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Abstract 

Representations of real Toeplitz and Toeplitz-plus-Hankel matrices are presented 
that involve real trigonometric transformations (DCT, DST, DHT) and diagonal matri- 
ces. These representations can be used for fast matrix-vector multiplication. In partic- 
ular, it is shown that the multiplication of an n x n Toeplitz-plus-Hankel matrix by a 
vector requires only 4 transformations of length n plus O(n) operations. 0 1998 Else- 
vier Science Inc. All rights reserved. 
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1. Introduction 

Matrix-vector multiplication for general n x n matrices requires about 2n2 
operations. It is desirable to reduce this number in case the matrix has a certain 
structure. In this paper we consider matrices with a Toeplitz [a,_,] or Toeplitz- 
plus-Hankel structure [a,_, + b;+j]. There are many motivations to consider the 
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problem of fast matrix-vector multiplication by Toeplitz and Toeplitz-plus- 
Hankel matrices. One of them is the fact that for the solution of linear systems 
of equations with a Toeplitz or Toeplitz-plus-Hankel coefficient matrix itera- 
tion methods are turned to be very convenient, especially the combination of 
circulant or related preconditioning with the conjugate gradient method (see, 
for example [6]). In connection with the construction of an efficient iteration 
procedure the problem of fast matrix-vector multiplication emerges. 

In order to multiply a vector by a circulant matrix C = [Q~-,]~-‘(L, = a,,+,) 
FFT can be applied because circulants can be diagonalized by the DFT (see 
e.g. [7]). Thus the multiplication by a circulant can be carried out with the help 
of 2 DFT’s and multiplication by a diagonal matrix, and the costs are only 
O(n log PZ). The idea how to multiply a vector by a Toeplitz matrix is to reduce 
this problem to the circulant case. There are two possibilities to do this. The 
first one is to represent the Toeplitz matrix as the sum of a circulant and a 
skew-circulant, which is a Toeplitz matrix with a_, = -a,,_,. We will refer to 
this way as decomposition upprouch. The second possibility is to extend the 
Toeplitz matrix to a circulant. We call this way extension upprouch. The decom- 
position and extension ideas are mentioned directly or indirectly at a number of 
places in the literature (see for example [ 10, 1 1,16,19,26,27]) and can be consid- 
ered as folklore among specialists. In [2] matrix-vector multiplication by Toep- 
litz matrices is proposed to carry out by embedding the Toeplitz matrix into a 
matrix of a multiplication operator. This is, however, less efficient than the 
circulant embedding. 

In the case of a dense Toeplitz matrix the decomposition and the extension 
approaches are equivalent in the sense that they both require 4 DFT’s of length 
n plus 2 DFT’s of length n for preprocessing. In the case of a banded Toeplitz 
matrix the extension approach seems to be advantageous since in this case the 
amount can be further reduced to 2 transformations of length r? + s where 
2s + 1 is the bandwidth of the matrix. It is remarkable that for multiplication 
by a general Toeplitz-plus-Hankel matrix also only 4 DFT’s of length n (or 2 
DFT of length 2~2) are required plus 4 DFT for preprocessing. The extension 
approach for this was mentioned in [ 161 but a decomposition formula can also 
easily be found using some intertwining relation between the DFT and the 
counteridentity. 

All operation counts above concern complex operations. If the matrix and 
the vector are real then it is desirable to use only real arithmetics. There are 
special algorithms for DFT with real data that require 12 log,n multiplications 
and in log,n additions, provided that n is a power of 2. The same amount can 
be achieved for the Hartley transformation (see [8,21]). The calculation of dis- 
crete sine and cosine transform is very often reduced to real DFT, like, for ex- 
ample, in [27] (see also [18,20,28]). These versions require the same amount like 
real DFT. However, algorithms do exists with only in log+, i.e. only half the 
number, multiplications and in log,n additions (see, for example, [22,23,25]). 
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Therefore, it is reasonable to ask about representations of Toeplitz and Toep- 
litz-plus-Hankel matrices involving these transformations. Subject of the pres- 
ent paper is to discuss this problem. We give also representations involving the 
Hartley transformation. In one case, namely banded nonsymmetric Toeplitz 
matrices, we could get a better computational bound for the Hartley transfor- 
mation compared with sine and cosine transformations. 

Note that the representations with trigonometric transformations are of in- 
terest beyond the computational advantage. To mention one example, the kind 
of preconditioner used for a Toeplitz system may depend on the nature of the 
underlying continuous problem. In particular, this kind of boundary condi- 
tions determines the convenient preconditioner which is connected with a trig- 
onometric transformation. For this reason it is desirable to have a library of 
representations for all trigonometric transformations. 

A decomposition formula for symmetric Toeplitz matrices with the help of 
the sine-1 and a modified cosine-I transformation, which is analogous to the 
circulant/skew-circulant representation for complex Toeplitz matrices, was 
found by Huckle and presented in [14]. The drawback of this formula is that 
the diagonal factor appearing there is not easily obtained by a transformation. 
The extension approach for symmetric Toeplitz matrices involving the sine-1 
transformation was discussed in [3] by Boman and Koltracht. In the unpub- 
lished note [ 171 of Olshevsky it is shown how triangular Toeplitz matrices 
can be multiplied by vectors using properties of Chebyshev polynomials. This 
ends up with an algorithm requiring 4 transformations and leads to a proce- 
dure to multiply general real Toeplitz matrices by vectors with the help of 8 
transformations. 

The structure of this paper is as follows. In Section 2 we introduce the real 
transformation we will use, which are the 4 common sine and cosine and the 
Hartley transformations. Besides the usual Hartley transformation we intro- 
duce another transformation which we call skew-Hartley. 

In Sections 3-5 we discuss the decomposition approach, in Section 3 for 
the case of symmetric Toeplitz, in Section 4 for general Toeplitz, in Section 5 
for general Toeplitz-plus-Hankel matrices. The main conclusion of our formu- 
las is that a general n x n Toeplitz-plus-Hankel matrix can be multiplied by a 
vector with the help of only 4 transformations of length n plus O(n) opera- 
tions and 4 transformations of length n for preprocessing. Since the fast algo- 
rithms for trigonometric transformation are highly parallizable this would 
mean that in parallel computation the complexity is only 0( logn). All proofs 
of the representations are completely elementary and use only trigonometric 
identities. 

The Section 6 dedicated to the extension approach. This approach is in par- 
ticular advantageous for banded Toeplitz matrices. The multiplication of an 
n x n Toeplitz matrix with bandwidth 2s + 1 can be carried out with 2 transfor- 
mations of length n + s if the matrix is symmetric and with 3 transformations of 
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this length in the general case. It is remarkable that if the Hartley transforma- 
tion is used then also in the general case only 2 transformations are required. 

In Section 7 we present some hybrid formulas involving both extension and 
decomposition. The application of these formulas involves higher costs. We 
nevertheless included them because some of them are quite nice and they give 
an indication how more formulas can be found which can be used for special 
purposes. 

While writing this paper we took notice that Steidl and Tasche are also pre- 
paring papers [24] including representations for symmetric and triangular 
Toeplitz and centrosymmetric Toeplitz-plus-Hankel matrices. Furthermore, af- 
ter this paper was almost completed we received a manuscript of the paper [ 151 
by Kailath and Olshevsky which contains formulas for Toeplitz matrices using 
trigonometric transformations both for the decomposition and extension ap- 
proaches. These formulas are derived there only for the case of symmetric ma- 
trices but the approach can be straightforwardly generalized. Note that the 
method in [15] is different from our approach. We thank all these authors 
for useful discussion on the subject. We also thank Olshevsky for providing 
us with the unpublished note [17]. 

The representation formulas discussed in this paper are not the only ones. 
For example, with the help of the formulas for transforming Toeplitz and 
Toeplitz-plus-Hankel matrices by trigonometric transformations into Cauchy 
matrices presented in [ 131 representations for Toeplitz and Toeplitz-plus-Hank- 
el matrices can be derived, since the Cauchy matrices occuring there can be rep- 
resented with the help of the same transformations. One formula of this type is 
presented in [14] (Theorem 7). This formula seems to be not very efficient for 
fast matrix-vector multiplication but there are more possibilities which could 
lead to more efficient formulas. Another way to obtain representations for 
Toeplitz and Toeplitz-plus-Hankel matrices involving sine and cosine trans- 
forms is the splitting approach described in [12] for the transformation of 
Toeplitz into paired Chebyshev-Vandermonde systems. The algorithms emerg- 
ing from these representations are of the same complexity as those presented 
here. So far it is not clear to us whether this way leads to qualitatively new pro- 
cedures. Let us furthermore mention the papers [5,4,9] where representations of 
more general Toeplitz-plus-Hankel-like matrices are derived from their dis- 
placement representation which can, of course, also be applied to simple Toep- 
litz-plus-Hankel matrices. This application, however, leads to algorithms with 
higher complexity than those contained in the present paper. 

It is quite surprising that the problem of multiplication by inverses by Toep- 
litz and Toeplitz-plus-Hankel matrices found so far more attention in the liter- 
ature than the same problem for the original matrices (see for example [10,11,5] 
and references therein). We are planning to discuss the corresponding represen- 
tations of inverses of Toeplitz and related matrices using trigonometric trans- 
formations in a forthcoming paper. 
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2. Preliminaries 

229 

For convenience of notation, we define the common real trigonometric 
transformations in simplified form, without scaling factors: 

DST-I and DCT-I: 

yl 
N 

= sin (j + l)o’+ 1)x N-’ 
[ 1 N+l ‘/ 

DST-II and DCT-II 

~~ = sin (j + 1)(2’ + l)n No’ 
2N I ' 0 

DST-III and DST-III 

9;’ = (9$‘)T, 93;’ = (%$T: 

DST-IV and DCT-IV 

,pv = 
N [ 

sin Pi + 1)W + lb N-’ 
4N 1 ’ 0 

Hartley transformations 

cosw+ lb jli-' 1 2N o’ 

cos P+ 1m+ lb 

4N 

,&7+ = cas2ijx N-’ 
N [ 1 N 0 ’ 

*- = 
N 

casj(2j+ lh 
N 

where cas x = cos x + sin x. 

N-l 

1 ’ 0 

The transformation 2; is the usual Hartley transformation DHT; A@; is 
possibly a new invention. We call it skew-Hartley transformation. 

These transformations are almost unitary. More precisely, 

(Y’pfy)-’ = (2/N + l)(9’Pfy)T, (@,-’ = (2/N - l)Z@?;)TD, 

(9;))’ = (2/N)(Y;)TD2, (%‘;)-’ = (2/N)(%‘;)Tf), , 

(Y’;‘)-’ = (2/N)D2(9$‘)T, @;I)-’ = (2/N)D, (%?;‘)‘, 

(Y;)-’ = (2/N)(Y3T, (55’;))’ = (2/N)(%;)T, 

(XL)-’ = (l/N)(X;)T, (X,))’ = (l/N)(X,JT, 

where 

LA =diag(k.l,..., 1). D;=diag(l,..., l,;), D=DIDz. 

Furthermore, these transformations enjoy some intertwining relations listed 
next. Let JN denote the matrix of the counteridentity, 
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1 

J\, = : 

[ I 1 

1 

and let 1%’ denote the matrix JCV = diag( (- l)")F;,"lr,: Then 

.Y;J,v = &:JI,~~, %,& = G,v% ;, , 

Yj;Jv = ‘&9;, gQ\ = .&AT,;. 
( III Y;‘& = cn: 6), . %;‘J,\ = C,v.cf ‘:‘. 

:fyJ,v = .Zvcd~. %s~J,v = C,\&. 

In order to describe the corresponding intertwining relations for the Hartley 
transformations we introduce the flip matrix 

%J: = 1 0 
[ 1 0 J,+, ’ 

Then 

s#;J,: =&Y?;.. If&J\, = -&YY .v 

Let us point out that the first J in the second equality has no prime. 
For q > p, we denote by Pp, the (4 -p) x N restriction matrix defined by 

P&$’ = (X,);:;. 

We will use also some slight modifications of the transformations, namely 

ijrt 

[ 1 
,v - 1 

.S1, = sin __ 
N-l,’ 

qv = cos (i + l)(j + 1)x ,?-I 
N+l I . 0 

The matrix .&I, is just the matrix .Y1k,Pl bordered by zero columns and rows, i.e. 

CY’fy = pl’,,+, Y’f,_,P,..V- I . The matrix %k. is a submatrix of V:,_?, viz. 
%L, = Plz’%,\+zP~. The intertwining relations for these matrices are 

&;J, = -Z,&. ti!& = -C,&. 

Throughout the paper, we denote by Z,%, the N x N matrix of the forward 
shift 

-0 

1 0 
z,v = 

. 

1 0 

Let us finally discuss some complexity issues. We denote by 7(n) the compu- 
tational costs for a sine or cosine transformation of length II. At the present 
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state of the art [24], r(n) = ((1/2)n logzn + en)(M) + (3/2)n log,n(A)+o(n). 
where (A) stands for additions and (M) for multiplications, and the factor c 
ranges between 0 and $ depending on the transformation. Furthermore, let 
4(n) denote the amount for a real DFT or a Hartley transformation. One 
has (,5(n) = II log,n(M) + (3/2)n log,n(A) + O(n). 

3. Symmetric Toeplitz matrices 

First we consider symmetric Toeplitz matrices 7;, = [N,! , ];I- ‘. We assume 
that II is already an integer which is convenient for the transformations, for ex- 
ample a power of 2. Otherwise 7;, has to be embedded in a larger n ttrix which 
is easily done. 

The vector a = (a,),, “-I is the cosine-I transform of some i = (2));; ‘, i.e. 

II = X’i. ,I (3.1) 

Theorem 3.1. Let i he giaen hy Eq. (3. I). Then the Toeplitz motri.v 

r,, = [a,,& achits a representution 

T = fd’AC1;’ + .&In &I ‘1 II I, ,? ’ ,, ’ (3.2) 

nhrrr A = diag I.. 

Proof. If a is given by Eq. (3.1) then 

I,- I 

q/l = c ii cos 
(i - j)kn 

hk0 
I7 - 1 

ikx ik7[. . 
___ cos -$+ + sin - sin 
n-l n-1 

Written in matrix form this means 

[a,,-,,];(- ’ = ?$I%;, + c$l~;,. 
Now Eq. (3.2) follows immediately. 0 

Corollary 3.2. The multiplication oj’ a .synmetric~ n x II Toeplitz mutrix h!x (I 
wctor c’un be curried out ut the costs of4z(n) + 2n(M) + M(A) + o(n) plus ~(17) 

,fh preprocessing the dcrtu. 

Let us show how Huckle’s formula in [14] can be obtained from Theorem 
3.1 We choose n,, and CZ,,~ I in such a way that the first and last components 
of the cosine-I transform of the vector a = (a,):;’ ’ vanish. It can easily be 
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checked that this can always be done and an explicit formula can be given. Sup- 
pose that a = G$,+*[O 1, OIT. We apply Theorem 3.1 for 12 replaced by n + 2. Can- 
celling the first and last columns and rows we obtain the following. 

Corollary 3.3. Let /z he us above. Then the Toeplitz matrix T, = [a~;-ji]~-’ admits 
a representation 

r,, = q/l@;, + Y;,A.Y;, (3.3) 

where A = diag 2. 

Note that there is also a representation of Z, using the vector given by 
Eq. (3.1) but involving type III transformations instead of type I. This repre- 
sentation can be derived using the identity 

cos 
(i - j)kn: = cos (2i + l)kn: cos (2j + l)krt 

n-1 2n - 2 2n - 2 
. 

+ sm 
(2i + 1)kx sin (2j + l)krr 

2n - 2 2n - 2 

We refrain from presenting it because it is more complicated. 
Next we mention decompositions involving transformations of type II and 

IV. 

Theorem 3.4. Let i, be given by 

a = %fi’i. 

Then the Toeplitz matrix T,, = [ai,_,1];1-’ admits representations 

T,, = @%I%;’ + Zn@,‘AcY;‘Z~T, 

T, = %; AV; + Yf,” .4cY;, 

(3.4) 

(3.5) 

(3.6) 

where A = diag 3.. 

Proof. If a is given by Eq. (3.4) then 

n-l (i - j)(2k -I- 1)~ 
ali-,l = c ;Ir. cos 

k=O 
2n 

n-l 
= 

U 

/L 
I 

cos iW+ lb cos.iP+ lb 

k=O 2n 2n 

+sin i(2k + 1)X sin j(2k + 1)n: 
2n 2n 

which leads to 
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Now Eq. (3.5) is immediate. Relation (3.6) is proved in the same way. 0 

We derive now a representation involving the Hartley transformations. First 
let us agree upon some language. A vector x E 1w” is called euen if J,$Y = x and 
odd if JLx = -x. The vector x E Iw” is said to be symmetric if J,,x = x and .skelt,- 
symmetric if J,x = -x. 

We decompose the Hartley transformations into two parts Y,T = V* + .‘7”*, 
where %+ is the cosine part and Y* the sine part of 2‘:. We need the following 
facts. 

Lemma 3.5. 
1. If i E R” is even then .Y,3, = 0 and .Fujlt;_ = $5,;” is even. Vice versa, f%+i is 

even then 1. is even. 
2. If i. E KY’ is symmetric then Y_I = 0 and .#;I. = % _j. is odd. Vice versu, if’ 

L%x,~. is odd then A is symmetric. 

Proof. The rows of Y+ are odd and the columns of %+ are even. The inner 
product of an even and odd vector vanishes. This implies the first assertion. 

The rows of 9_ are skew-symmetric and the columns of %- are odd. The 
inner product of a symmetric and a skew-symmetric vector vanishes. This im- 
plies the second assertion. 0 

Lemma 3.6. 
1. If 1 E KY' is even and A = diag 2 then the matrix T = *Xl: .4.X, is a sJ)mmetric 

Toeplitz matrix, T = [al,_jl];T-‘, where a = (a,):-’ = .Fz3. is even. 
2. If iL E R” is symmetric and A = diagi. then the matrix T = .YF’,A(.;Y;)~ is a 

symmetric Toeplitz matrix, T = [al;_jl];-‘, where a = (a;);--’ = .#R). is odd. ’ 

Proof. Suppose that T = [tii]E-‘. In the first case we obtain, taking Lemma 3.5 
into account, 

n-1 2ikn. 
t,, = 

C Lk cas 
k-0 

n cask = ~;~x ( cos 2’i 1/)“” + sin 2(i ~)n,) 

k=O 

= al,-il. 

Furthermore, in the second case we have 

’ Actually, T in Lemma 3.6 (1) is a circulant matrix, which agrees with a result in [5]. The T in 
Lemma 3.6 (2) is a skew-circulant matrix. 



11.~1 

t,, = -j$.h cas 
i(2k + 1)x 

cas. 
j(2k + 1)X 

k=O II n 

II- I 

=c ( 

A/, cos 
(i-j)Pk+ 1)x+ sin (i+,dP+lb 

h 0 
II n 1 ' 

=a(~,, 

According to Lemma 3.5, the vector CI is even in the first case and odd in the 
second one. 0 

We present a representation with the Hartley transformations. Let 
7;, = [a~,_,~];l-’ be the 
a* = (q?);;-’ by 

a, * = $(a/ * a,, I). 

Then a+ is even and O- 
exists an even vector i 

given matrix. We set u,, = al) and define vectors 

is odd and a = u’ + a-. According to Lemma 3.5 there 
and a symmetric vector i- such that 

a t = _iy;;,+. CI- = .i’f,,i,- 

The following is now immediate. 

(3.7) 

Theorem 3.7 can also be obtained from the representation of T as the sum of 
a circulant and a skew-circulant matrix. The circulant part can be diagonalized 
with the Hartley transformation according to [l], and the skew-circulant part 
can be diagonalized according to an analogous result. 

4. General Toeplitz matrices 

We consider now general Toeplitz matrices 7;, = [Q~-_~];~~‘. First we deal with 
transformations involving sine-1 and cosine-I transformations. We split the 
vector CI = 

‘, 
cr,);I,\ into its symmetric and skew-symmetric parts a = a- + a~-, 

.+ = (a:);I,j, 0: = (1/2)(u, & u_/). Suppose that 

Then we have 
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ikx . jkn 
- sm __ 
n-l n-l 

ikx jkTc 
cos - sin - 

n-l n - 1 

Translating this into matrix language we obtain the following. 

Theorem 4.1. Let 1.: be given by Eq. (4.1). Then the Toeplitz mutrix 
T,, = [aiP,i]fi-’ admits a representation 

,4* = diag($)i-‘, where 20 = Ai_, = 0. 
Similarly the following is derived. 

Theorem 4.2. Let 2: be given by 

(a:,;-’ = @,‘(I;);-‘. (a;)‘1 = .4pfi’(i;);-’ > 

n)here af are d@ned as above and a; is urbitrar)‘. Then the Toeplitz matrix 
T, = [a,_j];lP’ udmits a representation 

r,, = %;,‘(A+$$” - A-Z;Y;‘) + Z$Y’;,‘(A+Z;.Y;,” + A-%;,“)> 

‘rhere A* = diag($):-‘. 

If one wants to use transformations of type III and IV one has to decompose 
the vector a = (a,);:: generating the Toeplitz matrix Z, in a different way, 
namely as a = a+ + a-, a+ = (a*,,):$ a+., = (1/2)(a, 5 a-,-‘), a-,, = 0. Then 
ai, = iai._,_l. Now we represent 

(a+,,);;-’ = @“i,+. (a_,,);-’ = Yb”L. (4.2) 

A similar calculation as for the type-1 transformations then leads to the follow- 
ing. 

Theorem 4.3. Let & be given by (4.2). Then the Toeplit: matris T, = [a,+,]IiP’ 
admits a representation 

A+Pg,,@,+l - -GA-PI ,,++;,.,.I 

hchere A, = diag ii. 
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For a representation with type-IV transformations we assume that 

(U+ i)li-’ = %p,j~* (up ,)I;-’ = ,Y!vj.P. (4.3) 

An elementary calculation leads to the following. 

Theorem 4.4. Let A+ he given by Eq. (4.3). Then the Toeplitz mutris 
7;, = [cz__~]~~’ admits u representution 

7;, = %k” (A / q - A_.Y!‘) + ,Yf,“(A+.Yf,” + AM;,“), 

~herr A+ = diag i.,. 

The main conclusion of this section is the following. 

Corollary 4.5. An n x n Toeplitz matrix cun he multiplied bJ> a vector at the costs 
qf4t(n) + 4n(M) + 3n(A) + o(n) plus 2z(n) ,jbr preprocessing. 

In order to get representations with Hartley transformations we need the 
following counterpart of Lemma 3.5, which can be proved in the same way. 

Lemma 4.6. 
1. Ij’ 2 E R” is odd then % + E. = 0 and <#,:A = ._<Y,,l is odd. Vice versa, if .Y+3. is 

odd then i is odd. 
2. If i, E R” is ske,r,-symmetric, then 55i = 0 und .fl-,;l, = K/1 is even. Vice ver- 

sa, if -8’; i, is even then i is ske~r,-syn’metric,. 
The counterpart of Lemma 3.6 is the following. 

Lemma 4.7. 
1. If 1, E R” is odd A = diag 2 then the matrix T = 3~AJ,:.X,’ is (I skew-sym- 

metric Toeplitz mutrix, T = [a,_,]:-‘, where a - (a,):-’ = ,Y,:n is odd. 
2. [f i.ER” is ske’r,-symmetric and A = diag i, then the matris 

T = .X ;)/s; (9;) ’ is u sketc-symmetric Toeplitz matrix, T = [a,-,];l-‘, where 

a = (a,),, = -Fi- is even. II 

Proof. First let us recall that 

J,:.K,; = .rV,: J,: = 
2ij7c 2ijn “--I cos __ - sin ~ 

n 1 n 0 

J,;H; = -.P;J,, = - cos 
i(2j + 1)rt _ sin i(2j + 1)x ‘-’ 

n n 1 . 0 
Suppose that T = [ti/]G-‘. In the first case we obtain, taking Lemma 4.6 into ac- 
count. 
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In 

n-l 

t;j = C’Zk COS 
2(i +j)h 

+ sin 
2(i - j)kn 

= a;-j, 

k=O 
n n > 

the second case we have 

n-l 

tij = c’lk COS 
(i + j)(2k + 1)7t + sin (i-j)(2k + 1)K = U,_j. 

k=O 
n n > 

According to Lemma 4.6 the vector a is even in the first case and odd in the 
second one. 0 

Combining Lemmas 3.6 and 4.7 we obtain a representation of general Toep- 
litz matrices by Hartley transformations. Suppose 7’,‘, = [al-j];-’ be the given 
matrix and a = (ai);::. We split a into its symmetric and skew-symmetric parts 
a = a+ + a- and the halfs of these vectors into even and odd parts. That means 
we define the following vectors a&* = (u+*.;)~~~ by 

U+*,i = a(U; It U,_j + U-j f Uj-,), 

U_+,j =a(Ui 5 U,_i - (U-i f Uj-n)). 
(4.4) 

Furthermore, let i+* be given by 

(a++.,)“,-’ = <*,‘A++ 3 (U+_,i)i-' = ,i@,Eb+_~ 

(a_+,,);- = c7Y;A_+, (U_,i)l-' = Af~i--. 
(4.5) 

note that A++ is even, i+- is symmetric, A-+ is skew-symmetric, and A__ is odd. 

Theorem 4.8. Let A** be given by Eq. (4.5). Then the Toeplitz mutri.u 
T, = [ai_j]i-’ admits a representation 

T, = %:(A++ + AU:),%,’ + X”,(A+_ + AP+J,,)(X;)‘, A,, = diag).,,. 

5. General Toeplitz-plus-Hankel matrices 

We consider now general n x n Toeplitz-plus-Hankel matrices R,. These ma- 
trices can be represented in the form 

R, = T(‘) + T(*)J n n “, T,“) = [al’)j]z-‘, (2 = 1,2). (5.1) 

Applying the theorems of Section 4 and the intertwining relations for the 
transformations listed in Section 2 we obtain the following. 

(0 _ 1 Theorem 5.1. 1. Suppose that u*,~ - ?(ui (4 * p,, 

(qJ;1-’ = @(I”’ y, 
't.k 0 (u!!fi);-' = Yi_2(l"!!k);-2 (I = 1.2). 

Then the Toeplitz-plwHanke1 matrix R, admits a representation 



These formulas simplify significantly if the matrix R,, is centrosymmetric, i.e. 
if both ci” and TI’) are symmetric. Let us mention the corresponding formula 
for the type-1 case. 

Corollary 5.2. Suppose that R,, is us ahow ~c~hrre Ti” (I = 1~ 2) ure symmetric and 

(a:“);;-’ = ‘Gb(i,:“);j-‘, (I = 1,2). 

Then R,, udmits a representation 

The main conclusion of this paper is the following. 



G. Heinig, K. Rest I Lincwr Aigehiv und its Applicutions 275-276 i IW8) 225-248 239 

Corollary 5.3. An n x n Toeplitz-plwHanke1 matrix R, can be multiplied by a 
vector at the costs of4T(n) + &z(M) + 7n(A) plus 47(n) for preprocessing. Zf R, 
is centrosymmetric then the costs for preprocessing reduces to 27(n). 

We present now a representation of general Toeplitz-plus-Hankel matrices 
with the Hartley transformations. Suppose that R, = Tj” + Ti”J,z is as above. 
We extend the matrix R,l to an (n + 1) x (n + 1) matrix k adding one column 
on the left and one row at the top via 

R = T’1’ + T”‘J’ 
,,+ I >!+I ,?+I’ 

where qi:, = [a!!,]: and a!,‘) is arbitrary (I = 1,2). Then we have 

R,, = P,_n+&‘;r,+,. We can use now the intertwining relations for the Hartley 
transforms in order to get a representation for r?. 

We define, like in Section 4, 

a(O 
+*.I = 4 L (aj” * a!y,_i + a!!! * ajl),,_,), 

a’l’ __*., = t (a!” f a!:,_, - (a!!/ * a:?,_,)), 
(5.2) 

Theorem 5.4. Let ii’) ++ be given by Eqs. (5.2) and (5.3). Then the Toeplitz-plus- 
Hankel matrix R,, = T,“’ + T,(‘)J,, admits a representation 

R,, = P,.,+,(.~‘,, (A’:; + A”! + (A”! + Api_)J;+,)X,:,, 

+ -x,, (Ai” - A(‘) -c + (A!!; - n~!)J,+~)(.~~+,)~)P;r,l+,, 
A”’ = diag ,$;(I = 1,2). ii 

6. Extension approach 

The idea of the extension approach is to identify given n x n Toeplitz, Hank- 
el or Toeplitz-plus-Hankel matrices as submatrices of N x N matrices, N > n, 
of the form RN = FE)LI(~E))~, where Si’( I = 1,2) are real trigonometric 
transformations and /1 is a diagonal matrix. Matrices of this form are for many 
choices of the transformations special Toeplitz-plus-Hankel matrices, as we see 
at once. 
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6.1. Symmetric Toeplitz matrices 

First we want to embed symmetric Toeplitz matrices T, = [Qli-jl]iP’ into ma. 
trices of this form. It is reasonable to assume in this case 31 = 5~. 

Lemma 6.1. Suppose that a = (ai):-‘, A = diag A. 

1. VkA%Xty = i [a((-j\ + a,+,]:-', 

7. ‘e;A%; = 

where a = @,fA,a2N-i = -a,. 

8. ,!Y~ASP,~ = 4 [Ui;-ji - a,+j+l 0 IN? 

where a = V~A,a2N_; = -a,. 

9. L%Y~Ac%~ = [Cf-j + Si+j]:-', 

where c = %?,j,,s = Y+& s,+N = S;. 

10. 3q+qClx,)’ = [c;_, + sj+J-‘, 

where c = %_&s = ,y_&S,+N = -S,. 

II. (L%Y~)~A%~ = [Ci_j +Si+j]r-'3 

where c = ‘&Ii,s = ~T~.,s;+,v = -Si. 
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In Lemma 6.1 (5) and (6) the number aN has to be chosen in such a way that 
the first or the last component of (‘#,,+,)~‘[a aNIT vanishes. But this can easily 
be achieved. 

In the following theorem we are looking for the smallest possible N for 
which a symmetric banded Toeplitz matrix can be embedded into a matrix 
of the form RN = .FNAFT,. Of course a embedding into matrices of larger size 
is also possible. Note also that in the case of a dense matrix sometimes this 
number N can still be reduced by 1. 

Let us illustrate the structure of the matrix RN in the following figure. 

Toeplitz+Bankel 

banded Toeplitz 

Toeplitz+Hankel 

Theorem 6.2. Let T,, = [s,i\]X-’ he a symmetric Toeplitz matrix such that a; = 0 
jbr i > s and let (ai)o ’ = &M/I, where JU,+, is one of the trigonometric 
transformations. Then 

where N = n f 2p, A = diagi. and one of the following is valid: 

.y-,v = ‘G!$, 4/M = @,, M = N, p = [(s + 1)/2], 

Ol .“/,v = Y/$ . ‘/I/M = %a, M = N. p = [(s t 1)/2], 

.F,y = (k’,; 1 %/u zz g;, M = N, p = [(s + 1)/2], 

.F ,$ = 9,;, +/,v = ‘G;, M=N. p=[(s-1)/2], 

.F !.q = @” N ? ‘&,=%$? M=N+l, p=[s/2], 

.Y-N = St’, & *!=Y&, M=N+l, p=[s/2], 

.Y-N = $q, “kM = %,;, A4 = N, p = [s/2], 

.F ,v = 9;. J&,M = Vi, M = N, p = [s/2]. 

Here [.I denotes the integer part. 
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Corollary 6.3. An n x n hunded symmetric Toeplitz matrix with bandwidth 2s + 1 
can be multiplied by N vector ut the costs qf 27(n + s) + (n + s)(M) + o(n) plus 
z(n + s) jbr preprocessing. 

For the Hartley transformations the extension approach is slightly different. 
We do not extend the a, by zeros but in such a way that the extended vector is 
even is odd. In this situation the matrix Riv is, according to Lemma 3.6, purely 
Toeplitz and an extension of the original matrix. 

Theorem 6.4. Let T, = [ui;_ii]SP’ he u symmetric Toeplitz mutrix such thut ui = 0 
jtir i 3 s. Assume thut N = n + s - 1 and the a, ,for i 3 n ure defined bq 
u,v-; = 3~~. Then 

6.2. Triungulur Toeplit: matrices 

We discuss now the extension approach for triangular Toeplitz matrices. 
where a, = 0 for i < 0. We set N = 2n+ 1 and Suppose 7;, = [u,-,I;;-’ 

b = (b{)i-’ with b, = u,,_,_~. Let p be defined by b = G9l.p. The matrix 7;, can 
now be found in the upper right corner of the matrix RN = %,k, diag /L%:. Only 
the first row and the last column have to be cancelled. 

n+l 

More precisely, the following is true. 

triangular Toeplitz 

Toeplitz+Hankel 

Theorem 6.5. Let M = diag ~1, where p is us above. Then the lower triungulur 
Toeplitz matrix T,, cun be represented in the form 

T;, = 2P1.,,+r ‘G’.~JJ~~P,T,,_, 
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Remark 6.6. It is also possible to choose N = 2n - 1 and b and /l as above. 
Then T, is the upper right corner of RN except for two 2 entries. 

Analogous representations can be deduced for the other trigonometric 
transformations, except for the Hartley transformations. We refrain from pre- 
senting them all because for triangular Toeplitz matrices no gain is achieved 
with the extension approach in comparison with decomposition approach. 

6.3. General Toqdit-_ and Toeplitz-plus-Hankel matrices 

In order to get representations for general Toeplitz matrices we need expres- 
sions generating skew-symmetric Toeplitz matrices in an analogous manner 
like symmetric Toeplitz matrices were generated in Lemma 6.1. This can be 
done combining sine and cosine transforms and is outlined in the next lemma. 

Lemma 6.7. 

where (a,):-’ = .Y~(&)X-‘,a2,jJP, = a,_, = -a-,. 

In the next theorem we formulate only a few of all possible representations 
of banded Toeplitz matrices with trigonometric transformations. 
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Theorem 6.8. Let T, = [u;_,,];I-’ be a Toeplitz mcttrix such that a; = 0 jbr Ii\ >, s 
and ai = (1/2)(a; + a_;). Then: 

1. If 

(Q$’ = Q,, (&2 = ‘w;_z(Q;~l, n, = &_, = 0 

then 

then 

T,, = P~,p+n(%;A+ + CY;n_)%,;P;,,+,,. 

In the jirst case p = [(s + 1)/2], in the other cases p = [s/2]; in all cases 
A* = diag ii. 

Corollary 6.9. An n x n banded Toeplitz mutrix nlith bandwidth 2s + 1 can be 
multiplied by a vector at the costs qj’3z(n + s) + 2(n + s)(M)+ (n + s)(A)+ o(n) 
plus 2z(n + s) jbr preprocessing ij’sine and cosine transjbrms are used. 

Thus, the extension approach is advantageous compared with the decompo- 
sition approach ifs < n/3. 

If the Hartley transform are used one gets always a gain if the matrix is 
banded. The approach to derive the formulas is quite different. Note that, dif- 
ferently to the sine/cosine transformations the combination of different Hartley 
transformations leads again to symmetric and not to skew-symmetric matrices. 
The skew-symmetry is achieved with the help of the middle factor 4; (see Lem- 
ma 4.6). Applying Lemmas 3.6 and 4.6 we obtain the following. 

Theorem 6.10. Let T,, = [ai_j]6-’ be u Toeplitz mutri.y such that a; = 0 ji)r Ii1 2 S. 
Assume thutN=n+s- 1 anda: = (1/2)(a;*a_i). 
1. Leta’,fbri=n,...,N- 1 bed&edbya$_, =ka,‘,(aF)/-’ =-#‘;&,A, = 

diag ;1*, Then 

T, = P&F;(A+ + A_J;)(X;)TP,T, 
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2. Let a’ for i > n be de$ned by a;_( = ra:, (a:):-’ = Xl;&, A* = diag &. 
Then 

Corollary 6.11. An n x n banded Toeplitz matrix with bandwidth 2s + 1 can be 
multiplied by a vector at the costs of 24(n + s) + 2(n + s)(M) + (n + s)(A)+ 
o(n) plus 2$(n + s) for preprocessing if Hartley transformations are used. 

All formula presented in this section can now be generalized to Toeplitz- 
plus-Hankel matrices using the intertwining relations listed in Section 2. 

7. Hybrid formulas 

It is also possible to combine the decomposition and extension approaches 
to get some hybrid formulas. First we present such formulas for Hankel matri- 
ces H,, = [h;+,];(-‘. We set N = 2n - 1 and h = (h,)r-‘. Suppose that 

h = c&X ix N 1 h = .4p;u” 

and 

/Ix = diag %“, M” = diag /lx. 

where X = I, II, III, IV. Now h,+i can be represented as a linear combination of 
cosines or sines in which the sum of arguments appear. For example, in the co- 
sine-1 case we have 

N-l N-l 

hi+j = cjL: COS ‘i,‘i’:” = cr?: COS & COS A 

k=O k=O 

N-1 

- Cj.1 sin s sin s. 
k=O 

Written in matrix form this leads to the following. 

Theorem 7.1. The Hankel matrix H,, admits the following representations: 
I. DCT-I 

2. DST-I 



4. DST-II 

5. DCT-III 

H,, ==pC ,,,, [(dj\j’A”‘((/;;,)T 

- .~~‘z,~~“‘(~:,)T]pi:l~. 

% ,v = PO,,:% : + , P,yi,r . 
-I .YL. = PO,.‘?’ P’ \+I 0” 

6. DST-III 

H,, = PO.,) [.‘/‘:f’M”’ (%;)‘Z,,, 

+ Z,~~~:“M”(“:‘)‘]~~,,~ 

7. DCT-IV 

8. DST-IV 

We consider now general Toeplitz-plus-Hankel matrices R,, = H,, + G,,J,,, 
where H,, = [A,+,]:- and G,, = [g,.i]%m’. 

We intend to combine Theorem 7.1 with the intertwining relations listed in 
Section 2. Below we mention two cases where such a combination leads to sim- 
ple formulas. 
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Theorem 7.2. 1. Suppose that 

h = @ ;’ ,A’ ” ) g = %?fy. 

Then 

241 

tchere A’ = diag i’, r = C,v diag ;‘. 
2. Supposr thut 

h = @!i’“. g = ,Y’$. 

Then 

R, = PO,,, [G’?; (A’” + M)U; - Z,#;. (A’” - M).Y;] P;,,. 

where A”’ = diagi’” und M = CN diag ,LL 
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