1	Mercury anomalies associated with three extinction events
2	(Capitanian Crisis, Latest Permian Extinction, and the
3	Smithian/Spathian Extinction) in NW Pangea
4	
5	Stephen E. Grasby ^{1,2*} , Benoit Beauchamp ² , David P.G. Bond ³ , Paul B. Wignall ⁴ , Hamed Sanei ^{1,2}
6	¹ Geological Survey of Canada, 3303 33 rd St. N.W. Calgary AB Canada, T2L 2A7.
7	² Department of Geoscience, University of Calgary, Calgary AB Canada.
8	³ Department of Geography, Environment and Earth Sciences, University of Hull, Hull HU6 7RX,
9	United Kingdom
10	⁴ School of Earth Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United
11	Kingdom
12	
13	
14 15	*Correspondence to: <u>sgrasby@nrcan.gc.ca</u> +1 (403) 292-7111

16 Abstract

Permian through Early Triassic strata that include a record of three major extinction events 17 18 (Capitanian Crisis, Latest Permian Extinction, and the Smithian/Spathian Extinction) were examined at the Festningen section, Spitsbergen. Over the ~ 12 Ma record examined, mercury in 19 the sediments shows relatively constant background values of 0.005 to $0.010 \mu g/g$. However, 20 there are notable spikes in Hg concentration, over an order of magnitude above background, 21 22 associated with the three extinctions. The Hg/TOC ratio shows similar large spikes, indicating that they represent true increase in Hg loading to the environment. We argue that these represent 23 Hg loading events associated with enhanced Hg emissions from large igneous province (LIP) 24 events that are synchronous with the extinctions. The Hg anomalies are consistent across the NW 25 26 margin of Pangea, indicating widespread mercury loading occured. While this provides utility as a chemostratigraphic marker, the Hg spikes may also indicate loading of toxic metals to the 27 28 environment that would be a contributing cause to the mass extinction events.

Keywords: mercury, Early Triassic, Latest Permian Extinction, chemostratigraphy

29

31 **1. Introduction**

Mercury (Hg) emissions associated with the emplacement of Large Igneous Provinces (LIPs) 32 were first recognised by (Sanei et al., 2012), who showed a large Hg spike associated with the 33 Siberian Traps eruptions. This event was coincident with the Latest Permian Extinction (LPE), 34 the largest extinction in Earth History that had a devastating impact on both terrestrial and 35 marine ecosystems (Erwin, 2006). High Hg loading associated with the Siberian Traps has been 36 supported by a similar Hg spike at the LPE boundary in Spitsbergen (Grasby et al., 2015). 37 38 Recurrent Siberian Trap volcanism may have also influenced Hg loading during the Smithian/Spathian Extinction in the Sverdrup Basin (Grasby et al., 2013a). While these initial 39 studies are focused on the sedimentary records from NW Pangea, the global extent of Hg loading 40 related to Siberian Trap volcanism has yet to be demonstrated. However, subsequent work has 41 shown similar Hg anomalies associated with other LIP events such as the Cretaceous-Paleogene 42 transition (Sial et al., 2014; Sial et al., 2013; Silva et al., 2013) related to Deccan Trap volcanism. 43 Hg is extremely toxic to life. This combined with the ease of transport over long distances 44 and persistence of Hg in the environment makes modern anthropogenic mercury emissions the 45 subject of significant global concern (AMAP, 2011). The two largest natural source of Hg to the 46 47 environment are volcanic emissions and natural coal combustion (Pirrone et al., 2010). These sources release Hg to the atmosphere where it can be globally transported prior to deposition in 48 terrestrial and marine environments. In the marine environment organic matter and clay minerals 49 50 scavenge Hg and transports it to the sea floor to become fixed in bottom sediments (Gehrke et al., 2009; Turner et al., 2004; Andren and Harriss, 1975; Lindberg et al., 1975; Cranston and 51 52 Buckley, 1972). The control of primary productivity on Hg sequestration is shown by the close

54

al., 2009; Outridge et al., 2007), as well as ancient sediments (Grasby et al., 2013a).

relationship between sedimentary organic matter and Hg in modern (Sanei et al., 2014; Stern et

Modern volcanic eruptions have a significant Hg flux that produce global Hg anomalies 55 (Pyle and Mather, 2003; Schuster et al., 2002; Slemr et al., 1995; Slemr and Scheel, 1998). Hg is 56 sourced from both volcanic gases as well as from rock units intruded by magma (Grasby et al., 57 2015; Sanei et al., 2015; Sanei et al., 2012). During LIP events emission rates would greatly 58 exceed normal Hg release (Sanei et al., 2012; Grasby et al., 2015), such that the normal marine 59 buffering control on Hg can be potentially overwhelmed (Sanei et al., 2012; Grasby et al., 2013a) 60 and be recorded as a Hg spike in the sediment record. For instance Grasby et al. (2015) estimated 61 62 that the Siberian Traps may have released up to 9.98 Gg/a Hg, or 400% above modern natural emissions. In comparision, the modern anthropogenic Hg emissions that roughly equal natural 63 are subject of global concern over impact on marine and terrestrial ecosystems. Therefore, Hg 64 anomalies formed at time of LIP eruptions suggest that: 1) Hg could be an effective marker in 65 the geologic record of periods of enhanced volcanic activity, and 2) LIP eruptions could 66 potentially release toxic amounts of Hg to the environment. Such a scenario would add to the 67 variety of kill mechanisms already associated with major volcanic eruptions (Keller and Kerr, 68 2014), as well as providing a direct link between terrestrial and marine extinction. 69

To further the assessment of Hg in the geologic record, we examined the Permian through Early Triassic record at the Festningen section in Spitsbergen (Fig. 1). This well-known location records the LPE (Grasby et al., 2015; Wignall et al., this volume) as well as evidence for the Earlier Capitanian crisis (Bond et al., 2015) and Smithian/Spathian extinction (Wignall et al., this volume), all of which have been linked to periods of major volcanic activity. Of these recent studies, the Hg record at Festningen has only been examined in a narrow (40 m) zone straddling

the LPE boundary (Grasby et al., 2015). In this present paper we examined the Hg record at
Festningen over 600 m of section through the Middle Permian to Early Triassic, representing
~12 million years of Earth history.

79

80 **2. Study Area.**

The Festningen section is located at Kapp Starostin, Spitsbergen (Fig. 1). The ~45° eastward dipping beds occur along a ~7 km low sea-cliff. The section provides a near continuous exposure of Carboniferous to Cenozoic strata, from Kapp Starostin to Festningsdodden, deposited in a distal broad epicontinental shelf setting on the northwestern margin of Pangea (Wignall et al., 1998; Blomeier et al., 2013; Stemmerik and Worsley, 2005). During Permian time Spitsbergen was at a paleolatitude of ~40-45° N (Scotese, 2004; Golonka and Ford, 2000).

The Kapp Starostin Formation was deposited during a period of passive subsidence that 87 followed a major relative sea level drop at the Lower/Middle Permian boundary (Blomeier et al., 88 2013). Deposition of widespread heterozoan carbonate (Vøringen Member) occurred in Roadian 89 time, followed by the progradation of heterozoan carbonates and cherts over much of the Barents 90 91 Shelf and Svalbard (Blomeier et al., 2013). Spitsbergen shares a similar depositional history to the palaeogeographically adjoining Sverdrup Basin (van Hauen, Degerböls and Trold Fiord 92 formations; Beauchamp et al., 2009) (Fig. 2). Approximately 40 m below the contact with the 93 overlying uppermost Permian-Lower Triassic Vardebukta Formation, fossiliferous carbonates of 94 95 the Kapp Starostin Formation transition to Late Permian spiculitic chert (Blomeier et al., 2013). 96 These Later Permian chert beds are considered equivalent to the Black Stripe and Lindström formations of the Sverdrup Basin (Beauchamp et al., 2009). The Vardebukta and overlying 97 98 Tvillingodden formations are dominated by shale, siltstone and minor sandstone of Early to

Middle Triassic age (Mørk et al., 1982), that are equivalent to the Blind Fiord Formation of the
Sverdrup Basin (Embry, 1989). The basal ~6-7 m of the Vardebukta Formation is latest Permian
in age (Grasby et al., 2015; Wignall et al., 1998).

102

103 **3. Methods**

A detailed sample suite was collected from 100 m below the Kapp Starostin/Vardebukta contact 104 to 500 m above. Sample spacing varied from 1 to 2 m away from the contact and higher density 105 of 20 to 50 cm spacing from ~ 40 m below to 19 m above the top of the Kapp Starostin 106 Formation. Samples were recorded in metres above (positive) and below (negative) the last chert 107 bed that defines the top of the Kapp Starostin Formation. Weathered surfaces were removed and 108 109 then samples were collected from an isolated layer no greater than 2 cm thick. In the laboratory any remaining weathered surfaces were removed and fresh samples were powdered by agate 110 111 mortar and pestle.

Total organic carbon (TOC) was measured using Rock-Eval 6° , with $\pm 5\%$ analytical error 112 of reported value, based on repeats and reproducibility of standards run after every 5th sample 113 114 (Lafargue et al., 1998). Elemental determinations were conducted on powdered samples digested 115 in a 2:2:1:1 acid solution of H_2O -HF-HClO₄-HNO₃, and subsequently analysed using a PerkinElmer Elan 9000 mass spectrometer, with $\pm 2\%$ analytical error. Hg was measured at 116 GSC-Atlantic by LECO® AMA254 mercury analyzer (Hall and Pelchat, 1997) (\pm 10%). $\delta^{13}C_{org}$ 117 was determined on samples washed with hydrochloric acid, and rinsed with hot distilled water to 118 remove any carbonate. δ^{13} C was measured using Continuous Flow-Elemental Analysis-Isotope 119 Ratio Mass Spectrometry, with a Finnigan Mat Delta+XL mass spectrometer interfaced with a 120 Costech 4010 elemental analyzer with combined analytical and sampling error of $\pm 0.2\%$. 121

123

Analytical results from a total of 341 samples used in this study are provided in Table 1.

124 **4. Results**

125

126 **4.a. Organic Carbon**

The organic carbon record, expressed as percent TOC, shows low values (< 1% TOC) overall 127 128 (Fig. 3a). There is an increase in TOC at -40 m. Bond et al. (2015) argue, based on brachiopod, 129 Sr isotopes records and magnetostratigraphy data, that the -40 m level is around the Middle 130 Permian extinction level at Festningen. The TOC values decline again leading up to the LPE boundary, where there is a second brief increase in TOC just above the LPE. For the remainder 131 132 of the section, TOC values in the Vardebukta Formation are < 0.2%. At these low values the accuracy of Rockeval results decreases, however data are plotted in Figure 3a to illustrate the 133 overall low TOC values through this interval. The TOC values increase again in the basal 134 Tvillingodden Formation, before dropping to low values in the upper 100 m of section. 135 Rock-Eval 6[©] results also provided information on thermal maturation and indicated that 136 organic matter in the shales have never been heated past the upper end of the oil window, such 137 138 that stable isotope values of organic carbon would not be thermally altered (Hayes et al., 1983). The only exception is a local thermal anomaly associated with a sill emplaced at ~19 m that does 139 not extend beyond 5 m of the sill boundary (Grasby et al., 2015). 140

141

142 **4.b. Carbon isotope record**

Portions of the organic carbon isotope curve ($\delta^{13}C_{org}$) at the Festningen section have been reported in previous studies, including Middle to Late Permian sediments (Bond et al., 2015),

across the Latest Permian extinction event (Grasby et al., 2015) and early Triassic sediments 145 (Wignall et al., this volume). The combined $\delta^{13}C_{org}$ curve is provided here (Fig. 3b) as reference 146 for comparison with both organic carbon isotope data from NW Pangea and the global inorganic 147 carbon isotope record. The $\delta^{13}C_{org}$ data from Festningen shows initially relatively stable values 148 of ~ -24 ‰ through the Middle to Late Permian, with a relatively minor negative shift at ~ -40 m. 149 At the top of the Kapp Starostin Formation, carbon isotope values show the onset of a 150 pronounced 10‰ negative shift through the basal Vardebukta Formation sediments (Grasby et 151 al., 2015). After this point there is a progressive recovery through the next 200 m followed by 152 another progressive negative shift to a minimum at $\sim +300$ m which is followed by an unstable 153 period through the remainder of the measured section (Wignall et al., this volume). 154

155

156 **4.c. Molybdenum**

Similar to the carbon isotope record, trace element data has been shown as a proxy for anoxia for 157 the 3 separate portions of the section previously studied (Grasby et al., 2015; Bond et al., 2015; 158 Wignall et al., this volume). For reference the composite curve of Mo normalised to Al is shown 159 through the entire interval (Fig. 3c). Results show relatively low values at the base of the section 160 161 with a significant spike in Mo/Al at ~ -40 m, which coincides with the shift to higher TOC values and minor negative shift in $\delta^{13}C_{org}$. Above the LPE boundary there is a second spike in 162 Mo/Al that initiates ~5 m after the main LPE event. This is followed by a gradual decline in 163 164 Mo/Al until ~200 m, coincident with the reversal in the trend of carbon isotopes. The Mo/Al 165 values progressively increase again through the next 100 m until +300 m, where peak Mo/Al ratios are coincident with the minimum in $\delta^{13}C_{org}$ values. After this Mo/Al values become highly 166 167 variable for the rest of the measured section.

168

170

169 **4.d. Mercury**

 $\mu g/g$ in the basal 60 m of section and then show a shift above -40 m to values up to 0.050 $\mu g/g$, 171 followed by a subsequent decline to values of ~ 0.020 μ g/g in the 10 m below just the LPE 172 boundary. At the LPE there is a significant spike in Hg to the highest values observed in the 173 section (> 0.130 μ g/g). Hg concentrations drop rapidly to background values of 0.005 to 0.010 174 μ g/g through the remainder of the section. The only exception is a brief spike at ~+300 m, where 175 Hg concentrations up to 0.065 μ g/g are observed. 176 In both marine and freshwater environments dissolved Hg has been shown to have strong 177 affinity for organic matter (OM) (Gehrke et al., 2009; Mason et al., 1996; Han et al., 2006; 178 Gagnon et al., 1997; Benoit et al., 2001). Grasby et al. (2013a) have also shown that OM 179 strongly controls Hg sequestration over geologic time. Therefore, along with absolute 180 concentrations, the Hg/TOC ratio is plotted in Figure 3e. However, TOC values are too low to be 181 considered accurate for parts of the section, where Rockeval analyses cannot accurately resolve 182 183 concentrations <0.2% TOC. Therefore only samples with TOC >0.2% are plotted as lower accuracy can greatly affect the calculated ratio. These data show a general trend whereby the 184 Hg/TOC ratio has constant low values through the section. The exceptions to this are the large 185 spikes in Hg/TOC values that occur at the LPE boundary as well as smaller shifts that occur at – 186 40 m as well as at \sim +300 m. These increases in Hg/TOC ratio are consistent with zones where 187 there are large spikes in absolute Hg concentration. Outside of these three levels Hg values are 188 low. 189

Hg values, reported here for the first time, are plotted in Figure 3d. Hg values are 0.005 to 0.010

191 **5. Discussion**

192 **5.a. Carbon isotope chemostratigraphy**

The δ^{13} C record through Permian to Early Triassic sediments shows significant shifts that are 193 comparable to those observed in the Sverdrup Basin (Grasby et al., 2013b) as well as with 194 inorganic δ^{13} C trends from records in the Panthalassa (Horacek et al., 2009) and the Tethys 195 196 (Horacek et al., 2007; Payne et al., 2004). This demonstrates that Festningen records global variation in biogeochemical cycles through this time interval. These can be used as a 197 chemostratigraphic tool to support both regional and global correlation. 198 Bond et al. (2015) argued that the minor negative carbon anomaly at -40 m correlates with 199 the Capitanian crises. The LPE event, as marked by the loss of chert forming siliceous sponges is 200 characterised by the onset of a large negative shift in $\delta^{13}C_{org}$ that reaches a minimum in the basal 201 Vardebukta Formation (Grasby et al., 2015; Wignall et al., 1998). Above the Kapp Starostin 202 Formation Wignall et al. (this volume) show that the next negative low point at ~300 m is 203 204 correlative with the end Smithian Substage. This is also consistent with comparison to the $\delta^{13}C_{org}$ record from the Smithian stratotype (Grasby et al., 2013b), as illustrated in Figure 4. This 205 makes the low in carbon isotope values equivalent to the Smithian/Spathian Extinction event that 206 was associated with renewed Siberian Trap volcanism and rapid global temperature increase 207 (Brayard et al., 2006; Orchard, 2007; Sun et al., 2012; Xie et al., 2010). 208

209

210 **5.b. Mercury deposition**

The Hg record at Festningen shows a relatively constant background value through the majority of the succession analysed (< $0.020 \ \mu g/g$). However notable spikes in Hg concentration occur coincident with the three extinction levels represented in this section (Capitanian Crisis, LPE,

214 and Smithian/Spathian Extinction). Of these three spikes the most significant occurs at the LPE boundary. Aside from the three most prominent Hg spikes there is also a slight increase in late 215 Dienerian portion of the section. It is interesting to note that these prominent Hg spikes are all 216 associated with shifts to lower δ^{13} C values. In addition there is a general association of higher Hg 217 concentrations associated with high Mo/Al values (Fig. 2). While this may suggest increased Hg 218 sequestration associated with changes to more anoxic environments, a plot of Mo/Al versus Hg 219 220 reveals that there is no correlation (Fig. 5). So despite the general relationship, the data suggest 221 that anoxia has no direct influence on Hg sequestration in sediments.

222 Given the low organic matter content, throughout much of the Early Triassic portion of the studied section, reliable Hg/TOC ratios are not always possible to obtain. For values <0.2% TOC 223 inaccuracies in measurement can lead to magnified errors and highly variable Hg/TOC values 224 that are not reflective of natural conditions, and therefore not shown. However, for TOC values > 225 0.2%, the Hg/TOC ratios for the Festningen section have relatively constant background values 226 (vertical dashed line in Fig. 2e). These results are consistent with Hg/TOC through the Early 227 Triassic at the Smithian stratotype, Sverdrup Basin (Grasby et al., 2013a), indicating a general 228 background level of Hg sequestration into sediment that is largely controlled by organic matter 229 deposition. 230

The notable exceptions to this background Hg deposition are spikes in both total Hg concentrations as well as Hg/TOC levels at the 3 extinction levels (Fig. 2). Previously Sanei et al. (2012) and (Grasby et al., 2013a) have argued that Hg anomalies in the geologic record are related to massive Hg emissions associated with periods of major volcanic eruptions. Our results from Festningen provide support for this hypothesis, showing over the ~12 ma record that there are three prominent Hg anomalies superimposed on background Hg concentrations. In each case

237	these Hg spikes are associated with global extinction events that have been previously tied to LIP
238	eruptions: Capitanian Crisis - Emeishan eruptions, LPE – Siberian Traps, Smithian/Spathian –
239	renewed Siberian Traps (Bond and Wignall, 2014; Xie et al., 2010; Paton et al., 2010).
240	On a regional perspective the Hg spikes observed at Festningen closely correspond to those
241	in the Sverdrup Basin (Fig. 4). This indicates that these periods of anomalous Hg deposition are
242	regional in scope and suggest periods of enhanced Hg deposition over broad areas.
243	
244	6. Conclusions
245	The organic carbon isotope records from the Festningen section show trends through the Late

Permian and Early Triassic that closely correspond to those of the Sverdrup Basin, as well as the 246 247 global inorganic carbon record. These results illustrate that NW Pangea records perturbations to 248 the global carbon cycle. Previously it has been demonstrated that Hg is an excellent proxy for periods of major volcanic activity in the geologic record (Sanei et al., 2012; Grasby et al., 2013a; 249 250 Sial et al., 2013). The Festningen section records a general constant background of Hg deposition 251 through time. However, there are notable spikes in Hg concentration as well as in the Hg/TOC ratio that correspond to periods of mass extinction (Capitanian Crisis, the LPE event, and the 252 Smithian/Spathian extinction), all of which have been associated with LIP events. Our results 253 254 thus support the use of Hg as a marker for LIP eruptions. What remains uncertain is what role such Hg release could have on ecosystems. Certainly Hg is one of the most toxic elements for 255 life, and enhanced Hg flux from large igneous events would likely have global impact in both the 256 terrestrial and marine realm. Our results show that there are consistent records of Hg spikes 257 associated with LIP events and mass extinctions across NW Pangea. The global nature of these 258 records remains to be demonstrated. If they are more widely distributed then Hg release could 259 have played a role as a significant extinction mechanism throughout Earth history. 260

261

262 Acknowledgments

263	This research was made possible by Karsten Piepjohn of Bundesanstalt für Geowissenschaftern
264	und Rohstoffe, Geozentrum. M. Parson assisted with Hg analyses and R. Stewart with Rockeval
265	analyses. DB acknowledges financial support from NERC Advanced Fellowship grant
266	NE/J01799X/1 and the Research Executive Agency for Marie Curie IEF grant FP7-PEOPLE-
267	2011-IEF-300455. PW acknowledges support from NERC grant NE/I015817/1. ESS
268	Contribution xxxx.

269

270 Figure Legends

271	Figure 1. Map showing location of the Festningen section on Spitsbergen (base of section is
272	located at 78.0950°N, 13.8240°E (WGS84 datum).

Figure 2. Paleogeographic map after (Embry, 1992) showing relative location of Sverdrup Basin
and Spitsbergen. Inset map (after Scotese) showing location on NW Pangea.

Figure 3. Plots of geochemical data from Festningen, showing: a) percent total organic carbon

276 (TOC), b) carbon isotope values for organic carbon, c) Mo normalised by Al, d) Hg

values, and e) Hg normalised by TOC (the Hg/TOC values are only shown for values

of TOC > 0.2% as below that value Rockeval analyses provide less accurate results
 that are magnified in calculated ratios).

Figure 4. Correlation of carbon isotope and Hg records from the Smithian stratotype (Grasby et al., 2013b) with composite record from Festningen (this study).

Figure 5. Plot of the Mo/Al ratio versus Hg concentration.

284 **References**

- AMAP 2011. AMAP Assessment 2011: Mercury in the Arctic. Oslo, Norway: Arctic Monitoring
- and Assessment Programme (AMAP).
- ANDREN, A. W. & HARRISS, R. C. 1975. Observations on the association between mercury and
 organic matter dissolved in natural waters. *Geochimica et Cosmochimica Acta* 39(9),
 1253–58.
- 290 BEAUCHAMP, B., HENDERSON, C. M. B., GRASBY, S. E., GATES, L., BEATTY, T., UTTING, J. &
- JAMES, N. P. 2009. Late Permian sedimentation in the Sverdrup Basin, Canadian Arctic:
- the Lindström and Black Stripe formations. *Canadian Society of Petroleum Geology Bulletin* 57, 167–91.
- BENOIT, J. M., MASON, R. P., GILMOUR, C. C. & AIKEN, G. R. 2001. Constants for mercury
- binding by dissolved organic matter isolates from the Florida Everglades. *Geochimica et Cosmochimica Acta* 65(24), 4445–51.
- 297 BLOMEIER, D., DUSTIRA, A. M., FORKE, H. & SCHEIBNER, C. 2013. Facies analysis and
- depositional environments of a storm-dominated, temperate to cold, mixed siliceous-
- 299 carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. *Norwegian*300 *Journal of Geology* 93, 75–98.
- 301 BOND, D. P. G., WIGNALL, P. B., JOACHIMSKI, M., SUN, Y., SAVOV, I., GRASBY, S. E.,
- 302 BEAUCHAMP, B. & BLOMEIER, D. P. G. 2015. An abrupt extinction in the Middle Permian
- 303 (Capitanian) of the Boreal Realm (Spitsbergen). Geological Society of America Bulletin.
- doi: 10.1130/B31216.1

	D	DD	0	0 11	T 7	D	D	0011	T	•	•	1			
205	RUND	\mathbf{D}	(<u>`</u>	X7 \	A/ICNIALI	υ	$\mathbf{\nu}$	' <i>1</i> 1 1 /1	1 0200	10000110	nrouncoo	and	maga	ovtinotion	a. An
רטר	DUND			(X. V		F .	1.2	2014				and	111/2/28	CATHULION	S AIL
505	DOLD			\sim	, IOI II IDD,				Laise	1,5110004	provinces	~~~~~	IIIGOD	enterneer on	

306 update. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects eds G. Keller

307 and A. C. Kerr). GSA SPECIAL PAPERS, V. 505, DOI:10.1130/2014.2505(02).

- 308 BRAYARD, A., BUCHER, H., ESCARGUEL, G., FLUTEAU, F., BOURQUIN, S. & GALFETTI, T. 2006.
- 309 The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients.
- 310 *Palaeogeography, Palaeoclimatology, Palaeoecology* 239(3–4), 374–95.
- 311 CRANSTON, R. E. & BUCKLEY, D. E. 1972. Mercury pathways in a river and estuary.
- 312 Environmental Science & Technology 6(3), 274–78.
- 313 EMBRY, A. 1989. Correlation of Upper Palaeozoic and Mesozoic sequences between Svalbard,
- 314 Canadian Arctic Archipelago, and northern Alaska. In *Correlation in Hydrocarbon*
- 315 *Exploration* (ed J. D. Collinson). pp. 89–98. Springer Netherlands.
- 316 EMBRY, A. F. 1992. Crockerland-The Northwest source area for the Sverdrup Basin, Canadian
- 317 Arctic Islands. In Arctic Geology and Petroleum Potential eds T. O. Vorren, E. Bergsager,
- 318 Ø. A. Dahl-Stamnes, E. Holter, B. Johansen, E. Lie and T. B. Lund). pp. 205–16.
- 319 Amsterdam: Elsevier.
- 320 ERWIN, D. H. 2006. Extinction. How life on Earth nearly ended 250 million years ago. New
- 321 Jersey: Princeton University Press.
- GAGNON, C., PELLETIER, É. & MUCCI, A. 1997. Behaviour of anthropogenic mercury in coastal
 marine sediments. *Marine Chemistry* 59(1–2), 159–76.
- 324 GEHRKE, G. E., BLUM, J. D. & MEYERS, P. A. 2009. The geochemical behavior and isotopic
- 325 composition of Hg in a mid-Pleistocene western Mediterranean sapropel. *Geochimica et*
- 326 *Cosmochimica Acta* 73(6), 1651–65.

327	GOLONKA, J. & FORD, D. 2000. Pangean (Late Carboniferous-Middle Jurassic)
328	paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology
329	161, 1–34.
330	GRASBY, S. E., BEAUCHAMP, B., BOND, D. P. G., WIGNALL, P. B., TALAVERA, C., GALLOWAY, J.
331	M., PIEPJOHN, K., REINHARDT, L. & BLOMEIER, D. 2015. Progressive environmental
332	deterioration in NW Pangea leading to the Latest Permian Extinction. Geological Society
333	of America Bulletin.
334	GRASBY, S. E., SANEI, H., BEAUCHAMP, B. & CHEN, Z. 2013a. Mercury deposition through the
335	Permo–Triassic Biotic Crisis. Chemical Geology 351(0), 209–16.
336	GRASBY, S. E., BEAUCHAMP, B., EMBRY, A. F. & SANEI, H. 2013b. Recurrent Early Triassic
337	ocean anoxia. Geology 41, 175–78.
338	HALL, G. & PELCHAT, P. 1997. Evaluation of a Direct Solid Sampling Atomic Absorption
339	Spectrometer for the Trace Determination of Mercury in Geological Samples. Analyst
340	122(9), 921–24.
341	HAN, S., GILL, G. A., LEHMAN, R. D. & CHOE, KY. 2006. Complexation of mercury by
342	dissolved organic matter in surface waters of Galveston Bay, Texas. Marine Chemistry
343	98(2-4), 156–66.
344	HAYES, J. M., KAPLAN, I. R. & WEDEKING, K. W. 1983. In Earth's earliest biosphere: its origin
345	and evolution (ed J. W. Schopf). pp. 92-132. Princeton NJ: Princeton Univ. Press.
346	HORACEK, M., KOIKE, T. & RICHOZ, S. 2009. Lower Triassic [delta]13C isotope curve from
347	shallow-marine carbonates in Japan, Panthalassa realm: Confirmation of the Tethys
348	[delta]13C curve. Journal of Asian Earth Sciences 36(6), 481-90.

349	HORACEK, M., BRANDNER, R. & ABART, R. 2007. Carbon isotope record of the P/T boundary and
350	the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic
351	carbon. Palaeogeography, Palaeoclimatology, Palaeoecology 252(1–2), 347–54.

- 352 KELLER, G. & KERR, A. C., eds. 2014. Volcanism, Impacts, and Mass Extinctions: Causes and
- 353 *Effects*. Geological Society of America.
- 354 LAFARGUE, E., ESPITALITE, J., MARQUIS, F. & PILLOT, D. 1998. Rock-Eval 6 applications in
- hydrocarbon exploration, production and soil contamination studies. *Revue de L'institut Francais du Petrole* 53(4), 421–37.
- 357 LINDBERG, S. E., ANDRENSON, A. W. & HARRISSON, R. C. 1975. Geochemistry of mercury in the
- estuarine environment. In *Estuarine Research. Chemistry, Biology and the Estuarine System* (ed E. L. Cronin). New York: Cronin. Academic Press.
- MASON, R. P., REINFELDER, J. R. & MOREL, F. M. M. 1996. Uptake, Toxicity, and Trophic
- Transfer of Mercury in a Coastal Diatom. *Environmental Science & Technology* 30(6),
 1835–45.
- 363 MØRK, A., KNARUD, R. & WORSLEY, D. 1982. Depositional and diagenetic environments of the
- 364 Triassic and Lower Jurassic succession of Svalbard. In Arctic geology and geophysics:
- 365 proceedings of the Third International Symposium on Arctic Geology eds A. F. Embry and
- 366 H. R. Balkwill). pp. 371–98. Calgary: Canadian Society of Petroleum Geologists.
- 367 ORCHARD, M. J. 2007. Conodont diversity and evolution through the latest Permian and Early
- 368 Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology 252(1–2), 93–
- 369 117.

370	OUTRIDGE, P. M., SANEI, H., STERN, G. A., HAMILTON, P. B. & GOODARZI, F. 2007. Evidence for
371	control of mercury accumulation in sediments by variations of aquatic primary productivity
372	in Canadian High Arctic lakes Environmental Science & Technology 41, 5259-65.
373	PATON, M. T., IVANOV, A. V., FIORENTINI, M. L., MCNAUGHTON, N. J., MUDROVSKA, I.,
374	REZNITSKII, L. Z. & DEMONTEROVA, E. I. 2010. Late Permian and Early Triassic magmatic
375	pulses in the Angara-Taseeva syncline, Southern Siberian Traps and their possible
376	influence on the environment. Russian Geology and Geophysics 51(9), 1012-20.
377	PAYNE, J. L., LEHRMANN, D., J., WEI, J., ORCHARD, M. J., SCHRAG, D. P. & KNOLL, A. H. 2004.
378	Large perturbations of the carbon cycle during recovery from the End-Permian extinction.
379	Science 305, 506–09.
380	PIRRONE, N., CINNIRELLA, S., FENG, X., FINKELMAN, R. B., FRIEDLI, H. R., LEANER, J., MASON,
381	R., MUKHERJEE, A. B., STRACHER, G. B., STREETS, D. G. & TELMER, K. 2010. Global
382	mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric
383	Chemistry and Physics Discussions 10, 4719–52.
384	PYLE, D. M. & MATHER, T. A. 2003. The importance of volcanic emissions for the global
385	atmospheric mercury cycle. Atmospheric Environment 37(36), 5115-24.
386	SANEI, H., GRASBY, S. E., & BEAUCHAMP, B. 2015. CONTAMINANTS IN MARINE SEDIMENTARY
387	DEPOSITS FROM COAL FLY ASH DURING THE LATEST PERMIAN EXTINCTION (BOOK CHAPTER
388	5), IN: ENVIRONMENTAL CONTAMINANTS: USING NATURAL ARCHIVES TO TRACK SOURCES
389	AND LONG-TERM TRENDS OF POLLUTION, SERIES: DEVELOPMENTS IN
390	PALEOENVIRONMENTAL RESEARCH, VOL. 18, BY: BLAIS, JULES M., ROSEN, MICHAEL R.,
391	SMOL, JOHN P., SPRINGER, P 547, ISBN 978-94-017-9540-1.

392	Sanei, H., Outridge, P. M., Stern, G. A., & Macdonald, R. W. 2015. Classification of mercury-
393	labile organic matter relationships in lake sediments. Chemical Geology, 373, 87–92.
394	
395	SANEI, H., GRASBY, S. E. & BEAUCHAMP, B. 2012. Latest Permian mercury anomalies. Geology
396	40(1), 63–66.
397	Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F.,
398	SUSONG, D. D., GREEN, J. R. & ABBOTT, M. L. 2002. Atmospheric Mercury Deposition
399	during the Last 270 Years: A Glacial Ice Core Record of Natural and Anthropogenic
400	Sources. Environmental Science & Technology 36(11), 2303–10.
401	SCOTESE, C. R. 2004. A continental drift flipbook. Journal of Geology 112, 729-41.
402	SIAL, A. N., CHEN, J., LACERDA, L. D., PERALTA, S., GAUCHER, C., FREI, R., CIRILLI, S.,
403	FERREIRA, V. P., MARQUILLAS, R. A., BARBOSA, J. A., PEREIRA, N. S. & BELMINO, I. K. C.
404	2014. High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical
405	fingerprints of the Deccan volcanism and Cretaceous-Paleogene Boundary impact event.
406	Palaeogeography, Palaeoclimatology, Palaeoecology 414(0), 98–115.
407	SIAL, A. N., LACERDA, L. D., FERREIRA, V. P., FREI, R., MARQUILLAS, R. A., BARBOSA, J. A.,
408	GAUCHER, C., WINDMÖLLER, C. C. & PEREIRA, N. S. 2013. Mercury as a proxy for volcanic
409	activity during extreme environmental turnover: The Cretaceous-Paleogene transition.
410	Palaeogeography, Palaeoclimatology, Palaeoecology 387(0), 153–64.
411	SILVA, M. V. N., SIAL, A. N., BARBOSA, J. A., FERREIRA, V. P., NEUMANN, V. H. & DE LACERDA,
412	L. D. 2013. Carbon isotopes, rare-earth elements and mercury geochemistry across the K-
413	T transition of the Paraíba Basin, northeastern Brazil. Geological Society, London, Special
414	Publications 382.

415	SLEMR, F. & SCHEEL, H. E. 1998. Trends in atmospheric mercury concentrations at the summit of
416	the Wank mountain, Southern Germany. Atmospheric Environment 32(5), 845-53.
417	SLEMR, F., JUNKERMANN, W., SCHMIDT, R. W. H. & SLADKOVIC, R. 1995. Indication of change in
418	global and regional trends of atmospheric mercury concentrations. Geophysical Research
419	Letters 22(16), 2143–46.
420	STEMMERIK, L. & WORSLEY, D. 2005. 30 years on - Arctic Upper Palaeozoic stratigraphy,
421	depositional evolution and hydrocarbon prospectivity. Norsk Geologisk Tidsskrift 85, 151-
422	68.
423	STERN, G. A., SANEI, H., ROACH, P., DELARONDE, J. & OUTRIDGE, P. M. 2009. Historical
424	interrelated variations of mercury and aquatic organic matter in lake sediment cores from a
425	subarctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging
426	hypothesis. Environ. Sci. Technol 43, 7684–90.
427	SUN, Y., JOACHIMSKI, M. M., WIGNALL, P. B., YAN, C., CHEN, Y., JIANG, H., WANG, L. & LAI, X.
428	2012. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science
429	338(6105), 366–70.
430	TURNER, A., MILLWARD, G. E. & LE ROUX, S. M. 2004. Significance of oxides and particulate
431	organic matter in controlling trace metal partitioning in a contaminated estuary. Marine
432	Chemistry 88(3-4), 179-92.
433	WIGNALL, P. B., BOND, D. P. G., SUN, Y., GRASBY, S. E., BEAUCHAMP, B., JOACHIMSKI, M. &
434	BLOMEIER, D. this volumne. Ultra-Shallow Marine Anoxia in an Early Triassic Storm-
435	Dominated Clastic Ramp (Spitsbergen) and the Suppression of Benthic Radiation.
436	Geological Magazine.

437	WIGNALL, P. B., MORANTE, R. & NEWTON, R. 1998. The Permo–Triassic transition in
438	Spitsbergen: $\delta^{13}C_{org}$ chemostratigraphy, Fe and S geochemistry, facies, fauna and trace
439	fossils. <i>Geologic Magazine</i> 135, 47–62.
440	XIE, S., PANCOST, R. D., WANG, Y., YANG, H., WIGNALL, P. B., LUO, G., JIA, C. & CHEN, L. 2010.
441	Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo–Triassic biotic crisis.
442	<i>Geology</i> 38(5), 447–50.
443	

Table 1. Geochemical data from the Festningen section. Depths are measured relative to the Latest Permian Extintion Boundary (LPE) marked by the top of the Kapp Starostin Formation.

Sample	depth realtive to LPE	$\delta^{13}C$ org	Hg	TOC	Мо	Al
ID	metres	‰	ppb	%	PPM	%
C-556979	-97.7	-24.5	9	0.02	0.45	0.54
C-556980	-97.2	-21.0	5	0.07	0.48	0.31
C-556981	-95.7	-22.2	4	0.05	0	0.59
C-556982	-94.2	n.d.	5	0.04	0	0.58
C-556983	-92.7	-22.4	6	0.11	0.09	1.02
C-556984	-91.2	-23.0	2	0.01	0.05	0.42
C-556985	-89.7	-23.0	2	0.02	0.07	0.3
C-556986	-86.7	-25.0	11	0.22	0.31	1.59
C-556987	-83.7	-24.0	7	0.11	0.2	1.15
C-556988	-80.7	-23.7	5	0.02	0.08	0.6
C-556989	-77.7	-25.0	6	0.03	0.22	0.61
C-556990	-74.7	-23.8	9	0.12	0.1	1.55
C-556991	-71.7	-24.3	6	0.02	0	0.53
C-556992	-68.7	-24.5	4	0.02	0	0.71
C-556993	-65.7	-25.5	4	0.05	0	0.64
C-556994	-62.7	-24.4	4	0.01	0	0.85
C-556995	-59.7	-24.8	4	0.03	0.08	0.59
C-556996	-56.7	-24.6	4	0.07	0.09	0.75
C-556997	-53.7	-25.2	4	0.07	0.21	1.21
C-556998	-50.7	-25.3	3	0.10	0	1.01
C-556999	-47.7	-24.5	4	0.01	0	0.7
C-557000	-46.2	-24.9	9	0.09	0.13	1
C-557001	-44.7	-24.5	6	0.05	0.13	1.28
C-557002	-43.2	-24.2	5	0.03	0.08	0.9
C-557003	-41.7	-23.6	6	0.08	0.06	0.45
C-557004	-40.2	-23.3	7	0.04	0.2	1.55
C-556572	-27.2	-24.3	28	0.25	0.53	2.65
C-556573	-26.7	-24.6	34	0.44	0.82	4.18
C-556574	-26.2	-24.6	36	0.39	0.99	3.85
C-556575	-25.7	-24.4	22	0.33	0.57	3.63
C-556576	-25.2	-24.7	22	0.29	2.66	2.84
C-556577	-24.7	-24.5	17	0.22	1.05	2.6
C-556578	-24.2	-24.4	35	0.34	1.83	3.3
C-556579	-23.7	-24.0	41	0.43	0	
C-556580	-23.2	-23.8	34	0.49	0.34	3.68
C-556581	-22.2	-23.74	48	0.65	0.25	4.36
C-556582	-21.7	-23.6	42	0.69	0.39	4.43

C-556583	-21.2	-23.63	38	0.59	0.26	4.21
C-556584	-20.7	-23.87	30	0.60	0.48	4.26
C-556585	-20.2	-23.62	37	0.58	0.46	4.54
C-556586	-19.7	-23.6	33	0.55	0.46	4.67
C-556587	-18.2	-23.86	28	0.51	0.8	4.19
C-556588	-17.7	-23.88	30	0.50	0.97	4.18
C-556589	-17.2	-23.9	33	0.57	1.26	3.97
C-556590	-16.7	-23.7	28	0.45	0.52	3.69
C-556591	-16.2	-24.0	29	0.49	0.7	4.2
C-556592	-15.7	-23.3	31	0.45	0.66	4.62
C-556593	-15.2	-24.0	30	0.53	0.74	4.08
C-556594	-14.7	-23.6	30	0.41	0.34	4.35
C-556595	-14.2	-24.1	32	0.44	0.33	4.07
C-556596	-13.7	-23.9	38	0.65	0.22	5.28
C-556597	-13.2	-23.7	34	0.50	0.31	4.7
C-556598	-12.7	-24.0	33	0.48	0.63	4.7
C-556599	-12.2	-24.3	37	0.56	0.57	5.4
C-556600	-11.7	-24.2	38	0.64	0.59	5.58
C-556601	-11.2	-25.2	14	0.44	0.44	3.85
C-556602	-10.7	-25.1	13	0.36	0.69	4.19
C-556603	-10.2	-24.9	13	0.35	1.13	3.6
C-556604	-9.7	-24.9	13	0.21	0.73	2.5
C-556605	-9.2	-25.5	17	0.35	0.83	4.2
C-556606	-8.7	-25.4	14	0.45	1.01	3.92
C-556607	-8.2	-24.7	16	0.35	0.68	3.69
C-556608	-7.7	-25.6	13	0.32	0.73	3
C-556609	-7.2	-25.0	15	0.37	0.48	3.32
C-556610	-6.7	-24.6	16	0.37	0.63	3.2
C-556611	-6.2	-24.5	13	0.40	0.48	3.42
C-556612	-5.7	-24.3	13	0.29	0.29	3.37
C-556613	-5.2	-24.3	16	0.29	0.45	3.11
C-556614	-4.7	-24.7	9	0.45	0.38	4
C-556615	-4.2	-25.2	14	0.52	0.76	3.22
C-556616	-3.7	-25.2	14	0.24	0.79	2.89
C-556617	-3.2	-25.7	17	0.24	0.84	2.67
C-556618	-3	-25.5	16	0.22	0.72	2.77
C-556619	-3.45	-25.1	15	0.19	2.92	1.66
C-556620	-2.8	-25.3	22	0.40	0.62	4.48
C-556621	-2.6	-25.7	19	0.39	0.82	4.04
C-556622	-2.4	-25.9	18	0.33	0.96	3.84
C-556623	-2.2	-26.1	24	0.39	0.92	3.83
C-556624	-2	-25.6	19	0.41	0.6	3.84
C-556625	-1.8	-25.7	15	0.34	0.8	3.57

C-556626	-1.6	-25.6	17	0.46	0.89	3.9
C-556627	-1.4	-24.8	18	0.35	0.36	4.17
C-556628	-1.2	-25.6	24	0.30	1.14	3.65
C-556629	-1	-25.5	15	0.22	1.31	3.5
C-556630	-0.8	-25.1	18	0.30	0.75	3.82
C-556631	-0.6	-24.5	20	0.29	0.41	3.43
C-556632	-0.4	-24.2	21	0.39	0.77	4.33
C-556633	-0.2	-25.3	16	0.23	0.57	3.42
C-556634	0	-25.5	20	0.33	1.37	3.33
C-556635	1	-29.0	29	0.28	0.48	7.98
C-556636	1.2	-29.6	43	0.24	1.07	8.21
C-556637	1.4	-29.1	48	0.19	1.34	8.69
C-556638	1.6	-28.8	33	0.13	1.21	8.45
C-556639	1.8	-28.6	27	0.14	0.28	8.25
C-556640	2	-28.7	26	0.11	0.52	8.52
C-556641	2.2	-28.8	16	0.10	0.14	8.57
C-556642	2.4	-28.9	20	0.09	0.16	8.57
C-556643	2.6	-30.1	30	0.13	0.46	9.98
C-556644	2.8	-30.4	17	0.10	0.14	7.85
C-556645	2.9	-30.3	25	0.08	0.46	9.5
C-556646	3.1	-30.8	25	0.12	0.17	7.87
C-556647	3.3	-31.0	27	0.22	0.16	8.2
C-556648	3.5	-32.8	41	0.40	0.55	7.96
C-556649	3.7	-32.6	43	0.45	0.96	8.09
C-556650	3.9	-32.5	42	0.43	0.57	8.21
C-556651	4.1	-33.5	77	0.31	4.4	9.75
C-556652	4.3	-32.8	60	0.48	1.59	7.87
C-556653	4.4	-32.6	74	0.27	0.63	8.05
C-556654	5.4	-32.5	62	0.50	1.43	7.99
C-556655	5.6	-32.2	53	0.33	1.23	8.19
C-556656	5.8	-33.3	86	0.42	2.39	9.91
C-556657	6	-32.6	69	0.44	0.76	9.66
C-556658	6.2	-33.2	69	0.31	0.57	9.77
C-556659	6.4	-33.6	60	0.39	1.04	8.47
C-556660	6.6	-33.3	53	0.28	0.48	10.3
C-556661	6.8	-33.2	46	0.26	0.35	10.97
C-556662	7	-32.8	53	0.34	0.44	11.28
C-556663	7.2	-32.6	51	0.34	0.52	10.92
C-556664	7.4	-33.0	50	0.31	0.39	10.76
C-556665	7.6	-32.9	81	0.44	2.76	10.02
C-556666	7.8	-32.9	77	0.56	5.03	8.99
C-556667	8	-32.3	82	0.71	3.91	9.56
C-556668	8.15	-32.7	89	0.51	5.2	7.92

C-556669	8.2	-33.7	134	1.03	20.65	8.74
C-556670	8.4	-33.0	88	0.63	10.16	7.12
C-556671	8.6	-33.5	100	0.61	26.37	7.02
C-556672	8.8	-33.6	57	0.38	4.51	9.62
C-556673	9	-33.8	57	0.41	3.67	9.2
C-556674	9.2	-32.1	25	0.08	1.58	6.99
C-556675	9.4	-33.3	50	0.46	2.77	9.55
C-556676	9.6	-32.8	38	0.25	0.59	10.06
C-556677	9.8	-33.1	26	0.30	0.96	9.54
C-556678	10	-32.9	47	0.23	0.62	10.87
C-556679	10.2	-33.2	35	0.30	1.02	10.63
C-556680	10.4	-33.0	30	0.29	1.92	10.99
C-556681	10.6	-32.8	40	0.49	1.98	9.53
C-556682	10.8	-31.6	19	0.14	1.42	6.76
C-556683	11	-31.8	23	0.17	1.4	9.02
C-556684	11.2	-27.4	74	1.02	1.41	9.1
C-556685	11.4	-31.8	34	0.17	2.14	8.21
C-556686	11.6	-32.1	23	0.21	0.83	9.45
C-556687	11.8	-32.2	31	0.25	1.51	9.31
C-556688	12	-32.6	48	0.39	3.08	9.09
C-556689	12.2	-32.6	56	0.55	2.9	9.23
C-556690	12.4	-31.3	19	0.09	1.28	6.7
C-556691	12.6	-33.1	34	0.29	2.55	9.55
C-556692	12.8	-32.7	35	0.15	3.04	6.67
C-556693	13	-33.1	45	0.33	7.18	7.38
C-556694	13.2	-32.8	47	0.29	4	7.1
C-556695	13.05	-33.9	41	0.48	12.34	9.75
C-556696	13.4	-32.7	34	0.30	4.13	7.19
C-556697	13.6	-33.6	42	0.50	4.96	7.1
C-556698	13.8	-33.3	43	0.48	3.89	7.31
C-556699	14	-32.4	35	0.17	2.55	7.44
C-556700	14.2	-33.4	27	0.31	3.45	4.54
C-556701	14.4	-33.5	24	0.26	3.5	4.57
C-556702	14.8	-32.8	33	0.45	2.31	7.7
C-556703	15.3	-32.4	15	0.18	1.71	7.25
C-556704	15.8	-31.2	10	0.10	0.37	7.99
C-556705	16.3	-31.8	7	0.28	1.53	7.82
C-556706	16.8	-32.4	1	0.35	1.27	7.98
C-556707	17.3	-32.4	1	0.19	3.08	8.2
C-556708	17.8	-25.1	0.43	0.00	3.34	7.79
C-556709	18.8	n.d.	0.49	0.01	3.01	7.72
C-556710	20.3	-31.9	0.36	0.19	3.51	7.98
C-556711	21.8	-32.6	4	0.16	1.32	8.08

C-556712	23.3	-32.5	18	0.64	3.42	7.49
C-556713	24.8	-33.0	20	0.42	2.66	7.43
C-556714	26.3	-32.7	22	0.50	2.96	7.07
C-556715	27.8	-32.7	26	0.54	2.9	7.03
C-556716	29.3	-32.8	25	0.40	1.21	7.42
C-556717	30.8	-32.3	24	0.32	1.36	7.1
C-556718	32.3	-32.8	31	0.73	3.33	7.09
C-556719	33.8	-32.1	34	0.57	2.31	7.16
C-556720	35.3	-31.3	23	0.35	1.04	7.42
C-556721	36.8	-31.8	18	0.49	3.17	7.3
C-556722	38.3	-31.7	9	0.23	0.4	6.65
C-556723	39.8	-31.3	9	0.26	0.8	7.43
C-556724	41.3	-31.3	16	0.30	0.42	7.29
C-556725	44.3	-31.5	22	0.49	0.75	7.38
C-556726	47.3	-31.4	29	0.62	0.71	6.84
C-556727	50.3	-31.1	27	0.45	0.36	7.16
C-556728	53.3	-29.2	9	0.05	0.55	4.44
C-556729	56.3	-29.9	16	0.12	0.42	6.64
C-556730	59.3	-29.7	11	0.15	0.33	6.94
C-556731	62.3	-28.7	10	0.15	0.17	7.56
C-556732	65.3	-29.2	8	0.12	0.29	6.92
C-556733	68.3	-29.8	5	0.07	0.28	6.51
C-556734	71.3	-29.6	8	0.09	0.59	6.67
C-556735	74.3	-29.6	8	0.10	0.46	6.01
C-556736	77.3	-29.5	5	0.06	0.31	6.88
C-556737	80.3	-29.4	7	0.07	0.29	6.66
C-556738	83.3	-29.2	7	0.06	0.26	6.43
C-556739	86.3	-28.6	4	0.04	0.27	6.58
C-556740	89.3	-29.1	14	0.11	0.64	6.84
C-556741	92.3	-28.5	5	0.05	0.19	6.32
C-556742	95.3	-27.9	8	0.13	0.23	6.24
C-556743	98.3	-28.5	5	0.05	0.28	6.36
C-556744	101.3	-28.0	4	0.11	0.24	5.53
C-556745	104.3	-28.3	8	0.05	0.25	5.57
C-556746	107.3	-27.6	3	0.03	0.16	6.66
C-556747	110.3	-28.3	5	0.12	0.25	6.04
C-556748	113.3	-27.6	4	0.02	0.18	5.84
C-556749	116.3	-27.8	12	0.03	0.45	4.94
C-556750	117.8	-28.7	16	0.15	0.85	6.42
C-556751	119.3	-28.3	22	0.16	0.45	6.54
C-556752	122.3	-28.9	16	0.07	0.51	4.1
C-556753	125.3	-27.6	14	0.06	0.3	5.12
C-556754	128.3	-26.7	9	0.04	0.3	5.95

C-556755	134.3	-27.4	10	0.06	0.22	6.44
C-556756	137.3	-27.7	4	0.02	0.16	6.36
C-556757	140.3	-26.8	8	0.04	0.27	6.19
C-556758	143.3	-28.3	30	0.28	0.82	6.06
C-556759	146.3	-27.2	21	0.09	0.27	5.97
C-556760	149.3	-26.7	10	0.08	0.29	6.92
C-556761	152.3	-26.7	16	0.10	0.19	6.55
C-556762	153.3	-26.0	7	0.03	0.25	6.03
C-556763	154.8	-26.0	22	0.11	0.38	6.86
C-556764	157.8	-26.9	10	0.07	0.18	6.32
C-556765	160.8	-27.4	17	0.12	0.27	7.81
C-556766	163.8	-26.8	7	0.02	0.41	6.26
C-556767	166.8	-26.3	9	0.11	0.29	6.92
C-556768	169.8	-26.1	9	0.05	0.22	6.75
C-556769	182.3	-26.5	4	0.04	0.19	5.03
C-556770	196.8	-24.7	7	0.06	0.18	5.23
C-556771	199.8	-25.7	7	0.03	0.14	6.66
C-556772	202.8	-25.7	4	0.02	0.13	6.27
C-556773	205.8	-26.0	4	0.01	0.18	4.37
C-556774	208.8	-26.1	5	0.07	0.16	5.78
C-556775	214.8	-26.0	3	0.01	0.08	5.68
C-556776	217.8	-26.6	5	0.02	0.14	6.88
C-556777	220.8	-27.1	7	0.04	0.11	6.86
C-556778	223.8	-27.4	5	0.02	0.15	6.06
C-556779	226.8	-26.8	5	0.09	0.16	5.99
C-556780	229.8	-27.1	7	0.02	0.18	5.1
C-556781	232.8	-28.7	10	0.05	0.14	5.21
C-556782	235.8	-27.4	10	0.03	0.41	4.33
C-556783	238.8	-27.4	6	0.03	0.18	6.22
C-556784	241.8	-27.7	8	0.06	0.24	6.65
C-556785	244.8	-28.1	11	0.06	0.29	5.71
C-556786	247.8	-29.2	8	0.06	0.2	5.61
C-556787	250.8	-29.4	7	0.06	0.2	6.31
C-556788	253.8	-28.5	5	0.05	0.19	5.81
C-556789	256.8	-31.1	11	0.15	0.32	6.17
C-556790	260.8	-29.7	12	0.09	0.31	6.36
C-556791	263.8	-29.4	9	0.06	0.44	5.57
C-556792	266.8	-31.4	14	0.13	0.3	6.08
C-556793	269.8	-31.6	13	0.19	0.43	5.85
C-556794	272.8	-31.5	15	0.16	0.39	6.14
C-556795	275.8	-28.7	5	0.05	0.14	6.15
C-556796	278.8	-30.2	6	0.10	0.15	5.37
C-556797	281.8	-30.7	5	0.05	0.18	5.13

C-556798	284.8	-31.4	12	0.11	0.62	5.93
C-556799	290.8	-30.1	5	0.06	0.31	5.87
C-556800	293.8	-31.2	15	0.15	1.08	6.6
C-556801	296.8	-31.3	10	0.15	1.09	6.19
C-556802	299.8	-32.5	54	0.50	7.52	6.65
C-556803	302.8	-32.7	55	0.30	10.08	5.56
C-556804	309.8	-32.4	43	0.32	5.94	5.81
C-556805	312.8	-32.9	36	0.23	8.15	4.67
C-556806	315.8	-32.8	65	0.48	11.74	6
C-556807	318.8	-30.6	38	0.43	1.46	6.31
C-556808	321.8	-30.7	32	0.46	1.77	5.93
C-556809	324.8	-30.6	28	0.57	1.54	5.72
C-556810	327.8	-29.9	16	0.28	0.57	5.41
C-556811	330.8	-29.6	23	0.49	0.73	6.23
C-556812	333.8	-30.3	30	0.46	1.55	6.23
C-556813	336.8	-29.6	32	0.61	1.88	6.43
C-556814	339.8	-29.3	11	0.20	0.48	5.07
C-556815	342.8	-28.6	26	0.62	7.48	5.08
C-556816	345.8	-28.7	26	0.91	8.42	6.32
C-556817	348.8	-28.6	18	0.62	3.14	6.27
C-556818	351.8	-28.6	8	0.22	1.44	4.98
C-556819	354.8	-29.1	19	0.93	1.33	6.25
C-556820	357.8	-29.4	19	0.95	0.99	5.79
C-556821	360.8	-29.3	21	1.13	0.83	6.51
C-556822	363.8	-29.1	14	0.66	0.52	6.06
C-556823	366.8	-29.6	13	0.43	2.08	4.21
C-556824	369.8	-30.2	26	0.86	4.3	6.68
C-556825	372.8	-30.5	24	0.80	3.07	6.7
C-556826	375.8	-30.6	19	0.43	2.47	5.69
C-556827	378.8	-30.7	17	0.38	2.11	5.7
C-556828	381.8	-30.5	15	0.25	2.61	5.96
C-556829	387.8	-30.7	12	0.30	2.45	5.74
C-556830	390.8	-30.6	13	0.28	0.8	5.75
C-556831	393.8	-30.4	8	0.23	0.76	4.31
C-556832	396.8	-30.6	10	0.28	0.44	4.86
C-556833	399.8	-30.8	13	0.42	0.79	5.86
C-556834	402.8	-30.5	11	0.34	0.54	5.84
C-556835	405.8	-30.1	6	0.15	0.36	3.72
C-556836	408.8	-30.8	8	0.25	1.1	4.54
C-556837	411.8	-30.8	12	0.28	1.41	4.96
C-556838	414.8	-31.5	20	0.53	3.72	6.7
C-556839	417.8	-31.3	13	0.33	1.99	6
C-556840	420.8	-30.9	13	0.21	1.96	5.37

C-556841	423.8	-31.5	12	0.37	1.17	5.94
C-556842	426.8	-30.4	6	0.11	1.2	3.86
C-556843	429.8	-31.4	11	0.34	3.49	5.8
C-556844	432.8	-31.0	9	0.26	2.28	3.79
C-556845	435.8	-31.7	17	0.54	6.92	5.49
C-556846	438.8	-31.8	11	0.25	6.32	4.44
C-556847	441.8	-31.2	6	0.19	1.7	3.85
C-556848	444.8	-30.3	4	0.11	1.99	3.37
C-556849	447.8	-31.2	6	0.20	5.56	4.08
C-556850	450.8	-30.9	6	0.22	6.11	3.81
C-556851	453.8	-30.5	8	0.13	2.78	2.99
C-556852	456.8	-31.1	10	0.16	3.47	3.68
C-556853	459.8	-29.7	4	0.07	0.66	4.23
C-556854	462.8	-30.4	6	0.10	1.8	3.73
C-556855	468.3	-28.4	7	0.11	0.25	4.19
C-556856	475.3	-29.6	5	0.10	1.23	4.87
C-556857	479.8	-30.2	7	0.11	0.45	4.62
C-556858	482.8	-30.3	7	0.14	0.55	4.04
C-556859	485.8	-29.5	8	0.14	0.75	4.93
C-556860	488.8	-28.5	3	0.05	0.22	3.78
C-556861	491.8	-29.8	7	0.12	0.42	4.09
C-556862	499.8	-30.0	7	0.24	0.63	3.98

Grasby et al. Figure 5