14 research outputs found

    Measuring the vulnerability for classes of intersection graphs

    Get PDF
    AbstractA general method for the computation of various parameters measuring the vulnerability of a graph is introduced. Four measures of vulnerability are considered, i.e., the toughness, scattering number, vertex integrity and the size of a minimum balanced separator. We show how to compute these parameters by polynomial-time algorithms for various classes of intersection graphs like permutation graphs, bounded dimensional cocomparability graphs, interval graphs, trapezoid graphs and circular versions of these graph classes

    On the heapability of finite partial orders

    Full text link
    We investigate the partitioning of partial orders into a minimal number of heapable subsets. We prove a characterization result reminiscent of the proof of Dilworth's theorem, which yields as a byproduct a flow-based algorithm for computing such a minimal decomposition. On the other hand, in the particular case of sets and sequences of intervals we prove that this minimal decomposition can be computed by a simple greedy-type algorithm. The paper ends with a couple of open problems related to the analog of the Ulam-Hammersley problem for decompositions of sets and sequences of random intervals into heapable sets

    Chaining with Overlaps Revisited

    Get PDF
    Chaining algorithms aim to form a semi-global alignment of two sequences based on a set of anchoring local alignments as input. Depending on the optimization criteria and the exact definition of a chain, there are several O(n log n) time algorithms to solve this problem optimally, where n is the number of input anchors. In this paper, we focus on a formulation allowing the anchors to overlap in a chain. This formulation was studied by Shibuya and Kurochkin (WABI 2003), but their algorithm comes with no proof of correctness. We revisit and modify their algorithm to consider a strict definition of precedence relation on anchors, adding the required derivation to convince on the correctness of the resulting algorithm that runs in O(n log2 n) time on anchors formed by exact matches. With the more relaxed definition of precedence relation considered by Shibuya and Kurochkin or when anchors are non-nested such as matches of uniform length (k-mers), the algorithm takes O(n log n) time. We also establish a connection between chaining with overlaps and the widely studied longest common subsequence problem. 2012 ACM Subject Classification Theory of computation ! Pattern matching; Theory of computation ! Dynamic programming; Applied computing ! Genomics.Peer reviewe

    Grundy dominating sequences on X-join product

    Get PDF
    In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Torres, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentin

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF
    corecore