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Introduction

The final purpose and the very essence of any scientific discipline can be regarded as the solution
of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is
often compulsory. Closed-form solutions of the arising functional (differential or integral) equations are
usually not available and numerical discretization techniques are required. It is not uncommon that
the used discretization leads to large linear or nonlinear systems, whose size depends on the number
of discretization points and the greater the number of such points, the better the accuracy in the
solution. In this setting, when approximating an infinite-dimensional linear equation via some linear
approximation method, one finds a sequence of linear systems {Anxn = bn} of increasing dimension dn.
The coefficient matrices {An} could inherit a structure from the continuous problem. Many applications
such as Markov chains [43, 107], the reconstruction of signals with missing data [44], the inpainting
problem [28], and of course the numerical approximation of constant coefficient s× s systems of Partial
Differential Equations (PDEs) over k-dimensional domains [5], give rise to sequences {An}, where An
is a multilevel block Toeplitz matrix. Nevertheless, there are situations, e.g. the approximation by
local methods (finite differences, finite elements, isogeometric analysis, etc) of PDEs with nonconstant
coefficients, general domains and nonuniform gridding, in which the class of Toeplitz matrices is no longer
sufficient and we require the so-called Generalized Locally Toeplitz (GLT) algebra (see the pioneering
work by Tilli [141], and the generalization in [131, 133]). In short, the latter is an algebra containing
sequences of matrices including the Toeplitz sequences and virtually any sequence of matrices coming
from ‘reasonable’ approximations by local discretization methods of PDEs.

For the resolution of structured large linear systems, the direct methods may require an high compu-
tation and, generally, they do not exploit the information on the matrix structure in order to accelerate
the convergence. Conversely, iterative methods, and especially multigrid or preconditioned Krylov tech-
niques, are more easily adaptable to problems with specific structural features.

It is well-known that the convergence properties of preconditioned Krylov and multigrid methods
strongly depend on the spectral features of the resulting coefficient matrix. In the context of structured
matrices, the spectral analysis is strictly related to the notion of symbol, a function whose role relies in
describing the asymptotical distribution of the spectrum. More in detail, a sequence of matrices {An}
of size dn is distributed in the eigenvalues sense as a measurable function f : G → Cs×s, defined on a
measurable set G ⊂ Rk with 0 < mk(G) < ∞, where mk is the Lebesgue measure in Rk, if for every
continuous function F with bounded support on C we have

lim
n→∞

1

dn

dn∑

i=1

F (λi(An)) =
1

mk(G)

∫

G

∑s
j=1 F (λj(f(t)))

s
dt,

where λi(An), i = 1, . . . , dn are the eigenvalues of An, and λj(f(t)), j = 1, . . . , s are the eigenvalues of
f(t). In this situation, f is called the symbol of {An}, and it provides a ‘compact’ description of the
asymptotic spectral distribution of An. In other words, an evaluation of λj(f(t)), j = 1, . . . , s over a
uniform equispaced gridding in the domain leads to a reasonable approximation of the eigenvalues of
An, when dn is sufficiently large.

The purpose of this thesis is both of theoretical and practical nature. On the one hand, in Chapter
2 we enlarge some known spectral distribution tools presented in Chapter 1 by proving the eigenvalue
distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel
block Toeplitz matrices. On the other hand, in the same chapter, we take advantage of the obtained
results for designing efficient preconditioning techniques. Moreover, in the remaining Chapters 3-5, we
focus on the numerical solution of structured linear systems coming from the following applications:
image deblurring, Fractional Diffusion Equations (FDEs) and coupled PDEs. A spectral analysis of the
arising structured sequences will allow us either to study the convergence and predict the behavior of
iterative methods like preconditioned Krylov and multigrid methods applied to An, or to design effective
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preconditioners and multigrid solvers for the associated linear systems.

The philosophy behind a preconditioning strategy for well-posed problems is to cluster as well as
possible the spectrum of the coefficient matrix in order to speed up the convergence of iterative methods.
Indeed, it is well-known that the more is clustered the spectrum, the higher is the convergence rate of a
Conjugate Gradient like (CG-like) method. In the univariate case, circulant preconditioners as Strang
or T. Chan preconditioners are superlinear (that is, ensure a cluster at 1 of the eigenvalues of the
preconditioned matrix and the minimal eigenvalue is bounded from below by a constant independent of
the size of the matrix) [38]. On the contrary, by negative results in [136, 137], the multilevel circulant
preconditioning cannot ensure a superlinear convergence character of preconditioned Krylov methods.
Moreover, classical circulant preconditioners fail in the case the symbol has a zero [144].

Taking into account these observations, instead of circulant preconditioners one can think to use a
preconditioner which preserves the structure of the coefficient matrix. In this direction, an alternative
technique is represented by the band Toeplitz preconditioning [32, 39]. Using band Toeplitz matrices,
the symbol f of the coefficient matrix-sequence is approximated by a trigonometric polynomial g of
fixed degree and the advantage here is that trigonometric polynomials can be chosen to match the zeros
(with the same order) of f , so that the preconditioned method still works when f has zeros, that is in
the ill-conditioned case. Moreover, at least in the univariate context, we recall that for solving banded
systems we can apply specialized versions of the Gaussian Elimination maintaining an optimal linear
cost. For optimal methods we mean methods such that the complexity of solving the given linear system
is proportional to the cost of matrix-vector multiplication, see [7] for a precise notion in the context of
iterative methods.

Concerning the band Toeplitz preconditioning, we emphasize that the technique has been explored
for multilevel Toeplitz matrix with scalar-valued symbol in [48, 121, 123], even in the (asymptotically)
ill-conditioned case, but with a specific focus on the Hermitian positive definite case. Specific attempts
in the non-Hermitian case can be found in [34, 94]. Further results concerning genuine block Toeplitz
structures with matrix-valued symbol are considered in [124, 126], but again for Hermitian positive
definite matrix-valued symbols. In Chapter 2 (Section 2.1), analyzing the global asymptotic behav-
ior of the spectrum of the preconditioned matrix, we enrich the literature focusing on band Toeplitz
preconditioning for the non-Hermitian multilevel block case.

A different preconditioning strategy useful to deal with non-Hemitian multilevel block Toeplitz is
related to the so-called Hermitian/Skew-Hermitian Splitting (HSS) scheme. When the real part of the
coefficient matrix is positive definite, it is an unconditionally convergent iterative method, but when the
matrix is ill-conditioned, it could show a poor convergence rate. A possibility to speed up its convergence
is to use a preconditioning technique, giving rise to the Preconditioned Hermitian/Skew-Hermitian
Splitting (PHSS). Choosing an Hermitian positive definite preconditioner, in Chapter 2 (Section 2.2)
we perform a spectral analysis of the iteration matrix. Actually, we prove a more general spectral
distribution result on sequences of matrices obtained as combination of some algebraic operations on
multilevel block Toeplitz matrices. The knowledge of the eigenvalue distribution of iteration matrix will
be used in practice either to provide a guess for its asymptotic spectral radius or to find efficient PHSS
preconditioners.

For ill-conditioned linear systems arising from the discretization of ill-posed problems (discrete ill-
posed problems [84]), such as linear systems arising in image deblurring problems, classical precondi-
tioning may lead to wrong results. Indeed, if the preconditioner is a too close approximation of An,
then it strongly “inherits” the ill-conditioning of An. In this case, the first iterations of a preconditioned
CG-like method are already highly influenced by the noise of the input data, and the preconditioner
gives rise to high instability, since the noise subspace has a nontrivial intersection with the subspace of
ill-conditioning of the preconditioner. In order to avoid instability, the preconditioner should speed up
the convergence only in the subspace where the components of the noise are negligible with respect to the
components of the signal. In other words, a regularizing preconditioner has to be able to approximate
An in the space of the signal and filters the noisy components simultaneously. Such a preconditioning
is known as regularization preconditioning.

In Chapter 3, we propose two regularization preconditioning techniques for linear systems arising in
the context of the image deblurring. On the one hand, since in image deblurring problems the structure
of the coefficient matrix is a correction of a two-level Toeplitz depending on the imposed boundary
conditions, with previous observations concerning the importance of preserving the structure in mind,
we propose a preconditioner which has the same boundary conditions of the original problem and which
shows better performances and higher stability (in relation to the choice of the regularization parameter)
than the circulant preconditioner used in literature [45]. On the other hand, starting from the fact that
images have sparse representation in the Fourier domain, we investigate a regularization preconditioning
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technique which provides sparse solution in the Fourier domain. In detail, we use as preconditioner a
diagonal matrix containing the Fourier coefficients of the observed image or of an approximation of the
true image. Such a preconditioner can be interpreted as regularization matrix for Tikhonov method
whose penalty term approximates the 1-norm. The resulting linear system is diagonal and hence the
regularization parameter can be easily estimated, for instance by the generalized cross validation.

Aside from preconditioned Krylov methods, the multigrid methods, in the last decades, have gained a
remarkable reputation as fast solvers for large and possibly ill-conditioned structured matrices associated
to shift-invariant operators. Multigrid methods for Toeplitz matrices were firstly investigated in [71,
33, 95] and extended to multilevel Toeplitz matrices in [72, 140, 128]. The main contributions of these
works were in the definition of proper grid transfer operators and in the convergence analysis of the
corresponding two-grid method. The analysis of the V -cycle has been provided later in [4, 1]. As for
preconditioned Krylov methods the convergence analysis of the two-grid and V -cycle can be handled
by studying analytical properties of the symbol (so the study does not involve explicitly the entries of
the matrix and, more importantly, the size of the system). Actually, the knowledge of the symbol is
crucial to define both the symbol of the preconditioner and the grid transfer operator of a multigrid
method. The advantage of multigrid methods is that for the grid transfer operator it is enough that the
associated symbol possesses a proper zero with an order larger than the order of the zero of the symbol
of the coefficient matrix. Conversely, the preconditioner symbol has to match exactly the order of such
a zero.

In Chapter 4 both preconditioned Krylov and multigrid methods are used for solving linear systems
whose coefficient matrix is a sum of two diagonal times Toeplitz and which arise from a discretization of
FDE initial-boundary value problems (modeling anomalous diffusion phenomena as those encountered,
e.g., in image processing [8] and in turbulent flow [31, 138]). Under appropriate conditions the coefficient
matrix-sequence belongs to the GLT class. We compute the associated symbol and show that when
the diffusion coefficients are equal (even if not necessarily constant), it also describes the eigenvalue
distribution. Making use of such asymptotic spectral information, we study in more detail known
methods of preconditioned Krylov and multigrid type for FDEs problems: for instance we prove that
the circulant preconditioning described in [100] cannot be superlinear in the variable coefficient case,
due to a lack of clustering at a single point, while the multigrid approach based on the symbol used
in [113] can be optimal also in the variable coefficient setting. Moreover, we introduce two structure
preserving tridiagonal preconditioners for Krylov methods, which preserve the computational cost per
iteration of the used Krylov method.

A multigrid method for Toeplitz matrices with univariate block symbol has been proposed in [96],
even though, up to our knowledge, when the block symbol is not diagonal it lacks of a convergence
analysis yet. On the other hand, the block symbol is becoming a popular theoretical tool [87] and
relevant applications are related to block (multilevel) Toeplitz matrices, e.g. [58]. In Chapter 5, we
formally extend the idea presented in [96] also in the multidimensional setting and to nonconstant basis
of eigenvectors. We derive a very efficient multigrid preconditioner for GLT sequences originating from
Finite Element Method (FEM) discretization of a coupled system of PDEs. We illustrate the technique
on a two dimensional linear elasticity problem, discretized by the stable FEM pair Q1isoQ1, and arising
as a subproblem of the Glacial Isostatic Adjustment [101].

We now summarize the contents of Chapters 1–5.

• In Chapter 1 we introduce definitions and results useful throughout the thesis. Among others,
the definition of distribution in the eigen/singular value sense, the clustering property of matrix-
sequences, the notion of multilevel block Toeplitz matrices, the GLT class. Furthermore, an
overview of preconditioning for Toeplitz linear systems and some introductory aspects of the HSS
scheme and of multigrid methods as solvers for such linear systems are also given.

• Chapter 2 is devoted to preconditioning strategies for non-Hermitian multilevel block Toeplitz
linear systems associated with a multivariate Lebesgue integrable matrix-valued function. On the
one hand, we consider preconditioned matrices, where the preconditioner has a band multilevel
block Toeplitz structure and we complement known results on the localization of the spectrum
with global distribution results for the eigenvalues of the preconditioned matrices. On the other
hand, we perform a spectral analysis of the PHSS method applied to multilevel block Toeplitz
linear systems. When the preconditioner is chosen as a Hermitian positive definite multilevel
block Toeplitz matrix, we are able to compute the symbol describing the asymptotic eigenvalue
distribution of the iteration matrices, and, by minimizing the infinity norm of the spectral radius
of the symbol, we are also able to identify effective PHSS preconditioners for the system matrix.



6 Introduction

• In Chapter 3 we discuss two regularization preconditioning strategies for structured matrices aris-
ing in the context of the image deblurring problem. The first technique is a structure preserving
preconditioning aimed to accelerate the convergence of iterative regularization methods, without
spoiling the restoration. The second one consists in a diagonal regularization preconditioner con-
taining the Fourier coefficients of the observed image or of an approximation of the true image,
which is interpreted as a regularization matrix for the Tikhonov regularization in the Fourier
domain.

• In Chapter 4 we focus on the sequence of linear systems arising in the discretization of FDEs,
with particular attention to the nonconstant coefficient case. We show that the coefficient matrix-
sequence belongs to the GLT class and then we compute the associated symbol. Making use of such
asymptotic spectral information, we study in more detail recently developed techniques, by fur-
nishing new positive and negative results. Moreover, we introduce two tridiagonal preconditioners
for Krylov methods obtained approximating the matrix corresponding to the fractional derivative
operator with the discretization matrix of the first derivative and with the Laplacian matrix. By
construction, both preconditioners preserve the Toeplitz-like structure of the coefficient matrix
and, due to their tridiagonal structure, both preserve the computational cost per iteration of the
used Krylov method. A clustering analysis of the preconditioned matrix-sequences, even in case
of nonconstant diffusion coefficients, is also provided.

• In Chapter 5 we consider the solution of linear systems arising from the finite element approxi-
mation of coupled PDEs. As an example we consider the linear elasticity problem in saddle point
form. Discretizing by the stable FEM pair Q1isoQ1, we obtain a linear system with a two-by-two
block matrix. We are interested in the efficient iterative solution of the involved linear systems,
aiming at constructing optimal preconditioning methods that are robust with respect to the rele-
vant parameters of the problem. We consider the case when the originating systems are solved by
a preconditioned Krylov method, as inner solver, and performing a spectral analysis of two-level
block Toeplitz structure of the arising block matrices, we design an ad hoc multigrid method to
be used as preconditioner.

All our principal findings are summarized in the conclusion chapter.
The results of our research have been published or are in the process of publication in [53, 54, 56,

57, 46, 51]



Chapter 1

Preliminary definitions and results

The aim of this introductory chapter is to fix the notation used throughout the thesis, to illustrate some
known tools necessary for dealing with sequences of (Toeplitz) matrices, and to recall some classical
solving strategies for (Toeplitz) linear systems. In particular, we define the spectral distribution and the
clustering property of the spectrum of a sequence of matrices. Moreover, we introduce the definition of
multilevel block Toeplitz matrices and briefly recall some known localization and spectral distribution
results, focusing both in the Hermitian and non-Hermitian matrix-valued symbol case, with particular
attention to preconditioned sequences of multilevel block Toeplitz matrices. Furthermore, due to exten-
sively use that we will make of, a section of this chapter is devoted to the Generalized Locally Toeplitz
algebra which extends the multilevel block Toeplitz one. An overview of preconditioning for Toeplitz
linear systems and some introductory aspects of the Hermitian/Skew-Hermitian splitting scheme and of
multigrid methods as solvers for such linear systems are also given. We conclude the chapter recalling
some properties of trigonometric polynomials.

1.1 Notation and norms

• Mn is the linear space of the complex n× n matrices.

• C0(C) and C0(R+
0 ) are the set of continuous functions with bounded support defined over C and

R+
0 = [0,∞), respectively.

• Given a matrix A ∈Mn, we denote by

– λj(A), j = 1, . . . , n the eigenvalues of A and by σj(A), j = 1, . . . , n its singular values;

– Λ(A) the diagonal matrix containing the eigenvalues of A;

– ρ(A) = maxi=1,...,n |λi(A)| the spectral radius of A;

– tr(A) the trace of A;

– AT the transpose of A;

– A∗ the conjugate transpose of A;

– rank(A) the rank of A;

– N (A) the null space of the matrix A.

• Whenever A is a Hermitian positive semidefinite matrix, A1/2 is the nonnegative square root of A.

• Given two matrices A,B ∈Mn, A ∼ B means that A is similar to B.

• If r ∈ C and ǫ > 0, then D(r, ǫ) is the open disk in the complex plane centered at r with radius ǫ.

• We denote by D(S, ǫ) the ǫ-expansion of S, defined as D(S, ǫ) =
⋃
r∈S D(r, ǫ).

• For any X ⊆ C, Coh[X ] is the convex hull of X and d(X, z) is the (Euclidean) distance of X from
the point z ∈ C.

• We say that a function f : G → Ms, defined on some measurable set G ⊆ Rk, is
in Lp(G)/measurable/continuous, if its components fij : G → C, i, j = 1, . . . , s, are in
Lp(G)/measurable/continuous.
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• Ik is the k-cube (−π, π)k.

• mk is the Lebesgue measure in Rk.

• For 1 ≤ p ≤ ∞, Lp(k, s) is the linear space of k-variate functions f : Ik →Ms belonging to Lp(Ik).

• i is the imaginary unit (i2 = −1).

• ⊗ denotes the Kronecker tensor product.

• A sequence of matrices parameterized by an index n ∈ N will be denoted by {An}n and will be
called ‘matrix-sequence’.

• ‘HPD’ is an abbreviation for Hermitian Positive Definite, while ‘HPSD’ is an abbreviation for
Hermitian Positive SemiDefinite.

• ‘BCCB’ is an abbreviation for Block Circulant with Circulant Blocks, while ‘BTTB’ is an abbre-
viation for Block Toeplitz with Toeplitz Blocks.

• ‘FFT’ is an abbreviation for Fast Fourier Transform, ‘DFT’ is an abbreviation for Discrete Fourier
Transform, and ‘DCT’ is an abbreviation for Discrete Cosine Transform.

• ‘CG’ is an abbreviation for Conjugate Gradient, ‘CGLS’ is an abbreviation for Conjugate Gradient
for Least Squares, and ‘GMRES’ is an abbreviation for Generalized Minimal Residual.

1.1.1 Multi-index notation

Let us fix the multi-index notation that will be extensively used throughout this thesis. A multi-index
m ∈ Zk, also called a k-index, is simply a vector in Zk and its components are denoted by m1, . . . ,mk.
Standard operations defined for vectors in Ck, such as addition, subtraction and scalar multiplication,
are also defined for k-indices. We will use the letter e for the vector of all ones, whose size will be clear
from the context. If m ∈ Nk, we set m̂ :=

∏k
i=1mi and we write m→∞ to indicate that minimi →∞.

Inequalities involving multi-indices are always understood in the componentwise sense. For instance,
given h,m ∈ Zk, the inequality h ≤ m means that hl ≤ ml for all l = 1, . . . , k. If h,m ∈ Zk and h ≤ m,
the multi-index range h, . . . ,m is the set {j ∈ Zk : h ≤ j ≤ m}. We assume for the multi-index range
h, . . . ,m the standard lexicographic ordering:

[
. . .

[
[ (j1, . . . , jk) ]jk=hk,...,mk

]
jk−1=hk−1,...,mk−1

. . .

]

j1=h1,...,m1

. (1.1)

For instance, if k = 2 then the ordering is

(h1, h2), (h1, h2+1), . . . , (h1, m2), (h1+1, h2), (h1+1, h2+1), . . . , (h1+1,m2), . . . . . . , (m1, h2), (m1, h2+1), . . . , (m1,m2).

The notation
∑m

j=h indicates the summation over all j in the multi-index range h, . . . ,m. When a
multi-index j varies over a multi-index range h, . . . ,m (this may be written as j = h, . . . ,m), it is
always understood that j varies from h to m according to the lexicographic ordering (1.1). For instance,
if m ∈ Nk and if y = [yi]

m
i=e, then y is a vector of size m1 · · ·mk whose components yi, i = e, . . . ,m,

are ordered in accordance with the ordering (1.1) for the multi-index range e, . . . ,m. Similarly, if
Y = [yij ]

m
i,j=e, then Y is a matrix of size m1 · · ·mk whose components are indexed by two multi-indices

i, j, both varying over the multi-index range e, . . . ,m in accordance with (1.1).

In order to highlight the multi-index notation, throughout the thesis, a sequence of matrices pa-
rameterized by a multi-index n ∈ Nk will be denoted by {An}n∈Nk . Moreover, we will refer to it as
‘matrix-family’.

1.1.2 Vector, matrix and functional norms

Throughout this thesis we give to ‖ · ‖p two meanings depending on whether it is applied to a vector or
to a matrix. Given a vector x ∈ Cn, we denote by ‖x‖p, p ∈ [1,∞] the p-norm of x defined as

‖x‖p =
(

n∑

i=1

|xi|p
) 1

p

, p ∈ [1,+∞) ,

‖x‖∞ = max
i=1,...,n

|xi| = ‖x‖, p =∞.
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Given a matrix A ∈ Mn, we denote by ‖A‖p, p ∈ [1,∞] the Schatten p-norm of A, defined as the p-norm
of the vector formed by the singular values of A. In symbols,

‖A‖p =




n∑

j=1

σpj (A)




1/p

, p ∈ [1,+∞) ,

‖A‖∞ = max
j=1,...,n

σj(A) = ‖A‖, p =∞.

The Schatten 1-norm is also called the trace-norm, while ‖·‖∞ = ‖ · ‖ is known as spectral norm. We
refer the reader to [19] for the properties of the Schatten p-norms. We only recall from [19, Problem
III.6.2 and Corollary IV.2.6] the Hölder inequality ‖AB‖1 ≤ ‖A‖p‖B‖q, which is true for all square
matrices A,B of the same size and whenever p, q ∈ [1,∞] are conjugate exponents (i.e. 1

p + 1
q = 1). In

particular, we will need the Hölder inequality with p = 1 and q =∞, which involves the spectral norm
and the trace-norm:

‖AB‖1 ≤ ‖A‖‖B‖1. (1.2)

Other well-known inequalities involving the Schatten 1-norm are the following

|tr (A)| ≤ ‖A‖1 , (1.3)

‖A‖1 ≤ rank(A)‖A‖. (1.4)

The p-norm of a square matrix A ∈ Mn, that is the p-norm of the vector of length n2 obtained by
putting all the columns of A one below the other will be denoted by ‖A‖(p), p ∈ [1,∞]

‖A‖(p) =




n∑

i=1

n∑

j=1

|aij |p



1
p

, p ∈ [1,+∞) ,

‖A‖(∞) = max
i,j=1,...,n

|aij | , p =∞.

Actually, ‖ · ‖(p) is not submultiplicative and so, according to some books, it is not a matrix norm.
However, we will keep on calling it a norm, both for simplicity and for the fact that it possesses all the
other properties of matrix norms. Note that the famous Frobenius norm is just ‖ · ‖(p) for p = 2. For
historical reasons we will denote it by ‖ · ‖F .

Now, in order to define a functional norm on Lp(k, s) by means of the Schatten p-norm, let us show
that, for any 1 ≤ p ≤ ∞, Lp(k, s) = Lp(Ik, dx,Ms), where

Lp(Ik, dx,Ms) :=



f : Ik →Ms

∣∣∣∣∣∣
f is measurable,

∫

Ik

‖f(x)‖ppdx <∞



 , if 1 ≤ p <∞,

L∞(Ik, dx,Ms) :=

{
f : Ik →Ms

∣∣∣∣ f is measurable, ess sup
x∈Ik

‖f(x)‖∞ <∞
}
.

SinceMs is a finite-dimensional vector space, all the norms onMs are equivalent. In particular, ‖ · ‖(p)
and ‖ · ‖p are equivalent, and so there are two positive constants α, β such that

α‖f(x)‖p ≤ ‖f(x)‖(p) ≤ β‖f(x)‖p, ∀x ∈ Ik.

It follows that

αp
∫

Ik

‖f(x)‖ppdx ≤
∫

Ik

‖f(x)‖p(p)dx ≤ βp
∫

Ik

‖f(x)‖ppdx, if 1 ≤ p <∞, (1.5)

α ess sup
x∈Ik

‖f(x)‖∞ ≤ ess sup
x∈Ik

‖f(x)‖(∞) ≤ β ess sup
x∈Ik

‖f(x)‖∞. (1.6)

Therefore, if f ∈ Lp(k, s) then each component fij : Ik → C, i, j = 1, . . . , s, belongs to Lp(Ik) and
the first inequalities in (1.5)–(1.6) say that f ∈ Lp(Ik, dx,Ms). Conversely, if f ∈ Lp(Ik, dx,Ms),
the second inequalities in (1.5)–(1.6) says that f ∈ Lp(k, s). This concludes the proof of the identity
Lp(k, s) = Lp(Ik, dx,Ms) and allows us to define the following functional norm on Lp(k, s):

‖f‖Lp := ‖ ‖f(x)‖p ‖Lp(Ik)
=

{ (∫
Ik
‖f(x)‖ppdx

)1/p
, if 1 ≤ p <∞,

ess supx∈Ik ‖f(x)‖∞, if p =∞.
(1.7)
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If p, q ∈ [1,∞] are conjugate exponents and f ∈ Lp(k, s), g ∈ Lq(k, s), then a computation involving
the Hölder inequalities for both Schatten p-norms and Lp(Ik)-norms shows that fg ∈ L1(k, s) and, in
fact, ‖fg‖L1, ‖gf‖L1 ≤ ‖f‖Lp‖g‖Lq . In particular, we will need the inequality with p = 1 and q = ∞,
i.e.

‖fg‖L1, ‖gf‖L1 ≤ ‖f‖L1‖g‖L∞. (1.8)

1.2 Essential range and sectorial functions

In this section we introduce the notion of essential range, essential numerical range and sectoriality of
a matrix-valued function f .

If f : G→ C is a complex-valued measurable function, defined on some measurable set G ⊆ Rk, the
essential range of f , ER(f), is defined as the set of points r ∈ C such that, for every ǫ > 0, the measure
of f−1(D(r, ǫ)) := {t ∈ G : f(t) ∈ D(r, ǫ)} is positive. In symbols,

ER(f) := {r ∈ C : ∀ǫ > 0, mk{t ∈ G : f(t) ∈ D(r, ǫ)} > 0}.

Note that ER(f) is always closed (the complement is open). Moreover, it can be shown that f(t) ∈ ER(f)
for almost every t ∈ G, i.e., f ∈ ER(f) a.e.

Definition 1. Given a measurable matrix-valued function f : G → Ms, defined on some measurable
set G ⊆ Rk,

• the essential range of f , ER(f), is the union of the essential ranges of the eigenvalue functions
λj(f) : G→ C, j = 1, . . . , s, that is ER(f) := ⋃sj=1 ER(λj(f));

• the essential numerical range of f , ENR(f), is the set of points r ∈ C such that, for every ǫ > 0,
the measure of {t ∈ G : ∃v ∈ Cs with ‖v‖2 = 1 such that v∗f(t)v ∈ D(r, ǫ)} is positive. In
symbols,

ENR(f) := {r ∈ C : ∀ǫ > 0, mk{t ∈ G : ∃v ∈ Cs with ‖v‖2 = 1 such that v∗f(t)v ∈ D(r, ǫ)} > 0}.

Note that ER(f) is closed, being the union of a finite number of closed sets. ENR(f) is also closed,
because its complement is open. Moreover, it can be proved that, for a.e. t ∈ G, the following property
holds: v∗f(t)v ∈ ENR(f) for all v ∈ Cs with ‖v‖2 = 1. In other words, v∗fv ∈ ENR(f) for all v ∈ Cs

with ‖v‖2 = 1, a.e. In addition, it can be shown that ENR(f) ⊇ ER(f). In the case s = 1, we have
ENR(f) = ER(f).

Now we turn to the definition of sectorial function. Given a straight line z in the complex plane, let
H1 and H2 be the two open half-planes such that C is the disjoint union H1

⋃
z
⋃
H2; we call H1 and

H2 the open half-planes determined by z. Moreover, we denote by ω(z) ∈ C the rotation number (of
modulus 1) such that ω(z) · z = {w ∈ C : Re(w) = d(z, 0)}. Note that ω(z) is uniquely determined if
d(z, 0) > 0. If d(z, 0) = 0, there are two possible candidates for ω(z), one the opposite of the other. This
is not really a problem for what follows, but, for definiteness, let us say that, in the case where d(z, 0) = 0,
ω(z) is the candidate lying in the half-plane {w ∈ C : Re(w) > 0}⋃{w ∈ C : Re(w) = 0, Im(w) > 0}.

Definition 2. A function f ∈ L1(k, s) is weakly sectorial if there exists a straight line z in the complex
plane with the following property: one of the two open half-planes determined by z, say H1, is such
that ENR(f)⋂H1 = ∅ and 0 ∈ H1

⋃
z. Whenever f ∈ L1(k, s) is weakly sectorial, every straight line z

with the previous property is called a separating line for ENR(f). A function f ∈ L1(k, s) is sectorial if
it is weakly sectorial and there exists a separating line z such that the eigenvalue of minimum modulus
of 1

2 (ω(z)f(x) + ω(z)f∗(x)) is not a.e. equal to d(z, 0).

Remark 1. Given a weakly sectorial function f ∈ L1(k, s) and a separating line z for ENR(f), the
following relation holds:

ENR(ωzf) = ωz · ENR(f) ⊆ {w ∈ C : Re(w) ≥ d(z, 0)}, (1.9)

where ωz is either ω(z) or −ω(z) (for sure, ωz = ω(z) if d(z, 0) > 0). Recalling from the discussion after
Definition 1 that, a.e., v∗[ωzf ]v ∈ ENR(ωzf) for all v ∈ Cs with ‖v‖2 = 1, from (1.9) it follows that,
a.e.,

v∗Re(ωzf)v = Re(v∗[ωzf ]v) ≥ d(z, 0) ∀v ∈ Cs with ‖v‖2 = 1.
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This implies, by the minimax principle [19], that

λmin(Re(ωzf)) ≥ d(z, 0) a.e. (1.10)

The sectoriality requirement can then be expressed in an equivalent way by saying that there exists a
certain separating line z for which the minimal eigenvalue of the real part Re(ωzf) =

1
2 (ωzf + ωzf

∗),
which is a.e. greater or equal to d(z, 0), is not a.e. equal to d(z, 0).

1.3 Spectral distribution and clustering of matrix-sequences

In this section we begin with the definition of spectral distribution and clustering, in the sense of
eigenvalues and singular values, of a matrix-sequence, and we define the area of K, in the case where K
is a compact subset of C. Then, we present the main tool, taken from [60], for proving our distribution
results presented in Chapter 2, i.e. Theorems 13,15, which provide the asymptotic spectral distribution
of preconditioned multilevel block Toeplitz matrices and of some algebraic combinations of multilevel
block Toeplitz matrices.

Given a function F and given a matrix A of order M , we set

Σλ(F,A) :=
1

M

M∑

j=1

F (λj(A)), Σσ(F,A) :=
1

M

M∑

j=1

F (σj(A)).

Definition 3. Let f : G → Ms be a measurable function, defined on a measurable set G ⊂ Rk with
0 < mk(G) <∞. Let {An}n be a matrix-sequence, with An of size dn tending to infinity.

• {An}n is distributed as the pair (f,G) in the sense of the eigenvalues, in symbols {An}n ∼λ (f,G),
if for all F ∈ C0(C) we have

lim
n→∞

Σλ(F,An) =
1

mk(G)

∫

G

∑s
i=1 F (λi(f(t)))

s
dt =

1

mk(G)

∫

G

tr(F (f(t)))

s
dt. (1.11)

In this case, we say that f is the symbol of the matrix-sequence {An}n.

• {An}n is distributed as the pair (f,G) in the sense of the singular values, in symbols
{An}n ∼σ (f,G), if for all F ∈ C0(R+

0 ) we have

lim
n→∞

Σσ(F,An) =
1

mk(G)

∫

G

∑s
i=1 F (σi(f(t)))

s
dt =

1

mk(G)

∫

G

tr(F (|f(t)|))
s

dt, (1.12)

where |f(t)| := (f∗(t)f(t))1/2.

Remark 2. If f is smooth enough, an informal interpretation of the limit relation (1.11) (resp. (1.12))
is that when the matrix-size of An is sufficiently large, then dn/s eigenvalues (resp. singular values) of
An can be approximated by a sampling of λ1(f(t)) (resp. σ1(f(t))) on a uniform equispaced grid of the
domain G, and so on until the last dn/s eigenvalues can be approximated by an equispaced sampling
of λs(f(t)) (resp. σs(f(t))) in the domain. For instance, if f is continuous, k = 1, dn = ns, and
G = [a, b], the eigenvalues of An are approximately equal to λi(f(a+ j b−an )), j = 1, . . . , n, i = 1, . . . , s.
Analogously, if k = 2, dn = n2s, and G = [a, b]× [c, d], the eigenvalues of An are approximately equal
to λi(f(a+ j b−an , c+ l d−cn )), j, l = 1, . . . , n, i = 1, . . . , s (and so on in a k-variate setting).

If {An}n∈Nh is a matrix-family (parameterized by a multi-index), with An of size dn tending to
infinity when n → ∞ (i.e. when minj nj → ∞), we still write {An}n∈Nh ∼λ (f,G) to indicate that
(1.11) is satisfied for all F ∈ C0(C), but we point out that now ‘n→∞’ in (1.11) means ‘minj nj →∞’,
in accordance with the multi-index notation introduced before. Similarly, we write {An}n∈Nh ∼σ (f,G)
if (1.12) is satisfied for all F ∈ C0(R+

0 ), where again n → ∞ means minj nj → ∞. We note that
{An}n∈Nh ∼λ (f,G) (resp. {An}n∈Nh ∼σ (f,G)) is equivalent to saying that {An(m)}m ∼λ (f,G) (resp.
{An(m)}m ∼σ (f,G)) for every matrix-sequence {An(m)}m extracted from {An}n∈Nh and such that
minj nj(m)→∞ as m→∞.
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Definition 4. Let {An}n be a matrix-sequence, with An of size dn tending to infinity, and let S ⊆ C
be a closed subset of C. We say that {An}n is strongly clustered at S in the sense of the eigenvalues if,
for every ǫ > 0, the number of eigenvalues of An outside D(S, ǫ) (the ǫ-expansion of S) is bounded by
a constant qǫ independent of n. In other words

qǫ(n, S) := #{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ǫ)} = O(1), as n→∞. (1.13)

We say that {An}n is weakly clustered at S in the sense of the eigenvalues if, for every ǫ > 0,

qǫ(n, S) = o(n), as n→∞.

If {An}n is strongly or weakly clustered at S and S is not connected, then its disjoint parts are called
sub-clusters.

By replacing ‘eigenvalues’ with ‘singular values’ and λj(An) with σj(An) in (1.13), we obtain the
definitions of a matrix-sequence strongly or weakly clustered at a closed subset of C, in the sense of the
singular values. When speaking of strong/weak clustering, matrix-sequence strongly/weakly clustered,
etc., without further specifications, it is always understood ‘in the sense of the eigenvalues’ (when the
clustering is intended in the sense of the singular values, this is always specified). It is worth noting
that, since the singular values are always nonnegative, any matrix-sequence is strongly clustered in the
sense of the singular values at a certain S ⊆ [0,∞). Similarly, any matrix-sequence formed by matrices
with only real eigenvalues (e.g. by Hermitian matrices) is strongly clustered at some S ⊆ R in the sense
of the eigenvalues.

Remark 3. If {An}n ∼λ (f,G), with {An}n, f, G as in Definition 3, then {An}n is weakly clustered
at ER(f) in the sense of the eigenvalues. This result is proved in [77, Theorem 4.2]. It is clear that
{An}n ∼λ (f,G), with f ≡ r equal to a constant function, is equivalent to saying that {An}n is weakly
clustered at r ∈ C in the sense of the eigenvalues. The reader is referred to [127, Section 4] for several
relationships which link the concepts of equal distribution, equal localization, spectral distribution,
spectral clustering, etc.

Definition 5. Let K be a compact subset of C. We define

Area(K) := C\U,

where U is the (unique) unbounded connected component of C\K.

Now we are ready for stating the main tool we shall use for the proof of our distribution results in
Chapter 2 (Theorems 13, 15).

Theorem 1. [60] Let {An}n be a matrix-sequence, with An of size dn tending to infinity as n→∞. If:

(c1) the spectrum of An, Λ(An), is uniformly bounded, i.e., |λ| < C for all λ ∈ Λ(An), for all n, and
for some constant C independent of n;

(c2) there exists a measurable function f : G→Ms in L
∞(k, s), defined over a certain domain G ⊂ Rk

of finite and positive Lebesgue measure, such that, for every positive integer N , we have

lim
n→∞

tr(ANn )

dn
=

1

mk(G)

∫

G

tr(fN(x))

s
dx;

(c3) {P (An)}n ∼σ (P (f), G) for every polynomial P ;

then the matrix-sequence {An}n is weakly clustered at Area(ER(f)) in the sense of the eigenvalues and
relation (1.11) is true for every F ∈ C0(C) which is holomorphic in the interior of Area(ER(f)). If
moreover:

(c4) C\ER(f) is connected and the interior of ER(f) is empty;

then {An}n ∼λ (f,G).

In the previous theorem, the assumption (c4) on the function f only concerns the topological struc-
ture of its essential range, and is completely independent of its smoothness properties. We call the set
of functions f satisfying (c4) the ‘Tilli class’. Here is the precise definition.
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Definition 6. [143] We say that a measurable function f : G →Ms, defined on some measurable set
G ⊆ Rk, is in the Tilli class, if C\ER(f) is connected and the interior of ER(f) is empty.

We end this section by providing another useful theorem for proving the asymptotic spectral distri-
bution of a matrix-sequence.

Theorem 2 (Theorem 3.4 in [77]). Let {An}n be a matrix-sequence with An = Bn + Cn and Bn
Hermitian. Assume that An, Bn and Cn are of size dn tending to infinity. If

• {Bn}n ∼λ (f,G), where f : G→ C is defined on a measurable set G ⊂ Rk with 0 < mk(G) <∞;

• ‖Bn‖, ‖Cn‖ are bounded by a constant independent of n;

• ‖Cn‖1 = o(dn).

Then {An}n ∼λ (f,G).

1.4 Multilevel block Toeplitz matrices

We begin this section by introducing the definition of multilevel block Toeplitz matrix. Then, we recall
some localization and spectral distribution results focusing both in the Hermitian and non-Hermitian
matrix-valued symbol case, with particular attention to preconditioned sequences of multilevel block
Toeplitz matrices. Recall that if n := (n1, . . . , nk) is a multi-index in Nk, we define n̂ :=

∏k
i=1 ni.

Definition 7. Fixed f ∈ L1(k, s), the Fourier coefficients of f are defined as

f̂j :=
1

(2π)k

∫

Ik

f(x)e−i〈j,x〉dx ∈Ms, j ∈ Zk, (1.14)

where 〈j, x〉 = ∑k
t=1 jtxt, and the integrals in (1.14) are done componentwise. Then the n-th Toeplitz

matrix associated with f is the matrix of order sn̂ given by

Tn(f) =
∑

|j1|<n1

· · ·
∑

|jk|<nk

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
⊗ f̂(j1,...,jk), (1.15)

where J
(l)
t is the matrix of order t whose (i, j) entry equals 1 if i − j = l and equals zero otherwise.

{Tn(f)}n∈Nk is called the family of Toeplitz matrices generated by f , which in turn is called the symbol
(or the generating function) of {Tn(f)}n∈Nk .

Multilevel block Toeplitz matrices arise in important applications such as Markov chains [43, 107]
(with k = 1 and s > 1), in the reconstruction of signals with missing data [44] (with k = 1 and s = 2),
in the inpainting problem [28] (with k = 2 and s = 2), and of course in the numerical approximation of
constant coefficient r × r systems of Partial Differential Equations (PDEs) over d-dimensional domains
[5] (with k = d and s = r).

We point out that the multilevel block Toeplitz matrix Tn(f) displayed in (1.15) can be expressed
in multi-index notation as

Tn(f) = [f̂i−j ]
n
i,j=e. (1.16)

Moreover, we recall some known facts concerning the spectral norm and the Schatten 1-norm of Toeplitz
matrices, see [130, Corollary 3.5]:

f ∈ L1(k, s) ⇒ ‖Tn(f)‖1 ≤
n̂

(2π)k
‖f‖L1, ∀n ∈ Nk; (1.17)

f ∈ L∞(k, s) ⇒ ‖Tn(f)‖ ≤ ‖f‖L∞, ∀n ∈ Nk. (1.18)

1.4.1 Localization results

We start this subsection with a localization result for the spectrum of Tn(f) in the case where
f : Ik →Ms is a Hermitian matrix-valued function, i.e., f(x) is Hermitian for a.e. x ∈ Ik (Proposition
1). Next, we state Proposition 2 which provides a localization result for the spectrum of the precondi-
tioned matrix T−1

n (g)Tn(f) in the case where f, g are Hermitian matrix-valued functions with g HPD
a.e. The results in Propositions 1 and 2 can be found in [126, Theorems 2.5, 2.6, 3.1] for the unilevel
case k = 1, and the extension to the multilevel setting is plain, so we decided not to report the proofs
in this thesis.
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Proposition 1. Let f : Ik →Ms be a Hermitian matrix-valued function in L1(k, s) and let

mf := ess inf
x∈Ik

λmin(f(x)), Mf := ess sup
x∈Ik

λmax(f(x)).

Then, the following properties hold.

1. Λ(Tn(f)) ⊆ [mf ,Mf ] for every n ∈ Nk.

2. If λmin(f) is not a.e. constant, then Λ(Tn(f)) ⊂ (mf ,Mf ].
If λmax(f) is not a.e. constant, then Λ(Tn(f)) ⊂ [mf ,Mf).

In particular, if f is HPSD a.e. and λmin(f) is not a.e. equal to 0, then Tn(f) is HPD for all n ∈ Nk.

Note that under the hypothesis that,f is a Hermitian matrix-valued function, every matrix Tn(f)
is Hermitian. This follows from the relation T ∗

n(f) = Tn(f
∗), which holds for every f ∈ L1(k, s) and

n ∈ Nk, and from the fact that, if f is Hermitian a.e., then f∗ = f a.e.

Proposition 2. Let f, g be Hermitian matrix-valued functions in L1(k, s) with g HPD a.e. Let h = g−1f
and let

mh := ess inf
x∈Ik

λmin(h(x)), Mh := ess sup
x∈Ik

λmax(h(x)).

Then, Λ(T−1
n (g)Tn(f)) ⊆ [mh,Mh] for all n ∈ Nk.

In the following localization result the symbol is an integrable weakly sectorial/sectorial function, not
necessarily Hermitian matrix-valued. It is taken from [135, Theorem 2.4]. We note that the statement
of Theorem 2.4 in [135] contains a typo, which is present again in [94, Theorem 1] and which is corrected
in the statement below.

Theorem 3. [135] Let f ∈ L1(k, s) and let d := d(Coh[ENR(f)], 0).

• Suppose f is weakly sectorial. Then supz∈S d(z, 0) = maxz∈S d(z, 0) = d, where S is the set of
all separating lines for ENR(f). Moreover, σ ≥ d for all singular values σ of Tn(f) and for all
n ∈ Nk.

• Suppose f is sectorial and let z be a separating line for ENR(f) such that the eigenvalue of
minimum modulus of 1

2 (ω(z)f(x) + ω(z)f∗(x)) is not a.e. equal to d(z, 0). Then σ > d(z, 0) for
all singular values σ of Tn(f) and for all n ∈ Nk.

In particular, if f is sectorial then all the matrices Tn(f), n ∈ Nk, are invertible.

Theorem 4 below (straightforward block extension of a theorem taken from [135]) is, to our knowl-
edge, the first tool for devising spectrally equivalent preconditioners in the non-Hermitian multilevel
block case.

We remark that, if f ∈ L1(k, s) and if f̃(x) is similar to f(x) via a constant transformation C (inde-

pendent of x), that is f(x) = Cf̃(x)C−1 a.e., then f̃ ∈ L1(k, s) and Tn(f̃) = (In̂⊗C)−1Tn(f)(In̂⊗C) for
all n ∈ Nk (In̂ is the identity matrix of order n̂). This result follows from the definitions of Tn(f̃), Tn(f),
see (1.15), and from the properties of the tensor Kronecker product of matrices.

Theorem 4. [94] Suppose f, g ∈ L1(k, s) with g sectorial, and let R(f, g) := {λ ∈ C : f−λg is sectorial}.
Then, for any n, the eigenvalues of T−1

n (g)Tn(f) belong to [R(f, g)]c, i.e. to the complementary set of

R(f, g). In addition, if f̃(x) is similar to f(x) via a constant transformation and if g̃ is similar to g via

the same constant transformation, then T−1
n (g)Tn(f) is similar to T−1

n (g̃)Tn(f̃) by the above discussion

and therefore, for any n, the eigenvalues of T−1
n (g)Tn(f) belong to [R(f̃ , g̃)]c as well. As a consequence, if

F denotes the set of all pairs (f̃ , g̃) satisfying the previous assumptions, then, for any n, the eigenvalues

of T−1
n (g)Tn(f) belong to

⋂
(f̃ ,g̃)∈F [R(f̃ , g̃)]

c.

1.4.2 Distribution results

In this subsection we recall some distribution results both for unilevel and multilevel block Toeplitz
sequences. The pioneering result in the unilevel context is due to Szegö and deals with bounded real-
valued symbols.
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Theorem 5. Let f ∈ L∞(I1) be a real-valued function. Then,

{Tn(f)}n ∼λ (f, I1).

As regards the multilevel setting, in [143] Tilli showed that the sentence ‘real-valued function’ must
be replaced by ‘a function in the Tilli class’ according to Definition 6.

Theorem 6. Let f ∈ L∞(Ik). If f is in the Tilli class, then {Tn(f)}n∈Nk ∼λ (f, Ik).

Using Theorem 1, in [60] the authors generalized Theorem 6 to the matrix-valued symbol case.

Theorem 7. Let f ∈ L∞(k, s). If f is in the Tilli class, then {Tn(f)}n∈Nk ∼λ (f, Ik).

In the case where f ∈ L1(k, s) is a Hermitian matrix-valued function, another version of Theorem 7,
due to Tilli, is available (see [142]).

Theorem 8. Let f ∈ L1(k, s) be a Hermitian matrix-valued function. Then, {Tn(f)}n∈Nk ∼λ (f, Ik).

The cases k = 1, s = 1 and k > 1, s = 1, were contemporary studied by Tyrtyshnikov and
Zamarashkin in [145, 146].

We conclude this subsection recalling a distribution result for preconditioned sequences of Hermitian
multilvel block Toeplitz matrices (see [126, Theorem 3.10 and the discussion at the end of Subsection
3.3]).

Theorem 9. Let f, g ∈ L1(k, s) be Hermitian matrix-valued functions with g HPD a.e., and let
h = g−1f . Then {T−1

n (g)Tn(f)}n∈Nk ∼λ (h, Ik).

In the next chapter we will enrich the previous scenario adding a distribution result on preconditioned
sequences of non-Hermitian multilvel block Toeplitz matrices. Moreover, we will focus on some algebraic
operations on multilevel block Toeplitz matrices (Theorems 13, 15).

1.5 Generalized Locally Toeplitz

As already argued, multilevel block Toeplitz matrices arise in many applications. Although, there
are situations, e.g. the approximation by local methods (finite differences, finite elements, isogeometric
analysis, etc.) of PDEs with nonconstant coefficients, general domains and nonuniform gridding, in which
the class of Toeplitz matrices is no longer sufficient and a further structure of matrices is needed. With
this objective, the Generalized Locally Toeplitz (GLT) algebra has been introduced in the pioneering
work by Tilli [141], and widely generalized in [131, 133]. As we will point out in a moment, the sequences
of multilevel block Toeplitz matrices generated by a L1(k, s) function, as well as their corresponding
algebra, form a subset of the GLT class (see Section 3.3.1 in [133]). Unfortunately, the formal definitions
are rather technical, difficult, and involve a heavy notation: therefore we just give and briefly discuss
the notion of GLT class in one dimension. Moreover, we report few properties of the GLT class [74] in
the general multidimensional setting.

Since a GLT sequence is a sequence of matrices obtained from a combination of some algebraic
operations on multilevel block Toeplitz matrices and diagonal sampling matrices, we need the following
definition.

Definition 8. Given a Riemann-integrable function a defined over [0, 1], by diagonal sampling matrix

of order n we mean Dn(a) = diagj=1,...,n a
(
j
n

)
.

A part from previous definition, to define the GLT class we need also the notion of approximating
class of sequences (a.c.s.), which generalizes the concept of perturbation by small-norm plus low-rank
terms, widely used in the preconditioning literature (see [136] and references therein). The guiding idea
is that any reasonable approximation by local methods of PDEs leads to matrix-sequences that can be
approximated in the a.c.s. sense by a finite sum of products of Toeplitz and diagonal sampling matrices;
see [141, 131, 133, 74].

Definition 9 (a.c.s.). Let {An}n be a matrix-sequence. An approximating class of sequences (a.c.s.)
for {An}n is a sequence of matrix-sequences {{Bn,m}n}m with the following property: for everym there
exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m + En,m,
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rank(Rn,m) ≤ c(m)n, ‖En,m‖ ≤ ω(m),

where the quantities nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if An is equal to Bn,m plus a low-rank matrix
(with respect to the matrix size), plus a small-norm matrix.

Definition 10. Let m,n ∈ N, let a : [0, 1]→ C, and let f : I1 → C in L1(I1). Then, we define the n×n
matrix

LTmn (a, f) = Dm(a)⊗ T⌊n/m⌋(f) ⊕ Onmodm

= diag
j=1,...,m

a
( j
m

)
⊗ T⌊n/m⌋(f) ⊕ Onmodm,

where the tensor Kronecker product operation ⊗ is applied before the direct sum ⊕. It is understood
that LTmn (a, f) = On when n < m and that the term Onmodm is not present when n is a multiple of m.

Definition 11 (LT sequence). Let {An}n be a matrix-sequence. We say that {An}n is a separable
Locally Toeplitz (sLT) sequence if there exist

• a Riemann-integrable function a : [0, 1]→ C,

• a function f ∈ L1(I1),

such that {{LTmn (a, f)}n}m is an a.c.s. for {An}n. In this case, we write {An}n ∼sLT a(x)f(θ). The
function a(x)f(θ) is referred to as the symbol of the sequence {An}n, a is the weight function and f is
the generating function.

Definition 12 (GLT sequence). Let {An}n be a matrix-sequence and let κ : [0, 1]× I1 → C be a
measurable function. We say that {An}n is a GLT sequence with symbol κ(x, θ), and we write

{An}n ∼GLT κ(x, θ),

if:

• for any ǫ > 0 there exist matrix-sequences {A(i,ǫ)
n }n ∼sLT ai,ǫ(x)fi,ǫ(θ), i = 1, . . . , ηǫ;

• ∑ηǫ
i=1 ai,ǫ(x)fi,ǫ(θ)→ κ(x, θ) in measure over [0, 1]× I1 when ǫ→ 0;

•
{
{∑ηǫ

i=1 A
(i,ǫ)
n }n

}
m
, with ǫ = (m+ 1)−1, is an a.c.s. for {An}n.

Now we shortly mention four main features of the GLT class in the general multidimensional setting
in which {An}n∈Nk ∼GLT κ(x, θ) with κ : G→ C, G = [0, 1]k × Ik.
GLT1 Let {An}n∈Nk ∼GLT κ(x, θ) with κ : G → C, G = [0, 1]k × Ik, then {An}n∈Nk ∼σ (κ,G). If the

matrices An are Hermitian, then it holds also {An}n∈Nk ∼λ (κ,G).

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations, products,
inversion (whenever the symbol vanishes, at most, in a set of zero Lebesgue measure), conjugation:
hence, the sequence obtained via algebraic operations on a finite set of input GLT sequences is
still a GLT sequence and its symbol is obtained by following the same algebraic manipulations on
the corresponding symbols of the input GLT sequences.

GLT3 Every Toeplitz family {Tn(f)}n∈Nk generated by a L1(k, s) function f = f(θ) is
{Tn(f)}n∈Nk ∼GLT f(θ), with the specifications reported in item [GLT1]: we notice that the
function f does not depend on the spacial variable x ∈ [0, 1]k. Every diagonal sampling sequence
{Dn(a)}n∈Nk , where a : [0, 1]k → C is a Riemann integrable function, is {Dn(a)}n∈Nk ∼GLT a(x).

GLT4 Let {An}n∈Nk ∼σ (0, G), G = [0, 1]k × Ik, then {An}n∈Nk ∼GLT 0.

Remark 4. The approximation by local methods (finite differences, finite elements, isogeometric anal-
ysis, etc.) of PDEs with nonconstant coefficients, general domains, nonuniform gridding leads to GLT
sequences, under very mild assumptions (see [141, 131, 133] for the case of finite differences, [15, 75]
for the finite element setting, and [52, 73] for the case of isogeometric analysis approximations): in
Chapter 4, as a byproduct, we show that the approximation of fractional diffusion equations leads to
GLT sequences as well.
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1.6 Preconditioning for Toeplitz matrices

In order to solve linear systems of type
Anx = b (1.19)

where An = Tn(f) is the Toeplitz matrix associated to the symbol f , iterative methods like Krylov
methods, e.g., Conjugate Gradient (CG) (when An is an HPD matrix) or Conjugate Gradient for Least
Squares (CGLS), Generalized Minimal Residual (GMRES) (when An is a non-Hermitian matrix), can be
applied. A motivation for using iterative methods when solving linear systems with Toeplitz structure is
that the matrix-vector products Any can be computed efficiently. The convergence rate of the CG-like
methods depends on the condition number of the matrix An and on how the spectrum of An is clustered
(see [5]). For example, if the condition number of An is large, the calculation of the solution by means of
iterative methods may become very slow. One way to speed up their convergence rate is to precondition
the linear system. Thus, instead of solving (1.19), we solve the preconditioned system

P−1
n Anx = P−1

n b.

The matrix Pn, called the preconditioner, should be chosen according to the following criteria

1. the solution of a linear system with coefficient matrix Pn should cost as a matrix-vector product;

2. Pn must have similar spectral properties as the original matrix An, in such a way that the spectrum
of P−1

n An is clustered, according to Definition 4, around 1.

An HPD matrix Pn is an optimal preconditioner for An if and only if there exists an n̄ such that for
any n ≥ n̄ all the eigenvalues of P−1

n An belong to a positive bounded universal interval independent
of n. Under this assumption the optimal convergence of a CG-like method is guaranteed. For optimal
methods we mean methods such that the complexity of solving the given linear system is proportional
to the cost of matrix-vector multiplication (see [7] for a precise notion). For an iterative method this
implies a convergence, within a preassigned accuracy, in a number of iterations independent of n and
that the cost of every iteration is of the same order as that of the matrix-vector product.

IfAn and Pn are HPDmatrices, then the superlinear convergence for preconditioned CG-like methods
is guaranteed whenever the eigenvalues of P−1

n An have a strong cluster at 1. In the non-Hermitian case,
a preconditioned CG-like method can be applied to the symmetrized preconditioned system, and the
superlinear convergence can be seen as long as the singular values of P−1

n An have a strong cluster at
1. Pn is called superlinear preconditioner if P−1

n An − I has a strong cluster around zero (see [136]).
Superlinear preconditioners provide the superlinear convergence of CG-like methods.

The literature of preconditioners for structured matrices is really vast, in this section we just recall
the results for both well-conditioned and ill-conditioned matrices needed throughout the thesis (see the
review [37]).

Circulant preconditioners An n× n matrix is said to be circulant if

Cn =




c0 c−1 · · · c2−n c1−n

c1 c0 c−1

... c2−n
... c1 c0

. . .
...

cn−2
. . .

. . . c−1

cn−1 cn−2 · · · c1 c0



n×n

,

where c−k = cn−k, k = 1, . . . , n − 1. Circulant matrices are diagonalized by the Discrete Fourier
Transform (DFT) Fn, i.e.

Cn = F ∗
nΛ(Cn)Fn, (1.20)

where the entries of Fn are given by

[Fn]j,k =
1√
n
e2πijk/n, 0 ≤ j, k ≤ n− 1. (1.21)

The matrix Λ(Cn) can be obtained in O(n logn) operation by taking the Fast Fourier Transform (FFT)
of the first column of Cn. In fact, the diagonal entries λk(Cn) of Λ(Cn) are given by

λk(Cn) =

n−1∑

j=0

cje
2πijk/n, k = 0, . . . , n− 1.
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Once Λ(Cn) is obtained, the product Cny and C−1
n y for any vector y can be computed by FFTs in

O(n log n) operations, using (1.20).
The matrix-vector multiplications Any can also be computed by FFts by embedding An into a 2n×2n

circulant matrix, i.e. [
An ∗
∗ An

]

and then carrying out the multiplication by using the decomposition of circulant matrices. The matrix-
vector multiplication thus requires O(2n log 2n) operations.

Strang ([139]) and T. Chan ([40]) proposed the use of circulant matrices to precondition Toeplitz
matrices in CG-like iterations.

For an n× n Toeplitz matrix An = [tk−ℓ]nk,ℓ=1

• the Strang circulant preconditioner is defined to be the matrix that copies the central diagonals
of An and reflects them around to complete the circulant requirement. The diagonals sj of the
Strang preconditioner s(An) = [sk−ℓ]nk,ℓ=1 are given by

sj =





tj , 0 < j ≤ ⌊n/2⌋,
tj−n, ⌊n/2⌋ < j < n,
sn+j , 0 < −j < n.

• the Chan circulant preconditioner c(An) is defined to be the minimizer of

‖Cn −An‖F ,

over all n× n circulant matrices Cn. The j-th diagonals of c(An) are

cj =

{
(n−j)tj+jtj−n

n , 0 ≤ j < n,
cn+j , 0 < −j < n.

which are just the average of the diagonals of An, with the diagonals being extended to length n
by a wrap-around.

For the convergence of these preconditioners we need the definition of Wiener class.

Definition 13. The Wiener class is the set of functions f(θ) =
∑∞
k=−∞ fke

ikθ such that∑∞
k=−∞ |fk| <∞.

Note that the Wiener class forms a subalgebra of the continuous and 2π–periodic functions.
If An is associated to a positive symbol in the Wiener class, the circulant preconditioners proposed by
Chan and Strang are superlinear [38]. More precisely, this is true for the Strang preconditioner when
f belongs to the Dini–Lipschitz class, while for the Chan preconditioner this is true when f is merely
continuous.

We point out that the above preconditioning techniques have not been designed for ill-conditioned
Toeplitz matrices whose generating function vanishes at some points. Indeed, a preconditioned CG-like
method with those circulant preconditioners fails in the case where f has zeros [144].

In the case An = Tn(f) is a 2-level matrix (n = (n1, n2)), that is when An is a Block Toeplitz with
Toeplitz Blocks (BTTB), a circulant preconditioner is intended to be a Block Circulant with Circulant
Blocks (BCCB). Such kind of matrices can be spectrally decomposed using the two-dimensional DFT

F = Fn2 ⊗ Fn1 ∈ Mn̂, (1.22)

with Fn1 , Fn2 as in (1.21).
BCCB preconditioners for BTTB matrices (cf. T. Chan and Olkin [41]) and low-rank perturbations

thereof have been investigated by Ku and Kuo [99], Tyrtyshnikov [145], and R. Chan and Jin [35].
Unfortunately, it is well-known by seminal results in [136], that a BCCB preconditioner for a BTTB

matrix cannot be superlinear even for an optimal (i.e., “almost exact”) approximation of its generating
function. More in general, if An is a k-level Toeplitz matrix, general results in [136, 137] tell us that,
even in the well-conditioned case, the performances of multilevel circulant preconditioners deteriorate
when k increases and the superlinear behaviour of any preconditioned Krylov method is lost. This
behaviour is not limited to circulant preconditioners, but extends to preconditioners in appropriate
algebras of matrices with fast transforms like as trigonometric and Hartley algebras, wavelet algebras,
etc. ([129, 111]).
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Toeplitz preconditioners Instead of circulant preconditioners one can think to use a preconditioner
which preserves the structure of the coefficient matrix. In this direction, an alternative technique is
represented by the band Toeplitz preconditioning. The motivation behind using band Toeplitz matrices
is to approximate the generating function f by a trigonometric polynomial g of fixed degree. The
advantage here is that trigonometric polynomials can be chosen to match the zeros (with the same order)
of f , so that the preconditioned method still works when f has zeros, that is in the ill-conditioned case.
Moreover, at least in the univariate context, we recall that for solving banded systems we can apply
specialized versions of the Gaussian Elimination maintaining an optimal linear cost.

Concerning the band Toeplitz preconditioning, we emphasize that the technique has been explored for
k-level Toeplitz matrix with scalar-valued symbol in [32, 48, 121, 39, 123], even in the (asymptotically)
ill-conditioned case, but with a specific focus on the HPD case. In detail, in [121], it has been proved
that a BTTB preconditioner of a BTTB matrix is optimal even when the spectrum of the preconditioner
is a poor approximation of the spectrum of the system matrix (in particular, it is enough that all the
zeros of the generating function are exactly located with the same multiplicity, regardless the other
values of the generating function).

Specific attempts in the non-Hermitian case can be found in [34, 94]. Further results concerning
genuine block Toeplitz structures with matrix-valued symbol are considered in [124, 126], but again for
HPD matrix-valued symbols. In the next chapter we enrich the literature focusing on band Toeplitz
preconditioning for the non-Hermitian multilevel block case.

Clearly, instead of polynomials any function g that matches the zeros of f and gives rise to Toeplitz
matrices can also be considered. For example, in [36], R. Chan and Ng used the Toeplitz matrix generated
by 1/f to approximate the inverse of the Toeplitz matrix An generated by f . In that paper, it has been
proved that the spectrum of the preconditioned matrix P−1

n An is clustered around 1. However, in
general it may be difficult to compute the Fourier coefficients of 1/f explicitly, and hence Pn cannot
be formed efficiently. R. Chan and Ng thus have derived families of Toeplitz preconditioners by using
different kernel functions and different levels of approximation for the Fourier coefficients of 1/f .

1.7 The HSS and PHSS methods

Given a square matrix An, the corresponding Hermitian/Skew-Hermitian Splitting (HSS) is given by

An = Re(An) + i Im(An),

where Re(An) and Im(An) are, respectively, the real and imaginary part of An. They are defined as

Re(An) :=
An +A∗

n

2
, Im(An) :=

An −A∗
n

2i
.

By construction, Re(An) and Im(An) are Hermitian.

The HSS method

Let us consider the linear system

Anx = b, An ∈Mdn , x, b ∈ Cdn , dn →∞ as n→∞, (1.23)

where the real part Re(An) is positive definite.1 This assumption, which, by the Fan-Hoffman theorem
[19, Proposition III.5.1], ensures the invertibility of An, is satisfied in important applications; see e.g.
[17] and references therein.

Now, given a positive parameter α and assuming that Re(An) is positive definite, the HSS of An is
related to the following convergent two-step iteration for the solution of the linear system (1.23):

{
(αI +Re(An)) x

(k+ 1
2 ) = (αI − i Im(An)) x

(k) + b,

(αI + i Im(An))x
(k+1) = (αI − Re(An))x

(k+ 1
2 ) + b,

(1.24)

where I is the identity matrix, while x(0) is a initial guess. It is not difficult to see that the above
iteration, called HSS iteration, gives rise to a stationary iterative method, the HSS method, whose

1In the literature, a matrix A with positive definite real part is often referred to as a positive definite matrix. Note
that, according to this general definition, a positive definite matrix need not to be Hermitian; moreover, a real matrix A

is positive definite if and only if x∗Ax > 0 for all nonzero real vectors x.
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iteration matrix is

Mn(α) := (αI + i Im(An))
−1

(αI − Re(An)) (αI +Re(An))
−1

(αI − i Im(An)) .

Note that Mn(α) is well-defined. Indeed, αI + i Im(An) is invertible, because α is nonzero and i Im(An)
is skew-Hermitian, and αI + Re(An) is also invertible, because α is positive and Re(An) is positive
definite by hypothesis. As proved in [11], the convergence rate of the HSS method, that is the spectral
radius of Mn(α), is bounded from above by the spectral radius of the Hermitian matrix

(αI − Re(An)) (αI +Re(An))
−1 . (1.25)

In formulas,

ρ(Mn(α)) ≤ ρ((αI − Re(An)) (αI +Re(An))
−1

) = max
λ∈Λ(Re(An))

∣∣∣∣
α− λ
α+ λ

∣∣∣∣ . (1.26)

Note that the matrix (1.25) forms the ‘central part’ of Mn(α) or, in other words, the part of Mn(α)
associated with Re(An). The upper bound in (1.26) is unconditionally less than 1 under the only
assumptions that α is positive and Re(An) is positive definite. This means that the HSS method is
unconditionally convergent. However, if An is ill-conditioned (this may happen for instance when n
is large, especially if An has small eigenvalues tending to 0 as n → ∞), then it can be checked that,
independently of α, the upper bound in (1.26) is not satisfactory and, in general, also the convergence
rate ρ(Mn(α)) is poor. Such a situation typically occurs in the approximation of convection diffusion
PDEs, as reported in [17].

Several generalizations of the HSS method have been proposed in the literature for accelerating the
convergence rate (see [10, 12, 16] and references therein). A possibility in this direction is to use a
preconditioning technique, giving rise to the Preconditioned HSS (PHSS) method.

The PHSS method

Let Pn be a HPD matrix and let us define the PHSS method as follows [17]: given a positive parameter
α and a initial guess x(0), for k = 0, 1, 2, . . . compute

{ (
αI + P−1

n Re(An)
)
x(k+

1
2 ) =

(
αI − P−1

n i Im(An)
)
x(k) + P−1

n b,
(
αI + P−1

n i Im(An)
)
x(k+1) =

(
αI − P−1

n Re(An)
)
x(k+

1
2 ) + P−1

n b,
(1.27)

until convergence. A simple check shows that the iteration matrix of the PHSS method (1.27) is

Mn(α) := (αI + iP−1
n Im(An))

−1(αI − P−1
n Re(An))(αI + P−1

n Re(An))
−1(αI − iP−1

n Im(An))

= (αPn + i Im(An))
−1(αPn − Re(An))(αPn +Re(An))

−1(αPn − i Im(An)). (1.28)

From this, it is clear that the PHSS cannot be interpreted as the HSS applied to the matrix P−1
n An,

because P−1
n Re(An)+ iP−1

n Im(An) is not the HSS of P−1
n An. However, we know that any HPD matrix

Pn can be factorized as Pn = LnL
∗
n for some nonsingular matrix Ln; for instance, we can take Ln = P

1/2
n

or Ln equal to the lower triangular matrix in the Cholesky factorization of Pn. The PHSS (1.27) can
then be interpreted as the HSS (1.24) applied to the matrix L−1

n AnL
−∗
n (which is similar to P−1

n An
via the similarity transformation X 7→ L−∗

n XL∗
n); note in fact that these two methods have the same

convergence rate, because their respective iteration matrices are similar. Indeed, denoting by

M̂n(α) :=
(
αI + i Im(L−1

n AnL
−∗
n )
)−1 (

αI − Re(L−1
n AnL

−∗
n )
)

(
αI +Re(L−1

n AnL
−∗
n )
)−1 (

αI − i Im(L−1
n AnL

−∗
n )
)

the iteration matrix of the HSS applied to L−1
n AnL

−∗
n , and taking into account the relations

Re(L−1
n AnL

−∗
n ) = L−1

n Re(An)L
−∗
n , Im(L−1

n AnL
−∗
n ) = L−1

n Im(An)L
−∗
n ,

we obtain that the PHSS iteration matrix (1.28) can be expressed as

Mn(α) = L∗
nM̂n(α)L

−∗
n ∼ M̂n(α).
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Another viewpoint is as follows: the PHSS (1.27) coincides with the following method, obtained from
the original HSS (1.24) by replacing the identity matrix I with the preconditioner Pn:

{
(αPn +Re(An)) x

(k+ 1
2 ) = (αPn − i Im(An))x

(k) + b,

(αPn + i Im(An))x
(k+1) = (αPn − Re(An)) x

(k+ 1
2 ) + b.

From the first interpretation of the PHSS given above and from the discussion concerning the un-
conditional convergence of the HSS, it follows that the PHSS (1.27), like the HSS (1.24), converges
unconditionally to the solution of the linear system in (1.23) under the only assumptions that α > 0 and
Re(An) is positive definite. More specifically, the PHSS convergence rate, that is the spectral radius
of the PHSS iteration matrix Mn(α) in (1.28), is bounded from above by the spectral radius of the
Hermitian matrix

(αI − P−1/2
n Re(An)P

−1/2
n )(αI + P−1/2

n Re(An)P
−1/2
n )−1

which is similar to
(αI − P−1

n Re(An))(αI + P−1
n Re(An))

−1. (1.29)

Therefore, we have

ρ(Mn(α)) ≤ ρ((αI − P−1
n Re(An))(αI + P−1

n Re(An))
−1) = max

λ∈Λ(P−1
n Re(An))

∣∣∣∣
α− λ
α+ λ

∣∣∣∣ . (1.30)

Note that the matrix (1.29) forms the ‘central part’ of Mn(α), which is the one related to Re(An); cf.
(1.28). The best parameter α that minimizes the upper bound (1.30) is the geometric mean of the
extreme eigenvalues of P−1

n Re(An). However, we should say that there exist situations in which the
skew-Hermitian contributions in the PHSS iteration matrix have a role in accelerating the convergence
rate. The explanation of this phenomenon falls in the theory of multi-iterative methods [120]. In these
situations, the upper bound (1.30) may be quite inaccurate, since it is only based on the knowledge of
the real part Re(An) and completely ignores the effects due to the imaginary part Im(An).

All these remarks on the PHSS convergence properties are collected in Theorem 10. In the following,
if S ∈ Mdn is any invertible matrix, we denote by ‖ · ‖S both the vector norm and the matrix norm
induced by S. They are defined as

‖y‖S = ‖Sy‖2, y ∈ Cdn ,

‖X‖S = max
‖y‖S=1

‖Xy‖S = ‖SXS−1‖, X ∈Mdn .

Theorem 10. [17] Let An, Pn ∈ Mdn be matrices such that Re(An), Pn are HPD, and let α > 0.
Then, the following results hold.

1. The PHSS method (1.27) has iteration matrix Mn(α), as reported in (1.28), and

ρ(Mn(α)) ≤ ‖Mn(α)‖Sn(α) ≤ σn(α), (1.31)

where Sn(α) := (αI + P
−1/2
n i Im(An)P

−1/2
n )P

1/2
n and

σn(α) := max
λ∈Λ(P−1

n Re(An))

∣∣∣∣
α− λ
α+ λ

∣∣∣∣ < 1.

In particular, the PHSS iteration (1.27) converges to the unique solution of the linear system (1.23).

2. The best parameter α that minimizes the upper bound σn(α) is

α∗
n :=

√
λmin(P

−1
n Re(An))λmax(P

−1
n Re(An)) (1.32)

and, consequently, the best upper bound is

σn(α
∗
n) =

√
κn − 1√
κn + 1

, (1.33)

where

κn :=
λmax(P

−1
n Re(An))

λmin(P
−1
n Re(An))

(1.34)

is the spectral condition number of the Hermitian matrix P
−1/2
n Re(An)P

−1/2
n ∼ P−1

n Re(An).
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1.8 Multigrid methods for Toeplitz matrices

In this section, we recall the basic idea of a multigrid method, then we focus on algebraic multigrid
methods for multilevel Toeplitz matrices with scalar-valued symbol. The reported information will be
used in Chapters 4 and 5.

1.8.1 Multigrid methods: basic idea

When a classical stationary iterative method is used to solve a linear system, the error components
corresponding to large eigenvalues are damped efficiently, while the error components corresponding to
the small eigenvalues are reduced slowly. Since in the discretized PDE the former correspond to rough
error modes, while the latter to smooth error modes, methods like Jacobi are known as smoothers. The
main aim of a multigrid (MG) method is to combine a smoother with some strategy able to damp
the error components corresponding to the small eigenvalues, using some geometrically or algebraically
constructed hierarchy of linear systems.

Let Ax = b be the linear system we want to solve, with x, b ∈ Cn and A ∈ Mn HPD matrix. Fix
m+1 integers n = N0 > N1 > · · · > Nm > 0, where 0 < m < n denotes the maximum number of levels
we decided to use. To define a multigrid method the following ingredients are needed for every level
i = 0, . . . ,m− 1:

1. appropriate smoothers Si, S̃i, and the corresponding smoothing steps νi, ν̃i;

2. restriction operators Ri : C
Ni → CNi+1 and prolongation operators Pi : C

Ni+1 → CNi to transfer
a quantity between levels i and i+ 1;

3. the matrix at the coarser level Ai+1 ∈ CNi+1×Ni+1 (A0 = A, b0 = b).

One iteration of MG in the V -cycle version consists of the following steps:

• νi pre-smoothing steps are performed using Si;
• the current iteration is corrected using the coarser level, process which is known as coarse grid
correction. More precisely, the residual ri ∈ CNi is computed and restricted to the coarse grid
obtaining ri+1, which is used to solve the error equation on the coarse grid

Ai+1ei+1 = ri+1,

by a recursive application of MG. The error ei+1 is interpolated back to obtain the finer level error
ei which is used to update the current iteration. The iteration matrix of the coarse grid correction
is

CGCi = INi
− PiA−1

i+1RiAi;

• the iterate is improved by ν̃i steps performed using S̃i.
The following algorithm summarize one iteration of a V -cycle MG.

Algorithm 1 MG(i, xi, bi)
if i = m then

xm ← A−1
m rm

else

xi ← Sνii (xi, bi)

ri ← bi −Aixi
ri+1 ← Riri

ei+1 ←MG(i + 1, 0Ni+1, ri+i)

ei ← Piei+1

xi ← xi + ei

xi ← S̃ ν̃ii (xi, bi)

end
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For a given initial guess x(0), one MG iteration can be described as x(l+1) = MG(0, x(l), b0), for
l = 0, 1, . . .

A simple choice for both pre- and post-smoothing is relaxed Richardson

Si(xi, bi) = Sixi + ωibi, Si = (INi
− ωiAi), ω > 0, (1.35)

S̃i(xi, bi) = S̃ixi + ω̃ibi, S̃i = (INi
− ω̃iAi), ω̃ > 0.

When deriving convergence estimates for MG, usually, Ri is chosen to be the adjoint of Pi and the
coarse grid matrix Ai+1 is chosen as P ∗

i AiPi. These conditions are known in the related literature as
Galerkin conditions and the resulting method is the so-called algebraic multigrid (AMG). Note that, if
the projectors have full rank, the matrix at the next coarse level is nonsingular and still HPD.

Let us define ‖ · ‖X = ‖X1/2 · ‖2, where ‖ · ‖2 is the usual Euclidean norm on Cn and X is an HPD
matrix. The following theorem presents a convergence result for AMG ([1, 117]).

Theorem 11. Let m,n be integers satisfying 0 < m < n and suppose that A ∈ Mn is a HPD matrix;
given a sequence of m + 1 positive integers n = N0 > N1 > · · · > Nm > 0, let Pi : CNi+1 → CNi ,
i = 0, . . . ,m − 1 be a full-rank matrix and Ri = P ∗

i . Define A0 = A, b0 = b, Ai+1 = P ∗
i AiPi,

i = 0, . . . ,m− 1 and choose two classes of iterative methods Si, S̃i whose iteration matrices are Si, S̃i,
respectively. If there exists three real positive numbers αi, βi, γi such that

‖Sνii x‖2Ai
≤ ‖x‖2Ai

− αi‖Sνii x‖2A2
i
∀x ∈ CNi (pre-smoothing property) (1.36)

‖S̃ ν̃ii x‖2Ai
≤ ‖x‖2Ai

− βi‖x‖2A2
i
∀x ∈ CNi (post-smoothing property) (1.37)

‖CGCix‖2Ai
≤ γi‖x‖2A2

i
∀x ∈ CNi (approximation property) (1.38)

for every i = 0, . . . ,m− 1, defined

δpre := min
0≤i<m

αi
γi
, δpost := min

0≤i<m

βi
γi
,

it holds that δpost ≤ 1 and

‖AMG0‖A ≤
√

1− δpost
1 + δpre

< 1,

where AMG0 is the V -cycle iteration matrix.

Remark 5. From Theorem 11, the sequence {x(l)}l∈N generated by AMG converges to the solution of
Ax = b. Moreover, when at least one of the following conditions holds

inf
t

min
0≤i<m(t)

αi
γi
> 0, inf

t
min

0≤i<m(t)

βi
γi
> 0,

the convergence is optimal, that is, the method converges with a constant error reduction not depending
on n and m.

Remark 6. Observe that the smoothing properties (1.36)-(1.37) are related to the smoothers, but not
to the projectors, while the approximation property (1.38) depends only on the choice of the projectors.

When we consider only two levels in Algorithm 1, the V -cycle MG is known as Two-Grid Method
(TGM). As regards the convergence under Galerkin conditions, the following theorem holds ([117]).

Theorem 12. Suppose that A ∈Mn is a HPD matrix; given a positive integer ñ < n, let P : Cñ → Cn,
be a full-rank matrix and R = P ∗. Define, Ã = P ∗AP and choose two classes of iterative methods S, S̃
whose iteration matrices are S, S̃, respectively. If there exists three real positive numbers α, β, γ such
that

‖Sνx‖2A ≤ ‖x‖2A − α‖Sνx‖2A2 ∀x ∈ Cn (pre-smoothing property) (1.39)

‖S̃ ν̃x‖2A ≤ ‖x‖2A − βi‖x‖2A2 ∀x ∈ Cn (post-smoothing property) (1.40)

min
y∈Cñ

‖x− Py‖ ≤ γ‖x‖A ∀x ∈ Cn (approximation property) (1.41)

defined

δpre :=
α

γ
, δpost :=

β

γ
,
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it holds that δpost ≤ 1 and

‖TGM‖A ≤
√

1− δpost
1 + δpre

< 1,

where TGM = SνCGCS̃ ν̃ , with CGC = In − PÃ−1P ∗A is the two-grid iteration matrix.

From Theorem 12, the convergence of the TGM is optimal, that is, the method converges with a
constant error reduction not depending on n.

Remark 7. Note that, as is often the case in literature, a multigrid process can be definite by introducing
first the two-grid algorithm and then by recursively solving the coarse-grid equation with this two-grid
process.

1.8.2 Algebraic multigrid for Toeplitz matrices

AMG for multilevel Toeplitz matrices with scalar-valued symbols has been investigated in detail in
[72, 140, 128, 4, 1]. To guarantee the optimal convergence of the AMG method, certain smoothing and
approximation properties have to be fulfilled. As observed in Remark 6, they can be treated separately.
We start with the conditions that ensure the validity of smoothing properties. First of all, note that
since the diagonal of the coefficient matrix is a multiple of the identity, for Toeplitz matrices the relaxed
Richardson in (1.35) are equivalent to the weighted Jacobi iterations. As the following proposition
shows, using appropriate weights, these smoothers fulfill the smoothing properties.

Proposition 3. [1] Let A = Tn(f) with f : Ik → C nonnegative and not identically zero. Defined
S = I − ωA and S̃ = I − ω̃A, if

0 ≤ ω, ω̃ ≤ 2

‖f‖L∞

, (1.42)

then there exist α, β > 0 such that the two smoothing properties

‖Sνx‖2A ≤ ‖x‖2A − α‖Sνx‖2A2 ∀x ∈ Cn̂, (1.43)

‖S̃θx‖2A ≤ ‖x‖2A − β‖x‖2A2 ∀x ∈ Cn̂, (1.44)

hold with ν, θ ∈ N.

Apart from the smoother, to define an optimal AMG method, the choice of the projector is crucial.
Assume that f has only one zero of order at most 2. Under this hypothesis, in the 1-level case, the
different strategies proposed in [71, 33, 95, 128, 4] are equivalent. For a fixed Ni = 2t−i − 1, with t, i
integer numbers such that i < t, chose as projectors the product between TNi

(pi), with a nonnegative
trigonometric polynomial pi and the transpose of the following cutting matrix KNi

∈ RNi+1×Ni

KNi
=




0 1 0
0 1 0

. . .
. . .

. . .

0 1 0


 . (1.45)

When Ni = 2t−i, the cutting matrix KNi
is given by

KNi
=




1 0
1 0

. . .
. . .

1 0


 . (1.46)

Then the matrix at the so-defined coarse level is still a Toeplitz matrix Ai+1 = P ∗
i AiPi = TNi+1(fi+1),

where

fi+1(θ) =
1

2

[
p2i fi

(
θ

2

)
+ p2i fi

(
θ

2
+ π

)]
.

The k-level case has been discussed in [72, 140, 128, 1]. There, the authors consider k-level Toeplitz
matrices Tn(f) of order n = (2t − 1)e ∈ Nk and of order n = 2te ∈ Nk, where e = (1, . . . , 1) ∈ Nk and t
is a positive integer. Starting with N0 = n, the order on the coarse levels is defined as Ni = (2t−i − 1)e
or Ni = (2t−i)e, respectively. The projector Pi is defined as the product between a matrix TNi

(pi)
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and the transpose of a k-level cutting matrix KNi
, where pi is a nonnegative k-variate trigonometric

polynomial. More precisely, the cutting matrix KNi
is obtained as the Kronecker product of k 1-level

cutting matrices K(Ni)1 , . . . ,K(Ni)k (with K(Ni)ℓ as in (1.45) for (Ni)ℓ odd and as is (1.46) for (Ni)ℓ
even). If f has only one zero of order at most 2 in every direction, all these choices preserve the k-level
Toeplitz structure on the coarse levels.

Multigrid methods are widely used for solving PDEs, independently of the boundary conditions.
In that context, the convergence analysis is performed by Local Fourier analysis (LFA) which does
not consider the boundary effects, i.e. it assumes periodic boundary conditions or an infinite domain
[25]. Analogously, since Toeplitz matrices are difficult to manipulate, multigrid convergence results are
usually investigated using matrix algebra approximations such as τ or circulant matrices having the
same symbol, i.e. spectral distribution, as the original Toeplitz matrix (see [49] for more details).

In the following, we recall the conditions that ensure the validity of the approximation property in
the circulant algebra. For a fixed θ ∈ Rk, define the set of all corners points Ω(θ) and the set of all
mirror points M(θ) as

Ω(θ) = {η|ηj ∈ {θj, θj + π}} and M(θ) = Ω(θ)\{θ}.

Let {fi}mi=0 be the sequence of symbols on the coarse levels, where

fi+1(θ) =
1

2k

∑

η∈Ω(θ)

p2i fi(η). (1.47)

Proposition 4. [1] Let Ai = CNi
(fi) with Ni = 2t−ie, and fi a k-variate nonnegative trigonometric

polynomial. Let θ0i be the unique zero of fi in [0, π]k and let CGCi = IN̂i
− Pi(P ∗

i AiPi)
−1P ∗

i Ai with

Pi = CNi
(pi)K

T
Ni

and pi a nonnegative k-variate trigonometric polynomial. Then the approximation

property (1.38) holds if for all θ ∈ [0, π]k pi is such that

lim sup
θ→θ0

i

∣∣∣∣
pi(η)

fi(θ)

∣∣∣∣ < +∞, η ∈M(θ), (1.48)

∑

η∈Ω(θ)

p2i (η) > 0. (1.49)

Remark 8. If θ0i is a zero of order q for fi, by condition (1.48), η ∈M(θ0i ) is such that pi has a zero at
η at least of the same order. From conditions (1.48)–(1.49) holds that pi(θ

0
i ) 6= 0, which means that the

projectors are full-rank and that the ill-conditioned subspace of Ai is in the image of the projector Pi.

Proposition 5. Let fi+1 be defined as in (1.47), and suppose that pi satisfies (1.48)-(1.49). Then, if
θ0i is a zero of order q for fi, θ

0
i+1 = 2θ0i is a zero of order q for fi+1.

If θ0i has order (at most) 2q, a natural choice for pi is

pi(θ) = c ·
k∏

j=1

[1 + cos(θj − (θ0i )j)]
q. (1.50)

with c constant. Indeed, the polynomial pi has a zero of order 2q at η ∈M(θ0i ) and does not vanish at
θ0i .

For the TGM, the smoothing properties are satisfied under the same condition (1.42), while for the
approximation property the following proposition holds ([33, 128]).

Proposition 6. Let A = Tn(f) with n = (2t−1)e, f a k-variate nonnegative trigonometric polynomial,
and let ñ = (ñ1, . . . , ñk) < (n1, . . . , nk). Let θ0 be the unique zero of f in [0, π]k of order at most 2, and
let CGC = In̂ − P (P ∗AP )−1P ∗A with P = Tn(p)K

T
n , K

T
n = Kn1 ⊗ · · · ⊗Knk

, Knj
∈ Rñj×nj and p as

in (1.50). Then the approximation property (1.41) holds if for all θ ∈ [0, π]k p is such that

lim sup
θ→θ0

|p(η)|2
f(θ)

< +∞, η ∈ M(θ), (1.51)

∑

η∈Ω(θ)

p2(η) > 0.

Remark 9. If θ0 is a zero of order q for f , by condition (1.51), η ∈M(θ0) is such that p has a zero at
η at least of order ⌊q/2⌋.
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1.9 Trigonometric polynomials

We conclude this chapter by recalling the definition of k-variate complex-/matrix-valued trigonometric
polynomial and by proving a proposition needed in Chapter 2.

Definition 14. We say that g : Ck → C is a k-variate trigonometric polynomial if g is a finite linear
combination of the k-variate functions (Fourier frequencies) {ei〈j,x〉 : j ∈ Zk}.
Let us observe that, if g is a k-variate trigonometric polynomial, then g has only a finite number of
nonzero Fourier coefficients ĝj .
The degree r = (r1, . . . , rk) of a k-variate trigonometric polynomial g is defined as follows: for each
i = 1, . . . , k, ri is the maximum of |ji|, where j = (j1, . . . , jk) varies among all multi-indices in Zk such
that ĝj 6= 0 (ri is called the degree of g(x) with respect to the i-th variable xi).
Observe that a k-variate trigonometric polynomial g of degree r = (r1, . . . , rk) can be written in the
form g(x) =

∑r
j=−r ĝje

i〈j,x〉, that is, defined Πr = span{ei〈j,x〉, j = −r, . . . , r}, g ∈ Πr.

Definition 15. We say that g : Ck →Ms is a k-variate trigonometric polynomial if, equivalently:

• all the components gl,t : C
k → C, l, t = 1, . . . , s, are k-variate trigonometric polynomials.

• g is a finite linear combination (with coefficients inMs) of the k-variate functions {ei〈j,x〉 : j ∈ Zk}.
If g is a k-variate trigonometric polynomial, then g has only a finite number of nonzero Fourier coefficients
ĝj ∈Ms and the degree r = (r1, . . . , rk) of g is defined in two equivalent ways:

• for each i = 1, . . . , k, ri is the maximum degree among all the polynomials gl,t(x) with respect to
the i-th variable xi;

• for each i = 1, . . . , k, ri is the maximum of |ji|, where j = (j1, . . . , jk) varies among all multi-indices
in Zk such that ĝj is nonzero.

We note that a k-variate trigonometric polynomial g of degree r = (r1, . . . , rk) can be written in the
form g(x) =

∑r
j=−r ĝje

i〈j,x〉, where the Fourier coefficients ĝj belong toMs.

Proposition 7 provides an estimate of the rank of Tn(g)Tn(f)−Tn(gf), in the case where f ∈ L1(k, s)
and g is a k-variate trigonometric polynomial of degree r = (r1, . . . , rk) taking values inMs. For s = 1,
we can find the proof of this result (full for k = 1 and sketched for k > 1) in [134]. For completeness,
we report the full proof for k > 1, also considering the generalization to s > 1.

Proposition 7. Let f, g ∈ L1(k, s), with g a k-variate trigonometric polynomial of degree
r = (r1, . . . , rk), and let n be a k-index such that n ≥ 2r + e. Then

rank(Tn(g)Tn(f)− Tn(gf)) ≤ s
[
n̂−

k∏

i=1

(ni − 2ri)

]
. (1.52)

Proof. Since g : Ck → Ms is a k-variate trigonometric polynomial of degree r, we can write g in the
form

g(x) =

r∑

j=−r
ĝje

i〈j,x〉.

The Fourier coefficients of (gf)(x) = g(x)f(x) are given by

(ĝf)ℓ =
1

(2π)k

∫

Ik

g(x)f(x)e−i〈ℓ,x〉dx =

r∑

j=−r
ĝj

1

(2π)k

∫

Ik

f(x)e−i〈ℓ−j,x〉dx =

r∑

j=−r
ĝj f̂ℓ−j.

Now, using the definition of multilevel block Toeplitz matrices, see (1.16), for all l, t = e, . . . , n we have

Tn(gf)l,t = (ĝf)l−t =
r∑

j=−r
ĝj f̂l−t−j , (1.53)

and

(Tn(g)Tn(f))l,t =

n∑

v=e

Tn(g)l,vTn(f)v,t =

n∑

v=e

ĝl−vf̂v−t =
l−e∑

j=l−n
ĝj f̂l−j−t =

min(l−e,r)∑

j=max(l−n,−r)
ĝj f̂l−t−j ,

(1.54)
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where the last equality is motivated by the fact that ĝj is zero if j < −r or j > r. Therefore, (1.53)
and (1.54) coincide when r + e ≤ l ≤ n − r. Observe that the multi-index range r + e, . . . , n − r is
nonempty because of the assumption n ≥ 2r + e. We conclude that the only possible nonzero rows of
Tn(g)Tn(f)− Tn(gf) are those corresponding to multi-indices l in the set {e, . . . , n}\{r+ e, . . . , n− r}.
This set has cardinality n̂−∏k

i=1(ni− 2ri) and so Tn(g)Tn(f)−Tn(gf) has at most n̂−∏k
i=1(ni− 2ri)

nonzero rows. Now we should notice that each row of Tn(g)Tn(f) − Tn(gf) is actually a block-row
of size s, i.e., a s × sn̂ submatrix of Tn(g)Tn(f) − Tn(gf). Indeed, each component of Tn(f), Tn(g),
Tn(g)Tn(f) − Tn(gf) is actually a s × s matrix, see (1.16). Therefore, the actual nonzero rows of

Tn(g)Tn(f)− Tn(gf) are at most s[n̂−∏k
i=1(ni − 2ri)] and (1.52) is proved.





Chapter 2

Spectral analysis and

preconditioning for non-Hermitian

multilevel block Toeplitz matrices

The problem considered throughout this chapter is the numerical solution of a linear system with coeffi-
cient matrix Tn(f), where f ∈ L1(k, s). To do that, we enlarge the known distribution results presented
in Chapter 1 and take advantage of the resulting tools for designing appropriate preconditioners for
multilevel block Toeplitz matrices. More in detail, in Section 2.1, we extend Theorem 7 to the case of
preconditioned matrix-families of the form {T−1

n (g)Tn(f)}n∈Nk (Theorem 13) and exploit the knowledge
of the obtained spectral information as a guide for defining a satisfactorily band Toeplitz preconditioner
Tn(g) for Tn(f) to be used in connection with Krylov methods. In Section 2.2 we provide a further
extension of Theorem 13 to sequences of matrices obtained from a combination of some algebraic opera-
tions on multilevel block Toeplitz matrices (Theorems 15,17). These new results will be used to perform
a spectral analysis of the PHSS method applied to Toeplitz matrices and then to find efficient PHSS
preconditioners.

2.1 Band Toeplitz preconditioning for multilevel block Toeplitz

sequences

We are interested in preconditioning a non-Hermitian multilevel block Toplitz Tn(f) by Tn(g), where g
is a trigonometric polynomial, that is by a band Toeplitz preconditioner. As observed in Section 1.6,
the literature of the band Toeplitz preconditioning lacks of results in non-Hermitian multilevel block
case. Actually, at our best knowledge, Theorem 4 is the only available tool for devising spectrally
equivalent preconditioners in the non-Hermitian multilevel block case (see Subsection 1.4.1). Even
though, Theorem 4 is rather powerful, its assumptions do not seem easy to check. More precisely, a set
of important problems to be considered for the practical use of Theorem 4 is the following:

(a) given f regular enough, give conditions such that there exists a trigonometric polynomial g for
which the assumptions of Theorem 4 are satisfied;

(b) let us suppose that f satisfies the conditions of the first item; give a constructive way (an algorithm)
for defining such a polynomial g.

Due to the difficulty of addressing these problems, instead of looking for a precise spectral localization
of T−1

n (g)Tn(f) with g trigonometric polynomial, we just analyze the global asymptotic behavior of the
spectrum of T−1

n (g)Tn(f) as n→∞. As we shall see through numerical experiments, the knowledge of
the asymptotic spectral distribution of {T−1

n (g)Tn(f)}n∈Nk can indeed be useful as a guide for designing
appropriate preconditioners Tn(g) for Tn(f).

2.1.1 Spectral distribution for preconditioned non-Hermitian families

In the following, we generalize Theorem 7, which concerns the non-preconditioned matrix-family
{Tn(f)}n∈Nk , to the case of preconditioned matrix-families of the form {T−1

n (g)Tn(f)}n∈Nk .
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Theorem 13. Let f, g ∈ L∞(k, s), with 0 /∈ Coh[ENR(g)], and let h := g−1f . If ER(h) has
empty interior and does not disconnect the complex plane, that is h is in the Tilli class, then
{T−1

n (g)Tn(f)}n∈Nk ∼λ (h, Ik).

Before to prove Theorem 13, we need two lemmas which involve the notion of sectorial function. Lemma
1 provides simple conditions that ensure a given function f ∈ L1(k, s) to be weakly sectorial or sectorial.
The proof can be obtained using the following topological properties of convex sets: the separability
properties provided by the geometric forms of the Hahn-Banach theorem, see [27, Theorems 1.6 and
1.7]; the result stating that, for any convex set C, the closure C and the interior Int(C) are convex,
and Int(C) = C whenever Int(C) is nonempty, see e.g. [27, Exercise 1.7]. Lemma 2 shows under which
condition the function h = g−1f belongs to L∞(k, s).

Lemma 1. Let f ∈ L1(k, s).

• f is weakly sectorial if and only if 0 /∈ Int(Coh[ENR(f)]).

• If 0 /∈ Coh[ENR(f)] then f is sectorial. Equivalently, if d(Coh[ENR(f)], 0) > 0, then f is
sectorial.

Note that, for a function g ∈ L∞(k, s), the essential numerical range ENR(g) is compact and hence
Coh[ENR(g)] is also compact (we recall that the convex hull of a compact set is compact). Moreover,
if 0 /∈ Coh[ENR(g)], d := d(Coh[ENR(g)], 0) is positive and, from previous Lemma 1, g is sectorial.
The condition 0 /∈ Coh[ENR(g)] also ensures that g is invertible a.e., because, for almost every x ∈ Ik,
λi(g(x)) ∈ ER(g) ⊆ ENR(g) ⊆ Coh[ENR(g)] for all i = 1, . . . , s, implying that λi(g) 6= 0 for all
i = 1, . . . , s, a.e.

Lemma 2. Let f, g ∈ L∞(k, s) with 0 /∈ Coh[ENR(g)]. Then h := g−1f ∈ L∞(k, s).

Proof. Since g ∈ L∞(k, s) and 0 /∈ Coh[ENR(g)], the convex hull Coh[ENR(g)] is compact, the distance
d := d(Coh[ENR(g)], 0) is positive, and g is invertible a.e. (recall the discussion before this lemma).
We are going to show that

‖g−1(x)‖ ≤ 1

d
, for a.e. x ∈ Ik. (2.1)

Since in a matrix the absolute value of each component is bounded from above by the spectral norm,
once we have proved (2.1), it follows that g−1 ∈ L∞(k, s), and the lemma is proved. Now, by the
fact that d > 0 and by Lemma 1, g is sectorial. By Theorem 3, first item, there exists a separating
line z for ENR(g) such that d(z, 0) = d. Let ω(z) be the rotation number (of modulus 1) for which
ω(z) · z = {w ∈ C : Re(w) = d}. By applying Remark 1 with g in place of f (see in particular (1.10)
and note that ωz = ω(z) because d(z, 0) = d > 0), we obtain

λmin(Re(ω(z)g(x))) ≥ d, for a.e. x ∈ Ik.

Hence, by the Fan-Hoffman theorem [19, Proposition III.5.1], for a.e. x ∈ Ik we have

‖g−1(x)‖ = 1

σmin(g(x))
=

1

σmin(ω(z)g(x))
≤ 1

λmin(Re(ω(z)g(x)))
≤ 1

d
,

and (2.1) is proved.

For the sake of clarity, we summarize the results of Lemma 1, Theorem 3, the proof of Lemma 2,
and the discussion between Lemma 1 and Lemma 2, in Lemma 3. It will turn out to be useful even in
next section.

Lemma 3. Let g ∈ L∞(k, s) with 0 /∈ Coh[ENR(g)]. Then,

• Coh[ENR(g)] is compact, implying that the distance d := d(Coh[ENR(g)], 0) is positive;

• g is sectorial and invertible a.e., and g−1 ∈ L∞(k, s), because ‖g−1(x)‖ ≤ 1
d for a.e. x ∈ Ik;

• Tn(g) is invertible for all n ∈ Nk, because σ ≥ d for every singular values σ of Tn(g);

• ‖T−1
n (g)‖ ≤ 1

d for all n ∈ Nk (consequence of the previous item).
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Aside from previous lemmas, one more result contained in Proposition 8 is needed. It concerns the
evaluation of the trace-norm of Tn(g)Tn(f) − Tn(gf) for f, g ∈ L∞(k, s), which is a crucial point for
the proof of Theorem 13. As for Proposition 7, fixed s = 1, we can find the proof of this result (full
for k = 1 and sketched for k > 1) in [134]. In the following, we report the full proof for k > 1, also
considering the generalization to s > 1.

Proposition 8. Let f, g ∈ L∞(k, s), then ‖Tn(g)Tn(f)− Tn(gf)‖1 = o(n̂) as n→∞.

Proof. Let gm : Ck → Ms, gm = [(gm)l,t]
s
l,t=1, be a k-variate trigonometric polynomial of degree

m = (m1, . . . ,mk). Let m
− := (m−

1 , . . . ,m
−
k ), where m

−
i is the minimum degree among all the polyno-

mials (gm)l,t(x) with respect to the variable xi. We choose gm such that ‖gm‖L∞ ≤ ‖g‖L∞ for every m

and ‖gm − g‖L1 → 0 as m− → ∞. The polynomials gm can be constructed by using the m-th Cesaro
sum of g (see [156]) and indeed the linear positive character of the Cesaro operator and Korovkin theory
[98, 125] imply the existence of a gm with the desired properties. Note that, by (1.5) with p = 1, the
fact that ‖gm − g‖L1 → 0 as m− → ∞ is equivalent to saying that ‖(gm)l,t − gl,t‖L1 → 0 as m− → ∞
for all l, t = 1, . . . , s. Now, by adding and subtracting and by using the triangle inequality several times
we get

‖Tn(g)Tn(f)− Tn(gf)‖1
≤ ‖Tn(g)Tn(f)− Tn(gm)Tn(f)‖1 + ‖Tn(gm)Tn(f)− Tn(gmf)‖1 + ‖Tn(gmf)− Tn(gf)‖1. (2.2)

Using the linearity of the operator Tn(·), the Hölder inequalities (1.2) and (1.8), and the relations (1.17),
(1.18), we obtain

‖Tn(g)Tn(f)− Tn(gm)Tn(f)‖1 ≤ ‖Tn(g − gm)‖1‖Tn(f)‖ ≤
n̂

(2π)k
‖gm − g‖L1‖f‖L∞ (2.3)

‖Tn(gmf)− Tn(gf)‖1 ≤
n̂

(2π)k
‖gmf − gf‖L1 ≤ n̂

(2π)k
‖gm − g‖L1‖f‖L∞. (2.4)

Moreover, using the relation (1.4) and the inequality (1 + c)k ≥ 1 + kc for c ≥ −1, Proposition 7 tells
us that, for any n ≥ 2m+ e,

‖Tn(gm)Tn(f)− Tn(gmf)‖1 ≤ rank(Tn(gm)Tn(f)− Tn(gmf))‖Tn(gm)Tn(f)− Tn(gmf)‖

≤ sn̂
[
1−

k∏

i=1

(
1− 2mi

ni

)]
(‖Tn(gm)Tn(f)‖+ ‖Tn(gmf)‖)

≤ sn̂
[
1−

(
1− 2‖m‖∞

minj nj

)k]
(2‖gm‖L∞‖f‖L∞)

≤ sn̂k 2‖m‖∞
minj nj

(2‖g‖L∞‖f‖L∞) = 4sk‖m‖∞‖g‖L∞‖f‖L∞

n̂

minj nj
. (2.5)

Substituting (2.3)–(2.5) in (2.2), for each k-tuple m and for each n ≥ 2m + e the following inequality
holds:

‖Tn(g)Tn(f)− Tn(gf)‖1 ≤ n̂ξ(m) + γ(m)
n̂

minj nj
,

where ξ(m) := 2(2π)−k‖gm − g‖L1‖f‖L∞, γ(m) := 4sk‖m‖∞‖g‖L∞‖f‖L∞, and we note that ξ(m)→ 0
as m− → ∞. Now, for ǫ > 0, we choose a k-tuple m such that ξ(m) < ǫ/2. For n → ∞ (i.e.
for minj nj → ∞) we have γ(m)/minj nj → 0 and so we can choose a ν ≥ 2‖m‖∞ + 1 such that
γ(m)/minj nj ≤ ǫ/2 for minj nj ≥ ν. Then, if minj nj ≥ ν, we have n ≥ 2m+ e and

‖Tn(g)Tn(f)− Tn(gf)‖1
n̂

≤ ǫ.

This means that
‖Tn(g)Tn(f)− Tn(gf)‖1

n̂
→ 0 as n → ∞, i.e. ‖Tn(g)Tn(f) − Tn(gf)‖1 = o(n̂) as

n→∞.

We are now ready to prove Theorem 13. We will show that, under the assumptions of Theorem
13, the conditions (c1)–(c4) of Theorem 1 are met, for any matrix-sequence {T−1

n(m)(g)Tn(m)(f)}m
extracted from {T−1

n (g)Tn(f)}n∈Nk and such that minj nj(m)→∞. Actually, to simplify the notation,
we suppress the index m and we will talk about a generic matrix-sequence {T−1

n (g)Tn(f)}n such that
minj nj →∞, where it is understood the presence of an underlying index m.
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Proof of Theorem 13. By Lemma 3, d := d(Coh[ENR(g)], 0) is positive and

‖T−1
n (g)‖ = 1

σmin(Tn(g))
≤ 1

d
.

By hypothesis f ∈ L∞(k, s) and by (1.18), it follows that

‖T−1
n (g)Tn(f)‖ ≤ ‖f‖L∞/d,

so that requirement (c1) in Theorem 1 is satisfied. Since h ∈ L∞(k, s) (by Lemma 3) and since
ER(h) has empty interior and does not disconnect the complex plane (by hypothesis), h satisfies the
assumptions of Theorem 7 and so {Tn(h)}n ∼λ (h, Ik). The latter implies that

lim
n→∞

tr(Tn(h)
N )

n̂
=

1

(2π)k

∫

Ik

tr(hN (t))

s
dt. (2.6)

Indeed, although the function F̃ (z) = zN does not belong to C0(C), we know that h ∈ L∞(k, s). This
has two consequences: first, by (1.18) all the eigenvalues of Tn(h) lie in the compact disk D(0, ‖h‖L∞);
second, by definition of ‖h‖L∞, also the eigenvalues of h(t) belong to D(0, ‖h‖L∞) for a.e. t ∈ Ik.
Therefore, by choosing any function F ∈ C0(C) such that F (z) = zN for all z ∈ D(0, ‖h‖L∞), from
{Tn(h)}n ∼λ (h, Ik) we get (2.6). By (2.6) and by using the inequality (1.3), item (c2) in Theorem 1 is
proved if we show that

‖(T−1
n (g)Tn(f))

N − Tn(h)N‖1 = o(n̂) (2.7)

for every nonnegative integer N . If N = 0 the result is trivial. For N = 1, using Proposition 8 we obtain

‖T−1
n (g)Tn(f)− Tn(h)‖1 = ‖T−1

n (g)(Tn(f)− Tn(g)Tn(h))‖1
≤ ‖T−1

n (g)‖‖Tn(f)− Tn(g)Tn(h)‖1
≤ 1

d
‖Tn(f)− Tn(g)Tn(h)‖1 = o(n̂),

so (2.7) is satisfied and we can write T−1
n (g)Tn(f) = Tn(h) + Rn with ‖Rn‖1 = o(n̂). Using this, when

N ≥ 2 we have
(T−1
n (g)Tn(f))

N = Tn(h)
N + Sn,

where Sn is the sum of all possible (different) combinations of products of j matrices Tn(h) and ℓ
matrices Rn, with j+ ℓ = N , j 6= N . By using the Hölder inequality (1.2), and taking into account that
Rn = T−1

n (g)Tn(f)− Tn(h), for every summand S of Sn we have

‖S‖1 ≤ ‖Tn(h)‖j‖Rn‖ℓ−1‖Rn‖1
≤ ‖h‖jL∞(‖f‖L∞/d+ ‖h‖L∞)ℓ−1o(n̂) ≤ Co(n̂),

where C is some positive constant. So, since the number of summands in Sn is finite, (2.7) holds for
every positive integer N , and requirement (c2) in Theorem 1 is then satisfied. Requirement (c3) in
Theorem 1 is also satisfied, because by [GLT1-3], the sequences of multilevel block Toeplitz matrices
with L1(k, s) symbols belong to the GLT class together with their algebra. Finally, by taking into
account that ER(h) has empty interior and does not disconnect the complex plane, the last condition
(c4) in Theorem 1 is met, and the application of Theorem 1 shows that {T−1

n (g)Tn(f)}n ∼λ (h, Ik).

2.1.2 Numerical results

In the following we consider a list of numerical examples (both 1-level and 2-level) concerning the
eigenvalue localization and the clustering properties of the matrix T−1

n (g)Tn(f), and regarding the
effectiveness of the preconditioned GMRES, with preconditioning strategies chosen according to the
theoretical indications given in the previous subsection.

Univariate examples

Fixed s = 2 and k = 1, we consider f and g of the form

f(x) = Q(x)A(x)Q(x)T

g(x) = Q(x)B(x)Q(x)T
(2.8)
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where

Q(x) =

(
cos(x) sin(x)
− sin(x) cos(x)

)
,

while A(x) and B(x) vary from case to case. For each example, we focus our attention on the spectral
behavior of the matrices Tn(f), T

−1
n (g)Tn(f) for different sizes n and on the solution of the associated

linear system with a random right-hand side. From a computational point of view, to solve such systems,
we apply (full or preconditioned) GMRES with tolerance 10−6 using the Matlab built-in gmres function.
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Figure 2.1: Eigenvalues in the complex plane of T200(f1) for r = 1, 2, 3, 4
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Figure 2.2: Eigenvalues in the complex plane of T−1
200(g1)T200(f1) for r = 1, 2, 3, 4

Case 1. Let us choose A(1)(x) and B(1)(x) as follows

A(1)(x) =

(
2 + i+ cos(x) 0

1 5 + reix

)
, B(1)(x) =

(
1 0
0 5 + reix

)
,

where r is a real positive parameter, and define

f1(x) = Q(x)A(1)(x)Q(x)T

g1(x) = Q(x)B(1)(x)Q(x)T .

Figures 2.1 and 2.2 refer to the eigenvalues in the complex plane of T200(f1) and T−1
200(g1)T200(f1)

for r = 1, 2, 3, 4. The eigenvalues of T200(f1) are clustered at the union of the ranges of

λ1(f1(x)) = λ1(A
(1)(x)) = A

(1)
1,1(x) and λ2(f1(x)) = λ2(A

(1)(x)) = A
(1)
2,2(x), which is the essential

range of f1(x). More precisely, the matrix T200(f1) has two sub-clusters for the eigenvalues: one collects
the eigenvalues with real part in [1, 3] and imaginary part around 1 (such eigenvalues recall the behavior
of the function λ1(f1(x))); the other, mimicking λ2(f1(x)), is made by a circle centered in 5 with radius
r, in agreement with theoretical results. We know that the GMRES in this case is optimal, since the
eigenvalues of f1 have no zeros. Looking at Figure 2.2, if we use the preconditioner T200(g1), we improve
the cluster of the eigenvalues and so the GMRES converges with a constant number of iterations (cf.
Table 2.1), which is substantially independent both on n and r.

This example fits with the theoretical results of this section, since f1 and g1 are both bounded and
0 /∈ Coh[ENR(g1)]. We stress that g1 has been chosen so that the essential range of

h1(x) = g−1
1 (x)f1(x) = Q(x)

(
2 + i+ cos(x) 0
1/(5 + reix) 1

)
Q(x)T ,

which is given by

ER(h1) = ER(λ1(h1))
⋃
ER(λ2(h1)) = {t+ i : 1 ≤ t ≤ 3}

⋃
{1},
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is ‘compressed’ and ‘well separated from 0’ independently of the value of r. In this way, since Theorem
13 and Remark 3 ensure that the matrix-sequence {T−1

n (g1)Tn(f1)}n is weakly clustered at ER(h1), we
expect a number of preconditioned GMRES iterations independent of r, n and ‘small enough’. This is
confirmed by the results in Tables 2.1 and 2.2 (a).

Case 2. Let us choose A(2)(x) and B(2)(x) as follows

A(2)(x) =

(
2 + i+ cos(x) 0
1/(x2 − 1) 5 + reix

)
, B(2)(x) = B(1)(x)

and define

f2(x) = Q(x)A(2)(x)Q(x)T

g2(x) = Q(x)B(2)(x)Q(x)T .

Iterations
n No Prec. Prec.
50 55 14
100 98 14
200 179 13
400 230 14
800 235 13

Table 2.1: Number of GMRES iterations for Tn(f1) and T
−1
n (g1)Tn(f1) fixed r = 4.8 and varying n

Iterations
r No Prec. Prec. No Prec. Prec.
1 17 14 17 13
2 22 14 22 13
3 31 14 30 13
4 55 14 53 13
4.8 185 14 183 13

(a) (b)

Table 2.2: (a) number of GMRES iterations for T200(f1) and T
−1
200(g1)T200(f1) varying r; (b) number of

GMRES iterations for T200(f2) and T
−1
200(g2)T200(f2) varying r

Although this case is not covered by the theory, since f2 is not bounded, we find that the eigenvalues
of T−1

200(g2)T200(f2) are closely related to the eigenvalues of g−1
2 f2. The graphs of such eigenvalues (not

reported here) are very similar to those in Figure 2.2. Table 2.2 (b) shows the number of GMRES
iterations, setting n = 200 and moving the radius of the disk used to define f2 and g2.
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Figure 2.3: (a) Singular values and moduli of the eigenvalues of T200(f3); (b) Singular values and moduli
of the eigenvalues of T−1

200(g3)T200(f3); (c) Eigenvalues in the complex plane of T200(f3); (c) Eigenvalues
in the complex plane of T−1

200(g3)T200(f3)
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Case 3. Let us choose A(3)(x) and B(3)(x) as follows

A(3)(x) =

(
(1− eix)

(
1 + x2/π2

)
0

0 2 + cos(x)

)
, B(3)(x) =

(
1− eix 0

0 1

)

and define

f3(x) = Q(x)A(3)(x)Q(x)T

g3(x) = Q(x)B(3)(x)Q(x)T .
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Figure 2.4: (a) Singular values and moduli of the eigenvalues of T200(f4); (b) Singular values and moduli
of the eigenvalues of T−1

200(g4)T200(f4); (c) Eigenvalues in the complex plane of T200(f4); (d) Eigenvalues
in the complex plane of T−1

200(g4)T200(f4)

Figures 2.3 (a) and (b) show the singular values and the moduli of the eigenvalues of T200(f3) and
T−1
200(g3)T200(f3), respectively. Let us observe that the singular values and the moduli of the eigenvalues

are, for both matrices, almost superposed. Figure 2.3 (c) and (d) refer to the eigenvalues in the complex
plane of the same matrices. As already argued for Case 1, even in this case the eigenvalues of T200(f3)
show two different behaviors: a half of the eigenvalues is clustered at [1, 3], which is the range of the

function λ2(f3(x)) = A
(3)
2,2(x), the others mimic λ1(f3(x)) = A

(3)
1,1(x), drawing a circle passing near to 0.

The closeness of the eigenvalues to 0 is responsible of the non-optimality of the GMRES method when
we solve a linear system with matrix T200(f3). Indeed, as can be observed in Table 2.3 (a), the number

Iterations
n No Prec. Prec. No Prec. Prec.
50 59 15 100 9
100 106 16 200 9
200 192 16 338 9
400 343 16 577 9

(a) (b)

Table 2.3: (a) Number of GMRES iterations for Tn(f3) and T−1
n (g3)Tn(f3) varying n; (b) Number of

GMRES iterations for Tn(f4) and T
−1
n (g4)Tn(f4) varying n

of GMRES iterations required to reach tolerance 10−6 increases with n for Tn(f3). The preconditioned
matrix T−1

n (g3)Tn(f3) has eigenvalues far from 0 and bounded in modulus (see Figure 2.3 (d)) and so
the preconditioned GMRES converges with a constant number of iterations (see Table 2.3 (a)). This
example is not covered by the theory explained in previous subsection, since Coh[ENR(g3)] includes
the complex zero. The numerical tests, however, show that there is room for improving the theory, by
allowing the symbol of the preconditioner to have eigenvalues assuming zero value.

Case 4. Let us choose A(4)(x) and B(4)(x) as follows

A(4)(x) =

(
(1− eix)

(
sin2(x) + 3

)
0

x 1 + cos(x)

)
, B(4)(x) =

(
1− eix 0

0 1 + cos(x)

)

and define

f4(x) = Q(x)A(4)(x)Q(x)T

g4(x) = Q(x)B(4)(x)Q(x)T .
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Figures 2.4 (a) and (b) show the singular values and the moduli of the eigenvalues of T200(f4) and
T−1
200(g4)T200(f4), respectively. For a better resolution, in Figure 2.4 (b) some singular values of order

about 104 have been cut. Figures 2.4 (c) and (d) refer to the eigenvalues in the complex plane of the same
matrices. The reasoning regarding the behavior of the eigenvalues applies as in Case 3. Table 2.3 (b)
shows the number of GMRES iterations required to reach the prescribed tolerance varying n. Again the
number of iterations increases with n for Tn(f4), while in the preconditioned case the related iteration
count remains constant. For the same reason of the previous example, even in this case Theorem 13
does not apply, but again the numerical results give us hope for improving our tools.
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Figure 2.5: (a) Eigenvalues in the complex plane of Tn(A
(5)) with n = (20, 20); (b) Eigenvalues in the

complex plane of Tn(f5) with n = (20, 20); (c) Eigenvalues in the complex plane of T−1
n (B(5))Tn(A

(5))
with n = (20, 20); (d) Eigenvalues in the complex plane of T−1

n (g5)Tn(f5) with n = (20, 20)

Counting the outliers

n = (n1, n2) Out. Out./
√
n̂

(5,5) 32 6.40
(10,10) 72 7.20
(15,15) 112 7.47
(20,20) 152 7.60
(25,25) 192 7.68
(30,30) 232 7.73

Table 2.4: Number of outliers for both Tn(f5) and T
−1
n (g5)Tn(f5) varying n1 and n2

0 2 4 6 8 10 12
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Re

Im

(a)

0 2 4 6 8 10 12
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Re

Im

(b)

Figure 2.6: (a) Eigenvalues in the complex plane of Tn(A
(6)) with n = (20, 20); (b) Eigenvalues in the

complex plane of T−1
n (B(6))Tn(A

(6)) with n = (20, 20)

Bivariate examples

Here we fix s = 2 and k = 2, that is we consider M2-valued symbols of 2 variables. In particular, we
extend the definitions of f and g given in (2.8) taking x = (x1, x2) and

Q(x) =

(
cos(x1 + x2) sin(x1 + x2)
− sin(x1 + x2) cos(x1 + x2)

)
.

From here onwards, n is a 2-index, that is of type n = (n1, n2).
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Case 5. This case can be seen as a 2-level extension of Case 1 obtained by choosing

A(5)(x) =

(
3i+ cos(x1) + cos(x2) 0

0 10 + 2(eix1 + eix2)

)
, B(5)(x) =

(
1 0
0 10 + 2(eix1 + eix2)

)

and defining

f5(x) = Q(x)A(5)(x)Q(x)T

g5(x) = Q(x)B(5)(x)Q(x)T .

Let us observe that f5 and A(5) are similar via the unitary transformation Q(x), then, according to the
theory, the associated 2-level block Toeplitz matrices are distributed in the sense of the eigenvalues in the
same way. As shown in Figures 2.5 (a) and (b), in which n = (n1, n2) = (20, 20), both the eigenvalues of

Tn(f5) and Tn(A
(5)) are divided in two sub-clusters, one at the range of A

(5)
1,1(x) = λ1(f5(x)), the other

at the range of A
(5)
2,2(x) = λ2(f5(x)). Interestingly enough, for Tn(A

(5)) the clusters are of strong type,
while in the case of Tn(f5) the spectrum presents outliers with real part in (3, 7) and imaginary part
equal to 1.5. Table 2.4 shows that the number of outliers seems to behave as o(n̂) or, more specifically,
as O(

√
n̂) (notice that this estimate is in line with the analysis in [136]). Analogous results are obtained

in the comparison between T−1
n (g5)Tn(f5) and T

−1
n (B(5))Tn(A

(5)), as shown in Figures 2.5 (c) and (d).
Refer again to Table 2.4 for the number of outliers of T−1

n (g5)Tn(f5) varying n1 and n2 (this number is
exactly the same as the number of outliers of Tn(f5)). The eigenvalues of the symbol f5 have no zeros,
so the number of GMRES iterations required to reach tolerance 10−6 in solving the system associated
to Tn(f5) is optimal, that is it does not depend on n. However, as shown in Table 2.5 (a), when
preconditioning with Tn(g5), we preserve the optimality with a smaller number of iterations.
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Figure 2.7: (a) Singular values and moduli of the eigenvalues of Tn(f6) with n = (20, 20); (b) Singular
values and moduli of the eigenvalues of T−1

n (g6)Tn(f6) with n = (20, 20); (c) Eigenvalues in the com-
plex plane of Tn(f6) with n = (20, 20); (d) Eigenvalues in the complex plane of T−1

n (g6)Tn(f6) with
n = (20, 20)

Iterations
n = (n1, n2) No Prec. Prec. No Prec. Prec.

(5,5) 21 15 21 14
(10,10) 33 24 50 16
(15,15) 39 24 69 16
(20,20) 42 25 103 16

(a) (b)

Table 2.5: (a) Number of GMRES iterations for Tn(f5) and T−1
n (g5)Tn(f5) varying n1 and n2; (b)

Number of GMRES iterations for Tn(f6) and T
−1
n (g6)Tn(f6) varying n1 and n2

Case 6. Let us choose A(6) and B(6) as

A(6)(x) =

(
1− (eix1 + eix2)/2 0
1/(x21 + x22 − 2) 10 + cos(x1) + cos(x2)

)
, B(6)(x) =

(
1− (eix1 + eix2)/2 0

0 1

)

and define

f6(x) = Q(x)A(6)(x)Q(x)T

g6(x) = Q(x)B(6)(x)Q(x)T .
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The remark pointed out in the previous example about the outliers applies also in this case (compare
Figures 2.6 (a) and (b) with Figures 2.7 (c) and (d)). In particular, we have found that the outliers
behave again like O(

√
n̂). The singular values and the moduli of the eigenvalues of Tn(f6) are bounded,

as shown in Figure 2.7 (a). More precisely, a half of the eigenvalues of Tn(f6) is clustered at [8, 12], that

is in the range of A
(6)
2,2(x) = λ2(f6(x)), the remaining part behaves as A

(6)
1,1(x) = λ1(f6(x)) (see Figure

2.7 (c)). Figures 2.7 (b) and (d) refer to the singular values and the eigenvalues of T−1
n (g6)Tn(f6). Let

us observe that, although 0 ∈ Coh[ENR(g6)], the spectrum of T−1
n (g6)Tn(f6) is essentially determined

by the spectrum of the function g−1
6 f6. Table 2.5 (b) highlights once again that the GMRES with

preconditioner Tn(g6) converges faster than its non-preconditioned version.

From previous examples, we conclude that the proposed preconditioning approaches for non-
Hermitian problems are numerically effective and confirm the theoretical findings.

2.2 Preconditioned HSS for multilevel block Toeplitz matrices

In this section, we perform a spectral analysis of the PHSS scheme (Section 1.7) applied to linear systems
of the form Anx = b, in the case where the coefficient matrix An = Tn(f) and the preconditioner
Pn = Tn(g) are multilevel block Toeplitz matrices. Our aim is to compute the asymptotic eigenvalue
distribution as n→∞ of the PHSS iteration matrix (1.28), which, in this framework, takes the form

Mn(α) :=
(
αI + iT−1

n (g)Im(Tn(f))
)−1 (

αI − T−1
n (g)Re(Tn(f))

)
(
αI + T−1

n (g)Re(Tn(f))
)−1 (

αI − iT−1
n (g)Im(Tn(f))

)

= (αTn(g) + i Im(Tn(f)))
−1

(αTn(g)− Re(Tn(f)))

(αTn(g) + Re(Tn(f)))
−1

(αTn(g)− i Im(Tn(f))) . (2.9)

To reach this goal, we first prove Theorems 15,17, concerning the spectral distribution of matrix-
sequences obtained from a combination of some algebraic operations on multilevel block Toeplitz ma-
trices. After that, we will be able to compute the eigenvalue distribution of the algebraic combination
of Toeplitz matrices which show up in the PHSS method. Finally, we will show through numerical
experiments how the knowledge of the eigenvalue distribution of Mn(α) can be used in practice either
to provide a guess for the asymptotic spectral radius ofMn(α) or to find efficient PHSS preconditioners
Tn(g) for linear systems with coefficient matrix Tn(f).

2.2.1 Spectral distribution results for some algebraic combinations

When the involved operations on Toeplitz matrices are not just the simple inversion and multiplication
considered in Theorem 13 we need to extend our tools: this is what we are going to do in this subsection.
Before focusing on the preliminary steps needed for proving Theorem 15, we point out that, thanks to
the notion of GLT sequences (see Section 1.5), an even more powerful version of Theorem 15, reported in
Theorem 14, is already available for computing the singular value distribution of algebraic combinations
of multilevel Toeplitz matrices.

Theorem 14. [133] Let f1, . . . , fm ∈ L1(k, s) and let φ(f1, . . . , fm) : Ik →Ms,

φ(f1, . . . , fm) :=

r∑

i=1

qi∏

j=1

g
νij
ij ,

where r, q1, . . . , qr are positive integers and, for all i and j, νij ∈ {−1,+1}, gij ∈ {f1, . . . , fm}, and gij
is invertible a.e. whenever νij = −1. Then, setting

An := φ(Tn(f1), . . . , Tn(fm)) :=

r∑

i=1

qi∏

j=1

T νijn (gij),

we have {An}n∈Nk ∼σ (φ(f1, . . . , fm), Ik).

Roughly speaking, Theorem 14 says that, when An is the matrix obtained by applying some algebraic
operations to certain Toeplitz matrices Tn(f1), . . . , Tn(fm), the function φ(f1, . . . , fm) obtained from the
same operations applied to the generating functions f1, . . . , fm describes the singular value distribution
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of the matrix-family {An}n∈Nk , in the sense of Definition 3. The proof of Theorem 14 easily follows
from properties [GLT1-3]. Concerning the eigenvalue distribution of {An}n∈Nk , we are going to prove
in Theorem 15 a result analogous to the one in Theorem 14. For the proof of Theorem 15, we need to
strengthen a little bit the hypotheses of Theorem 14. In particular, we will assume that φ(f1, . . . , fm)
belongs to the Tilli class. We will also need the following proposition.

Proposition 9. Let f, g ∈ L∞(k, s) with 0 /∈ Coh[ENR(g)], then ‖Tn(f)T−1
n (g)− Tn(fg−1)‖1 = o(n̂)

as n→∞.

Proof. By Lemma 3, our assumptions imply that d := d(Coh[ENR(g)], 0) is positive, every Tn(g) is
invertible with inverse matrix T−1

n (g) satisfying the inequality ‖T−1
n (g)‖ ≤ 1

d , g is invertible a.e., and
g−1 ∈ L∞(k, s). In particular, fg−1 ∈ L∞(k, s). Using Proposition 8 and the Hölder inequality (1.2)
for the Schatten 1-norm, we obtain

‖Tn(f)T−1
n (g)− Tn(fg−1)‖1 = ‖(Tn(f)− Tn(fg−1)Tn(g))T

−1
n (g)‖1

≤ ‖Tn(f)− Tn(fg−1)Tn(g)‖1‖T−1
n (g)‖

≤ ‖Tn(f)− Tn(fg−1)Tn(g)‖1
1

d
= o(n̂),

which proves the thesis.

We are now ready to prove Theorem 15.

Theorem 15. Let f1, . . . , fm ∈ L∞(k, s) and let φ(f1, . . . , fm) : Ik →Ms,

φ(f1, . . . , fm) :=

r∑

i=1

qi∏

j=1

g
νij
ij , (2.10)

where r, q1, . . . , qr are positive integers and, for all i and j, νij ∈ {−1,+1}, gij ∈ {f1, . . . , fm}, and
0 /∈ Coh[ENR(gij)] whenever νij = −1. Assume that φ(f1, . . . , fm) belongs to the Tilli class. Then,
setting

An := φ(Tn(f1), . . . , Tn(fm)) :=
r∑

i=1

qi∏

j=1

T νijn (gij), (2.11)

we have {An}n∈Nk ∼λ (φ(f1, . . . , fm), Ik).

Proof. Let φ(x) := φ(f1(x), . . . , fm(x)), x ∈ Ik, and let {An(m)}m be any matrix-sequence extracted
from the family {An}n∈Nk . In the following, the index m remains hidden and it is understood that
n → ∞ when m → ∞. We prove that {An}n ∼λ (φ, Ik) by showing that the conditions (c1)–(c4) in
Theorem 1 are met with f = φ. Consider the following sets:

M := {gij : i = 1, . . . , r, j = 1, . . . , qi},
E := {gij : i = 1, . . . , r, j = 1, . . . , qi, νij = −1}.

By hypothesis and by Lemma 3, for every gij ∈ E the distance dij := d(Coh[ENR(gij)], 0) is positive
and

‖T−1
n (gij)‖ ≤

1

dij
. (2.12)

Moreover, for every gij ∈M\E we have (see (1.18))

‖Tn(gij)‖ ≤ ‖gij‖L∞ . (2.13)

By the sub-multiplicative property of the spectral norm, we obtain

‖An‖ =

∥∥∥∥∥∥

r∑

i=1

qi∏

j=1

T νijn (gij)

∥∥∥∥∥∥
≤

r∑

i=1

qi∏

j=1

‖T νijn (gij)‖.

Combining the previous inequality with (2.12) when gij ∈ E and (2.13) when gij ∈ M\E, we conclude
that condition (c1) in Theorem 1 is met.
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Now we observe that g−1
ij ∈ L∞(k, s) for every gij ∈ E (see Lemma 3) and so φ ∈ L∞(k, s). Recalling

that φ is in the Tilli class by hypothesis, the application of Theorem 7 shows that {Tn(φ)}n ∼λ (φ, Ik).
The latter implies that, for all integers N ≥ 0,

lim
n→∞

tr(TNn (φ))

sn̂
=

1

(2π)k

∫

Ik

tr(φN (x))

s
dx. (2.14)

Indeed, although the function F̃ (z) = zN does not belong to C0(C), we know that φ ∈ L∞(k, s). This
has two consequences: first, using ‖Tn(φ)‖ ≤ ‖φ‖L∞ , all the eigenvalues of Tn(φ) lie in the compact disk
D(0, ‖φ‖L∞); second, by definition of ‖φ‖L∞ (see (1.7)), also the eigenvalues of φ belong to D(0, ‖φ‖L∞)
a.e. Therefore, by choosing any function F ∈ C0(C) such that F (z) = zN for all z ∈ D(0, ‖φ‖L∞), from
{Tn(φ)}n ∼λ (φ, Ik) we get (2.14). By (2.14) and by using the inequality (1.3), condition (c2) in
Theorem 1 is proved if we show that

‖ANn − TNn (φ)‖1 =

∥∥∥∥∥∥∥




r∑

i=1

qi∏

j=1

T νijn (gij)



N

− TNn




r∑

i=1

qi∏

j=1

g
νij
ij




∥∥∥∥∥∥∥
1

= o(n̂), (2.15)

for every positive integer N . We first prove (2.15) for N = 1. Using the linearity of the operator Tn(·),
we can bound the quantity in (2.15) as follows:

∥∥∥∥∥∥

r∑

i=1

qi∏

j=1

T νijn (gij)− Tn




r∑

i=1

qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

≤
r∑

i=1

∥∥∥∥∥∥

qi∏

j=1

T νijn (gij)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

.

Therefore, it is sufficient to prove that, for all i = 1, . . . , r,

∥∥∥∥∥∥

qi∏

j=1

T νijn (gij)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

= o(n̂). (2.16)

For each i, we prove (2.16) by induction on qi. If qi = 1, (2.16) holds (obviously) if νi1 = 1, while in the
case νi1 = −1 it holds by Proposition 9 applied with f = 1 and g = gi1. For qi ≥ 2, by the inductive
step we have ‖∏qi−1

j=1 T
νij
n (gij) − Tn(

∏qi−1
j=1 g

νij
ij )‖1 = o(n̂), i.e.,

∏qi−1
j=1 T

νij
n (gij) = Tn(

∏qi−1
j=1 g

νij
ij ) + Rn

with ‖Rn‖1 = o(n̂). As a consequence,

∥∥∥∥∥∥

qi∏

j=1

T νijn (gij)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

=

∥∥∥∥∥∥



qi−1∏

j=1

T νijn (gij)


T

νiqi
n (giqi)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
Tn



qi−1∏

j=1

g
νij
ij


T

νiqi
n (giqi) +RnT

νiqi
n (giqi)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

. (2.17)

Using Proposition 8 or Proposition 9 (depending on the value of νiqi ), we obtain

Tn



qi−1∏

j=1

g
νij
ij


T

νiqi
n (giqi) = Tn




qi∏

j=1

g
νij
ij


+R′

n (2.18)

with ‖R′
n‖1 = o(n̂). Substituting (2.18) in (2.17) and using the Hölder inequality for the Schatten

1-norm as well as (2.12) or (2.13) (again depending on the value of νiqi), we obtain

∥∥∥∥∥∥

qi∏

j=1

T νijn (gij)− Tn




qi∏

j=1

g
νij
ij



∥∥∥∥∥∥
1

= ‖RnT νiqin (giqi) +R′
n‖1 ≤ ‖Rn‖1‖T

νiqi
n (giqi )‖+ ‖R′

n‖1

= o(n̂).

This concludes the proof of (2.16) and shows that (2.15) holds for N = 1. Hence, we can write

An = Tn(φ) +R′′
n (2.19)
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with ‖R′′
n‖1 = o(n̂) and ‖R′′

n‖ uniformly bounded with respect to n (the latter is true because
R′′
n = An − Tn(φ) and we have seen that ‖An‖, ‖Tn(φ)‖ are uniformly bounded). Using (2.19), when

N ≥ 2 we have

ANn = TNn (φ) + Sn,

where Sn is the sum of all possible (different) combinations of products of t matrices Tn(φ) and ℓ
matrices R′′

n, with t+ ℓ = N , t 6= N . For every summand S of Sn we have

‖S‖1 ≤ ‖Tn(φ)‖t‖R′′
n‖ℓ−1‖R′′

n‖1 = o(n̂).

Since the number of summands in Sn is finite, (2.15) holds for every positive integer N , and condition
(c2) in Theorem 1 is then satisfied.

Condition (c3) is also satisfied, because the sequences of multilevel block Toeplitz matrices generated
by a L1(k, s) function, as well as their corresponding algebra, form a subset of the GLT class ([GLT1-
3]). Finally, by taking into account that ER(φ) has empty interior and does not disconnect the complex
plane, the last condition (c4) in Theorem 1 is satisfied, and the application of Theorem 1 shows that
{An}n ∼λ (φ, Ik). Since this is true for any matrix-sequence {An}n extracted from the family {An}n∈Nk ,
we conclude that {An}n∈Nk ∼λ (φ, Ik).

Remark 10. It is important to emphasize that, since the matrix product is not commutative, in the
case s > 1 the order in which the matrix-valued functions g

νij
ij appear in the product in (2.10) must

be the same as the order in which the Toeplitz matrices T
νij
n (gij) appear in the product in (2.11).

Nevertheless, in the case s = 1, the function φ(f1, . . . , fm) is not affected by the order of the (scalar-
valued) functions g

νij
ij . In this case, different orderings of the Toeplitz matrices T

νij
n (gij) in (2.11) give

rise to matrix-families {An}n∈Nk with the same symbol φ(f1, . . . , fm). Of course, similar considerations
also apply to Theorem 14.

We end this subsection by providing a simple (but useful) extension of Theorem 15. For the proof,
we will make use of Theorem 16 and of Lemma 4 below. We recall that the direct sum of p matrices
X1, . . . , Xp is defined as the block-diagonal matrix

X1 ⊕ · · · ⊕Xp := diag
j=1,...,p

Xj =



X1

. . .

Xp


 .

Note that, if Xi is of size m
(i)
1 ×m

(i)
2 , then X1 ⊕ · · · ⊕Xp is of size (

∑p
i=1m

(i)
1 )× (

∑p
i=1m

(i)
2 ).

In Theorem 16, we prove the linearity of the Toeplitz operator Tn(·) with respect to the direct sum,
modulo permutation transformations which depend only on the dimensions of the involved matrices.
The proof of Theorem 16 is based on a distributive property of the tensor product with respect to the
direct sum; see [75, Lemma 4].

Theorem 16. Let t := (t1, . . . , tp) ∈ Np, let n ∈ Nk and let fv ∈ L1(k, tv), v = 1, . . . , p. Then, there
exists a permutation matrix Qn̂,t, depending only on n̂ and t, such that

Tn(f1 ⊕ · · · ⊕ fp) = Qn̂,t[Tn(f1)⊕ · · · ⊕ Tn(fp)]QTn̂,t.

Proof. Let s :=
∑p
v=1 tv. We first notice that the direct-sum function f1 ⊕ · · · ⊕ fp : Ik →Ms,

(f1 ⊕ · · · ⊕ fp)(x) = f1(x)⊕ · · · ⊕ fp(x) =



f1(x)

. . .

fp(x)


 ,

belongs to L1(k, s), and its Fourier coefficients (see (1.14)) are given by

(⊕̂pv=1fv)j :=
1

(2π)k

∫

Ik

(f1 ⊕ · · · ⊕ fp)(x)e−i〈j,x〉 dx = (f̂1)j ⊕ · · · ⊕ (f̂p)j ∈Ms, j ∈ Zk
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(we recall that the integrals are computed componentwise). Therefore, using the definition (1.15), we
get

Tn(f1 ⊕ · · · ⊕ fp) =
∑

|j1|<n1

· · ·
∑

|jk|<nk

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
⊗ (⊕̂pv=1fv)j

=
∑

|j1|<n1

· · ·
∑

|jk|<nk

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
⊗ ((f̂1)j ⊕ · · · ⊕ (f̂p)j).

Due to Lemma 4 in [75], there exists a permutation matrix Qn̂,t, depending only on n̂ and t, such that,
for all j ∈ Zk,

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
⊗ ((f̂1)j ⊕ · · · ⊕ (f̂p)j)

= Qn̂,t

[(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂1)j

)
⊕ · · · ⊕

(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂p)j

)]
QTn̂,t.

Hence

Tn(f1 ⊕ · · · ⊕ fp) =
∑

|j1|<n1

· · ·
∑

|jk|<nk

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
⊗ ((f̂1)j ⊕ · · · ⊕ (f̂p)j)

=
∑

|j1|<n1

· · ·
∑

|jk|<nk

Qn̂,t

[(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂1)j

)
⊕ · · ·

· · · ⊕
(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂p)j

)]
QTn̂,t

= Qn̂,t




∑

|j1|<n1

· · ·
∑

|jk|<nk

[(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂1)j

)
⊕ · · ·

· · · ⊕
(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂p)j

)]


QTn̂,t

= Qn̂,t






 ∑

|j1|<n1

· · ·
∑

|jk|<nk

(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂1)j

)

⊕ · · ·

· · · ⊕


 ∑

|j1|<n1

· · ·
∑

|jk|<nk

(
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk
⊗ (f̂p)j

)




QTn̂,t

= Qn̂,t[Tn(f1)⊕ · · · ⊕ Tn(fp)]QTn̂,t.

Lemma 4 concerns the eigenvalue distribution of a sequence of direct sum of matrices and follows
from Definition 3 and from the fact that, if X1, X2, . . . , Xp are square matrices of size m1,m2, . . . ,mp,
respectively, then the eigenvalues of X1 ⊕X2 ⊕ · · · ⊕Xp are

λi(Xv), i = 1, . . . ,mv, v = 1, . . . , p.

Lemma 4. Let hv : G → Mtv , v = 1, . . . , p, be measurable functions, defined on a measurable set
G ⊂ Rk, with 0 < mk(G) < ∞. Let {An,1}n, . . . , {An,p}n be matrix-sequences, with An,v of size dn,v
tending to infinity as n→∞. Assume that, for all v = 1, . . . , p, {An,v}n ∼λ hv and dn,v/dn → tv/s as
n→∞, where dn :=

∑p
v=1 dn,v and s :=

∑p
v=1 tv. Then

{An,1 ⊕ · · · ⊕An,p}n ∼λ h1 ⊕ · · · ⊕ hp.

Theorem 17. Let f1, . . . , fm ∈ L∞(k, s). Take an integer p ≥ 1, a p-index t := (t1, . . . , tp) and a
constant matrix C (independent of x) such that, for all u = 1, . . . ,m, we have

fu = C

(
p⊕

v=1

fu,v

)
C−1 a.e.,
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where fu,v : Ik →Mtv , v = 1, . . . , p, are some functions. Let φ(f1, . . . , fm) : Ik →Ms,

φ(f1, . . . , fm) :=

r∑

i=1

qi∏

j=1

g
νij
ij = C




p⊕

v=1




r∑

i=1

qi∏

j=1

g
νij
ij,v




C−1 = C

[
p⊕

v=1

φ(f1,v, . . . , fm,v)

]
C−1, (2.20)

where r, q1, . . . , qr are positive integers and, for all i and j, νij ∈ {−1,+1}, gij ∈ {f1, . . . , fm},
gij,v ∈ {f1,v, . . . , fm,v}, and 0 /∈ ⋃pv=1 Coh[ENR(gij,v)] whenever νij = −1. Assume that each ‘compo-
nent’ φ(f1,v, . . . , fm,v) belongs to the Tilli class. Then, setting

An := φ(Tn(f1), . . . , Tn(fm)) :=

r∑

i=1

qi∏

j=1

T νijn (gij), (2.21)

we have {An}n∈Nk ∼λ (φ(f1, . . . , fm), Ik).

Proof. Define f̃u := fu,1 ⊕ · · · ⊕ fu,p, for u = 1, . . . ,m. The hypotheses imply that
∑p

v=1 tv = s and

f̃u ∈ L∞(k, s). Moreover, since f̃u = C−1fuC a.e., for all u = 1, . . . ,m and n ∈ Nk we have

Tn(f̃u) = (In̂ ⊗ C)−1Tn(fu)(In̂ ⊗ C), (2.22)

where In̂ is the identity matrix of order n̂. This follows from the definitions of Tn(f̃u), Tn(fu), see
(1.15), the linearity of the integral (1.14) involved in the definition of the Fourier coefficients, and the
properties of the tensor product of matrices. Now, by applying Theorem 16 we obtain

Tn(f̃u) = Qn̂,t[Tn(fu,1)⊕ · · · ⊕ Tn(fu,p)]QTn̂,t, (2.23)

where Qn̂,t is a permutation matrix depending only on n̂ and t = (t1, . . . , tp). Putting together (2.22)
and (2.23) we get

Tn(fu) = (In̂ ⊗ C)Qn̂,t[Tn(fu,1)⊕ · · · ⊕ Tn(fu,p)]QTn̂,t(In̂ ⊗ C)−1,

which holds for all u = 1, . . . ,m and n ∈ Nk. Therefore, looking at (2.21), for all i, j we have

T νijn (gij) = (In̂ ⊗ C)Qn̂,t[T νijn (gij,1)⊕ · · · ⊕ T νijn (gij,p)]Q
T
n̂,t(In̂ ⊗ C)−1

and so

An = φ(Tn(f1), . . . , Tn(fm)) = (In̂ ⊗ C)Qn̂,t
[

p⊕

v=1

φ(Tn(f1,v), . . . , Tn(fm,v))

]
QTn̂,t(In̂ ⊗ C)−1, (2.24)

where (cf. (2.20))

φ(Tn(f1,v), . . . , Tn(fm,v)) :=

r∑

i=1

qi∏

j=1

T νijn (gij,v), v = 1, . . . , p.

Since 0 /∈ ⋃pv=1 Coh[ENR(gij,v)] whenever νij = −1, by Theorem 15 we obtain

{φ(Tn(f1,v), . . . , Tn(fm,v))}n∈Nk ∼λ (φ(f1,v, . . . , fm,v), Ik), v = 1, . . . , p.

The application of Lemma 4 concludes the proof. We just remark that, with the notation of Lemma 4,
we have An,v = φ(Tn(f1,v), . . . , Tn(fm,v)), hv = φ(f1,v, . . . , fm,v) : Ik →Mtv , dn,v = n̂tv and dn = n̂s.
Also note that, by (2.20) and (2.24),

φ(f1, . . . , fm) ∼
p⊕

v=1

φ(f1,v, . . . , fm,v) a.e., An ∼
p⊕

v=1

φ(Tn(f1,v), . . . , Tn(fm,v)).

Theorem 17 shows that Theorem 15 continues to hold if the hypothesis ‘ER(φ(f1, . . . , fm)) has empty
interior and does not disconnect the complex plane’ (i.e., ‘φ(f1, . . . , fm) belongs to the Tilli class’) is
replaced by the weaker assumption that ‘its individual ‘components’ ER(φ(f1,v, . . . , fm,v)), v = 1, . . . , p,
have empty interior and do not disconnect the complex plane’ (i.e., that ‘every φ(f1,v, . . . , fm,v) belongs
to the Tilli class’). Note that Theorem 15 is obtained from Theorem 17 by choosing t = s (a p-index
with p = 1) and C = Is (the identity matrix of order s). This explicitly shows that Theorem 17 is an
actual extension of Theorem 15.

Remark 11. Appropriate versions of Theorems 15,17 continue to hold even when, in the expression of
φ(f1, . . . , fm), other operations are allowed such as unary multiplication for a complex scalar β and unary
conjugate transposition. In fact, since β Tn(f) = Tn(βf), T

∗
n(f) = Tn(f

∗) and T−∗
n (f) = T−1

n (f∗), these
operations are reduced to operations on the generating function.
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2.2.2 PHSS applied to multilevel block Toeplitz matrices

Before starting, in Proposition 10 we prove that, whenever f is sectorial, the HSS and PHSS methods
can be applied to a properly scaled version of the Toeplitz linear system Tn(f)x = b. This shows that the
applicability of HSS and PHSS in the context of multilevel block Toeplitz matrices is actually maximal.
Indeed, if f is not sectorial, then Tn(f) could be either singular for some n or its condition number,
as a function of n, may be erratic and with exponentially growing subsequences [23]. Consequently,
the sectoriality requirement for f is mild or even minimal, if we want to ensure the invertibility of the
coefficient matrix Tn(f).

Proposition 10. Let f ∈ L1(k, s) be sectorial. Then, there exists a complex number ω such that
Re(ωTn(f)) is positive definite for all n ∈ Nk. In particular, the HSS and PHSS methods can be applied
to the linear systems with coefficient matrix ωTn(f) = Tn(ωf).

Proof. It is enough to combine Definition 2 and Proposition 1. Since f is sectorial, we can find a
separating line z and a rotation number ω such that

ENR(ωf) = ω · ENR(f) ⊆ {w ∈ C : Re(w) ≥ d(z, 0)}

and the eigenvalue of minimum modulus of Re(ωf) is not a.e. equal to d(z, 0). Since the matrix Re(ωf)
is HPSD a.e. (see Remark 1), it follows that the minimal eigenvalue of Re(ωf) is not a.e. equal to 0.
Hence, by Proposition 1 and by the linearity of Tn(·),

Tn(Re(ωf)) = Tn

(
ωf + (ωf)∗

2

)
=
Tn(ωf) + Tn((ωf)

∗)

2
=
Tn(ωf) + T ∗

n(ωf)

2
= Re(ωTn(f))

is HPD for all n ∈ Nk.

Now, let f, g ∈ L1(k, s), let An := Tn(f), Pn := Tn(g), and assume that Re(f) and g are HPSD
a.e., with minimal eigenvalues λmin(Re(f)) and λmin(g) not a.e. equal to 0. In this way, Proposition
1, together with the equality Re(Tn(f)) = Tn(Re(f)), ensures that Re(An) and Pn are HPD for all
n ∈ Nk. Hence, we can apply to the linear system Anx = b the PHSS method with preconditioner Pn.
The resulting PHSS iteration matrix is, cf. (2.9),

Mn(α) := (αTn(g) + i Im(Tn(f)))
−1

(αTn(g)− Re(Tn(f)))

(αTn(g) + Re(Tn(f)))
−1 (αTn(g)− i Im(Tn(f))) . (2.25)

It is now easy to see that Mn(α) can be written in the form (2.21). For example, for the first factor in
(2.25) we have

(αTn(g) + i Im(Tn(f)))
−1 = (αTn(g) + iTn(Im(f)))−1 = T−1

n (αg + i Im(f)).

By performing similar calculations for the other factors, we obtain

Mn(α) = T−1
n (αg + i Im(f))Tn(αg − Re(f))T−1

n (αg +Re(f))Tn(αg − i Im(f))

= φ(Tn(αg + i Im(f)), Tn(αg − Re(f)), Tn(αg +Re(f)), Tn(αg − i Im(f))),
(2.26)

where φ(f1, f2, f3, f4) := f−1
1 f2f

−1
3 f4. Therefore, the application of Theorems 15,17 yields the eigenvalue

distribution and the symbol of the matrix-family {Mn(α)}n∈Nk . This is reported in Theorem 18, together
with other relevant properties of the PHSS in the Toeplitz setting. For the proof of one of these
properties, we need the following lemma.

Lemma 5. Let 0 < λ1 ≤ . . . ≤ λm. Then, for all α > 0,

max
i=1,...,m

∣∣∣∣
α− λi
α+ λi

∣∣∣∣ = max

(∣∣∣∣
α− λ1
α+ λ1

∣∣∣∣ ,
∣∣∣∣
α− λm
α+ λm

∣∣∣∣
)

and

min
α>0

[
max

(∣∣∣∣
α− λ1
α+ λ1

∣∣∣∣ ,
∣∣∣∣
α− λm
α+ λm

∣∣∣∣
)]

= max

(∣∣∣∣
α− λ1
α+ λ1

∣∣∣∣ ,
∣∣∣∣
α− λm
α+ λm

∣∣∣∣
)∣∣∣∣

α=
√
λ1λm

=

√
λm
λ1
− 1

√
λm
λ1

+ 1

.
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From now on, if h : Ik →Ms is any measurable matrix-valued function whose eigenvalues are real
a.e., we will denote by mh and Mh the minimum and the maximum of ER(h). In other words,

mh := ess inf
x∈Ik

λmin(h(x)), Mh := ess sup
x∈Ik

λmax(h(x)).

Theorem 18. Let f, g ∈ L1(k, s), assume that Re(f), g are HPSD a.e., with minimal eigenvalues
λmin(Re(f)), λmin(g) not a.e. equal to 0, and let α > 0. Then, setting An := Tn(f), Pn := Tn(g), the
following results hold.

1. Re(An), Pn are HPD for all n ∈ Nk.

2. The PHSS applied to An with preconditioner Pn and parameter α has iteration matrix

Mn(α) = T−1
n (αg + i Im(f))Tn(αg − Re(f))T−1

n (αg +Re(f))Tn(αg − i Im(f)) (2.27)

and

ρ(Mn(α)) ≤ σn(α) = max
λ∈Λ(P−1

n Re(An))

∣∣∣∣
α− λ
α+ λ

∣∣∣∣ . (2.28)

3. The eigenvalue distribution relation

{Mn(α)}n∈Nk ∼λ (φα(f, g), Ik), (2.29)

with

φα(f, g) := (αg + i Im(f))−1(αg − Re(f))(αg +Re(f))−1(αg − i Im(f)), (2.30)

holds whenever f, g ∈ L∞(k, s) and at least one between the following conditions is met:

(a) φα(f, g) is in the Tilli class, 0 /∈ Coh[ENR(αg + i Im(f))]
⋃
Coh[ENR(αg +Re(f))];

(b) there is a p-index t := (t1, . . . , tp) and a constant matrix C (independent of x) such that

f = C(f1 ⊕ · · · ⊕ fp)C−1 a.e., with fv : Ik →Mtv for v = 1, . . . , p, (2.31)

g = C(g1 ⊕ · · · ⊕ gp)C−1 a.e., with gv : Ik →Mtv for v = 1, . . . , p, (2.32)

every

φα(fv, gv) := (αgv + i Im(fv))
−1(αgv − Re(fv))(αgv +Re(fv))

−1(αgv − i Im(fv)),

v = 1, . . . , p, is in the Tilli class, and

0 /∈
(

p⋃

v=1

Coh[ENR(αgv + i Im(fv))]

)⋃(
p⋃

v=1

Coh[ENR(αgv +Re(fv))]

)
. (2.33)

Note that (b) contains (a) as a particular case (take p = 1, t = s and C = Is in (b) to obtain (a)).
However, we stated these conditions separately, because (a) is simpler.

4. Assume that g is HPD a.e. and let h := g−1Re(f) : Ik →Ms. Then,

λmin(P
−1
n Re(An))→ mh, λmax(P

−1
n Re(An))→Mh. (2.34)

As a consequence, for the values α∗
n, κn, σn(α

∗
n) in (1.32)–(1.34) we have

α∗
n → α∗ :=

√
mhMh, κn → κ :=

Mh

mh
, σn(α

∗
n)→ σ∗ :=

√
κ− 1√
κ+ 1

, (2.35)

provided that the definitions of α∗, κ, σ∗ have meaning.1 In particular, recalling (2.28), we obtain

lim sup
n→∞

ρ(Mn(α
∗
n)) ≤ lim

n→∞
σn(α

∗
n) = σ∗. (2.36)

Moreover,
min
α>0
‖ρ(φα(f, g))‖∞ ≤ σ∗, (2.37)

where ‖ρ(φα(f, g))‖∞ := ‖ρ(φα(f, g))‖L∞(Ik) = ess supx∈Ik ρ(φα(f(x), g(x))) is the infinity norm
of the spectral radius of the symbol φα(f, g).

1While the limit relations (2.34) are always true, the relations (2.35) follow from (2.34), provided that no indeterminate
form occurs. The only critical case is when mh = 0 and Mh = ∞; in this case, the definitions of κ and σ∗ have meaning
(κ = ∞, σ∗ = 1), but the definition of α∗ has not (we encounter the indeterminate form 0 · ∞), and so we do not know
if α∗

n converges to something or not. In all the other cases, when mh 6= 0 or Mh < ∞, no indeterminate form occurs and
the definitions of α∗, κ, σ∗ have meaning.
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Proof. Item 1 follows from Proposition 1. Item 2 follows from (2.26) and Theorem 10. The proof that
(2.29) holds whenever f, g ∈ L∞(k, s) and 3(a) is fulfilled follows from the expression of Mn(α) given in
(2.27) and from Theorem 15 applied with

f1 := αg + i Im(f), f2 := αg − Re(f), f3 := αg +Re(f), f4 := αg +Re(f), (2.38)

and
φ(f1, f2, f3, f4) := f−1

1 f2f
−1
3 f4 = φα(f, g). (2.39)

The proof that (2.29) holds whenever f, g ∈ L∞(k, s) and 3(b) is fulfilled follows from the expression
of Mn(α) given in (2.27) and from Theorem 17 applied with f1, f2, f3, f4, φ(f1, f2, f3, f4) as in (2.38)–
(2.39). We just remark that, from (2.31)–(2.32), we get

αg ± i Im(f) = C [(αg1 ± i Im(f1)) ⊕ · · · ⊕ (αgp ± i Im(fp))]C
−1,

αg ± Re(f) = C [(αg1 ± Re(f1))⊕ · · · ⊕ (αgp ± Re(fp))]C
−1.

Now, assume that g is HPD a.e. and define h := g−1Re(f) as in item 4. The limit relations (2.34) follow
by combining the results of Theorem 9 and Proposition 2 (the proof is the same as in the scalar case so
we do not report the details). It only remains to prove the inequality (2.37). The steps to prove (2.37)
are analogous to the ones used for the proof of the upper bound (2.28).

By performing some manipulations on the expression of φα(f, g) in (2.30) we see that, a.e.,

φα(f, g) = g−1/2 (αIs + i g−1/2Im(f)g−1/2)−1(αIs − g−1/2Re(f)g−1/2)

(αIs + g−1/2Re(f)g−1/2)−1(αIs − i g−1/2Im(f)g−1/2) g1/2.

By similarity and by recalling that Λ(AB) = Λ(BA) for all square matrices A,B of the same size, we
obtain that, a.e.,

ρ(φα(f, g)) = ρ(φ̃α(f, g)),

where

φ̃α(f, g) := (αIs − g−1/2Re(f)g−1/2)(αIs + g−1/2Re(f)g−1/2)−1

(αIs − i g−1/2Im(f)g−1/2)(αIs + i g−1/2Im(f)g−1/2)−1.

Now we observe that the matrix (αIs − i g−1/2Im(f)g−1/2)(αIs + i g−1/2Im(f)g−1/2)−1 is unitary. This
can be proved by direct computation, showing that the product of this matrix with its conjugate
transpose is Is (when verifying this, take into account that all the functions of the Hermitian ma-
trix g−1/2Im(f)g−1/2 commute). Using the unitary invariance of the spectral norm, the fact that the
matrix (αIs − g−1/2Re(f)g−1/2)(αIs + g−1/2Re(f)g−1/2)−1 is Hermitian, and the similarity relation
g−1/2Re(f)g−1/2 ∼ h, we obtain that, a.e.,

ρ(φα(f, g)) = ρ(φ̃α(f, g)) ≤ ‖φ̃α(f, g)‖
= ‖(αIs − g−1/2Re(f)g−1/2)(αIs + g−1/2Re(f)g−1/2)−1‖
= ρ((αIs − g−1/2Re(f)g−1/2)(αIs + g−1/2Re(f)g−1/2)−1)

= max
λ∈Λ(h)

∣∣∣∣
α− λ
α+ λ

∣∣∣∣ = max

(∣∣∣∣
α− λmin(h)

α+ λmin(h)

∣∣∣∣ ,
∣∣∣∣
α− λmax(h)

α+ λmax(h)

∣∣∣∣
)
,

where in the last passage we invoked Lemma 5. Therefore,

‖ρ(φα(f, g))‖∞ ≤
∥∥∥∥max

(∣∣∣∣
α− λmin(h)

α+ λmin(h)

∣∣∣∣ ,
∣∣∣∣
α− λmax(h)

α+ λmax(h)

∣∣∣∣
)∥∥∥∥

L∞(Ik)

= max

(∣∣∣∣
α−mh

α+mh

∣∣∣∣ ,
∣∣∣∣
α−Mh

α+Mh

∣∣∣∣
)
,

where it is understood that α−Mh

α+Mh
= −1 if Mh =∞. In conclusion, (2.37) holds if mh = 0 or Mh =∞,

because in these cases σ∗ = 1, and (2.37) also holds in the case 0 < mh ≤Mh <∞, because

min
α>0
‖ρ(φα(f, g))‖∞ ≤ min

α>0

[
max

(∣∣∣∣
α−mh

α+mh

∣∣∣∣ ,
∣∣∣∣
α−Mh

α+Mh

∣∣∣∣
)]

= max

(∣∣∣∣
α−mh

α+mh

∣∣∣∣ ,
∣∣∣∣
α−Mh

α+Mh

∣∣∣∣
)∣∣∣∣

α=α∗

= σ∗,

where we invoked again Lemma 5.
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Proposition 11 gives a sufficient condition to met conditions in items 3(a) and 3(b). To prove it we
need Lemma 6. In the remaining part of this subsection, if I, J are two intervals in R, we denote by
I × J the rectangle in C defined as

I × J := {z ∈ C : Re(z) ∈ I, Im(z) ∈ J}.

Lemma 6. Let f : G ⊆ Rk → Ms be measurable and let ENR(f) be its essential numerical range.
Then

ENR(f) ⊆ [mRe(f),MRe(f)]× [mIm(f),MIm(f)].

In particular, Coh[ENR(f)] ⊆ [mRe(f),MRe(f)]× [mIm(f),MIm(f)].

Proof. Let r be a complex number such that r /∈ [mRe(f),MRe(f)] × [mIm(f),MIm(f)]. We show that
r /∈ ENR(f), i.e., that

∃ ǫ > 0 : mk{t ∈ G : ∃ v ∈ Cs with ‖v‖2 = 1 such that v∗f(t)v ∈ D(r, ǫ)} = 0.

In other words, we have to prove the following result:

∃ ǫ > 0 : for a.e. t ∈ G we have v∗f(t)v /∈ D(r, ǫ) for all v ∈ Cs with ‖v‖2 = 1. (2.40)

Choose ǫ > 0 such that D(r, ǫ)
⋂
[mRe(f),MRe(f)]× [mIm(f),MIm(f)] is empty; note that such an ǫ exists

because r /∈ [mRe(f),MRe(f)] × [mIm(f),MIm(f)] and [mRe(f),MRe(f)] × [mIm(f),MIm(f)] is closed. By
definition of mRe(f),MRe(f),mIm(f),MIm(f), for a.e. t ∈ G we have

mRe(f) ≤ λmin(Re(f(t))) ≤ λmax(Re(f(t))) ≤MRe(f),

mIm(f) ≤ λmin(Im(f(t))) ≤ λmax(Im(f(t))) ≤MIm(f),

and so, by the minimax principle,

v∗f(t)v = v∗Re(f(t))v+i v∗Im(f(t))v ∈ [mRe(f),MRe(f)]× [mIm(f),MIm(f)] ∀ v ∈ Cs with ‖v‖2 = 1;

in particular, v∗f(t)v /∈ D(r, ǫ) for all v ∈ Cs with ‖v‖2 = 1. This concludes the proof of (2.40).

Proposition 11. Under the hypotheses of Theorem 18, if mg > 0 it holds that

(a) 0 /∈ Coh[ENR(αg + i Im(f))]
⋃
Coh[ENR(αg + Re(f))], hence the last condition in item 3(a) of

Theorem 18 is met;

(b) in any decomposition of f, g of the form (2.31)–(2.32) in which C is a unitary matrix, the last
condition (2.33) in item 3(b) of Theorem 18 is met.

Proof. Since g is Hermitian a.e.

Re(αg + i Im(f)) = αg a.e.,

Re(αg +Re(f)) = αg +Re(f) a.e.

Since Re(f) is HPSD a.e., by the minimax principle we have mαg+Re(f) ≥ mαg = αmg. Thus, Lemma
6 implies that

Coh[ENR(αg + i Im(f))]
⋃

Coh[ENR(αg +Re(f))] ⊆ [αmg,+∞)× R, (2.41)

and in particular, since mg is assumed to be positive (and α is positive as well), 0 cannot belong to the
union in the left-hand side. This proves part (a).

To prove part (b), we note that, if

f = C(f1 ⊕ · · · ⊕ fp)C−1 a.e.,

g = C(g1 ⊕ · · · ⊕ gp)C−1 a.e.

are decompositions of f, g in which the matrix C is unitary, then C−1 = C∗ and:

• Re(f1) ⊕ · · · ⊕ Re(fp) = Re(f1 ⊕ · · · ⊕ fp) = Re(C∗fC) = C∗Re(f)C a.e.; in particular,
Re(f1), . . . ,Re(fp) are HPSD a.e., because Re(f) is HPSD a.e. by hypothesis;
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• g1⊕· · ·⊕gp = C∗gC a.e., so g1, . . . , gp are Hermitian a.e. because g is Hermitian a.e. by hypothesis;

• mgv ≥ mg for all v = 1, . . . , p, because the eigenvalues of g are λi(gv), i = 1, . . . , tv, v = 1, . . . , p,
where tv is the size of gv.

Therefore, by replicating the above argument which allowed us to obtain (2.41), we see that ∀ v = 1, . . . , p

Coh[ENR(αgv + i Im(fv))]
⋃

Coh[ENR(αgv +Re(fv))] ⊆ [αmgv ,+∞)× R ⊆ [αmg,+∞)× R,

and, recalling that mg > 0, we see that part (b) is proved.

Remark 12. With Remark 2 in mind, assuming the validity of (2.29), we expect that

lim
n→∞

ρ(Mn(α)) = ‖ρ(φα(f, g))‖∞. (2.42)

Consequently, the optimal PHSS preconditioner Tn(g) and the optimal parameter α for Tn(f) are found
by determining the couple (g, α) that minimizes ‖ρ(φα(f, g))‖∞, subject to the constraints that α > 0
and g is HPSD with λmin(g) not a.e. equal to 0. Although it may seem that this heuristic idea will
hardly work, the numerical experiments in the next subsection show that, in practice, it can be quite
successful.

2.2.3 Numerical results

This subsection contains numerical examples that illustrate the effectiveness of the provided theoretical
analysis and of the PHSS with preconditioner chosen according to our eigenvalue distribution results.
In particular, we include an example coming from the approximation of PDEs (Case 11), while one of
the numerical experiments (Case 9) also shows that the upper bound σn(α) may be a crude estimate for
ρ(Mn(α)) and that the best parameter α∗

n for σn(α) need not to be the best parameter for ρ(Mn(α)).
This confirms that the effects of the imaginary part Im(Tn(f)) in the PHSS iteration matrix (2.9) can
be significant.

Univariate examples

Fixed s = 2 and k = 1, we will consider matrix-valued functions f, g ∈ L∞(1, 2) of the form

f(x) = Q(x)A(x)Q∗(x),

g(x) = Q(x)B(x)Q∗(x),

where A(x), B(x), Q(x) belong to L∞(1, 2) and Q(x) is unitary a.e. In the examples, we focus our
attention on the spectral behavior of the PHSS iteration matrices Mn(α) for different sizes n, on the
minimization of ‖ρ(φα(f, g))‖∞ mentioned in Remark 12, and on the solution of the linear system with
coefficient matrix Tn(f) and random right-hand side. From a computational point of view, to solve such
systems, we implemented both the HSS and the PHSS with preconditioner Tn(g), using a tolerance of
10−6 and an initial guess equal to the zero vector. The choice of the parameter α will be specified each
time.

In the first case considered below, we will be concerned with the validation of the theory developed
so far, with particular attention to the eigenvalue distribution result (2.29). We will consider the
clustering of Mn(α) at the essential range ER(φα(f, g)) as the main visual indicator that (2.29) holds;
see Remark 3 for a motivation. The other considered indicator is the limit relation (2.42); see Remark 12.
If the assumptions of item 3 in Theorem 18 are fulfilled, we shall see that {Mn(α)}n is clustered at
ER(φα(f, g)) and (2.42) holds. In the considered example, it turns out that the same is true even if the
assumptions in Theorem 18 are violated. This shows that the minimization of ‖ρ(φα(f, g))‖∞ to find
optimal PHSS preconditioners Tn(g) and optimal parameters α for Tn(f) (cf. Remark 12) makes sense
even if we are not sure that (2.29) holds. In the second two cases considered below, we will focus on
this minimization problem and we will see that the couple (g, α) obtained in this way leads to efficient
PHSS methods for solving linear systems with coefficient matrix Tn(f).

Case 7. Let

A(x) :=

(
2 + i+ cosx 0

0 1− βeix
)
, B(x) :=

(
1 0
0 1− β cosx

)
,
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where 0 < β ≤ 1, and define

f(x) := Q(x)A(x)Q∗(x),

g(x) := Q(x)B(x)Q∗(x).

Due to the assumption β ∈ (0, 1], the matrices g(x) and

Re(f(x)) = Q(x)

(
2 + cosx 0

0 1− β cosx

)
Q∗(x)

are HPD for a.e. x ∈ I1 = (−π, π). Using Proposition 1, it follows that Re(Tn(f)) = Tn(Re(f)) and
Tn(g) are HPD for all n. Therefore, we can use the PHSS with preconditioner Tn(g) for solving a linear
system with coefficient matrix Tn(f).

If 0 < β < 1, then mg = 1 − β > 0, and so, by Proposition 11, all the hypotheses of item 3(a) in
Theorem 18 are satisfied except, possibly, the assumption that φα(f, g) is in the Tilli class. By direct
computation,

φα(f(x), g(x)) = Q(x)φα(A(x), B(x))Q∗(x)

= Q(x)




α−i

α+i
· α−2−cosx
α+2+cos x 0

0 α−1
α+1 ·

α+ iβ sin x
1−β cos x

α− iβ sin x
1−β cos x


Q∗(x).

This implies that

ER(φα(f, g)) = ER(λ1(φα(f, g))) ∪ ER(λ2(φα(f, g)))
= ER(φα(A,B)1,1) ∪ ER(φα(A,B)2,2).

A necessary (but in general not sufficient) condition for φα(f, g) to be in the Tilli class is that both
φα(A,B)1,1 and φα(A,B)2,2 are in the Tilli class. Expressing φα(A,B)1,1 and φα(A,B)2,2 in polar form,
we have:

(i) φα(A,B)1,1 = ψαe
−2iϕα , where ϕα := arctan 1

α is constant and ψα(x) :=
α−2−cos x
α+2+cos x depends on x

(so it describes a line segment with slope tan(−2ϕα)). Since ψα(x) is even and monotone increasing
over [0, π] (its derivative is nonnegative on this interval), it follows that

inf
x∈I1

ψα(x) = ψα(0) =
α− 3

α+ 3
, sup

x∈I1
ψα(x) = ψα(π) =

α− 1

α+ 1
.

Consequently, ER(φα(A,B)1,1) is the (closed) line segment in C whose extremes are the points
α−3
α+3e

−2iϕα , α−1
α+1e

−2iϕα . Note that this segment passes through the origin when α ∈ [1, 3];

(ii) φα(A,B)2,2 = α−1
α+1 e

2iθα , where θα(x) := arctan
(

β sin x
α(1−β cosx)

)
depends on x and α−1

α+1 is constant

(so it describes an arc of a circle centered at the origin and with constant radius). If β = 1, the
function ξα(x) :=

β sin x
α(1−β cosx) assumes all values in R for x ∈ I1, implying that ER(φα(A,B)2,2)

is the circle centered at 0 and with radius
∣∣∣α−1
α+1

∣∣∣. If β ∈ (0, 1), then ξα(x) is odd and bounded

over I1, vanishes at the points x = −π, 0, π, and its derivative is nonnegative if and only if
− arccosβ ≤ x ≤ arccosβ. Hence,

inf
x∈I1

ξα(x) = ξα(− arccosβ) = − β

α
√
1− β2

, sup
x∈I1

ξα(x) = ξα(arccosβ) =
β

α
√
1− β2

,

and so ER(φα(A,B)2,2) is the (closed) arc centered at 0 and with radius
∣∣∣α−1
α+1

∣∣∣, which passes

through the real point α−1
α+1 (for x = 0) and whose extremes are given by

α− 1

α+ 1
e
−2i arctan β

α
√

1−β2 ,
α− 1

α+ 1
e
2i arctan β

α
√

1−β2 .

Figure 2.8 shows the essential ranges of φα(A,B)1,1 and φα(A,B)2,2. From (i) we deduce that
ER(φα(A,B)1,1) does not disconnect the complex plane and has empty interior, i.e., φα(A,B)1,1 is in
the Tilli class. Concerning (ii), if β = 1, then ER(φα(A,B)2,2) disconnects the complex plane and
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Figure 2.8: Essential ranges of φα(A,B)1,1 (red) and φα(A,B)2,2 (green). The figure refers to the case
α ∈ (1, 3] and β ∈ (0, 1).

φα(A,B)2,2 is not in the Tilli class; otherwise, if β ∈ (0, 1), then φα(A,B)2,2 is in the Tilli class. We
then conclude that both φα(A,B)1,1 and φα(A,B)2,2 are in the Tilli class when β ∈ (0, 1), while for
β = 1, φα(A,B)2,2, and hence also φα(f, g), is not in the Tilli class. From the analysis in (i)–(ii), we
also obtain that

‖ρ(φα(f, g))‖∞ = max

(∣∣∣∣
α− 1

α+ 1

∣∣∣∣ ,
∣∣∣∣
α− 3

α+ 3

∣∣∣∣
)
,

which is independent of β.

The previous discussion does not depend on the unitary matrix Q(x). Let us now consider two
different choices for Q(x).

Subcase 1.1. Let Q(x) = Q be a constant transformation. Using item 3(b) in Theorem 18 together
with Proposition 11, we have {Mn(α)}n ∼λ (φα(f, g), I1) if φα(A,B)1,1 and φα(A,B)2,2 are in the Tilli
class, and this is verified for β ∈ (0, 1).

In the numerical tests shown in Figures 2.9–2.11, we fixed

Q =
1√
2

(
1 1
−1 1

)
(2.43)

and we chose α = α∗ =
√
mhMh =

√
3, where

h(x) := g−1(x)Re(f(x)) = Q

(
2 + cosx 0

0 1

)
Q∗

is independent of β (cf. item 4 in Theorem 18). We considered three choices of the parameter β:

• β = 0.9. Both φα(A,B)1,1 and φα(A,B)2,2 are in the Tilli class. Figures 2.9(a) and 2.9(b) refer
to the eigenvalues in the complex plane of M200(α) and to the eigenvalue functions of φα(f, g),
respectively. Note that also φα(f, g) is in the Tilli class. As expected, the eigenvalues of M200(α)
are distributed as λ1(φα(f, g)) = φα(A,B)1,1 and λ2(φα(f, g)) = φα(A,B)2,2, and in fact they are
clustered at the union of the ranges of λ1(φα(f, g)) and λ2(φα(f, g)), which is the essential range
of φα(f, g);

• β = 0.99. Both φα(A,B)1,1 and φα(A,B)2,2 are in the Tilli class, but φα(f, g) is not (see Figure
2.10(b)). In spite of this, as predicted by item 3(b) in Theorem 18, the eigenvalues ofM200(α) are
distributed as the eigenvalue functions of φα(f, g) (see Figure 2.10(a));

• β = 1. In this case φα(A,B)1,1 is in the Tilli class, but φα(A,B)2,2 is not. We cannot apply
neither item 3(a) nor item 3(b) in Theorem 18, but, as shown in Figures 2.11(a) and 2.11(b), the
eigenvalues of M200(α) are distributed as the eigenvalue functions of φα(f, g). Therefore we guess
that, even in this case, {Mn(α)}n ∼λ (φα(f, g), I1).
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Figure 2.9: (a) Eigenvalues in the complex plane of Mn(α) fixed α =
√
3, β = 0.9 and n = 200; (b)

Essential ranges of λ1(φα(f, g)) (red) and λ2(φα(f, g)) (green) for α =
√
3, β = 0.9 and n = 200.
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Figure 2.10: (a) Eigenvalues in the complex plane of Mn(α) fixed α =
√
3, β = 0.99 and n = 200; (b)

Essential ranges of λ1(φα(f, g)) (red) and λ2(φα(f, g)) (green) for α =
√
3, β = 0.99 and n = 200.
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Figure 2.11: (a) Eigenvalues in the complex plane of Mn(α) fixed α =
√
3, β = 1 and n = 200; (b)

Essential ranges of λ1(φα(f, g)) (red) and λ2(φα(f, g)) (green) for α =
√
3, β = 1 and n = 200.

α =
√
3 α = 3

n β = 0.9 β = 1 β = 0.9 β = 1
50 0.2679 0.2679 0.5000 0.5000
100 0.2679 0.2679 0.5000 0.5000
200 0.2679 0.2679 0.5000 0.5000
400 0.2679 0.2679 0.5000 0.5000

‖ρ(φα(f, g))‖∞ =
√
3−1√
3+1

‖ρ(φα(f, g))‖∞ = 1
2

Table 2.6: Spectral radius of the PHSS iteration matrix fixed Q(x) = Q as in (2.43).
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Figure 2.12: (a) Eigenvalues in the complex plane of Mn(α) fixed α =
√
3, β = 0.99 and n = 200; (b)

Essential range of φα(f, g) for α =
√
3, β = 0.99 and n = 200.
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Figure 2.13: (a) Eigenvalues in the complex plane of Mn(α) fixed α =
√
3 − 0.1, β = 0.9 and n = 200;

(b) Essential range of φα(f, g) fixed α =
√
3− 0.1, β = 0.9 and n = 200.

Table 2.6 shows the spectral radius of the PHSS iteration matrix Mn(α) for different values of α and
β, fixed Q(x) = Q as in (2.43). In all the considered cases, the limit relation (2.42) holds. Note that
this could be expected for α =

√
3, simply looking at Figures 2.9 and 2.11.

Subcase 1.2. Let

Q(x) =

(
cosx sinx
− sinx cosx

)
. (2.44)

This unitary transformation depends on x and so we cannot apply item 3(b) of Theorem 18 as we did
in Subcase 1.1. However, we can apply item 3(a) whenever φα(f, g) is in the Tilli class. We know from
the discussion before Subcase 1.1 that φα(f, g) is not in the Tilli class for β = 1. For β ∈ (0, 1), to
understand when φα(f, g) is not in the Tilli class, we study when the essential ranges of φα(A,B)1,1
and φα(A,B)2,2 have two intersections, like in Figures 2.10(b) and 2.11(b). Recalling the discussion in
(i)–(ii), see also Figure 2.8, they have two intersections when the following conditions are satisfied:

1. α−3
α+3 ≤ −α−1

α+1 <
α−1
α+1 ⇐⇒ α ∈ (1,

√
3];

2. 2 arctan β

α
√

1−β2
≥ −2ϕα+ π ∧ −2 arctan β

α
√

1−β2
≤ −2ϕα, which, assuming α ≥ 1 and recalling

the identities ϕα = arctan 1
α and arctanα+ arctan 1

α = π
2 , is equivalent to β ≥ η(α) := α2

√
1+α4

.

We then conclude that, for β ∈ (0, 1), φα(f, g) is not in the Tilli class if and only if α ∈ (1,
√
3] and

β ∈ [η(α), 1).
In the numerical experiments shown in Figures 2.12–2.13, we considered two different choices of α

and β:

• α = α∗ =
√
3 (the best asymptotic parameter suggested by Theorem 18) and β = 0.99. Since

η(
√
3) ≈ 0.95 < 0.99, for this choice of α and β, both φα(A,B)1,1 and φα(A,B)2,2 are in the

Tilli class, but φα(f, g) is not (see Figure 2.12(b)). Although Theorem 18 cannot be applied,
a comparison between Figures 2.12(a) and 2.12(b) shows that the eigenvalues of M200(α) are
clustered at the essential range of φα(f, g). So, we guess that {Mn(α)}n ∼λ (φα(f, g), I1).
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α = 0.5 α = 2
n β = 0.3 β = 0.7 β = 0.3 β = 0.7
50 0.7141 0.7141 0.3333 0.3333
100 0.7142 0.7142 0.3333 0.3333
200 0.7143 0.7143 0.3333 0.3333
400 0.7143 0.7143 0.3333 0.3333

‖ρ(φα(f, g))‖∞ = 5
7 ‖ρ(φα(f, g))‖∞ = 1

3

Table 2.7: Spectral radius of the PHSS iteration matrix fixed Q(x) as in (2.44).

• α =
√
3− 0.1, β = 0.9. Since η(

√
3− 0.1) ≈ 0.94 > 0.9, we know that φα(f, g) is in the Tilli class.

This is confirmed by Figure 2.13(b). Furthermore, as predicted by the theory, the eigenvalues of
M200(α) are distributed as the eigenvalue functions of φα(f, g) (see Figure 2.13(a)).

Table 2.7 shows the spectral radius of the PHSS iteration matrixMn(α) for different values of α and
β, fixed Q(x) as in (2.44). Even in this case, the limit relation (2.42) holds.

Case 8. Let

f(x) := Q(x)

(
1 0
0 |x|+ 1 + i

)
Q∗(x),

g(x) := Q(x)

(
1 0
0 a+ b cosx

)
Q∗(x), (2.45)

where a, b are real parameters such that a > |b| ≥ 0. We note that g(x) and

Re(f(x)) = Q(x)

(
1 0
0 |x|+ 1

)
Q∗(x)

are HPD for all x ∈ I1. Therefore, setting An := Tn(f) and Pn := Tn(g), the following results hold (cf.
Theorem 18).

i. Re(An), Pn are HPD for all n ∈ N, so we can apply to An the PHSS with preconditioner Pn.

ii. For the PHSS iteration matrix Mn(α) in (2.27) we have

ρ(Mn(α)) ≤ σn(α),

where σn(α) is given in (2.28).

iii. Defining

h(x) := g−1(x)Re(f(x)) = Q(x)



1 0

0
|x|+ 1

a+ b cosx


Q∗(x)

and

ξ := inf
x∈I1

|x|+ 1

a+ b cosx
= min
x∈[0,π]

|x|+ 1

a+ b cosx
, η := sup

x∈I1

|x|+ 1

a+ b cosx
= max

x∈[0,π]

|x|+ 1

a+ b cosx
, (2.46)

we have
mh = min(1, ξ) > 0, Mh = max(1, η) <∞.

Moreover,
λmin(P

−1
n An)→ mh, λmax(P

−1
n An)→Mh,

and for the values α∗
n, κn, σn(α

∗
n) in (1.32)–(1.34) the limit relations (2.35) holds, i.e.,

α∗
n → α∗ :=

√
mhMh =

√
min(1, ξ)max(1, η), (2.47)

κn → κ :=
Mh

mh
=

max(1, η)

min(1, ξ)
, (2.48)

σn(α
∗
n)→ σ∗ :=

√
κ− 1√
κ+ 1

. (2.49)
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Figure 2.14: Graphical representation of D′.

Suppose now that

{Mn(α)}n ∼λ (φα(f, g), I1). (2.50)

Since mg = min(1, a− |b|) > 0, (2.50) certainly holds if φα(f, g) belongs to the Tilli class, but we have
seen in Case 7 that (2.50) may hold even if this condition is not satisfied. Assuming (2.50), we expect
that, for large n,

ρ(Mn(α)) ≈ ‖ρ(φα(f, g))‖∞; (2.51)

see Remark 12, in particular equation (2.42). In this case, the quantity ‖ρ(φα(f, g))‖∞ is an estimate
of the asymptotic PHSS convergence rate.

Motivated by this observation, in this example we consider the problem of determining a, b, α (i.e.
g, α) that minimize the ‖ρ(φα(f, g))‖∞. By direct computation, we obtain

φα(f(x), g(x)) = Q(x)




α− 1

α+ 1
0

0
α(a+ b cosx)− i

α(a+ b cosx) + i
·
α− |x|+ 1

a+ b cos x

α+
|x|+ 1

a+ b cos x



Q∗(x)

and

ρ(φα(f(x), g(x))) = max



∣∣∣∣
α− 1

α+ 1

∣∣∣∣ ,

∣∣∣∣∣∣

α− |x|+ 1

a+ b cos x

α+
|x|+ 1

a+ b cos x

∣∣∣∣∣∣


 . (2.52)

Noting that for α > 0 and M ≥ m ≥ 0 we have maxt∈[m,M ]

∣∣∣α−tα+t

∣∣∣ = max
(∣∣∣α−mα+m

∣∣∣ ,
∣∣∣α−Mα+M

∣∣∣
)
, from (2.52)

we get

‖ρ(φα(f, g))‖∞ = max

(∣∣∣∣
α− 1

α+ 1

∣∣∣∣ ,
∣∣∣∣
α− ξ
α+ ξ

∣∣∣∣ ,
∣∣∣∣
α− η
α+ η

∣∣∣∣
)
, (2.53)

where ξ := ξ(a, b) and η := η(a, b) are defined in (2.46). We plan to minimize the quantity ‖ρ(φα(f, g))‖∞
over the set

D := {(a, b, α) : (a, b) ∈ D′, α > 0} = D′ × (0,∞),

where

D′ := {(a, b) : a = 0.1, 0.2, 0.3, . . . , 3, b = −a+ 0.1, . . . , a− 0.1}

(the analytic minimization of ‖ρ(φα(f, g))‖∞ over {(a, b, α) : a > |b| ≥ 0, α > 0} is too complicated).
Figure 2.14 shows the set D′. From Lemma 5 and from (2.53) we have

min
α>0
‖ρ(φα(f, g))‖∞ = ‖ρ(φα∗(f, g))‖∞ =

√
κ− 1√
κ+ 1

= σ∗, (2.54)
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Figure 2.15: Eigenvalues in the complex plane of M200(α̂
∗) (blue) and essential range of φα̂∗(f, ĝ) (red)

fixed Q(x) = I2.

n HSS (α =
√
π + 1) PHSS (g = ĝ, α = α̂∗ ≈ 1.033)

50 0.3410 0.0625
100 0.3410 0.0632
200 0.3410 0.0636
400 0.3410 0.0638

Table 2.8: Spectral radius of the HSS and PHSS iteration matrices fixed Q(x) = I2.

where α∗ := α∗(a, b), κ := κ(a, b), σ∗ := σ∗(a, b) are given in (2.47)–(2.49). Hence, in this example, the
inequality (2.37) holds as an equality independently of (a, b). Using the computer, we obtain

min
(a,b,α)∈D

‖ρ(φα(f, g))‖∞ = min
(a,b)∈D′

σ∗(a, b) = σ∗(â, b̂) =: σ̂∗ ≈ 0.064, (2.55)

where
(â, b̂) := (2.6,−1.5). (2.56)

Summarizing: the minimum of ‖ρ(φα(f, g))‖∞ over D is obtained for (a, b, α) = (â, b̂, α̂∗), where

α̂∗ := α∗(â, b̂) ≈ 1.033. The minimizing couple (g, α) is then (ĝ, α̂∗), where ĝ := gâ,b̂ is the func-

tion g obtained from (2.45) for (a, b) = (â, b̂). The minimum value ‖ρ(φα̂∗(f, ĝ))‖∞ is given by (2.55)
and coincides with the minimum σ̂∗ of the best asymptotic upper bound σ∗ over D′.

Remark 13. Recalling (2.36) and taking into account the limit relation α∗
n → α∗, we expect that

lim sup
n→∞

ρ(Mn(α
∗)) ≤ σ∗ = ‖ρ(φα∗(f, g))‖∞. (2.57)

In particular, for (a, b) = (â, b̂), (2.57) becomes

lim sup
n→∞

ρ(Mn(α̂
∗)) ≤ σ̂∗ = ‖ρ(φα̂∗(f, ĝ))‖∞ ≈ 0.064.

We numerically verified for Q(x) equal to the 2× 2 identity matrix I2 that the previous inequality holds
as an equality and with ‘lim sup’ replaced by ‘lim’:

lim
n→∞

ρ(Mn(α̂
∗)) = ‖ρ(φα̂∗(f, ĝ))‖∞ (2.58)

(see Table 2.8). We also verified that M200(α̂
∗) is clustered at ER(φα̂∗(f, ĝ)); see Figure 2.15. This

indicates that, for (a, b, α) = (â, b̂, α̂∗), (2.50) holds and hence (2.58) is not surprising; see the discussion
between (2.50)–(2.51) and recall (2.42).

As shown in Tables 2.8–2.9, the PHSS method corresponding to the optimal choice (g, α) = (ĝ, α̂∗)
outperforms the HSS method with the best asymptotic parameter

√
π + 1 suggested by Theo-

rem 18, which is obtained from (2.35) in the case where g = I2 and h = Re(f) (note that
mRe(f) = 1, MRe(f) = π + 1).
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n HSS (α =
√
π + 1) PHSS (g = ĝ, α = α̂∗ ≈ 1.033)

50 14 6
100 14 6
200 14 6
400 14 6

Table 2.9: Number of HSS and PHSS iterations for Tn(f) fixed Q(x) = I2.

Figure 2.16: Graphs of the functions x 7→ |x|+ 1 and x 7→ 2.6− 1.5 cosx over [0, π].

Remark 14. Suppose that the matrix Q(x) is a trigonometric polynomial, for instance

Q(x) =

(
cosx sinx
− sinx cosx

)
, Q(x) =

(
− cos(2x) − sin(2x)
− sin(2x) cos(2x)

)
, Q(x) =

(
1 0
0 1

)
, . . .

In this case, the function g(x) defined in (2.45) is a trigonometric polynomial as well. Consequently, the
preconditioner Pn is banded and a linear system with matrix Pn is easily solvable. More precisely, Pn
is a block-banded matrix, and for such matrices there exist versions of the Gaussian elimination with
linear cost with respect to n.

Remark 15. In this example, the problem of minimizing the quantity ‖ρ(φα(f, g))‖∞ over the set
D = D′ × (0,∞) was equivalent to the problem of minimizing the best asymptotic upper bound σ∗ in
(2.49) over D′. The reason is that the minimum of ‖ρ(φα(f, g))‖∞ over all α > 0, obtained in (2.54) for
α = α∗, turned out to be σ∗ independently of (a, b); the subsequent minimization of ‖ρ(φα∗(f, g))‖∞
over D′ coincided with the minimization of σ∗ over the same set. In general, however, it may happen that
the minimization of ‖ρ(φα(f, g))‖∞ is not at all equivalent to the minimization of the best asymptotic
upper bound σ∗, because the inequality (2.37) might be strict. We will see an example on this subject
in Case 9.

We also observe that, since

σ∗ =

√
κ− 1√
κ+ 1

is an increasing function of

κ =
max(1, η)

min(1, ξ)
,

the minimization of σ∗ over D′ is equivalent to the minimization of κ over the same set. The couple (â, b̂)
in (2.56) is then the minimizer of both κ and σ∗ over D′. Recalling the definitions of ξ and η in (2.46),
we note that κ is a sort of measure of the relative approximation between |x| + 1 and a + b cosx. The
minimization of κ (and σ∗) is therefore equivalent to finding the trigonometric polynomial of the form
a+b cosx that best approximates the function |x|+1 according to the measure κ. In Figure 2.16 we report

the graphs of |x|+1 and â+ b̂ cosx, from which we see that â+ b̂ cosx is a quite good approximation of
|x|+1. Another reasonable approximation of |x|+1 is given by the polynomial ā+b̄ cosx that interpolates
|x| + 1 at the endpoints x = 0 and x = π. In this case we have (ā, b̄) = (1 + π

2 ,−π2 ) ≈ (2.57,−1.57)
(note that (ā, b̄) is close to (â, b̂) = (2.6,−1.5)) and σ∗(ā, b̄) ≈ 0.080 is close to σ∗(â, b̂) ≈ 0.064.
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n HSS (α =
√
π + 1) PHSS (g = g̃, α = α̃ = 1) PHSS (g = g̃, α = α̃∗ ≈ 1.272)

50 0.3395 0.0030 0.2232
100 0.3403 0.0030 0.2242
200 0.3407 0.0030 0.2247
400 0.3409 0.0030 0.2250

Table 2.10: Spectral radius of the HSS and PHSS iteration matrices fixed Q(x) = I2.

n HSS (α =
√
π + 1) PHSS (g = g̃, α = α̃ = 1)

50 14 5
100 13 4
200 13 4
400 13 4

Table 2.11: Number of HSS and PHSS iterations for Tn(f) fixed Q(x) = I2.

Case 9. As pointed out in Remark 15, in general the minimization of ‖ρ(φα(f, g))‖∞ when (g, α) varies
in some set D′× (0,∞) is not equivalent to the minimization of σ∗ := σ∗(g) when g varies in D′. This is
true because minα>0 ‖ρ(φα(f, g))‖∞ may be strictly less than σ∗(g) for some g ∈ D′. Actually, it may
also happen that

min
α>0
‖ρ(φα(f, g))‖∞ ≪ σ∗(g).

In this example, we will see that, after choosing a discrete set I ⊂ (0,∞) in which varying the
parameter α, we have

min
(g,α)∈D′×I

‖ρ(φα(f, g))‖∞ ≈ 0.003≪ min
g∈D′

σ∗(g) ≈ 0.064.

In addition, the function g̃ for which the left minimum is attained is different from the function ĝ
for which the right minimum is attained, and the parameter α̃ yielding the left minimum together
with g̃ is different from α̃∗ := α∗(g̃). Note that, despite the fact that both 0.003 and 0.064 are
small, their ratio 0.064/0.003 is about 21, meaning that ming∈D′ σ∗(g) is relatively much larger than
min(g,α)∈D′×I ‖ρ(φα(f, g))‖∞.

Let

f(x) := Q(x)

(
1 + 0.64 i −1.5 i
−1.5 i |x|+ 1 + i

)
Q∗(x),

g(x) := Q(x)

(
1 0
0 a+ b cosx

)
Q∗(x), (2.59)

where a, b are real parameters such that a > |b| ≥ 0. We note that g(x) and

Re(f(x)) = Q(x)

(
1 0
0 |x|+ 1

)
Q∗(x)

are exactly the same as in Case 8. Therefore, setting An := Tn(f) and Pn := Tn(g), the facts i–iii
hold unchanged. In particular, the value σ∗ is still given by (2.49), implying that the minimization of
σ∗ = σ∗(a, b) over the same set D′ considered in Case 8 yields again the result that we have seen in
(2.55):

min
(a,b)∈D′

σ∗(a, b) = σ∗(â, b̂) =: σ̂∗ ≈ 0.064,

where (â, b̂) := (2.6,−1.5) as in (2.56). On the other hand, the minimization of ‖ρ(φα(f, g))‖∞ over
D = D′ × I, I := {α ∈ (0,∞) : α = 0.1, 0.2, 0.3, . . . , 1.2}, yields

min
(a,b,α)∈D×I

‖ρ(φα(f, g))‖∞ = ‖ρ(φα(f, g))‖∞|(a,b,α)=(ã,b̃,α̃) = ‖ρ(φα̃(f, g̃))‖∞ ≈ 0.003,

where (ã, b̃, α̃) := (1.6, 0, 1) and g̃ := gã,b̃ is the function g obtained from (2.59) for (a, b) = (ã, b̃).
In the following numerical experiments we fixed Q(x) = I2. Table 2.10 shows that the spectral

radius of the PHSS iteration matrix Mn(α̃), corresponding to the optimal choice (a, b, α) = (ã, b̃, α̃),
converges to ‖ρ(φα̃(f, g̃))‖∞ ≈ 0.003 as n → ∞. This is in accordance with the theoretical prediction
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in Remark 12 if {Mn(α̃)}n ∼λ (φα̃(f, g̃), I1), so we are led to believe that this eigenvalue distribution
relation really holds. From Tables 2.10–2.11, we see that the PHSS obtained with (a, b, α) = (ã, b̃, α̃) is
much faster than the HSS with the best asymptotic parameter

√
mRe(f)MRe(f) =

√
π + 1 suggested by

Theorem 18.

Remark 16. Fix g = g̃ and let Mn(α) be the corresponding PHSS iteration matrix. Table 2.10 (last
two columns) shows that, for α = α̃ = 1 and α = α̃∗ ≈ 1.272, we have

lim
n→∞

ρ(Mn(α)) = ‖ρ(φα(f, g̃))‖∞ ≈
{

0.003 if α = α̃,
0.225 if α = α̃∗.

On the other hand, the best upper bound σn(α̃
∗
n) for ρ(Mn(α)) converges to σ̃∗ := σ∗(g̃) ≈ 0.34, and

α̃∗
n → α̃∗ ≈ 1.272. Therefore, for large n,

• the best upper bound σn(α̃
∗
n) ≈ 0.34 is much larger than ρ(Mn(α̃)) ≈ 0.003, implying that

σn(α̃) ≥ 0.34 is a terribly crude estimate for ρ(Mn(α̃));

• the best parameter α̃∗
n that minimizes σn(α) is approximately equal to α̃∗ ≈ 1.272. Hence, α̃∗

n is
rather far from the actual minimizer α̃ = 1 of ρ(Mn(α)) over I, and it is also far from minimizing
ρ(Mn(α)), because ρ(Mn(α̃

∗
n)) ≈ 0.225≫ 0.003 ≈ ρ(Mn(α̃)).

This remark shows that, in general, there are situations in which σn(α) is not at all a good estimate for
ρ(Mn(α)) and, moreover, the best parameter α∗

n that minimizes σn(α) is far from minimizing ρ(Mn(α)).
In these situations, the effects of the imaginary parts in the PHSS iteration matrixMn(α) are significant.

Bivariate examples

Here we show the practical effectiveness of the proposed approach in a 2-level setting. The results
are of interest because of the known theoretical barriers mentioned is Section 1.6 concerning multilevel
structures, for which it is not possible, in general, to find superlinear/optimal preconditioners chosen in
matrix algebras.

Case 10. Let

f(x1, x2) :=
1

x21 + x22 + 1
+ 3i cos(x1 + x2),

g(x1, x2) := a+ b cos(x1) + c cos(x2),

where a, b, c are real parameters such that a > |b| + |c|. Under this condition Tn(g) is HPD.
Since Re(f(x1, x2)) = 1

x2
1+x

2
2+1

is positive for every (x1, x2) ∈ I2 = (−π, π)2, the matrix

Re(Tn(f)) = Tn(Re(f)) is HPD as well. Therefore, we can apply the PHSS method with precondi-
tioner Tn(g) for solving linear systems with coefficient matrix Tn(f).

In the following numerical experiments, we fixed a, b, c such that g(x1, x2) interpolates Re(f(x1, x2))
in (0, 0), (π, π), (π, 0). An easy computation gives (a, b, c) ≈ (0.524, 0.454, 0.022) and it can be checked
that these values of a, b, c satisfy the condition a > |b| + |c|. As for the choice of α, we fixed the best
asymptotic parameter α = α∗ =

√
mhMh ≈ 0.329 suggested by Theorem 18, where

h(x1, x2) := g(x1, x2)
−1Re(f(x1, x2)) ≈

1

(x21 + x22 + 1)(0.524 + 0.454 cos(x1) + 0.022 cos(x2))
.

In Figure 2.17(a) we report the essential range of φα∗(f, g) on I2, while Figure 2.17(b) refers to the
eigenvalues of the PHSS iteration matrix Mn(α

∗) with n = (25, 25). A comparison between these two
figures shows that the eigenvalues of Mn(α

∗) are clustered at the essential range of φα∗(f, g).
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Figure 2.17: (a) Essential range of φα∗(f, g); (b) Eigenvalues in the complex plane of Mn(α
∗) with

n = (25, 25).

Furthermore, as shown in Table 2.12, the spectral radius of the PHSS iteration matrix Mn(α
∗)

converges to ‖ρ(φα∗(f, g))‖∞ ≈ 0.547, as n → ∞. Hence we might guess that the distribution relation
{Mn(α

∗)}n∈N2 ∼λ (φα∗(f, g), I2) holds even for this 2-level example.

n = (n, n) ρ(Mn(α
∗))

(10,10) 0.4947
(15,15) 0.5149
(20,20) 0.5275
(25,25) 0.5352

‖ρ(φα∗(f, g))‖∞ ≈ 0.547

Table 2.12: Spectral radius of the PHSS iteration matrix fixed α = α∗ ≈ 0.329.

n = (n, n) HSS (α =
√
(2π2 + 1)−1) PHSS (α = 0.329 ≈ α∗)

(10,10) 25 14
(15,15) 25 15
(20,20) 25 14
(25,25) 24 14

Table 2.13: Number of HSS and PHSS iterations for Tn(f).

Table 2.13 reports the number of HSS and PHSS iterations. We see from the table that the PHSS
with parameter α = α∗ is faster than the HSS with the best asymptotic parameter α =

√
mRe(f)MRe(f)

suggested by Theorem 18.

In the final example, we consider a problem coming from a differential context, whose approximation
leads to multilevel Toeplitz structures with weakly sectorial multivariate symbols. We show that also
in this setting the performances of the PHSS technique are really very good.

More in detail let us take into consideration the convection diffusion equation



−∆u+ β · ∇u+ γu = g(x), on Ω = [0, 1]d,

Dirichlet BCs on ∂Ω,
(2.60)

where β := (β1, . . . , βd), with β1, . . . , βd, γ constants, γ ≥ 0. By resorting to second-order centered finite
differences, we find linear systems with coefficient matrices An = Tn(fn), n := (n, . . . , n) ∈ Nd: here
the sequence of symbols {fn}n, depending on the step-size h = 1

n+1 and therefore on the matrix size, is
such that

fn(x) =

d∑

j=1

(2− 2 cos(xj)− i hβj sin(xj) + h2γ), x = (x1, . . . , xd) ∈ Id = (−π, π)d.

In the case where there exists an index j such that hβj is not small, the symbol has a non-trivial

imaginary part, but still its real part
∑d

j=1(2− 2 cos(xj)) + h2γ is nonnegative and not identically zero.
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Therefore (see Proposition 1) we are in the framework of the present section with k = d and s = 1. This
situation is typical of singularly perturbed problems, in which the convection term is not negligible or
even dominating.

n = 10 n = 30 n = 50
β HSS PHSS HSS PHSS HSS PHSS
0.1 36 2 173 2 370 2
1 36 2 173 2 370 2
5 34 2 173 2 370 2
10 30 2 171 2 370 2
100 27 2 94 2 292 2
1000 31 2 28 2 38 2

Table 2.14: Number of HSS and PHSS iterations for Tn(fn) fixed n = 10, 30, 50.

Case 11. As a specific numerical test we consider problem (2.60) with d = 2 and β := (β, β), where
β, γ ∈ R and γ ≥ 0. According to the above discussion, the resulting coefficient matrices Tn(fn),
n = (n, n) are 2-level Toeplitz matrices and, more specifically, we have

Tn(fn) =




T0 T−1

T1 T0 T−1

. . .
. . .

. . .

T1 T0 T−1

T1 T0



∈Mn2

where

T0 =




4 + γh2 −1 + hβ

−1− hβ . . .
. . .

. . .
. . . −1 + hβ

−1− hβ 4 + γh2



∈Mn,

T−1 =



−1 + hβ

. . .

−1 + hβ


 ∈ Mn, T1 =



−1− hβ

. . .

−1− hβ


 ∈ Mn,

and h = 1
n+1 . As already observed, Re(fn) is nonnegative and not identically zero, then from Proposition

1 it follows that Re(Tn(fn)) is positive definite.
In the numerical test we fixed γ = 1 and chose the preconditioner as Pn = Re(Tn(fn)). It is clear

that in this case the best parameter suggested by Theorem 10 is α = 1. Table 2.14 refers to the number
of HSS and PHSS iterations varying β in {0.1, 1, 5, 10, 100, 1000} and fixed n = 10, 30, 50, respectively.
Note that the value β = 1000 gives rise to a convenction-dominated problem. While the proposed PHSS
is a robust method with number of iterations equal to 2, independent of β and n, the HSS is not optimal
in the matrix size, independently of the choice of the convection parameter β.

We observe that the first line of the iteration (1.27) is a trivial equation since the coeffi-
cient matrix is a multiple of the identity. Concerning the second line in (1.27), the equation(
αI + P−1

n i Im(An)
)
x(k+1) =

(
αI − P−1

n Re(An)
)
x(k+

1
2 ) + P−1

n b is solved inexactly by using few
GM RES steps. As proved in [17, Theorem 3.2], the eigenvalues of P−1

n Im(An) are strongly clus-
tered at 0 and contained in a proper interval [−δ, δ], with δ > 0 independent of h, and so the resulting
GMRES is very fast.



Chapter 3

Preconditioning techniques in image

deblurring

In this chapter we focus on two regularization techniques for structured matrices arising in the context of
the image deblurring problem which is briefly illustrated in Section 3.1. Before to describe them in more
detail, in Section 3.2 we recall what a regularization technique is. The first technique that we propose
is a structure preserving preconditioning aimed to accelerate the convergence of iterative regularization
methods without spoiling the restoration (Section 3.3). The second one consists in a diagonal regulariza-
tion preconditioner containing the Fourier coefficients of the observed image or of an approximation of
the true image aimed to provide sparse reconstructions. We will interpret it as a regularization matrix
for the Tikhonov method in the Fourier domain whose penalty term approximates the 1-norm. The
advantage is that the resulting linear system is diagonal and the regularization parameter can be easily
estimated (Section 3.4).

3.1 Problem setting: image deblurring

Let us consider the linear system

Ax = b, (3.1)

where A ∈ Rn×n and x, b ∈ Rn. In the image deblurring context, A is the matrix associated to the blur
operator, x ∈ Rn is an approximation of the true image x ∈ Rn of an unknown object (more precisely,
x is a stack-ordered vector of an images with n pixels) and b ∈ Rn is the detected image affected by
blur and corrupted by a noise η ∈ Rn, that is, b = Ax + η. Image deblurring consists in computing an
approximation of the true image x by means of an appropriate solution of (3.1).

3.1.1 Structure of the blurring matrix

The structure of the matrix A depends both on the Point Spread Function (PSF), and the strategy
adopted to deal with boundary artifacts [85, 109, 132, 115]. We assume the blurring model to be space-
invariant, which means that the same blur will occur on all over the image domain. For the sake of
notational simplicity, we consider a square PSF H ∈ Rn×n. We suppose that the position of the PSF
centre is known. Thus, H can be depicted in this way

H =




h−m1,−m2 · · · h−m1,0 · · · h−m1,n2

...
. . .

...
...

h−1,−1 h−1,0 h−1,1

h0,−m2 · · · h0,−1 h0,0 h0,1 · · · h0,n2

h1,−1 h1,0 h1,1
...

...
. . .

...
hn1,−m2 · · · hn1,0 · · · hn1,n2



n×n

,

where h0,0 is the central coefficient and m1 + n1 + 1 = m2 + n2 + 1 = n.
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Given the pixels hj1,j2 of the PSF, it is possible to associate the generating function f : R2 → C as
follows

f(x1, x2) =

n1∑

j1=−m1

n2∑

j2=−m2

hj1,j2e
i(j1x1+j2x2) =

n−1∑

j1,j2=−n+1

hj1,j2e
i(j1x1+j2x2) , (3.2)

with the assumption that hj1,j2 = 0 if the corresponding pixel is not detected, that is, if the element
(hj1,j2) does not belong to the matrix H [50]. Note that hj1,j2 are the Fourier coefficients of f ∈ Πn−1,
where Πk = span{ei(j1x1+j2x2), j1, j2 = −k, . . . , k}, so that the generating function f contains the same
information of H .

Boundary conditions (BCs) try to capture and to include into the deblurring model the unknown
behaviour of the signal outside the Field Of View (FOV) in which the detection is made [85]. Indeed, the
information inside the FOV contained in the detected image b is generally not complete to restore the
true image even in the (unrealistic) noiseless case. Among the BCs schemes, we consider the following
zero Dirichlet, periodic, reflective (also called Neumann), and anti-reflective ones.

• Zero Dirichlet BCs. In this model the image outside the FOV is null, that is, zero pixel-valued.
The blurring matrix A is a BTTB. The zero Dirichlet BCs can be useful for some applications in
astronomy, where an empty dark space surrounds a well located object. On the other hand, it gives
rise to high ringing effects close to the boundary of the restored image in other classical imaging
applications. We highlight that we do not have fast trigonometric transforms for diagonalizing
BTTB matrices. This represents an important drawback in using Zero BCs with filtering methods
like classical Tikhonov.

• Periodic BCs. In this model the image inside the FOV is periodically repeated outside the FOV.
So, considering for simplicity the 1D case, they impose that

x1−j = xn+1−j and xn+j = xj , j = 1, . . . , p,

where p is the parameter related to number of pixels outside the FOV that are taken into account.
For multidimensional problems it is enough to apply the same assumption in every direction. The
2D corresponding blurring matrix A is a BCCB. Periodic BCs are computational favourable since
the matrix A can be easily diagonalized by DFT. Clearly, if we are not in case the image is periodic
outside the FOV (and this happens quite often), we have again ringing effects in restoration.

• Reflective BCs. In this model the image inside the FOV is periodically reflected, as well as there
were a vertical mirror, along each edge. That way, the pixel values across the boundary are
extended so that the continuity of the image is preserved at the boundary. Formally, in the 1D
case, these BCs impose that

x1−j = xj and xn+j = xn+1−j , j = 1, . . . , p.

In the 2D case the same assumption on the image outside the FOV is done firstly in one direction
and then in the other direction. The corresponding blurring matrix A is a Block Toeplitz plus
Hankel with Toeplitz plus Hankel blocks, which can be diagonalized by Discrete Cosine Transform
(DCT) when the PSF is symmetric [109].

• Anti-Reflective BCs. In this model the image inside the FOV is periodically anti-reflected, as well
as there were two perpendicular mirrors, one horizontal and one vertical, along each edge. That
way, the pixel values across the boundary are extended so that the continuity of the image and
the continuity of the normal derivatives are both preserved at the boundary. Formally, in the 1D
case, these BCs impose that

x1−j = 2x1 − xj+1 and xn+j = 2xn − xn−j , j = 1, . . . , p.

In the 2D case the matrix A is block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks plus
a structured low-rank correction matrix, which can be diagonalized by Anti-Reflective Transform
(ART) when the PSF is symmetric [132].

We notice that in all these four cases A has a Toeplitz structure, given by the shift–invariant structure
of the continuous operator, plus a correction depending on the BCs. Even if, as said, in some cases the
BCs suffer from the lack of fast trigonometric transforms, for all of them the matrix-vector multiplication
can be always computed in an efficient way by exploiting the structure Toeplitz+correction. Indeed,
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the multiplication can be made by means of FFTs (accessing only the PSF) on an appropriately padded
image of larger size. Reflective BCs and Anti-Reflective BCs are even cheaper than the others in some
cases since they require only real operations instead of complex ones [3]. For a detailed discussion on
BCs and the associated blurring matrices referee to [85, 64].

3.2 Ill-posed problems and regularization methods

It is well-known that the image deblurring is an ill-posed problem and then that the linear system
(3.1) is very ill-conditioned. As a consequence, the direct solution of (3.1) is dominated by the noise
and a regularization technique has to be applied. Before to explain what we mean with regularization
methods, let us start with the definition of well- and ill-posed problems (see [68]).

Definition 16 (Hadamard). A problem is well-posed if

(1) it admits solution,

(2) the solution is unique,

(3) the solution depends continuously on the data.

If at least one of Hadamard’s conditions is not satisfied then the problem is ill-posed. The violation
of (1) and (2) is usually less damaging than the violation of (3). Indeed, since in the applications we
work with perturbed data, we can relax the notion of solution and, if the solution is not unique, we can
impose additional constraints, e.g. choosing the solution of minimal norm. On the contrary, violation of
(3) creates considerable numerical problems because the discretization of a continuous ill-posed problem
is very ill-conditioned on a large subspace and then the numerical methods used for well-posed problems
become unstable. Since we cannot make stable an inherently unstable problem, all that one has expect
to do is to recover partial information about the solution as stably as possible. In this direction, there are
the so-called regularization methods. Several regularization techniques have been proposed in literature
like Tikhonov’s method and its generalizations, Truncated Singular Values Decomposition (TSVD) [13],
iterative regularization methods (Landweber, conjugate gradient, etc.) [18, 68].

The image deblurring is an ill-posed problem since it does not fulfill Hadamards conditions of well-
posedness in Definition 16. As already mentioned, a very common approach to guarantee that the
solution of (3.1) exists and that it is unique, is to compute a weak solution in the sense of the least-
squares formulation (the solution of minimum norm), where the restored image is obtained by solving

xLS = argmin
x∈S
‖x‖22, S = arg min

z∈Rn
‖Az − b‖2. (3.3)

This remedy to the violation of (1) and (2) in Definition 16. However, in the continuous image deblurring
problem point (3) in Definition 16 is not fulfilled, therefore we have to resort to a regularization strategy.
This difficulty can be easily observed in a finite dimensional context as well by comparing the solution
of (3.3) and (3.1). Assuming that A has full rank, the solution of (3.3) and that of (3.1) coincide. More
precisely, we obtain xLS = x̄ − A−1η. Therefore, the nonzero components (even only quasi-negligible)
of η in the subspace generated by the eigenvectors corresponding to small eigenvalues of A will be
dramatically amplified. Since

1. the small eigenvalues of A quickly tend to zero as the size of A tends to infinity,

2. the subspace associated to these degenerating eigenvalues has large dimension (usually more than
one half of the global size of A),

if a regularization strategy is not employed, a small perturbation of the observed image can lead to a
substantial, not admissible alteration in the deblurred image. In the more general case, considering the
least-squares solution of (3.1), we have to use the Moore-Penrose pseudo-inverse of A and the singular
value decomposition instead of the spectral decomposition, but the same considerations hold unchanged.

Because of the large dimensions of the linear systems involved, iterative methods are typically used
to compute the approximation of x̄ since they require only matrix-vector products. In Subsection 3.2.2
we introduce iterative regularization methods like Landweber, CG, etc. Since, their convergence can
be slow, it is important to define strategies to accelerate the approximation process without losing the
quality of the restored image. With this aim, in Subsection 3.2.3 we discuss the regularization precondi-
tioning. A part from iterative regularization techniques, we consider also the Tikhonov regularization,
cf. Subsection 3.2.1.
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3.2.1 Tikhonov method

First of all, let us recall that if we deal with the reconstruction of images with n1 × n2 pixels, the
unknown x in (3.1) is a stack-ordered vector of length n = n1n2. Since we will make extensive use of
superscripts and subscripts, throughout this chapter, we denote the diagonal matrix of the eigenvalues
of M ∈ Rn×n by ΛM instead of Λ(M).

The widely used Tikhonov method is given by

min
x∈Rn

{
‖Ax− b‖22 + αR(x)

}
, (3.4)

where α > 0 is called regularization parameter, ‖Ax − b‖22 is the data fitting term, while R(x) is the
penalty term. The term R(x) should nearly disappear for x close to the true image, and it should
penalize only noise components. Furthermore, R(x) can take into account known properties of the true
solution like continuity or sparsity.
A common choice is

R(x) = ‖Lx‖22, (3.5)

where L guarantees that N (A)
⋂N (L) = {0}. The method (3.4)-(3.5) is called generalized Tikhonov

method and is equivalent to the following linear system

(A∗A+ αL∗L)x = A∗b. (3.6)

As observed in Section 3.1, when imposing periodic boundary conditions the matrix A in (3.1) is a
BCCB matrix and then can be spectrally decomposed by DFT as follows

A = F ∗ΛAF, (3.7)

where F is given in (1.22).
If even L∗L in (3.6) can be diagonalized through F , that is

L∗L = F ∗ΛL∗LF, (3.8)

the generalized Tikhonov method becomes

min
x∈Rn

{
‖Ax− b‖22 + α‖Lx‖22

}
⇐⇒ F ∗(Λ∗

AΛA + αΛL∗L)Fx = F ∗Λ∗
AFb ,

and hence
x = F ∗(Λ∗

AΛA + αΛL∗L)
−1Λ∗

AFb.

Choice of L. The matrix L can be chosen as the identity matrix or derived by discretizations of some
derivative operators (with appropriate boundary conditions [61]). In these cases L does not depend on
A. A possible alternative is to define L via A, e.g. in the form

L∗L =

(
I − A∗A

ρ(A)2

)p
, (3.9)

with some exponent p, e.g. p = 1 (see [90, 92]).

Choice of α. Finding a good choice for the regularization parameter α is a difficult task. Actually, we
cannot determine the optimal α, but only give an estimation of it. Many techniques have been proposed
in literature aimed to estimate the regularization parameter α. A largely used method is the Generalized
Cross Validation (GCV), see [84]. For the generalized Tikhonov method, the GCV determines the value
of α that minimizes the GCV functional

GTik(α) =
‖(I −AA†

reg)b‖22
(tr(I −AA†

reg))2
, (3.10)

where A†
reg = (A∗A+ αL∗L)−1A∗ is the Tikhonov regularized pseudoinverse. When A and L∗L can be

both diagonalized through F the GCV functional becomes

GTik(α) =
‖(I − ΛA(Λ

∗
AΛA + αΛL∗L)

−1Λ∗
A)̂b‖22

(tr(I − ΛA(Λ∗
AΛA + αΛL∗L)−1Λ∗

A))
2
=

∑n
i=1(µib̂i)

2

(
∑n

i=1 µi)
2
, (3.11)

where µi = λi(L
∗L)/(|λi(A)|2 + αλi(L

∗L)) and b̂ = Fb, cf. [85]. Therefore, the evaluation of GTik at a
point α requires only O(n) operations assuming that the eigenvalues of A and of L∗L have been already
computed.
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Figure 3.1: Semi-convergence: RREs vs number of iterations

3.2.2 Iterative regularization methods

The solution xLS of the least-square problem (3.3) is such that ∇φ(xLS) = 0, where φ(z) = ‖Az − b‖22.
Moreover, ∇φ(z) = 2A∗Az − 2A∗b and hence xLS is solution of the normal equations

A∗Ax = A∗b. (3.12)

The classical iterative regularization algorithm for least-squares problems is the Landweber method.
This is the simplest gradient descent algorithm for solving problem (3.3). Let xk be the approximate
solution computed at the k-th iteration, then the Landweber method is defined by

xk+1 = xk + τA∗(b−Axk),

where x0 is given and τ is a relaxation parameter satisfying 0 < τ < 2/‖A∗A‖ for some induced norm
‖ · ‖. With this choice of τ the method is convergent and it satisfies the classical semi-convergence
property (see [68]). A semi-convergent method starts reconstructing the low-frequency components of
the solution; then, as the iteration progresses, the high-frequency components are reconstructed together
with the noise components (see [18]). Hence the method must be stopped before it starts to reconstruct
the noise. In Figure 3.1 we plot a typical example of the behavior of the Relative Reconstruction Error
(RRE) defined as

RRE :=
‖xk − x̄‖2
‖x̄‖2

(3.13)

vs the number of iterations for an iterative regularization method (not necessarily the Landweber
method). As we can see from Figure 3.1, the RRE reaches a minimum after a suitable number of
iterations. Therefore, an early stopping is required. A classical criterium is the discrepancy principle
(see [68]) which proceeds as follows: stop at the first iteration m that satisfies the condition

‖Axm − b‖2 < γ‖η‖2, (3.14)

where xm is the approximation provided by the method at the m-th iteration and γ ≥ 1.
In practical applications, a frequent choice for the initial guess is x0 = 0 because, in the case of

non-uniqueness, this choice provides the minimal norm solution.
Other gradient descent algorithms for solving problem (3.3) satisfy the semi-convergence property

and can be effectively used (see [80]). The most popular is probably the CG method applied to the linear
system (3.12), known as CGLS. It is again an iterative regularizing method and usually it converges
faster than the Landweber method.

3.2.3 Regularization preconditioners

Due to ill-conditioning of the image deblurring problem, the number of iterations required by a CG-
like method to obtain a satisfactory result can be large and a preconditioning technique is required
to increase the rate of convergence. In this context, we speak of regularization preconditioning. Such
kind of preconditioning arises from the fact that for ill-conditioned linear systems related to ill-posed
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problems, classical preconditioning may leads to wrong results. Indeed, if the preconditioner is a too close
approximation of A, then it strongly “inherits” the ill-conditioning of A. In this case, the first iterations
of a preconditioned CG-like method are already highly influenced by the noise of the input data, and
the preconditioner gives rise to high instability, mixing up the subspace where the components of the
noise are negligible with respect to the components of the signal (signal subspace), with the subspace
where the components of the noise are not negligible (noise subspace). In order to avoid instability,
the preconditioner should speed up the convergence only in the signal subspace. In other words, a
regularizing preconditioner has to be able to approximate A in the signal subspace and filters the noisy
components, simultaneously. It is clear that, one has the non-trivial task of choosing a regularization
parameter, which distinguishes noise subspace from signal subspace.

Note that if the blurring matrix A is not positive (semi-)definite, to deal with CG-like methods
instead of system (3.1), we can solve the system of the normal equations (3.12). In doing this, all
iterative methods become more stable, i.e. less sensitive with respect to data noise, but their rate of
convergence slows down, then a regularization preconditioning is needed as well.

In the past twenty years, regularization circulant preconditioners have been extensively investigated
for accelerating the convergence of iterative methods without spoiling the restoration. The pioneering
work is due to Hanke, Nagy, Plemmons [82] and deals with a BCCB regularization preconditioner for
CGLS that preconditions only in the signal subspace, without acting in the noise subspace.

As regards BTTB regularizing preconditioners for BTTB matrices, in [81] Hanke and Nagy extended
the idea in [36] to ill-conditioned matrices by recurring to a preconditioner generated by a regularized
inverse of the symbol, that is by inverting the symbol only in the signal subspace. This strategy
was devoted to symmetric PSF, and preconditioned MR-II (a variant of the minimal residual method
sometime also called conjugate residual). The preconditioner was built by the circulant padding of
Toeplitz matrices mentioned in Section 1.6.

At the best of our knowledge, the only other two papers in which the structure of A is preserved
in the preconditioner are [109, 47] for Reflective and Anti-Reflective BCs, respectively. As in [81], even
in these two cases, the obtained results heavily depend on the symmetry properties of the PSF. In
fact, both [109, 47] show that the optimal (in the sense of Frobenius norm) preconditioner in a proper
algebra diagonalized by a fixed real transform is associated with the symmetrized version of the original
PSF. Such preconditioning technique works well when the PSF is close to be symmetric, while has poor
performance for strongly nonsymmetric PSFs.

In Section 3.3 we propose a general preconditioning technique which can be used for any type of
PSF and BCs.

Remark 17. When the regularization matrix L is invertible, the generalized Tikhonov method (3.4)-
(3.5) can be interpreted as a regularizing preconditioner. Indeed, starting from Tikhonov regularization
(3.4)-(3.5) and imposing y = Lx, we obtain

min
y=Lx∈Rn

{
‖AL−1y − b‖22 + α‖y‖22

}
, (3.15)

which is the Tikhonov method for the right preconditioned linear system AL−1y = b. The analogous
least square problem of (3.15) is

min
y=Lx∈Rn

‖AL−1y − b‖22,

which corresponds to the following split preconditioning for the normal equations (3.12)

L−∗A∗AL−1y = L−∗A∗b.

Previous linear system can be solved by means of iterative methods like Preconditioned Conjugate
Gradient for Least Squares (PCGLS). After having computed y, x is given by x = L−1y.

In Section 3.4 we introduce a regularization matrix for the Tikhonov method in the Fourier domain
that can be interpreted as a diagonal regularization preconditioner containing the Fourier coefficients of
the observed image or of an approximation of the true image aimed to provide sparse reconstructions.

3.3 Structure preserving reblurring preconditioning

In the context of the circulant regularization preconditioning, in [45], it has been proposed a variant
of the normal equations, known as reblurring preconditioning, which replaces the conjugate transpose
A∗ of the system matrix A with a new circulant matrix. Nevertheless, as already observed in Section
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1.6, BCCB preconditioners cannot provide a strong clustering of the eigenvalues of BTTB-like matrices
[136], while, on the other hand, it is crucial to preserve the structure of the coefficient matrix to have
an effective preconditioner [121].

In this section, we propose an extension of the reblurring preconditioning proposed in [45] by defin-
ing a preconditioner that has the same boundary conditions of the original problem and then the same
structure of the system matrix. We refer to this new technique as structure preserving reblurring pre-
conditioning. The construction of our preconditioner requires two FFTs like the BCCB preconditioner
in [45]. The proposal is further extended to provide a nonstationary preconditioning. Some numerical
results shows the importance to preserve the structure of the matrix both in terms of quality of the
restorations and robustness of the regularization parameter.

3.3.1 Reblurring preconditioning

Independently of the imposed BCs, if we require to deal with positive (semi-)definite matrices, as already
mentioned in Subsection 3.2.3, the classical strategy is to pass from (3.1) to normal equations (3.12)
and then to precondition as follows

DA∗Ax = DA∗b or D1/2A∗AD1/2D−1/2x = D1/2A∗b,

where D suitably approximate the (generalized) inverse of the normal matrix A∗A [82]. With a deeper
look, we can say that the classical preconditioning scenario seems to be quaint, since the preconditioner
D has to speed up the slowing down produced by A∗. On these grounds, in [45] the authors proposed
a new technique, which uses a single preconditioning operator directly applied to the original system
(3.1). The new preconditioner, called as reblurring matrix Z, according to the terminology in [62], leads
to the new preconditioned system

ZAx = Zb . (3.16)

As pointed out in [45], the aim of the preconditioner Z is to allow iterative methods to become more
stable (as well as usually obtained through the normal equations involving A∗) without slowing the
convergence (so that no subsequent accelerating operator D is needed), especially in the signal sub-
space. Solving (3.16) leads to reformulate iterative methods as the Landweber method in the new
preconditioning context, that is to replace the following preconditioned iterative scheme

xk+1 = xk + τDA∗(b−Axk)

with
xk+1 = xk + τZ(b−Axk), (3.17)

where τ is a positive relaxation parameter. In the following we fix τ = 1, by applying an implicit rescaling
of the preconditioned system matrix ZA. Although ZA is not in general symmetric, the convergence of
the modified Landweber method (3.17) can be easily assured [45].

A way to build Z is to apply a coarsening technique to the PSF of the problem (see [45]); another way
is to use filtering strategies. More in detail, in the case of periodic BCs, Z is built as the BCCB-matrix
whose eigenvalues vj are obtained from the eigenvalues λj(A) of A using some filter. In particular, two
very popular filters are the Hanke-Nagy-Plemmons (HNP) filter [82], defined as

vj =





λj(A)/|λj(A)|2, if |λj(A)| ≥ ζ,

λj(A), if |λj(A)| < ζ,

j = 1, . . . , n2, (3.18)

and the Tikhonov filter, defined as

vj =
λj(A)

|λj(A)|2 + α
, j = 1, . . . , n2, (3.19)

where α and ζ are positive regularization parameters. For any BCs, Z is built as the BCCB-matrix
obtained by applying filtering to the same PSF, i.e. the same generating function f , that gives rise to
the matrix A. In other words, if we call g such filtered function and we employ the symbol notation, we
have that A = An(f) and Z = Cn(g) (see next subsection for details on the computation of g). Clearly,
in case of periodic BCs, since we are in the circulant algebra, the classical preconditioning approach
(based on D) and this new one (based on Z) are the same thing. However, for other BCs, the Z variant
shows better performance and higher stability (in relation to the choice of regularization parameters,
e.g. α for Tikhonov) than standard preconditioning (see [45]).
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3.3.2 Structure preserving extension

From negative results in [136], BCCB preconditioner Z used in [45] will never be optimal. Hence, here
we define a class of preconditioners Z endowed with the same structure of the system matrix A. We
call this strategy structure preserving reblurring preconditioners.

First of all, we compute the eigenvalues ci,j of Cn(f), the n
2×n2 BCCB-matrix associated with the

PSF H , by means of the two-dimensional FFT of H . By definition ci,j are the evaluations of f , the
generating function (3.2) of the blurring matrix A, on Γn = {(2πin , 2πj

n ) | i, j = 0, . . . , n− 1}

ci,j = f

(
2πi

n
,
2πj

n

)
, i, j = 0, . . . , n− 1.

We can now regularize such eigenvalues. Let us denote by vi,j the values obtained by applying the
Tikhonov filter (3.19) to ci,j , instead of λj(A). Since it usually gives very good (and often the best)
numerical results, we simply consider the Tikhonov filter (3.19) but any other filter could be applied as
well. On the ground of the theory of eigenvalues decomposition of BCCB matrices, the values vi,j can
be considered as a sampling of the function

g(x1, x2) =

⌊n−1
2 ⌋∑

j1,j2=−⌊n+1
2 ⌋

βj1,j2e
i(j1x1+j2x2) (3.20)

at the grid points Γn. Namely,

g

(
2πi

n
,
2πj

n

)
:= vi,j =

ci,j
|ci,j |2 + α

=
f(2πin , 2πjn )

|f(2πin , 2πjn )|2 + α
. (3.21)

Note that g is a regularized approximation of the inverse of f on Γn. The function g is univocally
identified by the n2 interpolation conditions (3.21), for i, j = 0, . . . , n − 1, and the coefficients βj1,j2
can be computed by means of a two-dimensional Inverse Fast Fourier Transform (IFFT) of these values
g(2πin , 2πjn ). It is worth observing that up to this point the described technique is just like the one
proposed in [45]. The main difference between our approach and those in [45] is that in the latter the
function g is used as the symbol of a BCCB-matrix, while here we combine g with the BCs of the
problem defining a matrix

Z := An(g)

that has the same structure of the original system matrix A = An(f) of our blurring model (3.1).
The following algorithm summarizes how to build our structure preserving preconditioner.

Algorithm 2 Structure preserving reblurring preconditioning

Input: H , BCs

1. get {ci,j}n−1
i,j=0 by computing an FFT of H

2. get {vi,j}n−1
i,j=0 by applying Tikhonov filter (3.19) to ci,j , i.e., vi,j =

ci,j
|ci,j|2+α

3. get H̃ by computing an IFFT of {vi,j}n−1
i,j=0

4. generate the matrix Z from the coefficient mask H̃ and BCs

Output: Z

From Algorithm 2, it is clear that the only difference between the reblurring preconditioning and our
structure preserving extension lies in the fact that in the last step we exploit the BCs of the problem
to build a preconditioner with the same structure of the blurring matrix. Obviously, the computational
cost of the reblurring preconditioning of two FFTs, is not affected by this modification.

Throughout, we refer to the circulant preconditioning technique proposed in [45] as Zcirc, while our
structure preserving preconditioner will be denoted by Zstruct.

Note that when the PSF is quadrantally symmetric, i.e. hi,j = h±i,±j , then, thanks to the Eulero
formula, the generating function f is a cosine polynomial. Therefore, it is worthwhile looking for g in
(3.21) as a cosine polynomial, which implies that Algorithm 2 can be reformulated by replacing FFT
with DCT.
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Comparison with Hanke–Nagy preconditioner For zero BCs and symmetric PSF we can seek
a strict link between the proposed structure preserving preconditioner Zstruct and the Toeplitz precon-
ditioning proposed by Hanke and Nagy in [81] for real symmetric Toeplitz systems. For simplicity, in
analyzing the analogies and the differences between these techniques, we consider the one-dimensional
case. Our aim in this paragraph is to study, in a sense that will be further explained, how much the
two preconditioners are close. To recognize that the PSF H is symmetric, we fix the central pixel at the
center of H . Moreover, we assume n even for the sake of simplicity in the computations. Therefore, the
1D PSF is H = [hn

2
−1, . . . , h0, . . . , hn

2
−1, 0] and the associated generating function is

f(x) = h0 + 2

n
2 −1∑

j=1

hj cos(jx), (3.22)

obtaining the n× n blurring matrix A = Tn(f) in the Toeplitz case, which is related to Zero Bcs.
We briefly recall the computation of the preconditioner proposed in [81]. First of all, the matrix

Tn(f) is embedded in the symmetric circulant 2n× 2n matrix

C2n(f) =

(
Tn(f) R
R Tn(f)

)
(3.23)

whose first column is given by [h0, . . . , hn
2 −1, 0, . . . , 0, hn

2 −1, . . . , h1]
T . Then, the eigenvalues of C2n,

computed via FFT, are inverted by means of the HNP regularization filter (3.18) in order to obtain a
regularized inverse of C2n. Finally the preconditioner is selected as the first n× n principal submatrix
of such a 2n× 2n regularized inverse of C2n.

The following proposition summarizes our result.

Proposition 12. Let {Tn(f)}n be a sequence of n × n image deblurring matrices with zero boundary
conditions, where f denotes the generating function (3.22) of a real fully-symmetric PSF. For any
matrix Tn(f), let Zstruct,n denote the associated structure preserving preconditioner of Algorithm 2 and
ZHN,n denote the associated inverse Toeplitz preconditioner by Hanke and Nagy [81], both regularized by
the same Tikhonov filter (3.19). Then, the two preconditioners Zstruct,n and ZHN,n are asymptotically
equivalent, that is,

‖Zstruct,n − ZHN,n‖ −→ 0 as n −→ +∞ .

In particular, ‖Zstruct,n − ZHN,n‖ = O
(
log(n) e−cn

)
, with c > 0.

Proof. First, we explicitly compute the Zstruct,n preconditioner of Tn(f). Algorithm 2 considers the
symmetric circulant matrix Cn(f) whose first column is [h0, . . . , hn

2 −1, 0, hn
2 −1, . . . , h1]

T . Hence, the
step 1 of the algorithm computes the eigenvalues of Cn(f) that are

ck = f

(
2kπ

n

)
= h0 + 2

n
2 −1∑

j=1

hj cos

(
2jkπ

n

)
, k = 0, . . . , n− 1.

At step 2 we adopt the Tikhonov filter (3.19), so that we compute the regularized inverses vk of the
eigenvalues as

vk =
ck

c2k + α
, k = 0, . . . , n− 1. (3.24)

We can write vk = g
(
2kπ
n

)
, k = 0, . . . , n− 1, where g ∈ Π̃n−1 = span{cos(jx), j = 0, . . . , n− 1} is the

trigonometric interpolating polynomial on the pairs
(
2kπ
n , vk

)
, k = 0, . . . , n− 1, that is

g(x) = β0 + 2

n−1∑

j=1

βj cos(jx). (3.25)

Actually, it can be easily proved that g, although it depends on n interpolation conditions, has degree
n
2 . Indeed, by rewriting the interpolation conditions as

(
2kπ
n , vk

)
k = 0, . . . , n2

(
(n/2+k)π

n/2 , vn/2+k

)
k = 1, . . . , n2 − 1
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and observing that vk = vn−k, for k = 1, . . . , n2 − 1, from the definition (3.24) and the symmetry of g

in (3.25) with respect to the interval [0, 2π], we have that g ∈ Π̃n
2
. For this reason we rename g as gn

2

in the following. The steps 3 and 4 build the preconditioner as the matrix that preserves the Toeplitz
structure and whose symbol is gn

2
, hence for zero BCs, the preconditioner finally is

Zstruct,n = Tn(gn
2
) . (3.26)

Now we consider the ZHN,n preconditioner of Tn(f). The eigenvalues of the 2n×2n circulant matrix
C2n(f) defined by (3.23) are

µk = f

(
2kπ

2n

)
= f

(
kπ

n

)
, k = 0, . . . , 2n− 1.

Applying again the Tikhonov filter (3.19) (differently to the HNP filter considered in [81]), we obtain
the regularized inverses uk of the eigenvalues as follows

uk =
µk

µ2
k + α

, k = 0, . . . , 2n− 1.

By means of an analogous reasoning to that performed before, it can be shown that there exists a
unique polynomial hn ∈ Π̃n that interpolates the 2n pairs

(
kπ
n , uk

)
, k = 0, . . . , 2n− 1. In fact, due to

their symmetry, among the previous interpolation conditions only the one relating to k = 0, . . . , n are
distinct. The preconditioner ZHN,n is then selected as the first n×n principal submatrix of the 2n× 2n
circulant matrix C2n(hn). Denoted by S the 2n × n matrix whose j-th column is the j-th element of
the canonical basis of R2n, the preconditioner can be expressed as

ZHN,n = Tn(hn) = S∗C2n(hn)S . (3.27)

We can now relate the two preconditioners Zstruct,n = Tn(gn
2
) and ZHN,n = Tn(hn). Let us observe

that defining

ψ(x) =
f(x)

f2(x) + α
,

we have that gn
2
interpolates ψ on Ωn

2
=
{

2kπ
n , k = 0, . . . , n2

}
and hn interpolates the same ψ on

Ωn =
{
kπ
n , k = 0, . . . , n

}
. Since Ωn

2
⊂ Ωn and hn ∈ Π̃n, then we can write

hn = gn
2
+ pn

where pn ∈ Π̃n such that pn
(
2kπ
n

)
= 0, for k = 0, . . . , n2 . On this ground we rewrite

pn = En
2
− En

where En
2
= ψ − gn

2
and En = ψ − hn are the classical remainder in the interpolation of ψ on Ωn

2
and

Ωn, respectively. By virtue of the linearity of Tn and by using (1.18), we have

‖Tn(gn
2
)− Tn(hn)‖ = ‖Tn(gn

2
)− Tn(gn

2
)− Tn(pn)‖ = ‖Tn(En

2
− En)‖

≤ ‖En
2
‖∞ + ‖En‖∞. (3.28)

Here ‖ · ‖∞ = ‖ · ‖L∞(0,2π). By construction, En is the remainder function of the interpolation of ψ on

the n+1 Chebyshev-Lobatto nodes defined as cos(kπn ) for k = 0, . . . , n. Its Lebesgue constant is known
to grow as k1 log(n) where k1 is a constant. Thus, ‖En‖∞ can be bounded in the following way

‖En‖∞ ≤ k1 log(n)‖an‖∞,
where ‖an‖∞ is the error in the best approximation of ψ in the space of polynomials of degree at most
n. Applying a similar reasoning to En

2
, we can bound it as ‖En

2
‖∞ ≤ k2 log(n2 )‖an

2
‖∞. Because of the

C∞ regularity of ψ, ‖ar‖ is exponentially converging to zero as r tends to +∞ (by Bernstein Theorem).
In conclusion, from (3.28) it follows that ‖Tn(gn

2
)−Tn(hn)‖ is exponentially converging to 0 as n tends

to ∞, that is, the two preconditioners Zstruct,n = Tn(gn
2
) and ZHN,n = Tn(hn) are asymptotically the

same.

It is interesting to notice that the equivalence result of the previous proposition is confirmed by
several numerical tests, where basically we got the same deblurring accuracy and the same convergence
speed by applying the two preconditioners. On the other hand, from a computational point of view
Zstruct,n of (3.26) requires two FFTs of size n instead of two FFTs of size 2n to obtain ZHN,n of (3.27) .

Remark 18. In [81] the authors consider only Toeplitz deconvolution matrices, that is only zero BCs
problems, but the same approach could be applied also to the other BCs discussed in Section 3.1 like
reflective and anti-reflective BCs. Moreover, it could be extended also to nonsymmetric PSF.
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3.3.3 Nonstationary preconditioning

When we deal with a stationary regularization method we have always to face the non-trivial task of
determining a good choice for the filtering parameter α. In [55] the authors proposed a nonstationary
method that can be interpreted as a nonstationary version of the reblurring preconditioning where the
parameter α is dynamically estimated at every iteration instead of to be fixed a-priori. The iteration is
the following

xk+1 = xk + Zkcircrk , Zkcirc = C∗(CC∗ + αkI)
−1 , rk = b−Axk, (3.29)

where C = Cn(f) is the BCCB-matrix associated with H . Note that if αk = α then the iteration (3.29)
is exactly (3.17) with Z = Cn(g), where g is defined in (3.20) imposing (3.21) as in [45]. Actually, the
proposal in [55] was designed as an approximate version of the iterated Tikhonov.

Remark 19. Zkcirc is the BCCB-matrix obtained by Algorithm 2 with αk in place of α in point 2. and
with periodic BCs.

In [55], the iteration-dependent regularization parameter αk is obtained by solving the following
nonlinear equation

‖rk − CZkcircrk‖2 = qk‖rk‖2 , 0 < qk < 1, (3.30)

with a few steps of the Newton iteration. Here the parameter qk depends on the noise level and it is
related to a value 0 < ρcirc < 1/2 which satisfies the assumption

‖(C −A)z‖2 ≤ ρcirc ‖Az‖2 , ∀ z ∈ Rn (3.31)

(see [55] for further details). This parameter ρcirc measures how much we trust in the approximation
of A with its BCCB counterpart C; the smaller ρcirc is, the more we trust in that approximation (see
[55] for more details). From a numerical point of view, the parameter ρcirc is usually chosen among
the values {10−1, 10−2, 10−3, 10−4}. A too small ρcirc can be easily recognized looking at the sequence
of the regularization parameters. The iterations are stopped under a special choice of the discrepancy
principle that will be discussed later. From a theoretical point of view, in [55] it is proved that under
the assumption (3.30), the iteration (3.29) converge monotonically and it is a regularization method.

In this subsection we extend the nonstationary iteration (3.29) to take into account the BCs of the
problem following our structure preserving strategy. More precisely, we consider the following iteration

xk+1 = xk + Zkstructrk , rk = b−Axk, (3.32)

where Zkstruct is the structure preserving matrix built by means of Algorithm 2 with a special choice of
the regularization parameter αk. In practice, we would estimate αk by solving

‖rk −AZkstructrk‖2 = qk‖rk‖2, (3.33)

which is not computationally practicable. Therefore, we estimate the regularization parameter αk using
an approximation of (3.33) easily computable that is the equation (3.30). A similar strategy was adopted
in [42] for different regularization methods. Note that the two iterations (3.29) and (3.32) retrieve a
different sequence of αk, even if both use the equation (3.30) to estimate αk, because the sequences of
the residuals {rk}k in the two iterative schemes are different. Furthermore, we have to observe that for
such a modified version of (3.29) the condition (3.31) does not make sense and then we are allowed to
introduce a new parameter ρstruct whose value could not match with the one of ρcirc.

Remark 20. Since Zkstruct provides a better approximation of A∗(AA∗ + αkI)
−1 with respect to Zkcirc,

it is expected that ρstruct < ρcirc.

On the other hand, we cannot prove convergence results as in [55], even if the numerical results in
next subsection shows that our structured nonstationary preconditioning is robust and very effective.

As shown in [55], another suitable choice of the parameter αk for iteration (3.29) is given by the
geometric sequence

αk = α̃qk, k = 0, 1, . . . , (3.34)

where α̃ > 0 and 0 < q ≤ 1. In the next subsection we confirm the effectiveness of the iteration (3.32)
with both sequences of {αk} obtained by (3.30) or (3.34).
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3.3.4 Numerical results

In this subsection we compare the reblurring preconditioning with our structure preserving extension. In
each example we impose appropriate BCs and solve the linear system Ax = b using both stationary and
nonstationary preconditioned iterations (3.17) and (3.32). More in detail, in the stationary case, fixed
few values of the parameter α, we compare the performances of the preconditioner Zcirc with our Zstruct.
In the nonstationary case our attention is devoted to the comparison between preconditioners Zkcirc and
Zkstruct. Regarding the sequence {αk}k of the regularization parameter we investigate the behavior of
both the geometric sequence defined in (3.34) (labeled ’geometric’ in the following) and the sequence
computed solving (3.30) (throughout, labeled ’DH’ (Donatelli-Hanke)). For the geometric sequence we
fix α̃ = 0.5 and q = 0.7 in (3.34), as suggested in [55]. Furthermore, we compare all the nonstationary
preconditioned algorithms with the CGLS.

As stopping criterion, we use the discrepancy principle given in (3.14). In the following we fix
γ = (1+2ρcirc)/(1− 2ρcirc) (or γ = (1+2ρstruct)/(1− 2ρstruct) dependently on the choice of the precon-
ditioner as Zkcirc or Zkstruct) for the iterations (3.29) and (3.32) with the DH sequence of regularization
parameter (see [55]), while we choose γ = 1.01 for the other algorithms.

The initial guess x0 is always taken as the observed image b. Assuming to know the true image x̄,
we measure the quality of the reconstruction computing the RRE defined in (3.13). We refer to the
minimum RRE and to the RRE corresponding to the discrepancy principle iteration as RREmin and
RREdiscr, respectively.

All the numerical tests have been developed with Matlab R2011b on a PC Intel CoreTMi5 and
Windows 7 operating system.

Example 1

We start with the Barbara deblurring problem of size 497× 497 in Figure 3.2. The PSF is a motion of
size 15× 15 given by the antidiagonal matrix in Figure 3.2(b) whose nonzero entries are equal to 1/15.
In this example we impose reflective BCs and fix the noise level to 1%.
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Figure 3.2: Example 1 - (a) true image 497× 497; (b) motion PSF 15× 15; (c) blurred image

In Table 3.1 we compare Zstruct and Zcirc preconditioners for α = 0.5, 0.1, 0.05, 0.01. We observe that
both RREmin and RREdiscr provided by Zstruct preconditioner are smaller than the RREmin obtained
using the Zcirc one. Furthermore, the discrepancy principle does not work for Zcirc preconditioner when
α = 0.5, 0.1, 0.05.

α = 0.5 α = 0.1 α = 0.05 α = 0.01

RREmin RREdiscr RREmin RREdiscr RREmin RREdiscr RREmin RREdiscr

Zstruct 0.1084 (46) 0.1093 (34) 0.1072 (10) 0.1077 (8) 0.1068 (5) 0.1068 (5) 0.1070 (1) 0.1084 (2)

Zcirc 0.1138 (31) -(-) 0.1125 (7) -(-) 0.1115 (4) -(-) 0.1096 (1) 0.1145 (2)

Table 3.1: Example 1 - RREmin and RREdiscr and corresponding iterations (in parenthesis) for Zcirc

and Zstruct preconditioners.

Figures 3.3(a)(b) refer to the comparison of the nonstationary preconditioning with Zkstruct for both
geometric and DH sequences with the Zkcirc preconditioner and with the CGLS method. When possible,
together with the discrepancy iteration, we also show the iteration corresponding to the RREmin (by
construction for Zkcirc and Zkstruct with DH sequence only RREdiscr is available). In the nonstationary
Zkcirc context we fix ρcirc = 10−1. Such a choice of ρcirc is due to the fact that for smaller values of
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this parameter, the Zkcirc method does not converge (see the behavior of the RRE for Zkcirc with DH
sequence in Figure 3.3(b) in which ρcirc = 10−2). As regards the parameter ρstruct, we use both 10−2

and 10−3 and observe that the Zkstruct preconditioner works well for both choices of ρstruct. Note that
the previous behaviour of the parameter ρcirc and ρstruct agree with Remark 20. This highlights an
appreciable stability of our algorithm with respect to the parameter ρstruct and allows us to focus in
the following numerical results and reconstructions only on one of the two values considered for ρstruct.
Although Zkstruct is slightly more accurate for ρstruct = 10−3 (RREdiscr = 0.1075) than for ρstruct = 10−2

(RREdiscr = 0.1083) (compare also Figure 3.3(a) with Figure 3.3(b)), we decide for the last one since
in this case the nonstationary structure preserving method reveals faster (6 iterations rather than 10
iterations). In this regard, we observe that the geometric and DH sequences of the regularization
parameter give rise to comparable errors for Zkstruct method, but the DH sequence involves less iterations.
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(a) ρcirc = 10−1, ρstruct = 10−2
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Figure 3.3: Example 1 - (a) Comparisons between RREs for Zkstruct geometric (solid blue line), Zkcirc
geometric (solid red line), Zkstruct DH (dashed blue line), Zkcirc DH (dashed red line) and CGLS (dotted
black line) for ρcirc = 10−1 and ρstruct = 10−2; (b) Comparison between Zkstruct DH (dashed blue line)
and Zkcirc DH (dashed red line) for ρcirc = 10−2 and ρstruct = 10−3. Key to symbols: (◦) optimal
iteration, (×) discrepancy iteration.

geometric DH
CGLS

Zk
struct Zk

circ Zk
struct Zk

circ

RREmin 0.1063 (9) 0.1121 (8) n/a n/a 0.1128 (9)

RREdiscr 0.1076 (8) -(-) 0.1083 (6) 0.1232 (3) 0.1164 (12)

Table 3.2: Example 1 - RREmin and RREdiscr and corresponding iterations (in parenthesis) for Zkcirc
and Zkstruct preconditioners for both the geometric and DH sequences and for the CGLS method. We
fix ρcirc = 10−1 and ρstruct = 10−2.

The better performances of Zkstruct with respect to the Zkcirc and CGLS already observed in Figure 3.3
are confirmed in Table 3.2 (within ’n/a’ means that the corresponding RREmin is not available). It is
evident that not only the RREmin, but also the RREdiscr of both geometric and DH Zkstruct algorithms are
smaller than the RREmin provided by the geometric Zkcirc preconditioner and by the CGLS. Furthermore,
note that the discrepancy principle does not work for the Zkcirc preconditioner with geometric sequence. A
comparison between the reconstructions in Figures 3.4(a)(c) and the ones in Figures 3.4(b)(d) highlights
the effectiveness of the proposed nonstationary structure preserving preconditioners.

Example 2

This example refers to the bridge deblurring problem of size 205 × 205 in Figure 3.5. The PSF is a
51× 51 pixels cropped and normalized portion of the GaussianBlur440 coming from the Restore Tools
Matlab package ([106]). We choose antireflective BCs and fix the noise level to 0.2%.

Aside from the comparison between Zstruct and Zcirc (or Zkstruct and Zkcirc in the nonstationary
case), the symmetrical nature of the PSF of this example let us to compare the performances of our
preconditioner with a preconditioner obtained imposing reflexive BCs. In fact, as already observed, when
the PSF is symmetric in Algorithm 2 we can use DCT instead of FFT. We refer to such a preconditioner
as ZDCT in the stationary case and as ZkDCT in the nonstationary one. Furthermore, we denote by
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(a) Zk
struct geometric (b) Zk

circ geometric (c) Zk
struct DH (d) Zk

circ DH

Figure 3.4: Example 1 - (a) Discrepancy reconstruction with Zkstruct geometric; (b) Optimal reconstruc-
tion with Zkcirc geometric; (c) Discrepancy reconstruction with Zkstruct DH; (d) Discrepancy reconstruction
with Zkcirc DH.

(a) (b) (c)

Figure 3.5: Example 2 - (a) true image 205× 205; (b) GaussianBlur440 PSF 51× 51; (c) blurred image

ρDCT the parameter which ’quantifies’ how much the structure of the preconditioner matches with the
structure of the blurring matrix.

In Table 3.3, we fix α = 0.01, 0.05, 0.001, 0.0005 and show the RREmin, RREdiscr and corresponding
iterations provided by the iteration (3.17) with Zcirc, Zstruct and ZDCT preconditioners. As for Exam-
ple 1, the RREdiscr of the Zstruct method, for α = 0.05, 0.001, 0.0005, is smaller than the RREmin of the
Zcirc one and in this last case the discrepancy principle does not work. Furthermore, the Zstruct seems
to be less sensitive to the choice of α, while the RREs obtained using the Zcirc preconditioner increases
as the value of α decreases. Concerning the ZDCT preconditioner it results more accurate than Zcirc and
Zstruct for α = 0.01, but it converges very slowly and for the other three values of α it behaves almost
like Zcirc.

In Figure 3.7(a) we compare the nonstationary Zkstruct method with the Zkcirc and CGLS ones. We
fix ρcirc = 10−1 and ρstruct = 10−3. The choice of ρcirc as 10−1 is in same sense forced from the fact
that, as shown in Figure 3.7(b), for smaller values of that parameter (contextually ρcirc = 10−2) the DH
sequence of the regularization parameter becomes to zigzag up and down and the algorithm attempts
to invert noise components.

The Zkstruct method is for the geometric and especially for the DH sequence more accurate and faster
than the CGLS. In fact, as shown in Table 3.4 the discrepancy principle stops the CGLS iteration after
148 steps, while for the Zkstruct with DH sequence only 10 iterations are needed (for this reason we omit
the discrepancy and optimal iterations for the CGLS method in Figure 3.7(a)).

Regarding the comparison of Zkstruct with Z
k
circ, the RRE provided by our algorithm is smaller than

the ones obtained using Zkcirc preconditioner for both sequences of the regularization parameter (compare
Figures 3.6(a)(c) with Figures 3.6(b)(d)).

α = 0.01 α = 0.05 α = 0.001 α = 0.0005

RREmin RREdiscr RREmin RREdiscr RREmin RREdiscr RREmin RREdiscr

Zstruct 0.1519 (148) 0.1531 (58) 0.1519 (74) 0.1530 (30) 0.1519 (15) 0.1527 (7) 0.1518 (8) 0.1524 (4)

Zcirc 0.1522 (277) -(-) 0.1577 (15) -(-) 0.1596 (2) -(-) 0.1593 (2) -(-)

ZDCT 0.1496 (279) 0.1515 (78) 0.1571 (13) -(-) 0.1604 (2) -(-) 0.1592 (1) -(-)

Table 3.3: Example 2 - RREmin and RREdiscr and corresponding iterations (in parenthesis) for Zcirc,
Zstruct, ZDCT preconditioners.
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(a) Zk
struct geometric (b) Zk

circ geometric (c) Zk
struct DH (d) Zk

circ DH

Figure 3.6: Example 2 - (a) Discrepancy reconstruction with Zkstruct geometric; (b) Optimal reconstruc-
tion with Zkcirc geometric; (c) Discrepancy reconstruction with Zkstruct DH; (d) Discrepancy reconstruction
with Zkcirc DH.

0 5 10 15 20 25
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

iterations

re
st

or
at

io
n 

er
ro

r

RREs

 

 

Zk
 struct

 geometric

Zk
 circ

 geometric

Zk
 struct

 DH

Zk
 circ

 DH

CGLS

(a) ρcirc = 10−1, ρstruct = 10−3
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(b) ρcirc = 10−2, ρstruct = 10−3

Figure 3.7: Example 2 - (a) Comparisons between RREs for Zkstruct geometric (solid blue line), Zkcirc
geometric (solid red line), Zkstruct DH (dashed blue line), Zkcirc DH (dashed red line) and CGLS (dotted
black line). Key to symbols: (◦) optimal iteration, (×) discrepancy iteration; (b) DH sequence for Zkstruct
(bullet blue line), Zkcirc (bullet red line).

In Table 3.4 we show also the results obtained with ZkDCT preconditioner. In the case of the geometric
sequence the ZkDCT method is more accurate than the others. Nevertheless, note that the discrepancy
principle is useful only for our Zkstruct preconditioner. As regards the parameter ρDCT we allow smaller
values than 10−1 previously fixed for ρcirc, since we expect that a preconditioner built with reflective BCs
better preserves the structure of the problem induced by antireflective BCs than a BCCB preconditioner.
On the other hand, we have numerically observed that for ρDCT = 10−3 the approximation becomes
less accurate and more iterations are involved (RREdiscr = 0.1536 after 43 iterations), so we decide for
ρDCT = 10−2. As shown in Table 3.4, although ZkDCT improves the quality of the reconstruction of
Zkcirc (note that in doing this more iterations are needed), it cannot perform better than our structure
preserving preconditioner.

geometric DH
CGLS

Zk
struct Zk

circ Zk
DCT

Zk
struct Zk

circ Zk
DCT

RREmin 0.1518 (23) 0.1521 (25) 0.1495(25) n/a n/a n/a 0.1526 (162)

RREdiscr 0.1524 (21) -(-) -(-) 0.1515 (10) 0.1615 (10) 0.1529 (19) 0.1527 (148)

Table 3.4: Example 2 - RREmin and RREdiscr and corresponding iterations (in parenthesis) for Zkcirc,
Zkstruct and Z

k
DCT preconditioners for both the geometric and DH sequences and for the CGLS method.

We fix ρcirc = 10−1, ρDCT = 10−2 and ρstruct = 10−3.
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3.4 A Regularization preconditioning in the Fourier domain

As already observed in Subsection 3.2.1, when the convolution matrix in (3.1) can be diagonalized by two-
dimensional DFT (1.22), a computationally attractive technique is given by the Tikhonov regularization.
On the other hand, the provided solutions are usually oversmoothed and other regularization terms,
involving e.g. total variation or the 1-norm, are often employed to preserve the edges or the sparsity
of the original image. Of course, this can lead to nonlinear systems and then weighs down on the
computational cost of the regularization method.

A useful strategy to reduce such nonlinear complexity is the Iteratively Reweighted Least Squares
(IRLS) strategy whose aim is to approximate nonlinear regularization terms introducing a diagonal
invertible weighting matrix. However, despite the simplicity of this weighting matrix, the resulting
linear systems cannot be solved by FFTs.

Starting from the fact that images have sparse representations in the Fourier and wavelet domains,
many deconvolution methods have been recently proposed with the aim of minimizing the 1-norm of
these transformed coefficients. Such a minimization is known as synthesis approach.

In this section we combine the synthesis approach with the IRLS strategy approximating the 1-norm,
in order to introduce a diagonal weighting matrix in the Fourier domain. The resulting linear system is
diagonal and hence the regularization parameter can be easily estimated, for instance by the generalized
cross validation. We will point out that the proposed Tikhonov regularization can be interpreted as a
diagonal regularization preconditioner.

The method benefits from a proper initial approximation that can be the observed image or the
Tikhonov approximation, therefore, embedding this method in an outer iteration may yield a further
improvement of the solution. Finally, since some properties of the observed image, like continuity or
sparsity, are obviously changed when working in the Fourier domain, we introduce a filtering factor
which keeps unchanged the large singular values and preserves the jumps in the Fourier coefficients
related to the low frequencies. Numerical examples are given in order to show the effectiveness of the
proposed method.

3.4.1 IRLS and synthesis approach

The generalized Tikhonov regularization described in Subsection 3.2.1 usually provides oversmoothed
reconstructions and it does not preserve the edges of the original image. Therefore, other penalty terms
R(x) in (3.4) have been proposed in the literature, like the total variation regularization to preserve the
edges [116], or

R(x) = ‖x‖1, (3.35)

to impose sparsity in the restored image [153]. Clearly, the solution of the resulting nonlinear problem is
much more time consuming than Tikhonov regularization [147, 153]. IRLS strategy has been extensively
used to reduce such nonlinear complexity [21, 152]. Recently, it has been successfully applied to deal
with the 1-norm regularization term (3.35) in connection with iterative methods, like the preconditioner
proposed in [93] for conjugate gradient, or the hybrid Arnoldi-Tikhonov methods proposed in [76].
IRLS method approximates the regularization term (3.35) by a term of the form (3.5) with a diagonal
invertible matrix L. Despite the simplicity of L, the structure of the coefficient matrix in (3.6) is lost
and such linear systems cannot longer be solved by fast transforms.

Starting from the a-priori information that every image has a sparse representation in the wavelet
or Fourier coefficients (see [102]), a further class of regularization methods investigated in the last ten
years considers the following regularization problem

min
x̂∈Cm

{
‖AW ∗x̂− b‖22 + α‖x̂‖1

}
, (3.36)

where x = W ∗x̂ and W ∈ Cm×n, with m ≥ n, is a wavelet or tight-frame synthesis operator such that
W ∗W = I, cf. [70, 29]. The minimization problem (3.36) is usually called synthesis approach. If m = n
and it holds that A = W ∗ΛAW , then W is a unitary transform and the data fitting term in (3.36)
becomes

‖AW ∗x̂− b‖22 = ‖ΛAx̂−Wb‖22,
which can be easily computed only by vector operations.

In the next subsections we consider the synthesis approach (3.36) where A can be diagonalized byW
and IRLS method is used to approximate the regularization term ‖x̂‖1 based on a diagonal matrix built
by using an approximation of x̂ that can be computed with an easy and fast regularization strategy.
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Furthermore, we include also a filter factor to avoid spoiling the information related to large singular
values. Since the Fourier transformed data vector x̂ could exhibit some jumps, we propose a further
approach designed in order to preserve discontinuity of the data. Summarizing, the presented technique
exploits the properties of both blurring operator and data, and in addition it allows cheap computation
of an optimal regularization parameter.

For a clear presentation of our new method, in the following, we choose the Fourier domain, i.e.,
W is the DFT. Hence we consider the classical image deblurring model where the matrix A is BCCB
matrix which is diagonalizable by the DFT [85]. Nevertheless, the same approach can be extended to
other structures, as for instance to the reflective boundary conditions when the PSF is symmetric in
every direction because, as observed in Section 3.1, in this case the matrix A can be diagonalized by
DCT.

3.4.2 IRLS for Tikhonov regularization

In [93] the authors introduced a data based regularization technique to improve the reconstruction of
the generalized Tikhonov method by incorporating the values of the image in the penalty term by IRLS
method. More precisely, given an approximation y of the true image, e.g. computed by applying the
generalized Tikhonov method with L = I, the idea that underlies this technique is to construct the
following diagonal matrix Dy ∈ Rn×n

(Dy)ii =




|yi| if |yi| > ε

ε otherwise
, i = 1, . . . , n, (3.37)

with 0 < ε≪ 1, in order to guarantee the invertibility of Dy, and to choose L = D
− 1

2
y in the generalized

Tikhonov method. In detail, the problem to be solved becomes

min
x∈Rn

{
‖Ax− b‖22 + α‖D− 1

2
y x‖22

}
. (3.38)

Note that, for x ∈ Rn, such that |xi| > ǫ, i = 1, . . . , n, the following equality holds

‖D− 1
2

x x‖22 = x∗D−1
x x = ‖x‖1.

Hence, the reason for the aforementioned choice of L lies in the fact that

y ≈ x ⇒ ‖D− 1
2

y x‖22 ≈ ‖x‖1. (3.39)

Therefore, the regularization term in (3.38) is a good approximation of the regularization term (3.35)
whenever y is a good approximation of x. Several numerical tests show that the approximation (3.39)
of ‖x‖1 is not very sensitive to the choice of ε.

In other words, this method is a particular generalized Tikhonov method where the minimum problem
(3.38) is equivalent to the linear system

(A∗A+ αD−1
y )x = A∗b, (3.40)

that, as shown in [93], for sparse images provides better reconstructions than the generalized Tikhonov
method with L = I. A drawback of this technique is that the diagonal matrix D−1

y prevents the use of
fast transform based algorithms for solving the linear system (3.40).

In order to improve the restoration starting from an approximation y, one of the methods known in
the literature is the iterated Tikhonov regularization [68]

min
x∈Cn

{
‖Ax− b‖22 + α‖x− y‖22

}
, (3.41)

where the jumps are nearly removed by considering the difference between the current approximation x
and the previous one y. Exploiting the same idea of the method (3.41), we can consider the following
minimization problem

min
x∈Cn

{
‖Ax− b‖22 + α‖D−1

y x‖22
}
, (3.42)

which can be seen as a multiplicative iterated Tikhonov regularization with the difference replaced by
the quotient. Note that (3.42) maps the data vector D−1

y x approximately on the vector eT = (1, . . . , 1)T

which is smooth and not sparse, so the method (3.42) should be used in connection with a further
(filtering) factor L that removes the regularizing effect for smooth vectors, e.g. the discretization of
the derivatives or an operator dependent matrix like (3.9). Hence, (3.42) allows to treat the data as a
smooth and continuous vector and to apply related regularization techniques [90, 92].
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3.4.3 IRLS for Tikhonov regularization in the Fourier domain

In this subsection we show how to apply the IRLS strategy for Tikhonov regularization in the Fourier
domain. The aim is to work with generic images, that are not necessarily sparse, preserving at the same
time the computational efficiency of the FFT. More precisely, in spite of solving (3.38) in the space
domain, we take advantage of the well-known sparsity of the Fourier coefficients of an image (see the
example below and [102] for more details) and solve it in the Fourier domain.

Example (sparsity of the Fourier coefficients of an image). In Figure 3.8(a) we represent the
moduli of the Fourier coefficients of the non sparse cameraman image (see Figure 3.8) as a surface
plot obtaining a surface which is almost squashed on the plane z = 0. In other words, if that moduli
are displayed as a scaled image the resulting image is, except for very few pixels in the corners, black
everywhere. To highlight the presence of non zero pixels in the corners, in Figures 3.8(b) and 3.8(c) we
show a zoom of the North-West and South-East corners, respectively.

(a) (b) (c)

Figure 3.8: (a) Moduli of the Fourier coefficients of the cameraman image of size 256× 256 represented
as a surface plot; (b) North-West corner of size 32× 32 of the moduli of the Fourier coefficients of the
cameraman image displayed as an image; (c) South-East corner of size 32 × 32 of the moduli of the
Fourier coefficients of the cameraman image displayed as an image plot

Tikhonov regularization and filtering with Sparse Fourier coefficients (TSF)

Regularization. Let x̂ = Fx, x̂ ∈ Cn be the Fourier coefficients of x. Reformulating the problem
(3.38) in terms of x̂ instead of x, it becomes

min
x̂∈Cn

{
‖AF ∗x̂− b‖22 + α‖D− 1

2

ŷ x̂‖22
}
, (3.43)

where y is an approximation of x and ŷ = Fy are the Fourier coefficients of y. To come back in the space
domain it is sufficient to apply an inverse transform to the computed solution of (3.43), i.e., x = F ∗x̂.
The initial approximation y can be computed, for example, by the Tikhonov method. If y is a good
approximation of x, since ‖y− x‖2 = ‖ŷ− x̂‖2, then also ŷ is a good approximation of x̂ and hence the
regularization term satisfies

‖D− 1
2

ŷ x̂‖22 ≈ ‖x̂‖1.
It follows that the problem (3.43) is an approximation of the regularization problem by the synthesis
approach in (3.36), where W = F . Moreover, recalling Remark 17, the TSF method can be seen as
a regularization preconditioning technique in the Fourier domain whose preconditioner is the diagonal

matrix D
− 1

2

ŷ .

Filtering. In the previous approach we have introduced a minimization problem in which the penalty
term acts by modifying also the large singular values of the matrix A, that are those associated to the
low frequencies which are less sensitive to noise. To preserve the main features of the solution, the large
singular values should remain almost unchanged. In order to avoid this unwanted alteration of the low
frequency components, we introduce a filtering factor constructed as follows. Looking at Figure 3.8(a)
we can observe that most of the entries of x̂ are equal to zero, that is x̂ is sparse. The nonzero elements
are located at the four corners, corresponding to the low frequencies (those that we want to preserve).
Let us partition the set of indices {1, 2, . . . , n} = L ∪ H, with L ∩ H = ∅, where L and H contain the
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indices associated to the low and high frequencies, respectively. Therefore, we define as x̂HF the vector
with the Fourier coefficients of x associated to the indices in H, and zero elsewhere (i.e. for the indices
in L). Exploiting this notation we can introduce a filtering factor Φ in (3.43) in order to obtain an
approximation of ‖x̂HF‖1 instead of ‖x̂‖1, that is

‖ΦD− 1
2

ŷ x̂‖22 ≈ ‖x̂HF‖1.

This can be achieved setting Φ as a diagonal matrix such that

(Φ)ii ≈
{

0 , i ∈ L
1 , i ∈ H , i = 1, . . . , n. (3.44)

For x̂ ∈ Cn, such that |x̂i| > ǫ, i = 1, . . . , n, then it holds

‖ΦD− 1
2

x̂ x̂‖22 ≈ ‖x̂HF‖1, (3.45)

where, if the approximation in (3.44) is an equality, then also those in (3.45) becomes an equality.

By setting Φ = Λ
1
2

L∗L, where L is a matrix chosen as in Subsection 3.2.1 (L 6= I) for which L∗L can
be diagonalized through F as in (3.8), we have precisely that the unwanted modification of the large
singular values of A caused by the large coefficients of the image in the Fourier domain (those in the
four corners of the 2D array like in Figure 3.8(a) associated with the low frequencies) is removed.

Similarly to what we have done in the spatial domain in which we considered (3.42) in place of (3.38),

we can change the exponent in the penalty term of (3.43) and pass from ‖D− 1
2

ŷ x̂‖22 to ‖D−1
ŷ x̂‖22. This

means that we do not approximate ‖x̂‖1, instead we use a norm that avoids penalizing the discontinuities
in the Fourier coefficients. Regarding the filtering factor Φ, also in this case the aim is to switch off the
regularization for the large singular values of A and preserve the jumps (nonsmoothness) in the nonzero
Fourier coefficients of the image (related to low frequencies); then we can use Φ defined as above.

Summarizing, the generalized version of the method (3.43) becomes

min
x̂∈Cn

{
‖AF ∗x̂− b‖22 + α‖Λ

1
2

L∗LD
−q
ŷ x̂‖22

}
, (3.46)

where in the following we consider both cases by using q = 1
2 or q = 1. Again by Remark 17, (3.46)

is equivalent to a regularization preconditioning strategy in the Fourier domain with preconditioner

Λ
1
2

L∗LD
−q
ŷ .

Actually, rather than (3.9) we consider

L∗L = I −
(
A∗A

ρ(A)2

)p
, (3.47)

since for 0 < p < 1 it involves a larger set of indices L. Note that for p = 1 the matrix (3.47) coincides
with (3.9). In Figure 3.9 we show the eigenvalues of L∗L defined as in (3.47) with A as the BCCB
matrix associated to the GaussianBlur420 PSF of Example 2 in Subsection 3.4.4. As highlighted in
Figure 3.9(a), when p = 1 the matrix L∗L behaves almost like the identity matrix and the set L
contains few indices, while looking at Figure 3.9(b) it is clear that for p = 1

16 the cardinality of L
increases. The optimal choice of the parameter p is not within our aims, so for all the numerical tests
of Subsection 3.4.4 we fix p = 1

16 .
When the blurring matrix A can be diagonalized by F like in (3.7), the problem (3.46) can be

reformulated as
min
x̂∈Cn

{
‖ΛAx̂− b̂‖22 + α‖Λ

1
2

L∗LD
−q
ŷ x̂‖22

}
, (3.48)

where b̂ = Fb. Note that if L is such that N (A)
⋂N (L) = {0}, like for the generalized Tikhonov

method, then N (ΛA)
⋂N (ΛL∗L) = {0} and hence

N (ΛA)
⋂
N
(
Λ

1
2

L∗LD
−q
ŷ

)
= {0},

which guaranties the well-posedness of (3.48).
We observe that the problem (3.48) is equivalent to the linear system

(Λ∗
AΛA + αΛL∗LD

−2q
ŷ )x̂ = Λ∗

Ab̂,
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(a) p = 1 (b) p = 1
16

Figure 3.9: ΛL∗L for L∗L as in (3.47)

which is diagonal and therefore very easy to solve in O(n) operations. Furthermore, the GCV func-
tional (3.10) for the problem (3.48) becomes

GTSF(α) =
‖(I − ΛA(ΛA)

†
reg )̂b‖22

(tr(I − ΛA(ΛA)
†
reg))2

,

with
(ΛA)

†
reg = (Λ∗

AΛA + αΛL∗LD
−2q
ŷ )−1Λ∗

A.

Similarly to the form of the GCV functional in (3.11) for the generalized Tikhonov method, it holds

GTSF(α) =

∑n
i=1(ξi b̂i)

2

(
∑n

i=1 ξi)
2
, (3.49)

where

ξi =
λi(L

∗L)/(Dŷ)
2q
ii

|λi(A)|2 + αλi(L∗L)/(Dŷ)
2q
ii

.

Summarizing our TSF algorithm is characterized by the following steps:

Algorithm 3 x = TSF(A,L, b, q, ŷ)

1. Compute ΛA and ΛL∗L by two FFTs

2. b̂ = Fb

3. Compute Dŷ by (3.37)

4. αGCV = minα∈RGTSF(α), with GTSF(α) in (3.49)

5. x̂ = (Λ∗
AΛA + αGCVΛL∗LD

−2q
ŷ )−1Λ∗

Ab̂

6. x = F ∗x̂

Here, we can choose L as in Subsection 3.2.1 or as in (3.47).
Note, that our TSF algorithm requires four FFTs like generalized Tikhonov, the further computational
cost is of O(n) operations at the points 3.–5.

TSF with Outer Iterations (ROI)

Following the Regularization with Outer Iterations (ROI) proposed in [93], we can embed the TSF
method (3.46) in an outer iteration. In other words, we start an iterative process of building diagonal
regularization matrices based on the current reconstruction





x̂(0) = ŷ

x̂(s) = argmin
x̂∈Cn

{
‖AF ∗x̂− b‖22 + α(s)‖Λ

1
2

L∗LD
−q
x̂(s−1) x̂‖22

}
, s = 1, . . . .
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with q ∈
{
1
2 , 1
}
. Clearly, the first iteration of the above scheme coincides with the TSF method. As a

consequence of this embedding, we observe further improvement, especially in the first iterations, while
in the later steps the error saturates and the reconstruction does not change evidently. Therefore, we
can stop the iterations when the relative difference between two consecutive approximations becomes
smaller than a fixed tolerance. Furthermore, we add a safe guard control on the residual norm so as
to avoid unexpected behaviors in the further iterations due, e.g., to an inaccurate estimation of the
regularization parameter.

When the blurring matrix A can be diagonalized by F like in (3.7), the problem (3.46) can be
reformulated as (3.48) and hence the ROI algorithm is characterized by the following steps:

Algorithm 4 x = ROI(A,L, b, q, x̂(0))

1. Compute ΛA and ΛL∗L by two FFTs

2. b̂ = Fb

3. x̂(1) = TSF(A,L, b, q, x̂(0))

4. r1 = ‖ΛAx̂(1) − b̂‖2
5. s = 1

Repeat

Compute Dx̂(s) by (3.37)

α
(s)
GCV = minα∈RGTSF(α), with GTSF(α) in (3.49)

x̂(s+1) = (Λ∗
AΛA + α

(s)
GCVΛL∗LD

−2q

x̂(s) )
−1Λ∗

Ab̂

rs+1 = ‖ΛAx̂(s+1) − b̂‖2
s = s+ 1

until ‖x̂(s)−x̂(s−1)‖2

‖x̂(s−1)‖2
< 10−2 or rs−1 < rs

6. x = F ∗x̂(s)

Again, the filter L can be chosen as in Subsection 3.2.1 or as in (3.47).

3.4.4 Numerical results

In the following we provide some numerical tests for the image deblurring problem of type (3.1). To test
the validity of the reconstruction provided by the TSF and ROI algorithms, we compare the computed
solutions with the generalized Tikhonov method.

We consider the following different choices of the regularization matrix L:

1. the identity matrix I;

2. the 2D approximation of the first derivative

Lder = L(1)
n2
⊗ In1 + In2 ⊗ L(1)

n1
, (3.50)

where

L
(1)
k =

1

2




1 −1
. . .

. . .

1 −1
−1 1



k×k

,

is the scaled finite difference approximation of the first derivative with periodic boundary condi-
tions. Note that ΛL∗

derLder
can be easily computed by a 2D FFT applied to the stencil

1

8




0 −1 0
−1 4 −1
0 −1 0
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properly padded by zeros to obtain the size n1 × n2 of the observed image.

3. the operator dependent matrix (3.47) with p = 1
16 .

Of course, other matrices L could be considered (see [59] and references therein) with the only constraint
that L∗L has to be diagonalized by F . To fix the notation of the different methods with different
regularization matrices, we refer to Table 3.5, in which the subscripts id, der, op denote the choice of L
as in 1., 2., 3., respectively, while the superscript q highlights the choice of the exponent of the diagonal
matrices D−2q

ŷ and D−2q
x̂(s) in Algorithm 3 and in Algorithm 4, respectively.

Table 3.5: Notation of the different algorithms with different regularization matrices

Method L = I L = Lder L as in (3.47)

Tikhonov TIKid TIKder TIKop

TSF TSFq

id
TSFq

der
TSFq

op

ROI ROIq
id

ROIq
der

ROIqop

Both TSF and ROI algorithms need an initial guess consisting of the Fourier coefficients of an
approximation of the true image. In all examples we decide for the Fourier coefficients of the solution
provided by TIKder since, as shown in the following, it performs better than the other two Tikhonov
methods.

In all considered examples we set ε = 10−8 in (3.37). We have tested several values for ε with
different problems, but the results were always comparable, showing that TSF and ROI algorithms are
robust with respect to changes of ε. The regularization parameter α is estimated by minimizing the
GCV functional (3.11) for Tikhonov and (3.49) for TSF (see Algorithm 3).

Assuming to know the true image x̄, we measure the quality of the reconstruction by computing the
Peak Signal-to-Noise Ratio (PSNR) defined as

PSNR := 10 log10
2552

MSE(x̄, x̃)
,

where x̃ is the current approximation of x̄, while MSE(x̄, x̃) = ‖x̄−x̃‖F

n2 . The higher is the value of the
PSNR, the better is the reconstruction x̃. The numerical tests have been developed with Matlab R2011b
on a PC Intel CoreTMi5 and Windows 7 operating system.

Example 1

We start with the test problem blur taken from [83] with true image of size 128× 128 (see Figure 3.10),
symmetric out-of-focus PSF ([85]) of size 17× 17 and noise level 5 · 10−4.

(a) (b) (c)

Figure 3.10: Example 1 - (a) true image 128× 128; (b) out-of-focus PSF 17× 17; (c) blurred and noisy
image

Table 3.6: Example 1 - Comparison between PSNRs and regularization parameters for different methods

β =id β =der β =op

Method PSNR αGCV PSNR αGCV PSNR αGCV

TIKβ 65.512943 6.20e-005 67.432599 6.20e-005 66.642366 6.20e-005

TSF
1
2
β

68.822621 1.49e-004 69.825451 2.36e-004 68.613248 3.43e-004

TSF1
β

69.303950 1.60e-003 70.076095 2.36e-003 69.120838 3.79e-003
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Table 3.7: Example 1 - PSNRs for the ROI

ROI
1
2
id

ROI
1
2
der

ROI
1
2
op

Iter PSNR αGCV PSNR αGCV PSNR αGCV

1 68.822621 1.49e-004 69.825451 2.36e-004 68.613248 3.43e-004

2 69.000796 1.82e-004 70.377213 2.95e-004 68.686781 4.30e-004

3 - - 70.545766 2.79e-004 - -

(a) TIKder (b) TSF
1
2

der (c) TSF1
der (d) ROI

1
2

der

Figure 3.11: Example 1 - restored images

In Table 3.6 we compare the PSNRs for all methods described in Table 3.5. Let us observe that
TIKder is more accurate than TIKid or TIKop; this justifies our choice of the initial guess as the Fourier
coefficients of the solution computed by that Tikhonov method. Regarding our TSF algorithm, it
provides a good improvement of the Tikhonov solution for all choices of the regularization matrix
(compare, e.g., Figure 3.11(a) with Figures 3.11(b)3.11(c)). Note that also when q = 1, that is when

in the penalty term the diagonal matrix D
− 1

2

ŷ is replaced by D−1
ŷ , the TSF method works well and the

corresponding PSNR is larger than the one in Tikhonov.

In Table 3.7 we show the effect of embedding the TSF method in an outer iteration. The ROIs that
stop at first iteration are not reported since they coincide with the TSF algorithm. From Table 3.7 we

deduce that TSF1
id, TSF

1
der and TSF1

op do not benefit of such an embedding, while ROI
1
2

id, ROI
1
2

der, ROI
1
2
op

improve the quality of the corresponding TSF reconstruction performing 2/3 iterations. Let us observe

that TSF
1
2

der provides a PSNR which is larger than the PSNRs corresponding to the last iteration of

ROI
1
2

id and ROI
1
2
op and that the best reconstruction is given by ROI

1
2

der (compare, e.g., Figures 3.11(a)-(c)
with Figure 3.11(d)). This could be ascribed to the fact that for q = 1

2 the penalty term is approximating

the 1-norm of the components x̂HF of x̂ in the high frequencies, that is ‖Λ
1
2

L∗
derLder

D
− 1

2

x̂(s) x̂‖22 ≈ ‖x̂HF‖1.

Example 2

We consider the cameraman deblurring problem of size 256 × 256 in Figure 3.12. The nonsymmetric
GaussianBlur420 PSF of size 256× 256 comes from Restore Tools Matlab package ([106]) and the noise
level is 10−5.

(a) (b) (c)

Figure 3.12: Example 2 - (a) true image 256 × 256; (b) GaussianBlur420 PSF 256 × 256; (c) blurred
and noisy image
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(a) TIKder (b) TSF1
op (c) ROI

1
2

der (d) ROI1op

Figure 3.13: Example 2 - restored images

Table 3.8: Example 2 - Comparison between PSNRs and regularization parameters for different methods

β =id β =der β =op

Method PSNR αGCV PSNR αGCV PSNR αGCV

TIKβ 24.798034 5.36e-005 25.192810 5.36e-005 24.958256 5.36e-005

TSF
1
2
β

25.942006 5.36e-005 26.108259 5.36e-005 25.994444 5.36e-005

TSF1
β

26.288431 5.36e-005 26.387301 5.36e-005 26.315813 5.36e-005

Table 3.9: Example 2 - PSNRs for the ROI

ROI
1
2
id

ROI
1
2
der

ROI
1
2
op

Iter PSNR αGCV PSNR αGCV PSNR αGCV

1 25.942006 5.36e-005 26.108259 5.36e-005 25.994444 5.36e-005

2 26.187353 5.36e-005 26.385167 5.36e-005 26.244349 5.36e-005

3 26.299611 5.36e-005 26.521393 5.36e-005 26.361031 5.36e-005

4 - - 26.591178 5.36e-005 - -

ROI1
id

ROI1
der

ROI1op
Iter PSNR αGCV PSNR αGCV PSNR αGCV

1 26.288431 5.36e-005 26.387301 5.36e-005 26.315813 5.36e-005

2 26.568309 5.36e-005 26.645156 5.36e-005 26.590811 5.36e-005

3 26.634729 5.36e-005 - - 26.594446 1.03e-001

As shown in Table 3.8, also for this example the TSF method enhances the quality of reconstruc-
tion of the TIKder method independently of the choice of the regularization matrix (see, e.g., Figure
3.13(a) in comparison with Figure 3.13(b)). In particular, the TSF1

id, TSF
1
der and TSF1

op provide good
reconstructions and the additional ROIs entail a further improvement (refer to Table 3.9 and compare
Figure 3.13(b) with Figure 3.13(d)). Note that the noise level for this example is very low and that

the PSF is a Gaussian one. Moreover, let us observe that embedding the TSF
1
2

der in a ROI gives rise
to 4 reconstruction-improving iterations (see Figure 3.13(c)) and the PSNR obtained at last iteration is
comparable with the ones corresponding to ROI1id, ROI1der and ROI1op.

Example 3

In this example we consider the grain image of size 256 × 256 using a Gaussian PSF with standard
deviation equal to 5 and setting the noise level to 10−3 (see Figure 3.14).
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(a) (b) (c)

Figure 3.14: Example 3 - (a) true image 256× 256; (b) Gaussian PSF 256× 256; (c) blurred and noisy
image

(a) TIKder (b) TSF
1
2

der (c) TSF
1
2
op (d) ROI

1
2
op

Figure 3.15: Example 3 - restored images

Table 3.10: Example 3 - Comparison between PSNRs and regularization parameters for different meth-
ods

β =id β =der β =op

Method PSNR αGCV PSNR αGCV PSNR αGCV

TIKβ 68.939829 5.36e-005 69.660417 5.36e-005 69.137066 5.36e-005

TSF
1
2
β

69.755546 5.36e-005 69.874618 1.94e-004 69.808882 5.36e-005

TSF1
β

69.840102 2.91e-004 69.836100 4.44e-003 69.836237 5.24e-004

Table 3.11: Example 3 - PSNRs for the ROI

ROI
1
2
id

ROI
1
2
op

Iter PSNR αGCV PSNR αGCV

1 69.755546 5.36e-005 69.808882 5.36e-005

2 69.778181 5.36e-005 69.840942 5.36e-005

3 69.787079 5.36e-005 69.849724 5.36e-005

4 - - 69.852618 5.36e-005

Table 3.10 gives evidence of a better accuracy of the TSF method with respect to the TIKder,

especially when the penalty term is given by ‖Λ
1
2

L∗
derLder

D
− 1

2

ŷ x̂‖22, that is in the case TSF
1
2

der. Furthermore,

as shown in Table 3.11, ROI
1
2

id and ROI
1
2
op perform 3 and 4 iterations, respectively, improving the quality

of the corresponding TSF reconstruction. In Figure 3.15 we focus on a detail of the restored images
which highlights how the restorations provided by the TSF and the ROI are richer of details than the
one obtained with TIKder.

Example 4

As a final example, we consider the jetplane deblurring problem of size 512× 512 in Figure 3.16 taking
as PSF the nonsymmetric diagonal motion of size 29× 29 and noise level 10−4.
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(a) (b) (c)

Figure 3.16: Example 4 - (a) true image 512 × 512; (b) PSF 29 × 29 with center in pixel (12,11); (c)
blurred and noisy image

(a) TIKder (b) TSF1
id (c) TSF1

der (d) ROI
1
2

der

Figure 3.17: Example 4 - restored images

Table 3.12: Example 4 - Comparison between PSNRs and regularization parameters for different meth-
ods

β =id β =der β =op

Method PSNR αGCV PSNR αGCV PSNR αGCV

TIKβ 30.123900 5.52e-005 32.523969 5.52e-005 30.882375 5.52e-005

TSF
1
2
β

33.861210 7.78e-003 34.230730 2.76e-002 33.811442 1.49e-002

TSF1
β

33.941120 1.47e+001 34.210584 3.81e+001 33.897847 2.87e+001

Table 3.13: Example 4 - PSNRs for the ROI

ROI
1
2
id

ROI
1
2
der

ROI
1
2
op

Iter PSNR αGCV PSNR αGCV PSNR αGCV

1 33.861210 7.78e-003 34.230730 2.76e-002 33.811442 1.49e-003

2 33.823830 1.41e-002 34.353391 4.44e-002 33.755098 2.75e-002

As in Example 3, in order to point out the effectiveness of the TSF method, we focus on a detail of
the blurred jetplane image. Note that the number 01568 on the tail of the jetplane is definitely more
readable in Figures 3.17(b)–3.17(d) than in Figure 3.17(a). This behavior is confirmed by the PSNRs
shown in Table 3.12. In particular, we deduce that, also for this example, a good choice of the penalty
term is the 2-norm approximation of ‖x̂HF‖1 provided by the discretization of the first derivative (3.50).
Furthermore, as shown in Table 3.13, this is the only case in which the ROI gives a slight improvement
performing 2 iterations (look at Figure 3.17(d)), while in the other cases the second iteration fails in
enhancing the approximation obtained with the TSF method at first iteration.



Chapter 4

Spectral analysis and structure

preserving preconditioners for FDEs

In this chapter we focus on a discretization of the fractional partial order diffusion equations which leads
to a linear system whose coefficient matrix has a Toeplitz-like structure (see Section 4.1). In particular,
we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, in
Section 4.2 we show that the sequence of the coefficient matrices belongs to the GLT class and, using
the tools introduced in Chapter 1, we compute the symbol describing its asymptotic eigenvalue/singular
value distribution, as the matrix size diverges. In Section 4.3 we employ the spectral information for
analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative
results and with a look forward to the multidimensional setting. We also propose two new tridiagonal
structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as
CGLS and GMRES. Due to their tridiagonal structure, both preconditioners preserve the computational
cost per iteration of the used Krylov method. A clustering analysis of the preconditioned matrix-
sequences, even in case of nonconstant diffusion coefficients, is also provided. Finally, in Section 4.4 we
give a number of numerical examples which shows that our proposal is more effective than recently used
circulant preconditioners.

4.1 Problem setting: FDEs

Fractional-space diffusion equations (FDEs) are used to describe diffusion phenomena, that cannot be
modeled by the second order diffusion equations. More precisely, when a fractional derivative replaces
a second derivative in a diffusion model, it leads to enhanced diffusion. FDEs arise in many research
topics including image processing [8] and turbulent flow [31, 138]. In [103, 104] Meerschaert and Tadjeran
introduced an unconditionally stable method for approximating the FDEs. As we show in a moment,
the resulting linear systems have a strong structure and indeed the related coefficient matrices can be
seen as a sum of two diagonal times Toeplitz matrices (see [150]).

Throughout this chapter we denote the dimension of the involved matrices by N , in accordance with
the notation used in the recent works on the FDEs (e.g. [151, 113, 100, 112]).

Let us consider the following initial-boundary value FDE problem




∂u(x,t)
∂t = d+(x, t)

∂αu(x,t)
∂+xα + d−(x, t)

∂αu(x,t)
∂−xα + f(x, t), (x, t) ∈ (L,R)× (0, T ],

u(L, t) = u(R, t) = 0, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ [L,R],

(4.1)

where α ∈ (1, 2) is the fractional derivative order, f(x, t) is the source term and the nonnegative
functions d±(x, t) are the diffusion coefficients. The right-handed (–) and the left-handed (+) fractional
derivatives in (4.1) are defined in Riemann-Liouville form as follows

∂αu(x, t)

∂+xα
=

1

Γ(n− α)
∂n

∂xn

x∫

L

u(ξ, t)

(x− ξ)α+1−n dξ,

∂αu(x, t)

∂−xα
=

(−1)n
Γ(n− α)

∂n

∂xn

R∫

x

u(ξ, t)

(ξ − x)α+1−n dξ,
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where n is an integer such that n− 1 < α ≤ n and Γ(·) is the gamma function. If α = m, with m ∈ N,
the fractional derivatives reduce to the standard integer derivatives, i.e.,

∂mu(x, t)

∂+xm
=
∂mu(x, t)

∂xm
,

∂mu(x, t)

∂−xm
= (−1)m∂

mu(x, t)

∂xm
.

Let us observe that when α = 2 the equation in (4.1) reduces to a parabolic PDE, while when α = 1 it
becomes a hyperbolic PDE. From a numerical point of view, an interesting definition of the fractional
derivatives is the shifted Grünwald definition given by

∂αu(x, t)

∂+xα
= lim

∆x→0+

1

∆xα

⌊(x−L)/∆x⌋∑

k=0

g
(α)
k u(x− (k − 1)∆x, t),

∂αu(x, t)

∂−xα
= lim

∆x→0+

1

∆xα

⌊(R−x)/∆x⌋∑

k=0

g
(α)
k u(x+ (k − 1)∆x, t),

(4.2)

where ⌊·⌋ is the floor function, while g
(α)
k are the alternating fractional binomial coefficients defined as

g
(α)
k = (−1)k

(
α
k

)
=

(−1)k
k!

α(α− 1) · · · (α− k + 1) k = 0, 1, . . . (4.3)

with the formal notation

(
α
0

)
= 1. The shifted Grünwald formulas are numerically relevant since,

from (4.2), we can define the following estimates of the left and right-handed fractional derivatives

∂αu(x, t)

∂+xα
=

1

∆xα

⌊(x−L)/∆x⌋∑

k=0

g
(α)
k u(x− (k − 1)∆x, t) +O(∆x),

∂αu(x, t)

∂−xα
=

1

∆xα

⌊(R−x)/∆x⌋∑

k=0

g
(α)
k u(x+ (k − 1)∆x, t) +O(∆x).

In [103] Meerschaert and Tadjeran proved that the implicit Euler method based on the shifted Grünwald
formula is consistent and unconditionally stable. Let us fix two positive integers N,M , and define the
following partition of [L,R]× [0, T ], i.e.,

xi = L+ i∆t, ∆x = (R−L)
N+1 , i = 0, . . . , N + 1,

tm = m∆t, ∆t = T
M , m = 0, . . . ,M.

More in detail, the idea that underlies the Meerschaert-Tadjeran method is to combine a discretization
in time of equation (4.1) by an implicit Euler method, with a discretization in space of the fractional
derivatives by a shifted Grünwald estimate, i.e.,

u(xi, tm)− u(xi, tm−1)

∆t
= d

(m)
+,i

∂αu(xi, tm)

∂+xα
+ d

(m)
−,i

∂αu(xi, tm)

∂−xα
+ f

(m)
i +O(∆t),

where d
(m)
±,i := d±(xi, tm), f

(m)
i := f(xi, tm) and

∂αu(xi, tm)

∂+xα
=

1

∆xα

i+1∑

k=0

g
(α)
k u(xi−k+1, tm) +O(∆x),

∂αu(xi, tm)

∂−xα
=

1

∆xα

N−i+2∑

k=0

g
(α)
k u(xi+k−1, tm) +O(∆x).

The resulting finite difference approximation scheme is then

u
(m)
i − u(m−1)

i

∆t
=
d
(m)
+,i

∆xα

i+1∑

k=0

g
(α)
k u

(m)
i−k+1 +

d
(m)
−,i

∆xα

N−i+2∑

k=0

g
(α)
k u

(m)
i+k−1 + f

(m)
i ,

where by u
(m)
i we denote a numerical approximation of u(xi, tm). The previous approximation scheme

can be written in matrix form as (see [150])
(
νM,NI +D

(m)
+ Tα,N +D

(m)
− T Tα,N

)
u(m) = νM,Nu

(m−1) +∆xαf (m), (4.4)
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where νM,N = ∆xα

∆t , u
(m) = [u

(m)
1 , . . . , u

(m)
N ]T , f (m) = [f

(m)
1 , . . . , f

(m)
N ]T , D

(m)
± = diag(d

(m)
±,1 , . . . , d

(m)
±,N ), I

is the identity matrix of order N and

Tα,N = −




g
(α)
1 g

(α)
0 0 · · · 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 · · · · · · g

(α)
2 g

(α)
1



N×N

is a lower Hessenberg Toeplitz matrix. The fractional binomial coefficients g
(α)
k satisfy few properties,

summarized in the following proposition (see [103, 104, 150]).

Proposition 13. Let α ∈ (1, 2) and g
(α)
k be defined as in (4.3). Then we have

{
g
(α)
0 = 1, g

(α)
1 = −α, g

(α)
0 > g

(α)
2 > g

(α)
3 > . . . > 0,∑∞

k=0 g
(α)
k = 0,

∑n
k=0 g

(α)
k < 0, n ≥ 1.

From here onwards, we denote the coefficient matrix of the linear system (4.4) byM(m)
α,N , that is

M(m)
α,N = νM,NI +D

(m)
+ Tα,N +D

(m)
− T Tα,N . (4.5)

Using Proposition 13, it can be shown thatM(m)
α,N is strictly diagonally dominant and then nonsingular

(see [150]), for every choice of the parameters m ≥ 0, N ≥ 1, α ∈ (1, 2).
The FDEs are of numerical interest, since there exist only few cases in which the analytic solution

is known. As a consequence, in the past ten years, many methods have been proposed for solving

numerically FDEs problems. Exploiting the structure of M(m)
α,N , in [151] the authors employed CGLS

and numerically showed that its convergence is fast when the diffusion coefficients are small, that is in this
case the resulting linear system is well-conditioned. On the other hand, when the diffusion coefficients
are not small, the problem becomes ill-conditioned and the convergence of the CGLS method slows down.
To avoid the resulting drawback, in [113] Pang and Sun proposed a multigrid method that converges very
fast, even in the ill-conditioned case. The linear convergence of such a method has been proved only in
the case of constant and equal diffusion coefficients. With the same purpose, Lei and Sun used the CGLS
method with a circulant preconditioner and verified that it converges superlinearly (see [100]), again in
the case of constant diffusion coefficients. A further improvement of the circulant preconditioning has
been proposed in [112]. Both strategies preserve the computational cost per iteration of O(N logN)
operations, typical of the CGLS method when applied to Toeplitz type structures.

4.2 Spectral analysis of the coefficient matrix

Recalling the notion of symbol and of spectral distribution in the eigenvalue and singular value sense
given in Chapter 1, in this section we provide a spectral analysis of the coefficient matrix-sequence{
M(m)

α,N

}
N
. In the constant coefficient case, as already observed in papers like [100], the coefficient

matrix-sequence is a Toeplitz sequence: then using well-known spectral tools for Toeplitz sequences we
determine its symbol and study its spectral distribution. In the nonconstant coefficients case, under

appropriate conditions, we show that,
{
M(m)

α,N

}
N

belongs to the GLT class and use the GLT machinery

to analyze its singular value/eigenvalue distribution. The resulting spectral information is then used in
Section 4.3 for the analysis and the design of numerical solvers to be applied to the considered linear
systems.

4.2.1 Constant diffusion coefficients case

Let us assume that both diffusion coefficients are constant. Under this condition,
{
M(m)

α,N

}
N

is a

sequence of Toeplitz matrices. For convenience, we rewrite Definition 7 in the case k = s = 1, obtaining
the definition of unilevel Toeplitz sequence and of corresponding symbol.
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Definition 17. Let f ∈ L1(I1) and let {fj}j∈Z
be the sequence of its Fourier coefficients defined as

fj =
1

2π

π∫

−π

f(θ)e−ijθdθ, j ∈ Z.

Then the Toeplitz sequence {TN}N with TN = [fi−j ]Ni,j=1 is called the family of Toeplitz matrices
generated by f , which in turn is called the symbol of {TN}N and TN is denoted by TN(f).

Remark 21. Let {TN}N be a Toeplitz sequence, with TN = [fi−j ]Ni,j=1. If {fj}j∈Z
is such that∑∞

k=−∞ |fk| < ∞, then the series
∑∞

k=−∞ fke
ikθ uniformly converges to a continuous and 2π–periodic

function f which belongs to the Wiener class (see Definition 13) and is the symbol of {TN}N , i.e.,
TN = TN (f), ∀N ∈ N.

We determine the sequence of symbols associated to
{
M(m)

α,N

}
N

as a corollary of the following

proposition.

Proposition 14. Let α ∈ (1, 2). The symbol associated to the matrix-sequence {Tα,N}N belongs to the
Wiener class and its formal expression is given by

fα(θ) = −
∞∑

k=−1

g
(α)
k+1e

ikθ = −e−iθ
(
1 + ei(θ+π)

)α
. (4.6)

Proof. Let us observe that Tα,N = [−g(α)i−j+1]
N
i,j=1 with g

(α)
k = 0 for k < 0 and let us define the function

fα(θ) = −∑∞
k=−1 g

(α)
k+1e

ikθ. When α ∈ (1, 2), it is easy to see that fα(θ) lies in the Wiener class. In

detail, from Proposition 13 we know that g
(α)
1 = −α < 0, g

(α)
k > 0 for k ≥ 0 and k 6= 1, and g

(α)
k = 0 for

k < 0. Then
∞∑

k=−1

|g(α)k+1| =
∞∑

k=−1
k 6=0

g
(α)
k+1 + α.

Again from Proposition 13 we deduce

∞∑

k=0

g
(α)
k = 0 ⇐⇒

∞∑

k=−1
k 6=0

g
(α)
k+1 = −g(α)1 = α,

that is
∑∞

k=−1 |g
(α)
k+1| = 2α, which means that fα(θ) belongs to the Wiener class for α ∈ (1, 2). To

obtain an explicit formula for the symbol fα(θ), let us recall the definition of g
(α)
k given in (4.3) and let

us rewrite fα(θ) as follows

fα(θ) = −
∞∑

k=0

g
(α)
k ei(k−1)θ = −

∞∑

k=0

(−1)k
(
α
k

)
ei(k−1)θ

= −
∞∑

k=0

(
α
k

)
ei(k−1)θeikπ = −e−iθ

∞∑

k=0

(
α
k

)
eik(θ+π).

Applying the well-known binomial series

(1 + z)α =

∞∑

k=0

(
α
k

)
zk, z ∈ C, |z| ≤ 1, α > 0,

with z = ei(θ+π) we obtain

fα(θ) = −e−iθ
(
1 + ei(θ+π)

)α
.

Corollary 1. Let us assume that d+(x, t) = d+ > 0, d−(x, t) = d− > 0. The matrix M(m)
α,N defined

as in (4.5) is the Toeplitz matrixM(m)
α,N = [ϕi−j ]Ni,j=1 with

ϕj =
1

2π

π∫

−π

ϕα,N (θ)e−ijθdθ, j ∈ Z,
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where
ϕα,N (θ) = νM,N + d+fα(θ) + d−fα(−θ).

Now we focus our attention on the spectral distribution of
{
M(m)

α,N

}
N
, under the further assumption

that the diffusion coefficients are equal. By this hypothesis,
{
M(m)

α,N

}
N

is a sequence of symmetric

Toeplitz matrices. Let us recall Definition 3 with s = 1, dn = n and n = N . Note that, under these
conditions, ‘tr’ in the right-hand side of (1.11) and (1.12) disappears. The following proposition concerns

the eigenvalue distribution of the coefficient matrix-sequence
{
M(m)

α,N

}
N
, when diffusion coefficients are

constant and equal.

Proposition 15. Let us assume that d±(x, t) = d > 0 and that νM,N = o(1). Given the matrix-sequence{
M(m)

α,N

}
N

withM(m)
α,N defined as in (4.5), we have

{
M(m)

α,N

}
N
∼λ (d · pα(θ), I1),

where
pα(θ) = fα(θ) + fα(−θ) = fα(θ) + fα(θ) (4.7)

is a real-valued continuous function.

Proof. Since the diffusion coefficients d±(x, t) are constant and equal to a real positive
number d, the matrices of the sequence

{
dTα,N + dT Tα,N

}
N

are symmetric. The function

pα(θ) = fα(θ) + fα(−θ) = fα(θ) + fα(θ) belongs to the Wiener algebra since fα(θ) itself is in the
same algebra (see Proposition 14). Furthermore, from its expression it also follows that pα(θ) is real-
valued and globally continuous.

From Theorem 5, it follows that
{
dTα,N + dT Tα,N

}
N
∼λ (d · pα, I1). Furthermore, using (1.18)

(k = s = 1), we have that ‖dTα,N + dT Tα,N‖ ≤ d‖pα‖L∞ = d2α+1, while under the hypothesis that
νM,N = o(1), the remaining term νM,NI is such that ‖νM,NI‖1 = o(N) and ‖νM,NI‖ = νN,M < C for

some constant C independent of N . By Theorem 2, we conclude that the distribution of
{
M(m)

α,N

}
N

is

decided only by d · pα(θ).

Combining (4.7) with (4.6), we can explicitly rewrite pα(θ) as follows

pα(θ) = fα(θ) + fα(−θ) = −e−iθ
(
1− eiθ

)α − eiθ
(
1− e−iθ

)α
.

It is obvious that pα(0) = 0. We want to show that such a zero is of order α, with α ∈ (1, 2), according
to the following definition.

Definition 18. Let f : [a, b] ⊂ R→ R be a continuous nonnegative function. We say that f has a zero
of order β > 0 at θ0 ∈ [a, b] if there exist two real constants C1, C2 > 0 such that

lim inf
θ→θ0

f(θ)

|θ − θ0|β
= C1, lim sup

θ→θ0

f(θ)

|θ − θ0|β
= C2.

Recalling the definition of fα(θ) in equation (4.6), it is easy to see that pα(θ) is nonnegative; in fact
making use of the Proposition 13 we obtain

pα(θ) = −
∞∑

k=−1

g
(α)
k+1(e

ikθ + e−ikθ)

= −
[
2g

(α)
1 + (g

(α)
0 + g

(α)
2 )(eiθ + e−iθ) +

∞∑

k=2

g
(α)
k+1(e

ikθ + e−ikθ)

]

= −
[
2g

(α)
1 + 2(g

(α)
0 + g

(α)
2 ) cos θ + 2

∞∑

k=2

g
(α)
k+1 cos(kθ)

]
≥ −2

∞∑

k=−1

g
(α)
k+1 = 0.

Proposition 16. Let α ∈ (1, 2), then the function pα(θ) defined in (4.7) has a zero of order α at 0.
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Proof. Let us rewrite 1− eiθ and 1− e−iθ in polar form

1− eiθ =
√
2− 2 cos θ eiφ,

1− e−iθ =
√
2− 2 cos θ eiψ,

where

φ =





arctan
(

− sin θ
1−cos θ

)
, θ 6= 0

limθ→0+ arctan
(

− sin θ
1−cos θ

)
= −π2 , θ = 0

and ψ = −φ. We can then express pα(θ) as follows

pα(θ) = −e−iθ
(√

2− 2 cos θeiφ
)α
− eiθ

(√
2− 2 cos θe−iφ

)α

= −
√
(2− 2 cos θ)αei(αφ−θ) −

√
(2− 2 cos θ)αe−i(αφ−θ)

= −2
√
(2 − 2 cos θ)αrα(θ),

where rα(θ) = cos(αφ − θ). Let us observe that limθ→0− rα(θ) = limθ→0+ rα(θ) = cos
(
απ2
)
. Now it is

easy to see that

lim
θ→0

pα(θ)

|θ|α = −2 lim
θ→0

(2− 2 cos θ)
α
2

|θ|α rα(θ) = −2 cos
(
α
π

2

)
∈ (0, 2),

which proves that pα has a zero of order α at 0, according to Definition 18.

Remark 22. In Proposition 16 we assumed that α ∈ (1, 2). Let us observe that when α = 1 the order
of the zero at 0 of pα(θ) is 2 since

p1(θ) = −e−iθ
(
1− eiθ

)
− eiθ

(
1− e−iθ

)
= 2− 2 cos(θ).

Hence the statement in Proposition 16 is not true for α = 1, while it remains true for α = 2: indeed the
polynomial

p2(θ) = −e−iθ
(
1 + ei2θ − 2eiθ

)
− eiθ

(
1 + e−i2θ − 2e−iθ

)
= 4− 4 cos(θ)

has a zero of order α = 2 at 0, as expected.

Figure 4.1(a) compares the symbol pα(θ) normalized by ‖pα‖L∞ with the normalized symbol of the
Laplacian operator given by ℓ(θ) = 1 − 1 cos(θ) for α = 1.2, 1.5, 1.8 and varying θ in I1. Figure 4.1(b)
is a zoom of Figure 4.1(a) in a neighborhood of 0. Recalling that ℓ(θ) has a zero of order 2 at 0, we

observe that pα(θ)
‖pα‖L∞

approaches ℓ(θ) and the order of its zero in 0 increases up to 2 as α tends to 2.
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Figure 4.1: (a) Comparison between the normalized symbol of the Laplacian operator ℓ(θ) (blue bullet

line) with pα(θ)
‖pα‖L∞

for α = 1.2 (red solid line), α = 1.5 (black dotted line) and α = 1.8 (green dashed

line) varying θ in I1; (b) zoom of Figure 4.1(a) in a neighborhood of 0.
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4.2.2 Nonconstant diffusion coefficients case

Now we focus on the symbol associated to
{
M(m)

α,N

}
N
and on its spectral distribution, when both d+(x, t)

and d−(x, t) are nonconstant. For this purpose we need the notion of GLT sequences and the related
theory (for k = 1), introduced in Section 1.5.

Proposition 17. Let us assume that νM,N = o(1) and that, fixed the instant of time tm,
d+(x) := d+(x, tm) and d−(x) := d−(x, tm) are both Riemann integrable over [L,R]. For the matrix

M(m)
α,N defined as in (4.5), it holds

{
M(m)

α,N

}
N
∼GLT ĥα(x̂, θ)

with

ĥα(x̂, θ) = hα(L+ (R − L)x̂, θ), hα(x, θ) = d+(x)fα(θ) + d−(x)fα(−θ), (4.8)

where (x̂, θ) ∈ [0, 1]× I1, (x, θ) ∈ [L,R]× I1. Furthermore,
{
M(m)

α,N

}
N
∼σ (hα(x, θ), [L,R]× I1),

and whenever hα(x, θ) is real-valued, i.e., if and only if d+(x) = d−(x), we also have
{
M(m)

α,N

}
N
∼λ (hα(x, θ), [L,R]× I1),

and indeed all the matrices M(m)
α,N have only real eigenvalues.

Proof. Let us observe that, fixed the instant of time tm, the diagonal elements of the matricesD
(m)
± are a

uniform sampling of the functions d±(x), x ∈ [L,R], and then
{
D

(m)
±

}
N
∼GLT d̂±(x̂) = d±(L+(R−L)x̂),

x̂ ∈ [0, 1] (see item [GLT3]). Since the GLT class is stable under linear combinations and products, as
reported in item [GLT2], and since Toeplitz sequences with L1 symbols lie in the GLT class (see item

[GLT3]), it is immediate to see that the matrix-sequence
{
D

(m)
+ Tα,N +D

(m)
− T Tα,N

}
N

is still a member

of the GLT class. The symbol of
{
D

(m)
+ Tα,N +D

(m)
− T Tα,N

}
N

is ĥα(x̂, θ) = d̂+(x̂)fα(θ) + d̂−(x̂)fα(−θ),
(x̂, θ) ∈ [0, 1] × I1, again by item [GLT2]. Under the hypothesis that νM,N = o(1), the se-
quence {νM,NI}N is a GLT sequence with zero symbol, as in item [GLT4]. This implies that{
M(m)

α,N

}
N
∼GLT ĥα(x̂, θ), according to item [GLT2].

Exploiting the Riemann integrability of d±(x) over [L,R] and by item [GLT1], we can conclude{
M(m)

α,N

}
N
∼σ (ĥα(x̂, θ), [0, 1] × I1) and hence

{
M(m)

α,N

}
N
∼σ (hα(x, θ), [L,R] × I1), after an affine

change of variable (refer to the integral expression in Definition 3).
Now, by exploiting Proposition 14 and Proposition 15, since pα(θ) is real-valued, it is clear

that hα(x, θ) is real-valued if and only if d+(x) = d−(x). Furthermore, under the condition that

d+(x) = d−(x) we deduce that D
(m)
+ = D

(m)
− which is a positive definite diagonal matrix, whence,

choosing D as the positive definite square root of D
(m)
+ , we find that D−1 M(m)

α,N D is similar to

M(m)
α,N and real symmetric. Therefore all the eigenvalues of M(m)

α,N are real and we plainly have{
M(m)

α,N

}
N
∼λ (hα(x, θ), [L,R] × I1), by exploiting again the GLT machinery, as done before but in

the Hermitian setting.

Here we show in Proposition 18 that, if both diffusion coefficients are bounded and positive, the
symbol hα(x, θ) (and hence ĥα(x̂, θ)), for the set of interest α ∈ (1, 2), has always a zero at θ = 0
of order α (see Proposition 16 for the constant and equal coefficients case). This property is true
independently of the constant or nonconstant character of the diffusion coefficients.

Proposition 18. Given pα(θ) as in (4.7) and hα(x, θ) as in (4.8), the following two limit relations hold

lim
θ→0+

hα(x, θ)

pα(θ)
=
d+(x) + d−(x)

2
− i tan

(
α
π

2

) d+(x)− d−(x)
2

,

lim
θ→0−

hα(x, θ)

pα(θ)
=
d+(x) + d−(x)

2
+ i tan

(
α
π

2

) d+(x)− d−(x)
2

.
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Proof. As in the proof of Proposition 16 we exploit the polar form of 1 − eiθ and 1 − e−iθ and rewrite

the quotient hα(x,θ)
pα(θ) as follows

hα(x, θ)

pα(θ)
=
−d+(x)

√
(2− 2 cos θ)αei(αφ−θ) − d−(x)

√
(2 − 2 cos θ)αe−i(αφ−θ)

−2
√
(2− 2 cos θ)α cos(αφ− θ)

=
d+(x)e

i(αφ−θ) + d−(x)e−i(αφ−θ)

2 cos(αφ − θ)

=
d+(x)(cos(αφ− θ) + i sin(αφ− θ))

2 cos(αφ − θ) +
d−(x)(cos(αφ − θ)− i sin(αφ − θ))

2 cos(αφ − θ)

=
d+(x) + d−(x)

2
+ i tan (αφ− θ) d+(x)− d−(x)

2
,

where

φ =





arctan
(

− sin θ
1−cos θ

)
, θ 6= 0,

limθ→0+ arctan
(

− sin θ
1−cos θ

)
= −π2 , θ = 0.

It is easy to see that for α ∈ (1, 2)

lim
θ→0+

tan (αφ− θ) = − tan
(
α
π

2

)
> 0,

lim
θ→0−

tan (αφ− θ) = tan
(
α
π

2

)
< 0,

and the thesis is proved.

The previous Proposition 18 shows also the importance of the diffusion coefficients functions d+ and
d−, that should be properly taken into account when defining a good preconditioner.

4.3 Analysis and design of numerical methods, via the spectral

information

In this section we use the spectral information discussed in Section 4.2 to analyze in more detail the
convergence of some recently proposed techniques ([100, 113]) and to design some structure preserving
preconditioners for Krylov methods. It is divided in three parts. In Subsection 4.3.1, we observe
that the superlinear convergence obtained in the constant coefficient case for the CGLS with a circulant
preconditioner discussed in [100] cannot be ensured for any Krylov method when the diffusion coefficients
are nonconstant or in the multidimensional setting even when the diffusion coefficients are constant.
In Subsection 4.3.2 structure preserving preconditioners are studied and a preconditioning proposal
with minimal bandwidth (and so with efficient computational cost) is proposed. Finally, in Subsection
4.3.3, with reference to the method indicated in [113], we briefly give a compact proof of the two-grid
convergence (already proved in [113]), simply based on the properties of the symbol pα(θ), according to
the results in [71, 33, 128]. Moreover, we give a theoretical motivation of the constant convergence rate
of the V -cycle multigrid experimentally observed in [113] using the results in [4].

4.3.1 Negative results for the circulant preconditioner

We show here that the circulant preconditioning, which ensures a clustering at the unity in the case of
constant coefficients (see Theorem 1 in [100]), cannot be extended in the variable coefficient setting.

Since circulant structures are special instances of Toeplitz structures, if a sequence of circulant matri-
ces {CN}N has a symbol f(θ), then its Toeplitz counterpart {TN}N is such that {TN − CN}N ∼σ (0, I1).
Hence, by invoking items [GLT1-4], we deduce that the sequence {TN − CN}N is a GLT sequence with
zero symbol and that both {CN}N , {TN}N are also GLT sequences with symbol f(θ).

As a consequence, again using item [GLT2], we infer that
{
C−1
N M

(m)
α,N

}
N

is a GLT sequence

such that {
C−1
N M

(m)
α,N

}
N
∼σ

(
ĥα(x̂, θ)

f(θ)
, [0, 1]× I1

)
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when νM,N = o(1). Now if we look carefully at the expression of the function ĥα(x̂, θ) as reported in
(4.8), we plainly see that the preconditioned sequence cannot be clustered at one, since the function

ĥα(x̂, θ)/f(θ) is a nontrivial function depending on the variable x̂, whenever the diffusion coefficients
are nonconstant functions. Therefore the superlinear behavior of any preconditioned Krylov method
is lost, as long as we employ circulant preconditioners, in contrast with what happens in the constant
coefficient case.

The second negative result concerns the possible application of the circulant preconditioner to mul-
tidimensional problems also in the constant coefficient setting. Indeed, we observe that in the constant
coefficient case the matrix structures arising in the approximation of a FDE in multidimensional domain
are essentially of multilevel Toeplitz type: we refer the reader to [148, 149] for the study of the related
matrices in a variable coefficients setting in two and three dimensional spaces. As a consequence, the
multilevel circulant preconditioning cannot ensure a superlinear convergence character, due to the neg-
ative results in [136] already mentioned in Section 1.6. More precisely, in [136], when considering k-level

Toeplitz matrices and any type of circulant preconditioner, it is shown that at least O(N
k−1
k ) outliers

show up, where N is the size of the matrix: as a consequence, the superlinear behavior can be observed
only for unilevel Toeplitz structures, i.e., for k = 1 and this agrees with the numerical results reported
in the literature. However, in some specific cases, the resulting Krylov methods may be still very fast,
especially if the conditioning is moderate and there are not outliers tending to zero.

4.3.2 Structure preserving preconditioners

The importance of preserving the same structure of the original matrix when designing a preconditioner
is crucial to overcome the negative results in the multidimensional case and to have a preconditioned
matrix with a well-conditioned matrix of the eigenvectors, which is relevant for the convergence of
GMRES (see Tables 4.1–4.2).

To define a preconditioner with the same structure of the matrix M(m)
α,N , and keeping at the same

time a low computational cost, a small bandwidth matrix should be considered. On the other hand,
the symbol of a bandwidth Toeplitz matrix is a trigonometric polynomial and hence the zero of the
symbol cannot be of fractional order. We now introduce two preconditioners with minimal bandwidth

and whose structure is the same ofM(m)
α,N .

The first preconditioner is defined as

P
(m)
1,N = νM,NI +D

(m)
+ BN +D

(m)
− BTN , (4.9)

where BN is the following approximation of the first derivative operator

BN =




1 −1 0 · · · 0

0 1 −1 . . .
...

...
. . .

. . .
. . . 0

...
. . . 0 1 −1

0 · · · · · · 0 1



N×N

.

The second preconditioner is given by

P
(m)
2,N = νM,NI +D

(m)
+ LN +D

(m)
− LTN , (4.10)

where LN is the Laplacian matrix

LN =




2 −1 0 · · · 0

−1 2 −1 . . .
...

...
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · · · · −1 2



N×N

.

Both P
(m)
1,N and P

(m)
2,N are tridiagonal matrices, and hence the associated linear system can be solved

optimally in O(N) operations, by the standard Gaussian Elimination (known also as Thomas algo-
rithm in the case of banded matrices). Therefore, the preconditioned Krylov method (CGLS, GMRES,
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etc.) leads to a minimal computational cost per iteration of O(N logN) operations, typical of the
un-preconditioned method with the considered matrices.

Let us assume that νM,N = o(1). The spectral distribution of sequences of the two preconditioners

P
(m)
1,N and P

(m)
2,N can be derived using the tools in Subsection 4.2.2 like in Proposition 17. In particular,

we have that
{
P

(m)
1,N

}
N
∼σ (p

(m)
1 (x, θ), [L,R]× I1), p

(m)
1 (x, θ) = d+(x, tm)(1 − e−iθ) + d−(x, tm)(1 − eiθ),

and
{
P

(m)
2,N

}
N
∼λ (p

(m)
2 (x, θ), [L,R]× I1), p

(m)
2 (x, θ) = (d+(x, tm) + d−(x, tm))(2− 2 cos(θ)).

If we further assume that d±(x, t) = d > 0, i.e., hα(x, θ) = d · pα(θ) from Remark 22 and from
Proposition 16, it holds that

lim
θ→0

hα(x, θ)

p
(m)
k (x, θ)

=∞, k ∈ {1, 2}, (4.11)

hence both P
(m)
1,N and P

(m)
2,N cannot provide a clustering of the singular values or of the eigenvalues. On

the other hand, as shown in the next numerical section, these two preconditioners show to be very
effective. To justify such a behaviour we need the following theorem (Theorem 3.1 in [122]).

Theorem 19. Let f ∈ L1(I1) having in θ0 the unique zero of order ρ and let 2l be the even number
which minimizes the distance from ρ. If g ∈ L1(I1) is a trigonometric polynomial which has a unique
zero in θ0 of order 2l, then condition number of the preconditioned matrix T−1

N (g)TN(f) is asymptotical
to N |2l−ρ|.

The symbol pα(θ) is a real-valued nonnegative and continuous function with a zero of order α in 0.
Consequently, using Theorem 19 with f = pα, θ0 = 0, ρ = α, l = 1, g = p2, we can conclude that the

condition number of the preconditioned matrix P
(m)
2,NM

(m)
α,N , is asymptotical to N |α−2|, with |α− 2| < 1.

In other words, thanks to the Axelsson-Lindskog bounds (see [6]), the number of iterations of a conjugate

gradient type method grows as O(N
|α−2|

2 ), which justifies the effectiveness of the preconditioner P
(m)
2,N

when α is close to 2. An analogous reasoning can be done for P
(m)
1,N .

Actually, we expect that similar arguments can be used to motivate the efficiency of both P
(m)
1,N

and P
(m)
2,N independently of the constant or nonconstant character of the diffusion coefficients, despite a

clustering of the eigenvalues or of the singular values of the preconditioned matrix-sequence cannot be
ensured in any case. Indeed, using again Remark 22 and recalling Proposition 18, it is easy to see that
the limit relation (4.11) is still true when the diffusion coefficients are nonconstant and equal functions,
say d±(x, t) = d(x), with d(x) positive and bounded, while when d±(x, t) = d± > 0 and d+ 6= d−, or
when they are nonconstant and different from each other

lim
θ→0

hα(x, θ)

p
(m)
k (x, θ)

=

{
0 k = 1,
∞ k = 2.

(4.12)

From relation (4.12) we deduce that hα(x,θ)

p
(m)
k

(x,θ)
asymptotically behaves as |θ|α−k, ∀α ∈ (1, 2). As a

consequence, we expect the condition number of the preconditioned matrix to be asymptotical to N |α−k|.

In the light of this, we state that P
(m)
1,N is a good preconditioner for α close to 1, while P

(m)
2,N is a good

preconditioner for α close to 2, (we can say α ≥ 1.5); cf. Tables 4.1–4.2 for the variable diffusion
coefficients case.

4.3.3 Linear convergence of multigrid methods

Multigrid methods have shown to be a valid alternative to preconditioned Krylov methods also for
FDEs [113]. Using the Ruge–Stuben theory [117], Theorem 4 in [113] shows that, in the constant
coefficient case, i.e., d±(x, t) = d > 0, the two-grid method converges with a constant convergence

rate independent of N and m. Since in this case the matrix M(m)
α,N is a Toeplitz matrix, the classical

multigrid theory for Toeplitz matrices developed in [71, 33, 128, 4] can be directly applied when the
symbol is known. Under the assumptions that d±(x, t) = d > 0 and νM,N = o(1), according to our

previous analysis in Subsection 4.2.1, the symbol of the Toeplitz sequence
{
M(m)

α,N

}
N

is d · pα(θ) (cf.

Proposition 15).
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When the grid transfer operator is the classical linear interpolation like in [113], the associated
symbol is 2 + 2 cos(θ). Therefore, according to Proposition 6, given a sequence of Toeplitz matrices
{TN(f)}N with a nonnegative symbol f , if

lim
θ→0

sup
(2 + 2 cos(θ + π))2

f(θ)
= c <∞, (4.13)

then the two-grid method has a constant convergence rate. For f(θ) = d · pα(θ), the condition (4.13) is
trivially satisfied with c = 0.

The varying coefficient case can be addressed thanks to the extension of the previous results given
in [128]. Let d+ and d− be two uniformly bounded and positive functions. Then the linear convergence
rate of the two-grid method is preserved combining Proposition 18 with Lemma 6.2 in [128].

The convergence analysis of the V -cycle, according to condition (1.48), it has to hold

lim
θ→0

sup
2 + 2 cos(θ + π)

f(θ)
= c <∞. (4.14)

Note that f(θ) = d · pα(θ) satisfies also the condition (4.14) with c = 0. This gives a theoretical
justification of the linear convergence of the V -cycle experimentally observed in [113]. Actually, the
Ruge-Stuben theory used to derive the condition (4.14) requires the Galerkin approach, while for com-
putational convenience in [113] a rediscretization strategy is adopted. On the other hand, c = 0 suggests
that the grid transfer operator is powerful enough, to work also under some perturbations.

In conclusion, taking into account that the order of the zero at 0 of hα(x, θ) in (4.8) remains bounded
by 2, multigrid methods with linear interpolation, like that proposed in [113], represent a good solver
or at least a robust preconditioner for Krylov methods. Moreover, despite to what happens for the
circulant preconditioning (see Subsection 4.3.1), thanks to the theoretical results in [128, 1] we expect
the multigrid to be optimal also in the multidimensional setting for variable and different diffusion
coefficients, provided that they are uniformly bounded and positive.

Finally, we note that the knowledge of the symbol is crucial to define both the symbol of the
preconditioner and the grid transfer operator of a multigrid method. The advantage of multigrid methods
is that for the grid transfer operator it is enough that the associated symbol possesses a proper zero
with an order larger than the order of the zero of hα(x, θ). Conversely, the preconditioner symbol has
to match exactly the order of the zero of hα(x, θ). For this reason, the linear interpolation provides
a multigrid with a constant convergence rate, while we cannot prove the eigenvalues clustering for the

preconditioner P
(m)
2,N in (4.10).

4.4 Numerical results

In this section we compare the new preconditioners P
(m)
1,N and P

(m)
2,N defined in (4.9) and (4.10), respec-

tively, with the circulant preconditioner proposed in [100] defined as

S
(m)
N = νM,NI + d̄

(m)
+ s(Tα,N) + d̄

(m)
− s(Tα,N )T ,

where d̄
(m)
± = 1

N

∑N
i=1 d

(m)
±,i and s(Tα,N) is the Strang circulant matrix for Tα,N . For notational sim-

plicity, in the following, we remove the subscript N to each considered preconditioner. In all examples,

we make also comparisons with a slightly modified version of P
(m)
1 and P

(m)
2 , obtained by replacing the

matrices D
(m)
± with the averages d̄

(m)
± , in their definition. We refer to these Toeplitz preconditioners as

P
(m),av
1 , P

(m),av
2 , respectively. All the considered preconditioners are used to solve the FDE system (4.4),

with the preconditioned CGLS and with the preconditioned GMRES methods. Regarding the stopping
criterion for the CGLS, we use ‖rk‖/‖r0‖ < 10−7, where rk is the residual vector after k iterations. The
GMRES method is computationally performed using the built-in gmres Matlab function with tolerance
10−7. The initial guess at each time step is chosen for both methods as the zero vector.

We do not test CGLS without preconditioning, since, as already shown in [100] for Example 1 and
in [113] for Example 2 (when α = 1.5), in these examples much more iterations are needed. Similar
results can be obtained using GMRES without preconditioning.

The linear system with coefficient matrix S(m) is solved within O(N log(N)) arithmetic operations
by two FFTs, while the tridiagonal Toeplitz preconditioners can be implemented in O(N) arithmetic
operations by the Thomas algorithm. In the light of this, a comparison of the two preconditioning
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Figure 4.2: Example 1 - CGLS: (a) Average number of iterations varying N for α = 1.2; (b) Average
number of iterations varying N for α = 1.8.
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Figure 4.3: Example 1 - GMRES: (a) Average number of iterations varying N for α = 1.2; (b) Average
number of iterations varying N for α = 1.8.

strategies in terms of number of iterations is a reliable test which does not penalize the circulant
preconditioner, rather gives it an edge.

We point out that apart form the preconditioner S(m), there is in literature a sophisticated precon-
ditioning method (see [112]) which involves a sum of circulant matrices. The main idea of this method
is to start from the following preconditioner

Q−1 =

N∑

i=1

eie
T
i C

−1
i ,

where ei denotes the i-th column of the identity matrix, while Ci = νM,NI+d
(m)
+,i s(Tα,N )+d

(m)
−,i s(Tα,N )T ,

and then to apply a piecewise linear interpolation on a small subset {x̃j}ℓj=1 of {xi}Ni=1, with ℓ ≪ N

which covers most of the interval [L,R] to approximate C−1
i as

C−1
i ≈

ℓ∑

j=1

φj(xi)C̃
−1
j , i = 1, . . . , N,

where {φj}ℓj=1 is a basis for the space of the piecewise linear polynomials, while

C̃j = νM,NI + d̃
(m)
+,j s(Tα,N ) + d̃

(m)
−,j s(Tα,N )T , with d̃

(m)
±,j = d±(x̃j , tm), j = 1, . . . , ℓ. As shown in

[112], this preconditioner reveals faster than S(m). On the other hand, it still involves the use of FFTs,
more precisely, O(ℓ) FFTs per iteration are required which means that the product Q−1y for any vector
y is computed in O(ℓN logN) operations. Moreover, in the multidimensional setting such a circulant
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preconditioner suffers of the drawbacks already discussed in Subsection 4.3.1. Therefore, for the sake
of simplicity, in the next examples we present a comparison of our two preconditioners only with S(m).

In the following tables, we display the average number of iterations computed as follows

1

M

M∑

m=1

Iter(m),

where Iter(m) is the number of iterations required for solving (4.4) at time tm.

α N + 1
P1 P2 S P av

1 P av
2

CGLS GMRES CGLS GMRES CGLS GMRES CGLS GMRES CGLS GMRES

1.2

26 7.7 8.0 13.0 9.0 9.0 13.0 10.0 12.0 12.0 10.0
27 7.0 8.0 13.0 10.0 9.2 14.0 11.8 13.0 12.4 10.0
28 7.0 7.0 13.0 10.0 9.1 13.0 12.8 14.0 12.2 10.0
29 7.0 7.0 12.4 10.0 9.0 12.0 13.1 14.0 12.0 10.0

1.5

26 15.3 16.0 12.6 8.0 10.9 12.0 11.0 11.0 10.3 9.0
27 18.3 20.0 13.2 9.0 10.7 12.0 13.2 13.0 11.8 10.0
28 20.3 24.0 13.9 9.0 11.0 12.0 16.4 15.0 13.0 10.0
29 22.4 26.0 14.3 10.0 10.6 12.0 18.6 16.0 13.9 11.0

1.8

26 23.0 25.0 9.0 6.0 14.8 9.0 13.0 10.0 9.4 8.0
27 37.8 40.0 9.0 6.0 14.1 9.0 14.0 11.0 9.0 8.0
28 56.3 61.0 9.4 7.0 14.0 9.0 15.7 12.0 9.0 8.0
29 71.8 88.0 9.5 7.0 13.7 9.0 17.6 13.0 9.4 9.0

Table 4.1: Example 1 - Comparison of iterations in the CGLS and GMRES methods with preconditioners
P1, P2, S, P

av
1 and P av

2 for α = 1.2, 1.5, 1.8 and M = N+1
2 .
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Figure 4.4: Example 2 - CGLS: (a) Average number of iterations varying N for α = 1.2; (b) Average
number of iterations varying N for α = 1.8.

Example 1. In this example we consider a FDE problem of type (4.1) with nonconstant diffusion
coefficients

d+(x, t) = Γ(3− α)xα, d−(x, t) = Γ(3− α)(2 − x)α.
The spatial domain is [L,R] = [0, 2], while the time interval is [0, T ] = [0, 1]. The source term and the
initial condition are given by

f(x, t) = −32e−t
(
x2 +

1

8
(2 − x)2(8 + x2)− 3

3− α [x
3 + (2− x)3] + 3

(4− α)(3 − α) [x
4 + (2− x)4]

)
,

u(x, 0) = 4x2(2− x)2.
The exact solution of this problem is known and is given by u(x, t) = 4e−tx2(2−x)2. Since the diffusion
coefficients do not depend on t, the coefficient matrix and all preconditioners for this example are
independent of the time step. For this reason we omit the superscript (m). For this example we choose
∆x = ∆t. In this case,

νM,N =
∆xα

∆t
= ∆xα−1
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Figure 4.5: Example 2 - GMRES: (a) Average number of iterations varying N for α = 1.2; (b) Average
number of iterations varying N for α = 1.8.

α N + 1
P1 P2 S P av

1 P av
2

CGLS GMRES CGLS GMRES CGLS GMRES CGLS GMRES CGLS GMRES

1.2

26 5.1 5.0 7.3 6.6 6.8 7.6 6.8 6.3 6.8 6.9
27 5.0 5.0 7.0 5.1 6.1 7.0 6.7 5.3 6.0 5.3
28 5.0 4.8 6.1 4.1 6.0 7.0 6.3 5.1 5.2 4.2
29 4.0 4.0 6.0 3.4 6.0 6.9 6.0 4.4 5.0 3.5

1.4

26 6.3 7.5 7.1 5.8 7.1 8 8.1 7.3 6.4 6.4
27 6.1 7.3 7.0 5.1 7.0 8.6 8.2 7.2 6.0 5.3
28 5.9 7.1 7.0 5.0 7.0 8.6 8.1 7.0 5.8 5.0
29 5.2 7.0 6.4 4.7 7.0 8.0 8.0 7.0 5.5 5.0

1.5

26 7.1 8.8 7.0 5.6 7.2 8.4 8.7 7.6 6.3 6.0
27 6.8 9.2 7.0 5.1 7.1 8.8 8.8 8.0 6.0 5.5
28 6.2 9.2 7.0 5.0 7.0 8.8 8.6 8.0 5.7 5.3
29 6.0 9.4 6.5 5.0 7.0 8.7 8.3 8.0 5.7 5.1

1.6

26 7.8 10.6 6.9 5.3 7.6 8.0 9.3 7.9 6.2 5.7
27 7.5 11.4 7.0 5.1 7.7 8.7 9.3 8.2 5.6 5.5
28 7.4 12.1 6.6 5.0 7.3 8.7 8.8 8.1 5.4 6.0
29 7.6 12.8 6.3 5.0 7.0 8.6 8.3 8.0 5.3 6.0

1.8

26 9.9 14.6 5.1 4.9 8.4 8.0 9.3 7.8 4.5 5.3
27 10.7 18.7 5.1 5.0 9.2 8.0 8.8 8.3 5.0 5.2
28 11.8 23.3 5.0 5.0 9.4 7.9 8.4 8.1 5.0 5.2
29 13.8 29.0 4.9 5.0 9.0 7.8 7.7 8.0 4.8 5.1

Table 4.2: Example 2 - Number of iterations in the CGLS and GMRES methods with preconditioners

P
(m)
1 , P

(m)
2 , S(m), P

(m),av
1 and P

(m),av
2 for α = 1.2, 1.4, 1.5, 1.6, 1.8 and M = N+1

2 .

which, being 0 < α − 1 < 1, tends to zero as N tends to ∞. Such a choice implies that the number

of time steps M is given by M = (N+1)T
R−L = N+1

2 . In Table 4.1 we compare the iterations provided by
the CGLS and the GMRES methods with preconditioners P1, P2, S, P

av
1 and P av

2 for α = 1.2, 1.5, 1.8.
We observe that preconditioner P1 is suitable for α close to 1 (see Figures 4.2(a) and 4.3(a)). When α
is close to 2 both P2 (see Figures 4.2(b) and 4.3(b)) and P av

2 are good preconditioners for CGLS and
GMRES methods.

Example 2. The following example consists in an anomalous diffusive process of a Gaussian pulse. Let
us define

d+(x, t) = 0.1(1 + x2 + t2), d−(x, t) = 0.1(1 + (2− x)2 + t2)

and set [L,R] = [0, 2] and [0, T ] = [0, 1]. The initial condition is given by

u(x, 0) = e−
(x−xc)

2

2σ2 ,

with xc = 1.2 and σ = 0.08, and the source term is f(x, t) = 0. As in the previous example, we set
∆x = ∆t. In Table 4.2 we compare the number of iterations provided by the CGLS and GMRES

methods with preconditioners P
(m)
1 , P

(m)
2 , P

(m),av
1 , P

(m),av
2 and S(m) for α = 1.2, 1.4, 1.5, 1.6, 1.8. As
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in Example 1, we observe that P
(m)
1 is the best preconditioner for both CGLS and GMRES methods

when α is close to 1 (see Figures 4.4(a) and 4.5(a)). For α close to 2, CGLS and GMRES methods

perform better with preconditioners P
(m)
2 (see Figures 4.4(b) and 4.5(b)) and P

(m),av
2 . To be precise, for

α = 1.4, 1.5, 1.6, 1.8 these numerical results suggest using preconditioner P
(m)
2 with the GMRES method

and preconditioner P
(m),av
2 with the CGLS method.





Chapter 5

A block multigrid strategy for

two-dimensional coupled PDEs

Finite element approximation of coupled differential boundary value problems gives rise to a sequence
of large scale structured two-by-two block matrices. We are interested in the efficient iterative solution
of the so arising linear systems, with the aim of constructing optimal preconditioning methods that are
robust with respect to the relevant parameters of the problem. As recalled in Section 5.1, a classical
approach is based on a exact factorization of the coefficient matrix, which leads to the requirement of
fast solvers for the head-block linear system and for the Schur complement linear system. In this chapter
we focus on the former issue and use the spectral tools introduced in Chapter 1 to perform a spectral
analysis of the head-block matrix (Section 5.2). Moreover, by exploiting the spectral information, in
Section 5.3 we design a multigrid method with an ad hoc grid transfer operator. Choosing damped Jacobi
or Gauss-Seidel as smoothers and using the resulting solver as preconditioner for Krylov methods we
obtain a more competitive strategy than the aggregation based algebraic multigrid, widely employed in
the relevant literature (Section 5.4).

5.1 Problem setting: coupled PDEs

We are interested in solving large linear systems arising from the finite element approximation of a
coupled system of PDEs. As an example we consider the linear elasticity problem in saddle point form.
Such a problem can be viewed as a subproblem of a more general coupled system of PDEs arising from
the so-called Glacial Isostatic Adjustment (GIA) model, used in Geophysics to describe the response
of the Earth to redistribution of mass due to alternating glaciation and deglaciation periods, cf. e.g.,
[154, 155, 101]. When the Earth is modeled as a flat homogeneous incompressible material body and
only its elastic response is considered, we obtain a two-dimensional coupled system of PDEs, which in
its simplest form reads as follows

−2µ∆u1 + µ
∂

∂x2

(
∂u2
∂x1
− ∂u1
∂x2

)
− c1

∂u1
∂x1

+ µ
∂p

∂x1
= f1,

−2µ∆u2 + µ
∂

∂x1

(
∂u1
∂x2
− ∂u2
∂x1

)
− c2

∂u2
∂x2

+ µ
∂p

∂x2
= f2

µ∇ · u− ρ p = 0,

(5.1)

Here u1(x1, x2) and u2(x1, x2) are the displacements in x1 and x2 directions, respectively,
(x1, x2) ∈ Ω ⊂ R2, λ and µ are the so-called Lamé coefficients, for simplicity assumed not to vary
in space, c = [c1, c2]

T is an advection vector, ρ = µ2/λ and ρ = 0 in the case of compressible materials.
The two unknowns are the displacements u = [u1, u2]

T and the pressure p. Discretizing (5.1) by the sta-
ble Finite Element Method (FEM) pair Q1isoQ1 (cf. [24]), we obtain a linear system with a two-by-two
block matrix of saddle point form,

A =

[
K BT

B −ρM

]
. (5.2)

Here, M is the mass matrix, ρ is a positive integer, and B and BT correspond to discrete divergent
and gradient operators, respectively. The head-block K itself is a two-by-two block matrix where the
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structure is due to imposing the so-called separate displacement ordering on the components of the vector
u (see [67] for details). Furthermore, discretizing the problem of interest for a sequence of discretization
parameters we obtain a sequence of matrices of size that grows to infinity as the approximation error
tends to zero. In other words, the more accurate the approximation is, the larger the related system
size becomes. This rules out the direct methods as demanding too much computer resources, and other
methods as preconditioned Krylov or multigrid methods have to be applied. Most of the preconditioning
strategies for two-by-two block systems as in (5.2) are based on the following factorization of A

A =

[
K BT

B −ρM

]
=

[
K 0
B −S

] [
I K−1BT

0 Ĩ

]
,

where S is the negative Schur complement of A defined as S = ρM +BK−1BT and I and Ĩ are identity
matrices of proper order. Two examples of preconditioners are

B1 =
[
K 0

B −Ŝ

]
, B2 =

[
K 0

0 −Ŝ

]
,

where Ŝ is an approximation of the exact Schur complement S.
It is well-known that a necessary condition for the above preconditioners to be efficient is that Ŝ is

an high quality approximation of S. Some approaches can be found in [66, 108, 14]. Another necessary
condition is to solve the linear system with K accurately enough, thus, we need efficient inner solvers.
Since the considered problem is elliptic, the AMG method is a suitable choice. As observed in [66],
however, solving systems with K is the most time consuming part when applying the preconditioner.
In addition, in three dimensions the memory demands become rather prohibitive.

In this chapter we exploit the fact that, up to low-rank perturbations, the matrix block K is 2-level
block Toeplitz matrix. We provide a spectral analysis of it and its 2× 2 matrix-valued symbol to design
a 2D block multigrid with an ad hoc grid transfer operator and formulate our multigrid for a more
general k-level Toeplitz matrix, associated to a s × s matrix-valued symbol. Choosing damped Jacobi
or Gauss-Seidel methods as smoothers, the resulting method reveals to be more efficient than some of
the AMG methods in use.

5.2 Structure and symbol of the coefficient matrix

Our aim is to efficiently solve a linear system

Ku = b, u, b ∈ CN ,

where K ∈ MN is, for instance, the head-block of A defined in (5.2), taking advantage of its structure
and especially of its spectral features. To do that, we use the spectral tools introduced in Chapter
1, namely the notion of a multilevel block Toeplitz matrix associated with a matrix-valued symbol, of
spectral distribution, and of GLT. Indeed, a multigrid strategy for Toeplitz matrices requires information
about the symbol of the coefficient matrix to define both the projector and the matrix at the coarse level.
Such spectral information compactly contained in the symbol is crucial, not only in the Toeplitz setting,
but even when the coefficient matrix is Toeplitz up to low-rank perturbations and can be interpreted as
a GLT.

Using Definition 7, we can explicitly express the symbol of the matrix K. Denote n = (n1, n2) and
n̂ = n1n2. From (5.1) we have that K is a two-by-two block matrix of size N = 2n̂, that is

K =

[
K11 K12

K21 K22

]
, Kij ∈ Mn̂, i, j = 1, 2. (5.3)

As is seen from (5.1), K can be symmetric positive definite (c = 0) or nonsymmetric. Consider
the symmetric case. If for simplicity, we discretize the original problem by a Finite Difference Method
(FDM), we obtain that Kij = Tn(fij), i, j = 1, 2, where Tn(fij) is a 2-level Toeplitz matrix generated
by fij : I2 → C, i, j = 1, 2, with (see [67])

f11(θ1, θ2) = 4− 2 cos θ1(1 + cos θ2),

f12(θ1, θ2) = f21(θ1, θ2) = sin θ1 sin θ2, (5.4)

f22(θ1, θ2) = 4− 2 cos θ2(1 + cos θ1).
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From Theorem 5, it holds that {Tn(fij)}n∈N2 ∼λ (fij , I1), i, j = 1, 2.
It is easy to see that through a proper permutation matrix Π of size 2n̂ we can write

ΠKΠT = Π

[
Tn(f11) Tn(f12)
Tn(f21) Tn(f22)

]
ΠT = Tn(f), (5.5)

where f : I2 →M2 is defined as follows

f(θ1, θ2) =

[
f11(θ1, θ2) f12(θ1, θ2)
f21(θ1, θ2) f22(θ1, θ2)

]
.

Therefore, K is a 2-level block Toeplitz matrix associated to the M2-valued function f . Note that
this permutation of the matrix K imposes the structure that arises if, when discretizing (5.1), the
displacements are ordered per mesh point, i.e., the separate displacement ordering is not imposed.
Since f is symmetric, from Theorem 8 it holds that {Tn(f)}n∈N2 ∼λ (f, Ik). To write explicitly the
permutation matrix Π, let us define by ej , j = 1, . . . , 2n̂ the j-th column of the identity matrix of size
2n̂ and by πj , j = 1, . . . , 2n̂ the j-th column of Π. Then,

πj =

{
e2j−1 j = 1, . . . , n̂
e2(j−n̂) j = n̂+ 1, . . . , 2n̂

. (5.6)

In other words, Π is the 2n̂ × 2n̂ matrix whose first n̂ columns are the odd columns of I2n̂, while the
remaining ones are the even columns of the same matrix.

If instead of finite differences we use the Q1isoQ1 FEM scheme for discretizing the original problem,

then we obtain Kij = Tn(fij) + E
(ij)
n , i, j = 1, 2, where E

(ij)
n is a low-rank perturbation whose rank

grows at most proportionally to
√
n̂. This means that, {E(ij)

n }n∈N2 ∼σ 0 and so, by the [GLT4], the

sequence {E(ij)
n }n∈N2 is a GLT sequence with symbol identically zero. Using [GLT3], also {Tn(fij)}n∈N2

is a GLT sequence with symbol fij and then, by [GLT2], the sequence {Tn(fij) +E
(ij)
n }n∈N2 is a GLT

sequence with the same symbol. As a consequence, it is clear that the symbol does not depends on
the scheme (FDM or Q1isoQ1 FEM) used to discretize the problem. In the light of this, in the next
sections, we do not consider the low-rank perturbation and discuss only the construction of multigrid
methods for Toeplitz matrices.

Remark 23. Note that discretizing the original problem using the Q1isoQ1 finite elements means that
the matrix K corresponds to a Q1 (bilinear basis functions on a quadrilateral mesh) discretization of
the part of the first two equations in (5.1), that contains only derivatives of the displacements.

5.3 AMG for Toeplitz matrices with matrix-valued symbol

In Section 1.8, we recalled the multigrid idea and its application to multilevel Toeplitz sequences with
scalar-valued symbol. As regards, multigrid method for Toeplitz matrices with block symbol, seminal
results have been proposed in [96], even though, up to our knowledge, when the block symbol is not
diagonal no convergence analysis has been performed yet. In this section we describe a AMG for
multilevel Toeplitz matrices with matrix-valued symbol formally extending the idea in [96]. As observed
in that paper, for the 1-level case, when the generating function is an s × s diagonal matrix-valued
function, a multigrid method on the whole matrix can be seen as s independent multigrid methods for
1-level Toeplitz matrices with scalar-valued symbols. This approach can be applied also to the multilevel
case. Let f : Ik →Ms defined as

f(θ) =




f11(θ) 0 · · · 0
0 f22(θ) · · · 0
...

. . .
. . .

...
0 · · · 0 fss(θ)


 .

If we assume that fjj : Ik → C, j = 1, . . . , s has only a single isolated zero in Ik of order (at most) 2q,
we can define s AMG methods as discussed in Subsection 1.8.2 (one for each fjj) choosing polynomials
like in (1.50) as symbol for the projectors.

In [96], the authors consider the more general case when the generating matrix is not diagonal, but
HPD with a constant basis of eigenvectors. In brief, the main idea is to diagonalize the generating
function and to choose the projector in view of the location of the zeroes of its eigenvalues. We formally
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extend this idea also in the multidimensional setting and to nonconstant basis of eigenvectors. Let
f : Ik →Ms be HPD and let us diagonalize f(θ) as follows

f(θ) = Q(θ)Λ(θ)Q(θ)∗, (5.7)

where

Λ(θ) =




λ1(θ) 0 · · · 0
0 λ2(θ) · · · 0
...

. . .
. . .

...
0 · · · 0 λs(θ)


 ,

with λj : Ik → C, j = 1, . . . , s is a nonnegative function.

As Proposition 3 can be straightforwardly extended to any HPD matrix, the smoothing properties
are ensured.

Proposition 19. Let A = Tn(f) with f : Ik →Ms HPD and defined according to equation (5.7). Let
S = I − ωA and S̃ = I − ω̃A. If

0 ≤ ω, ω̃ ≤ 2

maxj=1,...,s ‖λj‖L∞

,

then there exist α, β > 0 such that the smoothing properties (1.43) and (1.44) hold with ν, θ ∈ N.

Proof. Since f is HPD, then A is HPD and so A = QΛ(A)Q∗. Note that the notation A ≤ B for any
given two Hermitian matrices, means that the matrix B −A is HPSD. Note that (1.43) is equivalent to
require that

SνASν ≤ A− αSνA2Sν ,

which reduces to

Λ(A)(I − ωΛ(A))2ν ≤ Λ(A)− αΛ(A)2(I − ωΛ(A))2ν (5.8)

thanks to the expression of S. The matrix inequality (5.8) is implied by the function inequalities

λj(I − ωλj)2ν ≤ λj − αλ2j (I − ωλj)2ν , j = 1, . . . , s.

Performing the same function study presented in [1, Proposition 3], we deduce that the smoothing prop-
erty (1.43) follows whenever the parameter ω satisfies the inequalities 0 ≤ ω ≤ 2/maxj=1,...,s ‖λj‖L∞.

Similarly, we can prove the smoothing property (1.44) when 0 ≤ ω̃ ≤ 2/maxj=1,...,s ‖λj‖L∞ .

To define the projector at level i, i = 0, . . . ,m− 1 for a fixed Ni = (2t−i − 1)e, (e = (1, . . . , 1) ∈ Nk,
i, t positive integers with i < t) we use the following cutting matrix

K
[s]
Ni

= K(Ni)1 ⊗ · · · ⊗K(Ni)k ⊗ Is,

where Is is the s × s identity matrix and K(Ni)ℓ ∈ R(Ni+1)ℓ×(Ni)ℓ , ℓ = 1, . . . , k is either defined as in
(1.45) for Ni = (2t−i − 1)e or in the case of Ni = (2t−i + 1)e it is chosen as

K(Ni)ℓ =




1 0
0 1 0

. . .

0 1


 .

Assuming that for the matrix Ai the associated symbol fi has all eigenvalues functions λ
(i)
j with only a

single isolated zero at the same point θ0i ∈ Ik of order (at most) 2q for every j = 1, . . . , s, we define the
projector as

P
[s]
Ni

= TNi
(pi)(K

[s]
Ni
)T , pi(θ) = c ·

k∏

j=1

[1 + cos(θj − (θ0i )j)]
q · Is. (5.9)

The matrix at the coarse grid is obtained by the Galerkin approach, that is as Ai+1 = (P
[s]
Ni

)TAiP
[s]
Ni

.
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5.3.1 AMG for 2-level block matrix discretized by Q1 FEM

Let us recall that, according to the notation in Definition 7, in our test problem (5.5) we have k = 2,
s = 2, and f : I2 →M2 is the following symmetric positive defined matrix function

f(θ1, θ2) =

[
f11(θ1, θ2) f12(θ1, θ2)
f12(θ1, θ2) f22(θ1, θ2)

]
=

[
4− 2 cos θ1(1 + cos θ2) sin θ1 sin θ2

sin θ1 sin θ2 4− 2 cos θ2(1 + cos θ1)

]
(5.10)

according to (5.4). Note that functions f11 and f22 have a zero in (0, 0) of order 2.
By direct computation of the zeros of the characteristic polynomial of f(θ1, θ2), we obtain the

following two eigenvalue functions

λ1(θ1, θ2) =
f11(θ1, θ2) + f22(θ1, θ2) +

√
(f11(θ1, θ2)− f22(θ1, θ2))2 + 4f2

12(θ1, θ2)

2
,

λ2(θ1, θ2) =
f11(θ1, θ2) + f22(θ1, θ2)−

√
(f11(θ1, θ2)− f22(θ1, θ2))2 + 4f2

12(θ1, θ2)

2
.

By using the definition of f in (5.10) and the identity 2− 2 cos θ = 4 sin2 θ2 we can write λ1, λ2 explicitly
as follows

λ1(θ1, θ2) = 4− (cos θ1 + cos θ2)− 2 cos θ1 cos θ2 +

√
(cos θ1 − cos θ2)2 +

1

4
(1− cos 2θ1)(1 − cos 2θ2),

λ2(θ1, θ2) = 4− (cos θ1 + cos θ2)− 2 cos θ1 cos θ2 −
√
(cos θ1 − cos θ2)2 +

1

4
(1− cos 2θ1)(1 − cos 2θ2).

Since f is symmetric, there exists a unitary matrix Q ∈ M2 such that f = QΛQ∗, where

Λ =

(
λ1 0
0 λ2

)
and Q =

(
q1 −q2
q2 q1

)
.

Computing the eigenvectors corresponding to λ1, λ2, we have

f11q1 + f12q2 = λ1q1 ⇐⇒ q2 =
λ1 − f11
f12

q1.

Using the expressions for λ1 and f11 we obtain

λ1 − f11 = cos θ1 − cos θ2 +

√
(cos θ1 − cos θ2)2 + sin2 θ1 sin

2 θ2.

Note that the factor (λ1−f11)/f12 → 0 when θ1 and θ2 approach zero. Therefore, for the ill-conditioned
subspace associated to θ1, θ2 → 0 the eigenvector (q1(θ1, θ2), q2(θ1, θ2))

T → (1, 0)T and hence Q→ I2. It
follows that when θ1, θ2 → 0 the symbol (5.10) is almost diagonal and the construction of the projector
(5.9) requires only the computation of the zeros, with their order, of the eigenvalue functions λ1 and λ2.

Both eigenvalues λ1 and λ2 have a zero of order 2 in (0, 0) (see Figures 5.1(a) and 5.1(b)). In fact,
if we fix θ2 = 0, then

lim
θ1→0

λ1(θ1, 0)

θ21
= lim
θ1→0

4− (cos θ1 + 1)− 2 cos θ1 +
√
(cos θ1 − 1)2

θ21
= lim
θ1→0

4− 4 cos θ1
θ21

= 2,

lim
θ1→0

λ2(θ1, 0)

θ21
= lim
θ1→0

4− (cos θ1 + 1)− 2 cos θ1 −
√
(cos θ1 − 1)2

θ21
= lim
θ1→0

2− 2 cos θ1
θ21

= 1. (5.11)

Similarly, for a fixed θ1 = 0,

lim
θ2→0

λ1(0, θ2)

θ22
= lim
θ2→0

4− (cos θ2 + 1)− 2 cos θ2 +
√
(cos θ2 − 1)2

θ22
= lim
θ2→0

4− 4 cos θ2
θ22

= 2,

lim
θ2→0

λ2(0, θ2)

θ22
= lim
θ2→0

4− (cos θ2 + 1)− 2 cos θ2 −
√
(cos θ2 − 1)2

θ22
= lim
θ2→0

2− 2 cos θ2
θ22

= 1. (5.12)
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Due to (5.11) and (5.12), we expect the eigenvalues of the generating function at the coarse level to
have a zero of order 2 at the origin and therefore we define the projectors as

P
[2]
Ni

= TNi
(p)(K

[2]
Ni
)T , K

[2]
Ni

= K(Ni)1 ⊗K(Ni)2 ⊗ I2,

where

p(θ1, θ2) = 4

2∏

j=1

[1 + cos(θj)] · I2 =

[
(2 + 2 cos θ1)(2 + 2 cos θ2) 0

0 (2 + 2 cos θ1)(2 + 2 cos θ2)

]
.
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(a) λ1(θ1, θ2), (θ1, θ2) ∈ [0, π)2
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(b) λ2(θ1, θ2), (θ1, θ2) ∈ [0, π)2

Note that the restriction of a vector from a fine to a coarser grid is obtained by product with the

matrix (P
[2]
Ni

)T = K
[2]
Ni
TNi

(p), where TNi
(p) has at most nine nonzero entries in every row and K

[2]
Ni

simply performs a proper down sampling of two entries every four, due to the tensor with I2. In detail,
let z be defined on the fine grid and let y be its projection into the coarser grid obtained by applying

(P
[2]
Ni

)T , then the entries of y arranged as a 2D array can be computed as

yi,j = z2i−2,2j+2+z2i−2,2j−2+2z2i,2j−2+2z2i−2,2j+4z2i,2j+2z2i+2,2j+2z2i,2j+2+z2i+2,2j+2+z2i+2,2j−2.

Similarly, the prolongation of a vector from a coarse to the finer grid is obtained by product with the

matrix P
[2]
Ni

= TNi
(p)(K

[2]
Ni
)T , where (K

[2]
Ni
)T adds the zeros corresponding to the new grid points and

TNi
(p) performs the average of nine “near” points: again there is a jump of size 2 because of the tensor

by I2 in the formula of K
[2]
Ni
. From a geometrical point of view, the grid transfer operator is the standard

bilinear interpolation associated to the linear tensor B-spline [49], again tensored with I2. The coarser

matrices are computed by the Galerkin approach as Ai+1 = (P
[2]
Ni

)TAiP
[2]
Ni

, for i = 0, . . . ,m − 1 in a
setup phase. According to the results in [4, 1], the matrix Ai+1 inherits the same 2-level block Toeplitz
structure with 2×2 blocks of Ai. In particular, thanks to (1.47), the generating function of Ai+1 is again
f(θ1, θ2) defined in (5.4) up to a factor 16. Hence, Ai+1 could be simply computed by rediscretization
with double step size scaling properly the projector.

Regarding the smoother, because of its simplicity, just as in the scalar-case, we opt for the weighted
Jacobi method. Note that since the constant coefficient of f11 and f22 is the same and equal to
4, then weighted Jacobi iteration is simply the weighted Richardson iteration considered in Propo-
sition 19. Hence, according to Proposition 19 and scaling the weight by a factor 4, we have that
0 ≤ ω, ω̃ ≤ 8/maxj=1,2 ‖λj‖L∞ . Computing

max
j=1,2

‖λj‖L∞ = ‖λ1‖L∞ = λ1(0, π) = 8,

we have that 0 ≤ ω, ω̃ ≤ 1. Therefore, following the multi-iterative idea (see [120]), we use both pre-
smoother and post-smoother with parameters ω = 1 and ω̃ = 2/3, respectively. Moreover, as shown
in the next section, we test also the performances of our method choosing Gauss-Seidel method as
smoother.

5.4 Numerical results

In this section we use the block multigrid defined in Section 5.3 (denoted as GLT-MG) as a preconditioner
for Krylov methods in order to solve the linear system Ku = b, with K as in (5.3) and n1 = n2 = 2t+1.
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To be precise, we solve the 2(2t + 1)2 × 2(2t + 1)2 linear system associated to the matrix ΠKΠT , with
Π defined as in (5.6). In the following we refer to this permuted matrix again as K.

Although our analysis has been focused on symmetric positive definite matrices, in the following
we test GLT-MG also on the nonsymmetric matrices coming from the discretization of the original
problem without neglecting the advection term. We choose the Preconditioned Conjugate Gradient
(PCG) method for symmetric matrices and the GMRES method for the case where the matrices are
nonsymmetric. Both methods are applied using the built-in Matlab functions pcg and gmres. Moreover,
for all involved methods (GLT-MG, PCG and GMRES), we choose as initial guess the zero vector and
use a relative stopping criterion tol ∈ {10−3, 10−6}.

tol n1 = n2
GLT-MGJ GLT-MGGS AGMG

Iter Error Iter Error Iter Error

10−3
25 + 1 4 4.27e-004 3 2.09e-004 6 1.66e-003
26 + 1 4 4.24e-004 3 2.17e-004 6 3.19e-003
27 + 1 4 4.56e-004 3 2.25e-004 6 2.51e-003

10−6
25 + 1 8 8.09e-007 5 5.95e-007 11 8.87e-007
26 + 1 8 4.47e-007 5 5.73e-007 12 1.88e-006
27 + 1 8 4.60e-007 5 5.77e-007 12 3.73e-006

Table 5.1: Symmetric case - Comparison between GLT-MGJ,GS (used as preconditioner for PCG) and
AGMG method both in terms of iterations and approximation error fixed tol = 10−3, 10−6.

tol n1 = n2
GLT-MGJ GLT-MGGS AGMG

Iter Error Iter Error Iter Error

10−3
25 + 1 4 4.41e-004 3 9.76e-005 7 4.15e-003
26 + 1 4 3.23e-004 3 8.55e-005 7 3.74e-003
27 + 1 4 2.92e-004 3 7.77e-005 6 2.78e-003
28 + 1 4 2.87e-004 3 7.23e-005 6 2.51e-003

10−6
25 + 1 8 2.45e-007 5 3.28e-007 16 3.71e-006
26 + 1 8 2.08e-007 5 2.74e-007 17 3.84e-006
27 + 1 8 1.60e-007 5 2.61e-007 16 7.04e-006
28 + 1 8 1.53e-007 5 2.47e-007 15 7.75e-006

Table 5.2: Nonsymmetric case - Comparison between GLT-MGJ,GS (used as preconditioner for GMRES)
and AGMG method both in terms of iterations and approximation error fixed tol = 10−3, 10−6.

Recall that the GLT-MG uses weighted Jacobi (in this case we label our method as ‘GLT-MGJ’) or
Gauss-Seidel (in this case we label our method as ‘GLT-MGGS’) as pre-smoothers and post-smoothers.
The parameters of Jacobi method are ω = 1 and ω̃ = 2/3. In our test we make only one pre- and
post-smoothing steps and perform only one V -cycle.

Assuming to know the true solution ũ, we compute the relative error of the approximated solution
u as the measure of accuracy.

In [66] the authors solve Ku = b with an aggregation-based algebraic multigrid (AGMG), see [110].
AGMG performs one forward and one backward Gauss-Seidel sweep for pre- and post-smoothing, re-
spectively, and performs also a K-cycle, i.e., two Krylov accelerated iterations at each intermediate level.
The main iterative solver in AGMG is the Generalized Conjugate Residual method.

We check the validity of the strategy proposed in this chapter and compare it with AGMG both in
terms of iterations and of approximation error.

We choose ũ as an equispaced sampling of the function

ϕ(x1, x2) = sin(3x1) + sin(3x2), (x1, x2) ∈ Ω

and as right-hand side b = Kũ. The numerical tests with GLT-MG are performed in Matlab and AGMG
is used via its Matlab interface.

Table 5.1 shows a comparison between of GLT-MGJ and GLT-MGGS (used as preconditioners for
PCG) and AGMG in terms of iterations and approximation error, in the case when K is symmetric. We
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observe that for both stopping criteria the GLT-MG method requires less iterations than the AGMG
method, especially when the Gauss-Seidel smoother is used. Moreover, the accuracy of the computed
iterative solution, achieved when using GLT-MG is better than that provided by AGMG. Note that
for both methods the number of iterations does not increase when increasing the size of the problem,
which means that both GLT-MG and AGMG are of optimal order. In Table 5.2 we show the number of
iterations and accuracy achieved by GLT-MGJ, GLT-MGGS (used as preconditioners for GMRES) and
AGMG when K is a nonsymmetric matrix. Even in this case GLT-MG converges with a fewer number
of iterations compared to AGMG and the resulting iteratively computed solution for the considered test
problem is more accurate.



Conclusions

This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral
distribution, and GLT, when dealing with the numerical solution of structured linear systems. We
approached such an issue both from a theoretical and practical viewpoint. Chapter 2 is the ‘theoretical
core’ of this work and contains new distribution results for combinations of some algebraic operations on
non-Hermitian multilevel block Toeplitz matrices. The remaining Chapters 3-5 have a more ‘applicative
taste’, being focused on structured linear systems arising from the following three applications: image
deblurring, FDEs, coupled PDEs. In the following we summarize our main results with a look to some
open problems.

The new tools introduced in Chapter 2 have been used for defining a band Toeplitz preconditioner
for Krylov methods in Section 2.1 and for building up a fast PHSS method for Toeplitz matrices in
Section 2.2. As regards future developments, the encouraging numerical results provided by the band
Toeplitz preconditioning show that there is room both for relaxing the hypotheses of Theorem 13
and for providing a more complete picture on the spectral localization and the number of outliers.
Moreover, due to the satisfactory performances of PHSS method when applied to the convection diffusion
equation with constant coefficients defined on the unitary square (see Case 11), it would be interesting
to further investigate this type of equations by considering nonconstant coefficients, general domains
and nonuniform gridding. Once again, in such a setting the most promising tool is the theory of GLT
sequences.

Chapter 3 was devoted to image deblurring. In Section 3.1 we have considered iterative methods
for image restoration and we have proposed a regularization preconditioning technique, which preserves
the structure of the blurring matrix. The presented preconditioning strategy represents a generalization
and an improvement both with respect to circulant [45, 82] and structured preconditioning available
in the literature [47, 81, 109]. About future research lines, we mention that, in order to preserve
edges or to enforce sparsity in a certain basis (usually wavelet) on the restored image, regularization
terms that lead to non-linear problems are usually employed. Nevertheless, the resulting numerical
methods usually require the solution of a regularized least square method, e.g. the linearized Bregman
splitting [29, 86]. Therefore, improvements in classical least square methods can be useful also for these
more computationally challenging models as shown in [30] where, among other strategies, the reblurring
preconditioner and its non-stationary variant have been adapted to be included in the linearized Bregman
splitting for the synthesis approach proposed in [29]. The proposed structure preserving preconditioners
could be similarly considered to improve the performances of such numerical methods.

In Section 3.2 exploiting the sparsity of the Fourier coefficients, in order to reduce the oversmoothing
effects of the Tikhonov regularization, we introduced a diagonal weighting matrix in the Fourier domain.
The arising diagonal linear system allows very fast computations and the regularization parameter can
be efficiently estimated by the GCV. A future issue could be to investigate the treatment of the boundary
artifacts by imposing appropriate boundary conditions, like reflective, antireflective, or other boundary
conditions which lead to a matrix that can be diagonalized by fast transforms [109, 132, 2, 50]. Another
strategy to deal with the discrete Fourier transform with reduced boundary artifacts is based on the
enlargement of the domain [115, 9].

In Chapter 4 we performed a spectral analysis of the FDE problem in the case of variable coefficients
showing that the coefficient matrix-sequence belongs to the GLT class. We used the spectral informa-
tion for analyzing known methods of preconditioned Krylov and multigrid type and for identifying two
numerical effective tridiagonal structure preserving preconditioners. Several issues could be the subjects
of future investigation. On the one hand, we aim to furnish a detailed analysis of the problem in the
multidimensional setting, taking in mind that, according to the preliminary comments in Section 4.3, the
only promising technique even in the case of nonconstant and different diffusion coefficients (provided
that they are uniformly bounded and positive) seems to be the use of appropriate multigrid strate-
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gies. On the other hand, we will focus on the spectral analysis of the FDE problem when alternative
discretizations like radial basis functions methods [114] are used.

In Chapter 5 we derived a very efficient multigrid preconditioner for matrices originating from FEM
discretization of a coupled system of PDEs and we illustrated the technique on a 2D linear elasticity
problem, discretized using Q1 FEM elements. We aim to make detailed analysis of the proposed multi-
grid in terms of convergence and optimality. Furthermore, we plan to extend this strategy to linear
systems arising from other finite element discretizations, from the isogeometric analysis, and with spe-
cial attention to the three-dimensional case due to its importance in real-world applications such as the
Glacial Isostatic Adjustment model (see [101] and references therein).
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