9,884 research outputs found
Large igneous provinces and mass extinctions: an update
The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO 2 and SO 2 ) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO 2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change
Problems of the Metamorphic and Igneous Rocks of the Mojave Desert
The Mojave Desert region, as defined by Baker (1911, pp. 335-336), is the region of desert plains, mountains, and valleys comprising the extreme southwestern portion of the Great Basin (fig. 1). It lies entirely within California, including parts of San Bernardino, Los Angeles and Kern Counties, and embraces an area of approximately 160,000 square miles. Its climate is arid, and the drainage is interior.
Because much of the geology of this region is imperfectly known, any discussion of the regional aspects of the metamorphic and igneous rocks must take the form of a progress report. The relatively few published geological reports describe more or less widely separated areas, involve investigations of widely differing scales and qualities, and in general have not been coordinated parts of any broad, systematic program of research. Knowledge of the geology thus is peculiarly spotty, and some apparently critical areas and subjects have been completely neglected. Present knowledge provides a basis for some conclusions, but at the same time it points
to numerous problems awaiting solution. This paper is written in an attempt to focus attention upon some of these interesting unsolved problems, as well as to collate the conclusions already reached by various workers
Timing of the magmatism of the paleo-Pacific border of Gondwana: U-Pb geochronology of Late Paleozoic to Early Mesozoic igneous rocks of the north Chilean Andes between 20° and 31°S
Indexación: Web of Science; ScieloABSTRACT. U-Pb zircon geochronological data provide record of about 130 Ma of igneous activity in the Andes of northern Chile, which extended episodically from the latest Early Carboniferous to Early Jurassic (328-194 Ma). The overall U-Pb data show that volcanism and plutonism were essentially synchronous and major episodes of igneous activity developed during the Late Carboniferous to Mid-Permian (310 to 260 Ma) and from Late Permian to Late Triassic (255-205 Ma), with less prominent episodes in the mid-Carboniferous (330 to 320 Ma), and Early Jurassic (200-190 Ma). Thus, from the Carboniferous to the Early Triassic dominantly silicic magmatism developed along the Chilean segment of the southwestern border of Gondwana supercontinent. Further magmatism developed during the Mid-Late Triassic (250-194 Ma) was bimodal and synchronous with rift-related, continental and/or marine sedimentary strata related to the early stages of break-up of Gondwana. Most of the silicic volcanic rocks of the Precordillera and Domeyko Cordillera of northern Chile (21°30' to 25°30'S) are older than the silicic rocks assigned to the Choiyoi succession in Argentina, being instead equivalent in age to Carboniferous to Early Permian marine sedimentary sequences present in the eastern Argentinean foreland. On the other hand, silicic volcanic successions exposed in the easternmost part of northern Chile are equivalent in age to the Choiyoi succession of the San Rafael Block of Argentina. An eastward expansion or migration of the volcanism during the Mid-Permian to Early Triassic is inferred, interpretation that is consistent with expansion of the volcanism at that time in Argentina. The timing of the Late Paleozoic to Early Jurassic magmatism is coincident with that of the Andes of Perú and of western Argentina according to the available U-Pb data, revealing a rather consistent evolution in time of the magmatism along the southwestern, paleo-Pacific border of Gondwana.
Keywords: Geochronology, U-Pb, Andes, Gondwana, Choiyoi, Paleozoic, Carboniferous, Triassic.
RESUMEN. Los datos de U-Pb en circón registran aproximadamente 130 Ma de actividad ígnea en los Andes del norte de Chile, la que se extendió episódicamente desde el Carbonífero temprano hasta el Jurásico temprano (328-194 Ma). Los datos globales de U-Pb indican que el volcanismo y plutonismo fueron esencialmente sincrónicos con episodios mayores desde el Carbonífero tardío al Pérmico Medio (310-260 Ma) y durante el Pérmico Tardío a Triásico Tardío (255-205 Ma) y episodios menos prominentes durante el Carbonífero medio (330-320 Ma) y el Jurásico Temprano (200-190 Ma). Desde el Carbonífero hasta el Triásico Temprano se desarrolló magmatismo predominantemente félsico a lo largo del borde suroccidental del supercontinente de Gondwana, mientras que durante el Triásico medio a tardío (250-194 Ma) se desarrolló magmatismo bimodal sincrónico con estratos sedimentarios continentales y/o marinos relacionados con extensión (rift), durante las etapas tempranas de la desintegración de Gondwana. La mayor parte de las rocas volcánicas silíceas de la precordillera y la cordillera de Domeyko en el norte de Chile (21°30' a 25°30'S) son más antiguas que las rocas silíceas asignadas a la sucesión Choiyoi en Argentina, y son, en cambio, equivalentes en edad con las secuencias sedimentarias marinas del Carbonífero al Pérmico temprano presentes en el antepaís argentino al oriente. Por otra parte, las sucesiones volcánicas félsicas expuestas en la parte más oriental del norte de Chile, de la cordillera de Domeyko y de la cordillera Frontal al sur de 25°S son equivalentes en edad a la sucesión Choiyoi de Argentina. Se infiere una migración o expansión del volcanismo hacia el este durante el Pérmico Medio a Triásico Temprano, interpretación que es consistente con la expansión del volcanismo en Argentina durante ese período. La temporalidad del magmatismo del Paleozoico tardío a Mesozoico temprano es coincidente con la de los Andes de Perú y del oeste de Argentina, de acuerdo a los datos U-Pb disponibles, lo que revela una evolución temporal del magmatismo concordante a lo largo del borde suroeste del Gondwana.
Palabras clave: Geocronología, U-Pb, Andes, Gondwana, Choiyoi, Paleozoico, Carbonífero, Triásico
Evidence for an impact-induced biosphere from the δ34S signature of sulphides in the Rochechouart impact structure, France
The highly eroded 23 km diameter Rochechouart impact structure, France, has extensive evidence for post-impact hydrothermal alteration and sulphide mineralization. The sulphides can be divided into four types on the basis of their mineralogy and host rock. They range from pyrites and chalcopyrite in the underlying coherent crystalline basement to pyrites hosted in the impactites. Sulphur isotopic results show that δ34S values vary over a wide range, from -35.8‰ to +0.4‰. The highest values, δ34S -3.7‰ to +0.4‰, are recorded in the coherent basement, and likely represent a primary terrestrial sulphur reservoir. Sulphides with the lowest values, δ34S -35.8‰ to -5.2‰, are hosted within locally brecciated and displaced parautochthonous and autochthonous impactites. Intermediate δ34S values of -10.7‰ to -1.2‰ are recorded in the semi-continuous monomict lithic breccia unit, differing between carbonate-hosted sulphides and intraclastic and clastic matrix-hosted sulphides. Such variable isotope values are consistent with a biological origin, via bacterial sulphate reduction, for sulphides in the parautochthonous and autochthonous units; these minerals formed in the shallow subsurface and are probably related to the post impact hydrothermal system. The source of the sulphate is likely to have been seawater, penecontemporaneous to the impact, as inferred from the marginal marine paleogeography of the structure. In other eroded impact craters that show evidence for impact-induced hydrothermal circulation, indirect evidence for life may be sought isotopically within late-stage (≤120°C) secondary sulphides and within the shocked and brecciated basement immediately beneath the transient crater floor
Recommended from our members
Analysis of the Importance of Extension in Accounting for the Post-Carboniferous Subsidence of the North Sea Basin
Post Carboniferous sedimentary deposition in the Central North Sea basins can be separated into three major periods: Permian, Triassic and mid-Jurassic through present. Most efforts to explain the basin within an extensional framework have concentrated on the post mid-Jurassic subsidence. These efforts have ignored the large amount of prior extension required to account for the observed crustal thinning and the substantial Permian and Triassic sediment fill. In addition the models predict a mid-Jurassic through early Cretaceous extension that significantly exceeds estimates of the horizontal displacement observed on high angle faults on multichannel seismic lines. We show in areas of minimal pre-Permian subsidence that adding two earlier phase extensions, one in the late Carboniferous through early Permian and the other in the Triassic produces a nearly horizontal late Carboniferous crustal thickness. The time-dependent extensional model required to account for the three periods of sediment deposition gives an excellent match to the observed subsidence history of the basement. We present an analysis of a recent seismic reflection line nm across the Central Graben in the vicinity of published refraction and well data. We show that the extension required in the third phase of the three phase model is compatible with the observed displacement on the high angle mid-Jurassic through early Cretaceous faults. However, we find no evidence for major extension either in the Triassic or late Carboniferous through early Permian.Institute for Geophysic
Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea
Copyright © Cambridge University Press 2015. Strata of Permian - Early Triassic age that include a record of three major extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) were examined at the Festningen section, Spitsbergen. Over the c. 12 Ma record examined, mercury in the sediments shows relatively constant background values of 0.005-0.010 μg g -1 . However, there are notable spikes in Hg concentration over an order of magnitude above background associated with the three extinctions. The Hg/total organic carbon (TOC) ratio shows similar large spikes, indicating that they represent a true increase in Hg loading to the environment. We argue that these represent Hg loading events associated with enhanced Hg emissions from large igneous province (LIP) events that are synchronous with the extinctions. The Hg anomalies are consistent across the NW margin of Pangea, indicating that widespread mercury loading occurred. While this provides utility as a chemostratigraphic marker the Hg spikes may also indicate loading of toxic metals to the environment, a contributing cause to the mass extinction events
Circum-Arctic lithosphere-basin evolution : An overview
Acknowledgements The Special Issue editors thank the contributors for their hard work and dedication in the preparation of the papers presented here, and also Victoria Pease for her active support throughout the process and in particular in co-convening the conference session giving rise to this Special Issue. In particular, we thank the Editor-in-chief, Dr. Rob Govers for his patience, guidance and valued advice throughout the process. Also, we appreciate the work of the Tectonophysics editorial and production teams for bringing the Special Issue to print. R. Ernst, G. Oakey and an anonymous reviewer provided a multitude of helpful suggestions to improve the manuscript. This Special Issue is a contribution to the Geological Survey of Canada's Geomapping for Energy and Minerals (GEM2) Program, Canada's Extended Continental Shelf Program, and the Circum-Arctic Lithosphere Evolution (CALE) network. ESS Contribution No. 20160152.Peer reviewedPostprin
Crustal structure beneath the Trondelag Platform and adjacent areas of the Mid-Norwegian margin, as derived from wide-angle seismic and potential field data
The outer mid-Norwegian margin is characterized by strong breakup magmatism and has been extensively surveyed. The crustal structure of the inner continental shelf, however, is less studied, and its relation to the onshore geology, Caledonian structuring, and breakup magmatism remains unclear. Two Ocean Bottom Seismometer profiles were acquired across the Trøndelag Platform in 2003, as part of the Euromargins program. Additional-land stations recorded the marine shots. The P-wave data were modeled by ray-tracing, supported by gravity modeling. Older multi-channel seismic data allowed for interpretation of stratigraphy down to the top of the Triassic. Crystalline basement velocity is ~6 km s-1 onshore. Top basement is difficult to identify offshore, as velocities (5.3-5.7 km s-1) intermediate between typical crystalline crust and Mesozoic sedimentary strata appear 50-80 km from the coast. This layer thickens towards the Klakk-Ytreholmen Fault Complex and predates Permian and later structur-ing.
The velocities indicate sedimentary rocks, most likely Devonian. Onshore late- to post-Caledonian detachments have been proposed to extend offshore, based on the magnetic anomaly pattern. We do not find the expected correlation between upper basement velocity structure and detachments.
However, there is a distinct, dome-shaped lower-crustal body with a velocity of 6.6-7.0 km s-1. This is thickest under the Froan Basin, and the broad magnetic anomaly used to delineate the detachments correlates with this. The proposed offshore continuation of the detachments thus
appears- unreliable. While we find indications of high density and velocity (~7.2 km s-1) lower crust under the Rås Basin, similar to the proposed igneous underplating of the outer margin, this is poorly constrained near the end of our profiles. The gravity field indicates that this body may be continuous from the pre-breakup basement structures of the Utgard High to the Frøya High, suggesting that it could be an island arc or oceanic terrane-accreted during the Caledonian orogeny. Thus, we find no clear evidence of early Cenozoic igneous underplating of the inner part of the shelf
Measuring plume-related exhumation of the British Isles in Early Cenozoic times
Mantle plumes have been proposed to exert a first-order control on the morphology of Earth's surface. However, there is little consensus on the lifespan of the convectively supported topography. Here, we focus on the Cenozoic uplift and exhumation history of the British Isles. While uplift in the absence of major regional tectonic activity has long been documented, the causative mechanism is highly controversial, and direct exhumation estimates are hindered by the near-complete absence of onshore post-Cretaceous sediments (outside Northern Ireland) and the truncated stratigraphic record of many offshore basins. Two main hypotheses have been developed by previous studies: epeirogenic exhumation driven by the proto-Iceland plume, or multiple phases of Cenozoic compression driven by far-field stresses. Here, we present a new thermochronological dataset comprising 43 apatite fission track (AFT) and 102 (U–Th–Sm)/He (AHe) dates from the onshore British Isles. Inverse modelling of vertical sample profiles allows us to define well-constrained regional cooling histories. Crucially, during the Paleocene, the thermal history models show that a rapid exhumation pulse (1–2.5 km) occurred, focused on the Irish Sea. Exhumation is greatest in the north of the Irish Sea region, and decreases in intensity to the south and west. The spatial pattern of Paleocene exhumation is in agreement with the extent of magmatic underplating inferred from geophysical studies, and the timing of uplift and exhumation is synchronous with emplacement of the plume-related British and Irish Paleogene Igneous Province (BIPIP). Prior to the Paleocene exhumation pulse, the Mesozoic onshore exhumation pulse is mainly linked to the uplift and erosion of the hinterland during the complex and long-lived rifting history of the neighbouring offshore basins. The extent of Neogene exhumation is difficult to constrain due to the poor sensitivity of the AHe and AFT systems at low temperatures. We conclude that the Cenozoic topographic evolution of the British Isles is the result of plume-driven uplift and exhumation, with inversion under compressive stress playing a secondary role
- …