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PREFACE 

This publication is intended to serve the goals: 

• to make the proposed included software free, 

• to open a discussion over the proposed and future contents of the C06 

chapter, 

• to stimulate contributors. 

The author is custodian for the C06 chapter of the NAG ALGOL 68 

library. 

Contributors to this work are my colleagues Mr. R.J. van Oosten and 

Mr. J.P. Hollenberg. The former programmed and documented a preliminary 

version of this collection of operators as well as the technical routine 

C06FFT; the latter worked out the final version and its test programs. The 

theoretical foundation of the included operators and a discussion of the 

available implementations in a variety of libraries was published by the 

author (in Dutch) in the MC Syllabus 29.lb: Colloquium Numerieke 

programmatuur. 

Although a lot of good and fast FFT-routines are available in FORTRAN, 

we have programmed our own for portability reasons; users of the provided 

-operators may interface to a FORTRAN version of C06FFT. A machine readable 

copy of the source texts can be obtained by sending a magnetic tape to the 

author. 

Because the NAG ALGOL 68 library has absorbed the matrix/vector package 

TORRIX of VANDERMEULEN & VELDHORST no explicit reference is given to this 

work. 

Finally, I would like to thank the members of the working group 

Approximation of Functions, especially Dr. N.M. Temme, for the necessary 

environment and the Mathematical Centre for providing the opportunity to 

publish this proposal in their TW-reports series; Prof. L.M. Delves and Dr. 

G. Hodgson of NAG are kindly acknowledged for reading and commenting a 

previous version of the documentation units. 



I INTRODUCTION TO THE C06 CHAPTER OF THE NAG ALGOL 68 LIBRARY 

CONTENTS OF-THIS INTRODUCTION 

1 Scope of the Chapter 

2 Background of the Problems 

2.1 Types of summation problems 

2.2 Accuracy 

2.3 Data representation 

3 Fourier Analysis and S:tnthesis 

3.1 Fourier analysis 

3.2 Fourier synthesis 

3.3 Applications 

3.4 Implementation survey 

References 

1. Scope of the Chapter 

Provided are implementations related to 

( 1.1) 
u 

s(t) = l fk(t) 
k=l 

with ta parameter and l,u either finite or infinite. 

2. Background of the Problems 

The summation problems are distinguished according to the structure of 

the terms fk (t) • 

1 
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2.1 Types of summation problems 

As a particular case of (1.1) we have 

(2.1) 

with a the coefficient vector of the series expansion of s with respect 

to the basis functions {~k}. 

A variety of implementations have emerged according to the available 

information and desired results. 

Examples of {~k} are: 

. polynomials (see chapter E02 of the NAG library); 

• trigonometric functions (this chapter); 

• B-splines (see chapter E02 of the NAG library). 

With the vector a we mean ( ••. a ,a 1 , ••• ,a 1 ,a0 ,a1 , •.• ,a 1 ,a , ••• ) or a 
-n -n+ - n- n 

finite part of it. 

2.1.1 Summation of trigonometric functions 

Within this context relation (1.1) reads 

(2. 2) 
u 

s<t) = I 
k=l 

ikt 
Ok e · 

The implementations given consider finite special cases of (2.2): 

• evaluation of s for one argument (dyadic operators); 

• evaluation of s for equidistant arguments (monadic operators). 

2.1.2 General summation 

So far no implementations are provided; in the ALGOL 68 report the 

routine EULER is given. 

2.2 Accuracy 

An implementation is generally used on samples in a digital computer, with 

its intrinsic limitations, whereas we are thinking in abstractions. The 

difference herein is covered by the accuracy concept, which may be sub­

divided into the error effects: 

residual or truncation error, i.e. the discrepancy between the sample 

information and the theoretical information of our problem; 
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• propagated error, i.e. the effect of perturbations; 

• generated or rounding error, i.e. the effect of finite precision 

arithmetic. 

In order to grasp these errors we use the concepts of the condition of a 

problem (section 2.2.1) and the growth of an algorithm (section 2.2.2). 

In each documentation unit bounds for the propagated and generated errors 

are given in terms of tjle condition and growth. Apart from the residual 

error a first order bound for the total error is the sum of the 

indicated errors. 

Example. 

Given the table 

Formula Propagated error 

C06EXPSUM a IIL:ia11 2 / max (1//n,llaD 2) 

we obtain for the error bound of {clc. = _,_ J 

Generated error 

ga * small real 

2,rikj/n 
e I 

j = 0,1, ••• ,n-1} 

II c - C06EXPSUM ~ ll 2 

max (1,llcll 2) 

2.2.1 Condition of a problem 

~ propagated error+ generated error. 

Consider a problem T, which transforms data a into~, then the first order 

effect of the perturbation l:ia of a is governed by 

l:ib = I 
j 

aTa 
aa. 

J 

f:ia • I 
J 

a weighted sum of the perturbations in the data. 

The amplification or condition of the problem can be defined by 

0 !:ibH II L:iaH 
C = /--

llbll Dall 

If we choose the 2-norm then we obtain for the Discrete Fourier Transform 

(DFT) 
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C = 1. 

2.2.2 Growth of an algorithm 

Generally a process Tin finite precision arithmetic is thought of as a 

process in exact arithmetic with perturbated parameters, 6a. A bound for 

these perturbations can be obtained by backward error analysis; the 

factors involved are the so-called growth and the machine precision,£. 

In other words, consider a process P for the above problem Tin finite 

precision arithmetic, then there exists a 6a, such that 

P(a) = fl(T(~)) = T(~+tia); 

with the growth function, g, defined by 

lltiall 

Hall 
= g * £. 

2.3 Data representation 

Definitions: 

o. a vector is called a periodic n-vector if ak = ak+n' for all integer 

k; 

r. a vector is called a real periodic n-vector if (o) and the elements 

are real; 

r.s. a vector is called a symmetric real periodic n-vector if (r) and 

ak = an-k' for all integer k; 

r.a. a vector is called an anti-symmetric real periodic n-vector if 

(r) and ak = -an-k' for all integer k; 

c. a vector is called a complex periodic n-vector if (o) and the elements 

are complex ; 

c.h. a vector is called a Hermitian complex periodic n-vector if (c) and 

ak = an-k' for all integer k; 

c.a. a vector is called an anti-Hermitian complex periodic n-vector if 

(c) and ak = -an-k' for all integer k. 

In the operators related to the OFT we will consider the significant 

part of a periodic n-vector; in the same way we will talk about a 



symmetric, an anti-symmetric, a Hermitian or an anti-Hermitian vector. We 

use the notation: 

~, for either a real or complex vector; 

E._, for a real vector; 

£,fora complex vector. 

The data representation of an element ak of a periodic n-vector is the 

number a[LWB a + k MOD n J, with LWB a a parameter free for choice. 

3. Fourier .Analysis and Synthesis 

5 

For the definition of DFT and IDFT and related terminology we adhere to [6]. 

For simplicity we restrict ourselves to periodic functions on [0,T), and 

trigonometric functions as basis functions. 

Within this context relation (1.1) reads 

00 

( 3. 1) 
, 21rikt/T 

s(t) = l ak e , 
k=-oo 

t E [O,T) 

with the so--called Fourier coefficients 

= ½ f s(t) 
-21rikt/T 

e · dt, k = ••• I -n I .... , 0 I ••• In I ••• 

0 

[11;509]. 

From relation (3.1) we considered two summation problems: 

• Fourier analysis: givens obtain {ak}; 

• Fourier synthesis: given {ak} obtains. 

A variety of implementations may result according to the actual information 

used and delivered. 

3.1 Fourier analysis 

Generally only equidistant samples {s(21rk/nl k=0,1, ... ,n-1} are available 

and the first {akl k=0,1, ... ,n-1} are desired. 

The ak can be approximated by using attenuation factors Tk as follows 

( 3. 2) a' = 
k T * k 

n-1 
l s(21rj/n) wkj, 

n 
j=O 

k = 0,1, ••• ,n-1 
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with 

k. 
W J = exp(2TTikj/n) 

n 

and where the bar denotes complex conjugation and the prime the 

approximated value. The second factor of (3.2) apart from a factor is known 

as the Discrete Fourier Transform (DFT), [10;573]. 

For Tk we may use a variety of possibilities, e.g. 

Tk used information 

1 s (2TTk/n), k = 0 I 1 I • • • I n-1 • 

(sin TTk/n) 
2 s (2TTk/n), k = 0,1, •.. ,n-1, and function between samples 

TTk/n 
is linear; crk are the Fourier coefficients of the linear 

interpolated samples. 

For more information about the attenuation factors, see [4]. 

Remarks 

• The DFT can be handled by the monadic operators C06EXPSUM etc. 

The values of sin(2TTk/n), k = 0,1, ..• ,n-1, can be obtained in 

s[O:n-1] by the call of the technical routine C06SINTWI as follows 

C06SINTWI (n,s). 

3.2 Fourier synthesis 

Generally the first {crkl k=0,1, ... ,n-1} and either one argument torn 

equidistant arguments {tkltk = kT/n, k=0,1, •.. ,n-1} are available while 

s(t) or {s(tk)} are desired. 

This reduces to the problems: 

. the evaluation of a trigonometric sum 

n-1 
\' 2TTikt/T 
l ak e 

k=O 



• the IDFT (the Inverse Discrete Fourier Transform) 

n-1 k" 
L ak w J, 

k=O n 
j = 0,1, .•• ,n-1. 

3.3 Applications 

A collection of papers on the application of the DFT within the context 

of digital signal processing is given in [9,10]; with respect to time 

series analysis a concise survey of the backgrounds and a discussion of 

the application of the DFT to the calculation of sample covariance and 

cross-covariance functions, to the estimation of variance spectra and 

cross-spectra and very briefly to the implementation of moving average 

digital filters is given in [3]. In [6] the DFT is discussed and the 

following computational problems in (mainly) complex analysis where it 

7 

can be fruitfully applied, are suggested: calculation of Fourier coefficients 

using attenuation factors; solution of Symm's integral equation in conformal 

mapping; trigonometric interpolation; determination of conjugate periodic 

functions and their application to Theodorsen's integral equation for 

the conformal mapping of simply and of doubly connected regions; 

determination of Laurent's coefficients with applications to numerical 

differentiation; generating functions and the numerical inversion of 

Laplace transforms; determination of the density of the zeros of high 

degree polynomials; convolution and its application to time series 

analysis, to the multiplication of polynomials and of large integers, 

and to fast Poisson solvers; manipulation of power series. 

As an example we consider the evaluation of 

00 

-00 

For the samples U (j/T) I j=O ,±1,±2, ••.. } 

the above integral reduces to 

T 

( 3. 3) <P(j/T) = J sp(t)e-27Tijt/Tdt. 

0 
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with the periodic alias function 

00 

s (t) = 
p 2 s(t+kT) 

k=-a: 

and Ta free parameter. The integrals (3.3) can be evaluated by (3.2). 

Remarks 

s (t) is generally approximated by s(t), t € [-T/2,T/2] with T such p 
that the integration beyond [-T/2,T/2] is negligible • 

• With bandlimited functions we know already that ~(w) = O for 

lwl > n. 

This results in 

-n <j/T < n, j=O,±1, ••• ,±(n-1) 

with T = n~t and ~t the sampling distance. 

From a given ~t ~ 1/(2n) we can choose either the size n of the DFT or 

T. The behaviour of sand the desired accuracy of the approximation of 

s determines the total number of samples. 
p 

·3. 4 Implementation survey 

For the moment only operators related to Fourier analysis and Fourier 

synthesis are available. These are grouped in four problem sets: 

• evaluation of IDFT (monadic C06EXPSUM etc.): 

n-1 

2 ak 
k=O 

21rikj/n 
e I j = O,1, ••• ,n-1; 

• evaluation of exponential sums (dyadic C06EXPSUM etc.): 

f(0,a) = k 
z , i0 

z = e 

• evaluation of Discrete Harmonic Analysis (DHA) and Discrete Harmonic 

Synthesis (DHS) (monadic C06TRGSUM etc.): 

from 
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m .. 
f. = 

J I a. cos nkj/m + b. sin nkj/m, 
J J 

j=0,1, ••. ,n-1 and n=2*m 
k=0 

then the problems are characterized by 

DHS: obtain f from a and b 

DHA: obtain a and b from f; - -

evaluation of trigonometric sums (dyadic C06TRGSUM etc.): 

m 

f(S,~,.e_) = l 
k=0 

ak cos k8 + bk sin k8. 

Each problem set gives rise to a number of operators according to the 

data type and symmetries in the data: each problem set, and the 

details of the involved operators, is separately described in a documenta­

tion unit. 
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II. DOCUMENTATION AND SOURCE TEXTS OF THE OPERATORS 

II. 1 C06EXP8UM, C06EXPSUMHRM, C06EXPSUMANH. 

1. Purpose 

The monadic operators 

C06EXPSUM, C06EXPSUMHRM, C06EXPSUMANH 

evaluate th~ Inverse Discrete Fourier Transform (IDFT) of a real or complex 

vector. Advantage has been taken of symmetry in the data in 

IMPORTANT: 

C06EXPSUMHRM 

C06EXPSUMANH 

data vector is Hermitian symmetric 

data vector is skew-Hermitian symmetric. 

2. Specification (Algol 68) 

MODE SCAL = REAL, COSCAL = COMPL; 

MODE VEC = REF[ ] SCAL, 

COVEC = REF[ ] COSCAL; 

OP C06EXPSUM = (VEC r) COVEC: 

OP C06EXPSUM = (COVEC c) COVEC: 

OP C06EXPSUMHRM = (VEC r) VEC 

OP C06EXPSUMHPJ.1 = (COVEC c) VEC 

OP C06EXPSUMANH = (VEC r) VEC 

OP C06EXPSUMANH = (COVEC c) VEC 

3. Description 

The operators calculate 

n-1 

I 
k=O 

2,rikj/n 
~ e I j=0,1. .• ,n-1 

with a a real or complex vector. Used is the Cooley-Sande-Stockham 

algorithm; the auxiliary twiddle-factors are calculated by an extension 

of the Hopgood-Litherland algorithm. 

4. References 

See chapter introduction [1,2,7] 
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5. Parameters 

General: 

• n is the size of an array; for n is even we use m to denote n/2. 

The lower bound of the result equals the lower bound of the operand . 

Only the size of the operands matters: the k-th element of a vector 

a is assumed to be a[LWB a+ k], so the lower bound of the data 

representation of the vector does not matter and is free for choice. 

The operands are not preserved. 

Formula 

C06EXPSUM a 

C06EXPSUMHRM r 

C06EXPSUMHRM c 

C06EXPSUMANH r 

C06EXPSUMANH c 

Operand 

a real or complex array 
variable with n elements. 

a real array variable with 
m+1 elements: the first 
elements of a symmetric 
n-vector, with n=2*m. 

a complex array variable 
with m+1 elements: the 
first elements of a 
Hermitian n-vector, with 
n=2*m. 

a real array variable with 
m+1 elements.: the first 
elements of an anti­
symmetric n-vector (the 
first and last element 
must contain zero), with 
n=2*m. 

a complex array variable 
with m+1 elements: the 
first elements of a skew­
Hermitian n-vector (the 
real parts of the first 
and last element must 
contain zero), with n=2*m. 

6. Error indicators 

Result 

a complex array variable 
with n elements. 

a real array variable with 
m+l elements: the first 
elements of the resulting 
symmetric n-vector. 

a real array variable with 
n elements. 

a real array variable with 
m+l elements: the first 
elements of the imaginary 
part of the resulting 
complex Hermitian n-vector 
with zero real part. (The 
first and last element 
contain zero) . 

a real array variable with 
n elements: the imaginary 
part of the resulting 
complex vector with zero 
real part. 

In the event of an error condition being detected, the error routine: 

c06fail of mode REF NAGFAIL, is called with the parameters listed below. 

These are printed and in case the value of c06fail is nagsoft the 
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execution is continued (see in Introduction of the NAG manual the document 

on the ALGOL 68 error mechanism). The operators were designed with nagsoft 

as the user-friendly error-handling mechanism in mind. 

parameter 

1 

2 

message 

OPERAND OF <operator name> OF WRONG SIZE 

The given array is of too small size, so the IDFT is 

an empty sum; the result yielded is the operand. 

OPERAND OF <operator name> NOT <symmetry kind> 

The given part of the symmetric array is not of the 

symmetry kind expected by the operator, because of 

the symmetry and periodicity; the calculation is 

performed with an operand adapted to the operator, 

by setting elements to zero where appropriate. 

7. Auxiliary routines 

The used NAG library operators - all with a complex operand - are given 

in the following table. 

Formula Used NAG library operators Used Torrix operators/ 
qenerators 

C06EXPSUM r n0ne gencoarrayl, widen, conj 

C06EXPSUM c none none 

C06EXPSUMHRM r m is odd: C06EXPSUM genarray1, gencoarrayl, widen, conj 

m is even: C06EXPSUMHRM genarrayl, gencoarrayl, widen, conj 

C06EXPSUMHRM C none genarrayl, gencoarrayl, widen, conj 

C06EXPSUMANH r m is odd: C06EXPSUM genarray 1, gencoarray 1, widen, conj 

m is even: C06EXPSUMHRM genarray 1, gencoarray 1, widen 

C06EXPSUMANH c C06EXPSUMHRM genarray 1, - , *<, widen 

8. Timing 

The time taken is proportional to p*n, where pis the sum of the prime 

factors of n. 
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9. Storage 

The storage required by internally declared arrays is given in the 

following table. 

Formula 

C06EXPSUM r 

C06EXPSUM c 

C06EXPSUMHRM r 

C06EXPSUMHRM c 

C06EXPSUMANH r 

C06EXPSUMANH c 

10. Accuracy 

Let us denote by: 

Specification 
situation 

n is even 

n is odd 

m is even 

m is odd 

m is even 
m is odd 

a the coefficient vect9r; 

Internally declared arrays 

n+nf2+1 

n 

none. 

complex elements. 

elements. 

mt2+1 real and complex elements. 

m+2+1 real and m complex elements. 

n real and mt2+1 complex elements. 

m+2+1 real and comulex elements. I 
m+l real and mf2+1 complex elements.1 
none. I 

a the machine representation of the (measured) a; 

/J.a a - a; j 

9a the growth factor of order t 1.5 
l pi 

with n = rt 
i=l 

i=l 

p, (given implicitly in [8]). 
1 

Error bounds (first order) 

Formula Propagated error Generated 

C06EXPSUM a II !J.all 2/max ( 1/v'n, II all ) g * small 
-2 a 

error 

real 

The bounds for C06EXPSUMHRM, and C06EXPSUMANH are similar. 



11. Further comments 

The related problems - the DFT apart from a factor 1/n -

n-1 

l ak 
k=0 

-21ri kj/n 
e 

can be obtained as follows, where the parameters are prescribed as in 5. 

Parameters. 

Operand Formula 

complex n-vector CONJ C06EXPSUM CONJ c 

Hermitian n-vector C06EXPSU1fHRH CONJ c 

skew-Hermitian n-vector - C06EXPSUMANH CONJ c 

real n-vector CONJ C06EXPSUM r 

symmetric real n-vector C06EXPSUMHRM r 

anti-symmetric real n-vector 

12. Keywords 

Discrete Fourier Transform . 

. Fast Fourier Transform. 

Cooley-Sande-Stockham algorithm. 

13. Examples 

C06EXPSUM 

13.1 Program text. 

'BEGIN' 

# 

- C06EXPSUMANH r 

AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUM' 
THIS PROGRAM CALCULATES APPROXIMATELY THE IDFT OF: 
- A COMPLEX VECTOR; 
- A REAL VECTOR. 
# 

'COVEC'C=GENCOVEC(2) :=(1.0'I'2.0,3.0'I'4.0); 
WRITEF(($28A,2(L,16A,2(L,-D.DDQI-D.DD))$, 

"'C06EXPSUM' EXAMPLE PROGRAM.", 
"COMPLEX OPERAND:", 
C, 
"COMPLEX RESULT:", 
'C06EXPSUM'C)); 

15 
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'VEC'R=GENVEC(4):=(1.0,0.0,3.0,4.0); 
WRITEF(($2L,13A,4(Q-D.DD),L,15A,4(L,-D.DDQI-D.DD)$, 

"REAL OPERAND: II , 

R, 
"COMPLEX RESULT:", 
'C06EXPSUM' R) ) 

'END 1 #0F 'C06EXPSUM' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

13.3 Results. 

'C06EXPSUM' EXAMPLE PROGRAM •. 

COMPLEX OPERAND: 
1.00 I 2.00 
3.00 I 4.00 

COMPLEX RESULT: 
4.00 I 6.00 

-2.00 I-2.00 

REAL OPERAND: 1.00 0.00 3.00 4.00 
COMPLEX RESULT: 

8.00 I 0.00 
-2.00 I-4.00 
0.00 I 0.00 

-2.00 I 4.00 

C06EXPSUMHRM 

13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUMHRM' THIS PROGRAM 
CALCULATES APPROXIMATELY THE IDFT OF: 
- A COMPLEX HERMITIAN VECTOR; 
- A REAL SYMMETRIC VECTOR. 
# 
'COVEC'C=GENCOVEC(3):=(I.0'I'O.O,O.O'I'l.0,2.0'I'O.O); 
WRITEF(($31A,L,54A,3(L,-D.DDQI-D.DD),L,22A,4(Q-D.DDQ)$, 

"'C06EXPSUMHRM' EXAMPLE PROGRAM.", 
"SIGNIFICANT PART OF COMPLEX HERMITIAN VECTOR ON INPUT:", 
c, 
"REAL VECTOR DELIVERED:", 
'C06EXPSUMHRM'C)); 



'VEC'R=GENVEC(3):=(1.0,2.0,3.0); 
WRITEF(($2L,51A,3(Q-D.DD),L,42A,3(Q-D.DD)$, 

"SIGNIFICANT PART OF REAL SYMMETRIC VECTOR ON INPUT:", 
R, 
"SIGNIFICANT PART OF REAL SYMMETRIC RESULT:", 
'C06EXPSUMHRM'R)) 

'END 1 #0F 'C06EXPSUMHRM' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

13.3 Results. 

'C06EXPSUMHRM' EXAMPLE PROGRAM. 
SIGNIFICAN'r PART OF COMPLEX HERMITIAN VECTOR ON INPUT: 

1.00 I 0.00 
0.00 I 1.00 
2.0Q I 0.00 

REAL VECTOR DELIVERED: 3.00 -3.00 3.00 1.00 

SIGNIFICANT PART OF REAL SYMMETRIC VECTOR ON INPUT: 1.00 2.00 3.00 
SIGNIFICANT PART OF REAL SYMMETRIC RESULT: 8.00 -2.00 0.00 

C06EXPSUMANH 

13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUMANH' THIS PROGRAM 
CALCULATES APPROXIMATELY.THE !DFT OF: 
- A COMPLEX ANTI-HERMITIAN VECTOR; 
- A REAL ANTI-SYMMETRIC VECTOR. 
# 
'COVEC'C=GENCOVEC(3) :=(0.0'I'3.0,0.0'I'1.0,0.0'I'2.0); 
WRITEF(($31A,L,59A,3(L,-D.DDQI-D.DD) ,L,25A,4(Q-D.DD)$, 

"'C06EXPSUMANH' EXAMPLE PROGRAM.", 
"SIGNIFICANT PART OF COMPLEX ANTI-HERMITIAN VECTOR ON INPUT:", 
c, 
"DELIVERED IMAGINARY PART:", 
'C06EXPSUMANH'C)); 

'VEC'R=GENVEC(3):=(0.0,2.0,0.0); 
WRITEF(($2L,56A,3(Q-D.DD),L,37A,3(Q-D.DD)$, 

"SIGNIFICANT PART OF REAL ANTI-SYMMETRIC VECTOR ON INPUT:", 
R, 
"SIGNIFICANT PART OF IMAGINARY RESULT:", 
'C06EXPSUMANH'R)) 

'END 1 #0F 'C06EXPSUMANH' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

17 
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13.3 Results. 

'C06EXPSUMANH' EXAMPLE PROGRAM. 
SIGNIFICANT P.Z:rnT OF COMPLEX ANTI-HERMITIAN VECTOR ON INPUT: 
0.00 I 3.00 
0.00 I 1.00 
0.00 I 2.00 

DELIVERED IMAGINARY PART: 7.00 1.00 3.00 1.00 

SIGNIFICANT Pl~RT OF REAL ANTI-SYMMETRIC VECTOR ON INPUT: 0.00 2.00 0.00 
SIGNIFICANT PART OF IMAGINARY RESULT: 0.00 4.00 0.00 

14. Source texts 

OP C06EXPSUM =( COVEC c) COVEC 

lfpurpose: 

input: 
results: 

exception 

approximately calculated is 

n-1 
sum w[j,k)xc[k+ LWR c]. j=0,1, ••• ,n-1 
k=O 
with n== SIZE c,w[j,k]=exp(O I jxkx2xpi/n), 
see above formula. c is not preserved. 
the idft of c is delivered 
with hounds similar to those of c. 

handling:if SIZE c(l then c is delivered and c06fail is 
called.If 

IF INT n- SIZE c;n>l 
THEN c06fft(c[ AT Oj);c 
ELSE c06faH(l, "expsumoperand of C06EXPSUM of wrong size"); c 

FI , 



OP C06EXPSUM =( VEC r) COVEC : 

I/purpose: approximately calculated is 

n-1 
sum w[j,k]xr[k+ LWP. r], j=O,l, ••• ,n-1 
k=O 

input: 
results: 

exception 

with n= SIZE r, w[j,k]=exp(O I 2>:pixjxk/n). 
see above formula. r is not preserved. 
the idft of (real) r with similar bounds as r. 

handling:if SIZE r<l then r, widened to a COVEC, is 
delivered and c06fail is called.# 

IF INT n= SIZE r;n>O 
THEN INT l= urn r' u= UPB r; 

IF ODD n 
THEN COVEC xy= WIDEN r[ AT O]; 

c06fft( xy); 
INT uu:=n-1; 
FOR 11 \JJ-TILE ll(uu 
DO REF COSCAL xyl=xy[ll] ,xyu=xy[uu); 

COS CAL rs= ( xyl+ CONJ xyu) / WIDEN 2; 
(xyl:=rs,xyu:= CONJ rs); 
uu-:=l 

OD 
xy[ AT 1) 

ELSE INT n2=n OVER 2,n4=n OVER 4, rnT j:=-1; 
COVEC xy=gencoarrayl(O,n-1); 

FI 

FOR i FROM 1 P,Y 2 TO u-1 
DO xy[j+:=l]:=r[i] I r[i+l] OD 
c06fft(xy[O:n2-l AT_ OJ); 
BEGIN SCAL norrndiv2= WIDEN 1/ Wll)E!'-J 2; 

COVEC wn=gencoarrayl(O,n4); 
c06ini tw( n, wn); 
FOR i TO n4 
DO REF COSCAL s=xy[i),t=xy[n2-1], 

COSCAL wni=wn(1J; 

OD 

COSCAL p=(s+ CONJ t)xnorrndiv2, 
q=(s- CONJ t)x(im OF wni I -re OF wni)xnormdiv2; 
(s:=p+q,t:= CONJ (p-q)) 

( SCAL s=re OF xy[O),t=im OF xy[O); 
(xy[O]:= WIDEN (s+t),xy[n2):= WIDEN ( s-t))) 

END 
INT uu:=n-1; 
FOR 11 WHILE ll(uu 
DO xy[uu):= CONJ xy[ll];uu-:=l OD 
xy[ AT 1) 

ELSE c06fail(l, "expstnnoperand of C06EXPSUM of wrong size"); 
WIDEN r 

FI , 

19 
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OP C06EXPSUMHRM =( COVEC c) VEC : 

{!purpose: approximately calculated is 

n-1 
sum w [ j , k] x c [ LWB c+ k] , j=O, 1 , • • • , n-1 
k=O 

with n=n2x2, the size of the complete hermitian 
vector c, (Le. c[ LWR c+k]= CONJ c[ LWB c+n-k], 
k=l,2, ••• , n-1) and w[j,k]=exp(O I 2xpixjxk/n). 

input: c[ LWR c: LWR c+n2] is assumed to be supplied. 
c is not preserved. for odd n use C06EXPSUM • 

results: the idft of c is a real vector and is delivered 
as a VEC with the lower bound similar to that of 
c and with LWR c+n-1 as upper bound. 

exception handling:if the first or last element of the given c have 
nonzero imaginairy parts (so the complete vector 
is not hermitian symmetric) then the calculation is 
done with these parts put to zero and c06fail is 
called. if n(2 then a VEC with bounds LWB c and 
LWB c+n-1 is delivered and c06fail is called.# 

IF INT 1= LWB c,u= UPB c; INT n2=u-l; INT n=n2x2;n2)1 
THEN IF SCAL zero= WIDEN O; 

im OF c[l]=zero AND im OF c[u]=·zero 
THEN INT n4=n2 OVER 2; 

COVEC czer=c[l:l+n2-1 AT OJ; 
COVEC wn=gencoarrayl(O,n4); 
c06initw( n, wn); 
czer[O]:=( SCAL cO=re OF czer[O],cn2=re OF c[u]; 
(c0+cn2) I (c0-cn2)); 
FOR k TO n4 
DO REF COSCAL ck=czer[k],cn2k=czer[n2-k]; 

COSCAL s= ck+ CONJ cn2k, 
t=(ck- CONJ cn2k)xwn[k]x(O I 1); 

(ck:=s+t,cn2k:= CONJ (s-t)) 
OD; 
c06fft( czer); 
VEC result=genarrayl(O,n-1); 
INT j:=-1; 
FOR k BY 2 TO n-1 
DO result[k-1]:=re OF czer[j+:=lJ; 

result[k ]:=im OF czer[jJ 
OD 
result[ AT lJ 

ELSE c06fail(2,"exphrmoperand of 
im OF c[lJ:•im OF c[u]:=zero; 

C06EXPSUMHRM 
C06EXPSUMHRM c 

FI 

not hermitian"); 

ELSE c06fail(l,"exphrmoperand of C06EXPSUMHRM of wrong size"); 
genarrayl(l,l+n-1) 

FI , 



OP C06EXPSUMHR}1 =( VF'.C r) VEC 

I/purpose: approximately calculated is 

n-1 

input: 

results: 

sum w[j,k]xr[ LWB r+-k], j=0,1, ••• ,n-1 
k=O 

with n=n2x2, the size of the complete symmetric 
vector r, (i.e. r[ LWR r+-k] =r[ urn r+-n-k], 
k=l,2, ••• ,n-1) and w[j,k]=exp(O I 2xpixjxk/n). 
r[ LWB r: urn r+-n2] is assumed to be supplied. 
r is not preserved. for odd n use C06EXPSUM. 
the dft of r is again real and symmetric, so only 
the first n2+1 elements are delivered with bounds 
similar to those of r. 

exception handlin~:if n(2 then c06fail is called and the original 
vector is delivered.# 

IF INT n2= SIZE r-l;n2)0 
THEN SCAL oddsum: = WIDEN O, VEC rzer=r[ AT O]; 

FOR k BY 2 TO n2-l 
no oddsum+:=2xrzer[ k] OD 
IF ODD n2 
THEN odds um+: =rzer[n2 J; 

COVF.C c=gencoarrayl(O,n2-1); 
INT j:=O;c[OJ:= WIDEN rzer[OJ; 
FOR k FROM 2 RY 2 TO n2 
DO COSCAL cs=c[j+:=1]:=rzer[k] I (rzer[k+l]-rzer[k-1]); 

c[n2-j]:= CONJ cs 
OD; 
rzer(O:n2-1 AT OJ:=re_OF ( C06EXPSUM c) 

ELSE INT n4=n2 OVER 2; COVEC c=gencoarrayl(O,n4); 
INT j:=O;c[O]:= WIDEN rzer[O]; 
FOR k FROM 2 BY 2 TO n2-2 
DO c[j+:=1]:=rzer[k] I (rzer[k+l]-rzer[k-1]) OD 
c[n4 J := WIDEN rzer[n2 J; 
rzer[O:n2-1 AT OJ:= C06EXPSUMHRM c 

FI , 
SCAL evensum=rzer[O]; 
( rzer (0 J +: ==odds um, rzer[ n2]: =evens um-odd sum); 
INT m=n2 OVER 2; 
VEC sintwi=genarrayl(O,m); 
c06sintwi(2xn2,sintwi); 
INT uu:=n2; 
SCAL two= WIDEN 2; 
FOR k TO m 
DO REF SCAL s=rzer[k],t=rzer[uu-:=1]; 

SCAL sk=s+t,tk=(s-t)/(twoxsintwi[k]); 
(s:=(sk+tk)/two,t:=(sk-tk)/two) 

OD 
r 

ELSE c06fail(l,"exphrmoperand of C06EXPSimHRM of wrong size");r 
FI , 
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OP CO6EXPSUMANH =( COVEC c) VEC : 

llpurpose: approximately calculated is 

n-1 
sum w[j,k]xc[ LWB c+k], j=O,1, ••• ,n-1 
k=O 

with n=n2x2, the size of the complete anti­
hermitian vector c, 
(i.e. c[ LWB c+k]=- CONJ c[ LWB c+n-k], 
k=l,2, ••• ,n-1) and w[j,k]=exp(O I 2xpixjxk/n). 

input: c[ LWB c: urn c+n2] is assumed to be supplied. 
c is not preserved. for odd n use CO6EXPSUM. 

results: the dft of c is a vector with a zero real part. 
the imaginary part is delivered as a VEC with the 
same lower bound as c and with LWB c+n-1 as upper 
bound. 

exception handling:if the first or last element of the given c have 
non zero real parts (so the complete vector is not 
anti-hermitian symmetric) then the calculation is 
done with these parts put to zero and cO6fail is 
called. if n(2 then a VEC with bounds LWB c and 
LWB c+n-1 is delivered and cO6fail is called.# 

IF INT 1= LWB c,u= UPB c; INT n=(u-l)x2;n)l 
THEN IF SCAL zero= WIDEN O; 

re OF c[l]=zero AND re OF c[u)=zero 
THEN CO6EXPSUMHRM (-cx((O I 1)) 
ELSE cO6fai1(2, 

FI 

"expanhoperand of CO6EXPSUMANH not anti-hermitian"); 
re OF c[l]:=re OF c[u]:=zero; 
CO6EXPSlJMHRM (-cx((O I 1)) 

ELSE cO6fail(l, "expanhoperand of CO6EXPSUNANH of wrong size"); 
genarrayl(l,l+n-1) 

FI , 

OP CO6EXPSUMANH =( VEC r) VEC 

I/purpose: approximately calculated is 

n-1 
sum w[j,k]xr[ LWB r+k], j=O,1, ••• ,n-1 
k=O 

with n•n2x2, the size of the complete anti­
symmetric vector r, 
(i.e. r[ LWB r+k]=-r[ LWR r+n-k], k=l,2, ••• , n-1) 
and w[j,k]=exp(O I 2xpixjxk/n). 



input: r[ LWB r: LWB r+n2J is assumed to be supplied. 

results: 
r is not preserved. for odd n use C06EXPSUM. 
the dft of r is a complex hermitian vector with a 
zero real part. 
only the first n2+1 elements of the imaginary part 
are delivered as a vec, with hounds similar to 
those of r. 
note that the first and the last element of the 
delivered vec are zero. 

exception handling:if the first and the last elements of the given r 
are not zero then the calculation is done with 
these parts put to zero and c06fail is called. if 
n(2 then c06fail is called and the original vector 
is delivered.II 

IF INT 1= LWB r,u= UPB r; INT n2=u-l;n2)0 
THEN IF SCAL zero= WinEN O; 

r[lJ•zero AND r[uJ=zero 
THEN VEC rzer=r[ AT OJ; SCAL two= WIDEN 2; 

IF ODD n2 

FI 

THEN COVF.C c=gencoarrayl(O,n2-1); 
INT j:=O;c[OJ:= WIDEN (twoxrzer[lJ); 
FOR k FROM 2 BY 2 TO n2 
DO COSCAL cs=c[j+:=lJ:=(rzer[k+lJ-rzer[k-lJ) I rzer[kJ; 

c[n2-jJ:= CONJ cs 
OD 
rzer[O:n2-1 AT OJ:=re OF ( C06EXPSUM c) 

ELSE INT n4=n2 OVER 2; COVEC c=gencoarrayl(O,n4); 
INT j:=O;c[OJ:= WIDEN (twoxrzer[l]); 

FI 

FOR k FROM 2 BY 2·ro n2-2 
DO c[j+:=1]:=(rzer[k+-1]-rzer[k-lJ) I rzer[k] OD 
c[n4 J :• WIDEN (-twoxrzer(n2-1] ); 
rzer[O:n2-1 AT OJ:= C06EXPSUMHRM c 

INT m=n2 OVER 2; 
VEC sintwi•genarrayl(O,m); 
c06sintwi(2xn2,sintwi); 
INT uu:=n2; 
FOR k TO m 
DO REF SCAL s=rzer[k],t=rzer[uu-:=lJ; 

SCAL sk=t-s,tk=(t+s)/(twoxsintwi[kJ); 
(s:=(sk+tk)/two,t:•(tk-sk)/two) 

OD 
rzer[O]:•rzer[n2]:=zero; 
r 
ELSE c06fail(2, 

"expanhoperand of C06EXPSUMANH not anti-symmetric"); 
r[l]:=r[uJ:=zero; C06EXPSUMANH r 

ELSE c06fail(l, "expanhoperand in C06EXPSUMANH of wrong size") ;r 
FI 
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II.2 C06EXPSUM (dyadic) 

1. Purpose 

The dyadic operators 

C06EXPSUM 

evaluate an exponential sum with real or complex coefficients. 

IMPORTANT : •••• 

2. Specification (Algol 68) 

MODE SCAL = REAL, COSCAL = COMPL ; 

MODE VEC = REF[ ]SCAL, 

COVEC = REF[ ]COSCAL; 

OP C06EXPSUM = (SCAL t, VEC r) 

OP C06EXPSUM = (SCAL t, COVEC c) 

PRIO C06EXPSUM = B. 

3. Description 

The operators calculate 

n 
i0 

f(0, a) = I akzk, 
k=O 

z=e 

COSCAL: 

COSCAL: 

with a a real or complex vector. The problem is reduced to the problem 

of evaluating trigonometric sums - i.e. sine and cosine sums - by 

considering the real and imaginary parts. Used is the Clenshaw algorithm 

with the modifications due to Reinsch. 

4. References 

[1] OLIVER, J. 

An error analysis of the modified Clenshaw method for evaluating 

Chebyshev and Fourier series. 

JIMA, vol. 20, 3 79-391 • 1977. 

5. Parameters 

General: 



• Both operands are preserved . 

• The result is a complex constant: the exponential sum. 

Only the size of the right operand matters: the k-th element of 

a vector a is assumed to be represented by a[LWB a+ k] so the lower 

bound of the data representation of the vector does not matter and is 

free for choice. 

Left operand t: the angle 8, a real constant (it is advised to supply a 

value within [-TI,TI)). 

Right operand a real or complex array with n+l elements. 

6. Error indicators 

25 

In the event of an error condition being detected, the error routine: 

c06fail of mode REF NAGFAIL, is called with the parameters listed below. 

These are printed and in case the value of c06fail is nagsoft the execution 

is continued (see in Introduction of the NAG manual the document on the 

ALGOL 68 error mechanism). The operators were designed with nagsoft as 

the user-friendly error-handling mechanism in mind. 

parameter 

1 

message 

VECTOR OPERAND OF C06EXPSUM OF WRONG SIZE 

The size of the given array is smaller than zero; the 

result yielded is zero as value for the empty sum. 

7. Auxiliary routines None. 

8. Timing 

The time taken is proportional ton. 

9. Storage No auxiliary arrays are declared. 
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10. Accuracy 

Let us denote by: 

a 

6 

C 
a 

the coefficient vector; 

the angle; 

the condition number 

the condition number 

n 
l max ( 1 , I ak I ) ) /max ( 1 , I f ( 6 , ~) I ) ; 

k=O af 
I max< 1, I e 1 > aal /max o, If c e, a> I> ; 

ga the growth factor (conjectured of order n); 

a the machine representation of (the measured)~; 

t the machine representation of (the measured) 6; 

oa vector of componentswise errors: 

oak= I¾ - a[LWB a+ kJl/max(l, lakl> 

for all appropriate k; 

• o 6 I t - 6 I /max ( 1 , I 6 I ) . 

Error bounds (first order) 

Formula Propagated 

t C06EXPSUM a C * II call 
a - 00 

11. Further comments None. 

12. Keywords 

Exponential sum. 

Clenshaw-Reinsch algoYithm. 

13. Examples 

error 

+ ce-*06 

Generated error 

c *g* small real 
a 



13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE USE OF 'C06EXPSUM' (DYADIC) THE PROGRAM 
CALCULATES APPROXIMATELY 

1 
SUM A[K]*EXP(0'I'K*T) 
K=-1 

# 
'SCAL' ANGLE=PI/2; 
'VEC'APOS=(GENVEC(2):=(0.5,2.0))['AT'0], 

ANEG=(GENVEC(2):=(0.5,2.0))['AT'0]; 
WRITEF(($28A,L,6A,Q-D.DD,L,34A,3(Q-D.DD) ,L,25A,Q-D.DDQI-D.DD$, 

"'C06EXPSUM' EXAMPLE PROGRAM.", 
"ANGLE:",ANGLE, 
"COEFFICIENTS A[-1],A[0] AND A[l]:", 
ANEG[l],ANEG[0]+APOS[0],APOS[l], 
"VALUE OF EXPONENTIAL SUM:", 
-ANGLE'C06EXPSUM'ANEG+ANGLE'C06EXPSUM'APOS)); 

'COVEC'APLS=(GENCOVEC(2):=(0.5'I'0.25,0.5'I'-0.5))['AT'0], 
AMIN=(GENCOVEC(2) :=(0.5'I'0.25,0.5'I'-0.5))['AT'0]; 

WRITEF(($2L,6A,Q-D.DD,L,34A,3(L,~D.DDQI-D.DD),L,25A,Q-D.DDQI-D.DD$, 
"ANGLE:",ANGLE, 
"COEFFICIENTS A[-1], A[0] AND A[l]:", 
AMIN[l],AMIN[0]+APLS[0],APLS[l], 
"VALUE OF EXPONENTIAL SUM:", 
-ANGLE'C06EXPSUM-'AMIN+ANGLE'C06EXPSUM'APLS)) 

'END 1 #0F 'C06EXPSUM' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

· 13. 3 Results. 

'C06EXPSUM' EXAMPLE PROGRAM. 
ANGLE: 1.57 
COEFFICIENTS A[-1], A[0] AND A[l]: 2.00 1.00 2.00 
VALUE OF EXPONENTIAL SUM: 1.00 I 0.00 

ANGLE: 1.57 
COEFFICIENTS A[-1], A[0] AND A[l]: 

0.50 I-0.50 
1.00 I 0.50 
0.50 I-0.50 

VALUE OF EXPONENTIAL SUM: 1.00 I 0.50 

27 
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14. Source texts 

OP C06EXPSUM =( SCAL t, COVEC c) COSCAL: 

//purpose: approxiwately calculated is the exponential sum 

n 
sum c[ Urn c+k)xztk 
k=O 

with z=exp(O It) and n= SIZE c-1. 
input: left operand: angle t of MODE SCAL; it is 

advised to take tin the interval [-pi,pi). 
right operand: coefficient vector c of MODE 
COVEC • 

result: the result of the above, possibly empty, sum of 
MODE COSCAL. 

exception handling:if n(O then c06fail is called and zero 
is delivered.II 

IF SIZE c)O THEN 
SCAL sinserr,cosserr,sinseri,cosseri; 
(c06ser( re OF c,cosserr,sinserr,t), 
c06ser( im OF c,cosseri,sinseri,t)); 
(cosserr-sinseri) I (sinserrtcosseri) 

ELSE c06fail(l, "expsumvector operand. of c06expsum of wrong size"); 
WIDEN WIDEN 0 

Fl , 

OP C06EXPSUM =( SCAL t, VEC r)'COSCAL : 

//purpose: approximately calculated is the exponential sum 

n 
sum r[ LWB r+k]xztk 
k•O 

with z=exp(O I t) and n= SIZE r-1. 
input: left operand: angle t of MODE SCAL; it is 

advised to take tin the interval [-pi,pi). 
right operand: coefficient vector r of MODE 
VEC • 

result: the result of the above, possibly empty, sum of 
MODE COSCAL • 

exception handling:if n(O then c06fail is called and zero 
is delivered.# 

IF SIZE r)O THEN 
SCAL sinser,cosser; 
c06ser(r,cosser,sinser,t); 
cosser I sinser 

ELSE c06fail(l, "expsumvector operand of c06expsum of wrong size"); 
WIDEN WIDEN 0 

Fl 



II. 3 C06TRGSUM, C06COSSUM, C06SINSUM 

1. Purpose 

The monadic operators 

C06TRGSUM, C06COSSUM, C06SINSUM 

evaluate the Discrete Harmonic Analysis (DHA) and Discrete Harmonic 

Synthesis (OHS). 

Advantage has been taken of zeros in the data in 

C06COSSUM - sine coefficients are zero (a Discrete Cosine 

Transform (OCT)) 

C06SINSUM - cosine coefficients are zero (a Discrete Sine 

Transform (DST)). 

IMPORTANT: •••. 

2. Specification (Algol 

MODE SCAL 

MODE VEC 

COVEC 

OP C06TRGSUM 

OP C06TRGSUM 

OP C06COSSUM 

OP C06SINSUM 

3. Description 

Given the relation 

68) 

= 
= 
= 
= 
= 
-

= 

REAL, COSCAL = COMPL; 

REF[ ] SCAL, 

REF[ ]COSCAL; 

(VEC r) COVEC: 

(COVEC ab) VEC : 

(VEC a) VEC : 

(VEC b) VEC 

29 

m 
\'" f. = l (a.*cos(TI*k*j/m)+b.*sin(TI*k*j/m)), j=0,1, .•. ,n-1, n=2*m, 

J k=O J J 

then the problems are characterized by: 

OHS: obtain f from a and b, - -
DHA: obtain a and b from !, -
OCT: obtain f from a; b is zero, -
DST: obtain f from£_; a is zero. -
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Used is the Cooley-Sande-Stockham algorithm for the DFT because the 

above relation is equivalent to 

a.+ib. 
J J 

n-1 
= 1/m l fk *e2~ikj/n, 

k=O 
j=O, 1 , ••• ,m. 

4. References 

See chapter introduction: [1,2]. 

5. Parameters 

General: 

• n is the size of the array of real variables f of even size; 

we use m to denote n/2 • 

• The lower bound of the result equals the lower bound of the operand. 

Only the size of the operands matters: the k-th element of a vector c is 

assumed to be represented by c[LWB c + k], so the lower bound of the data 

representation of the vector does not matter and is free for choice • 

• The operands are not preserved • 

• The first and last element of b must contain zero. 

Formula 

C06TRGSUM f 

C06TRGSUM ab 

C06COSSUM a 

C06SINSUM b 

Operand 

a real array variable with 
n elements: f. 

a complex array variable 
with m+l elements: the real 
part contains~ and the 
imaginary part contains£.· 

a real array variable with 
m+l elements: a. 

a real array variable with 
m+l elements: b. 

Result 

a complex array variable with 
m+l elements: the real part 
contains a and the imaginary 
part contains b. 

a real array variable with n 
elements: f. 

a real array variable with 
m+l elements: the DCT of the 
operand. 

a real array variable with 
m+l elements: the DST of the 
operand. 
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6. Error indicators 

In the event of an error condition being detected the error routine: 

c06fail of mode REF NAGFAIL, is called with the parameters listed below. 

These are printed and in case the value of c06fail is nagsoft the execution 

is continued (see in Introduction of the NAG manual the document on the 

ALGOL 68 error mechanism). The operators were designed with nagsoft as the 

user-friendly error-handling mechanism in mind. 

parameter 

1 

2 

3 

message 

OPERAND OF <operator name> OF WRONG SIZE 

The given array is of too small size; the result 

yielded is the operand. 

OPERAND OF <operator name> CONTAINS NONZERO FIRST 

AND/OR LAST SINE COEFFICIENT 

The calculation is performed with the nonzero 

elements in ,question overwritten with zeros. 

OPERAND (REAL VECTOR) OF C06TRGSUM IS OF ODD LENGTH 

The calculation is performed with an adapted operand; 

the smaller of the first and the last element is 

discarded. 

7. Auxiliary routines 

The used NAG library operators are given in the following table. 

Formula Used NAG library operators Used Torrix operators/generators 

C06TRGSUM f C06EXPSUM gencoarrayl,/<, gencoarray 1 

C06TRGSUM ab C06EXPSUMHRM genarrayl, I< , conj, genarray 1 , 
widen 

C06COSSUM a C06EXPSUMHRM /< 

C06SINSUM b C06EXPSUMANH r /< 

8. Timing 

The time taken is proportional to s*m, wheres is the sum of the factors of m. 
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9. Storage No auxiliary arrays are declared. 

10. Accuracy 

The accuracy is determined by the DFT because of the second relation in 

the description. 

Let us denote by 

c the machine representation of a (measured) vector 5::._; 

!J.c I c - £1 • 

Error bounds (first order). 

Formula Propagated error 

C06TRGSUM f II !ifll 
-2 

/max ( 1//if, 11!_11 2 ) 

C06TRGSUM ab · 11/J.all 
-2 

/max(l//n,llall ) 
- 2 + II !J.bll 2/max ( 1//n, 11!?._II 2) 

C06COSSUM a lltJ.all 2 /max(l//ff,llall ) 
- 2 

C06SINSUM b lltbll 2 /max ( 1 /l"il, II !?_II 2) 

The growth factors gf,ga, gb are of the order of magnitude 

with p, the factors of m. 
l. 

11. Further comments None. 

12. Keywords 

Discrete harmonic analysis. 

Trigonometric interpolation. 

Discrete harmonic synthesis. 

Evaluation of trigonometric sums. 

Fast Fourier Transform. 

Cooley-Sande-Stockham algorithm. 

Generated error 

gf* small real 

(ga+gb)* small 

g * small real a 

gb* small real 

real 



13. Examples 

C06TRGSUM 

13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE USE OF 'C06TRGSUM' THIS PROGRAM CALCULATES 
APPROXIMATELY THE DISCRETE HARMONIC ANALYSIS AND THE DISCRETE 
HARMONIC SYNTHESIS. 
# 
'VEC'F=GENVEC(4):=(1.0,0.0,3.0,4.0); 
WRITEF(($28A,L,28A,4(Q-D.DD),L,8A,L,42A,3(L,-D.DD17QIQ-D.DD)$, 

"'C06TRGSUM' EXAMPLE PROGRAM.", 
"DISCRETE FUNCTION, ON INPUT:", 
F, 
"RESULTS:", 
"COSINE COEFFICIENTS: 
'C06TRGSUM'F)); 

SINE COEFFICIENTS:", 

'COVEC'AB=GENCOVEC(5):=(2.0'I'0.0,0.0'I'1~0,0.0'I'2.0,2.0'I'3.0, 
4.0'I'O.O); 

WRITEF ( ($2L,42A, 5 (L,;...D~D1'11QIQ-D.D9) ,L,..28A,.8 (Q-D.DD) $, 
"COSINE COEFFICIENTS: SINE COEFFICIENTS:", 
AB, 
"RESULTING DISCRETE FUNCTION:", 
'C06TRGSUM' AB)) 

"END 1 #0F 'C06TRGSUM' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

13.3 Results. 

'C06TRGSUM' EXAMPLE PROGRAM. 
DISCRETE FUNCTION, ON INPUT: 1.00 0.00 3.00 4.00 
RESULTS: 
COSINE COEFFICIENTS: SINE COEFFICIENTS: 

4.00 I 0.00 
-1.00 I -2.00 
0.00 I 0.00 

COSINE COEFFICIENTS: SINE COEFFICIENTS: (ON INPUT) 
2.00 I 0.00 
0.00 I 1.00 
o.oo I 2.00 
2.00 I 3.00 
4.00 I 0.00 

RESULTING DISCRETE FUNCTION: 5.00 2.41 1.00 1.24 1.00 -0.41 5.00 -7.24 
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C06COSSUM and C06SINSUM 

13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE nsE OF 'C06COSSUM' AND 'C06SINSUM' THIS 
PROGRAM CALCULATES APPROXIMATELY THE DISCRETE COSINE TRANSFORM AND 
THE DISCRETE SINE TRANSFORM. 
# 
'VEC'A=GENVEC(S):=(2.0,0.0,0.0,2.0,4.0); 
WRITEF(($28A,L,16A,5(Q-D.DD),L,36A,5(Q-D.DD)$, 

"'C06COSSUM' EXAMPLE PROGRAM.", 
"VECTOR ON INPUT:", 
A, 
"RESULT OF DISCRETE COSINE TRANSFORM:", 
'C06COSSUM'A)); 

'VEC'B=GENVEC(S) :=(0.0,1.0,2.0,3.0,0.0); 
WRITEF(($2L,28A,L,16A,5(Q-D.DD) ,L,34A,5(Q-D.DD)$, 

"'C06SINSUM' EXAMPLE PROGRAM.", 
"VECTOR ON INPUT:", 
B, 
"RESULT OF DISCRETE SINE TRANSFORM:", 
'C06SINSUM'B)) 

'END'#oF 'C06COSSUM' AND 'C06SINSUM'. EXAMPLE PROGRru1# 

13.2 Data for program. None. 

13. 3 Results. 

'C06COSSUM' EXAMPLE PROGRAM. 
VECTOR ON INPUT: 2.00 0.00 0.00 
R~SULT OF DISCRETE COSINE TRANSFORM: 

'C06SINSUM' EXAMPLE PROGRAM. 
VECTOR ON INPUT: 0.00 1.00 2.00 
RESULT OF DISCRETE SINE TRANSFORM: 

2.00 4.00 
5.00 -2.41 3.00 

3.00 
o.oo 

o.oo 
4.83 -2.00 

0.41 1.00 . 

0.83 0.00 



14. Source texts 

OP C06TRGSUM •( COVEC ab) VEC : 

I/purpose: approximately calculated is 

m 
sum" a{k+ LWB ab]xcos(pixkxj/m) 
k=O 

+ 

m 
sum b{k+ LWB ah]xsin(pixkxj/m) 
k=O 

for j•0,1, ••• ,2xm-1 with m- SIZE ab-1. 
results: the discrete harmonic synthesis i.e. the result of 

the above formula for j•0,1, ••• ,2xrn-1 is 
delivered as a VEC with bounds LWB ah and 
LWB ab+-2xm-1. the vectors a and b must be given as 
real and imaginary part of the COVEC ab. 

exception handling:if m<l then c06fail is called and the result is a 
VEC with bounds LWB ab and LWB ab+2xm-1.# 

IF INT 1= LWB ab,m= SIZE ab-l;m)O 
THEN SCAL zero- WIDEN O; 

IF im OF ab(l]~zero OR im OF ab[l+m]~zero 
THEN c06fail(2, 

"trgsumoperand of C06TRGSUM contains non%ero first and/or 
last element"); 
im OF ab[l]:•im OF ab(l+m]:=zero 

FI 
( C06EXPSUMHRM CONJ ab)/<2 

ELSE c06fail(l, 

FI 

" TRGSUMOPERAND OF c06trgsum OF WRONG SIZE"); 
genarrayl(l,1+2xm-1) 
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OP C06TRGSUM =( VEC f) COVEC : 

I/purpose: approximately calculated are 

n-1 

input: 
results: 

a[j]=l/m sum f[k+ LWB f]xcos(pixk~j/m), 
k=O 

and 

n-1 
b(j)=l/m sum f[k+ urn f]xsin(pixkxj/m), 

k=O 

with n=2xm= SIZE f. 
see above formula. f is not preserved. 
the coefficients a and bare delivered as real and 
imaginary part of a COVEC with bounds LWB f and 
LWB f+m. 

exception handling:if n<l then c06fail is called and the resulting 
COVEC has lower bound lwbf and upper bound 
LWR f+m. if n is odd then c06fail is called 
and the smaller of the first and the last element 
is discarded and C06TRGSUM is called with the 
modified operand.# 

IF INT n= SIZE f,1• LWB f; INT m•n OVER 2;n)O 
THEN IF NOT ODD n 

THEN ( C06EXPSUM f)[l:l+m AT 1)/<m 
ELSE c06fai1(3, 

Fl 

"trgsumoperand (real vector) of C06TRGSUM is of odd length"); 
INT u• UPB f; 
IF ABS f[l]< ABS f(u] 
THEN C06TRGSUM f[ 1+1:u AT 1) 
ELSE C06TRGSUM f[l:u-1 AT 1) 
FI 

ELSE c06fail(l, "trgsumoperand of C06TRGSUM OF WRONG SIZE"); 
gencoarrayl(l,l+m) 

FI , 



OP C06COSSUM =( VEC a) VEC : 
#purpose: approximately calculated is 

input: 
results: 

exception 

m 
sum" a[k+ LWB aJxcos{pixkxj/rn), j=O,l, ••• ,m 
k=O 

DF SIZE a-1. 
see above formula, a is not preserved. 
the cosine transform, i.e. the result of the 
above formula is delivered as a VEC with bounds 
similar to those of a. 

handling:if m<l then c06fail is called and the original 
vector a is delivered.# 

IF INT ml= SIZE a;ml)l 
THEN C06EXPSUMHRM ( a/ (2) 
ELSE c06fail(l,"cossumoperand of C06COSSUM of wrong size");a 
FI , 

OP C06SINSUM =( VEC a) VEC : 
#purpose: approximately calculated is 

input: 

results: 

m 
sum a[k+ LWB a]xsin{pixkxj/m), j=O,l, ••• ,m 
k=O 

m= SIZE a-1. 
see above-formula, a is not preserved. note that: 
the first and last element of a must be supplied 
and filled with zero. 
the sine transform, i.e. the results of the 
above formula is delivered as a VEC with bounds 
similar to those of a. note that the first and last 
element are zero again. 

exception handling:if m<l then c06fail is called and the original 
vector a is delivered.# 

IF INT ml= SIZE a;ml)l 
THEN SCAL zero= WIDEN O; 

IF a[ LWB a],'zero OR a[ UPB a],'zero 
THEN c06fail(2, 

FI 

"sinsumoperand of C06SINSUM containes nonzero first and/or 
last sine coefficient"); 
a[ LWB a] :•a[ UPB a} :=zero 

C06EXPSUMANH (a/(2) 
ELSE c06fail(l,"sinstunoperand of C06SINSUM of wrong size");a 
FI 
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II.4 C06TRGSUM, C06COSSUM, C06SINSUM (Dyadic) 

1. Purpose 

The dyadic operators 

C06TRGSUM, C06COSSUM, C06SINSUM 

evaluate trigonometric sums. 

Advantage has been taken of zeros in the data in 

C06COSSUM - sine coefficients are zero 

C06SINSUM - cosine coefficients are zero. 

IMPORTANT: •••• 

2. Specification (Algol 68) 

MODE SCAL 

MODE VEC 

COVEC 

OP C06TRGSUM 

OP C06COSSUM 

OP C06SINSUM 

PRIO C06TRGSUM 

3. Description 

The operators calculate 

m 

= REAL, COSCAL = COMPL; 

= REF[ ]SCAL, 

= REF[ ]COSCAL; 

= (SCAL -t., COVEC ab) SCAL: 

= (SCAL -t., VEC a) SCAL: 

= (SCAL -t., VEC b) SCAL: 

= 8, C06COSSUM = 8, C06SINSUM 

f(6, ~, b) = I (akcos k6 + bksin k6). 
k=0 

= B. 

The algorithm used for evaluating a cosine sum and a sine sum is the 

Clenshaw algorithm with the modifications due to Reinsch. 

4. References 

[ 1] OLIVER , J. 

An error analysis of the modified Clenshaw method for evaluating 

Chebyshev and Fourier series. 

JIMA, vol. 20, 379-391. 1977. 
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5. Parameters 

General: 

• Both operands are preserved • 

• The result is a real constant: the trigonometric sum . 

• only the size of the right operand matters: the k-th element of a vector 

a is assumed to be represented by a[LWB a+ k], so the lower bound of the 

data representation of the vector does not matter and is free for choice • 

• m denotes the size of the coefficient vector minus 1. 

Left operand t: the angle 8; a real constant (it is advised to supply 

a value within [-n,n)). 

Formula 

t C06TRGSUM ab 

t C06COSSUM a 

t C06SINSUM b 

6. Error indicators 

Right operand 

a complex array with m+l elements: the real part 

contains the cosine coefficients,~, and the imaginary 

part contains the sine coefficients, b. The first 

element of b must contain zero. 

a real array with m+l elements: the coefficients of the 

cosine sum, a. 

a real array with m+l elements: the coefficients of 

the sine· sum, b. The first element must contain zero. 

In the event of an error condition being detected, the error routine: 

c06fail of mode REF NAGFAIL, is called with the parameters listed below. 

These are printed and in case the value of c06fail is nagsoft the execution 

is continued (see in Introduction of the NAG manual the document on the 

ALGOL 68 error mechanism). The operators were designed with nagsoft as the 

user-friendly error-handling mechanism in mind. 

parameter message 

1 VECTOR OPERAND OF <operator name> OF WRONG SIZE 

The size of the given vector is smaller than one; 
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2 

the result yielded is zero as value for the empty 

sum. 

VECTOR OPERAND OF <operator name> CONTAINS NONZERO 

FIRST SINE COEFFICIENT 

The calculation is performed with the first sine 

coefficient overwritten with zero. 

7. Auxiliary routines None. 

8. Timing 

The time taken is proportional tom. 

9. Storage No auxiliary arrays are declared. 

10. Accuracy 

Let us denote by: 

a 

b 

e 

b 

the cosine coefficient vector; 

the sine coefficient vector; 

the angle; 

the condition numbers 

C = 
a 

m 

l max(1,lakl)/max(1, lf(8,~,!2_}t), 
k=0 

m 

l max(1,lbkl)/max(1, lf(8,~,_e_)I); 
k=0 

the condition number 

c 8 = I max (1 , I e I ) : ! I /max (1 , I f ( e, ~, .e_) I ) ; 

growth factors (conjectured of order m); 

the machine representation of (the measured) a; 

the machine representation of (the measured) b; 



• oa, ob vectors of componentswise errors: 

oak= lak - a[LWB a+ k]l/max(1, lakl> 

obk = !bk - b[LWB b -I- k] I /max(1, !bk I) 
for all appropriate k; 

t 

oe 

the machine representation of (the measured) 0; 

I t - e I /max (1 , I e I ) . 

Error bounds (first order) 

Formula Propagated error 

t C06TRGSUM ab C * II call + c *11 obll 
a - 00 b oo 

t C06COSSUM a C * II call + c 0*oe 
a - 00 

t C06SINSUM b C * II obll + ce*o0 
b - 00 

11. Further comments None. 

12. Keywords 

Evaluation of trigonometric sum. 

Clenshaw-Reinsch algorithm. 

13. Examples 

Generated error 

+ C0*o0 (c *g a a + c *g )*small 
b b 

C *g * small real 
a a 

C *g * b b. 
small real 

41 

real 
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13.1 Program text. 

'BEGIN' 
# 
AS AN ILLUSTRATION OF THE USE OF 'C06COSSUM', 'C06SINSUM' AND 
'C06TRGSUM' (DYADIC) THE PROGRAM CALCULATES APPROXIMATELY 

1 
SUM (A[K}•\·COS (K*T) +B[K]*SIN (K*T) ) 
K=0 

# 
'SCAL'ANGLE=P!/2; 
'COVEC' AB= (GENCOVEC (2) :=(1. 0' I '0.0,2.0' I' 1.0)) [ 'AT'0]; 
'VEC'A=RE'OF'AB, 

B=IM'OF'AB; 
WRITEF(($57A,L,6A,Q-D.DD,L,20A,2(Q-D.DD) ,L,18A,Q-D.DD,2L,18A, 

2(Q-D.DD),L,16A,Q-D.DD,2L,25A,Q-D.DD$, 
"'C06COSSUM', 'C06SINSUM' AND 'C06TRGSUM' EXAMPLE PROGRAM.", 
"ANGLE:",ANGLE, 
"COSINE COEFFICIENTS:",A, 
"RESULT COSINE SUM:",ANGLE'C06COSSUM'A, 
"SINE COEFFICIENTS:",B, 
"RESULT SINE SUM:",ANGLE'C06SINSUM'B, 
"RESULT TRIGONOMETRIC SUM:",ANGLE'C06TRGSUM'AB)) 

'END 1 #0F 'C06COSSUM', 'C06SINSUM' AND 'C06TRGSUM' EXAMPLE PROGRAM# 

13.2 Data for program. None. 

13.3 Results. 

'C06COSSUM', 'C06SINSUM' AND •~06TRGSUM' EXAMPLE PROGRAM. 
ANGLE: 1.57 
COSINE COEFFICIENTS: 1.00 2.00 
RESULT COSINE SUM: 1.00 

SINE COEFFICIENTS: 0.00 1.00 
RESULT SINE SUM: 1.00 

RESULT TRIGONOMETRIC SUM: 2.00 



14. Source texts 

OP C06TRGSU~ =( SCAL t, COVEC ah) SCAL : 

/!purpose: approximately calculated is 

m 
sum (a[k]xcos(kxt)+b[k]xsin(kxt)) 
k=O 

with 11F S IZF. a h-1. 
input: the angle t of MODF. SCAL must he given as left 

operand. the right operand of MODE COVEC 
contains the cosine coefficients as real part and 
the sine coefficients as imaginary part. the first 
element of the imaginary part is supposed to refer 
to zero. 

results: the trigonometric sum of MODE SCAL. 
exception handling:if m<O then c06fail is called and zero is 

delivered as the value of the empty SlIDl. if the 
first element of the imaginary part does not refer 
to zero then c06fail is called and the calculation 
is performed after the element is overwritten with 
zero.II 

IF SCAL zero= WIDEN O; INT m= SIZE ab-1; rn>-1 
THEN VEC a=re OF ah,h=im OF ab; 

IF h[ LWB b]izero 
THEN c06fai1(2, 

FI 

"trgsumvector operand of C06TRGSUM contains nonzero first 
sine coefficient"); 

b[ LWB b]:=zero 

SCAL sinsum,cossum; 
(c06ser(a,cossum, NIL ,t),c06ser(b, NIL ,sinsum,t)); 
cossum+sinsum 

ELSE c06fail(l, "trgsumvector operand of C06TRGSUM of wrong size"); 
zero 

FI , 
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OP C06COSSUM ={ SCAL t, VEC a) SCAL : 

I/purpose: approximately calculated is 

m 
sum ar urn a+k J x cos( kx t) 
k=O 

with 11F SIZE a-1. 
input: the cosine coefficients must be given as a VEC 

with arbitrary first index. 
result: the cosine sum. 
exception handling:if m(O then c06fail is called and zero is 

delivered for the empty sum.# 

IF INT m= SIZE a-l;m)-1 
THEN SCAL cossum; 

c06ser(a,,cossum, NIL ,t);cossum 
ELSE c06fail(l, "cosstm1vector operand of C06COSSUM of wrong size"); 

WIDEN 0 
FI , 

OP C06SINSUM =( SCAL t, VEC b) SCAL 

I/purpose: approximately calculated is 

m 
sum b[ LWB_ b+-k)xsin(kxt) 
k=O 

with 11F SIZE h-1. 
input: the sine coefficients must be p,iven as a VEC 

with arbitrary first index. the first element is 
supposed to refer to zero. 

result: 
exception 

the sine sum. 
handling:if m(O then c06fail is called and zero is 

delivered as the value of the empty sum. if 
b[ LWB b] does not refer to zero then c06fail is 
called and the calculation is performed after 
b[ urn bJ is overwritten with zero. If 

IF SCAL zero== WIDEN O; INT m= SIZE b-l;m)-1 
THEN IF b[ LWB b] ,'zero 

THEN c06fai1(2, 
"sinsumvector operand of C06SINSUM contains nonzero first 

sine coefficient"); 
b[ LWB b):=zero 

FI 
SCAL sinsum; 
c06ser(h, NIL ,sinsum,t); 
sins um 

ELSE c06fail(l, "sinsumvector operand of C06SINSUM of wrong size"); 
zero 

FI 
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III. SOURCE TEXTS OF THE TECHNICAL ROUTINES 

III.1 Hierarchy of the implementations (monadic operators) 

C06TRGSUM r C06TRGSUM c C06COSSUM C06SINSUM 

t t ----- t 
C06EXPSUM r C06EXPSUMH~ ~ C06EXPSUMANH r 

T ~OlXPSUM ~ C06EXP:UMHRM c 

~, C06SINTWI J 
C06FFT 

C06EXPSUHl'...NH c 

T 

III.2 Hierarchy of the implementations (dyadic operators) 

C06EXPSUM C06TRGSUM C06COSSUM C06SINSUM 

~coJs~ 
III.3 Source texts 
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PROC c06sintwi=( INT n, VEC s) VOID: 

#purpose:the points sin(2xpixj/n), j=0,1, , UPB s 
are calculated. 

input: VEC s with LWB s=O and UPB s)O; 
INT n with n)O. 

results: the points are delivered ins.# 

IF INT u= UPB s; LWR s~O AND u)O AND n)l 
THEN IF u(n 

THEN s[OJ:= WIDEN O; 
IF u)O 
THEN SCAL sp i=pi, two= WIDEN 2; 

SCAL tpi=twoxspi; 
SCAL the=tpi/ WIDEN n; 
s[l]:=sin(the); 
INT ttp:=1; INT uu=u MIN (n OVF.R 2); 
WHILE ttpx:=2;ttp(uu 
DO s[ttp]:•sin(ttpxthe) OD ; 
INT thp=ttp OVERAB 2; 
IF INT l:=thp;l(uu 
THF.N WHILE (ttp OVERAB 2))0 

DO IF l+ttp(uu 

OD 
FI 

THEN l+:=ttp;s[l]:=sin(lxthe) 
FI 

INT k:=thp OVER 2; 
WHILE (k OVERAB 2) ) 1 
DO IF SCAL tct=twoxc-0s(kxthe); ABS tct) WIDEN 1 

THEN FOR j FROM 3xk BY 2xk TO uu-k 
DO s[j]:={s(j-k]+s[j+k])/tct OD 

ELSE FOR j FROM 3xk BY 2xk TO uu-k 
DO s[j]:=tctxs(j-kJ-s[j-2xk] OD 

FI 
OD; 
FOR j FROM uu+l TO u DO s[j]:=-s[n-j] OD 

FI 
ELSE c06sintwi(n,s[O:n-1 AT OJ); 

FOR j FROM n TO u DO s[j]:=s[j-n] OD 
FI 

ELSE c06fail(l, "sintwiwrong size and/or bounds in c06sintwi") FI , 



PROC c06initw=( INT n, COVEC \o.; '10ID : 

#purpose:the twiddle factors exp(O I 2xpixj/n), j=O,l, ••• , UPR w 
are calculated. 

input: C:OVEC w with LWB w=O and UPB w)O; 

INT n with n)O. 
results: the twiddle factors are delivered in w.# 

IF INT u= UPB w; LWB w=O AND u)O AND n)l 
THEN IF u(n 

THEN SCAL scalpi=pi,two= WIDEN 2,one= WIDEN l; 
SCAL tpi=scalpi+scalpi; 
SCAL kth:=(n=l! WIDEN O!tpi/ WIDEN n), 
INT k:=l; 
INT uu=u MIN (n OVER 2); 
w[OJ:= WIDEN one; 
WHILF k (uu 
DO w[k]:=(cos(kth),sin(kth)); 

kx :=2; 
ktlhx :=two 

OD 
INT i=k OVERAB 2 ;k OVER.AB 2; 
WHILE (k OVERAB 2) ) 1 
DO IF SCAL tct=twoxre OF w[k]; ABS tct) one 

THE!\' FOR j FROM 3xk BY 2xk TO i-k 
DO w[j]:=(w[j-k]+w[jtk])/tct OD 

ELSE FOR j FROM 3xk BY 2xk TO i-k 

FI 
on 

no w[j]:=tctxw[j-k]-w[j-2xk] OD 

FOR j FROM i+l TO uu DO w[j]:=w[i]xw[j-iJ OD; 
FOR j FROM uu+l TO u DO w[j]:= CONJ w[n-j] OD 

ELSE c06Jlnitw(n,w[O:n-l AT OJ); 
FOR j FROM n TO u DO w[j]:=w[j-n] OD 

FI 
ELSE c06fail(l,"c06initw wrong size anci/or hounds") 
FI , 
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PROC c06fft=( COVEC xy) VOID: 

/}purpose: approximately calculated is 

n-1 
sum w[j,k]xxy[k+ LWB xy], j=O,l, ••• ,n-1 
k=O 

input: 
results: 

with n= SIZE xy, w[j,k]=exp(O I jxkx2xpi/n). 
see above formula. 
the idft of xy is delivered with 
bounds pair O:n-1. 

exception handling:if NOT ( UJB xy=O AND SIZE xy)O)then 
c06fail is called.# 

IF INT n= UPB xy+l; LWB xy=O AND n)l THEN 
IF n>l THEN 

PROC fftri=( COVEC x,w, INT ri,rlrirninl,ripluslrm,n) VOID 
CASE 

IN 

PROC xi= ( INT i) COVEC :x[ AT -ix ripluslrm], 
COSCAL zero= WIDEN WIDEN O, 
INT rirm=rix riplusl rm, noverri=n OVER ri ,r isubl=ri-1, 

riplusl rmsubl=ri plusl rm-1; 
INT nsubrirITFn-rirm; 
risubl 

BE.Gm 
COVEC xO==xi(O) ,xl=xi(l ); 
FOR k FROM O TO ripluslrmsubl DO 

COS CAL wn=w[ kx rl riminlJ; 

OD 
END, 
BEGIN 

FOR j FROM k BY rirm TO nsubrirrn+-k DO 
REF COSCAL x0 j=xO [ jJ ,xl j=xl [ j]; 
COSCAL a=xOj,b=xlj; 
(xO j :=a+b ,xl j: =(a-b) xwn) 

OD 

COVEC xO=xi(O),xl=xi(l),x2=xi(2); 
COSCAL ei120=w[noverri] ,ei240=w[2xnoverri]; 
FOR k FROM O TO ripluslrmsubl DO 

OD 
END , 

INT ind=kxrlriminl; 
COSCAL wl n=w[ ind], w2 n==w[ 2x ind]; 
FOR j FROM k BY rirm TO nsubrirrnt-k DO 

REF COSCAL xO j=xO [ j J , xl j==xl [ j J , x2 j=x2 [ j J ; 
COSCAL a=x0j,b=xlj,c=x2j; 
(xOj:=(a+b +c ) , 
xlj:=(a+bxeil20+cxei240)xwln, 
x2 j: =( a+hxei240+cxei120 )xw2 n) 

OD 



BEGIN 
COVEC xO=xi(O) ,xl=xi(l) ,x2=xi(2) ,x3=xi(3), 
PROC ( COSCAL) COSCAL ei90= 

( COSCAL a) COSCAL :(- IM a, RE a) ; 
IF noverri=rlriminl THEN 

FOR j FROM O BY rirm TO nsubrirm DO 
REF COSCAL xOj=xO[j] ,xlj=xl[j] ,x2j=x2[j] ,x3j=x3[j]; 
COSCAL e=xO j+x2 j, f=xO j-x2 j ,g=xl j+x3 j, h=ei90(xl j-x3 j); 
(x0j:=e+g,x2j:=e-g,xlj:=f+h,x3j:=f-h) 

OD 
ELSE 

FI 
END, 
BEGIN 

FOR k FROM O TO ripluslrmsuhl DO 
INT ind=kxrlriminl; 
COSCAL wln=-w[ind] ,w2n=w[2xinci] ,w3n=w[3xind]; 
FOR j FROM k BY rirm TO nsubrirm+-k DO 

OD 
OD 

REF COSCAL xO j=xO [ j] ,xl j=xl [ j] ,x2 j=x2 [ j] ,x3 j=x3 [ j]; 
COSCAL e=xO j+x2j, f=xO j-x2j ,g=xl j+x3 j, h=ei90(xl j-x3 j); 
(x0j:=e+g,x2j:=(e-g)xw2n,xlj:=(f+h)xwln,x3j:=(f-h)xw3n) 

COVEC xO=xi( 0) ,xl =xi( 1) ,x2 =xi( 2) ,x3 =xi( 3) ,x4 =xi( 4); 
COSCAL ei 72=w[ noverri],eil447w[2xnoverri], 

ei216=w[3xnoverri],ei288=w[4xnoverri]; 
FOR k FROM O TO ripluslrmsubl DO 

INT ind=kxrlriminl; 

OD 
END 
OUT 

COSCAL wln=-w[ind],w2n-w[2xind],w3n=w[3xind],w4n=w[4xind]; 
FOR j FROM k BY rirm TO nsubrirmf-k DO 

OD 

REF COSCAL xO j•xO [· j] ,xl j=xl [ j] ,x2 j=x2 [ j], 
x3 j•x3 [ j] ,x4 j=x4 [ j]; 

COSCAL a•xO j, h=xl j ;c•x2 j, d=x3 j, e=x4 j; 
(xOj:=(a+b +c +d +e ) , 
xlj:=(a+bxei 72+cxei144+dxei216+exei288)xwln, 
x2j:=(a+bxei144+cxei288+dxei 72+exei216)xw2n, 
x3j:=(a+bxei216+cxei 72+dxei288+exei144)xw3n, 
x4j:=(a+bxei288+cxei216+dxei144+exei 72)xw4n) 

IF ri=n THEN 
COVEC xp= COPY (x); 
BEGIN 

REF COSCAL s•x(OJ:=zero; 
FOR p FROM O TO risubl DO s+:=xp[p] OD 

END; 
FOR j FROM 1 TO risubl DO 

INT b:=j, 

OD 

REF COSCAL s=x[j]:=xp[O]; 
FOR p FROM 1 TO risubl DO 

s+:=xp[ p]xw[ b]; 
( (b+-:=j) > n ! b-:=n) 

OD 
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ELSE 
[O:risubl] COVEC xp; 
FOR p FROM O TO risubl DO xp[p):=xi(p) OD 
FOR k FROM O TO ripluslrmsubl DO 

OD 
FI 
ESAC, 

INT ind=kxrlriminl; 
FOR j FROM k BY rirm TO nsubrirm+k DO 

COVEC xpj•gencoarrayl(O,risubl); 

OD 

BEGIN 
COSCAL s:=zero; 
FOR p FROM O TO risubl DO 

s+:=(xpj[p]:=xp[p][j]) 
OD; 
xp[OJ [ j) :=s 

END; 
INT c:=O,d:=O; 
FOR p FROM 1 TO risubl DO 

(c+:=noverri,d+:=ind); 

OD 

INT b:=d, 
REF COSCAL s=xp[pJ[jJ:=zero; 
FOR q FROM O TO risubl DO 

s+:=xpj[q]xw[bJ; 
((b+:=c))n!b-:=n) 

OD 

MOOE R = STRUCT ( INT ri,rlriminl,ripluslrm), 
MODE L = STRUCT ( REF R r, REf L next), 

PROC factor=( INT n, REF REF L 113,12,1123, REF INT rimax) VOID 
BEGIN 

REF L klb:= NIL ,kle,k2b:= NIL ,k2e,k3b:= NIL ,k3e, 
mlb:= NIL ,mle,m2h:= NIL ,m2e,m3b:• NIL ,m3e, 

PROC inlist:=( INT ri) VOID 
IF 

(ri)rimax!rimax:•ri); 
PROC list=( REF REF L lb,le, BOOL bef, REF R r) VOID 
IF lb:=: REF L (NIL) THEN 

lb:=le:= HEAP L :=(r, NIL) 
ELIF bef THEN 

lb:= HEAP L :=(r,lb) 
ELSE 

le:•next OF le:= HEAP L :=(r, NIL) 
FI ; 
lastri=O 

TH.EN 
lastri:==ri 

ELIF lastri=ri THEN 



HF.AP R rl,r2; 
ri OF rl:=ri OF r2:=ri; 
list(klb,kle, FALSE ,rl);list(mlb,mle, FALSE ,rl); 
list(k3b,k3e, TRUE ,r2);1ist(rr3b,m3e, TRUE ,r2); 
lastri:=O 

ELSE 

FI 

HEAP R r; 
ri OF r:=lastri; 
list(k2b,k2e, FALSE ,r );list(m2b,m2e, FALSE ,r ); 
lastri:=ri 

INT npart:=n,lastri:=O; 
rirnax:=O; 

4=0 DO WHILE npart MOD 
npart OVERAB 4; inlist(4) 

OD 
IF NOT ODD npart THEN 

npart OVERAR 2;inlist(2) 
FI ; 
INT div:•3; 
WHILE 

IF npart MOD div =0 THEN 
npart OVERAB div;inlist(div); 
TRUE 

ELIF npart OVER div)div TliEN 
div+: =2; 
TRUE 

ELSE FALSE 
FI 

no SKIP OD; 
IF npart)l THEN inlist(npart) FI 
inlist(O); 

IF klb:•: REF L (NIL) THEN 
113:= NIL ;12:=1123:=k2b 

ELIF k2b:=: REF L (NIL) THEN 
12:• NIL ;113:=1123:=klb;next OF kle:=k3b 

ELSE 
12:=k2b;ll3:=klb;next OF kle:=k3b; 
1123:=rnlb;next OF rnle:=m2b;next OF rn2e:=m3b 

FI 

INT rlriminl: =l, 
REF L 1:=1123; 
WHILE 

REF R r=r OF 1; 
rlriminl OF r:=rlriminl . 

' ripluslrm OF r:=n OVER (rlriminlx:=ri OF r); 
(!:=next OF 1):~: REF L ( NIL ) 

DO 
END, 

SKIP OD 
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PROC revers=( COVEC x, REF L 113,12, INT n) VOID: 
IF 

PROC perm=( REF L 1, PROC (INT, INT) VOID pr) VOID 
REGIN 

PROC pp=( REF L 1, INT j,k) VOID: 
IF REF R r=r OF l;next OF l:•: REF L (NIL) THEN 

FOR p FROM O TO ri OF r-1 DO 
pr{j+pxrlriminl OF r,k+pxripluslrm OF r) 

OD 
ELSE 

FOR p FROM O TO ri OF r-1 DO 
pp(next OF l,j+pxrlriminl OF r,k+pxripluslrm OF r) 

OD 
FI ; 
pp(l ,o,o) 

END; 

(113:I: NIL) AND (12: =: NIL) THEN 
perm(ll3,( INT j,k) VOID :{j(k!x[j)•:•x(k])) 

ELIF (113: =: NIL) AND (12:~: NIL) THEN 

FI 

IF next OF 12:;': REF L (NIL) THEN 
INDEX p=genintarray(O,n-1); 
perm(12,( INT j,k) VOID :p[j]:=k); 
FOR j FROM 1 TO n-2 DO 

IF INT k:=p[j]; j"'k THEN. 

FI 
OD 

COSCAL s•x[k];p[j):•j; 
WHILE INT l=p(k]; 1,'k DO 

x[k]:=x[l];p[k]:=k;k:=l 
OD; 
x[k]:-=s 

ELIF (113:,': NIL ) AND (12:;': NIL ) THEN 
IF next OF 12: •: REF L (NIL) THEN 

INT step=ripluslrm OF r OF 12; 
INT stepspan•stepx(ri OF r OF 12-1); 
PROC change=( INT j,k) VOID: 
IF j < k THEN 

COVEC xj=x[ AT -j],xk•x[ AT -k]; 
FOR p FROM O BY step TO stepspan DO 

xj[p]•:•xk[p] 
OD 

FI; 
perm( 113 ,change) 

ELSE 
INT step-( REF L l:=12; WHILE next OF l:;': REF L ( NIL ) 

DO 1:=next OF 1 OD ;ripluslrm OF r OF 1); 
INT span=n OVER (stepxrlriminl OF r OF 12)-1; 
MODE CYCLE• STRUCT ( INT no, REF CYCLE next), 
[O:span] CYCLE p; 
perm(l2,( INT j,k) VOID :p[j OVER step]:•(k OVER step, NIL)); 



MODE LIST= STRUCT ( REF CYCLE start, REF LIST next), 
REF LIST l:= NIL , 
INT j:=O; 
WHILE 

IF REF CYCLE , t: =p[ j]; 
next OF t :=: REF CYCLE (NIL) THEN 

WHILE 
RF.F CYCLE s=t; INT k=no OF s; 
t:=p[k];s:={jxstep,t);j:=k; 
next OF t : =: REF CYCLE ( NIL ) 

DO SKIP on; 
l:= HEAP LIST :=(t,l) 

FI 
j < span 

no j+: =l OD 

PROC listperrrF ( INT j, k) VOID 
IF j=k THEN 

REF LIST list:=l, 
COVEC xj=x[ AT -j]; 
WHILE 

IF REF CYCLE start=start OF list; 

FI 

next OF start :,f,: start THEN 
REF CYCLE t:=start, TNT no:=no OF start; 
COS CAL s=xj [ no J ; 
WHILE 

INT n=no OF (t:=next OF t); 
xj[no]:=xj[n];no:=n; 
next OF t :,f,: start 

DO SKIP OD ; 
xj[no]:=s 

(list:=next OF list):,f,: REF LIST (NIL) 
DO SKIP OD 

ELIF j(k THEN 
REF LIST list:=1, 
COVEC xj=x[ AT -j],xk=x[ AT -k]; 
WHILE 

IF REF CYCLE start=start OF list; 
next OF start :=: start THEN 

INT no=no OF start; 
x j [ no] = : =x k [ no] 

ELSE 
REF CYCLE t:=start, INT no:=no OF start; 
COSCAL sl=xj[no],s2=xk[no]; 
WHILE 

INT n=no OF (t:•next OF t); 
{xj[no]:=xk[n] ,xk[no]:=xj[n]);no:=n; 
next OF t :,f,: start 

DO SKIP OD ; 
(xk[no]:=sl,xj[no]:=s2) 

FI 
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FI 
FI 

-
(list:•next OF list):~: REF LIST (NIL) 

DO SKIP OD 
FI 

perm(113,listperm) 

INT rimax, 
REF L 113,12,1123; 
factor(n,113,12,1123,rimax); 
COVEC w=r,encoarrayl(O,n-(rimax)S!l!n OVER rimax) ); 
cO6initw(n,w); 
WHILE 

REF R r-r OF 1123; 
fftri(xy,w,ri OF r,rlriminl OF r,ripluslrm OF r,n); 
(1123:=next OF 1123):~: REF L (NIL) 

DO SKIP OD; 
revers(xy,113,12,n) 

FI 
ELSE cO6fail(l, "c06fft wrong size") FI , 



PROC cO6ser=( VEC a, REF SCAL cosser,sinser, SCAL t) VOID : 

#purpose: calculation of either or both of the trigonometric sums 
u 

sum aa[k]xcos(kxt) 
k=O 

u 
sum aa[k]xsin(kxt) 
k=l 

(cosine sum) 

(sine sum ) 

with aa[k]=a[ LWB a+k] and u= SIZE a-1. 

input parameters: SCAL t angle of trigonometric sum, 
VEC a coefficients of trigonometric sum, 
REF SCAL cosser,sinser when containing NIL no 

cosine and/or sine sum are desired otherwise 
the cosine and/or the sine sum are desired. 

output parameters: REF SCAL cosser,sinser they will contain 
the cosine and sine sum, provided they 
were not pointing to NIL on input.# 

IF (cosser:=: NIL ! SIZE a)O! SIZE a)O) THEN 
PROC sqr=( SCAL c) SCAL :cxc, 
SCAL c=cos(t),zero= WIDEN O, 
one= WIDEN 1, two= WIDEN 2, foura: HI DEN 4; 
SCAL half=one/two; 
INT u1a= UPB a ,lapl= LWB a+l; 
IF c:(-half THEN 

SC:AL lambda=fourxsqr(cos(t/two)), SCAL un:=zero,dun:=zero; 
FOR k FRON ua BY -1 TO lapl 

DO dun:=lamhda;un-dun+a[k];un:=dun-un OD; 
IF cosser::/:: NIL THEN cosser:=lamhda/twoxun-dun+a[lapl-1] 
FI 
IF sinser::/:: NIL THEN sinser:=un xsin(t) FI 

ELIF c>half THEN 
SCAL lambda=-fourxsqr(sin(t/two)), SCAL un:=zero,dun:=zero; 

FOR k FROM ua BY -1 TO lapl 
DO dun:=lambdaxun+dun+a[k];un: 2 dun+un OD; 

IF cosser::/:: NIL THEN cosser:=lambda/twoxun+dun+arlapl-1] 
FI 
IF sinser:i: NIL THEN sinser:=un xsin(t) 

ELSE 
SCAL cc=c+c 
FOR k FROM 

DO SCAL 
IF cosser::/:: 
FI , 

, SCAL unl:=zero,un2:=zero; 
ua BY -1 TO lapl 
h=ccxunl-un2+a[k];un2:=unl;unl:=h OD; 
NIL THEN cosser:-unlx c-un2+a[la!)1 i] 

IF sinser::/:: NIL THEN sinser: 2 unlxsin(t) 
FI 

ELSE cO6fail (1," cO6ser wrong size") FI 

FI 

FI 
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IV. TESTING 

Apart from the example test programs given in the documentation units 

we considered for the stringent tests the cases: 

• problems with known exact results (model problem), 

• verification of relation of Parseval, 

• verification of the pair: transformation and its inverse. 

The dyadic operators are applied to those argument values implicit 

in the monadic operators. The resulting formulas of the above cases 

were published (in Dutch) in MC Syllabus 29.lb p. 227-231. 
{ 



V. FUTURE PLANS 

For the near future implementations are considered for 

• general summation (V.1) 

• summation of Chebyshev sums (V.2) 

• summation of sums of orthogonal polynomials (V.3) 

• two-dimensional IDFT (V.4) 

• operators for special matrix-times-vector products (V.5) 

• Winograd technique for the improvement of the DFT (V.6) 

Anyone who likes to contribute with respect to the above items - or has 

suggestions with respect to any other item within the C6 chapter - is 

encouraged to contact the author. 

When appropriate we refer to the NUMAL library of the Mathematical Centre 

for ALGOL 60 implementations. 
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V.1 General summation 

Within this context we have for problem (1.1) 

00 

For a slowly convergent series an Euler transformation with van Wijngaarden 

strategy can be used; when the terms of the series have the same sign a 

preliminary transformation (due to Van Wijngaarden) can be applied to trans­

form the series into an alternating one. Apart from those linear trans­

formations a lot of non-linear techniques are available. For a recent 

survey see Brezinski (1978) with implementations as FORl'RAN programs. It 

requires more research in order to make a more detailed proposal. 

Remarks 

• A routine Euler is provided in the RR of ALGOL 68 • 

• In NUMAL implementations are available for an alternating series and for 

a series with terms of the same sign. 

Literature 
-·Brezinski, C. (1978): Algorithmes d'acceleration de la convergence. Etude 

numerique, Paris. 

Daniel, J.W. (1969): Summation of a series of positive terms by condensation 

transformations. Math. Comp., 23, 91-96. 

Van Wijngaarden, A. (1965): Course Scientific computing B; process analysis 

(Dutch). Mathematisch Centrum CR-18. 

v.2 The summation of Chebyshev sums 

Within this context we have for problem (1.1) 

n 
S(x) = l akTk(x), 

k=O 
X € [-1,1] 

with Tk(x) the Chebyshev polynomial of the first kind of degree k. 

A well-known algorithm for the evaluation of this sum is the Clenshaw 

algorithm, which can easily be understood from 



S (x) 

by applying Horner's rule to the matrix polynomial. 

As a special case we have the odd Chebyshev sum 

S (x) = 
0 

n 

l akT2k+1 (x). 
k=O 

The Clenshaw algorithm for the evaluation of the above sum is easily 

obtained from 

S (x) 
0 

n /2T2 (x) 
= x(l,-1) I\ 1 

k=O' 

by again applying Horner's rule to the matrix polynomial. 

The even Chebyshev sum 

S (x) = 
e 

can be reduced to the calculation of S because 

and therefore 

The summation of the shifted Chebyshev sum 

can be reduced to the summation of S because 

and therefore 

* S (x) = S(2x-1). 

XE [0,1] 
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For the above problems it is proposed to implement the dyadic operators 

with left operand seal x and right operand vec a: 

C06CHESUM for S(x) 

C06ODDCHESUM for S 0 (x) 

C06EVECHESUM for s (x) 
e 

C06SHTCHESUM for s* (x) • 

Remarks. 

Implementations in ALGOL 60 are provided in NUMAL . 

• We agree with the remark of Curtiss that the modifications due to Reinsch 

of the Clenshaw-algorithm are only useful, if we have~ available instead 

of x, with x =cos~- The implementation of Cox and Hayes (1974) is 

therefore not necessary . 

. It has been observed by Newbery (1974), that if the coefficients of the 

equivalent power sum representation are of the same sign or strictly 

alternating, then the power sum representation can be used instead of 

the Chebyshev sum representation, -without loss of accuracy and with gain 

in evaluation speed. If we define the sensitivity for the perturbations in 

the coefficients {ak} of S(x) by 

K(S (x)) 
a 

and K(Sb) analogous for Sin the Chebyshev sum representation, then we 

have under the conditions mentioned by Newbery: 

max 
xd-1, 1 J 

K(S (x)) 
a max K(Sb(x)). 

xd-1, 1 J 

(An implementation for the transformation of a power sum into a Chebyshev 

sum or vice versa is provided in NUMAL). 

Literature. 

Cox, M.G. & J.G. Hayes (1974): Curve fitting: a guide and suite of 

algorithms for the non-specialist user. NAC Report 26. National Physical 

Laboratory. 

Newbery, A.C.R. (1974): Error analysis for polynomial evaluation. Math. 

Comp., 28, 789-793. 
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V.3 The summation of sums of orthogonal polynomials 

Within this context we have for problem (1.1) 

S (x) 

with fk(x) a function obeying a second order homogeneous recurrence relation. 

As an important special case we have the summation of orthogonal polynomials. 

The names of classical orthogonal polynomials and some of their properties 

and interrelations are given in chapter 22 of Abramowitz and Stegun. 

Correlated with the names is the standardization. In our opinion it is 

advantageous to provide, at first, implementations for: 

a. a sum of orthogonal polynomials each normalized with the coefficient of 

the highest power of x equals 1 ; 

b. sums of diverse orthogonal polynomials, named and normalised according 

to Abramowitz and Stegun. 

The implementation under a) is general in the sense, that the appropriate 

recurrence coefficients, besides the argument x and coefficients, {ak}, 

must be provided by the user; the implementations under b) are recognic-ed 

by their names and only the argument, the coefficients {ak} and appropriate 

parameters must be provided.by the user. 

The algorithms are essential due to Clenshaw, because, if 

k 1 , 2, ..• 

with initial values f 0 and fl, are given, then 

n k-1 (aj(x) 1\(ak\ 
S (x) = (f0,f1) I II 

k=O j=O \sj o)\o ) 

is easily obtained from the Horner-like rule 

with 
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This 'Horner-scheme' can be viewed as an inhomogeneous second order recur­

sion. 

For the implementation under a) we propose the dyadic operators 

name left operand right operand 

C06SUMORTPOL struct (vec b,c, seal x) vec a --
C06SUMORTPOL struct (vec c, seal x) vec a --

The recurrence coefficients b,c are related to those given in table 22.7 

of Abramowitz and Stegun by 

bk= -a2k/a3k k = 0,1, •• 

ck= a4k*alk_1/(a3k*a3k-l), k = 1,2, ••• 

·For the well-known classical orthogonal polynomials we have 

polynomial kind recurrence coe.fficients 

bk ck 

Chebyshev (1st kind) 0 1/2, k = 1 
1/4, k > 1 

Chebyshev (2nd kind) 0 1/4 

Legendre 0 k2/(4k2-1) 

Jacobi u?-i> 4 (ct+l) (8+1) 
k 1 {ct+$+2k) (ct+8+2(k+l) I = 2 

(ct+f3+2k) (ct+8+3) 

4k(ct+k) (B+k) (ct+B+k) 
,k>l 

(ct+8+2k) 2 ((ct+8+2k) 2-1) 

Lag-..ierre ct +2k + 1 (ct+k)k 

Hermite 0 k/2 



For the sum S(x) we have 

n 
S(x) = l akfk(x) 

k=O 
(b,c,x) C06SUMORTPOL a' 

with fk(x) as defined by Abramowitz and Stegun in table 22.7 and 

k-1 
a' 

k 
. rr0 ( a3 . / a 1 . ) ak, 
]= J J 

k 

Remarks. 

The summation of polynomials with bk 

fashion • 

0,1, ..• n. 

O, is catered for in a simple 

. In NUMAL an implementation, heavily based on Gautschi (1968), is 
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provided for obtaining the recurrence coefficients of a general orthogonal 

polynomial with a positive weight function • 

. The used techniques may be applied to the summation of functions, which obey 

a three-term recurrence relation. However, the numerical stability must 

be ascertained for every particul~r case: if either of the solutions of 

the homogeneous recurrence dominate the solution of the inhomogeneous 

recurrence, then the problem is unstable, and a modification of the 

problem by eliminating the dominant solution is necessary; a criterium 

in terms of the eigenvalues of the matrices A. and the coefficients a 
J 

is not yet provided. 

For the implementations under b) we propose the dyadic operators with right 

operand vec a and 

name left operand fk (x) 

I I P(a,8) C06JACSUM struet (seal a,(3,x} I k 

C06GEGSUM struct (seal a,x) C (a) 
k 

C06CHESUM (see previous paragraph) 

C06TSJSUM seal x Uk --
C06LEGSUM seal x Pk --
C06LAGSUM struct (seal a,x) L (a) 

k 
C06HERSUM seal x Hk --
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Literature 
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V.4 Two dimensional IDFT 

The computational problem is 

p,q = 0,1, •.. ,n-1 

which can be deialt with: 

for q ton 

do C06EXPSUM a[ ,q]od; 

for p ton 

do C06EXPSUM a[p, ]od 

where we assumed 

akl = a[l+k,l+l]. 

Remarks • 

• Henrici (1979;see introduction) mentions, that application of the DFT-idea 

direct to a multi-dimensional structure is more efficient. For the two­

dimensional case it is not clear, whether it is worth the possible more 

complicated and more time-consuming bookkeeping. Within the context of 

the applications an improvement of 10 to 20% in speed is worthwhile . 

• Various authors mention the storage problems for large n • 

. Two dimensional Fourier transforms with data provided equidistant in the 

the r,¢-plane are desired. 

V.5 Operators for special matrix-times-vector products 

In this paragraph we consider representations of circulant and Toeplitz 

matrices. 
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These representations are used to form matrix-time-vector products fast; and 

when we can handle the multiplication fast, it is worthwhile to consider the 

solution of linear equations with Toeplitz matrices. So far we have not found 

DFT methods for solving general Toeplitz systems of equations although we are 

aware of the work of Trench (Zohar (1969)), Zohar (1974), Farder (1977), 

Kailath T. c.s. (1978), and de Meersman (1975). 

5.1 Conventions, notaticrts artd relations 

• We restrict ourselves to n*n-matrices 

• Circulant matrix 

ao a 
n--1 

al ao 

C (a) = 

a 
n-1 

a 
n-2 

. 

. Toeplitz matrix 

ao a· 
-1 

. 

a1 a· 
0 

T (a) = 

a n-1 al 

a 
1 

a2 

ao 

a 
-(n-1) 

a -1 

ao 

, with a = 

,with a = 

a= 

a 
-(n-1) 
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• Hankel matrix 

a0a1 . a 
n-1 . 

al 

H (a) " = . 
-· . 

a 
n-1 

a 
2n-1 

. upper triangular Toeplitz matrix 

"l(a) 

0 
. lower triangular Toeplitz matrix 

ao 0 alaO 

~ (a) = 
. . 

a 
n-1 alaO 
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. S-matrix 

0 1 

1' 0 
. E-matrix 

0 1 0 ao al 

0 1 al a2 
, with E: + . 1 

1 ·o 

a 
n-1 

a n-1 ao 

. E -matrix 

0 1 ao a n-1 
1 0. al ao -. , with E : + 

0 
al 

1 0 

a 
n-1 a n-2 

. W-matrix (or IDFT-matrix) 

1 1 . . . 1 

1 n-1 
w . . . w 

, with w = e 
21ri/n 

' 2 
1 n-1 (n-1) 

w • • • w 
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• D(w)-matrix 

1 
w 

0 
( 2rri/n) D = D e 

I ( rri/n) 
D = D e • 

. A(a)-matrix: a diagonal matrix with diagonal elements 

A(a) .. = (Wa). 
1.1. 1. 

-
WW = nI 

ws DW 

SW = WD 

DWS = w 

WE DW 

EW = WD 

WSEq = Wq, q a vector 

WE = DW 
-E w = WD 

h.(a) = s°\l(SEa)S 

a'= D'a. 

-1 

The number of operations of a W-matrix-times-vector is O(n*Ipi), with 

n = rr(p.) if we apply FFT-like algorithms. 
i 1. 
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5.2 Matrix-times-vector products 

The representation of a circulant in terms of W, and Toeplitz matrices in 

terms of circulants is given. Indicated is how the DFT can be used with 

respect to the matrix-times-vec~or products. Applications to the multiplic­

ation of polynomials are treated, where the treatment of the multiplication 

of two polynomials in the Chebyshev sum representation is possibly new. No 

implementations are proposed, because the treatment of the solution of 

linear systems with Toeplitz matrices is not yet clarified. (For the 

matrix-times-vector products a set of dyadic operators is a realistic 

possibility) • 

LEMMA 1. (Eigensystem of circulant) 

C(c) = n-1w A (c)W. 

PROOF. Multiplication of the eigensystem equation 

Cv = AV 

-·by W, yields for the j-th component 

(WCv) . = 
J 

(We) . (Wv) . = A cWv) .. 
J J J 

The solution of the transformed equation is 

A = (We) • 
J 

WV= e. 
J 

(the j-th unit vector). 

The equations for the eigensystem 

CW= WA 

give the factorization 

C = n-1w Aw. 
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THEOREM 1. (Circulant times vector) 

The product can be represented by 

-1 -
C (c)b = n (W(A(c) (Wb))). 

PROOF. Apply the decomposition given in lemma 1. 

Remarks . 

• A product of a rectangular circulant times a vector can be obtained by the 

above formula by padding the shorter of band c with zeros. 

A circulant times vector is also called a circular convolution and is 

often denoted by 

n-1 

I 
i=O 

C .• b. I 
J-J. ]. 

j 0,1, ..• and ck all integer k. 

LEMMA 2. (Representation of an upper Triangular Toeplitz matrix as a sum 

of a circulant and a diagonal similarity transformation of a circulant.) 

'\I (a) ~{C(a) + D'C(a')D'}. 

PROOF. 

ao • al 

l -al ao . a2 

"'I (a) = ~ C (a) + 

j -a 
n-1 • -al ao 

with the decomposition of the second term 
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ao a 
n-1 

. . . al 

-al ao . a2 

= 

• 
-a 

n-1 
-a a 

1 0 

1 0 ao wa 
n-1 • 

n-1 
1 0 w al 

n-1 w w al w 
ao 

0 wn-1 wan-1 ao / 0 -(n-1) 
w 

with w 
,ri/n =e anda'= 

The result is obtained if we use the notation of 5.1. 

Remark. The proof given above is constructive. Once the result is known, a 

more direct proof can be given by evaluating the sum of the circulants. 

THEOREM 2. (Upper triangular Toeplitz matrix times a vector) 

~(a) b = ~{C(a) + D'C(a')D'}b 

= {WA(a)Wb + D'WA(a')WD'b}/2n). 

PROOF. Apply the decomposition given in lemma 2. 
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Remark. For the calculation we need 

Wb 

WD'b 
-Wa (for A(a)) 

Wa' (for A (a')) • 

COROLLARY 1. (The coefficients of the product of two (balanced) polynomials 

in power sum representation). 

Let 

then 

with 

or 

* 

Pn-1 (x) = 
n-1 k 
l akx and Qn-l (x) = 

k=O 

2(n-1) 
R2 (n-l)(x) = Pn-1 (x) Qn-1 (x) = l c xj 

j=O j 

0 

C n-1 = a n-1 al ao 
C 

an-1 
al n 

0 . 
a n-1 c2n-2. 

j = 0,1, ••• ,2(n-1) 

* with a. = a., j = 0,1, ••• ,n-1 and a.= 0 for j < O, j ~ n. 
J J J 

b 
n-1 
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The calculation can be reduced to the upper triangular Toeplitz matrix times 

vector products 

{c }2 (n-1) = \I (E- a) b 
k n-1 

The vectors in these products are related 

- -Ea with E Sa 

and 

b with Sb. 

For the calculation with a,b E ]Rn some products with W can be written 

as 

-
WE a = DWa; 

- -
WE Sa = DWS a = Wa = wa, 

Wb; 

WSb = DWb = DWb, 

n 
for a E lR ; 

n 
for b E lR • 

COROLLARY 2. (The coefficients of the product of two (balanced) polynomials 

in Chebyshev sum representation). 

Let 

then 

with 

An-1 (x) = 
n-1 

l p Tk(x) and Bn-l (x) = 
k=0 k 

2 (n-1) 

c2(n-1) (x) = l 
k=0 
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or c. 
J 

or a. = 
J 

C n-1 
C n 

C 2 (n-1) 

ao 

al 

a n-1 

n-1 
* l qj+kpk, 

k=O 

bO 

bl 

b n-1 

0 

= ~-1 CJ1 qo ~n-1/ 

~-1 qt 

0 / .. 
qn-1· 

j = 0,1, ••• ,2(n-1), 

~-1 qo Po 

~-1 pl 

= 0 
~ 

• 

qn-1 pn-1 

j = 0,1, ••• ,n-1, 

qo ql . ~-1 Po 

qo pl 

0 



orb = 
j 

j = 0,1, .•• ,n-1; 

the vectors with asterisk denote the vectors without asterisk padded with 

zeroes. 

PROOF. 

From 

The first term can be represented by substitution of j = k+l as 

2(n-1) n-1 
l ( l q~_kpk)T. (x). 

j=O k=O J . J 

The second term can be represented by substitution of j = l-k as 

n-1 n-1 
'\'' ( \ * ) ( l l qJ, +ki:'k TJ. x) or 

j=O k=O 

n-1 n-1 
\ ' ( \ * l l q,+ 1 kp 1 k)T, (x). 

J n- - n- - J j=O k=O 

The third term can be represented by substitution of j = k-l as 

n-1 n-1 
L' ( l p ~+lql)T. (x) or 

j=O l=O J J 

Remark. 

The calculation can be reduced to 

{c }2(n-1) = ~(E-q) P 
k n-1 

n-1 
{ck}O = S"'J(SEq) Sp 

a = ~(E-q) Sp 

b = '\l(SEq) p 

n-1 n-1 
l ( l q; ,pl)T.(x). 

j=O l=O -J J 

75 
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Again the vectors in these products are related 

and 

p with Sp. 

For the calculation with p,q e: lRn some products with w can be written 

as 

-WE q = DWq 

WSEq = DWEq = Wq 

WSq = DWq. 

LEMMA 3. (representation of a Toeplitz matrix as a difference of a circulant 

and a diagonal similarity transformation of a circulant 

PROOF. 

to t 
-1 

t 
n-1 

t1 to 

T (t) = = 

t -1 
t . .. t 
n-1 0 

to t_1 t 
-(n-1) to t 

n-1 t1 

to to 
. 
. 

= C (t)+ . . 
0 

t_1 0 t 
n-1 

to to 

= C (t) + "l(u) - "l(t) 



with 

u = 

t 0 \ 
t 
-(n-1) 

I 

-
E St 

From the representation of an upper triangular Toeplitz matrix in lemma 2, 

we have 

Therefore, 

c(t) - ~(t) = c(t) - ½{c(t) + D'C(t')D'} 

= ½{C(t) - D'C(t')D'}. 

T(t) ½{C(t) - D'C(t')D'} + 

-1 -
½{C(E St.) + D'C((E-St) ')D'} 

C((t+E St )/2) - D'C((t-E St) '/2)D'. 

Remark. A band Toeplitz matrix with u upper and l lower codiagonals 
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(£+u<n) can be represented by the sum of a circulant of order n and a lower 

triangular ~7oeplitz matrix of order u and an upper triangular Toeplitz 

matrix of order l. 

THEOREM 3. (Toeplitz matrix times vector) 

~7(t)b = {WJ\(t+E St )Wb - D'WJ\((t-E-St_ 1) ')WD'b}/(2n). 

PROOF. 

Apply the factorization of a circulant as given in lemma 1 to the circulants 

in the representation of a Toeplitz matrix as given in lemma 3. 
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Remarks • 

• For the calculation we need 

Wb = Wb for b E JRn 

WD'b = WD'b, for b E JRn 

W(t+E-St) = W(t+E-St), - - for t, t E JRn 
----=----

W((t-E-St_) ') = W((t-E St_)') • 

• A Hankel matrix times vector can be reduced to the above case because 

H = ST • 

• High speed convolution (correlation) is merely a Toeplitz(Hankel)-matrix­

times-vector product via the above factorizations. 

5.3 Solution of linear systems 

The theorems in this paragraph handle the possibility to obtain the sol­

ution fast; exceptional cases and algorithmic details are not yet available. 

THEOREM 4. (Solution of a linear system with a circulant as matrix) 

C(c)x = b 
-1 -1 -

<=> x = n W ( A ( c) (Wb) ) • 

provided A(c) is not singular. 

PROOF. From theorem 1 we have 

C(c)x 
-1 -= n WA(c)Wx = b 

and therefore 

-1 -1 -
X = n WA (c)Wb. 

Remarks 

• Berg (1975) proposed to use the easy solution of a linear system with a 

circulant matrix C, for a general linear system with matrix A, by 

splitting 

A= C-D. 



-1 -1 
Ax = b ~ xk+ l = C b + C Dxk, k = 0,1, ..•. 

with 

The iteration can be modified for singular C • 

• According to regular splittings a wealth of literatur-e has emerged, see 

e.g. Berman & Plemmons (1974) and Neumann (1976). 

THEOREM 5. (Solution of a linear system with an upper triangular Toeplitz 

matrix). 

The solution of a linear system 

can recursively be reduced to the solution of smaller systems of the same 

structure and Toeplitz-matrix-times-vector products. 

PROOF. Partitioning of "'J yields the result. 

Remarks • 

• The normal back substitution 

X = bn_/ao n-1 
k 

X = b - I a.x n-k+j' k = 2,3, ••• ,n-1 
n-k n-k 

j=l J 

takes 

0(n2 ) operations • 

• The problem of theorem 5 occurs by polynomial division as can be seen 

from corollary 1 (and 2 with a rank one update) 

determine b, say, from 
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';:J (E-a) b = {c }2(n-1) 
k n-1 

• The problem of theorem 5 occurs by the determination of the inverse of an 

upper triangular Toeplitz matrix, because the inverse is again an upper 

triangular Toeplitz matrix (Kung (1973; theorem 2.3), Derr (1971)) 

'\:J(a)x 
(n) = e ~ I. 

Theorem 5 gives the general idea of how to solve this system of equations; 

the details of the implementation are not yet worked out. 

THEOREM 6. (Solution of a linear system with a band Toeplitz matrix with 

l lower and u upper codiagonals, Berg (1975)) 

The solution of a band Toeplitz system of equations with l lower codiagonals 

and u upper codiagonals (l+u<n) can be reduced to the solution of a system 

of l+u equations, provided the circulant is regular. 

PROOF. 

The band Toeplitz matrix 

to t 
-1 

. t 0 . . . 0 
-u 

tl to 

. ,, 0 

,, ,. . 
T = 

tl 
t . -u 

0 .. 

• 
to t_ 

-1 .. 
0 . . . tl • . . tl to 

can be split into 



t • t 0 • 0 tr \ to . . 
-1 -u 

tl 

t,e_ 
t,e_ 0 

0 

0 

0 . "'-
t 
-u 

t 
-u 

t_l 

t t 0 .o tl tl to -1 -u 

The linear eiqua tions 

'I~x = b 

can be split into 

"\] 
(C - ( ~ ))x = b, 

and for regular C - the above given circulant -

-1 
X - C ( I:::,. 

If we call 

"\l )x = -1 
C b. 

t 

-u 

t -u 

x = ( ".:::J )x 
~ (a function of x 1 , ••• ,x ,x O 1 , .. x) 

u n-,{__+ n 

then we arrive at the l+u system of equations 

-1 
= (C b)k, k = 1, ..• ,u, and n-l+l, ••. ,n. 
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The resulting components are obtained from 

-1 -
xk = (C (b+x))k, k = u+l, ..• ,n-.t. 

Remarks • 

• The above technique is of considerable importance for block band Toeplitz 

matrices, as arise from discretization of partial differential equations, 

e.g. the Poisson equation • 

• Henrici (1979) considers a more dimensional circular convolution, and 

its properties under the DFT analogous to the one-dimensional convolution, 

as the central point. Two-dimensional recurrence relations with constant 

coefficients and block band Toeplitz matrices are particular cases of a 

two-dimensional convolution, and by a proper extension circular convol­

utions (this last aspect simplifies the problem of inversion and is 

"given" by the problem). 

On the other hand it is interesting to consider a block Toeplitz matrix 

and to think of solutions of a Toeplitz system of equations where the 

elements are again Toeplitz matrices, so the multiplication and 'divis­

ion' are performed on operands of type Toeplitz matrix and vector. 
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V.6 Consideration of the Winograd technique for the improvement of the DFT. 

The calculation of 

n-1 

~= L a1 exp(-?TTikl/n), 
l=0 

k = 0,1, ••. ,n-1 

with n prime, can be reduced to 

n-1 
l a1 exp(-2TTikl/n), k = 

l=1 
1,2, ••• ,n-1. 

Because n is prime, the numbers 1,2, ••• ,n-1 form a cyclic group with gas 

primitive root, say (Abramowitz & Stegun, p. 827). Therefore a permutation 

in the summation, with notation ((x)) = x modulo n, 

yields 

l + ((gl)), 

k ➔ ((gk)) 
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n-1 0 
(Note that ((g )) = g .) 

This summation is a circular correlation of size n-1; this circulant-times­

vector can be calculated via theorem 1 (with A precomputed). 

Although we consider this the principle of the Winograd technique it re­

quires some more detailed study, whether this is the Winograd technique or 

not; the necessity of modification of C06FFT depends on the relation between 

increase of the bookkeeping and lower intrinsic computational complexity. 
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