312 research outputs found

    Trigonometric transform splitting methods for real symmetric Toeplitz systems

    Get PDF
    In this paper, we study efficient iterative methods for real symmetric Toeplitz systems based on the trigonometric transformation splitting (TTS) of the real symmetric Toeplitz matrix A. Theoretical analyses show that if the generating function f of the n × n Toeplitz matrix A is a real positive even function, then the TTS iterative methods converge to the unique solution of the linear system of equations for sufficient large n. Moreover, we derive an upper bound of the contraction factor of the TTS iteration which is dependent solely on the spectra of the two TTS matrices involved. Different from the CSCS iterative method in Ng (2003) in which all operations counts concern complex operations when the DFTs are employed, even if the Toeplitz matrix A is real and symmetric, our method only involves real arithmetics when the DCTs and DSTs are used. The numerical experiments show that our method works better than CSCS iterative method and much better than the positive definite and skew-symmetric splitting (PSS) iterative method in Bai et al. (2005) and the symmetric Gauss–Seidel (SGS) iterative method.National Natural Science Foundation of China under Grant No. 11371075info:eu-repo/semantics/publishedVersio

    Fast multi-dimensional scattered data approximation with Neumann boundary conditions

    Full text link
    An important problem in applications is the approximation of a function ff from a finite set of randomly scattered data f(xj)f(x_j). A common and powerful approach is to construct a trigonometric least squares approximation based on the set of exponentials {e2πikx}\{e^{2\pi i kx}\}. This leads to fast numerical algorithms, but suffers from disturbing boundary effects due to the underlying periodicity assumption on the data, an assumption that is rarely satisfied in practice. To overcome this drawback we impose Neumann boundary conditions on the data. This implies the use of cosine polynomials cos(πkx)\cos (\pi kx) as basis functions. We show that scattered data approximation using cosine polynomials leads to a least squares problem involving certain Toeplitz+Hankel matrices. We derive estimates on the condition number of these matrices. Unlike other Toeplitz+Hankel matrices, the Toeplitz+Hankel matrices arising in our context cannot be diagonalized by the discrete cosine transform, but they still allow a fast matrix-vector multiplication via DCT which gives rise to fast conjugate gradient type algorithms. We show how the results can be generalized to higher dimensions. Finally we demonstrate the performance of the proposed method by applying it to a two-dimensional geophysical scattered data problem

    Optimal rank matrix algebras preconditioners

    Get PDF
    When a linear system Ax = y is solved by means of iterative methods (mainly CG and GMRES) and the convergence rate is slow, one may consider a preconditioner P and move to the preconditioned system P-1 Ax = P(-1)y. The use of such preconditioner changes the spectrum of the matrix defining the system and could result into a great acceleration of the convergence rate. The construction of optimal rank preconditioners is strongly related to the possibility of splitting A as A = P R E. where E is a small perturbation and R is of low rank (Tyrtyshnikov, 1996) [1]. In the present work we extend the black-dot algorithm for the computation of such splitting for P circulant (see Oseledets and Tyrtyshnikov, 2006 [2]), to the case where P is in A, for several known low-complexity matrix algebras A. The algorithm so obtained is particularly efficient when A is Toeplitz plus Hankel like. We finally discuss in detail the existence and the properties of the decomposition A = P+R+E when A is Toeplitz, also extending to the phi-circulant and Hartley-type cases some results previously known for P circulant

    Fast solvers for tridiagonal Toeplitz linear systems

    Get PDF
    Let A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithmsNational Natural Science Foundation of China under Grant no. 11371075, the Hunan Key Laboratory of mathematical modeling and analysis in engineering, the research innovation program of Changsha University of Science and Technology for postgraduate students under Grant (CX2019SS34), and the Portuguese Funds through FCT-Fundação para a Ciência, within the Project UIDB/00013/2020 and UIDP/00013/202

    Representations of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication

    Get PDF
    AbstractRepresentations of real Toeplitz and Toeplitz-plus-Hankel matrices are presented that involve real trigonometric transformations (DCT, DST, DHT) and diagonal matrices. These representations can be used for fast matrix-vector multiplication. In particular, it is shown that the multiplication of an n × n Toeplitz-plus-Hankel matrix by a vector requires only 4 transformations of length n plus O(n) operations

    A proposal for the Co6 chapter of the NAG Algol 68 library

    Get PDF

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Superoptimal Preconditioned Conjugate Gradient Iteration for Image Deblurring

    Get PDF
    We study the superoptimal Frobenius operators in the two-level circulant algebra. We consider two specific viewpoints: ( 1) the regularizing properties in imaging and ( 2) the computational effort in connection with the preconditioned conjugate gradient method. Some numerical experiments illustrating the effectiveness of the proposed technique are given and discussed
    corecore