized two-step hybrid block 
method for solving general second order initial-value 
problems. However, most of the block methods performed 
well for small interval of the problems. It is difficult to 
find block methods that solve efficiently the problems that 
are oscillatory in nature over a large integration interval. 
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Hence, we derive algebraic order conditions for block 
explicit hybrid method up to order five using the approach 
of B-series. Work on the B-series theory is based mostly 
on the work proposed by Coleman (2003) and Hairer et 
al. (2010). It has been shown that for oscillatory problems, 
phase-fitting or trigonometric-fitting of the methods gives 
more accurate numerical results (Hans Van de Vyver 2007; 
Jikantoro et al. 2015). Based on the order conditions, we 
develop two-point block explicit hybrid methods of order 
four and five. Then, we trigonometrically fit the methods 
so that they are suitable for solving highly oscillatory 
problems. Finally, we test the new methods using several 
large interval test problems to indicate that the methods 
are very efficient in solving oscillatory problems.

DERIVATION OF ORDER CONDITION FOR                            
BLOCK HYBRID METHOD

The general form of an explicit hybrid method for solving 
the special second order ODEs can be written as

	 Yi = (1 + Ci) yn – ciyn–1 + h2  aij f(xn + cjh, Yj),

	 yn+1 = 2yn – yn–1 + h2  b1 f(xn + cih, Yi),

where i = 1,…, s, and i > j. Further details on this method 
can be seen in Franco (2006). The coefficients; bi, ci, and 
can be represented in Butcher tableau as follows:

TABLE 1. The explicit hybrid methods

c A ,
bT

where A .

B-series and associated trees:
Rooted tree is a simple combinatorial graph with the 
property of being connected, with no cycle and having 
a designated vertex called the root (Butcher 2008). It 
is constructed from the derivatives of the differential 
equations under consideration. In this paper, the rooted 
trees and B-series theory for special second order ODEs 
developed in (Coleman 2003) are used and adapted for 
derivation of order conditions of the block hybrid methods.
	 To derive the order conditions for block explicit hybrid 
methods (BEHM), first, we shall consider them as a single-
step method, without loss of generality, as

	 υn = υn – 1 + hφ(υn –1, h)	 (2)

where υn is a vector of numerical approximate solutions 
whose initial value υ0 is given by some starting procedures. 
Let Fn: = yn+2 so that 

	 Fn+2 = 2Fn – Fn–2 + h2  bi f(xn + cih, Yi).	 (3)

Letting

	 Gn :=  then Fn = Fn–1 + hGn–1.	 (4) 

Therefore, (3) becomes 

	 Gn = Gn–1 +  bi f(xn + cih, Yi)	 (5)

The system of (4) and (5) can be written as (2) with

	 υn =   and φ(υn–1, h) = 

	 The vector υn is an approximation of vector υn  = u(xn, 
h), where

	 u(x, h)  =  	 (6)

The local truncation error of BEHM at xn is given by

	 ln = un –un–1 – hφ(un–1, h). 	 (7)

with

	 φ(un–1, h) =  	 (8)

Theorem 1: For exact starting values, the block hybrid 
method is convergent of order p if and only if, for trees 
t ∈ T2,

	  	 (9)

	 For ρ(t) ≤ p + 1 but not for some trees of order p + 2 
where t, T2, ρ(t) and ψʺ(t) are trees, set of trees, order of 
tree and coefficient of B2 series respectively, for further 
details see (Coleman 2003).

Proof: From (6) and (8) it is clear that the first component 
of is equal to zero and the second component is,

	

	 B denotes B-series. The block hybrid method is 
therefore said to be of order p if p is the largest integer 
such that

	 ln = 0(hp+1),	 (10)

∀ n ≥ 0. Equation (9) is satisfied  = 2ρ(t) + (–2)
ρ(t) for ρ(t) ≤ p + 1.
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Hence, the proof. Where  ρ(t) ≥ 2

	 	 (11)

	 	 (12)

	 As in Coleman (2003), the trees associated with the 
hybrid methods are:

 

	 The subscript 2 is to indicate that the process of 
accumulating the trees adds two new vertices.

Remarks: For convenience, it is better to restrict attention 
to system of autonomous differential equations, yʺ = f(y). 
The first and higher derivatives of y can be represented 
using rooted trees. The rooted trees consist of two type 
of vertices, the white circle represents yʹ and the black 
dot represents f. A line leaving a vertex indicates partial 
derivative with respect to y if the end vertex is a circle and 
with respect to yʹ if the end vertex is a black dot.
	 And ψ(θ) = 1, ψ(τʹ) = ci. θ is an empty tree, τʹ is tree 
of order one and τ is tree of order two. The algebraic order 
conditions can now be obtained as follows:

Order condition for tree of order ρ(t) = 1 

Order condition for tree of order one is trivial, see equation 
(11). Hence, the minimum order of the method is greater 
than one.

Order condition for tree of order ρ(t) = 2

From (11),  (τ) = 2ψj(θ) = 2, then from (9) we have Σ bi 
= 4 and from (12), we have ψi (τ) = 2Σaij – ci.

Order condition for tree of order ρ(t) = 3

Equation(11) gives  (t31) = 2ψj(τʹ) = 6ci, which results 
in Σ bici = 0.
From (12), we get  ψi (t31) = 6 Σ aijcj + ci.

Order condition for tree of order ρ(t) = 4 

There are two trees with such order in T2, they are t41 = [τʹ, τʹ] 

and t41 = [τ]2.
From (11), we have  (t41) = 12ψj(τʹ)ψj(τʹ) = , 
then from (9) we have, Σ bi  =  
and from (11), the following equations are obtained,  (t42) 
= 12ψj(τ) = 12(2 Σ aij – ci). Followed by 24 Σ bi aij – 12 Σ 
bi ci = 32, which implies Σ bi aij =  from (9) 

Order condition for tree of order ρ(t) = 5

From (11), we obtained  (t51) = 20 .
From (9) we have Σ bi  = 0,  (t52) = 20ci(2 Σ aij – ci), 
giving Σ bi ciaij =   and   (t53) = 20ψ(t31) = 20(6 Σ aijcj 
+ ci).
From (9), we obtain Σ bi aijcj = 0. 
Then 24 Σ bi aij – 12 Σ bi ci = 32, giving Σ bi aij = . 
Thus, we obtain the order condition for block hybrid 
method up to order 5 as: 

TABLE 2. Order conditions of block hybrid method

Order 2:  bi = 4 	 (13) Order 5:    bi ci
3 = 0	 (17)

Order 3:  bi ci = 0 	 (14)   bi ciaij = 	  (18)

Order 4:  bi ci
2 =  	 (15)   bi aijcj = 0	 (19)

  bi aij =  	 (16)

CONSTRUCTION OF FOUR-STAGE FIFTH-ORDER 
TRIGONOMETRICALLY FITTED BLOCK EXPLICIT             

HYBRID METHOD 

The general formula for block explicit hybrid method 
(BEHM) can be written as,

	 Yi = (1 + ci)yn – ciyn–1 + h2  aij f (xn + cjh, Yj),	 (20)

	 yn+1 = 2yn – yn–1 + h2  (1)bi f (xn + cih, Yi),	 (21)

	 yn+2 = 2yn – yn–2 + h2  (2)bi f (xn + cih, Yi),	 (22)

where the superscript on the left of bi indicates the first or 
the second point. The four-stage fifth-order explicit hybrid 
method in (Franco 2006) is used as the method at the first 
point. The coefficients of BEHM4(5) are given in Table 3. 

TABLE 3. The coefficient of four-stage fifth-order block explicit 
hybrid method (BEHM4 (5))

-1
0

(2)b1
(2)b2

(2)b3
(2)b4

	 Solving (13) - (19) simultaneously, we obtain the 
values of (2)bi as
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	 Requiring that the internal stage (20)-(22) to integrate 
exactly the linear combination of {sin (vt), cos(vt)} for
v ∈ R, the following equations are obtained:

	 cos(c3H) = 1 + c3 – c3cos(H) – H2{a31cos(H) + a32},	(23)

	 sin(c3H) = c3sin(H) + H2{a31sin(H)},	 (24)

cos(c4H) = 1 + c4 – c4cos(H) – H2{a41cos(H) 
	 + a42 + a43cos(c3H)},	 (25)

	 sin(c4H) = c4sin( ) + H2{a41sin(H) – a43sin(c3H)},	 (26)

	 2cos(H) = 2 – H2{(1)b1 cos(H) + (1)b2 +
 

		  (1)b3cos(c3H) + (1)b4cos(c4H)},	 (27)

	 (1)b1sin(H) = (1)b3sin(c3H) + (1)b4sin(c4H).	 (28)

	 2cos(2H) =	2 – H2{(2)b1cos(H) + (2)b2 + 
		  (2)b3cos(c3H) + (2)b4cos(c4H)},	 (29)

	 (2)b1sin(H) = (2)b3sin(c3H) + (2)b4sin(c4H).	 (30)

Solving (23), (24), (25) and (26) and letting c3 = , c4 = – , 
and a43 = ; we obtained a31, a32, a41 and a42 in terms 
of H and to avoid heavy cancellation in the computation, 
the coefficient can be represented in Taylor series forms as;

a31	=	  +  H2 +

		    H4 + O(H6),

a32	=	  +  H2 +

		    H4 + O(H6),

a41	=	–  +  H2 –

		    H4 + O(H6),

a42	=	–   +   H2 –

		    H4 + O(H6),

	 Solving (27), (28), (29) and (30) with c3 = , c4 = – , 
we obtain the values of (1)bi and (2)bi in terms of and can be 
represented in Taylor series as;

(1)b1	=	  H2 +   H4 
		
		  + O(H5),

(1)b2	=	  H2 –   H4 

		  + O(H5),

(1)b3	=	   H2 + 
	
		  H4 + O(H5),

(1)b4	=	   H2 + 
		
		  H4 + O(H5),

(2)b1	=	  H2 +  H4 + O(H5),

(2)b2	=	 –  H2 –  H4 

		  + O(H5),

(2)b3	=	  H2 +  H4

		

		   + O(H5),

(2)b4	=	  H2 +  H4 
		
		  + O(H5),

	
	 The new method is denoted as four-stage fifth-order 
trigonometrically fitted block explicit hybrid method (TF-
BEHM4(5)).

NUMERICAL RESULTS 

In this section, we use TF-BEHM4(5) for solving special 
second order ordinary differential equations (using 
C-Programming language) over a very large interval 
to show the efficiency of the method for integrating 
oscillatory problems. The method is then compared with 
other existing methods using a measure of the accuracy,  
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Absolute error which is defined by: Absolute error = max 
{||y(xn) – yn||}, where y(xn) is the exact solution and yn is 
the computed solution. 
	 Usually, a general purpose methods are developed 
without taking into account errors due to phase-lag and 
disipation, as a result, they cannot integrate oscillatory 
problems accurately over a large interval. Therefore, to 
confirm that a method derived for solving oscillatory 
problems is effective, there is a need to integrate the 
problems over a large interval.

The linear and non-linear test problems are listed below:

Problem 1 (Inhomogeneous system by Lambert and Watson 
(1976)).

  = v2y1(x) + v2 f(x) + f ʺ(x), y1(0) = a + f(0), 

y1ʹ(0) = f ʹ(0),

  = v2y2(x) + v2 f(x) + f ʺ(x), y2(0) = f(0), 

y2ʹ(0) = va + f ʹ(0),

where f(x) = e–0.05x, and a = 0.1. Exact solution is y1(x) 
= acos(vx) + f(x) and y2(x) = asin(vx) + f(x). The fitted 
frequency is v = 20.

Problem 2 (Homogeneousin equation in Chakravarti and 
Worland (1971)).

yʺ(x) = –y(x), y(x) = 0, yʹ(0) = 1. 

Exact solution is y(x) = sin(x). The fitted frequency is v = 1.

Problem 3 (Homogenous given in Basem et al. (2006)).

	 yʺ(x) = –64y(x), y(0) = 1/4, yʹ(0) = – 1/2.

Exact solution is y =  sin(8x + θ), θ = π – tan–1(4). 
The fitted frequency is v = 8.

Problem 4 (Inhomogeneous equation studied in 
Papadopoulos et al. (2009)).

	 yʺ(x) = –v2y(x) + (v2 – 1)sin(x), y(0) = 1, yʹ(0) = v + 1.

Exact solution is y(x) = cos(vx) + sin(vx) + sin(x). The fitted 
frequency is v = 10.

Problem 5 (Two-Body problem studied by Papadopoulos 
et al. (2009)).

yʺ1(x) = , yʺ2 = , where r = , y1(0) = 1, 
yʹ2(0) = 0, y2(0) 0, yʹ1(0) = 1

Exact solution is y1(x) = cos(x) and y2(x) = sin(x). The fitted 
frequency is v =1.

Problem 6 (A nonlinear orbital problem studied by Simos 
(2012)).

	 yʺ1(x) + v2y1(x) = ,

	 yʺ2(x) + v2y2 = ,

where y1(0) = 1, y1ʹ(0) = 0, y2(0) = 0, y2ʹ(0) = v.

Exact solution is y1(x) = cos(vx) and y2(x) = sin(vx). The 
fitted frequency is v = 10.

The following notations are used in Figures 1-6:

TF-BEHM4(5)	 :	 A four-stage fifth-order trigonometri-
cally-fitted block explicit hybrid meth-
od developed in this paper.

EHM4(5)	 :	 A four-stage fifth-order explicit hybrid 
method by Franco (2006). 

RKN4(5)	 :	 Explicit RKN method four-stage fifth-
order by Hairer et al. (2010). 

PF-RKN4(4)	 :	 Phase-fitted explicit Runge-Kutta 
Nystrӧm method four-stage fourth-
order by Papadopoulos et al. (2009).

IRKN(5)	 :	 A five-stage improved Runge-Kutta 
Nystrӧm method by Rabiei et al. 
(2012).

MPAF-RKN4(4)	 :	 A phase-fitted and amplification fitted 
Runge-kutta Nystrm method by Hans 
Van de Vyver (2007).

The following algorithm is used in the implementation of 
the method.

Algorithm: To use TF-BEHM4(5) for solving  yʺ = f (x, y) 
and  to calculate the maximum absolute error.

Set value of v and variables coefficient for TF-BEHM4(5) 
method. (v = fitted-frequency);

Set the maximum absolute error as maxError = 0;

Initialize the values of h, END, x0, y0, and (h =step size, 
END=end of interval); 

Calculate x1, x2, y1 and y2.

(x1 = x0 + h, x2 = x1 + h. Method such as Runge-Kutta 
or Euler is used to initialize y1 and y2).

For i to END 

I.	 calculate y3 and y4 using the formula:

	 y3 = ( 1 + c3)y2 – c3y1 + h2(a31 f1 + a32 f2),

	 y4 = (1 + c4)y2 – c4y1 + h2(a41 f1 + a42 f2 + a43 f3),
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II.	 calculate f1, f2, f3, and f4 
	
	 (yʺ = f (x, y))

III.	 calculate yn+1 and yn+2 using the formula:

	 yn+1 = 2y2 – y1 + h2((1)b1 f1 + (1)b2 f2 + (1)b3 f3 + (1)b4 f4).

	 yn+2 = 2y2 – y0 + h2((2)b1 f1 + (2)b2 f2 + (2)b3 f3 + (2)b4 f4).

(yn+1  is the first point and is the second point of the 
block method)

IV.	 calculate max1 = ||yn+1 – exact solution|| and
		  max2 = ||yn+2 – exact solution|| 

V.	 if (max2 > max1) 
	 then if (max2 > maxError)
		  then maxError = max2 
		  else maxError = maxError
		  end if 
	 else (max1 > max2) 
		  then maxError = max1 
		  else  maxError = maxError
	 end if; 

Set	  i	=	i + 2h, y0 = y2, y1 = yn+1, y2 = yn+2, f0 = f2, 
	 x0	= x2, x1 = x2 + h, x2 = x1 + h.

	 i < ENDgo to step 5. end for (i > END); 
	 Return maxError. end of Algorithm.

	 The graphs of the logarithm of the absolute maximum 
errors are plotted against the CPU time taken (in seconds) 
for all the tested problems:

FIGURE 1. The efficiency curves for problem 1 
for h = , for  i = 1, …, 5

FIGURE 2. The efficiency curves for problem 2 
for h = , for i = 3, …, 7

FIGURE 3. The efficiency curves for problem 3 
for h = , for i = 4, …, 8

DISCUSSION AND CONCLUSION

The efficiency curves are presented where the logarithms 
of the maximum global errors are plotted against the 
computational time in seconds. In analyzing the numerical 
results, methods of the same order and stage are compared. 
Figures 1-6 show the efficiency curves of the proposed fifth 
order trigonometrically-fitted method (TF-BEHM4(5) and 
those of the existing methods, EHM4(5), RKN4(5), IRKN(5) 
and PF-RKN4(4). It is clear that the new trigonometrically 
fitted block method gives the least error and the shortest 
time. 
	 In this paper, we derived algebraic order conditions 
for two-point block hybrid method using B-series 
approach. Then the order conditions are used to construct 
fifth order two-point block method for solving special 
second order ODEs. It is then trigonometrically fitted so 
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that it is suitable for solving highly oscillatory problems. 
Efficiency curves presented in Figures 1-6 clearly showed 
that the trigonometrically fitted two-point block method 
(TF-BEHM4(5)) is more efficient than other existing 
methods in the literature. Though most of the existing 
methods were also constructed purposely for solving 
highly oscillatory problems that is, they are constructed 
with minimal phase-lag and dissipation. The proposed 
method performed better because the method takes into 
account the periodicity of the problems, hence less error 
are accumulated. The new method also calculate two-
points at each time step, hence lesser time is required to do 
the computation, thus, it is faster and cheaper compared 
to the other methods. 
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