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Abstract 

A general method for the computation of various parameters measuring the vulnerability of 
a graph is introduced. Four measures of vulnerability are considered, i.e., the toughness, scat- 
tering number, vertex integrity and the size of a minimum balanced separator. We show how 
to compute these parameters by polynomial-time algorithms for various classes of intersection 
graphs like permutation graphs, bounded dimensional cocomparability graphs, interval graphs, 
trapezoid graphs and circular versions of these graph classes. 

Keywords: Graph algorithms; Trapezoid graphs 

1. Introduction 

Among the most studied graph parameters, is the connectivity of a graph. Connec- 

tivity (or edge connectivity) measures the ‘vulnerability’ of a graph (or network). In 

other words the connectivity determines in a certain sense the resistance of the graph 

to operations such as deletions of vertices or edges. 

In the early 1970s it was found that the connectivity only partly reflects the ability of 

graphs to retain certain degrees of connectedness after operations such as the removal 

of vertices or edges (cf. [2]). Therefore, other measures were introduced and studied. 

The names of these new graph parameters (binding number, toughness, etc.) suggest 

that if the value of the parameter is large enough, the vertices of the graph are well tied 

together. The fact that these new parameters are indeed a reasonably good measure for 

the vulnerability of graphs is perhaps best illustrated by the results on hamiltonicity. 

* Corresponding author. E-mail: hm@minet.uni-jena.de. 
’ This research was done while the author was with IRISA Rennes, France 

0166-218X/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved 
PII SOl66-218X(96)00133-3 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81113948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


260 D. Kratsch et al. IDiscrete Applied Mathematics 77 (1997) 259-270 

Not only the connectedness of a graph can be guaranteed by a lower bound on some of 

these parameters, but even the existence of a hamiltonian circuit or path. For example, 

if the binding number of a graph is at least 5, then the existence of a hamiltonian 

circuit is guaranteed [ 171. 

One of the first of these newly introduced parameters was the toughness defined by 

Chvatal in 1973 [6]. The primal motivation for introducing the toughness was to obtain 

necessary conditions for the hamiltonicity of graphs. From the definition it is imme- 

diately clear that every hamiltonian graph has toughness at least one (or: is l-tough). 

This condition however is not sufficient, which was illustrated in [6] by the construc- 

tion of an infinite family of nonhamiltonian graphs with toughness i. This led Chvatal 

to the conjecture of the existence of a constant t such that every t-tough graph is 

hamiltonian. This conjecture is still open. 

Apart from being hamiltonian, the importance of the toughness of graphs can by now 

be illustrated by a great number of papers. For example in [ 151, Plummer shows, among 

other things, that a t-tough graph is t-extendable. Other examples (and conjectures) of 

graph parameters (minimum degree sums of sets of independent vertices of fixed order) 

in relation to toughness are given in [ 161. 

From an algorithmic point of view, it is somewhat unfortunate that the problem of 

recognizing t-tough graphs is coNP-complete for every fixed positive rational t [3]. 

On the other side, in this paper we show that for many important graph classes the 

toughness can be computed efficiently. 

Another parameter we consider in this paper is the scattering number which was 

introduced in 1978 by Jung in [lo]. In his paper Jung shows, among other things that, 

when the scattering number of graphs in a certain class (called D*-graphs, which are 

comparability graphs of multitrees) is known, then it is also known whether the graph 

is hamiltonian or not. 

In [lo] the author calls the scattering number the ‘additive dual’ of the toughness. 

This additive appearance of the parameter, and the results on the integrity parameter 

(see below), perhaps suggest that the recognition of graphs with bounded scattering 

number would be easier than the recognition of graphs of bounded toughness. However, 

from the definition it easily follows that the toughness of a graph is more than one if 

and only if the scattering number is less than zero. Hence, it follows that the problem 

‘Given a graph G, decide whether the scattering number is larger than zero’ is NP- 

complete. We show that our methods can be applied to compute the scattering number 

for many important graph classes like interval graphs, permutation graphs etc. 

The third parameter for which we illustrate our methods is the vertex integrity of 

a graph. This parameter was introduced in [2] and compared with other parameters such 

as connectivity, toughness and binding number. The authors compute for cliques, com- 

plete bipartite graphs, powers of cycles and some other graph classes the parameters, 

and conclude that the integrity is in some sense the better measure for the vulnerability 

of graphs. 

‘Given a graph G and an integer k, deciding whether the integrity of G is at most k’ 

is an NP-complete problem, even when restricted to planar graphs [7]. However, in [7] 
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it is shown that for every constant t the class of graphs with integrity at most t is 

minor closed, and it follows from the results of Robertson and Seymour that for every 

constant t this class is recognizable in polynomial time. From a practical point of view, 

these results are of limited use only, since, although the algorithm is known to exist. 

there is no constructive way known to obtain it. Even if it were known, it is believed 

that it would involve astronomical constants. Our algorithms computing the integrity 

of graphs in many important classes are efficient, constructive and do not hide any 

constants that are exponential in the integrity of the graph. 

We also consider the minimum bulanced separator problem. The best known 

algorithms computing balanced separators on general graphs are polynomial time 

approximation algorithms of worst case performance ratio O(log n) [I I]. The impor- 

tance of finding balanced separators for solving all kinds of problems using divide and 

conquer techniques, is perhaps best illustrated by the results on planar graphs [ 121. 

These applications and results of Lipton and Tarjan [ 121 were extended in [I] to any 

class of graphs with an excluded minor. We present polynomial time algorithms exactly 

computing a balanced separator of minimum cardinality for graphs from many other 

special graph classes. 

There are by now many results known for the parameters mentioned above. However, 

from an algorithmic point of view, our algorithms are the first to compute efficiently 

these parameters for many nontrivial graph classes. Indeed, our approach is widely 

applicable (cf. Tables 1 and 2). 

The algorithms we present compute component number oectors and musimum com- 

ponent order vectors (cf. [14]) which could be of interest for solving other problems for 

these graph classes as well. In fact, these two vectors give a lot of information on the 

vulnerability of a graph; thus they should be of interest for characterizing vulnerability 

properties of graphs in general. 

2. Preliminaries 

First we give some notations for undirected graphs. For a graph G we denote the 

order (number of vertices) by n. G[ W] denotes the subgraph of the graph G = ( V, E) 

induced by the vertex set W 2 V. We denote the number of (connected) components 

of a graph G by c(G) and the maximum order of a component of G by n(G). 

A set SC V is said to be a separator of a graph G if c(G[V\S])> 1. We denote 

the (vertex) connectivity of the graph G by K(G) and we denote the maximum size 

of an independent set of the graph G by cc(G). 

We refer to [5] for definitions and properties of graph classes not given here. 

2. I. Problems 

We now pose some definitions concerning the graph problems which we investigate 

here. 
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Definition 1. The toughness of a complete graph K,, is t(K,) = oc. If G is not complete, 

then 

t(G)=min ISI 
c(W’\W 

: S separator of G . 

Definition 2. The scattering number of a complete graph K,, is sc(K,,) = -CCL If G is 

not complete, then 

sc(G)=max{c(G[V\S])- ISI :S separator of G}. 

Definition 3. The vertex integrity Z(G) of a graph G =(V,E) is defined as 

Z(G)=min{]SI +n(G[V\S]):SC V}. 

The minimum balanced separator problem is considered under different formulations 

in the literature (cf. [l, 111). We study a somewhat general version of the problem. 

Definition 4. Let /I be a real number between 0 and 1 and let W be a subset of 

vertices. A separator S C_ V of the graph G = (V, E) is an /?-balanced separator for W 

if any component of G[ V\S] contains at most Z3.j WI vertices of W. 

2.2. Separation vectors 

We explore vectors (c~(G))~=~ and (ni(G))y=a which describe quite well the separa- 

tion behaviours of a graph G. They provide a lot of information on the vulnerability and 

the reliability of a graph, when node failures are investigated. Some of the vulnerability 

measures proposed in the literature (cf. [2]) can easily be derived from our vectors. 

The component number vector (ci(G))y,, allows to compute the scattering number 

SC(G) and the toughness t(G). 

Definition 5. Let G = (V, E) be a graph. For i E (0, 1,. . . , n} we define ci(G) to 

maximum number of components of the graph G[V\S] taken over all subsets 

with ]SI = i, i.e., c,(G) = 0 and for i < n: 

ci(G)=max{c(G[V\S]):S& V, JSI =i}. 

be the 

S&V 

Remark 1. For any graph G, ci_i(G) d ci(G) for 1 < i d n-a(G) and ci(G)=n-i 

for n - a(G) < i < n hold. For any non-complete graph G, the following hold: 

t(G) = min 
i 

p:O<idn andci(G)>l 
G(G) 

, 

sc(G)=max{QG)-i:O d i 6 n and q(G)>l}, 

a(G) = max{ci(G) : 0 < i < n}, 

Ic(G)=min{i:Odi<n and ci(G)>l}. 
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Fig. 1. Trapezoid graph and trapezoid diagram. 

The maximum component order vector (nj(G))TeO allows to compute the vertex 

integrity and the size of a minimum p-balanced separator for V 

Definition 6. Let G = ( V,E) be a graph. For i E (0, 1, . . . , n} we define ni( G) to be 

the maximum cardinality of a component of the graph G[V\S] taken over all subsets 

S C V with /SI = i, i.e., n,(G) = 0 and for i < n: 

ni(G)=min{n(G[V\S]):Sc V, ISI=i}. 

Remark 2. For any graph G, ni_t(G) > q(G) hold for 1 d i d n and 

I(G) = min{i + q(G) : 0 d i d n}, 

a(G)=n-min{i:O<i<n andni(G)=l}. 

2.3. Trapezoid graphs 

Trapezoid graphs are the intersection graphs of finite collections of trapezoids 

between two parallel lines [8]. Both the interval graphs and the permutation graphs 

form subclasses of the trapezoid graphs [8]. 

Definition 7. A trapezoid diagram consists of two parallel horizontal lines and a col- 

lection of trapezoids having two comers on each of the horizontal lines. A graph 

G = (V,E) is a trapezoid graph if there is a trapezoid diagram and a bijection assign- 

ing to each vertex v of V a trapezoid td(v) such that U, v E V are joined by an edge if 

and only if td(u) and td(v) have a nonempty intersection. 

There is a O(n’) time recognition algorithm for trapezoid graphs [13]. Moreover, 

this algorithm also computes a trapezoid diagram if the given graph G is a trapezoid 

graph. An example of a trapezoid graph and one of its trapezoid diagrams is given in 

Fig. I. 

We assume for the remainder of the paper that the trapezoid graph G is given by 

a trapezoid diagram and we identify the vertex v and its trapezoid td(v). We may 

assume that each point on a horizontal line is a comer of at most one trapezoid in the 

diagram. Thus the graph is uniquely determined by the sequence of comers on both 

of the horizontal lines. 

Definition 8. A scanline in the trapezoid diagram is any straight line segment with one 

end point on each horizontal line such that these end points do not coincide with any 

comer of a trapezoid td(v). 
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Fig. 2. Components and scanlines. 

Any scanline s generates a set S(s) of vertices of the graph, namely these vertices v 

for which td(u) and s have nonempty intersection. 

We say that two scanlines s and s’ are equivalent if there is no comer of a trapezoid 

between the endpoints of s and s’ on both of the two horizontal lines. (Notice that for 

equivalent scanlines s and s’: S(s) = S(s’)). 

Observation 1. A maximal set of pairwise nonequivalent scanlines of any trapezoid 

diagram of a trapezoid graph of order n consists of (2n + 1)’ scanlines. 

The usefulness of scanlines becomes clear as follows. Consider a scanline s such that 

there is at least one trapezoid to the left of it and at least one trapezoid to the right of it. 

Take all those trapezoids out of the diagram that intersect the scanline s. Consider the 

graph corresponding with the trapezoids that are left in the diagram. Since there is no 

path in the new diagram connecting the trapezoids to the left and the trapezoids to the 

right of s, the corresponding graph G[ V\S(s)] d’ is isconnected. Hence, in this manner, 

the scanline corresponds with a separator in the graph G = (V, E). 

Definition 9. The scanline s1 is left of the scanline s2 if the end point of s1 is left of 

the end point of s2 on both horizontal lines. Let st and s2 be nonequivalent scanlines 

such that s1 is left of ~2. Then the piece P(sl,sz) consists of all vertices r for which 

its trapezoid td(u) is between s1 and ~2, i.e., the comers of td(v) are between the end 

points of st and s2 on both horizontal lines. 

We say that two scanlines s and s’ are noncrossing ifs is left of s’ or s’ is left of s. 

Lemma 2.1. Let G=(V,E) be a trapezoid graph. For any tE{c(G) + l,c(G) + 

2,. . . , a(G)} there exists a set S & V and a collection of pairwise noncrossing scanlines 
(sj)Jz: such that S= U>l: S(sj), c(G[V\S]) =Y 2 t and ISI =min{i: s(G) > t}. 

Proof. Clearly, for any t E {c(G) + 1,. . . , a(G)} there is a set S with c(G[V\S]) > t, 
such that c(G[V\S’]) < t for any set S’ with IS’1 < ISI. Consider the diagram of 

G[ V\S], i.e., remove all trapezoids td(v) for v E S from the diagram of G. Let Cl, C2, 

. . . , C,., r 2 t, be the components in the diagram of G[V\S] taken from left to right. 

We choose scanlines Sj for j E { 1,2,. . . , r - 1) such that sj is between Cj and Cj+l ; 

see Fig. 2. This creates Y - 1 scanlines such that S > U;r: S(sj). Finally, by the con- 

struction of the scanlines (sj);l:, we have c(G[V\ lJ;r: S(sj)]) > Y > t; thus S\ UIl: 

S(si) # 0 would contradict the choice of S. 0 
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Fig. 3. Scanlines .v and s,’ 

Lemma 2.2. Let G =( V,E) be a trapezoid graph. For any t E (0, 1,. ,n} there 

exists a set SC V and a collection of pairwise noncrossing scanlines (sj)jE,, such 

that S = lJi,= S(sj), n(G[V\S]) < t and ISI =min{i: n;(G) < t}. 

Proof. Again, for any t E (0, 1, . . . , n(G) - l} there is a set T with n(G[V\T]) d t, 

such that n(G[V\T’])>t for any set T’ with IT’1 < ITI. Let Ct,C2,...,Cr be the 

components in the diagram of G[V\T], taken from left to right. We choose scanlines 

so and s, being totally to the left and totally to the right, respectively, of all trapezoids 

and for j = 1,. , Y - 1 we choose scanlines sj between C, and Cj+, . Let S’ = lJJZo S (Sj). 

Then c(G[ V\S’]) = r. Let Ci, C& . . , CL be the components in the diagram of G[ V\S’], 

taken from left to right. Clearly, we have C, & C: for j = 1,. . , Y. If T = S’ we are done 

with S = S’. Otherwise there is an index j such that Cj c C/. In this case we create 

a new scanline $ sharing the endpoint on the bottom line with Sj while on the top 

line the endpoint of s,! is left of that of sj; more precisely, the interval between these 

endpoints contains IC:\Cj I right upper comers of trapezoids td(u) for vertices z’ of C,‘. 

Hence IY(s,_t,.$)l = IC,l. We define s=S’U U,:c, =$, S($). This implies /SI = ITl, 

n(G[V\S])=n(G[V\T]), hence ISI=min{i:ni(G) <t}. 0 

3. The algorithms for trapezoid graphs 

Given a trapezoid diagram of a trapezoid graph G = (V,E), the algorithms computing 

(c~(G))~~!~ and (ni(G))lYO solve suitable shortest-path problems on auxiliary directed 

acyclic graphs whose vertex set is a maximal set of pairwise nonequivalent scanlines 

in the diagram. Among these scanlines we denote by SL and SR the scanline totally to 

the left and totally to the right, respectively, of all trapezoids td(v) of the trapezoid 

diagram. 

3.1. The auxiliary graph for the component number vector 

Construct the following auxiliary graph DC(G). The vertex set of DC(G) is a maximal 

set of pairwise nonequivalent scanlines in the diagram. There is an edge directed from 

st to s2 in D’ if P(si,s2) is nonempty and induces a connected subgraph of G. The 

weight of an edge (si,s~) of DC is w(si,s~)= (S(si)\S(s2)1. 

Recall that for any graph G holds ci( G) = 1 if i < K(G) and s(G) = n - i if 

i > n - cc(G). 
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Lemma 3.1. Let w”(t), c(G)+ I < t 6 a(G), be the minimum weight c& ~(~~-1,s~) 

of apath P~=(Q,sI,..., s,.), r > t, SO = SL and s, = sR, among ah paths in D”(G) from 

SL to sR on at least t edges. Then ci(G) = max{t : w”(t) < i} for any i E {n(G), . . . , 

n - a(G)}. 

Proof. The paths from SL to sa in the acyclic directed graph DC(G) have at most 

max{ci(G) : 0 < i < n} = a(G) edges. By Lemma 2.1, there is a collection of pairwise 

noncrossing scanlines (Sj)JI:, Y 3 t, such that each of P((sr,si), P(sj,Sj+l) for all 

jE{1,2,..., r - 2) and Y((sr- 1 ,sR) is nonempty, induces a connected subgraph of G 

and S = ui’=;’ S(sj) is a set of minimum cardinality with c(G[V\S]) 2 t. 

Hence, a shortest (minimum weight) path P, = ( So,Sl,. ,sr), r > t, from SL to SR in 

DC(G) determines such a set as S= uj’=;‘S(sj). Moreover, w”(t)= min{i:ci(G) 9 t} 

forany tE{c(G)+l,...,a(G)}. Invertingthis formulaegives Ci(G)= max{t:wc(t)6i} 

for any iE{rc(G),...,n -a(G)}. 0 

3.2. The auxiliary graph for the maximum component order vector 

Construct the following auxiliary graphs D/(G), t E (0, 1, . . . , n}. The vertex set of 

D:(G) is a maximal set of pairwise nonequivalent scanlines of the diagram. There is 

’ an edge directed from si to s2 in Dt if IP(si,s2)1 <t. The weight of an edge (st,sz) 

of D:(G) is +I,SZ) = IS(sl )\S(SZ)/. 

Lemma 3.2. We define w: to be the minimum weight c/‘=, w(sj_l,sj) of a path 

P = (SO, ~1,. . , sr), SO = sL and s, = sR, among ah paths in D:(G) from SL to sR. Then 

n(G)= min{t:w: d i} for any iE{O,l,...,n}. 

Proof. By Lemma 2.2, for any t E (0, 1, . . , n} there is a collection of pairwise non- 

crossing scanlines (sj)Jl;, sj_1 left of sj, such that 1 UT=;’ S(sj)l = min{i : ni(G) < t}. 

This sequence corresponds to the path P = (so,sl, . . . ,sr) in D/(G). Thus, w: = min{i : 

ni(G)< t}. Inverting this formulae gives m(G) = min{t : w: d i} for any iE (0, 1, . . . , n}. 

Observation 2. The auxiliary directed graphs DC(G) and D:(G) have both 0(n2) ver- 

tices and 0(n4) edges for any trapezoid graph G of order n. 

Theorem 3.3. There are O(n’) algorithms computing for given trapezoid graph G 

the scattering number SC(G), the toughness t(G), the vertex integrity Z(G) and the 

vectors (ci(G))i”,o and (ni(G))FXo. 

Proof. It is not very hard to show that for given trapezoid diagram each of the two 

auxiliary graphs and the corresponding edge weights can be computed in time 0(n4). 

A suitable method is described in detail in [4] for permutation graphs. 



D. Krarsch et al. I Discrete Applied Mathemutics 77 (1997) 259-270 267 

Given D”(G), the minimum weight of a path from SL to sa on at least t edges for 

all tE{c(G) + l,...,r(G)} can be determined in time O(IV(D’)l + n lE(D’)l) by 

a dynamic programming computing for any vertex L’ the values M+(V), 1 d k < cc(G), 

i.e., the minimum weight of a path from SL to c’ on at least k edges. Given D:(G) for 

some fixed t E (0, 1 , . . , n}, the minimum weight of a path from SL to sa can clearly 

be determined in time 0( 1 V(D:)I + IE(D/ )I ) by standard methods. 

This together with Lemmas 3.1 and 3.2 verifies that (c,(G)),!=, and (ni(G)& can 

be computed in time 0(n5). Remarks 1 and 2 show that SC(G), t(G) and Z(G) can 

easily be computed within the same time bound. 0 

3.3. The auxiliary graph for minimum B-balanced separators 

Given a trapezoid graph G = (V, E), a set W C V and a real /I between 0 and 1 we 

construct the auxiliary graph 0;” for t = [fl. I WI] as follows. The vertex set of D;(G) 

is a maximal set of pairwise nonequivalent scanlines of the diagram. There is an edge 

directed from SI to ~2 in 0: if the piece 9(sl,s2) has at most t vertices in W. The 

weight of such an edge of D:(G) is w(s~,s~)= IS(st)\S(s~)I. 

Lemma 3.4. Let G = (V, E) be a trapezoid graph and W 2 V. For any t E (0, 1, , n} 

there exists a set S 2 V and a collection ofpairwise noncrossing scanlines (s,)itJ such 

that each component of G[V\S] contains at most t vertices of W and among all such 

sets S has minimum cardinality. 

Proof. The proof follows the lines of the proof of Lemma 2.2, except that the interval 

between the endpoints of sj and $ on the top line contains ICi\C,l right upper comers 

of trapezoids td(r) for vertices u of C/ 0 W. 0 

Lemma 3.5. We dejne w: to be the minimum weight c/=, w(+1 ,sj) crf a path 

P = (SO, SI, . . . ,sr), SO = SL and s, = $3, among all paths in DJ”(G) from SL to SR. Then 

S = U,JI,’ S(sj) is a P-b a anced separator of minimum cardinality w;“. 1 

Proof. By Lemma 3.4 and the one-to-one correspondence between SL -SR-paths in 0; 

and sets of pairwise noncrossing scanlines in 0:. n 

By Lemma 3.5 and since the auxiliary directed graph 0; with t = L/3 / W IJ has 

0(n2) vertices and 0(n4) edges for any trapezoid graph G of order n one obtains 

a 0(n4) algorithm for the minimum balanced separator problem on trapezoid 

graphs. 

This can be improved using the k-small scanline approach described in detail in [4] 

for permutation graphs. 

Theorem 3.6. There is a 0(k2 n2) algorithm computing a minimum p-balanced sep- 

arator for W, given a trapezoid graph G= (V, E), a real ,t3 between 0 and 1 and 
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W c V. Here k denotes the size of a minimum P-balanced separator for W of the 

input graph G. 

We mention that k-small scanlines as well as modified edge weights of the auxiliary 

directed graphs can be used to speed up some of the algorithms, e.g., there is a 0(n4) 

algorithm computing the scattering number of trapezoid graphs. 

4. Other classes of intersection graphs 

In this section we report that the approach demonstrated for trapezoid graphs can be 

used for many other classes of intersection graphs. 

There are classes of intersection graphs with an intersection model similar to the 

trapezoid diagram, listed in Table 1, which we propose to call graph classes with 
linear model. (d-trapezoid graphs were recently introduced in [9].) Any of the problems 

considered in Section 3 for trapezoid graphs can be solved on these classes with the 

same approach (cf. Table 1). 

The graph classes of Table 1 have natural generalizations (in the way circular per- 

mutation graphs generalize permutation graphs) by somehow transforming the linear 

Table 1 

Graph classes with linear model 

Graph class Number of vertices 

of the auxiliary 

graphs 

Number of edges 

of the auxiliary 

graphs 

Running time of the 

algorithms computing 

(ci )& and (ni ):=a 

Interval graphs 

Permutation graphs 

Trapezoid graphs 

Cocomparability graphs 

of dimension at most d 
d-trapezoid graphs 

G(n) W2) W3 ) 
W2) W4) W ) 
W2) W4) W5) 
G(nd) 0(&j) O(n2df’) 

Wd) O(n2d) 0(&d+ ) 

Table 2 

Graph classes with circular model 

Graph class with 

circular model 

Related graph class 

with linear model 
Running time of the 
algorithms computing 

(ci)in_o and (ni)in=a 

Circular-arc graphs 

Circular permutation graphs 

Circular trapezoid graphs 
Circular d-cocomparability 

graphs 

Circular d-trapezoid graphs 

Interval graphs 

Permutation graphs 

Trapezoid graphs 

Cocomparability graphs 

of dimension at most d 

d-trapezoid graphs 

W4) 

G(n’) 

G(h’) 
3d+l 

W ) 

0(n3d+’ 1 
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intersection model into a ‘circular’ one. The corresponding classes are given in Table 2 

and we propose to call them graph classes with circular model. 

The last three of these are new graph classes. Trying to give the reader an idea 

how to define them we describe the intersection model of circular trapezoid graphs. 

Instead of trapezoids between two parallel lines as in the model of trapezoid graphs we 

consider generalized trapezoids between two concentric circles. Thereby two parallel 

lines of the generalized trapezoid are arcs of each of the two circles and the two other 

lines of the generalized trapezoid are spiral segments. 

Any of the problems considered in this paper can be solved in polynomial time 

for the graph classes of Table 2 by reducing the problem on a given graph to the 

same problem on a ‘reasonable small’ collection of induced subgraphs belonging to 

the related graph class with linear model (cf. Table 2). 

Note that the stated running times in Tables 1 and 2 assume that the input graph 

is given together with a corresponding intersection model. For the classes of interval 

graphs, permutation graphs, trapezoid graphs, circular arc graphs and circular permuta- 

tion graphs there are algorithms which compute such a model within the stated running 

time. For the classes of cocomparability graphs of dimension at most d (d 3 3), d- 

trapezoid graphs (d > 3), circular trapezoid graphs, circular d-cocomparability graphs 

(d 2 3) and circular d-trapezoid graphs (d > 2) polynomial time algorithms computing 

such an intersection model are not known. 
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