600 research outputs found

    Asymptotically idempotent aggregation operators for trust management in multi-agent systems

    Get PDF
    The study of trust management in multi-agent system, especially distributed, has grown over the last years. Trust is a complex subject that has no general consensus in literature, but has emerged the importance of reasoning about it computationally. Reputation systems takes into consideration the history of an entity’s actions/behavior in order to compute trust, collecting and aggregating ratings from members in a community. In this scenario the aggregation problem becomes fundamental, in particular depending on the environment. In this paper we describe a technique based on a class of asymptotically idempotent aggregation operators, suitable particulary for distributed anonymous environments

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Applications and implementation of neuro-connectionist architectures.

    Get PDF
    by H.S. Ng.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 91-97).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- Neuro-connectionist Network --- p.2Chapter 2 --- Related Works --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.1.1 --- Kruskal's Algorithm --- p.5Chapter 2.1.2 --- Prim's algorithm --- p.6Chapter 2.1.3 --- Sollin's algorithm --- p.7Chapter 2.1.4 --- Bellman-Ford algorithm --- p.8Chapter 2.1.5 --- Floyd-Warshall algorithm --- p.9Chapter 3 --- Binary Relation Inference Network and Path Problems --- p.11Chapter 3.1 --- Introduction --- p.11Chapter 3.2 --- Topology --- p.12Chapter 3.3 --- Network structure --- p.13Chapter 3.3.1 --- Single-destination BRIN architecture --- p.14Chapter 3.3.2 --- Comparison between all-pair BRIN and single-destination BRIN --- p.18Chapter 3.4 --- Path Problems and BRIN Solution --- p.18Chapter 3.4.1 --- Minimax path problems --- p.18Chapter 3.4.2 --- BRIN solution --- p.19Chapter 4 --- Analog and Voltage-mode Approach --- p.22Chapter 4.1 --- Introduction --- p.22Chapter 4.2 --- Analog implementation --- p.24Chapter 4.3 --- Voltage-mode approach --- p.26Chapter 4.3.1 --- The site function --- p.26Chapter 4.3.2 --- The unit function --- p.28Chapter 4.3.3 --- The computational unit --- p.28Chapter 4.4 --- Conclusion --- p.29Chapter 5 --- Current-mode Approach --- p.32Chapter 5.1 --- Introduction --- p.32Chapter 5.2 --- Current-mode approach for analog VLSI Implementation --- p.33Chapter 5.2.1 --- Site and Unit output function --- p.33Chapter 5.2.2 --- Computational unit --- p.34Chapter 5.2.3 --- A complete network --- p.35Chapter 5.3 --- Conclusion --- p.37Chapter 6 --- Neural Network Compensation for Optimization Circuit --- p.40Chapter 6.1 --- Introduction --- p.40Chapter 6.2 --- A Neuro-connectionist Architecture for error correction --- p.41Chapter 6.2.1 --- Linear Relationship --- p.42Chapter 6.2.2 --- Output Deviation of Computational Unit --- p.44Chapter 6.3 --- Experimental Results --- p.46Chapter 6.3.1 --- Training Phase --- p.46Chapter 6.3.2 --- Generalization Phase --- p.48Chapter 6.4 --- Conclusion --- p.50Chapter 7 --- Precision-limited Analog Neural Network Compensation --- p.51Chapter 7.1 --- Introduction --- p.51Chapter 7.2 --- Analog Neural Network hardware --- p.53Chapter 7.3 --- Integration of analog neural network compensation of connectionist net- work for general path problems --- p.54Chapter 7.4 --- Experimental Results --- p.55Chapter 7.4.1 --- Convergence time --- p.56Chapter 7.4.2 --- The accuracy of the system --- p.57Chapter 7.5 --- Conclusion --- p.58Chapter 8 --- Transitive Closure Problems --- p.60Chapter 8.1 --- Introduction --- p.60Chapter 8.2 --- Different ways of implementation of BRIN for transitive closure --- p.61Chapter 8.2.1 --- Digital Implementation --- p.61Chapter 8.2.2 --- Analog Implementation --- p.61Chapter 8.3 --- Transitive Closure Problem --- p.63Chapter 8.3.1 --- A special case of maximum spanning tree problem --- p.64Chapter 8.3.2 --- Analog approach solution for transitive closure problem --- p.65Chapter 8.3.3 --- Current-mode approach solution for transitive closure problem --- p.67Chapter 8.4 --- Comparisons between the different forms of implementation of BRIN for transitive closure --- p.71Chapter 8.4.1 --- Convergence Time --- p.71Chapter 8.4.2 --- Circuit complexity --- p.72Chapter 8.5 --- Discussion --- p.73Chapter 9 --- Critical path problems --- p.74Chapter 9.1 --- Introduction --- p.74Chapter 9.2 --- Problem statement and single-destination BRIN solution --- p.75Chapter 9.3 --- Analog implementation --- p.76Chapter 9.3.1 --- Separated building block --- p.78Chapter 9.3.2 --- Combined building block --- p.79Chapter 9.4 --- Current-mode approach --- p.80Chapter 9.4.1 --- "Site function, unit output function and a completed network" --- p.80Chapter 9.5 --- Conclusion --- p.83Chapter 10 --- Conclusions --- p.85Chapter 10.1 --- Summary of Achievements --- p.85Chapter 10.2 --- Future development --- p.88Chapter 10.2.1 --- Application for financial problems --- p.88Chapter 10.2.2 --- Fabrication of VLSI Implementation --- p.88Chapter 10.2.3 --- Actual prototyping of Analog Integrated Circuits for critical path and transitive closure problems --- p.89Chapter 10.2.4 --- Other implementation platform --- p.89Chapter 10.2.5 --- On-line update of routing table inside the router for network com- munication using BRIN --- p.89Chapter 10.2.6 --- Other BRIN's applications --- p.90Bibliography --- p.9

    Applications and implementation of neuro-connectionist architectures.

    Get PDF
    by H.S. Ng.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 91-97).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- Neuro-connectionist Network --- p.2Chapter 2 --- Related Works --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.1.1 --- Kruskal's Algorithm --- p.5Chapter 2.1.2 --- Prim's algorithm --- p.6Chapter 2.1.3 --- Sollin's algorithm --- p.7Chapter 2.1.4 --- Bellman-Ford algorithm --- p.8Chapter 2.1.5 --- Floyd-Warshall algorithm --- p.9Chapter 3 --- Binary Relation Inference Network and Path Problems --- p.11Chapter 3.1 --- Introduction --- p.11Chapter 3.2 --- Topology --- p.12Chapter 3.3 --- Network structure --- p.13Chapter 3.3.1 --- Single-destination BRIN architecture --- p.14Chapter 3.3.2 --- Comparison between all-pair BRIN and single-destination BRIN --- p.18Chapter 3.4 --- Path Problems and BRIN Solution --- p.18Chapter 3.4.1 --- Minimax path problems --- p.18Chapter 3.4.2 --- BRIN solution --- p.19Chapter 4 --- Analog and Voltage-mode Approach --- p.22Chapter 4.1 --- Introduction --- p.22Chapter 4.2 --- Analog implementation --- p.24Chapter 4.3 --- Voltage-mode approach --- p.26Chapter 4.3.1 --- The site function --- p.26Chapter 4.3.2 --- The unit function --- p.28Chapter 4.3.3 --- The computational unit --- p.28Chapter 4.4 --- Conclusion --- p.29Chapter 5 --- Current-mode Approach --- p.32Chapter 5.1 --- Introduction --- p.32Chapter 5.2 --- Current-mode approach for analog VLSI Implementation --- p.33Chapter 5.2.1 --- Site and Unit output function --- p.33Chapter 5.2.2 --- Computational unit --- p.34Chapter 5.2.3 --- A complete network --- p.35Chapter 5.3 --- Conclusion --- p.37Chapter 6 --- Neural Network Compensation for Optimization Circuit --- p.40Chapter 6.1 --- Introduction --- p.40Chapter 6.2 --- A Neuro-connectionist Architecture for error correction --- p.41Chapter 6.2.1 --- Linear Relationship --- p.42Chapter 6.2.2 --- Output Deviation of Computational Unit --- p.44Chapter 6.3 --- Experimental Results --- p.46Chapter 6.3.1 --- Training Phase --- p.46Chapter 6.3.2 --- Generalization Phase --- p.48Chapter 6.4 --- Conclusion --- p.50Chapter 7 --- Precision-limited Analog Neural Network Compensation --- p.51Chapter 7.1 --- Introduction --- p.51Chapter 7.2 --- Analog Neural Network hardware --- p.53Chapter 7.3 --- Integration of analog neural network compensation of connectionist net- work for general path problems --- p.54Chapter 7.4 --- Experimental Results --- p.55Chapter 7.4.1 --- Convergence time --- p.56Chapter 7.4.2 --- The accuracy of the system --- p.57Chapter 7.5 --- Conclusion --- p.58Chapter 8 --- Transitive Closure Problems --- p.60Chapter 8.1 --- Introduction --- p.60Chapter 8.2 --- Different ways of implementation of BRIN for transitive closure --- p.61Chapter 8.2.1 --- Digital Implementation --- p.61Chapter 8.2.2 --- Analog Implementation --- p.61Chapter 8.3 --- Transitive Closure Problem --- p.63Chapter 8.3.1 --- A special case of maximum spanning tree problem --- p.64Chapter 8.3.2 --- Analog approach solution for transitive closure problem --- p.65Chapter 8.3.3 --- Current-mode approach solution for transitive closure problem --- p.67Chapter 8.4 --- Comparisons between the different forms of implementation of BRIN for transitive closure --- p.71Chapter 8.4.1 --- Convergence Time --- p.71Chapter 8.4.2 --- Circuit complexity --- p.72Chapter 8.5 --- Discussion --- p.73Chapter 9 --- Critical path problems --- p.74Chapter 9.1 --- Introduction --- p.74Chapter 9.2 --- Problem statement and single-destination BRIN solution --- p.75Chapter 9.3 --- Analog implementation --- p.76Chapter 9.3.1 --- Separated building block --- p.78Chapter 9.3.2 --- Combined building block --- p.79Chapter 9.4 --- Current-mode approach --- p.80Chapter 9.4.1 --- "Site function, unit output function and a completed network" --- p.80Chapter 9.5 --- Conclusion --- p.83Chapter 10 --- Conclusions --- p.85Chapter 10.1 --- Summary of Achievements --- p.85Chapter 10.2 --- Future development --- p.88Chapter 10.2.1 --- Application for financial problems --- p.88Chapter 10.2.2 --- Fabrication of VLSI Implementation --- p.88Chapter 10.2.3 --- Actual prototyping of Analog Integrated Circuits for critical path and transitive closure problems --- p.89Chapter 10.2.4 --- Other implementation platform --- p.89Chapter 10.2.5 --- On-line update of routing table inside the router for network com- munication using BRIN --- p.89Chapter 10.2.6 --- Other BRIN's applications --- p.90Bibliography --- p.9

    A Collaborative Access Control Model for Shared Items in Online Social Networks

    Get PDF
    The recent emergence of online social networks (OSNs) has changed the communication behaviors of thousand of millions of users. OSNs have become significant platforms for connecting users, sharing information, and a valuable source of private and sensitive data about individuals. While OSNs insert constantly new social features to increase the interaction between users, they, unfortunately, offer primitive access control mechanisms that place the burden of privacy policy configuration solely on the holder who has shared data in her/his profile regardless of other associated users, who may have different privacy preferences. Therefore, current OSN privacy mechanisms violate the privacy of all stakeholders by giving one user full authority over another’s privacy settings, which is extremely ineffective. Based on such considerations, it is essential to develop an effective and flexible access control model for OSNs, accommodating the special administration requirements coming from multiple users having a variety of privacy policies over shared items. In order to solve the identified problems, we begin by analyzing OSN scenarios where at least two users should be involved in the access control process. Afterward, we propose collaborative access control framework that enables multiple controllers of the shared item to collaboratively specify their privacy settings and to resolve the conflicts among co-controllers with different requirements and desires. We establish our conflict resolution strategy’s rules to achieve the desired equilibrium between the privacy of online users and the utility of sharing data in OSNs. We present a policy specification scheme for collaborative access control and authorization administration. Based on these considerations, we devise algorithms to achieve a collaborative access control policy over who can access or disseminate the shared item and who cannot. In our dissertation, we also present the implementation details of a proof-of-concept prototype of our approach to demonstrate the effectiveness of such an approach. With our approach, sharing and interconnection among users in OSNs will be promoted in a more trustworthy environment

    Approaches to the implementation of binary relation inference network.

    Get PDF
    by C.W. Tong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 96-98).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- The Availability of Parallel Processing Machines --- p.2Chapter 1.1.1 --- Neural Networks --- p.5Chapter 1.2 --- Parallel Processing in the Continuous-Time Domain --- p.6Chapter 1.3 --- Binary Relation Inference Network --- p.10Chapter 2 --- Binary Relation Inference Network --- p.12Chapter 2.1 --- Binary Relation Inference Network --- p.12Chapter 2.1.1 --- Network Structure --- p.14Chapter 2.2 --- Shortest Path Problem --- p.17Chapter 2.2.1 --- Problem Statement --- p.17Chapter 2.2.2 --- A Binary Relation Inference Network Solution --- p.18Chapter 3 --- A Binary Relation Inference Network Prototype --- p.21Chapter 3.1 --- The Prototype --- p.22Chapter 3.1.1 --- The Network --- p.22Chapter 3.1.2 --- Computational Element --- p.22Chapter 3.1.3 --- Network Response Time --- p.27Chapter 3.2 --- Improving Response --- p.29Chapter 3.2.1 --- Removing Feedback --- p.29Chapter 3.2.2 --- Selecting Minimum with Diodes --- p.30Chapter 3.3 --- Speeding Up the Network Response --- p.33Chapter 3.4 --- Conclusion --- p.35Chapter 4 --- VLSI Building Blocks --- p.36Chapter 4.1 --- The Site --- p.37Chapter 4.2 --- The Unit --- p.40Chapter 4.2.1 --- A Minimum Finding Circuit --- p.40Chapter 4.2.2 --- A Tri-state Comparator --- p.44Chapter 4.3 --- The Computational Element --- p.45Chapter 4.3.1 --- Network Performances --- p.46Chapter 4.4 --- Discussion --- p.47Chapter 5 --- A VLSI Chip --- p.48Chapter 5.1 --- Spatial Configuration --- p.49Chapter 5.2 --- Layout --- p.50Chapter 5.2.1 --- Computational Elements --- p.50Chapter 5.2.2 --- The Network --- p.52Chapter 5.2.3 --- I/O Requirements --- p.53Chapter 5.2.4 --- Optional Modules --- p.53Chapter 5.3 --- A Scalable Design --- p.54Chapter 6 --- The Inverse Shortest Paths Problem --- p.57Chapter 6.1 --- Problem Statement --- p.59Chapter 6.2 --- The Embedded Approach --- p.63Chapter 6.2.1 --- The Formulation --- p.63Chapter 6.2.2 --- The Algorithm --- p.65Chapter 6.3 --- Implementation Results --- p.66Chapter 6.4 --- Other Implementations --- p.67Chapter 6.4.1 --- Sequential Machine --- p.67Chapter 6.4.2 --- Parallel Machine --- p.68Chapter 6.5 --- Discussion --- p.68Chapter 7 --- Closed Semiring Optimization Circuits --- p.71Chapter 7.1 --- Transitive Closure Problem --- p.72Chapter 7.1.1 --- Problem Statement --- p.72Chapter 7.1.2 --- Inference Network Solutions --- p.73Chapter 7.2 --- Closed Semirings --- p.76Chapter 7.3 --- Closed Semirings and the Binary Relation Inference Network --- p.79Chapter 7.3.1 --- Minimum Spanning Tree --- p.80Chapter 7.3.2 --- VLSI Implementation --- p.84Chapter 7.4 --- Conclusion --- p.86Chapter 8 --- Conclusions --- p.87Chapter 8.1 --- Summary of Achievements --- p.87Chapter 8.2 --- Future Work --- p.89Chapter 8.2.1 --- VLSI Fabrication --- p.89Chapter 8.2.2 --- Network Robustness --- p.90Chapter 8.2.3 --- Inference Network Applications --- p.91Chapter 8.2.4 --- Architecture for the Bellman-Ford Algorithm --- p.91Bibliography --- p.92Appendices --- p.99Chapter A --- Detailed Schematic --- p.99Chapter A.1 --- Schematic of the Inference Network Structures --- p.99Chapter A.1.1 --- Unit with Self-Feedback --- p.99Chapter A.1.2 --- Unit with Self-Feedback Removed --- p.100Chapter A.1.3 --- Unit with a Compact Minimizer --- p.100Chapter A.1.4 --- Network Modules --- p.100Chapter A.2 --- Inference Network Interface Circuits --- p.100Chapter B --- Circuit Simulation and Layout Tools --- p.107Chapter B.1 --- Circuit Simulation --- p.107Chapter B.2 --- VLSI Circuit Design --- p.110Chapter B.3 --- VLSI Circuit Layout --- p.111Chapter C --- The Conjugate-Gradient Descent Algorithm --- p.113Chapter D --- Shortest Path Problem on MasPar --- p.11

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    Non classical concept representation and reasoning in formal ontologies

    Get PDF
    Formal ontologies are nowadays widely considered a standard tool for knowledge representation and reasoning in the Semantic Web. In this context, they are expected to play an important role in helping automated processes to access information. Namely: they are expected to provide a formal structure able to explicate the relationships between different concepts/terms, thus allowing intelligent agents to interpret, correctly, the semantics of the web resources improving the performances of the search technologies. Here we take into account a problem regarding Knowledge Representation in general, and ontology based representations in particular; namely: the fact that knowledge modeling seems to be constrained between conflicting requirements, such as compositionality, on the one hand and the need to represent prototypical information on the other. In particular, most common sense concepts seem not to be captured by the stringent semantics expressed by such formalisms as, for example, Description Logics (which are the formalisms on which the ontology languages have been built). The aim of this work is to analyse this problem, suggesting a possible solution suitable for formal ontologies and semantic web representations. The questions guiding this research, in fact, have been: is it possible to provide a formal representational framework which, for the same concept, combines both the classical modelling view (accounting for compositional information) and defeasible, prototypical knowledge ? Is it possible to propose a modelling architecture able to provide different type of reasoning (e.g. classical deductive reasoning for the compositional component and a non monotonic reasoning for the prototypical one)? We suggest a possible answer to these questions proposing a modelling framework able to represent, within the semantic web languages, a multilevel representation of conceptual information, integrating both classical and non classical (typicality based) information. Within this framework we hypothesise, at least in principle, the coexistence of multiple reasoning processes involving the different levels of representation

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Impact of Symmetries in Graph Clustering

    Get PDF
    Diese Dissertation beschäftigt sich mit der durch die Automorphismusgruppe definierten Symmetrie von Graphen und wie sich diese auf eine Knotenpartition, als Ergebnis von Graphenclustering, auswirkt. Durch eine Analyse von nahezu 1700 Graphen aus verschiedenen Anwendungsbereichen kann gezeigt werden, dass mehr als 70 % dieser Graphen Symmetrien enthalten. Dies bildet einen Gegensatz zum kombinatorischen Beweis, der besagt, dass die Wahrscheinlichkeit eines zufälligen Graphen symmetrisch zu sein bei zunehmender Größe gegen Null geht. Das Ergebnis rechtfertigt damit die Wichtigkeit weiterer Untersuchungen, die auf mögliche Auswirkungen der Symmetrie eingehen. Bei der Analyse werden sowohl sehr kleine Graphen (10 000 000 Knoten/>25 000 000 Kanten) berücksichtigt. Weiterhin wird ein theoretisches Rahmenwerk geschaffen, das zum einen die detaillierte Quantifizierung von Graphensymmetrie erlaubt und zum anderen Stabilität von Knotenpartitionen hinsichtlich dieser Symmetrie formalisiert. Eine Partition der Knotenmenge, die durch die Aufteilung in disjunkte Teilmengen definiert ist, wird dann als stabil angesehen, wenn keine Knoten symmetriebedingt von der einen in die andere Teilmenge abgebildet werden und dadurch die Partition verändert wird. Zudem wird definiert, wie eine mögliche Zerlegbarkeit der Automorphismusgruppe in unabhängige Untergruppen als lokale Symmetrie interpretiert werden kann, die dann nur Auswirkungen auf einen bestimmten Bereich des Graphen hat. Um die Auswirkungen der Symmetrie auf den gesamten Graphen und auf Partitionen zu quantifizieren, wird außerdem eine Entropiedefinition präsentiert, die sich an der Analyse dynamischer Systeme orientiert. Alle Definitionen sind allgemein und können daher für beliebige Graphen angewandt werden. Teilweise ist sogar eine Anwendbarkeit für beliebige Clusteranalysen gegeben, solange deren Ergebnis in einer Partition resultiert und sich eine Symmetrierelation auf den Datenpunkten als Permutationsgruppe angeben lässt. Um nun die tatsächliche Auswirkung von Symmetrie auf Graphenclustering zu untersuchen wird eine zweite Analyse durchgeführt. Diese kommt zum Ergebnis, dass von 629 untersuchten symmetrischen Graphen 72 eine instabile Partition haben. Für die Analyse werden die Definitionen des theoretischen Rahmenwerks verwendet. Es wird außerdem festgestellt, dass die Lokalität der Symmetrie eines Graphen maßgeblich beeinflusst, ob dessen Partition stabil ist oder nicht. Eine hohe Lokalität resultiert meist in einer stabilen Partition und eine stabile Partition impliziert meist eine hohe Lokalität. Bevor die obigen Ergebnisse beschrieben und definiert werden, wird eine umfassende Einführung in die verschiedenen benötigten Grundlagen gegeben. Diese umfasst die formalen Definitionen von Graphen und statistischen Graphmodellen, Partitionen, endlichen Permutationsgruppen, Graphenclustering und Algorithmen dafür, sowie von Entropie. Ein separates Kapitel widmet sich ausführlich der Graphensymmetrie, die durch eine endliche Permutationsgruppe, der Automorphismusgruppe, beschrieben wird. Außerdem werden Algorithmen vorgestellt, die die Symmetrie von Graphen ermitteln können und, teilweise, auch das damit eng verwandte Graphisomorphie Problem lösen. Am Beispiel von Graphenclustering gibt die Dissertation damit Einblicke in mögliche Auswirkungen von Symmetrie in der Datenanalyse, die so in der Literatur bisher wenig bis keine Beachtung fanden
    • …
    corecore