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Abstract
Chaining algorithms aim to form a semi-global alignment of two sequences based on a set of anchoring
local alignments as input. Depending on the optimization criteria and the exact definition of a chain,
there are several O(n log n) time algorithms to solve this problem optimally, where n is the number
of input anchors.

In this paper, we focus on a formulation allowing the anchors to overlap in a chain. This
formulation was studied by Shibuya and Kurochkin (WABI 2003), but their algorithm comes with
no proof of correctness. We revisit and modify their algorithm to consider a strict definition of
precedence relation on anchors, adding the required derivation to convince on the correctness of
the resulting algorithm that runs in O(n log2 n) time on anchors formed by exact matches. With
the more relaxed definition of precedence relation considered by Shibuya and Kurochkin or when
anchors are non-nested such as matches of uniform length (k-mers), the algorithm takes O(n log n)
time.

We also establish a connection between chaining with overlaps and the widely studied longest
common subsequence problem.
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1 Introduction

As optimal alignment of two strings takes quadratic time (which has recently been shown
to be conditionally hard to improve [3]), there have been several attempts to avoid this
bottleneck. One such technique is sparse dynamic programming [5], where a sparse set of
cells of the dynamic programming matrix is identified whose computation is sufficient in
computing the optimal alignment. This does not avoid the quadratic dependency in the
worst case, so a slightly more heuristic chaining approach has been introduced in the context
of computational genomics: Given a precomputed set of plausible anchoring local matches,
extract a chain of matches that forms a good (semi-global) alignment.
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25:2 Chaining with Overlaps

In this paper, we investigate a chaining formulation that takes properly the overlaps
between anchors into account. Namely, if anchors are not allowed to overlap in the solution,
there are already several O(n log n) time solutions for various formulations of the chaining
problem [11, 6, 1, 2], where n is the number of anchors. Some of the solutions and extensions
focus on asymmetric measures, where overlaps are allowed in one of the strings [9, 10], or add
other features that make the problem even harder [13]. While these formulations are useful
in different contexts, this is an undesirable consequence in, e.g., string alignment, where the
solution may be different depending on which string is used to traverse the ordered anchors,
and specifically the solution may overcount the amount of aligned characters.

The fully symmetric chaining variant allows arbitrary overlaps, guarantees not to overcount
the amount of aligned characters, and in addition, is particularly important for its connections
to the Longest Common Subsequence problem (LCS): An optimal chain in this formulation
corresponds to a LCS of the input strings, restricted to the matches included in the anchors.
As far as we know, except for trivial O(n2) time solutions, only Shibuya and Kurochkin [12]
have proposed a solution aiming to solve the fully symmetric case of allowing overlaps of
anchors in both strings simultaneously.

We revisit the algorithm by Shibuya and Kurochkin [12] and propose a modification that
takes into account a strict order for the anchors. This modified algorithm runs in O(n log2 n)
time on exact matches as input. When relaxing the precedence order or when the input
consist of non-nested anchors such as k-mer matches, the algorithm can be simplified to take
O(n log n) time. The resulting algorithms are slightly simpler than the original [12], requiring
only a general data structure for semi-dynamic range maximum queries, while the original
uses in addition a tailored structure. We also provide detailed derivation of the algorithms,
while the original [12] comes with no proof of correctness. Finally, we show that the relaxed
chaining problem also solves a restricted version of the LCS problem.

2 Chaining problems

Let T be a long text string and P short pattern string. An anchor interval pair ([a..b], [c..d])
denotes a match between T [a..b] and P [c..d]. For now, we assume these matches are
precomputed, and they could be either full identities or close similarities. We often abstract
out the original source of the anchors referring [a..b] as an interval in the first dimension and
[c..d] as an interval in the second dimension. We denote the endpoints of the intervals in
anchor I as I.x for x ∈ {a, b, c, d}. We assume the endpoints to be positive integers.

Given two anchors I ′ and I we define two relations: precedence and overlap. The former
is denoted I ′ ≺ I and this relation holds whenever I ′.a < I.a, I ′.b < I.b, I ′.c < I.c, and
I ′.d < I.d. The latter is denoted I ′ ∩ I and holds whenever [I ′.a..I ′.b] ∩ [I.a..I.b] 6= ∅ or
[I ′.c..I ′.d] ∩ [I.c..I.d] 6= ∅. The complement of the overlap relation is denoted ¬I ′ ∩ I (an
empty intersection is interpreted as truth value False). We use the overlap relation only for
I ′ ≺ I. Figure 1 illustrates these concepts.

I Problem 1 (Chaining with overlaps). Let A[1..N ] be an array of anchor interval pairs
([a..b], [c..d]). For each i, 1 ≤ i ≤ N , compute the symmetric ordered coverage score
maxchains Si coverage(Si), where

Si[1..n] is an ordered subset ( chain) of pairs from A,

Si[j − 1] ≺ Si[j], for all 1 < j ≤ n,
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(a) No overlaps.
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(b) One-sided overlaps.
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P

(c) Larger overlap in the first dimension.

T

P

(d) Larger overlap in the second dimension.

Figure 1 Different scenarios illustrating precedence and overlap of anchors. Dotted and solid
rectangles denote anchors I ′ and I, respectively. In all these cases it holds I ′ ≺ I. The separation
into different cases based on the overlaps is determined by the properties of the chaining algorithms
we study in the sequel. In (a) and (b) no overlaps are allowed in the first dimension, while in (c)
and (d) anchors are assumed to overlap in the first dimension.

Si[n] = A[i], and

coverage(Si) =
(

n−1∑
j=1

min
(

min(Si[j + 1].a, Si[j].b + 1)− Si[j].a,

min(Si[j + 1].c, Si[j].d + 1)− Si[j].c
))

+

min
(

Si[n].b− Si[n].a + 1, Si[n].d− Si[n].c + 1
)

.

Notice that for chains containing no overlaps, that is, Si[j].b < Si[j + 1].a and Si[j].d <

Si[j + 1].c, the measure coverage(Si) is just the sum of lengths of the anchors in it,
where length is defined as the minimum of the interval lengths. For overlapping cases,
only the segment before the overlap is added to the score. For example, let a chain S be
([1..5], [2..6]), ([3..8], [5..10]). Then coverage(S) = min(8− 3 + 1, 10− 5 + 1) + min(min(3, 5 +
1)− 1, min(5, 6 + 1)− 2) = 6 + 2 = 8. That is, while the total length of the anchors in S is 10,
their union covers only 8 units in the first dimension. The measure is clearly symmetric, but
the term ordered coverage requires more insight: Notice that it is not sufficient to measure
the size of the union of anchors in a chain independently and take their minimum. Instead,
the proposed measure adds to the score, one anchor at the time, the minimum size of the
newly covered region. Interpreted through the original source of anchors from string T and P ,
an optimal chain S under this measure induces an alignment between T and P with exactly
coverage(S) matching characters. Asymmetric formulations studied earlier can overestimate
this amount. This proposed symmetric ordered coverage measure is thus important especially
in various computational genomics applications, where optimal alignments are too expensive
to be computed. We establish this alignment connection through the widely studied longest
common subsequence problem: see Sect. 4.
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25:4 Chaining with Overlaps

We develop an O(N log2 N) time algorithm to solve this chaining with overlaps problem
assuming one additional property of the input:

Equal Match Length property: For each anchor I it holds I.b− I.a = I.d− I.c.
If the set of anchors is computed e.g. by Maximal Exact Matches (MEMs) [7], the input
automatically satisfies the Equal Match Length property.

Our algorithm is based on techniques by Shibuya and Kurochkin [12], who solved a
version of the problem with the definition of precedence relaxed to consider only start points
of intervals: I ′ weakly precedes I if I ′.a < I.a and I ′.c < I.c. Let us denote this relation
I ′ ≺w I.

I Problem 2 (Chaining with overlaps and weak precedence). Let A[1..N ] be an array of anchor
interval pairs ([a..b], [c..d]). For each i, 1 ≤ i ≤ N , compute the symmetric weakly ordered
coverage score maxweak chains Si coverage(Si), defined as in Problem 1, with the precedence
condition relaxed to

Si[j − 1] ≺w Si[j], for all 1 < j ≤ n.

To see the connection of the problems, consider a chain S for which S[j − 1] ≺w S[j]
holds but not S[j−1] ≺ S[j] for some j. That is, at least one of the intervals of S[j] is nested
inside (i.e. is subset of) the corresponding interval of S[j− 1]. Say [S[j].a..S[j].b] is nested in
[S[j−1].a..S[j−1].b] with S[j−1].b−S[j].b ≥ S[j−1].d−S[j].d (the other case is symmetric).
Consider modifying S[j − 1] into S[j − 1]′, where S[j − 1]′.a = S[j − 1].a, S[j − 1]′.b =
S[j].b − 1, S[j − 1]′.c = S[j − 1].c, and S[j − 1]′.d = S[j − 1].d − (S[j − 1].b − S[j].b) − 1.
Assuming Equal Match Length property such adjustment is possible and causes S[j−1]′ ≺ S[j]
without affecting the score. One can thus adjust any chain S for which the weak precedence
relation holds into another chain S′, where the (strict) precedence relation holds, so that
coverage(S) = coverage(S′).

As can be seen from the above construction, the two problems are identical when the
input anchors are non-nested. This happens e.g. when anchors are matches of uniform length
(k-mer matches). Even more importantly, if one is only interested in the overall maximum
scoring chain, the two problems produce the same result.

I Lemma 1. Assuming Equal Match Length property, the maximum of the solutions from
Problem 1 and Problem 2 are the same, that is,

max
1≤i≤N

max
chains Si

coverage(Si) = max
1≤i≤N

max
weak chains Si

coverage(Si).

Proof. Consider an optimal chain Si[1..n] for Problem 2. If Si[n − 1] ≺ Si[n] does not
hold, then one of the intervals of Si[n] is nested inside the corresponding interval of
Si[n− 1]. This means that for Si[n− 1] = A[i′] it holds maxweak chains Si′ coverage(Si′) ≥
maxweak chains Si coverage(Si). Continuing this induction, one observes that there is an
overall maximum scoring chain, say S, that ends with strict precedence and moreover for all
anchors I in this chain holds I ≺ S[n].

Consider now the construction given before this lemma that converts S into S′. Adjust
the construction so that instead of modifying S[j− 1] into S[j− 1]′, just remove S[j]. Repeat
this from right to left until strict precedence holds in the whole modified chain S′. Such S′

is an optimal solution to both problems, as its score remains unchanged during the process.
To see this, consider the same case as earlier with [S[j].a..S[j].b] being nested in [S[j −

1].a..S[j− 1].b] with S[j− 1].b−S[j].b ≥ S[j− 1].d−S[j].d. By induction from the base case
of S[n− 1] ≺ S[n], we know that S[j] ≺ S[j + 1] and S[j − 1] ≺ S[j + 1] if S[j − 1] ≺w S[j]
is the first nested case from the right.
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To see that dropping S[j] is safe, we need to consider cases a) ¬S[j] ∩ S[j + 1] and
¬S[j−1]∩S[j+1] b) S[j]∩S[j+1] and ¬S[j−1]∩S[j+1], c) ¬S[j]∩S[j+1] and S[j−1]∩S[j+1],
and d) S[j]∩S[j+1] and S[j−1]∩S[j+1]. We cover here only case d), as all the other cases use
similar or easier reasoning. We consider score induced by sub-chains S[j−1], S[j], S[j +1] and
S[j−1], S[j +1], respectively, assuming that the chains continue, so that the coverage induced
by S[j + 1] will not yet be added to the total score. In case d) the score induced by the sub-
chain S[j−1], S[j], S[j +1] is S[j].a−S[j−1].a+min(S[j +1].a−S[j].a, S[j +1].c−S[j].c) =
min(S[j + 1].a− S[j − 1].a, S[j].a− S[j − 1].a + S[j + 1].c− S[j].c). The score induced by
the sub-chain S[j − 1], S[j + 1] is min(S[j + 1].a− S[j − 1].a, S[j + 1].c− S[j − 1].c). Since
S[j].a− S[j − 1].a ≤ S[j].c− S[j − 1].c, the score induced by the sub-chain S[j − 1], S[j + 1]
is at least as high as the score induced by the sub-chain S[j − 1], S[j], S[j + 1]. J

Shibuya and Kurochkin [12] gave an O(N log N) time algorithm for Problem 2, but their
algorithm comes with no proof of correctness. Our goal in this paper is to complement the
original proposal with the required derivation steps to see that one can indeed solve the
problem correctly in O(N log N) time. Instead of proving directly the correctness of the
original proposal, we derive a simplified version of the algorithm, whose correctness is easier
to verify.

We derive this algorithm in three steps: First we consider one-sided overlaps of anchors.
Then we modify this algorithm to handle two-sided overlaps of anchors, solving Problem 1.
Finally, we show that the use of strict precedence relation I ′ ≺ I can be relaxed to I ′ ≺w I

in order to solve Problem 2.

3 Chaining algorithms

Our goal is here to study the variations of chaining algorithms under the symmetric ordered
coverage. We will give chaining algorithms under the symmetric ordered coverage and
equal-match property taking O(n log n) time. In order to do this we will structure the
recurrence relations that solve Problems 1 and 2 such that one can factor out dependencies
between anchors into different cases that are handled by evaluation order of the recurrences,
range search, and special features of the scoring function. Assume now that the anchor
interval pairs are stored in an array A[1..N ] in arbitrary order. We fill a table C[1..N ] so
that C[j] gives the maximum symmetric ordered coverage of using any subset of pairs that
precede A[j], before the effect of the pair A[j] is added to the score: Hence, maxj C+[j],
where C+[j] = min(A[j].b−A[j].a + 1, A[j].d−A[j].c + 1) + C[j], gives the total maximum
symmetric ordered coverage.

After considering separately non-overlapping and overlapping cases (see Fig. 1), one
observes that C[j] can be computed by max(0, D[j], O[j]), where

D[j] =
max
j′ :

A[j′] ≺ A[j],
¬A[j′] ∩A[j]

C[j′] + min
{

A[j′].b−A[j′].a + 1,

A[j′].d−A[j′].c + 1
and

O[j] = max
j′ :

A[j′] ≺ A[j],
A[j′] ∩A[j]

C[j′] + min
{

min(A[j].a, A[j′].b + 1)−A[j′].a,

min(A[j].c, A[j′].d + 1)−A[j′].c .

CPM 2020



25:6 Chaining with Overlaps

These recurrences can be computed in O(N2) time: Sort A by values A[i].b to handle
one dimension of the precedence relation. Then compute each C[j] in this order by scanning
previously computed values C[j′] and check precedence in the other dimension. Add the
coverage values (+ min part) depending on the overlap relation. Select the maximum among
the options of C[j′] added with the coverage value.

By assuming Equal Match Length property, we can simplify the recurrence of C[j] =
max(0, D[j], O[j]) with

D[j] = max
j′ :

A[j′] ≺ A[j],
¬A[j′] ∩A[j]

C[j′] + A[j′].b−A[j′].a + 1 and

O[j] = max
j′ :

A[j′] ≺ A[j],
A[j′] ∩A[j]

C[j′] + min
{

A[j].a−A[j′].a,

A[j].c−A[j′].c .

3.1 One-sided overlaps
We will now present an algorithm that works for one-sided overlaps (see Fig. 1): We restrict
the chains so that no two anchors in the solution overlap in the first dimension (that is, in
T ). This lets us modify the recurrence of O[j] into the form

O[j] = A[j].c + max
j′ :

A[j′] ≺ A[j], A[j′].b < A[j].a,

A[j′] ∩A[j]

C[j′]−A[j′].c .

That is, we added the constraint on overlaps, removed the then obsolete min() and took
out the value not affected by max(). Now it is easy to see that the evaluation of the values
can be done when visiting the starting points of the anchors in the first dimension, and the
maximizations over range of values can be done using search trees, specified in the next
lemma. We also specify a two-dimensional version of this structure, as we need it later.

I Lemma 2. The following three operations can be supported with a one-dimensional range
search tree T in time O(log n), where n is the number of search keys inserted to the tree.

Update(k, val): Update value associated with key = k into val.
Upgrade(k, val): Update value associated with key = k into max(val, value).
RMaxQ(c, d): Return maximum value, where c ≤ key ≤ d (Range Maximum Query).

Moreover, the search tree can be built in O(n) time, given the n pairs (key, value) sorted by
component key.

I Lemma 3. The following two operations can be supported with a two-dimensional range
search tree T in time O(log2 n), where n is the number of search keys inserted to the tree.

Update(p, s, val): Update value associated with primary key = p and secondary key =
s into val.
Upgrade(p, s, val): Update value associated with primary key = p and secondary key =
s into max(val, value).
RMaxQ(a, b, c, d): Return maximum value, where a ≤ primary key ≤ b and
c ≤ secondary key ≤ d (2D Range Maximum Query).

Moreover, the search tree can be built in O(n log n) time, given the n triplets (primary key,

secondary key, value) sorted first by primary key and then by secondary key.
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These lemmas follow directly by maintaining maxima of values in each subtree for the
corresponding standard range search structures [4] that support listing all the (key, value)
pairs in a range. Such constructions are often used in sparse dynamic programming [5, 12, 8].

Algorithm 1 Chaining allowing one-sided overlaps.

Input: A set of interval pairs A[1..N ] with all interval endpoints being distinct
positive integers.

Output: Array C+[1..N ] containing the symmetric ordered coverage values.
Initialize one-dimensional search trees T a and T b with keys A[j].d, 1 ≤ j ≤ N , and
with key 0, all keys associated with values −∞;
T a.Upgrade(0, 0);
E = {(A[j].a, j) | 1 ≤ j ≤ N} ∪ {(A[j].b, j) | 1 ≤ j ≤ N};
E.sort();
for i← 1 to 2N do

j = E[i][2];
I = A[j];
if I.a == E[i][1] then

Ca[j] = T a.RMaxQ(0, I.c− 1);
Cb[j] = I.c + T b.RMaxQ(I.c, I.d);
C[j] = max(Ca[j], Cb[j]);
C+[j] = C[j] + I.b− I.a + 1;

end
else
T a.Upgrade(I.d, C+[j]);
T b.Upgrade(I.d, C[j]− I.c);

end
end
return C+[1..N ];

We obtain Algorithm 1 to handle the one-sided overlaps case, where we have replaced
arrays D and O with Ca and Cb, respectively, to reflect the cases shown in Fig. 1.

The pseudocode of Algorithm 1 assumes interval endpoints to be distinct. This assumption
is only used for the ease of presentation. It can be relaxed by the standard method used
in computational geometry: Replace each endpoint x by a pair (x, j) = E[i] where A[j]
identifies the anchor in question. These pairs E[i] = (x, j) are distinct, and can be used as
the keys of the search trees (in place of just x). Range queries can be implemented to ignore
the secondary key j.

I Lemma 4. Problem 1 on N input pairs restricted to solutions that contain only one-sided
overlaps can be solved in O(N log N) time, assuming the input satisfies Equal Match Length
property.

Proof. The evaluation order of Algorithm 1 guarantees that when computing the values
Ca[j] and Cb[j], the data structures contain only anchors that precede the current anchor
and do not overlap it in the first dimension. The range query on T a guarantees that we also
consider only those anchors that precede and do not overlap in the second dimension for the
computation of Ca[j]. The range query on T b guarantees that we also consider only those
anchors that overlap in the second dimension for the computation of Cb[j], but this is not
enough to guarantee predecessor-relation to hold. That is, there can be an anchor I ′ stored in

CPM 2020



25:8 Chaining with Overlaps

T b with I ′.b < I.a and I.c ≤ I ′.c ≤ I ′.d < I.d and thus the evaluation order and range query
fail to guarantee I ′.c < I.c to make I ′ ≺ I (recall the definition). We need to show that if
such I ′ is in an optimal chain to I, there is always another optimal chain to I not including
I ′. Consider the last anchor A[j′′] = I ′′ in an optimal chain to A[j′] = I ′ that overlaps and
precedes I. Then we know that C[j] ≥ C[j′′] + I.c− I ′′.c and C[j′] ≤ C[j′′] + I ′.c− I ′′.c, so
a chain where I ′′ directly precedes I does not decrease the score. If such I ′′ does not exist
but an optimal chain to I includes I ′, we have that max(Ca[j], Cb[j]) = Ca[j], as all anchors
in an optimal chain to I ′, excluding I ′, are stored in T a, and including I ′ can only decrease
the score as I.c− I ′.c ≤ 0. J

3.2 Two-sided overlaps
The trick by Shibuya and Kurochkin [12] to handle two-sided overlaps is to separate them to
two cases (see Fig. 1): (c) overlaps in the first dimension are at least as long as in the second
dimension and (d) overlaps are longer in the second dimension. Since our algorithm so far
considers all anchors that do not overlap in the first dimension, it will be enough to consider
how to enhance the algorithm to handle anchors that do overlap in the first dimension.

Consider case (c). That is, for any two pairs of anchors I ′, I, I ′ ≺ I, it holds I ′.a < I.a ≤
I ′.b < I.b, I ′.c < I.c, I ′.d < I.d and I ′.d − I.c ≤ I ′.b − I.a. The latter inequality can be
written as I.c− I.a ≥ I ′.c− I ′.a (due to Equal Match Length property). Also, if I ′ precedes
I in an optimal chain to I, the score calculated up to I ′ will increase by inclusion of I by
min(I.a− I ′.a, I.c− I ′.c) = I.a− I ′.a (due to Equal Match Length property). This means
that once we first stop at anchor I = A[j] in our algorithm, if we have inserted to a search
tree T c all anchors A[j′] that overlap I in the first dimension, using keys A[j′].c−A[j′].a and
values C[j′]−A[j′].a, we can query T c.RMaxQ(−∞, A[j].c−A[j].a) and add A[j].a to obtain
the correct score for this case. However, in the order we evaluate the anchors we can only
guarantee A[j′].a < A[j].a ≤ A[j′].b and thus A[j′].c < A[j].c (property of case (c)), but not
A[j′].b < A[j].b or A[j′].d < A[j].d. To solve this, we add another dimension to the search
tree, so we can add constraint A[j′].b < A[j].b to the query, which also covers the remaining
constraint A[j′].d < A[j].d (property of case (c)).

Case (d) is almost symmetric to case (c): For any two pairs of anchors I ′, I, I ′ ≺ I, it holds
I ′.a < I.a ≤ I ′.b < I.b, I ′.c < I.c, I ′.d < I.d and I ′.d−I.c > I ′.b−I.a. The latter inequality
can be written as I ′.c− I ′.a > I.c− I.a. Also, if I ′ precedes I in an optimal chain to I, the
score calculated up to I ′ will increase by inclusion of I by min(I.a−I ′.a, I.c−I ′.c) = I.c−I ′.c

(due to Equal Match Length property). This means that once we first stop at anchor I = A[j]
in our algorithm, if we have inserted to a search tree T d all anchors A[j′] that overlap
I in the first dimension, using keys A[j′].c − A[j′].a and values C[j′] − A[j′].c, we can
query T c.RMaxQ(A[j].c− A[j].a + 1,∞) and add A[j].c to obtain the correct score for this
case. As before, we need to add another dimension to the search tree to handle constraint
A[j′].d < A[j].d, which also covers constraint A[j′].b < A[j].b (property of case (d)). We
are left with constraints A[j′].a < A[j].a ≤ A[j′].b and A[j′].c < A[j].c, where the first ones
follow from the evaluation order, but now the latter is not automatically guaranteed to hold:
Using arguments analogous to the proof of Lemma 4, we show that such nested case cannot
change the optimal solution.

The resulting enhancement to handle two-sided overlaps is given as Algorithm 2.
The pseudocode of Algorithm 2 assumes interval endpoints to be distinct, but this can

be relaxed as in the proof of Lemma 4. Using the data structure from Lemmas 2 and 3 we
obtain the following result.
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Algorithm 2 Chaining with two-sided overlaps.

Input: A set of interval pairs A[1..N ] with all interval endpoints being distinct
positive integers.

Output: Array C+[1..N ] containing the symmetric ordered coverage values.
Initialize one-dimensional search trees T a and T b with keys A[j].d, 1 ≤ j ≤ N , and
with key 0, all keys associated with values −∞;
Initialize two-dimensional search trees T c and T d with keys (A[j].c−A[j].a, A[j].b)
and (A[j].c−A[j].a, A[j].d), respectively, for 1 ≤ j ≤ N , associated with values −∞;
T a.Upgrade(0, 0);
E = {(A[j].a, j) | 1 ≤ j ≤ N} ∪ {(A[j].b, j) | 1 ≤ j ≤ N};
E.sort();
for i← 1 to 2N do

j = E[i][2];
I = A[j];
if I.a == E[i][1] then

Ca[j] = T a.RMaxQ(0, I.c− 1);
Cb[j] = I.c + T b.RMaxQ(I.c, I.d);
Cc[j] = I.a + T c.RMaxQ(−∞, I.c− I.a, 0, I.b);
Cd[j] = I.c + T d.RMaxQ(I.c− I.a + 1,∞, 0, I.d);
C[j] = max(Ca, Cb, Cc, Cd);
C+[j] = C[j] + I.b− I.a + 1;
T c.Upgrade(I.c− I.a, I.b, C[j]− I.a);
T d.Upgrade(I.c− I.a, I.b, C[j]− I.c);

end
else
T a.Upgrade(I.d, C+[j]);
T b.Upgrade(I.d, C[j]− I.c);
T c.Update(I.c− I.a, I.b,−∞);
T d.Update(I.c− I.a, I.b,−∞);

end
end
return C+[1..N ];

I Theorem 5. Problem 1 on N input pairs can be solved in O(N log2 N) time (by Al-
gorithm 2), assuming the input satisfies Equal Match Length property.

Proof. As discussed earlier, it is sufficient to consider anchors A[j′] and A[j] that satisfy the
precedence and overlap relations except for A[j′].c < A[j].c not holding, as all other constraints
are properly covered by the combination of evaluation order and the queries. Such invalid
anchors A[j′] can affect the query results from data structures T b and T d when computing
the score for A[j]. Consider that an optimal chain to A[j] has A[j′] as the previous anchor and
thus C[j] = C[j′]+A[j].c−A[j′].c. Consider the last anchor A[j′′] in an optimal chain to A[j′]
that precedes and overlaps A[j]. Assume the overlap is larger in the first dimension (the other
case is considered already in the proof of Lemma 4). Then C[j′] = C[j′′] + A[j].a−A[j′′].a as
A[j′] must overlap A[j] in the first dimension, A[j′′] must directly precede A[j′] for it being
the last with this property, and the overlap between A[j′′] and A[j′] is larger in the first
dimension due to transitivity. As A[j].a−A[j′].a ≥ A[j].c−A[j′].c, the direct use of A[j′′]
before A[j] gives C[j] ≥ C[j′′]+A[j].a−A[j′′].a = C[j′′]+A[j].a−A[j′].a+A[j′].a−A[j′′].a ≥
C[j′] + A[j].c−A[j′].c. That is, A[j′] can be omitted from the optimal path. J
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3.3 Overlaps with weak precedence
Let us now proceed to improve the running time of Algorithm 2 to O(N log N) by considering
chains under the weak precedence relation (Problem 2). For this, we drop the second
dimension of the data structures T c and T d, that were added to guarantee strict precedence.
However, this is not sufficient for proving correctness as we used these constraints to indirectly
guarantee precedence of start positions of anchors as well. Case (c) causes no problems, as
the evaluation order guarantees that T c contains anchors A[j′] with A[j′].a < A[j].a and the
query restricts to cases A[j′].c < A[j].c. However, in case (d) the solution returned can have
A[j].c ≤ A[j′].c. We will consider this in the proof of the next theorem.

I Theorem 6. Problem 2 on N input pairs can be solved in O(N log N) time (by Algorithm 2
with the operations on the second dimension of search trees T c and T d omitted), assuming
the input satisfies Equal Match Length property.

Proof. As discussed, it is sufficient to show that queries from T d correspond to proper
solutions. For contradiction, assume that C[j] = Cd[j], Cd[j] > max(Ca[j], Cb[j], Cc[j]), and
C[j] = C[j′] + A[j].c−A[j′].c only for A[j′]s for which A[j].c ≤ A[j′].c. Such solution is not
proper (weak precedence not holding), so we need to show that there is an equivalently good
proper solution.

First, if it also holds A[j′].d ≤ A[j].d, we have the nested case handled already in the proof
of Theorem 5. We continue with the case case where A[j].c ≤ A[j′].c and A[j].d < A[j′].d
hold. This setting is illustrated in Fig. 2.

Consider an anchor A[j′′] in an optimal chain to A[j′] that overlaps position A[j].c in the
second dimension. It holds C[j′] ≤ C[j′′] + A[j′].c−A[j′′].c, since any chain from A[j′′] to
A[j′] can cover at most A[j′].c − A[j′′].c positions. But then there is an optimal chain to
A[j] avoiding A[j′] with score C[j] ≥ C[j′′] + A[j].c−A[j′′].c = C[j′].c−A[j′].c + A[j′′].c +
A[j].c−A[j′′].c = C[j′] + A[j].c−A[j′].c, which is a contradiction.

We are left with the case that there is no such A[j′′] in the optimal chain to A[j′] that
overlaps position A[j].c in the second dimension. Let then A[j′′] be the last anchor in an
optimal chain to A[j′] that does not overlap A[j].c. We have three cases to consider: a)
¬A[j′′] ∩A[j′], b) A[j′′] ∩A[j′], and c) no such A[j′′] exist.

In case a) C[j′] < C+[j′′] + A[j′].c−A[j].c, assuming that only A[j].c is left uncovered
between anchors A[j′′] and A[j′]. Using this we can write C[j] = C[j′] + A[j].c−A[j′].c <

C+[j′′] + A[j′].c − A[j].c + A[j].c − A[j′].c = C+[j′′]. Since it holds A[j′′] ≺w A[j] and
¬A[j′′] ∩ A[j] we have that C[j] ≥ C+[j′′] using directly A[j′′] avoiding A[j′]. This is
contradiction.

In case b) A[j′′] can only overlap A[j′] in the first dimension. Then C[j′] = C[j′′] +
A[j′].a−A[j′′].a. If A[j′′] also overlaps A[j], it can do so only in the first dimension. Then
C[j] ≥ C[j′′] + A[j].a − A[j′′].a ≥ C[j′′] + A[j′].a − A[j′].a. That is, A[j′] can be avoided
in an optimal chain to A[j] by using A[j′′] instead. On the other hand, if A[j′′] does not
overlap A[j], we have C[j] ≥ C+[j′′] ≥ C[j′′] + A[j′].a− A[j′′].a = C[j′], in which case we
also get a contradiction.

In case c) C[j′] = 0 and thus C[j] = C[j′] + A[j].c− A[j′].c ≤ 0, which contradicts our
assumption Cd[j] > Ca[j] = 0. J

4 Connection to LCS

String C is a Longest Common Subsequence (LCS) of strings T and P if it is a longest
string that can be obtained by deleting 0 or more characters from both T and from P . Such
C[1..`] can be written as T ′ := T [i1]T [i2] · · ·T [i`] and as P ′ := P [j1]P [j2] · · ·P [j`], where
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T

P

Figure 2 Dotted and solid rectangles denote A[j′] and A[j], respectively. Here the (weak)
precedence is not holding as the interval of A[j′] in the second dimension succeeds the corresponding
interval of A[j]. The thick line segment represents maximum coverage a chain ending at A[j′] (not
including A[j′]) can achieve after starting from A[j]. The algorithm subtracts this thick line segment
length from the score, so that there is at least as good chain to A[j] that avoids using A[j′].

1 ≤ i1 < i2 < · · · < i` ≤ |T | and 1 ≤ j1 < j2 < · · · < j` ≤ |P |. Consider the set of anchors
A being exact matches between T and P . We say that C is an anchor-restricted LCS if it
can be written as T ′ and as P ′ defined above such that for each (ik, jk) there is an anchor
([a..b], [c..d]) in A with a+x = ik and c+x = jk for some x, 0 ≤ x ≤ b−a = d−c. Informally,
such C is a longest string with all characters appearing in increasing order in T and P where
each such occurrence of a character is supported by at least one anchor. We show that an
anchor-restricted LCS can be found by solving the problem of chaining under the weak
precedence:

I Theorem 7. Assume the anchors A are exact matches between input strings T and P . The
score of a chain S such that coverage(S) = max1≤i≤N coverage(Si) of Problem 2 equals
the length of an anchor-restricted LCS of T and P .

Proof. Due to Lemma 1, we can assume S is a chain under the strict precedence order.
Each anchor in S contributes to the score by the minimum length of its intervals after the
overlaps with the previous anchor intervals have been cut out. This minimum length equals
the number of characters that can be included to the common subsequence. That is, we
can extract an anchor-restricted subsequence of T and P of length coverage(S) from the
solution. We need to show that such subsequence is the longest among anchor-restricted
subsequences. Assume, for contradiction, that there is an anchor-restricted LCS C[1..`]
longer than coverage(S). Consider the chain of ` anchors formed by taking for each C[k]
an anchor containing match T [ik] = P [jk]. Assign a score 1 to each anchor included in the
chain. Let us modify this chain into a chain where weak precedence holds such that the total
score (number of matches induced by the solution) remains the same. First, we merge from
left to right all runs of identical anchors; score of an anchor is then the length of the run
in the original chain. Then we consider anchors from left to right. Consider the first pair
of anchors I ′, I in the current chain for which I.a ≤ I ′.a (case I.c ≤ I ′.c is symmetric). Let
the score of I ′ be x. By construction, we know that the left-most position possible for the
first match of I included in C is I ′.a + x. Therefore, we can remove I ′ from the chain and
include x matches from I. The total score does no decrease by this change. This process can
be repeated until the weak precedence relation holds up to I, and then continued similarly
to the end of the chain, yielding a contradiction. J

5 Discussion

We studied symmetric chaining formulations starting from the motivation to avoid over-
counting the matches of local anchors. This overcounting can also be avoided using the
asymmetric formulation studied in Sect. 3.1, and this formulation is actually a special case
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of the chaining between a sequence and a DAG [10]; it appears hard to extend the fully
symmetric chaining formulations we studied here to work with DAGs. We are currently
working on a practical alternative that uses a multiple alignment in place of a DAG, so that
we can use our new methods for long read sequence alignment in transcript prediction.

References
1 Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Multiple genome alignment: Chaining

algorithms revisited. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore,
editors, Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia,
Michocán, Mexico, June 25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2003. doi:10.1007/3-540-44888-8_1.

2 Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Chaining algorithms for multiple genome
comparison. J. Discrete Algorithms, 3(2-4):321–341, 2005. doi:10.1016/j.jda.2004.08.011.

3 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015. doi:10.1145/2746539.2746612.

4 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: http://www.
worldcat.org/oclc/227584184.

5 David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic
programming I: linear cost functions. J. ACM, 39(3):519–545, 1992. doi:10.1145/146637.
146650.

6 Stefan Felsner, Rudolf Müller, and Lorenz Wernisch. Trapezoid graphs and generalizations,
geometry and algorithms. Discrete Applied Mathematics, 74(1):13–32, 1997. doi:10.1016/
S0166-218X(96)00013-3.

7 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

8 Veli Mäkinen, Gonzalo Navarro, and Esko Ukkonen. Transposition invariant string matching.
J. Algorithms, 56(2):124–153, 2005.

9 Veli Mäkinen, Leena Salmela, and Johannes Ylinen. Normalized N50 assembly metric us-
ing gap-restricted co-linear chaining. BMC Bioinformatics, 13:255, 2012. doi:10.1186/
1471-2105-13-255.

10 Veli Mäkinen, Alexandru I. Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie,
and Rayan Chikhi. Sparse dynamic programming on DAGs with small width. ACM Trans.
Algorithms, 15(2):29:1–29:21, 2019. doi:10.1145/3301312.

11 Gene Myers and Webb Miller. Chaining multiple-alignment fragments in sub-quadratic time.
In Kenneth L. Clarkson, editor, Proceedings of the Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA., pages 38–47.
ACM/SIAM, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.313661.

12 Tetsuo Shibuya and Igor Kurochkin. Match Chaining Algorithms for cDNA Mapping. In Gary
Benson and Roderic D. M. Page, editors, Algorithms in Bioinformatics, pages 462–475, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

13 Raluca Uricaru, Alban Mancheron, and Eric Rivals. Novel definition and algorithm for chaining
fragments with proportional overlaps. Journal of Computational Biology, 18(9):1141–1154,
2011. doi:10.1089/cmb.2011.0126.

https://doi.org/10.1007/3-540-44888-8_1
https://doi.org/10.1016/j.jda.2004.08.011
https://doi.org/10.1145/2746539.2746612
http://www.worldcat.org/oclc/227584184
http://www.worldcat.org/oclc/227584184
https://doi.org/10.1145/146637.146650
https://doi.org/10.1145/146637.146650
https://doi.org/10.1016/S0166-218X(96)00013-3
https://doi.org/10.1016/S0166-218X(96)00013-3
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1186/1471-2105-13-255
https://doi.org/10.1186/1471-2105-13-255
https://doi.org/10.1145/3301312
http://dl.acm.org/citation.cfm?id=313651.313661
https://doi.org/10.1089/cmb.2011.0126

