
An Improved Parallel Algorithm for a
Geometric Matching Problem with Application

to Trapezoid Graphs

Muhammad H. Alsuwaiyel

Department of Information and Computer Science

King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia

e-mail:suwaiyel@ccse.kfupm.edu.sa

Keywords: Parallel algorithms, Maximum matching, Circular-arc graphs, Trape-

zoid graphs.

Abstract. Let B be a set of nb blue points and R a set of nr red points in the

plane, where nb + nr = n. A blue point b and a red point r can be matched if

r dominates b, that is, if x(b) ≤ x(r) and y(b) ≤ y(r). We consider the problem

of finding a maximum cardinality matching between the points in B and the

points in R. We give an adaptive parallel algorithm to solve this problems that

runs in O(log2 n) time using the CREW PRAM with O(n2+ε/ log n) processors

for some ε, 0 < ε < 1. It follows that finding the minimum number of colors to

color a trapezoid graph can be solved within these resource bounds.

1 Introduction

Let B be a set of nb blue points and R a set of nr red points in the plane, where

nb + nr = n. A blue point b and a red point r can be matched if r dominates

b, that is, if x(b) ≤ x(r) and y(b) ≤ y(r). We consider the problem of finding

a maximum cardinality matching between the points in B and the points in

R. In[3], it was shown that this problem can be solved in O(log2 n) time using

the CREW PRAM with O(n3/ log n) processors. It was used in [3] to solve the

problem of finding a maximum clique in a circular-arc graph (which now can

be solved in O(log n). In this paper, we first give a parallel divide-and-conquer

algorithm for this problem that runs in O(log3 n) time using the CREW PRAM

with O(n2/ log n) processors, and thus reducing the number of processors by a

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266101979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

factor of n on the expense of increasing the running time by a factor of log n.

Next, we derive an adaptive parallel divide-and-conquer algorithm that runs

in O(log2 n) time using the CREW PRAM with O(n2+ε/ log n) processors for

some ε, 0 < ε < 1.

Let G = (V, E) be an undirected graph where V = {v1, v2, . . . , vn}. Let T =

{T1, T2, . . . , Tn} be a set of n trapezoids whose upper and lower corners lie on

two (infinite) horizontal lines Lt and Lb, respectively, such that (vi, vj) ∈ E if

and only if the intersection of Ti and Tj is nonempty. In this case, G is called a

trapezoid graph and T a geometric representation of G. The class of trapezoid

graphs was first introduced by Dagan, Golumbic and Pinter[4] in the context of

the channel routing problem. The intention is that Lt and Lb define a channel,

and Ti ∈ T corresponds to a net (see [4] for more details). Figure 1 shows an

example of a trapezoid graph and a possible geometric representation as a set of

trapezoids. In [4], it was also shown that the problem of finding the minimum

number of colors to color a trapezoid graph can be solved in O(n2) sequential

time in the worst case. This bound was improved later in [7] to O(n log n).

a1 b1

c1 d1c2 d2

a3 b3

c3 d3

a4 b4

x

a2 b2

y

c4 d4

w

x z

Lt

Lb

z

x

y
w

Figure 1: A trapezoid graph.

The first parallel algorithm for this problem was proposed in [6]. The algorithm

runs in O(log2 n) time using the CREW PRAM with O(n3/ log n) processors,

and is based on an algorithm for the geometric matching problem presented in

[3]. As the parallel time and number of processors of the algorithm in [6] are

dominated by the matching step, and no other step takes more than O(log2 n)

time using O(n2) processors, it follows that the cost of finding the chromatic

number of a trapezoid graph is at most that of the algorithm for the matching

problem to be developed in Section 4.

2

2 Sequential algorithms

Consider the following greedy algorithm that finds a maximum matching[5].

Sort the red points in increasing x-coordinate, and let this sorted list be Rs.

Scan the points in Rs in increasing order of their x-coordinates, each time

matching the current red point r with the unmatched blue point of maximum

y-coordinate that is dominated by r. We will call this method redgreedy.

Consider the following greedy algorithm, which we will call bluegreedy. Sort

the blue points in decreasing x-coordinate, and let this sorted list be Bs. Scan

the points in Bs in decreasing order of their x-coordinates, each time matching

the current blue point b with the unmatched red point of minimum y-coordinate

that dominates b. The following theorem is easy to prove by induction.

Theorem 1 Given a set of blue points B and a set of red points R in the plane,

Algorithm bluegreedy finds a maximum matching on B ∪ R.

Note that, although both bluegreedy and redgreedy are optimal, they may

give different matchings. In [3], a parallelization of redgreedy was used to

extract the set of red points that can be matched. Theorem 1 implies that the set

of blue points that can be matched can also be computed. Consequently, both

algorithms will be used later to derive a parallel divide-and-conquer algorithm

for solving the matching problem.

3 Identifying the set of matched points

In this section we briefly describe a method to identify those red points that

can be matched using Algorithm redgreedy. This method is described in [3].

We then show that the same method can be used, with a minor modification, to

identify those blue points that can be matched using Algorithm bluegreedy.

Assume that no two points have the same x-coordinate or y-coordinate. For

a red point r, let Reg(r) denote the region in the plane dominated by r, i.e.,

the southwest quadrant of the plane with origin at r. Define the deficiency of a

point p, denoted by Def (p), to be the number of red points minus the number

of blue points in Reg(r).

3

To find the red points that are matched by Algorithm redgreedy, we construct

a weighted directed (nr+1)×(nr+1) grid graph by drawing for each red point the

horizontal and vertical lines passing through it, and then adding the horizontal

line at −∞ and the vertical line at −∞ (recall that we have assumed that no

two points have the same x or y-coordinate). Each vertical edge is directed

downward and is of weight 0, and each horizontal edge is directed from left

to right and is of weight Def (p) − Def (q), where p and q are, respectively, its

right and left endpoints. Let s be the leftmost top vertex of the grid, and let

t0, t1, . . . , tnr be the bottom vertices of the grid in left-to-right order. We will

call such a grid a red grid. See Fig. 2 for an example.

s

t4t0 t3t1 t2

-1

1

-1

-1-1-1

1

1-1

red points blue points

Figure 2: A 5 × 5 red grid on a set of four red points and six blue points.

In this example, the only nonzero weights are shown. The weight of a path is

the sum of the weights of all its edges. For each tj , 0 ≤ j ≤ nr, define πj to be

a path of largest weight from s to tj , and let wj be the weight of πj . The proof

of the following lemma can be found in [3].

Lemma 1 For all j, 1 ≤ j ≤ nr, rj is unmatched by Algorithm redgreedy if

and only if in the red grid wj = wj−1 + 1.

For example, in Fig. 2, w0 = 0, w1 = 0, w2 = 1, w3 = 1, w4 = 1. Hence, r1, r3

and r4 are matched and r2 is unmatched by Algorithm redgreedy.

4

The weights wj of the paths πj , 0 ≤ j ≤ nr, can be computed in O(log2 n) time

using the CREW PRAM with O(n2/ log n) processors[1, 2]. Thus, we have the

following theorem[3].

Theorem 2 Given a set of nr red points and a set of nb blue points, the size

of a maximum matching and the set of red points that can be matched using

Algorithm redgreedy can be found in O(log2 n) time using the CREW PRAM

with O(n2/ log n) processors.

Now consider negating the x and y-coordinates of all blue and red points. Specif-

ically, let B− = {(−x,−y) | (x, y) ∈ B} and R− = {(−x,−y) | (x, y) ∈ R}. Let

the new red points play the role of the blue points and vice versa in Algorithm

redgreedy. It is not hard to see that applying Algorithm redgreedy to the

new sets B− and R− with the roles of red and blue reversed is the same as

applying Algorithm bluegreedy to the original sets B and R. Now construct

a weighted directed (nb +1)×(nb +1) grid graph by drawing for each blue point

in B− the horizontal and vertical lines passing through it and adding the hori-

zontal and vertical lines at −∞ as before. Call this the blue grid. It is not hard

to see that with the roles of blue and red reversed, Lemma 1 and Theorem 2

will apply and, consequently, we will be able to find the matched blue points

with the same time complexity. Thus, we have

Lemma 2 For all j, 1 ≤ j ≤ nb, bj is unmatched by Algorithm bluegreedy if

and only if in the blue grid wj = wj−1 + 1.

Theorem 3 Given a set of nr red points and a set of nb blue points, the size

of a maximum matching and the set of blue points that can be matched using

Algorithm bluegreedy can be found in O(log2 n) time using the CREW PRAM

with O(n2/ log n) processors.

4 The algorithm

The matching algorithm in [3] finds a maximum matching in O(log2 n) time

using the CREW PRAM with O(n3/ log n) processors. For each point, the

algorithm uses Theorem 2 to find the size of a maximum matching of the original

5

point set plus additional O(n) red points, and based on this size, the blue point,

if any, that is matched by Algorithm redgreedy is found.

In this section, we will exploit Theorem 3 to cut down on the number of proces-

sors used by the algorithm in [3] by a factor of n on the expense of increasing the

running time by a factor of log n. Later, we will refine the method to obtain an

adaptive algorithm that runs in O(log2 n) time using the CREW PRAM with

O(n2+ε/ log n) processors, for some appropriately chosen ε, 0 < ε < 1.

First, we present the simple algorithm. The algorithm uses the divide-and-

conquer technique and is described as follows.

Preprocessing step. Use Theorem 2 to remove from R those red points that

are unmatched. Let |R| = m. Use Theorem 3 to remove from B those blue

points that are unmatched. Obviously, |B| = m. Sort both B and R in increas-

ing order of their x-coordinates.

Algorithm match1.

1. If |R| ≤ log n, then use the sequential algorithm redgreedy to find a

maximum matching. Return the set of matched pairs.

2. Divide the set of red points in R into two subsets R1 and R2, where

|R|1 = �m/2� and |R|2 =
m/2�. Here the points in R1 are to the left of

the points in R2.

3. Let r ∈ R1 be the rightmost point in R1, i.e., the one with largest x-

coordinate. Let B′
1 = {b ∈ B | x(b) ≤ x(r)}.

4. Use Theorem 3 to find the set B1 ⊆ B′
1 of blue points that can be matched

with the set of red points in R1. Let B2 = B − B1.

5. Apply Algorithm match1 recursively on the two pairs (B1, R1) and (R2, B2).

6. Return the set of matched pairs in (B1, R1) and (B2, R2).

Figure 3 Illustrates the operation of the algorithm. In this figure, the four red

points are divided into two groups of two points each. In Step5, the algorithm

will recurse on the two pairs:

({b1, b2}, {r1, r2}), ({b3, b4}, {r3, r4}).

6

r3
r
2

r
1b2

b1

b4

red points blue points

b3
r4

Figure 3: Example of Algorithm match1.

Now we analyze the time complexity of the algorithm assuming that we have

O(n2/ log n) processors. The preprocessing step takes O(log2 n) time by The-

orems 2 and 3. Step 1 takes O(log n log log n) time. Steps 2 and 3 take O(1)

time. By Theorem 3, the time taken by Step 4 is O(log2 n). Finally, Step 6

takes O(1) time. It follows that the running time of the algorithm is governed by

the recurrence T (n) = T (n/2)+O(log2(n)) whose solution is T (n) = O(log3 n).

As to the number of processors, there are more processors than needed for the

recursive calls.

Now we refine Algorithm match1 to obtain an adaptive algorithm, which we

will call match2. Let k =
nε� for some appropriately chosen ε, 0 < ε < 1.

In Step 2, instead of dividing the red points into two subsets, we will partition

them into k subsets R1, R2, . . . , Rk, of size
m/k� each, except possibly the kth

subset.

Modifying Steps 3 and 4 is not straightforward. In sequential terms, we may de-

scribe the refinement as follows. First, B1 is computed and B′
1 −B1 is added to

B′
2. Next, B2 is computed and B′

2−B2 is added to B′
3. We continue this way un-

til finally Bk−1 is computed and B′
k−1−Bk−1 is added to B′

k, which is exactly Bk.

We proceed to implement this procedure in parallel as follows. For convenience,

we will use the following notation. If X1, X2, . . . , Xj are j sets, then X1,j will

denote their union. That is, X1,j = X1∪X2∪. . .∪Xj . Let R1,0 = B′
1,0 = {}. We

start by computing the sets R1,1, R1,2, . . . , R1,k, B′
1,1, B

′
1,2, . . . , B

′
1,k. Next, for

j = 1, 2, . . . k, we compute in parallel Bj as follows. We use Theorem 3 to com-

pute B1,j−1 from B′
1,j−1 and R1,j−1. Then, we set B′′

j = B′
j ∪ (B′

1,j−1−B1,j−1).

Finally, we use Theorem 3 again to compute Bj from B′′
j and Rj . After

B1, B2, . . . , Bk have been computed, we use Algorithm match2 recursively to

7

compute in parallel the matchings for the pairs (B1, R1), (B2, R2), . . . , (Bk, Rk).

The results of these recursive calls constitute the desired matching. Algorithm

match2 is described more formally as follows.

Preprocessing step. Use Theorem 2 to remove from R those red points that

are unmatched. Let |R| = m. Use Theorem 3 to remove from B those blue

points that are unmatched. Obviously, |B| = m. Sort both B and R in increas-

ing order of their x-coordinates. Compute k =
nε�.

Algorithm match2.

1. If |R| ≤ log n, then use the sequential algorithm redgreedy to find a

maximum matching. Return the set of matched pairs.

2. Divide the set of red points in R into k subsets R1, R2, . . . , Rk, of size

�m/k� each, except possibly the kth subset. Here the points in Rj+1 are

to the right of the points in Rj , 1 ≤ j < k.

3. Let r0 be the point (−∞, 0), and for j = 1, 2, . . . k let rj be the rightmost

point in Rj , i.e., the one with largest x-coordinate.

For j = 1, 2, . . . k, let B′
j = {b ∈ B | x(rj−1) ≤ x(b) ≤ x(rj)}.

4. For j = 1, 2, . . . k, compute R1,j = R1 ∪ R2 ∪ . . . ∪ Rj and B′
1,j = B′

1 ∪
B′

2 ∪ . . . ∪ B′
j . Set R1,0 = B′

1,0 = {}.

5. For j = 1, 2, . . . k, do in parallel

(a) Use Theorem 3 to compute B1,j−1 from B′
1,j−1 and R1,j−1.

(b) Set B′′
j = B′

j ∪ (B′
1,j−1 − B1,j−1).

(c) Use Theorem 3 to compute Bj from B′′
j and Rj .

6. Use Algorithm match2 recursively to compute in parallel the matchings

for the pairs (B1, R1), (B2, R2), . . . , (Bk, Rk).

7. Return the set of matched pairs in (B1, R1), (B2, R2), . . . , (Bk, Rk).

Figure 4 Illustrates the operation of the algorithm.

8

red points blue points

r4

r
3

r
1

b1

b4 r
6

r
5

b8
r
2

r
7

b3

b5 r8b6b7

b2

Figure 4: Example of Algorithm match2.

In this figure, the eight red points are divided into four groups of two points

each. The sets B′
j , 1 ≤ j ≤ 4, computed in Step 4 of the algorithm are

B′
1 = {b1, b2, b3}, B′

2 = {b4, b5}, B′
3 = {b6, b7}, B′

4 = {b8}.

The sets computed in Step 5 of the algorithm starting from j = 2 are

j : 1 B1,0 = {}, B′′
1 = {b1, b2, b3}, B1 = {b1, b2}.

j : 2 B1,1 = {b1, b2}, B′′
2 = {b3, b4, b5}, B2 = {b4, b5}.

j : 3 B1,2 = {b1, b2, b4, b5}, B′′
3 = {b3, b6, b7}, B3 = {b6, b7}.

j : 4 B1,3 = {b1, b2, b4, b5, b6, b7}, B′′
4 = {b3, b8}, B4 = {b3, b8}.

Next, the algorithm will recurse on the following pairs:

({b1, b2}, {r1, r2}), ({b4, b5}, {r3, r4}),
({b6, b7}, {r5, r6}), ({b3, b8}, {r7, r8}).

Now we analyze the complexity of Algorithm match2. Let the running time

of the algorithm be T (n). The preprocessing step takes O(log2 n) time by The-

orems 2 and 3 using O(n2/ log n) processors. Step 1 takes O(log n log log n)

time. Step 2 takes O(1) time using k processors, where each processor needs to

store the start and end indices. Step 3 takes O(log n) time using n processors.

Step 4 takes O(1) time using O(kn) = O(n1+ε) processors. By Theorem 3,

Step 5 takes O(log2 n) time using O(kn2/ log n) = O(n2+ε/ log n) processors.

The cost of Step 6 is T (n/k). Finally, Step 7 takes O(1) time. Observe that for

j = 1, 2, . . . , k, |Bj | = |Rj | = O(m/k) = O(n/k). Thus, the total number of pro-

cessors needed for the recursive calls is kO(k(n/k)2/ log(n/k)) = O(n2/ log n)

processors. Consequently, the running time of the algorithm is governed by the

recurrence T (n) = T (n/k) + O(log2(n)) whose solution is

T (n) = O(log2 n logk n) = O(log3 n/ log k) = O(log3 n/ log nε) = O(log2 n).

9

It follows that the overall running time of the algorithm is O(log2 n) using

the CREW PRAM with O(n2+ε/ log n), 0 < ε < 1. If, for example, we set

ε =
log log n/ log n�, the number of processors needed becomes O(n2).

References

[1] A. Aggarwal and J. Park, Notes on searching in multidimensional monotone

arrays, Proc.IEEE Symp. on Foundation of Computer Science (1988) 497–

512.

[2] M. J. Atallah, M. T. Goodrich and S. R. Kosaraju parallel algorithms

for evaluating sequences of set–manipulation operations, Proc. 3rd Aegean

Workshop on Computing, Lecture Notes in Computer Science 319 (1988)

(Springer, Berlin, 1988) 1–10.

[3] S. K. Kim, A parallel algorithm for finding a maximum clique of a set of

circular arcs of a circle, Information Processing Letters 34 (1990) 235–241.

[4] I. Dagan, M. C. Golumbic and R. Y. Pinter, Trapezoid graphs and their

coloring, Disc. Appl. Math. 21 (1988) 35–46.

[5] T. Leighton and P. Shor, Tight bounds for minimax grid matching, with

applications to the average case analysis of algorithms, Proc. ACM Symp.

on Theory of Computing (1986) 91–103.

[6] Shin–ichi Nakayama and Shigeru Masuyama, A parallel algorithm for solving

the coloring problem on trapezoid graphs, Information Processing Letters 62

(1997) 323–327.

[7] S. Felsner, R. Müller and L. Wernisch, Trapezoid graphs and generalizations,

Geometry and Algorithms Disc. Appl. Math., 74 (1997) 35–46.

10

