390,608 research outputs found

    Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    Full text link
    We show that pulse shaping techniques can be applied to tailor the ultrafast temporal response of the strongly confined and enhanced optical near fields in the feed gap of resonant optical antennas (ROAs). Using finite-difference time-domain (FDTD) simulations followed by Fourier transformation, we obtain the impulse response of a nano structure in the frequency domain, which allows obtaining its temporal response to any arbitrary pulse shape. We apply the method to achieve deterministic optimal temporal field compression in ROAs with reduced symmetry and in a two-wire transmission line connected to a symmetric dipole antenna. The method described here will be of importance for experiments involving coherent control of field propagation in nanophotonic structures and of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure

    Detection of bondline delaminations in multilayer structures with lossy components

    Get PDF
    The detection of bondline delaminations in multilayer structures using ultrasonic reflection techniques is a generic problem in adhesively bonded composite structures such as the Space Shuttles's Solid Rocket Motors (SRM). Standard pulse echo ultrasonic techniques do not perform well for a composite resonator composed of a resonant layer combined with attenuating layers. Excessive ringing in the resonant layer tends to mask internal echoes emanating from the attenuating layers. The SRM is made up of a resonant steel layer backed by layers of adhesive, rubber, liner and fuel, which are ultrasonically attenuating. The structure's response is modeled as a lossy ultrasonic transmission line. The model predicts that the acoustic response of the system is sensitive to delaminations at the interior bondlines in a few narrow frequency bands. These predictions are verified by measurements on a fabricated system. Successful imaging of internal delaminations is sensitive to proper selection of the interrogating frequency. Images of fabricated bondline delaminations are presented based on these studies

    Compact and accurate models of large single-wall carbon-nanotube interconnects

    Get PDF
    Single-wall carbon nanotubes (SWCNTs) have been proposed for very large scale integration interconnect applications and their modeling is carried out using the multiconductor transmission line (MTL) formulation. Their time-domain analysis has some simulation issues related to the high number of SWCNTs within each bundle, which results in a highly complex model and loss of accuracy in the case of long interconnects. In recent years, several techniques have been proposed to reduce the complexity of the model whose accuracy decreases as the interconnection length increases. This paper presents a rigorous new technique to generate accurate reduced-order models of large SWCNT interconnects. The frequency response of the MTL is computed by using the spectral form of the dyadic Green's function of the 1-D propagation problem and the model complexity is reduced using rational-model identification techniques. The proposed approach is validated by numerical results involving hundreds of SWCNTs, which confirm its capability of reducing the complexity of the model, while preserving accuracy over a wide frequency range

    DESIGN OF A MICROSTRIP FILTER FOR MICROWAVE POINT-TO-POINT LINK

    Get PDF
    The goal of the project is to design a Microstrip Bandpass filter for a point-to-point exchange of information over the microwave-frequency signals. Thus, the main idea of this project is to design a bandpass Chebyshev-type 1 filter using a Microstrip as a transmission line. The biggest obstacle for the project is to have a high performance or in other words a high quality response using a Microstrip transmission line. The scope of the project embraces the understanding and application of techniques for designs of microwave filters, which takes us back to the two-port networks, transmission lines, bandpass filters and microwave communications with enabling us to make more research on the mentioned areas. The design was simulated on MATLAB and a 7th order Chebyshev type 1 filter response was generated. After the design calculations were done, it was simulated, tuned and optimized on AWR Microwave Office, simulation software for better approximations, where we could analyze the response of the filter. The AWR simulation software showed an almost equiripple response with 7 ripples, which concludes that the design was successful

    Calibration and application of a B-dot sensor to study the initiation of vacuum surface flashover

    Full text link
    \u27Calibration\u27, as the name suggests is the act of checking or adjusting the accuracy of a measuring instrument by comparison with a standard. Two techniques, the equal length test and the short circuit test, have been developed to determine the characteristic impedance and propagation coefficient of a single lossy transmission line and a lossy transmission line network in cascade based solely on the input reflection coefficient S-parameter, S11, VNA measurements over a wide bandwidth of frequencies. For the transmission line network case, the characteristic impedance and propagation coefficient for each line in the cascade, excluding the last line, are known. Theoretical expressions needed for interpreting VNA measured data have been developed. A wideband, coaxial cable calibration test stand is characterized based on the novel equal length technique. The test stand is used to calibrate a B-dot in the frequency domain to obtain its response function. To verify the calibration process, the calibrated B-dot will be used to measure the surface current density on a radial transmission driven by a pulsed power source. These results will be compared against simulation using a Graphical Large Scale Plasma (GLSP) code. This calibrated B-dot will be used in future surface breakdown pulse power experiments on plastics measuring fast sub-nanosecond rise time phenomena

    Reconfigurable Microwave Phase Delay Element for Frequency Reference and Phase-Shifter Applications

    Get PDF
    A technique was developed to provide a reconfigurable high-precision micro - wave electrical phase delay for resonators and phase shifters. The invention employs multiple branches of transmission lines with open-ended or ground-ended terminations as configurable bits or digits. This technique minimizes the errors due to limited precision of switching devices. In addition, the proposed linear analytical approach significantly produces a much simpler design than that of other prior inventions at the time of this reporting. Microwave components such as filters, phase delay elements, or resonators require a method that can accurately adjust their frequency responses. Most tuning techniques offer very wide frequency tuning range; however, it is often difficult and expensive to tune their response in a very narrow operating frequency, especially when the tuning element reaches its minimum discrete step due to fabrication tolerances. The problem becomes worse as the operating frequency is in mm-wave frequency range (>26 GHz). The electrical tuning sensitivity of a microwave line is dependent on the position of the tuning element with respect to the reference termination. By placing this tuning element away from this reference with the main transmission line connecting the two elements together the sensitivity of the tuning element can change significantly. This concept can be used in the system that requires multiple tuning sensitivities. In this case, multiple tuning branches are superimposed in the main transmission line. The proposed invention allows the transmission-line electrical length to be accurately programmed using switching elements that have limited accuracy. The invention consists of multiple branches of transmission lines connected to discrete switching devices with open-ended terminations. They are used as discrete tuning elements. These elements are connected to the main microwave transmission line and are separated by a well-defined electrical degree spacing. Each branch is programmed to have different electrical degree sensitivity, such as a combination of discrete steps in each branch, which results in a reflective line with a unique effective phase response. To reduce the number of switching devices, it is desirable to program the devices in binary configuration where each branch represents one bit in the base-2 number system. This invention allows the transmission line electrical length to be tuned precisely with customizable sensitivity based on the known sensitivity of the base tuning circuit. The tuning resolution is dependent on the distance among tuning branches

    Microwave Slow-Wave Structure and Phase-Compensation Technique for Microwave Power Divider

    Get PDF
    In this paper, T-shaped electromagnetic bandgap is loaded on a coupled transmission line itself and its electric performance is studied. Results show that microwave slow-wave effect can be enhanced and therefore, size reduction of a transmission-line-based circuit is possible. However, the transmission-line-based circuits characterize varied phase responses against frequency, which becomes a disadvantage where constant phase response is required. Consequently, a phase-compensation technique is further presented and studied. For demonstration purpose, an 8-way coupled-line power divider with 22.5 degree phase shifts between adjacent output ports, based on the studied slow-wave structure and phase-compensation technique, is developed. Results show both compact circuit architecture and improved phase imbalance are realized, confirming the investigated circuit structures and analyzing methodologies

    IEEE Antennas Propag Mag

    Get PDF
    An efficient procedure for modeling medium frequency (MF) communications in coal mines is introduced. In particular, a hybrid approach is formulated and demonstrated utilizing ideal transmission line equations to model MF propagation in combination with full-wave sections used for accurate simulation of local antenna-line coupling and other near-field effects. This work confirms that the hybrid method accurately models signal propagation from a source to a load for various system geometries and material compositions, while significantly reducing computation time. With such dramatic improvement to solution times, it becomes feasible to perform large-scale optimizations with the primary motivation of improving communications in coal mines both for daily operations and emergency response. Furthermore, it is demonstrated that the hybrid approach is suitable for modeling and optimizing large communication networks in coal mines that may otherwise be intractable to simulate using traditional full-wave techniques such as moment methods or finite-element analysis.YLH8/Intramural CDC HHS/United States2015-10-14T00:00:00Z26478686PMC460587

    UWB microstrip filter design using a time-domain technique

    Get PDF
    A time-domain technique is proposed for ultra-wideband (UWB) microstrip-filter design. The design technique uses the reflection coefficient (S11) specified in the frequency domain. When the frequency response of the UWB filter is given, the response will be approximated by a series of UWB pulses in the time domain. The UWB pulses are Gaussian pulses of the same bandwidth with different time delays. The method tries to duplicate the reflection scenario in the time domain for very narrow Gaussian pulses (to obtain the impulse response of the system) when the pulses are passed through the filter, and obtains the value of the filter coefficients based on the number of UWB pulses, amplitudes, and delays of the pulses

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version
    corecore