
stichting

mathematisch

centrum

AFDELING TOEGEPASTE WISKUNDE
(DEPARTMENT OF APPL! ED MATHEMATICS)

TW 208/80

C.G. VANDERLAAN

~
MC

SEPTEMBER

A PROPOSAL FOR THE C06 CHAPTER OF THE NAG ALGOL 68 LIBRARY

kruislaan 413 1098 SJ amsterdam
EMBL.lOTHl:EK MATHE MA TISCH CEtHRUM

-AMSTER~AM-

Punted a.t .the Ma.thema;Uc.ai. Centlte, 413 Kll.l.L.l6laa.n, ArAf>.teJtda.m.

The Mathematic.al. Centlte, 6ou.nded .the 11-.th 06 Febtiu.aJLy 1946, ,U a. non­
pll.o 6U .ln,,6.tli.u.,t,i.o n <UmlYlfJ at .the pll.Omo.tlo n o 6 pu.ll.e mathema;UC-6 a.nd U:.6
a.ppUc.a;Uon6. 1.t ,U .6pon6oll.ed by .the Ne.thell.la.nd6 Govell.nment .thMu.gh .the
Ne.theJli..a.nd6 Oll.ga.niza;Uon ooll. .the Adva.nc.ement 06 Pu.ll.e Re.6ea1tc.h (Z.W.O.).

1980 Mathematics subject classification: 65-04, 42-04, 65T05

A proposal for the C06 chapter of the NAG ALGOL 68 Library.

by

*)
C.G. van der Laan

ABSTRACT

A proposal and future plans for the C06 chapter of the NAG ALGOL 68

library are provided. Operators in ALGOL 68 and their documentation are

given for the: problems connected with the Discrete Fourier Transform and

the evaluation of trigonometric sums.

KEY WORDS & PHRASES: ALGOL 68 implementation, Discrete Fourier Transform,

Fast Fourier Transform, exponential sum, discrete

harmonic analysis, trigonometric interpolation,

discrete harmonic synthesis, trigonometric sum;

Euler summation, Chebyshev sum, sum of orthogonal

polynomials, Toeplitz matrix operations

*)
Rekencentrum, University of Groningen, Postbus 800, 9700 AV Groningen,

The Netherlands.

CONTENTS

Preface

I Introduction to the COG chapter of the NAG ALGOL 68 library

II Documentation and source texts of the operators

II.1 C06EXPSUM, C06EXPSUMHRM, C06EXPSUMANH

II.2 C06EXPSUM (dyadic)

II. 3 C06TRGSUM, C06COSS UM, C06SINSUM

II.4 C06TRGSUM, C06COSSUM, C06SINSUM (dyadic)

III Source texts of the technical routines

III.1 Hierarchy of the implementations (monadic operators)

III.2 Hierarchy of the implementations (dyadic operators)

III.3 Source texts

IV Testing

v Future plans

V.l General summation

v.2 The summation of Chebyshev sums

V.3 The summation of sums of orthogonal polynomials

V.4 Two-dimensional IDFT

V.5 Operators for special matrix-times-vector products

V.6 Consideration of the Winograd technique for the improvement

DFT

i

1

11

11

24

29

38

45

45

45

45

56

57

58

58

61

64

64

of the

83

11

PREFACE

This publication is intended to serve the goals:

• to make the proposed included software free,

• to open a discussion over the proposed and future contents of the C06

chapter,

• to stimulate contributors.

The author is custodian for the C06 chapter of the NAG ALGOL 68

library.

Contributors to this work are my colleagues Mr. R.J. van Oosten and

Mr. J.P. Hollenberg. The former programmed and documented a preliminary

version of this collection of operators as well as the technical routine

C06FFT; the latter worked out the final version and its test programs. The

theoretical foundation of the included operators and a discussion of the

available implementations in a variety of libraries was published by the

author (in Dutch) in the MC Syllabus 29.lb: Colloquium Numerieke

programmatuur.

Although a lot of good and fast FFT-routines are available in FORTRAN,

we have programmed our own for portability reasons; users of the provided

-operators may interface to a FORTRAN version of C06FFT. A machine readable

copy of the source texts can be obtained by sending a magnetic tape to the

author.

Because the NAG ALGOL 68 library has absorbed the matrix/vector package

TORRIX of VANDERMEULEN & VELDHORST no explicit reference is given to this

work.

Finally, I would like to thank the members of the working group

Approximation of Functions, especially Dr. N.M. Temme, for the necessary

environment and the Mathematical Centre for providing the opportunity to

publish this proposal in their TW-reports series; Prof. L.M. Delves and Dr.

G. Hodgson of NAG are kindly acknowledged for reading and commenting a

previous version of the documentation units.

I INTRODUCTION TO THE C06 CHAPTER OF THE NAG ALGOL 68 LIBRARY

CONTENTS OF-THIS INTRODUCTION

1 Scope of the Chapter

2 Background of the Problems

2.1 Types of summation problems

2.2 Accuracy

2.3 Data representation

3 Fourier Analysis and S:tnthesis

3.1 Fourier analysis

3.2 Fourier synthesis

3.3 Applications

3.4 Implementation survey

References

1. Scope of the Chapter

Provided are implementations related to

(1.1)
u

s(t) = l fk(t)
k=l

with ta parameter and l,u either finite or infinite.

2. Background of the Problems

The summation problems are distinguished according to the structure of

the terms fk (t) •

1

2

2.1 Types of summation problems

As a particular case of (1.1) we have

(2.1)

with a the coefficient vector of the series expansion of s with respect

to the basis functions {~k}.

A variety of implementations have emerged according to the available

information and desired results.

Examples of {~k} are:

. polynomials (see chapter E02 of the NAG library);

• trigonometric functions (this chapter);

• B-splines (see chapter E02 of the NAG library).

With the vector a we mean (••. a ,a 1 , ••• ,a 1 ,a0 ,a1 , •.• ,a 1 ,a , •••) or a
-n -n+ - n- n

finite part of it.

2.1.1 Summation of trigonometric functions

Within this context relation (1.1) reads

(2. 2)
u

s<t) = I
k=l

ikt
Ok e ·

The implementations given consider finite special cases of (2.2):

• evaluation of s for one argument (dyadic operators);

• evaluation of s for equidistant arguments (monadic operators).

2.1.2 General summation

So far no implementations are provided; in the ALGOL 68 report the

routine EULER is given.

2.2 Accuracy

An implementation is generally used on samples in a digital computer, with

its intrinsic limitations, whereas we are thinking in abstractions. The

difference herein is covered by the accuracy concept, which may be sub­

divided into the error effects:

residual or truncation error, i.e. the discrepancy between the sample

information and the theoretical information of our problem;

3

• propagated error, i.e. the effect of perturbations;

• generated or rounding error, i.e. the effect of finite precision

arithmetic.

In order to grasp these errors we use the concepts of the condition of a

problem (section 2.2.1) and the growth of an algorithm (section 2.2.2).

In each documentation unit bounds for the propagated and generated errors

are given in terms of tjle condition and growth. Apart from the residual

error a first order bound for the total error is the sum of the

indicated errors.

Example.

Given the table

Formula Propagated error

C06EXPSUM a IIL:ia11 2 / max (1//n,llaD 2)

we obtain for the error bound of {clc. = _,_ J

Generated error

ga * small real

2,rikj/n
e I

j = 0,1, ••• ,n-1}

II c - C06EXPSUM ~ ll 2

max (1,llcll 2)

2.2.1 Condition of a problem

~ propagated error+ generated error.

Consider a problem T, which transforms data a into~, then the first order

effect of the perturbation l:ia of a is governed by

l:ib = I
j

aTa
aa.

J

f:ia • I
J

a weighted sum of the perturbations in the data.

The amplification or condition of the problem can be defined by

0 !:ibH II L:iaH
C = /--

llbll Dall

If we choose the 2-norm then we obtain for the Discrete Fourier Transform

(DFT)

4

C = 1.

2.2.2 Growth of an algorithm

Generally a process Tin finite precision arithmetic is thought of as a

process in exact arithmetic with perturbated parameters, 6a. A bound for

these perturbations can be obtained by backward error analysis; the

factors involved are the so-called growth and the machine precision,£.

In other words, consider a process P for the above problem Tin finite

precision arithmetic, then there exists a 6a, such that

P(a) = fl(T(~)) = T(~+tia);

with the growth function, g, defined by

lltiall

Hall
= g * £.

2.3 Data representation

Definitions:

o. a vector is called a periodic n-vector if ak = ak+n' for all integer

k;

r. a vector is called a real periodic n-vector if (o) and the elements

are real;

r.s. a vector is called a symmetric real periodic n-vector if (r) and

ak = an-k' for all integer k;

r.a. a vector is called an anti-symmetric real periodic n-vector if

(r) and ak = -an-k' for all integer k;

c. a vector is called a complex periodic n-vector if (o) and the elements

are complex ;

c.h. a vector is called a Hermitian complex periodic n-vector if (c) and

ak = an-k' for all integer k;

c.a. a vector is called an anti-Hermitian complex periodic n-vector if

(c) and ak = -an-k' for all integer k.

In the operators related to the OFT we will consider the significant

part of a periodic n-vector; in the same way we will talk about a

symmetric, an anti-symmetric, a Hermitian or an anti-Hermitian vector. We

use the notation:

~, for either a real or complex vector;

E._, for a real vector;

£,fora complex vector.

The data representation of an element ak of a periodic n-vector is the

number a[LWB a + k MOD n J, with LWB a a parameter free for choice.

3. Fourier .Analysis and Synthesis

5

For the definition of DFT and IDFT and related terminology we adhere to [6].

For simplicity we restrict ourselves to periodic functions on [0,T), and

trigonometric functions as basis functions.

Within this context relation (1.1) reads

00

(3. 1)
, 21rikt/T

s(t) = l ak e ,
k=-oo

t E [O,T)

with the so--called Fourier coefficients

= ½ f s(t)
-21rikt/T

e · dt, k = ••• I -n I , 0 I ••• In I •••

0

[11;509].

From relation (3.1) we considered two summation problems:

• Fourier analysis: givens obtain {ak};

• Fourier synthesis: given {ak} obtains.

A variety of implementations may result according to the actual information

used and delivered.

3.1 Fourier analysis

Generally only equidistant samples {s(21rk/nl k=0,1, ... ,n-1} are available

and the first {akl k=0,1, ... ,n-1} are desired.

The ak can be approximated by using attenuation factors Tk as follows

(3. 2) a' =
k T * k

n-1
l s(21rj/n) wkj,

n
j=O

k = 0,1, ••• ,n-1

6

with

k.
W J = exp(2TTikj/n)

n

and where the bar denotes complex conjugation and the prime the

approximated value. The second factor of (3.2) apart from a factor is known

as the Discrete Fourier Transform (DFT), [10;573].

For Tk we may use a variety of possibilities, e.g.

Tk used information

1 s (2TTk/n), k = 0 I 1 I • • • I n-1 •

(sin TTk/n)
2 s (2TTk/n), k = 0,1, •.. ,n-1, and function between samples

TTk/n
is linear; crk are the Fourier coefficients of the linear

interpolated samples.

For more information about the attenuation factors, see [4].

Remarks

• The DFT can be handled by the monadic operators C06EXPSUM etc.

The values of sin(2TTk/n), k = 0,1, ..• ,n-1, can be obtained in

s[O:n-1] by the call of the technical routine C06SINTWI as follows

C06SINTWI (n,s).

3.2 Fourier synthesis

Generally the first {crkl k=0,1, ... ,n-1} and either one argument torn

equidistant arguments {tkltk = kT/n, k=0,1, •.. ,n-1} are available while

s(t) or {s(tk)} are desired.

This reduces to the problems:

. the evaluation of a trigonometric sum

n-1
\' 2TTikt/T
l ak e

k=O

• the IDFT (the Inverse Discrete Fourier Transform)

n-1 k"
L ak w J,

k=O n
j = 0,1, .•• ,n-1.

3.3 Applications

A collection of papers on the application of the DFT within the context

of digital signal processing is given in [9,10]; with respect to time

series analysis a concise survey of the backgrounds and a discussion of

the application of the DFT to the calculation of sample covariance and

cross-covariance functions, to the estimation of variance spectra and

cross-spectra and very briefly to the implementation of moving average

digital filters is given in [3]. In [6] the DFT is discussed and the

following computational problems in (mainly) complex analysis where it

7

can be fruitfully applied, are suggested: calculation of Fourier coefficients

using attenuation factors; solution of Symm's integral equation in conformal

mapping; trigonometric interpolation; determination of conjugate periodic

functions and their application to Theodorsen's integral equation for

the conformal mapping of simply and of doubly connected regions;

determination of Laurent's coefficients with applications to numerical

differentiation; generating functions and the numerical inversion of

Laplace transforms; determination of the density of the zeros of high

degree polynomials; convolution and its application to time series

analysis, to the multiplication of polynomials and of large integers,

and to fast Poisson solvers; manipulation of power series.

As an example we consider the evaluation of

00

-00

For the samples U (j/T) I j=O ,±1,±2, ••.. }

the above integral reduces to

T

(3. 3) <P(j/T) = J sp(t)e-27Tijt/Tdt.

0

8

with the periodic alias function

00

s (t) =
p 2 s(t+kT)

k=-a:

and Ta free parameter. The integrals (3.3) can be evaluated by (3.2).

Remarks

s (t) is generally approximated by s(t), t € [-T/2,T/2] with T such p
that the integration beyond [-T/2,T/2] is negligible •

• With bandlimited functions we know already that ~(w) = O for

lwl > n.

This results in

-n <j/T < n, j=O,±1, ••• ,±(n-1)

with T = n~t and ~t the sampling distance.

From a given ~t ~ 1/(2n) we can choose either the size n of the DFT or

T. The behaviour of sand the desired accuracy of the approximation of

s determines the total number of samples.
p

·3. 4 Implementation survey

For the moment only operators related to Fourier analysis and Fourier

synthesis are available. These are grouped in four problem sets:

• evaluation of IDFT (monadic C06EXPSUM etc.):

n-1

2 ak
k=O

21rikj/n
e I j = O,1, ••• ,n-1;

• evaluation of exponential sums (dyadic C06EXPSUM etc.):

f(0,a) = k
z , i0

z = e

• evaluation of Discrete Harmonic Analysis (DHA) and Discrete Harmonic

Synthesis (DHS) (monadic C06TRGSUM etc.):

from

9

m ..
f. =

J I a. cos nkj/m + b. sin nkj/m,
J J

j=0,1, ••. ,n-1 and n=2*m
k=0

then the problems are characterized by

DHS: obtain f from a and b

DHA: obtain a and b from f; - -

evaluation of trigonometric sums (dyadic C06TRGSUM etc.):

m

f(S,~,.e_) = l
k=0

ak cos k8 + bk sin k8.

Each problem set gives rise to a number of operators according to the

data type and symmetries in the data: each problem set, and the

details of the involved operators, is separately described in a documenta­

tion unit.

REFERENCES

[1] COCHRAN, W.T. c.s. (G-AE subcommittee on measurement concepts)

What is the Fast Fourier Transform?

IEEE Trans. Audio-Electroacoust., AU-15, 45-55. 1967.

Reprinted in RABINER L.R.c.s. [9,240-250].

[2] COOLEY, J.W. c.s.

The Fast Fourier Transform Algorithm: programming considerations in the

calculation of sine, cosine and Laplace transforms.

J. Sound. Vib, 12, 315-337. 1970.

Reprinted in RABINER L.R. c.s. [9,271-293].

[3] COOLEY, J.W. c.s.

The FFT and its application to time series analysis.

In: ENSLEIN, K. c.s.

Statistical methods for digital computers, 377-423, 1977.

10

[4] GAUTSCH!, W.

Attenuation factors in practical Fourier Analysis.

Numer. Math., 18, 373-400. 1972.

[5] GENTLEMAN, M.W. & SANDE, G.

Fast Fourier Transforms for fun and profit.

AFIPS, 29, 563-578. 1966.

[6] HENRICI, P.

Fast Fourier methods in computational complex analysis.

SIAM Review, 21, 4, 481-527. 1979.

[7] OLIVER, J.

Stable methods for evaluating the points cos(i~/n).

JIMA, 16, 247-257. 1975.

[8] RAMOS, G.

Roundoff error analysis of the Fast Fourier Transform.

Math. Comp., 25, 757-768. 1971.

[9] RABINER, L.R. c.s~

Digital signal processing I.

1972.

IEEE-press.

[10] RABINER, L.R. c.s.

Digital signal processing II.

1975.

IEEE-press.

[11] HAMMING, R.W.

Numerical methods for scientists and engineers. Second edition.

1973.

11

II. DOCUMENTATION AND SOURCE TEXTS OF THE OPERATORS

II. 1 C06EXP8UM, C06EXPSUMHRM, C06EXPSUMANH.

1. Purpose

The monadic operators

C06EXPSUM, C06EXPSUMHRM, C06EXPSUMANH

evaluate th~ Inverse Discrete Fourier Transform (IDFT) of a real or complex

vector. Advantage has been taken of symmetry in the data in

IMPORTANT:

C06EXPSUMHRM

C06EXPSUMANH

data vector is Hermitian symmetric

data vector is skew-Hermitian symmetric.

2. Specification (Algol 68)

MODE SCAL = REAL, COSCAL = COMPL;

MODE VEC = REF[] SCAL,

COVEC = REF[] COSCAL;

OP C06EXPSUM = (VEC r) COVEC:

OP C06EXPSUM = (COVEC c) COVEC:

OP C06EXPSUMHRM = (VEC r) VEC

OP C06EXPSUMHPJ.1 = (COVEC c) VEC

OP C06EXPSUMANH = (VEC r) VEC

OP C06EXPSUMANH = (COVEC c) VEC

3. Description

The operators calculate

n-1

I
k=O

2,rikj/n
~ e I j=0,1. .• ,n-1

with a a real or complex vector. Used is the Cooley-Sande-Stockham

algorithm; the auxiliary twiddle-factors are calculated by an extension

of the Hopgood-Litherland algorithm.

4. References

See chapter introduction [1,2,7]

12

5. Parameters

General:

• n is the size of an array; for n is even we use m to denote n/2.

The lower bound of the result equals the lower bound of the operand .

Only the size of the operands matters: the k-th element of a vector

a is assumed to be a[LWB a+ k], so the lower bound of the data

representation of the vector does not matter and is free for choice.

The operands are not preserved.

Formula

C06EXPSUM a

C06EXPSUMHRM r

C06EXPSUMHRM c

C06EXPSUMANH r

C06EXPSUMANH c

Operand

a real or complex array
variable with n elements.

a real array variable with
m+1 elements: the first
elements of a symmetric
n-vector, with n=2*m.

a complex array variable
with m+1 elements: the
first elements of a
Hermitian n-vector, with
n=2*m.

a real array variable with
m+1 elements.: the first
elements of an anti­
symmetric n-vector (the
first and last element
must contain zero), with
n=2*m.

a complex array variable
with m+1 elements: the
first elements of a skew­
Hermitian n-vector (the
real parts of the first
and last element must
contain zero), with n=2*m.

6. Error indicators

Result

a complex array variable
with n elements.

a real array variable with
m+l elements: the first
elements of the resulting
symmetric n-vector.

a real array variable with
n elements.

a real array variable with
m+l elements: the first
elements of the imaginary
part of the resulting
complex Hermitian n-vector
with zero real part. (The
first and last element
contain zero) .

a real array variable with
n elements: the imaginary
part of the resulting
complex vector with zero
real part.

In the event of an error condition being detected, the error routine:

c06fail of mode REF NAGFAIL, is called with the parameters listed below.

These are printed and in case the value of c06fail is nagsoft the

13

execution is continued (see in Introduction of the NAG manual the document

on the ALGOL 68 error mechanism). The operators were designed with nagsoft

as the user-friendly error-handling mechanism in mind.

parameter

1

2

message

OPERAND OF <operator name> OF WRONG SIZE

The given array is of too small size, so the IDFT is

an empty sum; the result yielded is the operand.

OPERAND OF <operator name> NOT <symmetry kind>

The given part of the symmetric array is not of the

symmetry kind expected by the operator, because of

the symmetry and periodicity; the calculation is

performed with an operand adapted to the operator,

by setting elements to zero where appropriate.

7. Auxiliary routines

The used NAG library operators - all with a complex operand - are given

in the following table.

Formula Used NAG library operators Used Torrix operators/
qenerators

C06EXPSUM r n0ne gencoarrayl, widen, conj

C06EXPSUM c none none

C06EXPSUMHRM r m is odd: C06EXPSUM genarray1, gencoarrayl, widen, conj

m is even: C06EXPSUMHRM genarrayl, gencoarrayl, widen, conj

C06EXPSUMHRM C none genarrayl, gencoarrayl, widen, conj

C06EXPSUMANH r m is odd: C06EXPSUM genarray 1, gencoarray 1, widen, conj

m is even: C06EXPSUMHRM genarray 1, gencoarray 1, widen

C06EXPSUMANH c C06EXPSUMHRM genarray 1, - , *<, widen

8. Timing

The time taken is proportional to p*n, where pis the sum of the prime

factors of n.

14

9. Storage

The storage required by internally declared arrays is given in the

following table.

Formula

C06EXPSUM r

C06EXPSUM c

C06EXPSUMHRM r

C06EXPSUMHRM c

C06EXPSUMANH r

C06EXPSUMANH c

10. Accuracy

Let us denote by:

Specification
situation

n is even

n is odd

m is even

m is odd

m is even
m is odd

a the coefficient vect9r;

Internally declared arrays

n+nf2+1

n

none.

complex elements.

elements.

mt2+1 real and complex elements.

m+2+1 real and m complex elements.

n real and mt2+1 complex elements.

m+2+1 real and comulex elements. I
m+l real and mf2+1 complex elements.1
none. I

a the machine representation of the (measured) a;

/J.a a - a; j

9a the growth factor of order t 1.5
l pi

with n = rt
i=l

i=l

p, (given implicitly in [8]).
1

Error bounds (first order)

Formula Propagated error Generated

C06EXPSUM a II !J.all 2/max (1/v'n, II all) g * small
-2 a

error

real

The bounds for C06EXPSUMHRM, and C06EXPSUMANH are similar.

11. Further comments

The related problems - the DFT apart from a factor 1/n -

n-1

l ak
k=0

-21ri kj/n
e

can be obtained as follows, where the parameters are prescribed as in 5.

Parameters.

Operand Formula

complex n-vector CONJ C06EXPSUM CONJ c

Hermitian n-vector C06EXPSU1fHRH CONJ c

skew-Hermitian n-vector - C06EXPSUMANH CONJ c

real n-vector CONJ C06EXPSUM r

symmetric real n-vector C06EXPSUMHRM r

anti-symmetric real n-vector

12. Keywords

Discrete Fourier Transform .

. Fast Fourier Transform.

Cooley-Sande-Stockham algorithm.

13. Examples

C06EXPSUM

13.1 Program text.

'BEGIN'

- C06EXPSUMANH r

AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUM'
THIS PROGRAM CALCULATES APPROXIMATELY THE IDFT OF:
- A COMPLEX VECTOR;
- A REAL VECTOR.

'COVEC'C=GENCOVEC(2) :=(1.0'I'2.0,3.0'I'4.0);
WRITEF(($28A,2(L,16A,2(L,-D.DDQI-D.DD))$,

"'C06EXPSUM' EXAMPLE PROGRAM.",
"COMPLEX OPERAND:",
C,
"COMPLEX RESULT:",
'C06EXPSUM'C));

15

16

'VEC'R=GENVEC(4):=(1.0,0.0,3.0,4.0);
WRITEF(($2L,13A,4(Q-D.DD),L,15A,4(L,-D.DDQI-D.DD)$,

"REAL OPERAND: II ,

R,
"COMPLEX RESULT:",
'C06EXPSUM' R))

'END 1 #0F 'C06EXPSUM' EXAMPLE PROGRAM#

13.2 Data for program. None.

13.3 Results.

'C06EXPSUM' EXAMPLE PROGRAM •.

COMPLEX OPERAND:
1.00 I 2.00
3.00 I 4.00

COMPLEX RESULT:
4.00 I 6.00

-2.00 I-2.00

REAL OPERAND: 1.00 0.00 3.00 4.00
COMPLEX RESULT:

8.00 I 0.00
-2.00 I-4.00
0.00 I 0.00

-2.00 I 4.00

C06EXPSUMHRM

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUMHRM' THIS PROGRAM
CALCULATES APPROXIMATELY THE IDFT OF:
- A COMPLEX HERMITIAN VECTOR;
- A REAL SYMMETRIC VECTOR.

'COVEC'C=GENCOVEC(3):=(I.0'I'O.O,O.O'I'l.0,2.0'I'O.O);
WRITEF(($31A,L,54A,3(L,-D.DDQI-D.DD),L,22A,4(Q-D.DDQ)$,

"'C06EXPSUMHRM' EXAMPLE PROGRAM.",
"SIGNIFICANT PART OF COMPLEX HERMITIAN VECTOR ON INPUT:",
c,
"REAL VECTOR DELIVERED:",
'C06EXPSUMHRM'C));

'VEC'R=GENVEC(3):=(1.0,2.0,3.0);
WRITEF(($2L,51A,3(Q-D.DD),L,42A,3(Q-D.DD)$,

"SIGNIFICANT PART OF REAL SYMMETRIC VECTOR ON INPUT:",
R,
"SIGNIFICANT PART OF REAL SYMMETRIC RESULT:",
'C06EXPSUMHRM'R))

'END 1 #0F 'C06EXPSUMHRM' EXAMPLE PROGRAM#

13.2 Data for program. None.

13.3 Results.

'C06EXPSUMHRM' EXAMPLE PROGRAM.
SIGNIFICAN'r PART OF COMPLEX HERMITIAN VECTOR ON INPUT:

1.00 I 0.00
0.00 I 1.00
2.0Q I 0.00

REAL VECTOR DELIVERED: 3.00 -3.00 3.00 1.00

SIGNIFICANT PART OF REAL SYMMETRIC VECTOR ON INPUT: 1.00 2.00 3.00
SIGNIFICANT PART OF REAL SYMMETRIC RESULT: 8.00 -2.00 0.00

C06EXPSUMANH

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUMANH' THIS PROGRAM
CALCULATES APPROXIMATELY.THE !DFT OF:
- A COMPLEX ANTI-HERMITIAN VECTOR;
- A REAL ANTI-SYMMETRIC VECTOR.

'COVEC'C=GENCOVEC(3) :=(0.0'I'3.0,0.0'I'1.0,0.0'I'2.0);
WRITEF(($31A,L,59A,3(L,-D.DDQI-D.DD) ,L,25A,4(Q-D.DD)$,

"'C06EXPSUMANH' EXAMPLE PROGRAM.",
"SIGNIFICANT PART OF COMPLEX ANTI-HERMITIAN VECTOR ON INPUT:",
c,
"DELIVERED IMAGINARY PART:",
'C06EXPSUMANH'C));

'VEC'R=GENVEC(3):=(0.0,2.0,0.0);
WRITEF(($2L,56A,3(Q-D.DD),L,37A,3(Q-D.DD)$,

"SIGNIFICANT PART OF REAL ANTI-SYMMETRIC VECTOR ON INPUT:",
R,
"SIGNIFICANT PART OF IMAGINARY RESULT:",
'C06EXPSUMANH'R))

'END 1 #0F 'C06EXPSUMANH' EXAMPLE PROGRAM#

13.2 Data for program. None.

17

18

13.3 Results.

'C06EXPSUMANH' EXAMPLE PROGRAM.
SIGNIFICANT P.Z:rnT OF COMPLEX ANTI-HERMITIAN VECTOR ON INPUT:
0.00 I 3.00
0.00 I 1.00
0.00 I 2.00

DELIVERED IMAGINARY PART: 7.00 1.00 3.00 1.00

SIGNIFICANT Pl~RT OF REAL ANTI-SYMMETRIC VECTOR ON INPUT: 0.00 2.00 0.00
SIGNIFICANT PART OF IMAGINARY RESULT: 0.00 4.00 0.00

14. Source texts

OP C06EXPSUM =(COVEC c) COVEC

lfpurpose:

input:
results:

exception

approximately calculated is

n-1
sum w[j,k)xc[k+ LWR c]. j=0,1, ••• ,n-1
k=O
with n== SIZE c,w[j,k]=exp(O I jxkx2xpi/n),
see above formula. c is not preserved.
the idft of c is delivered
with hounds similar to those of c.

handling:if SIZE c(l then c is delivered and c06fail is
called.If

IF INT n- SIZE c;n>l
THEN c06fft(c[AT Oj);c
ELSE c06faH(l, "expsumoperand of C06EXPSUM of wrong size"); c

FI ,

OP C06EXPSUM =(VEC r) COVEC :

I/purpose: approximately calculated is

n-1
sum w[j,k]xr[k+ LWP. r], j=O,l, ••• ,n-1
k=O

input:
results:

exception

with n= SIZE r, w[j,k]=exp(O I 2>:pixjxk/n).
see above formula. r is not preserved.
the idft of (real) r with similar bounds as r.

handling:if SIZE r<l then r, widened to a COVEC, is
delivered and c06fail is called.#

IF INT n= SIZE r;n>O
THEN INT l= urn r' u= UPB r;

IF ODD n
THEN COVEC xy= WIDEN r[AT O];

c06fft(xy);
INT uu:=n-1;
FOR 11 \JJ-TILE ll(uu
DO REF COSCAL xyl=xy[ll] ,xyu=xy[uu);

COS CAL rs= (xyl+ CONJ xyu) / WIDEN 2;
(xyl:=rs,xyu:= CONJ rs);
uu-:=l

OD
xy[AT 1)

ELSE INT n2=n OVER 2,n4=n OVER 4, rnT j:=-1;
COVEC xy=gencoarrayl(O,n-1);

FI

FOR i FROM 1 P,Y 2 TO u-1
DO xy[j+:=l]:=r[i] I r[i+l] OD
c06fft(xy[O:n2-l AT_ OJ);
BEGIN SCAL norrndiv2= WIDEN 1/ Wll)E!'-J 2;

COVEC wn=gencoarrayl(O,n4);
c06ini tw(n, wn);
FOR i TO n4
DO REF COSCAL s=xy[i),t=xy[n2-1],

COSCAL wni=wn(1J;

OD

COSCAL p=(s+ CONJ t)xnorrndiv2,
q=(s- CONJ t)x(im OF wni I -re OF wni)xnormdiv2;
(s:=p+q,t:= CONJ (p-q))

(SCAL s=re OF xy[O),t=im OF xy[O);
(xy[O]:= WIDEN (s+t),xy[n2):= WIDEN (s-t)))

END
INT uu:=n-1;
FOR 11 WHILE ll(uu
DO xy[uu):= CONJ xy[ll];uu-:=l OD
xy[AT 1)

ELSE c06fail(l, "expstnnoperand of C06EXPSUM of wrong size");
WIDEN r

FI ,

19

20

OP C06EXPSUMHRM =(COVEC c) VEC :

{!purpose: approximately calculated is

n-1
sum w [j , k] x c [LWB c+ k] , j=O, 1 , • • • , n-1
k=O

with n=n2x2, the size of the complete hermitian
vector c, (Le. c[LWR c+k]= CONJ c[LWB c+n-k],
k=l,2, ••• , n-1) and w[j,k]=exp(O I 2xpixjxk/n).

input: c[LWR c: LWR c+n2] is assumed to be supplied.
c is not preserved. for odd n use C06EXPSUM •

results: the idft of c is a real vector and is delivered
as a VEC with the lower bound similar to that of
c and with LWR c+n-1 as upper bound.

exception handling:if the first or last element of the given c have
nonzero imaginairy parts (so the complete vector
is not hermitian symmetric) then the calculation is
done with these parts put to zero and c06fail is
called. if n(2 then a VEC with bounds LWB c and
LWB c+n-1 is delivered and c06fail is called.#

IF INT 1= LWB c,u= UPB c; INT n2=u-l; INT n=n2x2;n2)1
THEN IF SCAL zero= WIDEN O;

im OF c[l]=zero AND im OF c[u]=·zero
THEN INT n4=n2 OVER 2;

COVEC czer=c[l:l+n2-1 AT OJ;
COVEC wn=gencoarrayl(O,n4);
c06initw(n, wn);
czer[O]:=(SCAL cO=re OF czer[O],cn2=re OF c[u];
(c0+cn2) I (c0-cn2));
FOR k TO n4
DO REF COSCAL ck=czer[k],cn2k=czer[n2-k];

COSCAL s= ck+ CONJ cn2k,
t=(ck- CONJ cn2k)xwn[k]x(O I 1);

(ck:=s+t,cn2k:= CONJ (s-t))
OD;
c06fft(czer);
VEC result=genarrayl(O,n-1);
INT j:=-1;
FOR k BY 2 TO n-1
DO result[k-1]:=re OF czer[j+:=lJ;

result[k]:=im OF czer[jJ
OD
result[AT lJ

ELSE c06fail(2,"exphrmoperand of
im OF c[lJ:•im OF c[u]:=zero;

C06EXPSUMHRM
C06EXPSUMHRM c

FI

not hermitian");

ELSE c06fail(l,"exphrmoperand of C06EXPSUMHRM of wrong size");
genarrayl(l,l+n-1)

FI ,

OP C06EXPSUMHR}1 =(VF'.C r) VEC

I/purpose: approximately calculated is

n-1

input:

results:

sum w[j,k]xr[LWB r+-k], j=0,1, ••• ,n-1
k=O

with n=n2x2, the size of the complete symmetric
vector r, (i.e. r[LWR r+-k] =r[urn r+-n-k],
k=l,2, ••• ,n-1) and w[j,k]=exp(O I 2xpixjxk/n).
r[LWB r: urn r+-n2] is assumed to be supplied.
r is not preserved. for odd n use C06EXPSUM.
the dft of r is again real and symmetric, so only
the first n2+1 elements are delivered with bounds
similar to those of r.

exception handlin~:if n(2 then c06fail is called and the original
vector is delivered.#

IF INT n2= SIZE r-l;n2)0
THEN SCAL oddsum: = WIDEN O, VEC rzer=r[AT O];

FOR k BY 2 TO n2-l
no oddsum+:=2xrzer[k] OD
IF ODD n2
THEN odds um+: =rzer[n2 J;

COVF.C c=gencoarrayl(O,n2-1);
INT j:=O;c[OJ:= WIDEN rzer[OJ;
FOR k FROM 2 RY 2 TO n2
DO COSCAL cs=c[j+:=1]:=rzer[k] I (rzer[k+l]-rzer[k-1]);

c[n2-j]:= CONJ cs
OD;
rzer(O:n2-1 AT OJ:=re_OF (C06EXPSUM c)

ELSE INT n4=n2 OVER 2; COVEC c=gencoarrayl(O,n4);
INT j:=O;c[O]:= WIDEN rzer[O];
FOR k FROM 2 BY 2 TO n2-2
DO c[j+:=1]:=rzer[k] I (rzer[k+l]-rzer[k-1]) OD
c[n4 J := WIDEN rzer[n2 J;
rzer[O:n2-1 AT OJ:= C06EXPSUMHRM c

FI ,
SCAL evensum=rzer[O];
(rzer (0 J +: ==odds um, rzer[n2]: =evens um-odd sum);
INT m=n2 OVER 2;
VEC sintwi=genarrayl(O,m);
c06sintwi(2xn2,sintwi);
INT uu:=n2;
SCAL two= WIDEN 2;
FOR k TO m
DO REF SCAL s=rzer[k],t=rzer[uu-:=1];

SCAL sk=s+t,tk=(s-t)/(twoxsintwi[k]);
(s:=(sk+tk)/two,t:=(sk-tk)/two)

OD
r

ELSE c06fail(l,"exphrmoperand of C06EXPSimHRM of wrong size");r
FI ,

21

22

OP CO6EXPSUMANH =(COVEC c) VEC :

llpurpose: approximately calculated is

n-1
sum w[j,k]xc[LWB c+k], j=O,1, ••• ,n-1
k=O

with n=n2x2, the size of the complete anti­
hermitian vector c,
(i.e. c[LWB c+k]=- CONJ c[LWB c+n-k],
k=l,2, ••• ,n-1) and w[j,k]=exp(O I 2xpixjxk/n).

input: c[LWB c: urn c+n2] is assumed to be supplied.
c is not preserved. for odd n use CO6EXPSUM.

results: the dft of c is a vector with a zero real part.
the imaginary part is delivered as a VEC with the
same lower bound as c and with LWB c+n-1 as upper
bound.

exception handling:if the first or last element of the given c have
non zero real parts (so the complete vector is not
anti-hermitian symmetric) then the calculation is
done with these parts put to zero and cO6fail is
called. if n(2 then a VEC with bounds LWB c and
LWB c+n-1 is delivered and cO6fail is called.#

IF INT 1= LWB c,u= UPB c; INT n=(u-l)x2;n)l
THEN IF SCAL zero= WIDEN O;

re OF c[l]=zero AND re OF c[u)=zero
THEN CO6EXPSUMHRM (-cx((O I 1))
ELSE cO6fai1(2,

FI

"expanhoperand of CO6EXPSUMANH not anti-hermitian");
re OF c[l]:=re OF c[u]:=zero;
CO6EXPSlJMHRM (-cx((O I 1))

ELSE cO6fail(l, "expanhoperand of CO6EXPSUNANH of wrong size");
genarrayl(l,l+n-1)

FI ,

OP CO6EXPSUMANH =(VEC r) VEC

I/purpose: approximately calculated is

n-1
sum w[j,k]xr[LWB r+k], j=O,1, ••• ,n-1
k=O

with n•n2x2, the size of the complete anti­
symmetric vector r,
(i.e. r[LWB r+k]=-r[LWR r+n-k], k=l,2, ••• , n-1)
and w[j,k]=exp(O I 2xpixjxk/n).

input: r[LWB r: LWB r+n2J is assumed to be supplied.

results:
r is not preserved. for odd n use C06EXPSUM.
the dft of r is a complex hermitian vector with a
zero real part.
only the first n2+1 elements of the imaginary part
are delivered as a vec, with hounds similar to
those of r.
note that the first and the last element of the
delivered vec are zero.

exception handling:if the first and the last elements of the given r
are not zero then the calculation is done with
these parts put to zero and c06fail is called. if
n(2 then c06fail is called and the original vector
is delivered.II

IF INT 1= LWB r,u= UPB r; INT n2=u-l;n2)0
THEN IF SCAL zero= WinEN O;

r[lJ•zero AND r[uJ=zero
THEN VEC rzer=r[AT OJ; SCAL two= WIDEN 2;

IF ODD n2

FI

THEN COVF.C c=gencoarrayl(O,n2-1);
INT j:=O;c[OJ:= WIDEN (twoxrzer[lJ);
FOR k FROM 2 BY 2 TO n2
DO COSCAL cs=c[j+:=lJ:=(rzer[k+lJ-rzer[k-lJ) I rzer[kJ;

c[n2-jJ:= CONJ cs
OD
rzer[O:n2-1 AT OJ:=re OF (C06EXPSUM c)

ELSE INT n4=n2 OVER 2; COVEC c=gencoarrayl(O,n4);
INT j:=O;c[OJ:= WIDEN (twoxrzer[l]);

FI

FOR k FROM 2 BY 2·ro n2-2
DO c[j+:=1]:=(rzer[k+-1]-rzer[k-lJ) I rzer[k] OD
c[n4 J :• WIDEN (-twoxrzer(n2-1]);
rzer[O:n2-1 AT OJ:= C06EXPSUMHRM c

INT m=n2 OVER 2;
VEC sintwi•genarrayl(O,m);
c06sintwi(2xn2,sintwi);
INT uu:=n2;
FOR k TO m
DO REF SCAL s=rzer[k],t=rzer[uu-:=lJ;

SCAL sk=t-s,tk=(t+s)/(twoxsintwi[kJ);
(s:=(sk+tk)/two,t:•(tk-sk)/two)

OD
rzer[O]:•rzer[n2]:=zero;
r
ELSE c06fail(2,

"expanhoperand of C06EXPSUMANH not anti-symmetric");
r[l]:=r[uJ:=zero; C06EXPSUMANH r

ELSE c06fail(l, "expanhoperand in C06EXPSUMANH of wrong size") ;r
FI

23

24

II.2 C06EXPSUM (dyadic)

1. Purpose

The dyadic operators

C06EXPSUM

evaluate an exponential sum with real or complex coefficients.

IMPORTANT : ••••

2. Specification (Algol 68)

MODE SCAL = REAL, COSCAL = COMPL ;

MODE VEC = REF[]SCAL,

COVEC = REF[]COSCAL;

OP C06EXPSUM = (SCAL t, VEC r)

OP C06EXPSUM = (SCAL t, COVEC c)

PRIO C06EXPSUM = B.

3. Description

The operators calculate

n
i0

f(0, a) = I akzk,
k=O

z=e

COSCAL:

COSCAL:

with a a real or complex vector. The problem is reduced to the problem

of evaluating trigonometric sums - i.e. sine and cosine sums - by

considering the real and imaginary parts. Used is the Clenshaw algorithm

with the modifications due to Reinsch.

4. References

[1] OLIVER, J.

An error analysis of the modified Clenshaw method for evaluating

Chebyshev and Fourier series.

JIMA, vol. 20, 3 79-391 • 1977.

5. Parameters

General:

• Both operands are preserved .

• The result is a complex constant: the exponential sum.

Only the size of the right operand matters: the k-th element of

a vector a is assumed to be represented by a[LWB a+ k] so the lower

bound of the data representation of the vector does not matter and is

free for choice.

Left operand t: the angle 8, a real constant (it is advised to supply a

value within [-TI,TI)).

Right operand a real or complex array with n+l elements.

6. Error indicators

25

In the event of an error condition being detected, the error routine:

c06fail of mode REF NAGFAIL, is called with the parameters listed below.

These are printed and in case the value of c06fail is nagsoft the execution

is continued (see in Introduction of the NAG manual the document on the

ALGOL 68 error mechanism). The operators were designed with nagsoft as

the user-friendly error-handling mechanism in mind.

parameter

1

message

VECTOR OPERAND OF C06EXPSUM OF WRONG SIZE

The size of the given array is smaller than zero; the

result yielded is zero as value for the empty sum.

7. Auxiliary routines None.

8. Timing

The time taken is proportional ton.

9. Storage No auxiliary arrays are declared.

26

10. Accuracy

Let us denote by:

a

6

C
a

the coefficient vector;

the angle;

the condition number

the condition number

n
l max (1 , I ak I)) /max (1 , I f (6 , ~) I) ;

k=O af
I max< 1, I e 1 > aal /max o, If c e, a> I> ;

ga the growth factor (conjectured of order n);

a the machine representation of (the measured)~;

t the machine representation of (the measured) 6;

oa vector of componentswise errors:

oak= I¾ - a[LWB a+ kJl/max(l, lakl>

for all appropriate k;

• o 6 I t - 6 I /max (1 , I 6 I) .

Error bounds (first order)

Formula Propagated

t C06EXPSUM a C * II call
a - 00

11. Further comments None.

12. Keywords

Exponential sum.

Clenshaw-Reinsch algoYithm.

13. Examples

error

+ ce-*06

Generated error

c *g* small real
a

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUM' (DYADIC) THE PROGRAM
CALCULATES APPROXIMATELY

1
SUM A[K]*EXP(0'I'K*T)
K=-1

'SCAL' ANGLE=PI/2;
'VEC'APOS=(GENVEC(2):=(0.5,2.0))['AT'0],

ANEG=(GENVEC(2):=(0.5,2.0))['AT'0];
WRITEF(($28A,L,6A,Q-D.DD,L,34A,3(Q-D.DD) ,L,25A,Q-D.DDQI-D.DD$,

"'C06EXPSUM' EXAMPLE PROGRAM.",
"ANGLE:",ANGLE,
"COEFFICIENTS A[-1],A[0] AND A[l]:",
ANEG[l],ANEG[0]+APOS[0],APOS[l],
"VALUE OF EXPONENTIAL SUM:",
-ANGLE'C06EXPSUM'ANEG+ANGLE'C06EXPSUM'APOS));

'COVEC'APLS=(GENCOVEC(2):=(0.5'I'0.25,0.5'I'-0.5))['AT'0],
AMIN=(GENCOVEC(2) :=(0.5'I'0.25,0.5'I'-0.5))['AT'0];

WRITEF(($2L,6A,Q-D.DD,L,34A,3(L,~D.DDQI-D.DD),L,25A,Q-D.DDQI-D.DD$,
"ANGLE:",ANGLE,
"COEFFICIENTS A[-1], A[0] AND A[l]:",
AMIN[l],AMIN[0]+APLS[0],APLS[l],
"VALUE OF EXPONENTIAL SUM:",
-ANGLE'C06EXPSUM-'AMIN+ANGLE'C06EXPSUM'APLS))

'END 1 #0F 'C06EXPSUM' EXAMPLE PROGRAM#

13.2 Data for program. None.

· 13. 3 Results.

'C06EXPSUM' EXAMPLE PROGRAM.
ANGLE: 1.57
COEFFICIENTS A[-1], A[0] AND A[l]: 2.00 1.00 2.00
VALUE OF EXPONENTIAL SUM: 1.00 I 0.00

ANGLE: 1.57
COEFFICIENTS A[-1], A[0] AND A[l]:

0.50 I-0.50
1.00 I 0.50
0.50 I-0.50

VALUE OF EXPONENTIAL SUM: 1.00 I 0.50

27

28

14. Source texts

OP C06EXPSUM =(SCAL t, COVEC c) COSCAL:

//purpose: approxiwately calculated is the exponential sum

n
sum c[Urn c+k)xztk
k=O

with z=exp(O It) and n= SIZE c-1.
input: left operand: angle t of MODE SCAL; it is

advised to take tin the interval [-pi,pi).
right operand: coefficient vector c of MODE
COVEC •

result: the result of the above, possibly empty, sum of
MODE COSCAL.

exception handling:if n(O then c06fail is called and zero
is delivered.II

IF SIZE c)O THEN
SCAL sinserr,cosserr,sinseri,cosseri;
(c06ser(re OF c,cosserr,sinserr,t),
c06ser(im OF c,cosseri,sinseri,t));
(cosserr-sinseri) I (sinserrtcosseri)

ELSE c06fail(l, "expsumvector operand. of c06expsum of wrong size");
WIDEN WIDEN 0

Fl ,

OP C06EXPSUM =(SCAL t, VEC r)'COSCAL :

//purpose: approximately calculated is the exponential sum

n
sum r[LWB r+k]xztk
k•O

with z=exp(O I t) and n= SIZE r-1.
input: left operand: angle t of MODE SCAL; it is

advised to take tin the interval [-pi,pi).
right operand: coefficient vector r of MODE
VEC •

result: the result of the above, possibly empty, sum of
MODE COSCAL •

exception handling:if n(O then c06fail is called and zero
is delivered.#

IF SIZE r)O THEN
SCAL sinser,cosser;
c06ser(r,cosser,sinser,t);
cosser I sinser

ELSE c06fail(l, "expsumvector operand of c06expsum of wrong size");
WIDEN WIDEN 0

Fl

II. 3 C06TRGSUM, C06COSSUM, C06SINSUM

1. Purpose

The monadic operators

C06TRGSUM, C06COSSUM, C06SINSUM

evaluate the Discrete Harmonic Analysis (DHA) and Discrete Harmonic

Synthesis (OHS).

Advantage has been taken of zeros in the data in

C06COSSUM - sine coefficients are zero (a Discrete Cosine

Transform (OCT))

C06SINSUM - cosine coefficients are zero (a Discrete Sine

Transform (DST)).

IMPORTANT: •••.

2. Specification (Algol

MODE SCAL

MODE VEC

COVEC

OP C06TRGSUM

OP C06TRGSUM

OP C06COSSUM

OP C06SINSUM

3. Description

Given the relation

68)

=
=
=
=
=
-

=

REAL, COSCAL = COMPL;

REF[] SCAL,

REF[]COSCAL;

(VEC r) COVEC:

(COVEC ab) VEC :

(VEC a) VEC :

(VEC b) VEC

29

m
\'" f. = l (a.*cos(TI*k*j/m)+b.*sin(TI*k*j/m)), j=0,1, .•. ,n-1, n=2*m,

J k=O J J

then the problems are characterized by:

OHS: obtain f from a and b, - -
DHA: obtain a and b from !, -
OCT: obtain f from a; b is zero, -
DST: obtain f from£_; a is zero. -

30

Used is the Cooley-Sande-Stockham algorithm for the DFT because the

above relation is equivalent to

a.+ib.
J J

n-1
= 1/m l fk *e2~ikj/n,

k=O
j=O, 1 , ••• ,m.

4. References

See chapter introduction: [1,2].

5. Parameters

General:

• n is the size of the array of real variables f of even size;

we use m to denote n/2 •

• The lower bound of the result equals the lower bound of the operand.

Only the size of the operands matters: the k-th element of a vector c is

assumed to be represented by c[LWB c + k], so the lower bound of the data

representation of the vector does not matter and is free for choice •

• The operands are not preserved •

• The first and last element of b must contain zero.

Formula

C06TRGSUM f

C06TRGSUM ab

C06COSSUM a

C06SINSUM b

Operand

a real array variable with
n elements: f.

a complex array variable
with m+l elements: the real
part contains~ and the
imaginary part contains£.·

a real array variable with
m+l elements: a.

a real array variable with
m+l elements: b.

Result

a complex array variable with
m+l elements: the real part
contains a and the imaginary
part contains b.

a real array variable with n
elements: f.

a real array variable with
m+l elements: the DCT of the
operand.

a real array variable with
m+l elements: the DST of the
operand.

31

6. Error indicators

In the event of an error condition being detected the error routine:

c06fail of mode REF NAGFAIL, is called with the parameters listed below.

These are printed and in case the value of c06fail is nagsoft the execution

is continued (see in Introduction of the NAG manual the document on the

ALGOL 68 error mechanism). The operators were designed with nagsoft as the

user-friendly error-handling mechanism in mind.

parameter

1

2

3

message

OPERAND OF <operator name> OF WRONG SIZE

The given array is of too small size; the result

yielded is the operand.

OPERAND OF <operator name> CONTAINS NONZERO FIRST

AND/OR LAST SINE COEFFICIENT

The calculation is performed with the nonzero

elements in ,question overwritten with zeros.

OPERAND (REAL VECTOR) OF C06TRGSUM IS OF ODD LENGTH

The calculation is performed with an adapted operand;

the smaller of the first and the last element is

discarded.

7. Auxiliary routines

The used NAG library operators are given in the following table.

Formula Used NAG library operators Used Torrix operators/generators

C06TRGSUM f C06EXPSUM gencoarrayl,/<, gencoarray 1

C06TRGSUM ab C06EXPSUMHRM genarrayl, I< , conj, genarray 1 ,
widen

C06COSSUM a C06EXPSUMHRM /<

C06SINSUM b C06EXPSUMANH r /<

8. Timing

The time taken is proportional to s*m, wheres is the sum of the factors of m.

32

9. Storage No auxiliary arrays are declared.

10. Accuracy

The accuracy is determined by the DFT because of the second relation in

the description.

Let us denote by

c the machine representation of a (measured) vector 5::._;

!J.c I c - £1 •

Error bounds (first order).

Formula Propagated error

C06TRGSUM f II !ifll
-2

/max (1//if, 11!_11 2)

C06TRGSUM ab · 11/J.all
-2

/max(l//n,llall)
- 2 + II !J.bll 2/max (1//n, 11!?._II 2)

C06COSSUM a lltJ.all 2 /max(l//ff,llall)
- 2

C06SINSUM b lltbll 2 /max (1 /l"il, II !?_II 2)

The growth factors gf,ga, gb are of the order of magnitude

with p, the factors of m.
l.

11. Further comments None.

12. Keywords

Discrete harmonic analysis.

Trigonometric interpolation.

Discrete harmonic synthesis.

Evaluation of trigonometric sums.

Fast Fourier Transform.

Cooley-Sande-Stockham algorithm.

Generated error

gf* small real

(ga+gb)* small

g * small real a

gb* small real

real

13. Examples

C06TRGSUM

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE USE OF 'C06TRGSUM' THIS PROGRAM CALCULATES
APPROXIMATELY THE DISCRETE HARMONIC ANALYSIS AND THE DISCRETE
HARMONIC SYNTHESIS.

'VEC'F=GENVEC(4):=(1.0,0.0,3.0,4.0);
WRITEF(($28A,L,28A,4(Q-D.DD),L,8A,L,42A,3(L,-D.DD17QIQ-D.DD)$,

"'C06TRGSUM' EXAMPLE PROGRAM.",
"DISCRETE FUNCTION, ON INPUT:",
F,
"RESULTS:",
"COSINE COEFFICIENTS:
'C06TRGSUM'F));

SINE COEFFICIENTS:",

'COVEC'AB=GENCOVEC(5):=(2.0'I'0.0,0.0'I'1~0,0.0'I'2.0,2.0'I'3.0,
4.0'I'O.O);

WRITEF (($2L,42A, 5 (L,;...D~D1'11QIQ-D.D9) ,L,..28A,.8 (Q-D.DD) $,
"COSINE COEFFICIENTS: SINE COEFFICIENTS:",
AB,
"RESULTING DISCRETE FUNCTION:",
'C06TRGSUM' AB))

"END 1 #0F 'C06TRGSUM' EXAMPLE PROGRAM#

13.2 Data for program. None.

13.3 Results.

'C06TRGSUM' EXAMPLE PROGRAM.
DISCRETE FUNCTION, ON INPUT: 1.00 0.00 3.00 4.00
RESULTS:
COSINE COEFFICIENTS: SINE COEFFICIENTS:

4.00 I 0.00
-1.00 I -2.00
0.00 I 0.00

COSINE COEFFICIENTS: SINE COEFFICIENTS: (ON INPUT)
2.00 I 0.00
0.00 I 1.00
o.oo I 2.00
2.00 I 3.00
4.00 I 0.00

RESULTING DISCRETE FUNCTION: 5.00 2.41 1.00 1.24 1.00 -0.41 5.00 -7.24

33

34

C06COSSUM and C06SINSUM

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE nsE OF 'C06COSSUM' AND 'C06SINSUM' THIS
PROGRAM CALCULATES APPROXIMATELY THE DISCRETE COSINE TRANSFORM AND
THE DISCRETE SINE TRANSFORM.

'VEC'A=GENVEC(S):=(2.0,0.0,0.0,2.0,4.0);
WRITEF(($28A,L,16A,5(Q-D.DD),L,36A,5(Q-D.DD)$,

"'C06COSSUM' EXAMPLE PROGRAM.",
"VECTOR ON INPUT:",
A,
"RESULT OF DISCRETE COSINE TRANSFORM:",
'C06COSSUM'A));

'VEC'B=GENVEC(S) :=(0.0,1.0,2.0,3.0,0.0);
WRITEF(($2L,28A,L,16A,5(Q-D.DD) ,L,34A,5(Q-D.DD)$,

"'C06SINSUM' EXAMPLE PROGRAM.",
"VECTOR ON INPUT:",
B,
"RESULT OF DISCRETE SINE TRANSFORM:",
'C06SINSUM'B))

'END'#oF 'C06COSSUM' AND 'C06SINSUM'. EXAMPLE PROGRru1#

13.2 Data for program. None.

13. 3 Results.

'C06COSSUM' EXAMPLE PROGRAM.
VECTOR ON INPUT: 2.00 0.00 0.00
R~SULT OF DISCRETE COSINE TRANSFORM:

'C06SINSUM' EXAMPLE PROGRAM.
VECTOR ON INPUT: 0.00 1.00 2.00
RESULT OF DISCRETE SINE TRANSFORM:

2.00 4.00
5.00 -2.41 3.00

3.00
o.oo

o.oo
4.83 -2.00

0.41 1.00 .

0.83 0.00

14. Source texts

OP C06TRGSUM •(COVEC ab) VEC :

I/purpose: approximately calculated is

m
sum" a{k+ LWB ab]xcos(pixkxj/m)
k=O

+

m
sum b{k+ LWB ah]xsin(pixkxj/m)
k=O

for j•0,1, ••• ,2xm-1 with m- SIZE ab-1.
results: the discrete harmonic synthesis i.e. the result of

the above formula for j•0,1, ••• ,2xrn-1 is
delivered as a VEC with bounds LWB ah and
LWB ab+-2xm-1. the vectors a and b must be given as
real and imaginary part of the COVEC ab.

exception handling:if m<l then c06fail is called and the result is a
VEC with bounds LWB ab and LWB ab+2xm-1.#

IF INT 1= LWB ab,m= SIZE ab-l;m)O
THEN SCAL zero- WIDEN O;

IF im OF ab(l]~zero OR im OF ab[l+m]~zero
THEN c06fail(2,

"trgsumoperand of C06TRGSUM contains non%ero first and/or
last element");
im OF ab[l]:•im OF ab(l+m]:=zero

FI
(C06EXPSUMHRM CONJ ab)/<2

ELSE c06fail(l,

FI

" TRGSUMOPERAND OF c06trgsum OF WRONG SIZE");
genarrayl(l,1+2xm-1)

35

36

OP C06TRGSUM =(VEC f) COVEC :

I/purpose: approximately calculated are

n-1

input:
results:

a[j]=l/m sum f[k+ LWB f]xcos(pixk~j/m),
k=O

and

n-1
b(j)=l/m sum f[k+ urn f]xsin(pixkxj/m),

k=O

with n=2xm= SIZE f.
see above formula. f is not preserved.
the coefficients a and bare delivered as real and
imaginary part of a COVEC with bounds LWB f and
LWB f+m.

exception handling:if n<l then c06fail is called and the resulting
COVEC has lower bound lwbf and upper bound
LWR f+m. if n is odd then c06fail is called
and the smaller of the first and the last element
is discarded and C06TRGSUM is called with the
modified operand.#

IF INT n= SIZE f,1• LWB f; INT m•n OVER 2;n)O
THEN IF NOT ODD n

THEN (C06EXPSUM f)[l:l+m AT 1)/<m
ELSE c06fai1(3,

Fl

"trgsumoperand (real vector) of C06TRGSUM is of odd length");
INT u• UPB f;
IF ABS f[l]< ABS f(u]
THEN C06TRGSUM f[1+1:u AT 1)
ELSE C06TRGSUM f[l:u-1 AT 1)
FI

ELSE c06fail(l, "trgsumoperand of C06TRGSUM OF WRONG SIZE");
gencoarrayl(l,l+m)

FI ,

OP C06COSSUM =(VEC a) VEC :
#purpose: approximately calculated is

input:
results:

exception

m
sum" a[k+ LWB aJxcos{pixkxj/rn), j=O,l, ••• ,m
k=O

DF SIZE a-1.
see above formula, a is not preserved.
the cosine transform, i.e. the result of the
above formula is delivered as a VEC with bounds
similar to those of a.

handling:if m<l then c06fail is called and the original
vector a is delivered.#

IF INT ml= SIZE a;ml)l
THEN C06EXPSUMHRM (a/ (2)
ELSE c06fail(l,"cossumoperand of C06COSSUM of wrong size");a
FI ,

OP C06SINSUM =(VEC a) VEC :
#purpose: approximately calculated is

input:

results:

m
sum a[k+ LWB a]xsin{pixkxj/m), j=O,l, ••• ,m
k=O

m= SIZE a-1.
see above-formula, a is not preserved. note that:
the first and last element of a must be supplied
and filled with zero.
the sine transform, i.e. the results of the
above formula is delivered as a VEC with bounds
similar to those of a. note that the first and last
element are zero again.

exception handling:if m<l then c06fail is called and the original
vector a is delivered.#

IF INT ml= SIZE a;ml)l
THEN SCAL zero= WIDEN O;

IF a[LWB a],'zero OR a[UPB a],'zero
THEN c06fail(2,

FI

"sinsumoperand of C06SINSUM containes nonzero first and/or
last sine coefficient");
a[LWB a] :•a[UPB a} :=zero

C06EXPSUMANH (a/(2)
ELSE c06fail(l,"sinstunoperand of C06SINSUM of wrong size");a
FI

37

38

II.4 C06TRGSUM, C06COSSUM, C06SINSUM (Dyadic)

1. Purpose

The dyadic operators

C06TRGSUM, C06COSSUM, C06SINSUM

evaluate trigonometric sums.

Advantage has been taken of zeros in the data in

C06COSSUM - sine coefficients are zero

C06SINSUM - cosine coefficients are zero.

IMPORTANT: ••••

2. Specification (Algol 68)

MODE SCAL

MODE VEC

COVEC

OP C06TRGSUM

OP C06COSSUM

OP C06SINSUM

PRIO C06TRGSUM

3. Description

The operators calculate

m

= REAL, COSCAL = COMPL;

= REF[]SCAL,

= REF[]COSCAL;

= (SCAL -t., COVEC ab) SCAL:

= (SCAL -t., VEC a) SCAL:

= (SCAL -t., VEC b) SCAL:

= 8, C06COSSUM = 8, C06SINSUM

f(6, ~, b) = I (akcos k6 + bksin k6).
k=0

= B.

The algorithm used for evaluating a cosine sum and a sine sum is the

Clenshaw algorithm with the modifications due to Reinsch.

4. References

[1] OLIVER , J.

An error analysis of the modified Clenshaw method for evaluating

Chebyshev and Fourier series.

JIMA, vol. 20, 379-391. 1977.

39

5. Parameters

General:

• Both operands are preserved •

• The result is a real constant: the trigonometric sum .

• only the size of the right operand matters: the k-th element of a vector

a is assumed to be represented by a[LWB a+ k], so the lower bound of the

data representation of the vector does not matter and is free for choice •

• m denotes the size of the coefficient vector minus 1.

Left operand t: the angle 8; a real constant (it is advised to supply

a value within [-n,n)).

Formula

t C06TRGSUM ab

t C06COSSUM a

t C06SINSUM b

6. Error indicators

Right operand

a complex array with m+l elements: the real part

contains the cosine coefficients,~, and the imaginary

part contains the sine coefficients, b. The first

element of b must contain zero.

a real array with m+l elements: the coefficients of the

cosine sum, a.

a real array with m+l elements: the coefficients of

the sine· sum, b. The first element must contain zero.

In the event of an error condition being detected, the error routine:

c06fail of mode REF NAGFAIL, is called with the parameters listed below.

These are printed and in case the value of c06fail is nagsoft the execution

is continued (see in Introduction of the NAG manual the document on the

ALGOL 68 error mechanism). The operators were designed with nagsoft as the

user-friendly error-handling mechanism in mind.

parameter message

1 VECTOR OPERAND OF <operator name> OF WRONG SIZE

The size of the given vector is smaller than one;

40

2

the result yielded is zero as value for the empty

sum.

VECTOR OPERAND OF <operator name> CONTAINS NONZERO

FIRST SINE COEFFICIENT

The calculation is performed with the first sine

coefficient overwritten with zero.

7. Auxiliary routines None.

8. Timing

The time taken is proportional tom.

9. Storage No auxiliary arrays are declared.

10. Accuracy

Let us denote by:

a

b

e

b

the cosine coefficient vector;

the sine coefficient vector;

the angle;

the condition numbers

C =
a

m

l max(1,lakl)/max(1, lf(8,~,!2_}t),
k=0

m

l max(1,lbkl)/max(1, lf(8,~,_e_)I);
k=0

the condition number

c 8 = I max (1 , I e I) : ! I /max (1 , I f (e, ~, .e_) I) ;

growth factors (conjectured of order m);

the machine representation of (the measured) a;

the machine representation of (the measured) b;

• oa, ob vectors of componentswise errors:

oak= lak - a[LWB a+ k]l/max(1, lakl>

obk = !bk - b[LWB b -I- k] I /max(1, !bk I)
for all appropriate k;

t

oe

the machine representation of (the measured) 0;

I t - e I /max (1 , I e I) .

Error bounds (first order)

Formula Propagated error

t C06TRGSUM ab C * II call + c *11 obll
a - 00 b oo

t C06COSSUM a C * II call + c 0*oe
a - 00

t C06SINSUM b C * II obll + ce*o0
b - 00

11. Further comments None.

12. Keywords

Evaluation of trigonometric sum.

Clenshaw-Reinsch algorithm.

13. Examples

Generated error

+ C0*o0 (c *g a a + c *g)*small
b b

C *g * small real
a a

C *g * b b.
small real

41

real

42

13.1 Program text.

'BEGIN'

AS AN ILLUSTRATION OF THE USE OF 'C06COSSUM', 'C06SINSUM' AND
'C06TRGSUM' (DYADIC) THE PROGRAM CALCULATES APPROXIMATELY

1
SUM (A[K}•\·COS (K*T) +B[K]*SIN (K*T))
K=0

'SCAL'ANGLE=P!/2;
'COVEC' AB= (GENCOVEC (2) :=(1. 0' I '0.0,2.0' I' 1.0)) ['AT'0];
'VEC'A=RE'OF'AB,

B=IM'OF'AB;
WRITEF(($57A,L,6A,Q-D.DD,L,20A,2(Q-D.DD) ,L,18A,Q-D.DD,2L,18A,

2(Q-D.DD),L,16A,Q-D.DD,2L,25A,Q-D.DD$,
"'C06COSSUM', 'C06SINSUM' AND 'C06TRGSUM' EXAMPLE PROGRAM.",
"ANGLE:",ANGLE,
"COSINE COEFFICIENTS:",A,
"RESULT COSINE SUM:",ANGLE'C06COSSUM'A,
"SINE COEFFICIENTS:",B,
"RESULT SINE SUM:",ANGLE'C06SINSUM'B,
"RESULT TRIGONOMETRIC SUM:",ANGLE'C06TRGSUM'AB))

'END 1 #0F 'C06COSSUM', 'C06SINSUM' AND 'C06TRGSUM' EXAMPLE PROGRAM#

13.2 Data for program. None.

13.3 Results.

'C06COSSUM', 'C06SINSUM' AND •~06TRGSUM' EXAMPLE PROGRAM.
ANGLE: 1.57
COSINE COEFFICIENTS: 1.00 2.00
RESULT COSINE SUM: 1.00

SINE COEFFICIENTS: 0.00 1.00
RESULT SINE SUM: 1.00

RESULT TRIGONOMETRIC SUM: 2.00

14. Source texts

OP C06TRGSU~ =(SCAL t, COVEC ah) SCAL :

/!purpose: approximately calculated is

m
sum (a[k]xcos(kxt)+b[k]xsin(kxt))
k=O

with 11F S IZF. a h-1.
input: the angle t of MODF. SCAL must he given as left

operand. the right operand of MODE COVEC
contains the cosine coefficients as real part and
the sine coefficients as imaginary part. the first
element of the imaginary part is supposed to refer
to zero.

results: the trigonometric sum of MODE SCAL.
exception handling:if m<O then c06fail is called and zero is

delivered as the value of the empty SlIDl. if the
first element of the imaginary part does not refer
to zero then c06fail is called and the calculation
is performed after the element is overwritten with
zero.II

IF SCAL zero= WIDEN O; INT m= SIZE ab-1; rn>-1
THEN VEC a=re OF ah,h=im OF ab;

IF h[LWB b]izero
THEN c06fai1(2,

FI

"trgsumvector operand of C06TRGSUM contains nonzero first
sine coefficient");

b[LWB b]:=zero

SCAL sinsum,cossum;
(c06ser(a,cossum, NIL ,t),c06ser(b, NIL ,sinsum,t));
cossum+sinsum

ELSE c06fail(l, "trgsumvector operand of C06TRGSUM of wrong size");
zero

FI ,

43

44

OP C06COSSUM ={ SCAL t, VEC a) SCAL :

I/purpose: approximately calculated is

m
sum ar urn a+k J x cos(kx t)
k=O

with 11F SIZE a-1.
input: the cosine coefficients must be given as a VEC

with arbitrary first index.
result: the cosine sum.
exception handling:if m(O then c06fail is called and zero is

delivered for the empty sum.#

IF INT m= SIZE a-l;m)-1
THEN SCAL cossum;

c06ser(a,,cossum, NIL ,t);cossum
ELSE c06fail(l, "cosstm1vector operand of C06COSSUM of wrong size");

WIDEN 0
FI ,

OP C06SINSUM =(SCAL t, VEC b) SCAL

I/purpose: approximately calculated is

m
sum b[LWB_ b+-k)xsin(kxt)
k=O

with 11F SIZE h-1.
input: the sine coefficients must be p,iven as a VEC

with arbitrary first index. the first element is
supposed to refer to zero.

result:
exception

the sine sum.
handling:if m(O then c06fail is called and zero is

delivered as the value of the empty sum. if
b[LWB b] does not refer to zero then c06fail is
called and the calculation is performed after
b[urn bJ is overwritten with zero. If

IF SCAL zero== WIDEN O; INT m= SIZE b-l;m)-1
THEN IF b[LWB b] ,'zero

THEN c06fai1(2,
"sinsumvector operand of C06SINSUM contains nonzero first

sine coefficient");
b[LWB b):=zero

FI
SCAL sinsum;
c06ser(h, NIL ,sinsum,t);
sins um

ELSE c06fail(l, "sinsumvector operand of C06SINSUM of wrong size");
zero

FI

45

III. SOURCE TEXTS OF THE TECHNICAL ROUTINES

III.1 Hierarchy of the implementations (monadic operators)

C06TRGSUM r C06TRGSUM c C06COSSUM C06SINSUM

t t ----- t
C06EXPSUM r C06EXPSUMH~ ~ C06EXPSUMANH r

T ~OlXPSUM ~ C06EXP:UMHRM c

~, C06SINTWI J
C06FFT

C06EXPSUHl'...NH c

T

III.2 Hierarchy of the implementations (dyadic operators)

C06EXPSUM C06TRGSUM C06COSSUM C06SINSUM

~coJs~
III.3 Source texts

46

PROC c06sintwi=(INT n, VEC s) VOID:

#purpose:the points sin(2xpixj/n), j=0,1, , UPB s
are calculated.

input: VEC s with LWB s=O and UPB s)O;
INT n with n)O.

results: the points are delivered ins.#

IF INT u= UPB s; LWR s~O AND u)O AND n)l
THEN IF u(n

THEN s[OJ:= WIDEN O;
IF u)O
THEN SCAL sp i=pi, two= WIDEN 2;

SCAL tpi=twoxspi;
SCAL the=tpi/ WIDEN n;
s[l]:=sin(the);
INT ttp:=1; INT uu=u MIN (n OVF.R 2);
WHILE ttpx:=2;ttp(uu
DO s[ttp]:•sin(ttpxthe) OD ;
INT thp=ttp OVERAB 2;
IF INT l:=thp;l(uu
THF.N WHILE (ttp OVERAB 2))0

DO IF l+ttp(uu

OD
FI

THEN l+:=ttp;s[l]:=sin(lxthe)
FI

INT k:=thp OVER 2;
WHILE (k OVERAB 2)) 1
DO IF SCAL tct=twoxc-0s(kxthe); ABS tct) WIDEN 1

THEN FOR j FROM 3xk BY 2xk TO uu-k
DO s[j]:={s(j-k]+s[j+k])/tct OD

ELSE FOR j FROM 3xk BY 2xk TO uu-k
DO s[j]:=tctxs(j-kJ-s[j-2xk] OD

FI
OD;
FOR j FROM uu+l TO u DO s[j]:=-s[n-j] OD

FI
ELSE c06sintwi(n,s[O:n-1 AT OJ);

FOR j FROM n TO u DO s[j]:=s[j-n] OD
FI

ELSE c06fail(l, "sintwiwrong size and/or bounds in c06sintwi") FI ,

PROC c06initw=(INT n, COVEC \o.; '10ID :

#purpose:the twiddle factors exp(O I 2xpixj/n), j=O,l, ••• , UPR w
are calculated.

input: C:OVEC w with LWB w=O and UPB w)O;

INT n with n)O.
results: the twiddle factors are delivered in w.#

IF INT u= UPB w; LWB w=O AND u)O AND n)l
THEN IF u(n

THEN SCAL scalpi=pi,two= WIDEN 2,one= WIDEN l;
SCAL tpi=scalpi+scalpi;
SCAL kth:=(n=l! WIDEN O!tpi/ WIDEN n),
INT k:=l;
INT uu=u MIN (n OVER 2);
w[OJ:= WIDEN one;
WHILF k (uu
DO w[k]:=(cos(kth),sin(kth));

kx :=2;
ktlhx :=two

OD
INT i=k OVERAB 2 ;k OVER.AB 2;
WHILE (k OVERAB 2)) 1
DO IF SCAL tct=twoxre OF w[k]; ABS tct) one

THE!\' FOR j FROM 3xk BY 2xk TO i-k
DO w[j]:=(w[j-k]+w[jtk])/tct OD

ELSE FOR j FROM 3xk BY 2xk TO i-k

FI
on

no w[j]:=tctxw[j-k]-w[j-2xk] OD

FOR j FROM i+l TO uu DO w[j]:=w[i]xw[j-iJ OD;
FOR j FROM uu+l TO u DO w[j]:= CONJ w[n-j] OD

ELSE c06Jlnitw(n,w[O:n-l AT OJ);
FOR j FROM n TO u DO w[j]:=w[j-n] OD

FI
ELSE c06fail(l,"c06initw wrong size anci/or hounds")
FI ,

47

48

PROC c06fft=(COVEC xy) VOID:

/}purpose: approximately calculated is

n-1
sum w[j,k]xxy[k+ LWB xy], j=O,l, ••• ,n-1
k=O

input:
results:

with n= SIZE xy, w[j,k]=exp(O I jxkx2xpi/n).
see above formula.
the idft of xy is delivered with
bounds pair O:n-1.

exception handling:if NOT (UJB xy=O AND SIZE xy)O)then
c06fail is called.#

IF INT n= UPB xy+l; LWB xy=O AND n)l THEN
IF n>l THEN

PROC fftri=(COVEC x,w, INT ri,rlrirninl,ripluslrm,n) VOID
CASE

IN

PROC xi= (INT i) COVEC :x[AT -ix ripluslrm],
COSCAL zero= WIDEN WIDEN O,
INT rirm=rix riplusl rm, noverri=n OVER ri ,r isubl=ri-1,

riplusl rmsubl=ri plusl rm-1;
INT nsubrirITFn-rirm;
risubl

BE.Gm
COVEC xO==xi(O) ,xl=xi(l);
FOR k FROM O TO ripluslrmsubl DO

COS CAL wn=w[kx rl riminlJ;

OD
END,
BEGIN

FOR j FROM k BY rirm TO nsubrirrn+-k DO
REF COSCAL x0 j=xO [jJ ,xl j=xl [j];
COSCAL a=xOj,b=xlj;
(xO j :=a+b ,xl j: =(a-b) xwn)

OD

COVEC xO=xi(O),xl=xi(l),x2=xi(2);
COSCAL ei120=w[noverri] ,ei240=w[2xnoverri];
FOR k FROM O TO ripluslrmsubl DO

OD
END ,

INT ind=kxrlriminl;
COSCAL wl n=w[ind], w2 n==w[2x ind];
FOR j FROM k BY rirm TO nsubrirrnt-k DO

REF COSCAL xO j=xO [j J , xl j==xl [j J , x2 j=x2 [j J ;
COSCAL a=x0j,b=xlj,c=x2j;
(xOj:=(a+b +c) ,
xlj:=(a+bxeil20+cxei240)xwln,
x2 j: =(a+hxei240+cxei120)xw2 n)

OD

BEGIN
COVEC xO=xi(O) ,xl=xi(l) ,x2=xi(2) ,x3=xi(3),
PROC (COSCAL) COSCAL ei90=

(COSCAL a) COSCAL :(- IM a, RE a) ;
IF noverri=rlriminl THEN

FOR j FROM O BY rirm TO nsubrirm DO
REF COSCAL xOj=xO[j] ,xlj=xl[j] ,x2j=x2[j] ,x3j=x3[j];
COSCAL e=xO j+x2 j, f=xO j-x2 j ,g=xl j+x3 j, h=ei90(xl j-x3 j);
(x0j:=e+g,x2j:=e-g,xlj:=f+h,x3j:=f-h)

OD
ELSE

FI
END,
BEGIN

FOR k FROM O TO ripluslrmsuhl DO
INT ind=kxrlriminl;
COSCAL wln=-w[ind] ,w2n=w[2xinci] ,w3n=w[3xind];
FOR j FROM k BY rirm TO nsubrirm+-k DO

OD
OD

REF COSCAL xO j=xO [j] ,xl j=xl [j] ,x2 j=x2 [j] ,x3 j=x3 [j];
COSCAL e=xO j+x2j, f=xO j-x2j ,g=xl j+x3 j, h=ei90(xl j-x3 j);
(x0j:=e+g,x2j:=(e-g)xw2n,xlj:=(f+h)xwln,x3j:=(f-h)xw3n)

COVEC xO=xi(0) ,xl =xi(1) ,x2 =xi(2) ,x3 =xi(3) ,x4 =xi(4);
COSCAL ei 72=w[noverri],eil447w[2xnoverri],

ei216=w[3xnoverri],ei288=w[4xnoverri];
FOR k FROM O TO ripluslrmsubl DO

INT ind=kxrlriminl;

OD
END
OUT

COSCAL wln=-w[ind],w2n-w[2xind],w3n=w[3xind],w4n=w[4xind];
FOR j FROM k BY rirm TO nsubrirmf-k DO

OD

REF COSCAL xO j•xO [· j] ,xl j=xl [j] ,x2 j=x2 [j],
x3 j•x3 [j] ,x4 j=x4 [j];

COSCAL a•xO j, h=xl j ;c•x2 j, d=x3 j, e=x4 j;
(xOj:=(a+b +c +d +e) ,
xlj:=(a+bxei 72+cxei144+dxei216+exei288)xwln,
x2j:=(a+bxei144+cxei288+dxei 72+exei216)xw2n,
x3j:=(a+bxei216+cxei 72+dxei288+exei144)xw3n,
x4j:=(a+bxei288+cxei216+dxei144+exei 72)xw4n)

IF ri=n THEN
COVEC xp= COPY (x);
BEGIN

REF COSCAL s•x(OJ:=zero;
FOR p FROM O TO risubl DO s+:=xp[p] OD

END;
FOR j FROM 1 TO risubl DO

INT b:=j,

OD

REF COSCAL s=x[j]:=xp[O];
FOR p FROM 1 TO risubl DO

s+:=xp[p]xw[b];
((b+-:=j) > n ! b-:=n)

OD

49

50

ELSE
[O:risubl] COVEC xp;
FOR p FROM O TO risubl DO xp[p):=xi(p) OD
FOR k FROM O TO ripluslrmsubl DO

OD
FI
ESAC,

INT ind=kxrlriminl;
FOR j FROM k BY rirm TO nsubrirm+k DO

COVEC xpj•gencoarrayl(O,risubl);

OD

BEGIN
COSCAL s:=zero;
FOR p FROM O TO risubl DO

s+:=(xpj[p]:=xp[p][j])
OD;
xp[OJ [j) :=s

END;
INT c:=O,d:=O;
FOR p FROM 1 TO risubl DO

(c+:=noverri,d+:=ind);

OD

INT b:=d,
REF COSCAL s=xp[pJ[jJ:=zero;
FOR q FROM O TO risubl DO

s+:=xpj[q]xw[bJ;
((b+:=c))n!b-:=n)

OD

MOOE R = STRUCT (INT ri,rlriminl,ripluslrm),
MODE L = STRUCT (REF R r, REf L next),

PROC factor=(INT n, REF REF L 113,12,1123, REF INT rimax) VOID
BEGIN

REF L klb:= NIL ,kle,k2b:= NIL ,k2e,k3b:= NIL ,k3e,
mlb:= NIL ,mle,m2h:= NIL ,m2e,m3b:• NIL ,m3e,

PROC inlist:=(INT ri) VOID
IF

(ri)rimax!rimax:•ri);
PROC list=(REF REF L lb,le, BOOL bef, REF R r) VOID
IF lb:=: REF L (NIL) THEN

lb:=le:= HEAP L :=(r, NIL)
ELIF bef THEN

lb:= HEAP L :=(r,lb)
ELSE

le:•next OF le:= HEAP L :=(r, NIL)
FI ;
lastri=O

TH.EN
lastri:==ri

ELIF lastri=ri THEN

HF.AP R rl,r2;
ri OF rl:=ri OF r2:=ri;
list(klb,kle, FALSE ,rl);list(mlb,mle, FALSE ,rl);
list(k3b,k3e, TRUE ,r2);1ist(rr3b,m3e, TRUE ,r2);
lastri:=O

ELSE

FI

HEAP R r;
ri OF r:=lastri;
list(k2b,k2e, FALSE ,r);list(m2b,m2e, FALSE ,r);
lastri:=ri

INT npart:=n,lastri:=O;
rirnax:=O;

4=0 DO WHILE npart MOD
npart OVERAB 4; inlist(4)

OD
IF NOT ODD npart THEN

npart OVERAR 2;inlist(2)
FI ;
INT div:•3;
WHILE

IF npart MOD div =0 THEN
npart OVERAB div;inlist(div);
TRUE

ELIF npart OVER div)div TliEN
div+: =2;
TRUE

ELSE FALSE
FI

no SKIP OD;
IF npart)l THEN inlist(npart) FI
inlist(O);

IF klb:•: REF L (NIL) THEN
113:= NIL ;12:=1123:=k2b

ELIF k2b:=: REF L (NIL) THEN
12:• NIL ;113:=1123:=klb;next OF kle:=k3b

ELSE
12:=k2b;ll3:=klb;next OF kle:=k3b;
1123:=rnlb;next OF rnle:=m2b;next OF rn2e:=m3b

FI

INT rlriminl: =l,
REF L 1:=1123;
WHILE

REF R r=r OF 1;
rlriminl OF r:=rlriminl .

' ripluslrm OF r:=n OVER (rlriminlx:=ri OF r);
(!:=next OF 1):~: REF L (NIL)

DO
END,

SKIP OD

51

52

PROC revers=(COVEC x, REF L 113,12, INT n) VOID:
IF

PROC perm=(REF L 1, PROC (INT, INT) VOID pr) VOID
REGIN

PROC pp=(REF L 1, INT j,k) VOID:
IF REF R r=r OF l;next OF l:•: REF L (NIL) THEN

FOR p FROM O TO ri OF r-1 DO
pr{j+pxrlriminl OF r,k+pxripluslrm OF r)

OD
ELSE

FOR p FROM O TO ri OF r-1 DO
pp(next OF l,j+pxrlriminl OF r,k+pxripluslrm OF r)

OD
FI ;
pp(l ,o,o)

END;

(113:I: NIL) AND (12: =: NIL) THEN
perm(ll3,(INT j,k) VOID :{j(k!x[j)•:•x(k]))

ELIF (113: =: NIL) AND (12:~: NIL) THEN

FI

IF next OF 12:;': REF L (NIL) THEN
INDEX p=genintarray(O,n-1);
perm(12,(INT j,k) VOID :p[j]:=k);
FOR j FROM 1 TO n-2 DO

IF INT k:=p[j]; j"'k THEN.

FI
OD

COSCAL s•x[k];p[j):•j;
WHILE INT l=p(k]; 1,'k DO

x[k]:=x[l];p[k]:=k;k:=l
OD;
x[k]:-=s

ELIF (113:,': NIL) AND (12:;': NIL) THEN
IF next OF 12: •: REF L (NIL) THEN

INT step=ripluslrm OF r OF 12;
INT stepspan•stepx(ri OF r OF 12-1);
PROC change=(INT j,k) VOID:
IF j < k THEN

COVEC xj=x[AT -j],xk•x[AT -k];
FOR p FROM O BY step TO stepspan DO

xj[p]•:•xk[p]
OD

FI;
perm(113 ,change)

ELSE
INT step-(REF L l:=12; WHILE next OF l:;': REF L (NIL)

DO 1:=next OF 1 OD ;ripluslrm OF r OF 1);
INT span=n OVER (stepxrlriminl OF r OF 12)-1;
MODE CYCLE• STRUCT (INT no, REF CYCLE next),
[O:span] CYCLE p;
perm(l2,(INT j,k) VOID :p[j OVER step]:•(k OVER step, NIL));

MODE LIST= STRUCT (REF CYCLE start, REF LIST next),
REF LIST l:= NIL ,
INT j:=O;
WHILE

IF REF CYCLE , t: =p[j];
next OF t :=: REF CYCLE (NIL) THEN

WHILE
RF.F CYCLE s=t; INT k=no OF s;
t:=p[k];s:={jxstep,t);j:=k;
next OF t : =: REF CYCLE (NIL)

DO SKIP on;
l:= HEAP LIST :=(t,l)

FI
j < span

no j+: =l OD

PROC listperrrF (INT j, k) VOID
IF j=k THEN

REF LIST list:=l,
COVEC xj=x[AT -j];
WHILE

IF REF CYCLE start=start OF list;

FI

next OF start :,f,: start THEN
REF CYCLE t:=start, TNT no:=no OF start;
COS CAL s=xj [no J ;
WHILE

INT n=no OF (t:=next OF t);
xj[no]:=xj[n];no:=n;
next OF t :,f,: start

DO SKIP OD ;
xj[no]:=s

(list:=next OF list):,f,: REF LIST (NIL)
DO SKIP OD

ELIF j(k THEN
REF LIST list:=1,
COVEC xj=x[AT -j],xk=x[AT -k];
WHILE

IF REF CYCLE start=start OF list;
next OF start :=: start THEN

INT no=no OF start;
x j [no] = : =x k [no]

ELSE
REF CYCLE t:=start, INT no:=no OF start;
COSCAL sl=xj[no],s2=xk[no];
WHILE

INT n=no OF (t:•next OF t);
{xj[no]:=xk[n] ,xk[no]:=xj[n]);no:=n;
next OF t :,f,: start

DO SKIP OD ;
(xk[no]:=sl,xj[no]:=s2)

FI

53

54

FI
FI

-
(list:•next OF list):~: REF LIST (NIL)

DO SKIP OD
FI

perm(113,listperm)

INT rimax,
REF L 113,12,1123;
factor(n,113,12,1123,rimax);
COVEC w=r,encoarrayl(O,n-(rimax)S!l!n OVER rimax));
cO6initw(n,w);
WHILE

REF R r-r OF 1123;
fftri(xy,w,ri OF r,rlriminl OF r,ripluslrm OF r,n);
(1123:=next OF 1123):~: REF L (NIL)

DO SKIP OD;
revers(xy,113,12,n)

FI
ELSE cO6fail(l, "c06fft wrong size") FI ,

PROC cO6ser=(VEC a, REF SCAL cosser,sinser, SCAL t) VOID :

#purpose: calculation of either or both of the trigonometric sums
u

sum aa[k]xcos(kxt)
k=O

u
sum aa[k]xsin(kxt)
k=l

(cosine sum)

(sine sum)

with aa[k]=a[LWB a+k] and u= SIZE a-1.

input parameters: SCAL t angle of trigonometric sum,
VEC a coefficients of trigonometric sum,
REF SCAL cosser,sinser when containing NIL no

cosine and/or sine sum are desired otherwise
the cosine and/or the sine sum are desired.

output parameters: REF SCAL cosser,sinser they will contain
the cosine and sine sum, provided they
were not pointing to NIL on input.#

IF (cosser:=: NIL ! SIZE a)O! SIZE a)O) THEN
PROC sqr=(SCAL c) SCAL :cxc,
SCAL c=cos(t),zero= WIDEN O,
one= WIDEN 1, two= WIDEN 2, foura: HI DEN 4;
SCAL half=one/two;
INT u1a= UPB a ,lapl= LWB a+l;
IF c:(-half THEN

SC:AL lambda=fourxsqr(cos(t/two)), SCAL un:=zero,dun:=zero;
FOR k FRON ua BY -1 TO lapl

DO dun:=lamhda;un-dun+a[k];un:=dun-un OD;
IF cosser::/:: NIL THEN cosser:=lamhda/twoxun-dun+a[lapl-1]
FI
IF sinser::/:: NIL THEN sinser:=un xsin(t) FI

ELIF c>half THEN
SCAL lambda=-fourxsqr(sin(t/two)), SCAL un:=zero,dun:=zero;

FOR k FROM ua BY -1 TO lapl
DO dun:=lambdaxun+dun+a[k];un: 2 dun+un OD;

IF cosser::/:: NIL THEN cosser:=lambda/twoxun+dun+arlapl-1]
FI
IF sinser:i: NIL THEN sinser:=un xsin(t)

ELSE
SCAL cc=c+c
FOR k FROM

DO SCAL
IF cosser::/::
FI ,

, SCAL unl:=zero,un2:=zero;
ua BY -1 TO lapl
h=ccxunl-un2+a[k];un2:=unl;unl:=h OD;
NIL THEN cosser:-unlx c-un2+a[la!)1 i]

IF sinser::/:: NIL THEN sinser: 2 unlxsin(t)
FI

ELSE cO6fail (1," cO6ser wrong size") FI

FI

FI

55

56

IV. TESTING

Apart from the example test programs given in the documentation units

we considered for the stringent tests the cases:

• problems with known exact results (model problem),

• verification of relation of Parseval,

• verification of the pair: transformation and its inverse.

The dyadic operators are applied to those argument values implicit

in the monadic operators. The resulting formulas of the above cases

were published (in Dutch) in MC Syllabus 29.lb p. 227-231.
{

V. FUTURE PLANS

For the near future implementations are considered for

• general summation (V.1)

• summation of Chebyshev sums (V.2)

• summation of sums of orthogonal polynomials (V.3)

• two-dimensional IDFT (V.4)

• operators for special matrix-times-vector products (V.5)

• Winograd technique for the improvement of the DFT (V.6)

Anyone who likes to contribute with respect to the above items - or has

suggestions with respect to any other item within the C6 chapter - is

encouraged to contact the author.

When appropriate we refer to the NUMAL library of the Mathematical Centre

for ALGOL 60 implementations.

57

58

V.1 General summation

Within this context we have for problem (1.1)

00

For a slowly convergent series an Euler transformation with van Wijngaarden

strategy can be used; when the terms of the series have the same sign a

preliminary transformation (due to Van Wijngaarden) can be applied to trans­

form the series into an alternating one. Apart from those linear trans­

formations a lot of non-linear techniques are available. For a recent

survey see Brezinski (1978) with implementations as FORl'RAN programs. It

requires more research in order to make a more detailed proposal.

Remarks

• A routine Euler is provided in the RR of ALGOL 68 •

• In NUMAL implementations are available for an alternating series and for

a series with terms of the same sign.

Literature
-·Brezinski, C. (1978): Algorithmes d'acceleration de la convergence. Etude

numerique, Paris.

Daniel, J.W. (1969): Summation of a series of positive terms by condensation

transformations. Math. Comp., 23, 91-96.

Van Wijngaarden, A. (1965): Course Scientific computing B; process analysis

(Dutch). Mathematisch Centrum CR-18.

v.2 The summation of Chebyshev sums

Within this context we have for problem (1.1)

n
S(x) = l akTk(x),

k=O
X € [-1,1]

with Tk(x) the Chebyshev polynomial of the first kind of degree k.

A well-known algorithm for the evaluation of this sum is the Clenshaw

algorithm, which can easily be understood from

S (x)

by applying Horner's rule to the matrix polynomial.

As a special case we have the odd Chebyshev sum

S (x) =
0

n

l akT2k+1 (x).
k=O

The Clenshaw algorithm for the evaluation of the above sum is easily

obtained from

S (x)
0

n /2T2 (x)
= x(l,-1) I\ 1

k=O'

by again applying Horner's rule to the matrix polynomial.

The even Chebyshev sum

S (x) =
e

can be reduced to the calculation of S because

and therefore

The summation of the shifted Chebyshev sum

can be reduced to the summation of S because

and therefore

* S (x) = S(2x-1).

XE [0,1]

59

60

For the above problems it is proposed to implement the dyadic operators

with left operand seal x and right operand vec a:

C06CHESUM for S(x)

C06ODDCHESUM for S 0 (x)

C06EVECHESUM for s (x)
e

C06SHTCHESUM for s* (x) •

Remarks.

Implementations in ALGOL 60 are provided in NUMAL .

• We agree with the remark of Curtiss that the modifications due to Reinsch

of the Clenshaw-algorithm are only useful, if we have~ available instead

of x, with x =cos~- The implementation of Cox and Hayes (1974) is

therefore not necessary .

. It has been observed by Newbery (1974), that if the coefficients of the

equivalent power sum representation are of the same sign or strictly

alternating, then the power sum representation can be used instead of

the Chebyshev sum representation, -without loss of accuracy and with gain

in evaluation speed. If we define the sensitivity for the perturbations in

the coefficients {ak} of S(x) by

K(S (x))
a

and K(Sb) analogous for Sin the Chebyshev sum representation, then we

have under the conditions mentioned by Newbery:

max
xd-1, 1 J

K(S (x))
a max K(Sb(x)).

xd-1, 1 J

(An implementation for the transformation of a power sum into a Chebyshev

sum or vice versa is provided in NUMAL).

Literature.

Cox, M.G. & J.G. Hayes (1974): Curve fitting: a guide and suite of

algorithms for the non-specialist user. NAC Report 26. National Physical

Laboratory.

Newbery, A.C.R. (1974): Error analysis for polynomial evaluation. Math.

Comp., 28, 789-793.

61

V.3 The summation of sums of orthogonal polynomials

Within this context we have for problem (1.1)

S (x)

with fk(x) a function obeying a second order homogeneous recurrence relation.

As an important special case we have the summation of orthogonal polynomials.

The names of classical orthogonal polynomials and some of their properties

and interrelations are given in chapter 22 of Abramowitz and Stegun.

Correlated with the names is the standardization. In our opinion it is

advantageous to provide, at first, implementations for:

a. a sum of orthogonal polynomials each normalized with the coefficient of

the highest power of x equals 1 ;

b. sums of diverse orthogonal polynomials, named and normalised according

to Abramowitz and Stegun.

The implementation under a) is general in the sense, that the appropriate

recurrence coefficients, besides the argument x and coefficients, {ak},

must be provided by the user; the implementations under b) are recognic-ed

by their names and only the argument, the coefficients {ak} and appropriate

parameters must be provided.by the user.

The algorithms are essential due to Clenshaw, because, if

k 1 , 2, ..•

with initial values f 0 and fl, are given, then

n k-1 (aj(x) 1\(ak\
S (x) = (f0,f1) I II

k=O j=O \sj o)\o)

is easily obtained from the Horner-like rule

with

62

This 'Horner-scheme' can be viewed as an inhomogeneous second order recur­

sion.

For the implementation under a) we propose the dyadic operators

name left operand right operand

C06SUMORTPOL struct (vec b,c, seal x) vec a --
C06SUMORTPOL struct (vec c, seal x) vec a --

The recurrence coefficients b,c are related to those given in table 22.7

of Abramowitz and Stegun by

bk= -a2k/a3k k = 0,1, ••

ck= a4k*alk_1/(a3k*a3k-l), k = 1,2, •••

·For the well-known classical orthogonal polynomials we have

polynomial kind recurrence coe.fficients

bk ck

Chebyshev (1st kind) 0 1/2, k = 1
1/4, k > 1

Chebyshev (2nd kind) 0 1/4

Legendre 0 k2/(4k2-1)

Jacobi u?-i> 4 (ct+l) (8+1)
k 1 {ct+$+2k) (ct+8+2(k+l) I = 2

(ct+f3+2k) (ct+8+3)

4k(ct+k) (B+k) (ct+B+k)
,k>l

(ct+8+2k) 2 ((ct+8+2k) 2-1)

Lag-..ierre ct +2k + 1 (ct+k)k

Hermite 0 k/2

For the sum S(x) we have

n
S(x) = l akfk(x)

k=O
(b,c,x) C06SUMORTPOL a'

with fk(x) as defined by Abramowitz and Stegun in table 22.7 and

k-1
a'

k
. rr0 (a3 . / a 1 .) ak,
]= J J

k

Remarks.

The summation of polynomials with bk

fashion •

0,1, ..• n.

O, is catered for in a simple

. In NUMAL an implementation, heavily based on Gautschi (1968), is

63

provided for obtaining the recurrence coefficients of a general orthogonal

polynomial with a positive weight function •

. The used techniques may be applied to the summation of functions, which obey

a three-term recurrence relation. However, the numerical stability must

be ascertained for every particul~r case: if either of the solutions of

the homogeneous recurrence dominate the solution of the inhomogeneous

recurrence, then the problem is unstable, and a modification of the

problem by eliminating the dominant solution is necessary; a criterium

in terms of the eigenvalues of the matrices A. and the coefficients a
J

is not yet provided.

For the implementations under b) we propose the dyadic operators with right

operand vec a and

name left operand fk (x)

I I P(a,8) C06JACSUM struet (seal a,(3,x} I k

C06GEGSUM struct (seal a,x) C (a)
k

C06CHESUM (see previous paragraph)

C06TSJSUM seal x Uk --
C06LEGSUM seal x Pk --
C06LAGSUM struct (seal a,x) L (a)

k
C06HERSUM seal x Hk --

64

Literature

Gautschi, w. (1968): Algorithm 331, Gaussian Quadrature formulas, Coilllll.

ACM, 11.

V.4 Two dimensional IDFT

The computational problem is

p,q = 0,1, •.. ,n-1

which can be deialt with:

for q ton

do C06EXPSUM a[,q]od;

for p ton

do C06EXPSUM a[p,]od

where we assumed

akl = a[l+k,l+l].

Remarks •

• Henrici (1979;see introduction) mentions, that application of the DFT-idea

direct to a multi-dimensional structure is more efficient. For the two­

dimensional case it is not clear, whether it is worth the possible more

complicated and more time-consuming bookkeeping. Within the context of

the applications an improvement of 10 to 20% in speed is worthwhile .

• Various authors mention the storage problems for large n •

. Two dimensional Fourier transforms with data provided equidistant in the

the r,¢-plane are desired.

V.5 Operators for special matrix-times-vector products

In this paragraph we consider representations of circulant and Toeplitz

matrices.

65

These representations are used to form matrix-time-vector products fast; and

when we can handle the multiplication fast, it is worthwhile to consider the

solution of linear equations with Toeplitz matrices. So far we have not found

DFT methods for solving general Toeplitz systems of equations although we are

aware of the work of Trench (Zohar (1969)), Zohar (1974), Farder (1977),

Kailath T. c.s. (1978), and de Meersman (1975).

5.1 Conventions, notaticrts artd relations

• We restrict ourselves to n*n-matrices

• Circulant matrix

ao a
n--1

al ao

C (a) =

a
n-1

a
n-2

.

. Toeplitz matrix

ao a·
-1

.

a1 a·
0

T (a) =

a n-1 al

a
1

a2

ao

a
-(n-1)

a -1

ao

, with a =

,with a =

a=

a
-(n-1)

66

• Hankel matrix

a0a1 . a
n-1 .

al

H (a) " = .
-· .

a
n-1

a
2n-1

. upper triangular Toeplitz matrix

"l(a)

0
. lower triangular Toeplitz matrix

ao 0 alaO

~ (a) =
. .

a
n-1 alaO

67

. S-matrix

0 1

1' 0
. E-matrix

0 1 0 ao al

0 1 al a2
, with E: + . 1

1 ·o

a
n-1

a n-1 ao

. E -matrix

0 1 ao a n-1
1 0. al ao -. , with E : +

0
al

1 0

a
n-1 a n-2

. W-matrix (or IDFT-matrix)

1 1 . . . 1

1 n-1
w . . . w

, with w = e
21ri/n

' 2
1 n-1 (n-1)

w • • • w

68

• D(w)-matrix

1
w

0
(2rri/n) D = D e

I (rri/n)
D = D e •

. A(a)-matrix: a diagonal matrix with diagonal elements

A(a) .. = (Wa).
1.1. 1.

-
WW = nI

ws DW

SW = WD

DWS = w

WE DW

EW = WD

WSEq = Wq, q a vector

WE = DW
-E w = WD

h.(a) = s°\l(SEa)S

a'= D'a.

-1

The number of operations of a W-matrix-times-vector is O(n*Ipi), with

n = rr(p.) if we apply FFT-like algorithms.
i 1.

69

5.2 Matrix-times-vector products

The representation of a circulant in terms of W, and Toeplitz matrices in

terms of circulants is given. Indicated is how the DFT can be used with

respect to the matrix-times-vec~or products. Applications to the multiplic­

ation of polynomials are treated, where the treatment of the multiplication

of two polynomials in the Chebyshev sum representation is possibly new. No

implementations are proposed, because the treatment of the solution of

linear systems with Toeplitz matrices is not yet clarified. (For the

matrix-times-vector products a set of dyadic operators is a realistic

possibility) •

LEMMA 1. (Eigensystem of circulant)

C(c) = n-1w A (c)W.

PROOF. Multiplication of the eigensystem equation

Cv = AV

-·by W, yields for the j-th component

(WCv) . =
J

(We) . (Wv) . = A cWv) ..
J J J

The solution of the transformed equation is

A = (We) •
J

WV= e.
J

(the j-th unit vector).

The equations for the eigensystem

CW= WA

give the factorization

C = n-1w Aw.

70

THEOREM 1. (Circulant times vector)

The product can be represented by

-1 -
C (c)b = n (W(A(c) (Wb))).

PROOF. Apply the decomposition given in lemma 1.

Remarks .

• A product of a rectangular circulant times a vector can be obtained by the

above formula by padding the shorter of band c with zeros.

A circulant times vector is also called a circular convolution and is

often denoted by

n-1

I
i=O

C .• b. I
J-J.].

j 0,1, ..• and ck all integer k.

LEMMA 2. (Representation of an upper Triangular Toeplitz matrix as a sum

of a circulant and a diagonal similarity transformation of a circulant.)

'\I (a) ~{C(a) + D'C(a')D'}.

PROOF.

ao • al

l -al ao . a2

"'I (a) = ~ C (a) +

j -a
n-1 • -al ao

with the decomposition of the second term

71

ao a
n-1

. . . al

-al ao . a2

=

•
-a

n-1
-a a

1 0

1 0 ao wa
n-1 •

n-1
1 0 w al

n-1 w w al w
ao

0 wn-1 wan-1 ao / 0 -(n-1)
w

with w
,ri/n =e anda'=

The result is obtained if we use the notation of 5.1.

Remark. The proof given above is constructive. Once the result is known, a

more direct proof can be given by evaluating the sum of the circulants.

THEOREM 2. (Upper triangular Toeplitz matrix times a vector)

~(a) b = ~{C(a) + D'C(a')D'}b

= {WA(a)Wb + D'WA(a')WD'b}/2n).

PROOF. Apply the decomposition given in lemma 2.

72

Remark. For the calculation we need

Wb

WD'b
-Wa (for A(a))

Wa' (for A (a')) •

COROLLARY 1. (The coefficients of the product of two (balanced) polynomials

in power sum representation).

Let

then

with

or

*

Pn-1 (x) =
n-1 k
l akx and Qn-l (x) =

k=O

2(n-1)
R2 (n-l)(x) = Pn-1 (x) Qn-1 (x) = l c xj

j=O j

0

C n-1 = a n-1 al ao
C

an-1
al n

0 .
a n-1 c2n-2.

j = 0,1, ••• ,2(n-1)

* with a. = a., j = 0,1, ••• ,n-1 and a.= 0 for j < O, j ~ n.
J J J

b
n-1

73

The calculation can be reduced to the upper triangular Toeplitz matrix times

vector products

{c }2 (n-1) = \I (E- a) b
k n-1

The vectors in these products are related

- -Ea with E Sa

and

b with Sb.

For the calculation with a,b E]Rn some products with W can be written

as

-
WE a = DWa;

- -
WE Sa = DWS a = Wa = wa,

Wb;

WSb = DWb = DWb,

n
for a E lR ;

n
for b E lR •

COROLLARY 2. (The coefficients of the product of two (balanced) polynomials

in Chebyshev sum representation).

Let

then

with

An-1 (x) =
n-1

l p Tk(x) and Bn-l (x) =
k=0 k

2 (n-1)

c2(n-1) (x) = l
k=0

74

or c.
J

or a. =
J

C n-1
C n

C 2 (n-1)

ao

al

a n-1

n-1
* l qj+kpk,

k=O

bO

bl

b n-1

0

= ~-1 CJ1 qo ~n-1/

~-1 qt

0 / ..
qn-1·

j = 0,1, ••• ,2(n-1),

~-1 qo Po

~-1 pl

= 0
~

•

qn-1 pn-1

j = 0,1, ••• ,n-1,

qo ql . ~-1 Po

qo pl

0

orb =
j

j = 0,1, .•• ,n-1;

the vectors with asterisk denote the vectors without asterisk padded with

zeroes.

PROOF.

From

The first term can be represented by substitution of j = k+l as

2(n-1) n-1
l (l q~_kpk)T. (x).

j=O k=O J . J

The second term can be represented by substitution of j = l-k as

n-1 n-1
'\'' (\ *) (l l qJ, +ki:'k TJ. x) or

j=O k=O

n-1 n-1
\ ' (\ * l l q,+ 1 kp 1 k)T, (x).

J n- - n- - J j=O k=O

The third term can be represented by substitution of j = k-l as

n-1 n-1
L' (l p ~+lql)T. (x) or

j=O l=O J J

Remark.

The calculation can be reduced to

{c }2(n-1) = ~(E-q) P
k n-1

n-1
{ck}O = S"'J(SEq) Sp

a = ~(E-q) Sp

b = '\l(SEq) p

n-1 n-1
l (l q; ,pl)T.(x).

j=O l=O -J J

75

76

Again the vectors in these products are related

and

p with Sp.

For the calculation with p,q e: lRn some products with w can be written

as

-WE q = DWq

WSEq = DWEq = Wq

WSq = DWq.

LEMMA 3. (representation of a Toeplitz matrix as a difference of a circulant

and a diagonal similarity transformation of a circulant

PROOF.

to t
-1

t
n-1

t1 to

T (t) = =

t -1
t . .. t
n-1 0

to t_1 t
-(n-1) to t

n-1 t1

to to
.
.

= C (t)+ . .
0

t_1 0 t
n-1

to to

= C (t) + "l(u) - "l(t)

with

u =

t 0 \
t
-(n-1)

I

-
E St

From the representation of an upper triangular Toeplitz matrix in lemma 2,

we have

Therefore,

c(t) - ~(t) = c(t) - ½{c(t) + D'C(t')D'}

= ½{C(t) - D'C(t')D'}.

T(t) ½{C(t) - D'C(t')D'} +

-1 -
½{C(E St.) + D'C((E-St) ')D'}

C((t+E St)/2) - D'C((t-E St) '/2)D'.

Remark. A band Toeplitz matrix with u upper and l lower codiagonals

77

(£+u<n) can be represented by the sum of a circulant of order n and a lower

triangular ~7oeplitz matrix of order u and an upper triangular Toeplitz

matrix of order l.

THEOREM 3. (Toeplitz matrix times vector)

~7(t)b = {WJ\(t+E St)Wb - D'WJ\((t-E-St_ 1) ')WD'b}/(2n).

PROOF.

Apply the factorization of a circulant as given in lemma 1 to the circulants

in the representation of a Toeplitz matrix as given in lemma 3.

78

Remarks •

• For the calculation we need

Wb = Wb for b E JRn

WD'b = WD'b, for b E JRn

W(t+E-St) = W(t+E-St), - - for t, t E JRn
----=----

W((t-E-St_) ') = W((t-E St_)') •

• A Hankel matrix times vector can be reduced to the above case because

H = ST •

• High speed convolution (correlation) is merely a Toeplitz(Hankel)-matrix­

times-vector product via the above factorizations.

5.3 Solution of linear systems

The theorems in this paragraph handle the possibility to obtain the sol­

ution fast; exceptional cases and algorithmic details are not yet available.

THEOREM 4. (Solution of a linear system with a circulant as matrix)

C(c)x = b
-1 -1 -

<=> x = n W (A (c) (Wb)) •

provided A(c) is not singular.

PROOF. From theorem 1 we have

C(c)x
-1 -= n WA(c)Wx = b

and therefore

-1 -1 -
X = n WA (c)Wb.

Remarks

• Berg (1975) proposed to use the easy solution of a linear system with a

circulant matrix C, for a general linear system with matrix A, by

splitting

A= C-D.

-1 -1
Ax = b ~ xk+ l = C b + C Dxk, k = 0,1, ..•.

with

The iteration can be modified for singular C •

• According to regular splittings a wealth of literatur-e has emerged, see

e.g. Berman & Plemmons (1974) and Neumann (1976).

THEOREM 5. (Solution of a linear system with an upper triangular Toeplitz

matrix).

The solution of a linear system

can recursively be reduced to the solution of smaller systems of the same

structure and Toeplitz-matrix-times-vector products.

PROOF. Partitioning of "'J yields the result.

Remarks •

• The normal back substitution

X = bn_/ao n-1
k

X = b - I a.x n-k+j' k = 2,3, ••• ,n-1
n-k n-k

j=l J

takes

0(n2) operations •

• The problem of theorem 5 occurs by polynomial division as can be seen

from corollary 1 (and 2 with a rank one update)

determine b, say, from

79

80

';:J (E-a) b = {c }2(n-1)
k n-1

• The problem of theorem 5 occurs by the determination of the inverse of an

upper triangular Toeplitz matrix, because the inverse is again an upper

triangular Toeplitz matrix (Kung (1973; theorem 2.3), Derr (1971))

'\:J(a)x
(n) = e ~ I.

Theorem 5 gives the general idea of how to solve this system of equations;

the details of the implementation are not yet worked out.

THEOREM 6. (Solution of a linear system with a band Toeplitz matrix with

l lower and u upper codiagonals, Berg (1975))

The solution of a band Toeplitz system of equations with l lower codiagonals

and u upper codiagonals (l+u<n) can be reduced to the solution of a system

of l+u equations, provided the circulant is regular.

PROOF.

The band Toeplitz matrix

to t
-1

. t 0 . . . 0
-u

tl to

. ,, 0

,, ,. .
T =

tl
t . -u

0 ..

•
to t_

-1 ..
0 . . . tl • . . tl to

can be split into

t • t 0 • 0 tr \ to . .
-1 -u

tl

t,e_
t,e_ 0

0

0

0 . "'-
t
-u

t
-u

t_l

t t 0 .o tl tl to -1 -u

The linear eiqua tions

'I~x = b

can be split into

"\]
(C - (~))x = b,

and for regular C - the above given circulant -

-1
X - C (I:::,.

If we call

"\l)x = -1
C b.

t

-u

t -u

x = (".:::J)x
~ (a function of x 1 , ••• ,x ,x O 1 , .. x)

u n-,{__+ n

then we arrive at the l+u system of equations

-1
= (C b)k, k = 1, ..• ,u, and n-l+l, ••. ,n.

81

82

The resulting components are obtained from

-1 -
xk = (C (b+x))k, k = u+l, ..• ,n-.t.

Remarks •

• The above technique is of considerable importance for block band Toeplitz

matrices, as arise from discretization of partial differential equations,

e.g. the Poisson equation •

• Henrici (1979) considers a more dimensional circular convolution, and

its properties under the DFT analogous to the one-dimensional convolution,

as the central point. Two-dimensional recurrence relations with constant

coefficients and block band Toeplitz matrices are particular cases of a

two-dimensional convolution, and by a proper extension circular convol­

utions (this last aspect simplifies the problem of inversion and is

"given" by the problem).

On the other hand it is interesting to consider a block Toeplitz matrix

and to think of solutions of a Toeplitz system of equations where the

elements are again Toeplitz matrices, so the multiplication and 'divis­

ion' are performed on operands of type Toeplitz matrix and vector.

Literature

Berg , L • (19 7 5) :

Solution of large linear systems with help of circulant matrices. ZAMM, 55,

439-441.

Berman, A. & R.J. Plemmons (1974~:

Cones and iterative methods for best least squares solutions of linear

systems. SIAM J. Numer. Anal., 11, 145-154.

Derr, L.J. (1971):

Triangular matrices with the isoclinal property. Pac. J. Math., 37, 41-43.

Farden, D.C. (1977):

The solution of a special set of Hermitian Toeplitz linear equations.

TOMS, 3, 159-163.

Kailath, T., A. Vieira, M. Morf (1978):

Inversion of Toeplitz operators, innovations and orthogonal polynomials.

SIAM Rev., 20.1, 106-119.

Kung , H. F • (19 7 4) ;

Fast evaluation and interpolation. Report Carnegie-Mellon University.

Meersman, R. de (1975):

83

A method for the least squares solution of systems with a cyclic rectangular

coefficient matrix. J. Comp. & Appl. Math., 1, 51-54.

Neumann, M. (1976):

Subproper splitting for rectangular matrices. Lin. Alg. appl., 14, 41-51.

Zohar, S. (1969) :

Toeplitz matrices inversion: the algorithm of W.F. French. J. ACM, 16,

592-560.

Zohar, S. (1974):

The solution of a Toeplitz set of linear equations. J. ACM, 21, 272-276.

V.6 Consideration of the Winograd technique for the improvement of the DFT.

The calculation of

n-1

~= L a1 exp(-?TTikl/n),
l=0

k = 0,1, ••. ,n-1

with n prime, can be reduced to

n-1
l a1 exp(-2TTikl/n), k =

l=1
1,2, ••• ,n-1.

Because n is prime, the numbers 1,2, ••• ,n-1 form a cyclic group with gas

primitive root, say (Abramowitz & Stegun, p. 827). Therefore a permutation

in the summation, with notation ((x)) = x modulo n,

yields

l + ((gl)),

k ➔ ((gk))

84

n-1 0
(Note that ((g)) = g .)

This summation is a circular correlation of size n-1; this circulant-times­

vector can be calculated via theorem 1 (with A precomputed).

Although we consider this the principle of the Winograd technique it re­

quires some more detailed study, whether this is the Winograd technique or

not; the necessity of modification of C06FFT depends on the relation between

increase of the bookkeeping and lower intrinsic computational complexity.

Literature

Winograd, S. (1978):

On Computing the Discrete Fourier transform. Math. Comp. 32, 179-199.

McClellan, J.H., H. Nawab (1979):

Complex general-n Winograd Fourier Transform Algorithm (WFTA) In: Programs

for digital signal processing, IEEE-press, 1.7-1 - 1.7-22.

Silverman, H.F. (1977):

~n introduction to programming the Winograd Fourier Transform algorithm.

IEEE Trans Acoust. Speech and Signal Processing, vol ASSP-25, 152-165.

