1,537 research outputs found

    Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications

    Get PDF
    We claim the strong potential of data-centric communications in Unmanned Aircraft Systems (UAS), as a suitable paradigm to enhance collaborative operations via efficient information sharing, as well as to build systems supporting flexible mission objectives. In particular, this paper analyzes the primary contributions to data dissemination in UAS that can be given by the Data Distribution Service (DDS) open standard, as a solid and industry-mature data-centric technology. Our study is not restricted to traditional UAS where a set of Unmanned Aerial Vehicles (UAVs) transmit data to the ground station that controls them. Instead, we contemplate flexible UAS deployments with multiple UAV units of different sizes and capacities, which are interconnected to form an aerial communication network, enabling the provision of value-added services over a delimited geographical area. In addition, the paper outlines an approach to address the issues inherent to the utilization of network-level multicast, a baseline technology in DDS, in the considered UAS deployments. We complete our analysis with a practical experience aiming at validating the feasibility and the advantages of using DDS in a multi-UAV deployment scenario. For this purpose, we use a UAS testbed built up by heterogeneous hardware equipment, including a number of interconnected micro aerial vehicles, carrying single board computers as payload, as well as real equipment from a tactical UAS from the Spanish Ministry of Defense.This article was partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795-C6-3-R) funded by the SpanishMinistry of Economy and Competitiveness

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    IMPLEMENTATION OF TACTICAL OPEN SOURCE 5G MOBILE NETWORKS

    Get PDF
    The implementation of fifth-generation (5G) communications technology is a global effort, with China leading the way. The Department of Defense has initiated efforts on 5G implementation from smart warehouses to virtual combat training; however, focus on the tactical communications level remains minimal. This thesis examines the feasibility of using OpenAirInterface Software Alliance (OSA) software to build a private mobile ad hoc 5G network for various military applications. First, we created a Fourth Generation/Long Term Evolution network utilizing commercial off-the-shelf equipment and software to operate the radio access network (RAN), software-defined radio, and an evolved packet core (EPC). Then we connected the EPC to an 802.11 network for internet access. We successfully configured a subscriber identification module and smartphone and attached it to the network for data services. Although the OSA software is robust and customizable, it is difficult to make changes, is restrictive in which user equipment (UE) can connect to the network, and does not reliably allow the UE to connect. The potential of OSA software for military applications is apparent but does not appear ready for field implementation. Going forward, we recommend researchers use this work to implement new software versions and test scalability to reassess the feasibility of OSA software.NCWDGLieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail

    QoS related admission control for Web services

    Get PDF
    In a military tactical network bandwidth is often scarce. Web services lack a standardized approach to provide Quality of Service. In this thesis a broker which performs access control on bandwidth is created to provide a role based admission control. The goal is to achieve high client satisfaction where the client's role is considered important

    IP-Enabled WAN EMS System

    Get PDF
    The focus of this project was to determine the feasibility of a ubiquitous, reliable, IP-enabled Next Generation 911 (NG911) infrastructure. A detailed investigation was conducted in order to determine the limitations of both the existing emergency architecture. Germane legislation was then analyzed to determine the constraints of any new proposed architecture. Additionally, past proposals to expand the functionality and reliability of the E911 networks were evaluated. Lastly, the feasibility of an NG911 architecture leveraging existing technology was determined

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet

    Securing military decision making in a network-centric environment

    Get PDF
    The development of the society and warfare goes hand in hand. With the proliferation of modern information technology, in particular communication technology, concepts such as information warfare and network-centric warfare have emerged. Information has become one of the core elements in military decision making, where the purpose is to gain information superiority with respect to the enemy while denying the enemy from doing the same. Network-centricity comes from the fact that communication networks are used to enable information warfare in the theatre of operations. Thus, the role of the communication network is to support decision making. In this thesis, military decision making in a network-centric environment is analyzed from the perspective of information warfare. Based on the analysis, a set of security requirements are identified. The thesis also proposes a set of solutions and concepts to the vulnerabilities found and analyzes the solutions with respect to the requirements and a set of use scenarios. The main solutions are Packet Level Authentication, which secures the military infrastructure, and Self-healing Networks, which enable the network to restructure itself after a large-scale or dedicated attack. The restructuring process relies on a Context Aware Management architecture, which has originally been developed to allow network nodes to rapidly react to a changing environment. Furthermore, the thesis presents a trust management model based on incomplete trust to cope with compromised nodes. Also privacy issues are discussed; several different privacy classes are identified and the problems with each of them are addressed.reviewe

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed
    corecore