72,042 research outputs found

    Trends in Smart City Development

    Get PDF
    This report examines the meanings and practices associated with the term 'smart cities.' Smart city initiatives involve three components: information and communication technologies (ICTs) that generate and aggregate data; analytical tools which convert that data into usable information; and organizational structures that encourage collaboration, innovation, and the application of that information to solve public problems

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Smart Cities for Real People

    Get PDF
    Accelerating urbanization of the population and the emergence of new smart sensors (the Internet of Things) are combining in the phenomenon of the smart city. This movement is leading to improved quality of life and public safety, helping cities to enjoy economies that help remedy some budget overruns, better health care, and is resulting in increased productivity. The following report summarizes evolving digital technology trends, including smart phone applications, mapping software, big data and sensor miniaturization and broadband networking, that combine to create a technology toolkit available to smart city developers, managers and citizens. As noted above, the benefits of the smart city are already evident in some key areas as the technology sees actual implementation, 30 years after the creation of the broadband cable modem. The challenges of urbanization require urgent action and intelligent strategies. The applications and tools that truly benefit the people who live in cities will depend not on just the tools, but their intelligent application given current systemic obstacles, some of which are highlighted in the article. Of course, all the emerging technologies mentioned are dependent on ubiquitous, economical, reliable, safe and secure networks (wired and wireless) and network service providers

    Alternative futures of rural areas in the EU

    Get PDF
    In this study alternative futures of rural areas in the EU are explored. For this purpose, a comparative analysis of seven scenario studies of rural areas in the EU was conducted. Often, these scenario studies constructed a baseline scenario - derived from an extrapolation of past trends and policies - and a number of alternative scenarios with different degrees of policy intervention. The time horizon in the scenario studies varies from 2020 to 2035. By focusing on a number of main drivers and responses, we were able to distinguish six distinct alternative futures of rural areas in the EU

    Alternative futures of rural areas in the EU; A comparative analysis of scenaria studies

    Get PDF
    What does rural Europe look like in 2030? Is agriculture still the main land user? In recent years, studies such as ESPON, Eururalis, SCENAR2020, SENSOR, SEAMLESS and PRELUDE have tried to address these questions. These studies resulted in a number of alternative futures of rural areas in the EU. In this paper a comparative analysis of these scenario studies is made in order to explore differences and similarities in the scenarios and alternative futures of rural areas in the EU. For this purpose, we designed a scheme for assessing the properties of the various scenarios and a scheme for a systematic description of the rural futures according to the scenarios. It appears that most scenario studies use a baseline scenario and a set of alternative scenarios with different degrees of policy regulation. Agriculture will continue to be a main land user in 2030, although some land abandonment will take place

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Towards Smarter Management of Overtourism in Historic Centres Through Visitor-Flow Monitoring

    Get PDF
    Historic centres are highly regarded destinations for watching and even participating in diverse and unique forms of cultural expression. Cultural tourism, according to the World Tourism Organization (UNWTO), is an important and consolidated tourism sector and its strong growth is expected to continue over the coming years. Tourism, the much dreamt of redeemer for historic centres, also represents one of the main threats to heritage conservation: visitors can dynamize an economy, yet the rapid growth of tourism often has negative effects on both built heritage and the lives of local inhabitants. Knowledge of occupancy levels and flows of visiting tourists is key to the efficient management of tourism; the new technologies—the Internet of Things (IoT), big data, and geographic information systems (GIS)—when combined in interconnected networks represent a qualitative leap forward, compared to traditional methods of estimating locations and flows. A methodology is described in this paper for the management of tourism flows that is designed to promote sustainable tourism in historic centres through intelligent support mechanisms. As part of the Smart Heritage City (SHCITY) project, a collection system for visitors is developed. Following data collection via monitoring equipment, the analysis of a set of quantitative indicators yields information that can then be used to analyse visitor flows; enabling city managers to make management decisions when the tourism-carrying capacity is exceeded and gives way to overtourism.Funded by the Interreg Sudoe Programme of the European Regional Development Funds (ERDF
    • 

    corecore