3,245 research outputs found

    Radiation Therapy Medical Physics Review – Delivery, Interactions, Safety, Feasibility, and Head to Head Comparisons of the Leading Radiation Therapy Techniques

    Get PDF
    Radiation therapy uses high energy radiation to kill cancer cells. Radiation therapy for cancer treatment can take the form of photon therapy (using x-rays and gamma rays), or charged particle therapy including proton therapy and electron therapy. Within these categories, numerous methods of delivery have been developed. For example, a certain type of radiation can be administered by a machine outside of the body, called external-beam radiation therapy, or by a “seed” placed inside of the body near cancer cells, called internal radiation therapy or brachytherapy. Approximately half of all cancer patients receive radiation therapy, and the form of radiation treatment depends on the type of tumor, location of the tumor, available resources, and characteristics of the individual receiving treatment. In the current paper, we discuss and review the various forms of radiation therapy, the physics behind these treatments, the effectiveness of each treatment type compared with the others, the latest research on radiation therapy treatment, and future research directions. We found that proton therapy is the most promising and effective form of radiation therapy, with photon methods such as intensity modulated radiation therapy, 3D-conformal radiation therapy, image guided radiation therapy, and volumetric modulated radiation therapy also showing very good comparative performance

    A systematic review of methods to immobilise breast tissue during adjuvant breast irradiation

    Get PDF
    Greater use of 3D conformal, Intensity Modulated Radiotherapy (IMRT) and external beam partial breast irradiation following local excision (LE) for breast cancer has necessitated a review of the effectiveness of immobilisation methods to stabilise breast tissue. To identify the suitability of currently available breast (rather than thorax) immobilisation techniques an appraisal of the literature was undertaken. The aim was to identify and evaluate the benefit of additional or novel immobilisation approaches (beyond the standard supine, single arm abducted and angled breast board technique adopted in most radiotherapy departments). A database search was supplemented with an individual search of key radiotherapy peer-reviewed journals, author searching, and searching of the grey literature. A total of 27 articles met the inclusion criteria. The review identified good reproducibility of the thorax using the standard supine arm-pole technique. Reproducibility with the prone technique appears inferior to supine methods (based on data from existing randomised controlled trials). Assessing the effectiveness of additional breast support devices (such as rings or thermoplastic material) is hampered by small sample sizes and a lack of randomised data for comparison. Attention to breast immobilisation is recommended, as well as agreement on how breast stability should be measured using volumetric imaging. Keywords: Breast, immobilisation, positioning, reproducibility, review.</p

    Whole breast radiotherapy in prone and supine position: is there a place for multi-beam IMRT?

    Get PDF
    Background: Early stage breast cancer patients are long-term survivors and finding techniques that may lower acute and late radiotherapy-induced toxicity is crucial. We compared dosimetry of wedged tangential fields (W-TF), tangential field intensity-modulated radiotherapy (TF-IMRT) and multi-beam IMRT (MB-IMRT) in prone and supine positions for whole-breast irradiation (WBI). Methods: MB-IMRT, TF-IMRT and W-TF treatment plans in prone and supine positions were generated for 18 unselected breast cancer patients. The median prescription dose to the optimized planning target volume (PTVoptim) was 50 Gy in 25 fractions. Dose-volume parameters and indices of conformity were calculated for the PTVoptim and organs-at-risk. Results: Prone MB-IMRT achieved (p= 600 cc heart dose was consistently lower in prone position; while for patients with smaller breasts heart dose metrics were comparable or worse compared to supine MB-IMRT. Doses to the contralateral breast were similar regardless of position or technique. Dosimetry of prone MB-IMRT and prone TF-IMRT differed slightly. Conclusions: MB-IMRT is the treatment of choice in supine position. Prone IMRT is superior to any supine treatment for right-sided breast cancer patients and left-sided breast cancer patients with larger breasts by obtaining better conformity indices, target dose distribution and sparing of the organs-at-risk. The influence of treatment techniques in prone position is less pronounced; moreover dosimetric differences between TF-IMRT and MB-IMRT are rather small

    Ultrasound Imaging of Nanodroplet Vaporization for Radiotherapy Monitoring

    Get PDF

    Ultrasound Imaging of Nanodroplet Vaporization for Radiotherapy Monitoring

    Get PDF

    Monte Carlo simulation of the treatment of uveal melanoma using measured heterogeneous 106Ru plaques

    Get PDF
    Background/Aims: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. Methods: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. Results: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. Conclusions: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures. © 2018 S. Karger AG, BaselPostprint (published version

    Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film.

    Get PDF
    PurposeMagnetic resonance image (MRI) guided radiotherapy enables gating directly on the target position. We present an evaluation of an MRI-guided radiotherapy system's gating performance using an MRI-compatible respiratory motion phantom and radiochromic film. Our evaluation is geared toward validation of our institution's clinical gating protocol which involves planning to a target volume formed by expanding 5 mm about the gross tumor volume (GTV) and gating based on a 3 mm window about the GTV.MethodsThe motion phantom consisted of a target rod containing high-contrast target inserts which moved in the superior-inferior direction inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical planning target volume, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal trajectories and tumor trajectories measured during MRI-guided treatments were used. Similarity of the gated dose distribution to the planned, motion-frozen, distribution was quantified using the gamma technique.ResultsWithout gating, gamma pass rates using 4%/3 mm criteria were 22-59% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% target allowed outside the gating boundary, the gamma pass rate was 97.8% with 3%/3 mm gamma criteria. Using a 3 mm window and 10% allowed excursion, all of the patient tumor motion trajectories at actual speed resulting in at least 95% gamma pass rate at 4%/3 mm.ConclusionsOur results suggest that the device can be used to compensate respiratory motion using a 3 mm gating margin and 10% allowed excursion results in conjunction with repeated breath holds. Full clinical validation requires a comprehensive evaluation of tracking performance in actual patient images, outside the scope of this study

    Radiotherapy dosimetry with ultrasound contrast agents

    Get PDF

    Optimization strategies for respiratory motion management in stereotactic body radiation therapy

    Get PDF
    Various challenges arise during the treatment of lung tumors with stereotactic body radiation therapy (SBRT), which is a form of hypofractionated high precision conformal radiation therapy delivered to small targets. The dose is applied in only a few fractions and respiratory organ and tumor motion is a source of uncertainty additional to interfractional set-up errors. Respiratory organ and tumor motion is highly patient-specific and it affects the whole radiotherapy treatment chain. In this thesis, motion management techniques for SBRT are evaluated and improved in a clinical setting. A clinical need for improvement has been present at the LMU university hospital for each issue addressed in this thesis: Initially, the usage of respiratory correlated computed tomography (4DCT), which is vital for SBRT treatment, was seen as impractical and prone to uncertainties in the data reconstruction in its current form. Therefore, the 4DCT reconstruction workflow has been improved to minimize these potential error sources. Secondly, treatment planning for tumors affected by respiratory motion was evaluated and subsequently improved. Finally, the treatment technique of respiratory gating was implemented at the clinic, which led to the need of evaluating the respiratory gating characteristics of the novel system configuration. At first, the 4DCT reconstruction workflow used in clinical practice was investigated, as in the presence of respiratory motion the knowledge of tumor position over time is essential in SBRT treatments. Using 4DCT, the full motion range of the individual tumor can be determined. However, certain 4DCT reconstruction methods can under- or overestimate tumor motion due to limitations in the data acquisition scheme and due to the incorrect sorting of certain X-ray computed tomography (CT) image slices into different respiratory phases. As the regular clinical workflow of cycle-based sorting (CBS) without maximum inspiration detection (and therefore no clear starting point for the individual breathing cycles) seemed to be affected by these potential errors, the usage of CBS with correct maximum detection and another sorting algorithm of the respiration states, so-called local amplitude-based sorting (LAS), both have been implemented for a reduction of image artifacts and improved 4DCT quality. The three phase binning algorithms have been investigated in a phantom study (using 10 different breathing waveforms) and in a patient study (with 10 different patients). The mis-representation of the tumor volume was reduced in both implemented sorting algorithms compared to the previously used CBS approach (without correct maximum detection) in the phantom and the patient study. The clinical recommendation was the use of CBS with improved maximum detection, as too many manual interventions would be needed for the LAS workflow. Secondly, a combination of the actual patient breathing trace during treatment, the log files generated by the linear accelerator (LINAC), and Monte Carlo (MC) four-dimensional (4D) dose calculations for each individual fraction was implemented as a 4D dose evaluation tool. This workflow was tested in a clinical environment for SBRT treatment planning on multiple CT datasets featuring: a native free-breathing 3DCT, an average intensity projection (AIP) as well as a maximum intensity projection (MIP), both obtained from the patient's 4DCT, and density overrides (DOs) in a 3DCT. This study has been carried out for 5 SBRT patients for three-dimensional conformal radiation therapy (3D-CRT) and volumetric modulated arc therapy (VMAT) treatment plans. The dose has been recalculated on each 4DCT breathing phase according the the patient's breathing waveform and accumulated to the gross tumor volume (GTV) at the end-of-exhale (EOE) breathing phase using deformable image registration. Even though the least differences in planned and recalculated dose were found for AIP and MIP treatment planning, the results indicate a strong dependency on individual tumor motion due to the variability of breathing motion in general, and on tumor size. The combination of the patient's individual breathing trace during each SBRT fraction with 4D MC dose calculation based on the LINAC log file information leads to a good approximation of actual dose delivery. Finally, in order to ensure precise and accurate treatment for respiratory gating techniques, the technical characteristics of the LINAC in combination with a breathing motion monitoring system as s surrogate for tumor motion have to be identified. The dose delivery accuracy and the latency of a surface imaging system in connection with a modern medical LINAC were investigated using a dynamic breathing motion phantom. The dosimetric evaluation has been carried out using a static 2D-diode array. The measurement of the dose difference between gated and ungated radiation delivery was found to be below 1% (for clinical relevant gating levels of about 30%). The beam-on latency, or time delay, determined using radiographic films was found to be up to 851 ms±100 ms. With these known parameters, an adjustment of the pre-selected gating level or the internal target volume (ITV) margins could be made. With the highly patient-specific character of respiratory motion, lung SBRT faces many additional challenges besides the specific issues addressed in this thesis. However, the findings of this thesis have improved clinical workflows at the Department of Radiation Oncology of the LMU University hospital. In a future perspective, a workflow using evaluation of the actual 4D dose in combination with accurate 4DCT image acquisition and specialized treatment delivery (such as respiratory gating) has the potential for a safe further reduction of treatment margins and increased sparing of organs-at-risk (OARs) in SBRT without compromising tumor dose targeting accuracy
    • …
    corecore