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Abstract. In this paper we study efficient iterative methods for real symmetric Toeplitz systems based

on the trigonometric transformation splitting (TTS) of the real symmetric Toeplitz matrix A. Theoretical

analyses show that if the generating function f of the n × n Toeplitz matrix A is a real positive even

function, then the TTS iterative methods converge to the unique solution of the linear system of equations

for sufficient large n. Moreover, we derive an upper bound of the contraction factor of the TTS iteration

which is dependent solely on the spectra of the two TTS matrices involved.

Different from the CSCS iterative method in [19] in which all operations counts concern complex op-

erations when the DFTs are employed, even if the Toeplitz matrix A is real and symmetric, our method

only involves real arithmetics when the DCTs and DSTs are used. The numerical experiments show that

our method works better than CSCS iterative method and much better than the positive definite and skew-

symmetric splitting (PSS) iterative method in [3] and the symmetric Gauss-Seidel (SGS) iterative method.

Key words. Sine transform, Cosine transform, Matrix splitting, Iterative methods, Real Toeplitz

matrices.
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1. Introduction. Consider the iterative solution to the following linear system of equa-

tions

Ax = b (1.1)

by the two-step splitting iteration with alternation, where b ∈ Rn and A ∈ Rn×n is a

symmetric positive definite Toeplitz matrix.

Very often, a Toeplitz matrix A is generated by a function f(x) ∈ C2π, i.e., [A]m,k =

am−k, where

ak =
1

2π

∫ π

−π
f(θ)e−ikθdθ , k = 0,±1,±2, · · · (1.2)

the function f is called the generating function of the Toeplitz matrix A.
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Toeplitz linear systems arise in a variety of applications in mathematics, scientific com-

puting and engineering, for instance, image restoration storage problems in signal processing,

algebraic differential equation, time series and control theory. Those applications have moti-

vated both mathematicians and engineers to develop specific algorithms catering to solving

Toeplitz systems for instance, [1, 11,14] and references therein.

Iterative methods for the linear system of equations (1.1) require efficient splittings of

the coefficient matrix A. For example, the Jacobi and the Gauss-Seidel iterations [14, 21]

split the matrix A into its diagonal part D, and strictly lower triangular part L and upper

triangular part U , respectively, and the generalized conjugate gradient (CG) method and

the generalized Lanczos method split the matrix A into its Hermitian and skew-Hermitian

parts, see for example [4] and references therein.

Based on the fact that every matrix A naturally has a Hermitian/skew-Hermitian split-

ting (HSS)

A = H + S with H =
A+A∗

2
and S =

A−A∗

2
(1.3)

Bai et al. presented the following HSS iteration in [4] to solve the non-Hermitian positive

definite linear system of equations.

The HSS iteration. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute {

(αI +H)x(k+ 1
2 ) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI −H)x(k+ 1
2 ) + b

, (1.4)

where α is a given positive constant.

Evidently, each iterate of the HSS iteration alternates between the Hermitian part H

and the skew-Hermitian part S of the matrix A, analogously to the classical alternating

direction implicit iteration (ADI) introduced by Peaceman and Rachford for solving partial

differential equations, see [20, 21]. Results associated to the stationary iterative method

with alternation can be also found in Benzi and Szyld [10]. Theoretical analysis shows

that the HSS iteration (1.4) converges unconditionally to the unique solution of the system

of linear equations (1.1), if the coefficient matrix A is a non-Hermitian positive definite

matrix. Due to its promising performance and elegant mathematical properties, the HSS

scheme immediately attracted considerable attention, resulting in numerous papers devoted

to various aspects of this new method, see for instance [2, 3, 5–9, 12, 15, 24] and references

therein.

Recently, Gu and Tian in [15] and Chen and Jiang in [12] have respectively tailored the

HSS iteration for real positive definite Toeplitz systems by using the reducible properties of

symmetric and skew symmetric Toeplitz matrices. That is that each of two systems in (1.4)
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is reduced to two subsystems with about half sizes and the computational complexity of

their methods is reduced to about half of the HSS iteration at each iteration. However, the

computational costs remain O(n2) flops at each iteration. This seems to be not a very good

motivation, because every n × n Toeplitz matrix A enjoys a circulant and skew-circulant

splitting A = C + S (denoted by CSCS) which results in the following CSCS iteration

proposed by Ng in [19] for non-Hermitian positive definite Toeplitz systems.

The CSCS iteration. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute {

(αI + C)x(k+ 1
2 ) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI − C)x(k+ 1
2 ) + b

, (1.5)

where α is a positive constant.

Evidently, the matrices αI ± C and αI ± S are circulant matrices and skew-circulant

matrices, respectively, which can be diagonalized by the discrete Fourier matrix F and F̂ ,

where F̂ = FΩ with Ω a diagonal matrix; see for example [11,14,23]. Thus, the cost of each

iteration in (1.5) is O(n log n) complex flops by using 8 FFTs of n-vectors.

It is shown in [19] that if the real part of the generating function f is positive, then the

generated Toeplitz matrix A is positive definite. Furthermore, the splitting matrices C and

S are also positive definite for large enough n. In this case the CSCS iteration converges

unconditionally to the unique solution of the system of linear equations (1.1). In particular,

if the generating function f is real positive even, then the generated Toeplitz matrix A

is real symmetric positive definite. Therefore, we may use the CSCS iteration for solving

the system of linear equations (1.1) by using FFTs. However, all operation counts above

concern complex operations. It is desirable to develop an analogue of (1.5) only involving

real arithmetics. This is the main motivation of this paper.

This paper is organized as follows. In next section we first review some basic definitions,

notation and preliminaries related to the splittings of the real symmetric Toeplitz matrices

based on trigonometric transformations. Then we develop an iterative method based on

the splitting above, which is referred to as trigonometric transform splitting and briefly

denoted by TTS, for solving (1.1). We finally study the convergence properties and analyze

the convergence rate of the TTS iteration. Some computational details are also discussed.

Numerical experiments are presented in Section 3 to show the effectiveness of our methods.

A brief conclusion is also drawn.

2. The TTS iteration. In this section we first review the trigonometric transform

based splitting of a real symmetric Toeplitz matrix, then discuss the convergence of the

TTS iteration, and finally give the details of implement of the TTS iteration as well as

computational complexity.
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2.1. The TTS. Let’s begin with some basic definitions, notation and preliminaries

used in the sequel, see [16,17,22].

Throughout this paper we denote the first version of the discrete cosine transform (DCT)

matrix of order n by CIn, the first version of discrete sine transform (DST) matrix of order n

by SIn, the set of all n-dimensional real vectors by Rn, the set of all n× n real matrices by

Rn×n, the transpose of a vector x by xT , the transpose of a matrix B by BT , the conjugate

transpose of a matrix B by B∗, the 2-norm by || · ||2, the vector (1, 1, . . . , 1)T of dimension

n by e, the vector (−1, 1, . . . , (−1)n)T by f , the (q−p)×n restriction matrix by Ppq defined

by Ppq(x1, · · · , xn)T = (xp, · · · , xq)T for p < q, respectively.

Recall that

[SIn]m,k =

√
2

n+ 1
sin

π(m+ 1)(k + 1)

n+ 1
, m, k = 0, 1, · · · , n− 1, (2.1)

[CIn+2]m,k =

√
2

n+ 1
εkεmcos

πmk

n
, m, k = 0, 1, · · · , n+ 1, (2.2)

where

εj =

{
1, if j 6= 0 and j 6= n+ 1;
1√
2
, if j = 0 or j = n+ 1.

(2.3)

Let Dn+2 = diag(1/
√

2, 1, · · · , 1, 1/
√

2) be a diagonal matrix of order n+ 2. Let

(Ĉn)m,k =

√
2

n+ 1
cos(

πmk

n+ 1
) , m, k = 1, 2, · · · , n.

Then the matrix

CIn+2 =

√
2

n+ 1
Dn+2(cos(

πmk

n+ 1
))n+1
m,k=0Dn+2, (2.4)

which possess the following block structure

CIn+2 =

√
2

n+ 1


1
2

1√
2
eT 1

2

1√
2
e
√

n+1
2 Ĉn

1√
2
f

1
2

1√
2
fT 1

2 (−1)n+1

 . (2.5)

Let an+2 = [a0, a1, . . . , an+1]T ∈ Rn+2. Defining λ = (λ0, . . . , λn+1)T by

λ =
√

2(n+ 1)Dn+2CIn+2Dn+2an+2, (2.6)



Trigonometric transform splitting 5

we then have

Theorem 2.1. [16, 17] Let λ be defined as in (2.6). Then a real symmetric Toeplitz

matrix An = [a|i−j|]
n−1
0 admits a splitting

An = TC + TS , (2.7)

where

TC =
1

2
(ĈnΛĈn +R2) and TS =

1

2
(SInΛSIn +R2) (2.8)

with Λ = diag(λ1, . . . , λn) and R2 = λ0

n+1eeT + λn+1

n+1 ffT .

Note that by An we have only given aj for j = 0, 1, ..., n−1. Hence, we have still freedom

in choosing an and an+1. Usually, if we have no further information, we set an = an+1 = 0

or we can get an, an+1 according to (1.2). Especially, it is also possible to choose an and

an+1 such that λ0 = λn+1 = 0, and (2.7) reduces to An = 1
2 (SInΛSIn+ ĈnΛĈn) for this special

diagonal matrix Λ.

We remark here that various definitions of Λ and/or choices of trigonometric transfor-

mations may result in different TTS’. See, for example, [16] for more details.

Based on the splitting (2.7), we can now develop the following TTS iteration.

The TTS iteration. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute {

(αI + TC)x(k+ 1
2 ) = (αI − TS)x(k) + b

(αI + TS)x(k+1) = (αI − TC)x(k+ 1
2 ) + b

, (2.9)

where α is a positive constant.

Note that we can reverse roles of the matrices TC and TS in the above TTS iterative

method so that we may first solve the system of linear equations with coefficient matrix

αI + TS and then solve the system of linear equations with coefficient matrix αI + TC .

Theoretical analysis shows that the TTS iteration (2.9) converges to the unique solution of

the system of linear equations Ax = b, if TC and TS are positive definite.

The two-half steps at each TTS iteration require exact solutions with the n×n matrices

αI + TC and αI + TS . Since both αI + TC and αI + TS are real symmetric positive

definite matrices with Toeplitz-plus-Hankel structure. The linear systems with the coefficient

matrices αI+TC and αI+TS may be solved efficiently by PCG. Thus, the resulting method

is similar to the IHSS iteration in [6], called the inexact TTS iteration which will be studied

in future. Here we focus on the fast and exact solvers for the inner linear subsystems in the

TTS iteration, which will be discussed in next subsection. We remark here that the TTS
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iterative method can be equivalently rewritten as the following matrix-vector form,

x(k+1) = H (α)x(k) + G (α)b, k = 0, 1, · · · , (2.10)

where

H (α) = (αI + TS)−1(αI − TC)(αI + TC)−1(αI − TS), (2.11)

is the iteration matrix of the TTS iteration (2.9) and

G (α) = 2α(αI + TS)−1(αI + TC)−1.

In fact, (2.10) may also result from the splitting

A = M (α)−N (α)

of the coefficient matrix A, with{
M (α) = 1

2α (αI + TC)(αI + TS)

N (α) = 1
2α (αI − TC)(αI − TS)

.

We note that H (α) = M−1(α)N (α), G (α) = M−1(α) and G (α)A = I − H (α). If

ρ(H (α)) � 1, then the spectrum of the preconditioned matrix G (α)A would be clustered

around 1. In this case, the preconditioner G (α) could be served as a good preconditioner,

referred to as TTS precondtioner, for solving the linear system (1.1) by the preconditioned

conjugate gradient method (PCG).

2.2. The relevant algorithms of the TTS iteration. In this subsection we will

show how to fast compute the products of the matrices (αI + TC)−1, (αI + TS)−1, αI − TC
and αI − TS with a vector v via DCT I and DST I.

We first show the calculation of (αI − TC)v. Because Ĉnv can be computed by ∗
Ĉnv

∗

 = CIn+2

 0

v

0

 .
Thus, (αI − TC)v can be easily obtained from ∗

(αI − TC)v

∗

 =
1

2
CIn+2(2αIn+2 − Λn+2)CIn+2

 0

v

0

 ,
which can be written as the following algorithm.

Now, we show how to fast compute (αI+TC)−1v. To do this, we need to embed αI+TC
into an (n+ 2)× (n+ 2) matrix M of the following form
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Algorithm 1 Calculate (αI − TC)v.

1: to compute u = CIn+2(0,vT , 0)T ∈ Rn+2 by DCT I.

2: to compute w = (2αIn+2 − Λn+2)u.

3: to compute z = CIn+2w by DCT I.

4: to compute y = 1
2P2,n+1z ∈ Rn.

M =
1

2
CIn+2(2αIn+2 + Λn+2)CIn+2. (2.12)

A simple but tedious straightforward calculation shows that

M =

 γ1 gT1 γ2

g1 αI + TC g2

γ2 gT2 γ3

 , (2.13)

with

γ1 = α+ 1
n+1 (λ0

4 + 1
2eTΛe + λn+1

4 ), γ2 = 1
n+1 (λ0

4 + 1
2eTΛf + (−1)n+1λn+1

4 ),

γ3 = α+ 1
n+1 (λ0

4 + 1
2 fTΛf + λn+1

4 ), g1 = 1
n+1 ( λ0

2
√

2
e +

√
n+1
2 ĈnΛe + λn+1

2
√

2
f),

g2 = 1
n+1 ( λ0

2
√

2
e +

√
n+1
2 ĈnΛf + (−1)n+1λn+1

2
√

2
f).

Clearly, the inverse of M in (2.12) can be easily solved, once α and Λn+2 are determined.

We hope to obtain (αI + TC)−1 from M−1. For this purpose, let’s partition M in (2.12)

into the following form

M =

 γ1 gT1 γ2

g1 αI + TC g2

γ2 gT2 γ3

 ≡ [ M11 t

tT γ3

]
,

where t =

[
γ2

g2

]
∈ Rn+1 , M11 =

[
γ1 gT1
g1 αI + TC

]
∈ R(n+1)×(n+1).

If M11 is nonsingular, then M is of the following 2× 2 block decomposition

M =

[
In+1 0

tTM−1
11 1

] [
M11 t

0 σ

]
,

where σ = γ3 − tTM−1
11 t ∈ R, which is referred to as the Schur complement of the matrix

M corresponding to the sub-matrix M11.
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Denoting

M−1 =

[
M11 t

0 σ

]−1 [
In+1 0

tTM−1
11 1

]−1

≡
[
N11 s

sT β

]
gives 

N11 = M−1
11 +M−1

11 t(γ3 − tTM−1
11 t)−1tTM−1

11

s = −M−1
11 t(γ3 − tTM−1

11 t)−1

β = (γ3 − tTM−1
11 t)−1

,

which results in

M−1
11 = N11 −

ssT

β
. (2.14)

Now, let M11 be decomposed into the following 2× 2 block form

M11 =

[
γ1 − gT1 (αI + TC)−1g1 gT1

0 αI + TC

] [
1 0

(αI + TC)−1g1 I

]
and let M−1

11 be denoted by

M−1
11 =

[
η qT

q N22

]
,

where N22 ∈ Rn×n, q ∈ Rn, η ∈ R. We then have
N22 = (αI + TC)−1 + (αI + TC)−1g1(γ1 − gT1 (αI + TC)−1g1)−1gT1 (αI + TC)−1

q = −(αI + TC)−1g1(γ1 − gT1 (αI + TC)−1g1)−1

η = (γ1 − gT1 (αI + TC)−1g1)−1

,

which implies that

(αI + TC)−1 = N22 −
qTq

η
. (2.15)

Thus, the computation of (αI + TC)−1v can be formulated as the Algorithm 2.

Next, we compute (αI − TS)v. From the definition of TS , we have

(αI − TS)v =
1

2
[SIn(2αI − Λ)SInv − λ0(eTv)

n+ 1
e− λn+1(fTv)

n+ 1
f ],

which can be formulated as the following algorithm 3.

Finally, we turn to compute (αI + TS)−1v. Note that

αI + TS =
1

2
{[(SIn(2αI + Λ)SIn) +

λ0

n+ 1
eeT ] +

λn+1

n+ 1
ffT },
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Algorithm 2 Calculate (αI + TC)−1v.

1: from right to left, to compute

[
s

β

]
= 2CIn+2(2αIn+2 + Λn+2)−1CIn+2en+2, by DCT I,

where en+2 = (0, · · · , 1)T ∈ Rn+2;

2: from right to left, to compute

[
N11e1

sTe1

]
= 2CIn+2(2αIn+2 + Λn+2)−1CIn+2

[
e1

0

]
, by DCT

I, where e1 = (1, 0, · · · , 0)T ∈ Rn+1;

3: to compute

[
η

q

]
= M−1

11 e1 = N11e1 − sT e1

β s;

4: from right to left, to compute

[
N11v1

sTv1

]
= 2CIn+2(2αIn+2 + Λn+2)−1CIn+2

[
v1

0

]
∈ Rn+2

by DCT I, where v1 =

[
0

v

]
∈ Rn+1, v ∈ Rn;

5: to compute

[
qTv

N22v

]
= M−1

11 v1 = N11v1 − sTv1

β s;

6: to compute (αI + TC)−1v = N22v − qTv
η q.

Algorithm 3 Calculate (αI − TS)v.

1: to compute ξ1 = eTv and ξ2 = fTv;

2: to compute v̂ = SIn(2αI − Λ)SInv, from right to left, by DST I;

3: to compute (αI − TS)v = 1
2 (v̂ − ξ1λ0

n+1 e− ξ2λn+1

n+1 f).

we can solve (αI + TS)−1 by the following Sherman-Morrison-Woodbury formula:

(B + UV T )−1 = B−1 −B−1U(I + V TB−1U)−1V TB−1.

Setting

Z1 = SIn(2αI + Λ)SIn, Z2 = Z1 +
λ0

n+ 1
eeT ,

Z3 = Z2 +
λn+1

n+ 1
ffT , αI + TS =

1

2
Z3,

we have

Z−1
1 = SIn(2αI + Λ)−1SIn, Z−1

2 = Z−1
1 − λ0Z

−1
1 eeTZ−1

1

n+ 1 + λ0eTZ
−1
1 e

,

Z−1
3 = Z−1

2 − λn+1Z
−1
2 ffTZ−1

2

n+ 1 + λn+1fTZ
−1
2 f

, (αI + TS)−1 = 2Z−1
3 ,

which can be simply summarized as the algorithm 4.
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Algorithm 4 Calculate (αI + TS)−1v

1: to compute s1 = Z−1
1 v, s2 = Z−1

1 e and s3 = Z−1
1 f by DST I;

2: to compute s4 = Z−1
2 v = s1 − λ0(eT s1)s2

n+1+λ0eT s2
and s5 = Z−1

2 f = s3 − λ0(eT s3)s2
n+1+λ0eT s2

;

3: to compute s6 = s4 − λn+1(fT s4)s5
n+1+λn+1fT s5

;

4: to compute (αI + TS)−1v = 2s6.

The Algorithms 1-4 show that the exact solution to (2.9) at each step can be obtained

efficiently by using 6 DCTs and 5 DSTs of n-vectors, which are highly parallelizable. There-

fore, the proposed method is well-adapted for parallel computing. In particular, the number

of real operations which are involved in each step of the TTS iterative method is O(n log n).

2.3. Convergence of the TTS iteration. In this section, we study the convergence

rate of the TTS iteration. We first note that the TTS iterative method can be generalized

to the two-step splitting iteration framework, and the following lemma describes a general

convergence criterion for a two-step splitting iteration.

Lemma 2.2. [4, Lemma 2.1] Let A ∈ Cn×n, A = Mi − Ni (i = 1, 2) be two splittings

and x(0) ∈ Cn be a given initial vector. If {x(k)} is a two-step iteration sequence defined by

{
M1x

(k+1/2) = N1x
(k) + b

M2x
(k+1) = N2x

(k+1/2) + b
,

k = 0, 1, 2 . . . , then

x(k+1) = M−1
2 N2M

−1
1 N1x

(k) +M−1
2 (I +N2M

−1
1 )b, k = 0, 1, 2, . . . .

Moreover, if the spectral radius of the iteration matrix M−1
2 N2M

−1
1 N1 is less than 1, then

the iterative sequence {x(k)} converges to the unique solution x∗ ∈ Cn of the system of linear

equations Ax = b for all initial vectors x(0) ∈ Cn.

The following fact mentioned in [17] is also needed in the convergence analysis of the

TTS iteration. We reformulate them as the following lemma.

Lemma 2.3. Let λ be defined as in (2.6). If the generating function f in (1.2) of the

Toeplitz matrix A is a real positive even function, then the matrices TC and TS in (2.8) are

positive definite for sufficient large n.
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Proof. [Stretch of the proof ] From the hypothesis, we have

λ0 =
a0 + an+1

2
+

n∑
k=1

ak = (Sf,n(0) + Sf,n+1(0))/4 ≈ f(0)/2,

λj = a0 + 2

n∑
k=1

ak cos(
πjk

n+ 1
) + (−1)n+1an+1 =

1

2
(Sf,n + Sf,n+1)(

πj

n+ 1
)

≈ f(
πj

n+ 1
),

λn+1 =
a0

2
+

n+1∑
k=1

(−1)kak = (Sf,n(π) + Sf,n+1(π))/4 ≈ f(π)/2,

(2.16)

where Sf,n is the partial sum of the Fourier series of f . If n is large enough, then λj > 0,

for j = 0, 1, . . . , n+ 1, which imply that TC and TS are positive definite.

For the convergence property of the TTS iteration, we apply the above results to obtain

the following main theorem.

Theorem 2.4. Let TC and TS be the matrices given in (2.8) and α be a positive

constant. If the generating function f in (1.2) of the Toeplitz matrix A is a real positive

even function, then the iteration matrix H (α) of the TTS iteration is given in (2.11) and

the spectral radius ρ(H (α)) is bounded by

σ(α) = max
ηj∈λ(TC)

|α− ηj
α+ ηj

| max
ξj∈λ(TS)

|α− ξj
α+ ξj

|. (2.17)

Therefore, it holds that for large enough n

ρ(H (α)) ≤ σ(α) < 1, ∀α > 0, (2.18)

i.e., the TTS iteration converges to the exact solution x∗ ∈ Rn of the system of linear

equations (1.1).

Proof. Similar to the proof of the Theorem 2.2 in [4], we can prove this theorem as

follows.

From the hypothesis, we have that TC and TS are positive definite and so are αI + TC
and αI + TS for any positive constant α. By putting

M1 = αI + TC , N1 = αI − TS , M2 = αI + TS , N2 = αI − TC ,

we get (2.11).

By the similarity invariance of the matrix spectrum, we have

ρ(H (α)) = ρ((αI − TC)(αI + TC)−1(αI − TS)(αI + TS)−1)

≤‖ (αI − TC)(αI + TC)−1(αI − TS)(αI + TS)−1 ‖2
≤‖ (αI − TC)(αI + TC)−1 ‖2‖ (αI − TS)(αI + TS)−1 ‖2 .
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It then follows that

ρ(H (α)) ≤ max
ηj∈λ(TC)

|α− ηj
α+ ηj

| max
ξj∈λ(TS)

|α− ξj
α+ ξj

| ≡ σ(α).

Since ηj and ξj are positive for j = 1, 2, . . . , n, we have that σ(α) is strictly less than 1 and

therefore ρ(H (α)) < 1, for all α > 0.

We remark that if the eigenvalues of the matrices TC and TS contain in Ω = [γmin, γmax],

then σ(α) can be estimated by

max
γ∈Ω

(α− γ)2

(α+ γ)2
,

where γmin and γmax are the lower and the upper bounds of the eigenvalues of the matrices

TC and TS . The optimal parameter α∗ is chosen such that the above estimate can be

minimized. This fact is precisely stated as the following theorem.

Lemma 2.5. The minimizer of σ(α) over all positive α is attained at

α∗ =
√
γminγmax, (2.19)

and the corresponding minimum value is equal to

σ(α∗) = (

√
γmax −

√
γmin√

γmax +
√
γmin

)2 ≤
√
γmax −

√
γmin√

γmax +
√
γmin

.

The proof is a verbatim of one of Corollary 2.3 in [4] and therefore omitted.

We emphasize that, the optimal parameter α∗ minimizes only the upper bound σ(α) of

the spectral radius of the iteration matrix, i.e.

α∗ = argmin
α>0

σ(α) =
√
γminγmax

but does not minimize the spectral radius itself, i.e.,

α∗ 6= argmin
α>0

ρ(H (α)) ≡ αT .

We illustrate this fact by Example 3.1 (p = 0.8) and Example 3.2 (ϕ1 = 0.9) in Table 2.1-

2.2, where α∗ is defined in (2.19), αT is the spectral radius optimal parameters, ρ(H (α∗))

and ρ(H (αT )) are the spectral radii of the corresponding iteration matrices.

From the tables, we can see that ρ(H (αT )) < ρ(H (α∗)) in all cases. Therefore, it is

important to get αT or a good approximation of αT for improving the convergence speed of

the TTS iterative method. But it is a hard task that needs further in-depth study from the

viewpoint of both theory and computations.
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Table 2.1 The comparison of ρ(H (α∗)) and ρ(H (αT )) for Example 3.1

n α∗ ρ(H (α∗)) αT ρ(H (αT ))

64 0.68 0.6041 0.78 0.4003

128 0.77 0.6365 0.87 0.4383

256 0.85 0.6624 0.95 0.4717

512 0.93 0.6864 1.03 0.5017

1024 1.01 0.7068 1.11 0.5282

Table 2.2 The comparison of ρ(H (α∗)) and ρ(H (αT )) for Example 3.2

n α∗ ρ(H (α∗)) αT ρ(H (αT ))

64 1.28 0.5136 1.43 0.3135

128 1.27 0.5202 1.44 0.3207

256 1.27 0.5250 1.45 0.3229

512 1.27 0.5274 1.46 0.3247

1024 1.27 0.5286 1.46 0.3248

3. Numerical examples. To verify the effectiveness of the TTS iteration, four kinds

of generating functions were tested and they are as follows:

Example 3.1. aj = (1 + |j|)−p, j = 0,±1, · · · ,±n − 1, where p = 0.9, 1.0 and 1.1,

respectively.

Example 3.2. f(x) = x2 + ϕ1.

Example 3.3. f(x) = |x|.

Example 3.4. f(x) = π2 − x2.

We remark here that the Toeplitz matrices generated by the functions in Examples 3.1-

3.2 are well-conditioned and the Toeplitz matrices generated by the functions in Examples

3.3-3.4 are ill-conditioned. Also, we observe that the matrices TC and TS defined in (2.8) in

Examples 3.1-3.4 are all positive definite for any positive integer n.

3.1. Numerical results. All the numerical tests were done on a Founder desktop PC

with Intel(R) Core(TM) i3-2310M CPU @2.10 by Matlab R2009(b) with a machine precision

of 10−16.

In our numerical experiments, we test the TTS iteration in the cases of an = an+1 = 0

and of an and an+1 obtained from (1.2), and denote them by TTS1 and TTS2, respectively.

In all test, we use the vector of all ones as the right-hand-side vector and the initial

guess. The stopping criteria is τ = ||r(k)||2
||r(0)||2

≤ 10−6, where r(k) is the residual vector at the

k-th iteration.

For comparison, we also test the CSCS iterative method, the SGS iterative method and

the PSS iterative method.

By taking A = (D − L) − U=(D − U) − L, we can obtain the following known SGS
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iteration.

The SGS iteration. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute {

(D − L)x(k+ 1
2 ) = Ux(k) + b

(D − U)x(k+1) = Lx(k+ 1
2 ) + b

. (3.1)

It is known that the SGS is always convergent if A is Hermitian positive definite. Fur-

thermore, if A is an Hermitian positive definite Toeplitz matrix, then D−U=D−L∗ and L

are Toeplitz matrices. In this case, the main operations in (3.1) are to calculate (D−L)−1,

(D − L)−1u and L∗v. A fast algorithm in [13, 18] for computing (D − L)−1 requires about

10 FFTs of n-vectors. Furthermore, to compute (D − L)−1u, (D − L∗)−1w, Lz and L∗v

needs 12 FFTs of 2n-vectors, see, e.g., [11]. That is to say that the exact solutions with

lower triangular Toeplitz matrices can be obtained by using 34 FFTs of n-vectors.

Similarly, by taking A = (αI + P ) − (αI − S)=(αI + S) − (αI − P ) with P positive

definite and S non-Hermitian, we can obtain the following known PSS iteration [3].

The PSS iteration. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute {

(αI + P )x(k+ 1
2 ) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI − P )x(k+ 1
2 ) + b

, (3.2)

where α is a positive constant.

It is shown in [3] that the PSS iteration (3.2) converges unconditionally to the unique

solution of the system of linear equations (1.1), if the coefficient matrix A is a non-Hermitian

positive definite matrix.

In our numerical tests, we take P = D − 2L and S = L− U = L− L∗, which result in

a practical PSS iteration (referred to TSS iteration in [3]).

Since αI + P is a lower triangular Toeplitz matrix, (αI + P )−1u and (αI − P )v can

be fast obtained by employing FFTs, as discussed above for SGS iteration. Moreover, S

is a skew-symmetric Toeplitz matrix, by using an unitary similarity transformation, the

second system of (3.2) can be reduced into two subsystems with about half sizes. Thus,

one need to solve a Toeplitz-plus-Hankel subsystem, see [12,15] for details. The complexity

of each iteration is at least O(n2) if the direct method is employed, and may be reduced

to O(n2 log n
2 ) if a preconditioned conjugate gradient method [12] is used. However, a good

preconditioner is not easy to get. Moreover, the use of FFTs makes the complex operations

be involved for real system (1.1).
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The experimentally found optimal values of the iteration parameters are used for the

TTS, CSCS and PSS iterative methods. In particular, the optimal parameters of the TTS

iteration (2.9) are selected in a neighbourhood of
√
λ1λn, where λ1 and λn are defined as in

(2.6).

Table 3.1 The optimal iteration parameter α versus the No. of iterations for Example 3.1 with p=0.9

n
SGS PSS CSCS TTS1 TTS2

IT IT α IT α IT α IT α

64 32 21 1.84 11 1.00 10 1.08 10 1.08

128 38 22 2.16 12 1.16 11 1.20 11 1.20

256 45 23 2.48 13 1.48 11 1.48 11 1.48

512 53 24 2.80 13 1.64 11 1.76 11 1.76

1024 61 25 3.16 14 1.80 12 1.84 12 1.84

Table 3.2 The optimal iteration parameter α versus the No. of iterations for Example 3.1 with p=1.0

n
SGS PSS CSCS TTS1 TTS2

IT IT α IT α IT α IT α

64 26 18 1.80 9 1.04 8 1.08 8 1.08

128 30 19 2.00 10 1.16 8 1.32 8 1.32

256 34 19 2.16 11 1.28 8 1.52 8 1.52

512 38 20 2.48 11 1.48 8 1.68 8 1.68

1024 43 20 2.88 11 1.72 8 1.84 8 1.84

Table 3.3 The optimal iteration parameter α versus the No. of iterations for Example 3.1 with p=1.1

n
SGS PSS CSCS TTS1 TTS2

IT IT α IT α IT α IT α

64 21 16 1.76 8 1.00 6 1.12 6 1.12

128 24 16 1.84 9 1.08 6 1.24 6 1.24

256 27 17 2.12 9 1.24 6 1.40 6 1.40

512 29 17 2.20 9 1.40 6 1.56 6 1.56

1024 32 17 2.40 9 1.56 7 1.48 7 1.48

Table 3.4 The optimal iteration parameter α versus the No. of iterations for Example 3.2 when ϕ1 = 0.8

n
SGS PSS CSCS TTS1 TTS2

IT IT α IT α IT α IT α

64 16 22 2.64 11 1.24 10 1.32 10 1.32

128 16 23 2.64 11 1.24 10 1.28 10 1.28

256 16 23 2.76 11 1.20 10 1.28 10 1.28

512 17 23 2.76 11 1.20 10 1.24 10 1.24

1024 17 23 2.76 10 1.20 10 1.24 10 1.24

It is shown in Tables 3.1 – 3.4 that the TTS iterative methods perform more efficiently

than the CSCS iterative method and much more efficiently than the PSS and SGS iterative

methods, respectively.

In Fig.3.1, We depict the convergence behavior of the SGS, PPS, CSCS, TTS1 and

TTS2 for Example 3.3-3.4, which are denoted by the ∗ ∗ ∗, × × ×, + + +, ◦ ◦ ◦ and · · ·
curves, respectively. From Fig.3.1, we can see that the TTS1 and TTS2 iterations have the

same convergence behavior, we therefore refer to them as TTS iteration. Furthermore, we

see that the TTS iteration have a better convergence behavior than the CSCS iteration and

a much better convergence behavior than the PSS and SGS iterations.
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Fig. 3.1 Convergence curves for SGS, PSS, CSCS and TTS for Example 3.3(left) and Example 3.4(right).

3.2. Spectral radius. In this subsection, we focus on the Example 3.1 to further

explain why the TTS iterative methods work better than the CSCS and PSS iterative

methods, by comparing the spectral radii of the iteration matrices of the TTS iteration and

CSCS and PSS iterations, denoted by HT (α), HC(α) and HP (α), respectively. Note in this

example that the TTS1 and TTS2 are the same effect, therefore, we only describe the TTS1

which are briefly denoted by TTS.

We plot the varying behavior of four functions of ρ(HT (α)), ρ(HC(α)), ρ(HP (α)) and

σ(α) according to α in Fig. 3.2, which are denoted by ∗ ∗ ∗, · · · , ◦ ◦ ◦ and + + + curves

respectively.
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Fig. 3.2 Curves of ρ(HT (α)), ρ(HC(α)) ρ(HP (α)), and σ(α) for Example 3.1.

From the Fig.3.2, we can see that ρ(HT (αT )) < ρ(HC(αT )) < ρ(HP (αT )) for both

cases. This numerically answers the question proposed in the beginning of this subsection.
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4. Conclusion. In this paper we have exploited the TTS of the real symmetric Toeplitz

matrix to develop some efficient iterative methods for real symmetric positive definite

Toeplitz systems. We have shown that the TTS methods converge to the unique solu-

tion of the linear system of equations for sufficient large n, if the generating function f of

the n × n Toeplitz matrix is a real positive even function. Moreover, we have derived an

upper bound of the contraction factor of the TTS iteration which is dependent solely on the

spectra of the two TTS matrices involved.

Our Algorithms 1-4 show that the exact solution to (2.9) at each step can be obtained

efficiently by using DCT I and DST I which are highly parallelizable. In particular, the

number of real operations which are involved in each step of the TTS iterative method is

O(n log n).

Theoretically, we can choose α to be any positive constant. However, as it is shown in

the previous sections, the convergence rate is seriously dependent on the choices of α. In

our numerical tests, we take experimentally optimal iterative parameters and find that our

method works better than the CSCS iterative method and much better than the PSS and the

SGS iterative methods. It is an important and hard task to find a good approximation αexp of

αT which strongly depend on the concrete structures and properties of the coefficient matrix

A and needs further in-depth study from the viewpoint of both theory and computations.

Finally, we remark that we can extend our methods in parallel to symmetric block-

Toeplitz-symmetric-Toeplitz-block (SBTSTB) matrices, see Appendix.
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Appendix.

Let A be a symmetric block-Toeplitz-symmetric-Toeplitz-block (SBTSTB) matrix of the

following form:

A =


A0 A1 · · · Am−1

A1 A0
. . . Am−2

...
. . .

. . .
...

Am−1 Am−2 · · · A0

 with Ak =


ak,0 ak,1 · · · ak,n−1

ak,1 ak,0
. . . ak,n−2

...
. . .

. . .
...

ak,n−1 ak,n−2 · · · ak,0

 ,
where the blocks Ak are themselves symmetric Toeplitz matrices of order n.
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As mentioned in the previous sections, we can choose a
(k)
n and a

(k)
n+1 such that λ

(k)
0 =

λ
(k)
n+1 = 0. In this case, we have

Ak =
1

2
(SInΛkSIn + ĈnΛkĈn)

for a special diagonal matrix Λk (k = 1, 2, · · · ,m− 1).

Then, by Theorem 2.1, the SBTSTB matrix A possesses the following splitting:

A =
1

2
((Im ⊗ SIn)T (Im ⊗ SIn) + (Im ⊗ Ĉn)T (Im ⊗ Ĉn)),

where the notation ⊗ is the Kronecker product, In is the n× n identity matrix, and

T =


Λ0 Λ1 · · · Λm−1

Λ1 Λ0
. . . Λm−2

...
. . .

. . .
...

Λm−1 Λm−2 · · · Λ0

 ,

with Λk = diag(λ0,k, λ1,k, · · · , λn−1,k).

Let ek be the k-th row of In. Defining

Ek−1 =

m blocks︷ ︸︸ ︷ ek · · ·
. . .

· · · ek

 row 1
...

row m

which is an m×mn matrix, and

E =

 E0

...

En−1

 ∈ Rmn×mn

yields a permutation matrix.

A straightforward computation shows that

T = ET


T0

T1

. . .

Tn−1

E, Tk =


λk,0 λk,1 · · · λk,m−1

λk,1 λk,0
. . . λk,m−2

...
. . .

. . .
...

λk,m−1 λk,m−2 · · · λk,0

 ,

where Tk is an m×m real symmetric Toeplitz matrix.
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Again, by Theorem 2.1, we have

Tk =
1

2
(SImΛ̃kSIm + ĈmΛ̃kĈm),

where all Λ̃k, for k = 0, 1, · · · , n− 1, are diagonal matrices of order m.

In this case, we further obtain

T =
1

2
ET [(In ⊗ SIm)Λ̃(In ⊗ SIm) + (In ⊗ Ĉm)Λ̃(In ⊗ Ĉm)]E,

where Λ̃ = diag(Λ̃0, Λ̃1, · · · , Λ̃n−1).

Thus, a real SBTSTB admits a splitting

A = T cc + T sc + T cs + T ss ,

where

T cc =
1

4
((Im ⊗ Ĉn)ET (In ⊗ Ĉm)Λ̃(In ⊗ Ĉm)E(Im ⊗ Ĉn)),

T sc =
1

4
((Im ⊗ Ĉn)ET (In ⊗ SIm)Λ̃(In ⊗ SIm)E(Im ⊗ Ĉn)),

T cs =
1

4
((Im ⊗ SIn)ET (In ⊗ Ĉm)Λ̃(In ⊗ Ĉm)E(Im ⊗ SIn)),

T ss =
1

4
((Im ⊗ SIn)ET (In ⊗ SIm)Λ̃(In ⊗ SIm)E(Im ⊗ SIn).

Therefore, the systems of linear equations with coefficient matrices αI + T cc , αI + T sc ,

αI+T cs and αI+T cs of order mn can be solved efficiently using DCTs and DSTs. The total

number of operations required for each step of the method is O(mn logmn) real arithmetics.

By using the similar arguments in Theorem 2.4, we can show that the resulting method

converges if T cc , T sc , T cs and T ss are positive definite.


