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Kurzfassung

Diese Dissertation beschäftigt sich mit der durch die Automorphismusgruppe definierten Sym-
metrie von Graphen und wie sich diese auf eine Knotenpartition, als Ergebnis von Graphen-
clustering, auswirkt. Durch eine Analyse von nahezu 1700 Graphen aus verschiedenen Anwen-
dungsbereichen kann gezeigt werden, dass mehr als 70 % dieser Graphen Symmetrien enthalten.
Dies bildet einen Gegensatz zum kombinatorischen Beweis, der besagt, dass die Wahrschein-
lichkeit eines zufälligen Graphen symmetrisch zu sein bei zunehmender Größe gegen Null geht.
Das Ergebnis rechtfertigt damit die Wichtigkeit weiterer Untersuchungen, die auf mögliche
Auswirkungen der Symmetrie eingehen. Bei der Analyse werden sowohl sehr kleine Graphen
(< 100Knoten/Kanten) als auch sehr großeGraphen (> 10 000 000Knoten/> 25 000 000Kanten)
berücksichtigt.

Weiterhin wird ein theoretisches Rahmenwerk geschaffen, das zum einen die detaillierte
Quantifizierung von Graphensymmetrie erlaubt und zum anderen Stabilität von Knotenparti-
tionen hinsichtlich dieser Symmetrie formalisiert. Eine Partition der Knotenmenge, die durch
die Aufteilung in disjunkte Teilmengen definiert ist, wird dann als stabil angesehen, wenn kei-
ne Knoten symmetriebedingt von der einen in die andere Teilmenge abgebildet werden und
dadurch die Partition verändert wird. Zudem wird definiert, wie eine mögliche Zerlegbarkeit
der Automorphismusgruppe in unabhängige Untergruppen als lokale Symmetrie interpretiert
werden kann, die dann nur Auswirkungen auf einen bestimmten Bereich des Graphen hat. Um
die Auswirkungen der Symmetrie auf den gesamten Graphen und auf Partitionen zu quantifi-
zieren, wird außerdem eine Entropiedefinition präsentiert, die sich an der Analyse dynamischer
Systeme orientiert. Alle Definitionen sind allgemein und können daher für beliebige Graphen
angewandt werden. Teilweise ist sogar eine Anwendbarkeit für beliebige Clusteranalysen gege-
ben, solange deren Ergebnis in einer Partition resultiert und sich eine Symmetrierelation auf den
Datenpunkten als Permutationsgruppe angeben lässt.

Um nun die tatsächliche Auswirkung von Symmetrie auf Graphenclustering zu untersuchen
wird eine zweite Analyse durchgeführt. Diese kommt zum Ergebnis, dass von 629 untersuchten
symmetrischen Graphen 72 eine instabile Partition haben. Für die Analyse werden die Definitio-
nen des theoretischen Rahmenwerks verwendet. Es wird außerdem festgestellt, dass die Lokalität
der Symmetrie eines Graphen maßgeblich beeinflusst, ob dessen Partition stabil ist oder nicht.
Eine hohe Lokalität resultiert meist in einer stabilen Partition und eine stabile Partition impliziert
meist eine hohe Lokalität.

Bevor die obigen Ergebnisse beschrieben und definiert werden, wird eine umfassende Ein-
führung in die verschiedenen benötigten Grundlagen gegeben. Diese umfasst die formalen De-
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finitionen von Graphen und statistischen Graphmodellen, Partitionen, endlichen Permutations-
gruppen, Graphenclustering und Algorithmen dafür, sowie von Entropie. Ein separates Kapitel
widmet sich ausführlich der Graphensymmetrie, die durch eine endliche Permutationsgruppe,
der Automorphismusgruppe, beschrieben wird. Außerdem werden Algorithmen vorgestellt, die
die Symmetrie von Graphen ermitteln können und, teilweise, auch das damit eng verwandte
Graphisomorphie Problem lösen.

Am Beispiel von Graphenclustering gibt die Dissertation damit Einblicke in mögliche Aus-
wirkungen von Symmetrie in der Datenanalyse, die so in der Literatur bisher wenig bis keine
Beachtung fanden.
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Abstract

This dissertation is about how the graph symmetry, which is defined by the graph’s automorphism
group, has an impact on the result of a graph clustering algorithm—a partition of nodes. By
the analysis of nearly 1700 graphs from diverse application domains we can show that more
than 70 % of these graphs contain symmetries. This is a contradiction to the theoretical result
from combinatorics which says that the probability of increasingly large random graphs to be
symmetric tends to zero. The result justifies the importance of further research that investigates
the possible impact of this symmetry. We incorporate very small graphs (< 100 nodes/edges) as
well as very large graphs (> 10 000 000 nodes/> 25 000 000 edges) in the analysis.
In addition, we present a theoretical framework that, on the one hand, allows a detailed

quantification of graph symmetry and, on the other hand, formalizes the stability of node
partitions regarding this symmetry. A partition of nodes—which is defined by the division of
the node set into disjoint subsets—is said to be stable if there is no symmetry that maps nodes
from one subset to another by altering the partition at the same time. Furthermore, we define
how we can interpret a possible decomposition of the automorphism group into independent
subgroups as local symmetry, which then has only an impact on a restricted area of the graph.
To allow a quantification of the impact of the symmetry on the whole graph and on partitions
of it, we also present a special entropy definition that has its origin in the analysis of complex
dynamical systems. All our definitions are generic and can thus be applied on any graphs. For
some of them, even the applicability for arbitrary cluster analyses is possible, as long as they
result in a partition of data points on which a symmetry relation in form of a permutation group
can be defined.

A second analysis is carried out to investigate the actual impact of symmetry on graph
clustering. It comes to the result that out of 629 graphs a total of 72 have an unstable partition.
We employ the definitions from the theoretical framework in the analysis. Moreover, we find the
local structure of the symmetry to be the most significant factor that determines if the partition
is stable or not. A very local symmetry mostly results in a stable partition and, contrarily, a
stable partition mostly implies a local symmetry.

However, before the above results are described and defined, we give an extensive introduction
to the diverse basic knowledge upon which they build. This includes the formal definitions of
graphs and statistical graph models, partitions, finite permutation groups, graph clustering and
algorithms for that, as well as the entropy concept. A separate chapter is dedicated to graph
symmetry, which is described by a finite permutation group—the automorphism group of the
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graph. Aside from that, we present algorithms that are able to identify the graph symmetry.
Some of them are even capable to solve the strongly related graph isomorphism problem.

All in all, this thesis exemplarily gives insights into a possible impact of symmetry in data
analysis, which was considered—if at all—only scarcely in the literature.
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1 Introduction

1.1 Motivation

Symmetry is deeply rooted in daily human life. Right in the morning by looking into the mirror,
two symmetries become apparent: (i) The reflection of the own face, which is literally mirrored,
and (ii) the symmetry of the face itself along a vertical axis, which splits the face into two halves.
These two very graphic examples of symmetry are by far not the only ones that can be recognized
directly by observation. However, we claim both are not recognized explicitly, as humans are
used to these symmetries due to their experience. In contrast, if the symmetry is “broken” (i.e.
symmetry vanishes by adding/removing something so that the object becomes asymmetric), a
human will become aware of the asymmetry. There is even evidence that high facial symmetry
is of crucial importance for perceived attractiveness (Perrett et al., 1999; Scheib et al., 1999).

Considerations of preferring symmetry over asymmetry go back to the Stone Age. For
instance, Reber (2002) discusses the question, why Homo erectus created symmetric stone tools
as part of a discussion section of the archaeological findings (Wynn, 2002). He argues that
the reason for this symmetry is unlikely due to a perceptual preference only, because symmetry
preference was also observed for other species as well. As these other species (e.g. fishes)
do not have a desire of fine arts, which could explain such a preference, Reber (2002, p. 416)
comes to the conclusion that “[p]reference for symmetry is a more basic affective reaction than
an evaluation based on aesthetic or symbolic value”. Other ancient examples, as part of an
introduction to symmetry in several branches of science, are illustrated by Weyl (1952). He
shows images of a Greek statue (p. 7), of the design of a Sumerian vase of King Entemena (p. 8,
see Figure 1.1), and—among other examples—symmetric floor patterns of an ancient Greek
house (p. 11).

We motivate the occurrence of symmetry in diverse scientific disciplines in the following
paragraphs. This overview is not aiming for an extensive literature review but to give ideas in
what forms symmetry can appear. A separate section is dedicated to examples of symmetry in
graphs (Section 1.2). Moreover, for the sake of convenience, we try to be as informal as possible,
because formal definitions of symmetry and other foundations follow just after this chapter.

However, let us briefly give an informal description of symmetry groups. The main idea
formalized by a symmetry group is that the combination of multiple symmetries is again a
symmetry. Think again of looking into a mirror (see Figure 1.2 for an illustration of this
example). The image you see of yourself is a reflection along the vertical axis (Figure 1.2a).
Imagine that if you would take a photo of the mirror image (that is how you see yourself in the
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1 Introduction

Figure 1.1: The vase of King Entemenaa, which is given as an example of ancient symmetry by Weyl
(1952, p. 8). The engravings show a “lion headed eagle with spread wings [. . . ] whose
claws grips a stag”.

a https://commons.wikimedia.org/wiki/File:Vase_Entemena_Louvre_AO2674.jpg, photographed by
user “Jastrow”, version “09:45, 24 June 2006”, as of September 2018, licensed under public domain.

mirror) and a second frontal photo would be taken of you standing in front of the mirror (that is
how someone else sees you; Figure 1.2b). Then your right ear on the photo of the mirror image
is on the right side. On the photo taken of you directly, it would be on the left side. If there are
two mirrors arranged in front of you as shown in Figure 1.2c, you would see the combination
of the reflections each mirror implies. This means you see yourself the same as someone else
sees you, which is of course identical to the image a camera would take of you. A symmetry
group that captures this case contains exactly these two symmetries: The identity—which is
how someone else sees you—and the reflection along the vertical axis. The combination of two
reflections is again a symmetry, namely the identity. Combining identity and a reflection yields
the reflection (like taking a photo of yourself in a mirror).

Natural Sciences Further publications that deal with symmetry of the human body are, for
instance, articles by Hu et al. (2014), who investigate symmetry of the brain, and van Dongen
(2018), who presents a study that had the goal to identify associations between bodily asymmetry
and behavioral lateralization. Lateralization is the term for the asymmetric specialization of the
brain for different tasks.

The technical term in biology for a symmetric reflection along one axis is bilateral symmetry
and Shi et al. (2018) investigate the bilateral symmetry of leaves. To quantify the symmetry,

2

https://commons.wikimedia.org/wiki/File:Vase_Entemena_Louvre_AO2674.jpg


1.1 Motivation

Right ear

Right ear

Mirror image

Mirror

(a) Example of a reflection that
occurs when someone looks
into a mirror.

Right ear

Right ear

Camera image

Camera

(b) Example of the “identity im-
age” if a photo of a person is
taken. Note that cameras have
a built-in lens, which assures
that not a mirrored image is
taken.

Right ear

Right ear

Double mirror image

Mi
rro
r Mirror

(c) Example of the combination
of two reflections that just
gives the identity. The image
is mirrored twice, so that the
left part of the person in front
of the mirror will be seen on
the right side and vice versa.

Figure 1.2: Simple example of a symmetry group that contains an “identity” and a vertical reflection.
The lower part of each subfigure corresponds to the reality, the upper part corresponds to
the image under the given symmetry.

they develop a “simple indicator” that is an error measure, which sums up the differences of
subdivided areas of a leaf along the symmetry axis. Consequently, the smaller the error, the
higher the bilateral symmetry. The results of their analysis of the leaves of ten different plant
species shows that bamboo plants (the investigation took place in China) have very symmetric
leaves compared to others.

Certainly, symmetry not only plays a role in biology—though it is the science where symmetry
can often be observed by the human eye—but also in other branches of science. Especially in
physics, symmetry is crucial in many aspects as Feynman et al. (1963, Chapter 52) nicely
illustrate. The abstract definition of it is that a physical phenomenon, situation, or experiment
is transformed and the result stays the same, i.e. it is invariant (Feynman et al., 1963, p. 52–1).
The known operations that apply to this definition are (Feynman et al., 1963, Table 52–1):

• Translation in space

• Translation in time

• Rotation through a fixed angle

• Uniform velocity in a straight line

• Reversal of time

• Reflection of space

3
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• Interchange of identical atoms/particles

• Quantum-mechanical phase

• Matter/Antimatter

As a plausible example for translational symmetry, the authors explain that an experiment
(represented by some “apparatus”) that takes place under the exact same conditions at another
place or point in time gives exactly the same results, as the physical laws that influence the
experiment are invariant with respect to these transformations. In a more recent publication,
Gross (1996) sums up “[t]he role of symmetry in fundamental physics” (Gross, 1996, p. 14256).
He especially elaborates on gauge symmetries, which are “formulated only in terms of the laws
of nature”, in contrast to the “global symmetries”, which are defined on “transformations of a
physical system” (all Gross, 1996, p. 14258). Due to Gross (1996), gauge theory provides the
fundamental basis of the standard model of physics.

A more thorough examination on symmetries in classical physics (i.e. not quantum physics)
is provided by Brading et al. (2003); Brading and Castellani (2007). They distinguish symmetry
principles and symmetry arguments: The former describes the invariance of solutions that we
mentioned above, the latter means the inference of consequences that emerge from a symmetric
phenomenon. One statement, which can be derived thereof, is that symmetry is not broken
without reason, so there must be an explicit cause for the symmetry to vanish. Brading and
Castellani (2007) also elaborate on the connection of symmetry to (mathematical) group theory,
which allows to formalize and describe the symmetry itself.

Philosophy of Science The deep rootedness of symmetry in physics can be seen by the
fact that it is as present as decades and even centuries ago (e.g. Christodoulakis et al., 2018).
However, not only natural sciences involve symmetry considerations as the next examples will
show. Van Fraassen (1989) and Hon and Goldstein (2006) lift the consideration of symmetry
to a more philosophical level. In his book’s third part, called “Symmetry as Guide to Theory”,
van Fraassen (1989, p. 236) comes up with the slogan that “[p]roblems which are essentially the
same must receive essentially the same solution” as requirement for symmetry. He furthermore
relates the concepts “equivalence relation”, “partition”, and “group of transformations” to each
other and considers them as similar. As these concepts are general, they also apply to the
symmetry of graphs, which is introduced in Section 3.2. Nonetheless, the authors of both books
also use many references to the literature from physics (partly including the ones cited above),
which underlines the importance and long standing history of symmetry in physics.

Applied Sciences After we shed some light on symmetry considerations from the point of
view of natural sciences, mainly physics and philosophy, we now turn towards applied sciences.
Itai and Rodeh (1990) propose an algorithm that has the goal to break symmetry in a problem
arising in the context of distributed computing. The problem statement is as follows: Given n
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indistinguishable processors that are arranged in a ring structure so that each of them can send
messages only to its predecessor and successor, then (i) choose one processor as a leader and (ii)
determine n. This problem statement implies that the actual number of processors is unknown
and that it is not possible to distinguish any two processors by some property. Choosing a
leader means that all processors have the information which one of them is the chosen leader,
i.e. the indistinguishability caused by symmetry is broken by the appointment of one arbitrary
processor. Although this may sound not very hard to solve, there is a fundamental problem to
it, as either the computation time is infinite or the result will be erroneous if a deterministic
method is used (Itai and Rodeh, 1990, p. 61). It is important to note that a method that is able
to solve the two subproblems stated above must not be executed by an independent observer but
on every processor at the same time. Because of this, the overall problem setting is symmetric
and the authors state in their conclusion that “[s]ince its conception, distributed programming
had to face the problem of symmetry” (Itai and Rodeh, 1990, p. 85). As a consequence, if n is
unknown in advance, there is no solution to this completely symmetric problem other than the
one that may not terminate or is erroneous.

Another technical problem that has to deal with symmetries arises in the design of circuits,
where an engineer arranges and connects several functional components. Often, components of
the same type could be rearranged without changing the overall design structure. The logical
functionality of the connected components can be transformed into a graph representation that
preserves the symmetry of the circuit design. Darga et al. (2004) were inspired by this type of
problem to construct an algorithm (saucy) that solves the graph automorphism problem, which
is a solution to the symmetry problem. More details on the problem transformation and how the
algorithm works is discussed in Section 3.4.3 of this thesis. We also mention this example in
the next section, where we elaborate on symmetry of graphs.

An idea to exploit the existence of symmetry to compress (biomedical) images is presented
by Bairagi (2015). Nearly perfect symmetry of many parts of the human body (like the brain) is
the base of the proposed lossless compression algorithm. Instead of saving the complete image
data, only half of it is saved. The split of the image follows the symmetry axis of the depicted
object and additionally some differential information is saved that allows to recreate the original
image. The (small) differences are a result of imperfect symmetry.

Arts, Aesthetics, and Architecture Symmetry also plays a role in arts and architecture. For
instance, Wonka et al. (2003) present a design grammar that allows automatic architectural
design (e.g. of buildings) by applying the derivation rules of the grammar. The used shape
patterns define possible symmetry of elements (e.g. repeated occurrence of windows at the
front of a building) and a control grammar distributes design decisions along the hierarchy of
grammar derivations (e.g. to prevent different looking windows). Park (2001) analyzes actual
architectural designs of houses (the floor plans of them) utilizing the mathematical framework
of symmetry groups, which we will introduce in Section 2.4.

5
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Darvas (2017) gives a brief historical review of interdisciplinary applications of symmetry
with a strong focus on aesthetics and decorative arts. He first introduces the seven “frieze
groups”, which describe how an object can be repeatedly arranged along a straight line. In the
rest of the article he reviews several concepts, mostly from natural sciences, that have an impact
on aesthetics, e.g. the shape of crystals.

It is also noteworthy that many religious symbols are bilaterally and/or rotationally symmetric
(Figure 1.3). Interpretations of the symbols in their religious context are beyond this thesis’
scope and we solely refer to them as further examples of symmetry in a common context.

Figure 1.3: Religious symbolsa that are symmetric. From top to bottom and from left to right: Christian
Cross, Jewish Star of David, Taoist Taijitu (up to colors), Islamic Star and crescent, Bud-
dhist Wheel of Dharma, Shinto Torii, Sikh Khanda, Bahá'í star, Jain Swastika.

a https://commons.wikimedia.org/wiki/File:Symmetric_religious_symbols.svg, created by users
“Rursus”, “Klem”, and “Salix alba”, version “15:24, 17 February 2011”, as of May 2018, licensed under public
domain.

Data Analysis and Economics In data analysis, Viana (2005, 2006, 2007) shows how canoni-
cal decomposition of the labeling of data can be applied. The idea behind this analysis framework
is that there can be defined a symmetry relation on the set of labels that indexes some structured
data. He presents several examples, one of them involves the distinction of Latin letters by
their symmetry properties: Some letters (like G or R) cannot be transformed without changing
them, others (like A or V) are vertically symmetric, some letters (like C or D) are horizontally
symmetric, and some are both (likeO orH), which also involves rotational point symmetry. For
a sequence of letters, a data vector is connected to it by counting for how many letters each of
the four symmetries applies. Another example (Viana, 2007, p. 327) is based on strings of DNA
(deoxyribonucleic acid), which are encoded using the alphabet A = {A,C,G,T} corresponding
to the four nucleobases adenine, cytosine, guanine, and thymine. For sequences of length three
(so called triplets), there exists a symmetry that shuffles the positions of the different letters. If
every triplet is identified by some unique label, this symmetry also affects these labels.
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Murtagh (2009) deals with “[s]ymmetry in [d]ata [m]ining and [a]nalysis” and presents non-
trivial examples of symmetry in data, which is discussed below. The guiding thread is the
existence of hierarchy, which “is fundamental for interpreting data and the complex reality”
(Murtagh, 2009, p. 177). Hierarchy, e.g. as a result of hierarchical clustering, can be depicted
with a so called dendrogram, which is a special type of tree. On a dendrogram there can
be defined an ultrametric, which is defined simliar to a metric, but with the stronger triangle
inequality d(x, z) ≤ max{d(x, y), d(y, z)} (instead of d(x, z) ≤ d(x, y) + d(y, z)). This means
that all data points y, z, . . . that lie in another branch of the dendrogram for some given data point
x have the same distance d(x, y) = d(x, z) = . . . and are, therefore, equivalent (independent of
their distances based on the data attributes in an Euclidean space). An example that involves
the often used Iris dataset is given by Murtagh (2009, pp. 181 f.). Furthermore, the author
describes a p-adic encoding of a dendrogram and a distance definition for this, which leads to
symmetry, and he shows how a hierarchy can be represented by permutations (see definitions in
Section 2.4). Murtagh (2009, p. 195) concludes that symmetries, which “express observed and
measured reality”, should be sought in data analyses.

Another relatively practical example for the utilization of symmetry in data analysis is given
by Jabbour et al. (2013). They extend the famous apriori algorithm for the mining of frequent
itemsets (Agrawal and Srikant, 1994) to involve symmetry-based pruning. A frequent itemset
is simply a subset of a universe of items (e.g. products in a store) that is witnessed very often
within an observed set of transactions (e.g. purchased carts in a store). To detect symmetry, the
input data is transformed into a bipartite graph representation, where the automorphism group
of the resulting graph captures the symmetry (details on graphs and automorphisms are defined
in Sections 2.1 and 3.2). Items are equivalent if there exists a mapping on the set of transactions
and on the set of all items so that the observed set of transactions stays the same. If equivalent
items are found and one of them is recognized as infrequent, then, automatically, all other items
must be infrequent, too. This allows to remove (prune) these items from the following iterations
of the search procedure. Although the datasets used for their benchmarks do not contain many
symmetries, Jabbour et al. (2013) encounter a speedup of up to 23 % compared to the original
algorithm (mainly due to a decreased number of database scans).

Park et al. (2008) present an evaluation of three algorithms that are capable of recognizing
symmetry in images. These algorithms are not limited to detect only symmetry of a whole
image, but are able to find symmetric areas within the image. Examples involve the four “atomic
symmetries” (Park et al., 2008, p. 2) of the two dimensional Euclidean space, namely translation,
rotation, reflection, and glide-reflection. Example images shownby the authors contain, e.g., tires
(rotational symmetry), faces and trees (reflection), or “wallpapers” (i.e. translational symmetry
by shifting copies of an object). They come to the conclusion that the detection of symmetry
in real-world images still has much potential to increase in accuracy, as less than 20 % of the
symmetries were detected if multiple symmetries exist. The highest detection rate could be
achieved for single reflections or rotations in artificial images.
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How symmetry has an influence on voting in social choice theory is shown by Saari (1988).
He applies the same theory (finite permutation groups) that underlies the symmetry of graphs
to social choice, where permutations (reorderings of elements) can be used to transform one
ranking into another. A ranking is just an ordered sequence of alternatives in descending order
of preference, and a change in the ranking corresponds to a change in the voter’s opinion. The
author illustrates how such changes in opinion can lead to unexpected results, especially if not
only rankings of all possible alternatives are considered but also rankings of subsets of the
alternatives. An example of an unexpected effect is given in the introduction of the article: A
majority vote comes to the result that milk is preferred over wine and beer. However, as milk
is not available (this implies a change of opinion), suddenly beer is the new choice, although a
majority of the voters actually prefers wine over beer.

Scientific Journals Before we present some motivating examples that are directly related to
graphs (which are the main concern of this thesis), let us point out that there also exist several
scientific journals dedicated to symmetry—either interdisciplinary or for a specialized field.
The “Journal of Geometry and Symmetry in Physics”1 first appeared in 2004 and published
a total of 47 volumes as of the beginning of 2018. Since 2009, the interdisciplinary journal
“Symmetry”2 released ten volumes (one per year) with an increasing number of issues over
the years (quarterly publications in the beginning, monthly since 2016). The oldest journal
(in terms of its specialization expressed by the name of the title) is “Symmetry: Culture and
Science”3. It is published by the “Symmetrion”4, which is an “international institute [that]
promotes interdisciplinary and holistic studies bridging different disciplines, science and art,
and different cultures”. The first volume goes back to 1990 and four numbers per year have been
released until today.

1.2 Symmetry of Graphs

Symmetry of graphs is tightly coupled to the graph isomorphism and automorphism problems,
whereas the latter is a special case of the former. The formal details on this, as well as some
application examples, follow in Chapter 3. An informal definition, which relates to the relatively
obvious geometric symmetry of two or three dimensional objects (like the symmetry of the
human face in the very beginning of this thesis), is to say that a graph is symmetric (contains
symmetry) if it is possible to map parts of the graph onto each other without changing its
structure. Again, for formal details we refer to Section 3.2.

Purely mathematical publications are not discussed here, as the goal of this section is to point
out the importance of graph symmetry in a scientific application context. The study of the
automorphism group of graphs goes back to, e.g., Pólya (1937) and Frucht (1939), and has been
1 https://www.emis.de/journals/JGSP/, as of May 2018
2 http://www.mdpi.com/journal/symmetry, as of May 2018
3 http://journal-scs.symmetry.hu/, as of May 2018
4 http://symmetry.hu/symmetrion/, as of May 2018
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part of active research in pure mathematics since then. The work of Pólya (1937) concentrates
mainly on the (practical) combinatorial problem to enumerate the number of theoretically
possible different chemical compounds of isomers. This is, however, equivalent to the number
of automorphic drawings of a graph that models a chemical formula (Pólya, 1937, p. 210).
Frucht (1939) answers the question whether there always exists a graph that has a given finite
abstract group as its automorphism group. He shows that, in fact, there exist infinitely many
such graphs, and that they are connected. Informally, this means that for each finite symmetry
in general (which is described by a group) there always exists a symmetric graph with exactly
the same symmetry.

Two motivational examples we have already discussed are—on the one hand—the one of
Darga et al. (2004), who want to solve logical satisfiability problems that are derived from
circuit design problems and can themselves be transformed into graph representations. These
graphs are highly symmetric and knowing these symmetries allows to reduce the complexity of
the satisfiability problem. On the other hand, Jabbour et al. (2013) create a graph representation
of a frequent itemset mining problem that contains symmetry inherent in the data. To solve the
symmetry problem, they use the method motivated and presented by Darga et al. (2004). Both
of these problem transformations can be seen as examples of the application of the Theorem of
Frucht (1939), which was just mentioned.

A survey on symmetry in interconnection networks5 is given by Lakshmivarahan et al. (1993).
Interconnection networks occur in the design of parallel computers, where each processor is
described by a node and the edges represent data connections between them. The authors dis-
tinguish static and dynamic networks, but only cover the former, as the latter involves dynamical
changes of the connections. They list symmetry as one property that makes a good network and
investigate symmetry in general by discussing several Cayley graphs. A Cayley graph is a graph
itself, which is a possible representation of a group (see permutation groups in Section 2.4)
based on a generating set of the group.

The article of Zhao and Parhami (2018) goes in a similar direction: The authors propose a
symmetry-based method that allows an efficient embedding of virtual networks into physical
ones (i.e. computer networks that consist of actual hardware components). Therefore, the task
is to find the best mapping of the virtual network structure to the physical network topology.
Their method utilizes an intermediate symmetric graph (the symmetric agency graph), which
acts as an auxiliary model between the source and destination networks. Due to the authors, this
procedure simplifies the original embedding problem (Zhao and Parhami, 2018, p. 5).

Ben-David et al. (2006, section 6.3) notice in their article on clustering stability that
“[s]ymmetry [l]eads to [i]nstability of [s]pectral [c]lustering”. Spectral clustering is a method to
identify clusters, which can be characterized by dense areas (submatrices) in a data matrix after

5 Often, the terms network and graph are used interchangeably and we follow this convention. One difference
between the terms is the degree of formality: A network is relatively informal and means the connection structure
between entities in some way, whereas the term graph is the mathematical name that is tied to formal definitions.
Consequently, graphs can be used to model networks.
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reordering rows and columns, utilizing the eigenvectors of the (quadratic) matrix. However,
symmetry of a matrix is expressed by a reordering of rows and columns that results in the same
matrix. This operation is invariant concerning the eigenvalues and thus can lead to unstable
situations. Spectral clustering is also applicable to graph clustering, as every graph can be
represented by a quadratic adjacency matrix (see Section 2.1) and the symmetry of this matrix
corresponds to the symmetry of the graph.

As an expression of the coherence of symmetry in aesthetics in the human perception and the
representation of graphs, Welch and Kobourov (2017) investigate how the drawing of graphs
(i.e. the graphical representation on a plane, see Section 2.1.2.3)—which is arbitrary up to a
chosen layout—can be measured in terms of human perceived shapeliness. Their idea is based
on Gestalt theory, which goes back to Wertheimer (1922, 1923, among others), and deals with
these perceptions. The authors conducted a study where voters had to decide between two
different drawings of the same graph which they liked better. The results are compared to three
different measures (Purchase measure, Klapaukh measure, and stress), each considering layout
symmetries in another way (e.g. mirror and rotational symmetry). The measures quantify a
given drawn layout by a number. For the two former ones, a high value (at most one) reflects a
large amount of layout symmetry, for the latter one, smaller values are desirable. An interesting
finding (Welch and Kobourov, 2017, section 6.2) is the intransitivity of the three measures,
which they attribute to a multi-faceted nature of symmetry: The Purchase measure has a higher
agreement to the voters decision than the Klapaukh measure, and the Klapaukh measure is
better than stress. However, the implication that then also the Purchase measure is better than
stress is not true. It is important to note that not only symmetry of the graphs themselves, but
also perceived symmetry of the drawing (i.e. even if graph symmetry is absent) plays a role
for the voting. This result is in line with Gestalt theory, which suggests that humans perceive
the entirety of an object before they sense the smaller parts of which the object is composed of
(Welch and Kobourov, 2017, p. 341).

Wu and Antsaklis (2010) study the stability of complex control systems in which multiple
agents interact with each other. This interaction at a certain point in time is represented by a
graph. They analyze howmany symmetric subsystems can be added to the complete system until
it becomes unstable. Subsystems are equivalent if they have identical dynamics and interactions
(Wu and Antsaklis, 2010, p. 198). The authors evaluate their stability considerations, e.g., on
a cyclic interconnection structure (i.e. each agent interacts with its follower) with and without
a center that allows bidirectional interaction (i.e. each circularly arranged agent interacts with
the center and vice versa). The former case (with center)—which is quite similar to the
interconnection network of independent processors discussed above—turns out to be unstable,
whereas the latter case (without center) is stable.

All the above examples from the literature have in common that they see symmetry (i) as a
desirable property or (ii) as a given “phenomenon” that has to be dealt with in a positive way.
We close this section by shortly introducing some more general articles that regard symmetry
in a more analytic environment.
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Zenil et al. (2014) show the correlation of the automorphism group size, as a measure of graph
symmetry (see also Section 4.1), with the Kolmogorov complexity, as a measure of structural
complexity. Generally, Kolmogorov complexity can be used to measure randomness in a string
of symbols and thus as a measure of compression. Strings that can be transformed in a lossless
way (by using a different encoding) to be shorter than their input have a lower Kolmogorov
complexity. Informally, Kolmogorov complexity is the length of the shortest program that is
able to produce the symbol string as its result. The authors use a so called block decomposition
method and apply it on the adjacency matrices of graphs. They are decomposed into non-
overlapping submatrices and for each submatrix its occurrences are counted. As symmetry
always implies a certain redundancy, the authors expect graphs with a decreasing complexity
to have an increasing amount of symmetry. The expectations of Zenil et al. (2014) are met,
as they clearly find a negative relation between Kolmogorov complexity and graph symmetry
by empirically validating both measures for small and medium sized real-world graphs as well
as for generated artificial networks (see also Section 2.2 for graph models). However, as also
graphs with low symmetry and low complexity have been found, the authors conjecture that
their measure (the block decomposition) does also capture other structural redundancies that are
not related to graph symmetry.

Garlaschelli et al. (2010) and Garrido (2011) provide reviews on the topic of symmetry in
(complex) networks. Garlaschelli et al. (2010) put a strong emphasis on the distinction of exact
symmetry (which is discussed in this thesis) and stochastic symmetry. Garrido (2011) reviews
several different symmetry conceptions in the literature. He also provides a definition of “fuzzy
symmetry”, which is—as stochastic symmetry—another form of weak symmetry. However, the
level of detail of the content with a direct connection to graph symmetry that Garrido (2011)
addresses is relatively vague. Both reviews have in common that they go into the details of
several network models, which try to mimic certain properties of real-world/complex networks,
and of community structure of networks, which is obtained through clustering. Nevertheless,
possible effects of symmetry on clustering—as they are investigated in this thesis—are not
addressed.

An effect of graph symmetry on clustering that is not discussed any further in this thesis is
presented by Ball andGeyer-Schulz (2018b). The authors show that all measures that are capable
to compare two graph partitions in terms of their structure are affected by graph symmetry. As
a direct consequence, equivalent partitions cannot be recognized by these measures. They also
prove that it is impossible to define such a comparison measure without taking the symmetry into
account in general. As a solution to this problem, they also present how distance-based measures
can be transformed so that they are defined on equivalence classes of partitions. Consequently,
the transformed measures are invariant under the graphs’ symmetry, i.e. they are not affected by
the symmetry.
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1.3 Scope of the Thesis

The previous sections have shown that symmetry in its entirety and symmetry of graphs in
particular are part of past and current research. Especially in physics, symmetry effects are part
of the models for a long time. Symmetry of graphs is a topic mainly rooted in discrete (applied)
mathematics and has not gained much attraction in other research areas such as data analysis or
social network analysis.

For instance, Newman (2010) thoroughly introduces many graph theoretic aspects that act as a
basis for the analysis of networks, but he does not mention graph symmetry at all. Interestingly,
the same author introduced the famous modularity measure, which is—nearly 15 years after
publication—still the most widely used quality criterion for graph clustering (Newman and
Girvan, 2004). This fact should not be understood as critique towards the author but as an
evidence that there seems to be a gap between mathematical theory (which is well developed)
and practical application (in a scientific sense). Aside from that, Newman (2003, p. 195) reviews
that “[s]ociologists have concentrated on [. . . ] structural equivalence”, which he defines as
nodes with exactly the same neighbors. But that is just the informal definition of symmetry. The
author further argues that exact structural equivalence is unusual.

This thesis makes an effort to narrow this gap by providing deeper insights in both, theoretical
and practical results on the existence of symmetry in graphs emerging from real observations and
on the actual impact on graph clustering. The main focus lies on the result of graph clustering,
which is a partition of the graph’s nodes. Symmetry clearly has also an impact on the clustering
algorithms; for instance, symmetry induces equivalent intermediate steps during the algorithms’
execution. However, this issue will not be investigated further.

1.4 Outline

The content of this thesis spans eight chapters (including this introductory one) and five appen-
dices. Chapter 2 is a comprehensive introduction of foundations, which are either needed for the
upcoming content or are helpful to understand the complex relations of different concepts. We
begin with the definition of graphs and focus on the two different representations that are most
often found in the literature. One is based on matrices and the other is based on a set-theoretic
definition. We also briefly discuss graph drawing, which is the graphical embedding of a graph
on a plane (e.g. also a pencil drawing on a sheet of paper). We move on and review the most well
known graph models and properties that are present in real-world graphs (i.e. graphs modeled
as abstraction of real circumstances). Next, a definition of partitions is given in general and also
particularly for graphs. The definitions are not only important in the context of graph clustering
but also for graph symmetry. However, before we formalize graph symmetry in Chapter 3, an
introduction to finite permutation groups is given, as they are the fundamental base of graph
symmetry. After that, a definition of graph clustering is presented, which especially involves
the presentation of clustering algorithms. Some of them are used in later chapters of the thesis.
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The chapter ends with the introduction of entropy, again, in general, and entropy of graphs in
particular.

In Chapter 3 different kinds of graphmorphisms are presented with a strong focus on automor-
phisms, which are used to capture graph symmetry. All existing graph automorphisms form the
automorphism group (which we informally called symmetry group in the previous sections) and
it is a finite permutation group. We also extensively review different algorithms that are capable
to compute the graph symmetry: First, efficient algorithms for special graphs are described and
then, second, we review general algorithms that are applicable for any graphs. Third, a large
part deals with algorithms that are actually implemented and can be used in practice. Most of
them follow a systematic backtracking strategy that acts on a search tree and one of them (called
saucy) is used in later chapters. As graph symmetry in terms of automorphisms is only one
(relatively strong) symmetry concept, we also briefly discuss some other concepts.

The results of an empirical analysis of a large number of graphs concerning symmetry are
presented in Chapter 4. These are in some way the baseline of all further considerations, as
they justify the necessity for conducting research on this topic by showing the actual existence
of symmetry in many graphs. In connection with the analysis, we first elaborate on measures
that allow a quantification of graph symmetry. After that, we describe the analysis procedure
itself, which involves the retrieval of graph data from an internet graph-data repository. An
extended description of this procedure can be found in Appendix B. The chapter ends with the
presentation and discussion of the results. The key finding is that of the about 1700 analyzed
graphs over 74 % contain symmetries. Most of the content of this chapter is published (Ball and
Geyer-Schulz, 2018a).

Chapters 5 and 6 introduce advanced theoretical concepts concerning graph symmetry and
partition stability, which are then used in Chapter 7 for a second empirical analysis. In Chapter 5
the focus lies on graph symmetry and we begin by listing several reasons why graphs can be
symmetric. A description for each reason is given as well, and we provide literature references
to underpin our explanations. Next, we define local symmetry, which allows a quantification of
graph symmetry, but from a different point of view as defined in Chapter 4. The idea that stands
behind the given definitions is as follows: It makes a difference for potential symmetry effects if
the existing graph symmetry affects one large part of the graph instead of several smaller parts.
In the latter case, it is possible to decompose the symmetry into independent subsymmetries.
The chapter ends with a definition of weak graph symmetry that is based on graph clustering.

The Chapter 6 deals with partition stability. In the beginning, we define how the symmetry of
a graph affects the space of graph partitions, which is also the space of possible graph clustering
solutions. The important part of it is that symmetry induces equivalence classes of partitions.
Subsequently, we present three equivalent partition stability definitions and each of them allows
a different point of view on the stability problem. Two of the definitions are combined in an
algorithm that efficiently allows to test partition stability. After this, we prove for two special
classes of symmetric graphs, which often function as building blocks for larger graphs, that
their symmetry does not affect partition stability when modularity clustering is used (that is the
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clustering definition used in this thesis), at least theoretically. An entropy definition that treats
graph symmetry in the light of dynamical systems ends the chapter. The definition allows to
quantify the stability of a single graph partition as well as the uncertainty of the complete graph.
As this measure is used in the next chapter, we also provide simplifications that allow an efficient
computation.

The second last chapter can be seen as the climax that also gives this thesis its title. In
Chapter 7 a second empirical analysis is described, which has the goal to investigate if graph
symmetry actually impacts the clustering results. Additionally, we formulate some hypotheses
that involve, e.g., the idea that partitions of graphs with a local symmetry should be less likely to
be affected by this symmetry. The analysis is spread over several steps that build on each other.
The most interesting findings are:

• Graph symmetry does have an effect on clustering.

• Locality of the graph symmetry strongly influences this possible effect.

• Partitions of highly symmetric graphs can be affected “accidentally”, independent of the
locality of the symmetry.

This thesis ends with a conclusion and an outlook in Chapter 8. It wraps up the results and
points towards future research topics that emerge from our findings or are closely connected to
them.
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2 Foundations

This chapter introduces many basic definitions. At some points, special integer sequences are
presented and we will then reference the excellent “Online Encyclopedia of Integer Sequences”
(OEIS Foundation Inc., 2017), which originates from the original work of Sloane (1973).

By N we mean the set of natural numbers including zero, B = {0, 1} is the set of binary
numbers, and R is the set of real numbers. The phrase “iff” stands for “if, and only if”; “w.l.o.g.”
means “without loss of generality”.

2.1 Graph Theory

We define the mathematical concept of graphs in this section. Section 2.1.1 begins by dis-
tinguishing different types of graphs and we present them without any formal definitions, but
simply by graphical visualizations. The formal definitions of the types follow in Section 2.1.2,
where we show different representations of the abstract concept of graphs. All representations
are equivalent but depict different points of view. After that, we present some properties of
graphs and additional definitions in Section 2.1.3. We end this section on graph theory by
presenting some classes of graphs in Section 2.1.4. Examples of the demonstrated concepts and
definitions are given throughout the text.

2.1.1 Types of Graphs

A graph G is an abstract mathematical structure that consists of nodes and edges. A node
in its pure mathematical definition is an object free from any interpretative meaning except
from its existence in the defined graph. Edges are relations between pairs of nodes and their
interpretation is not part of the mathematical definition, as well. This thesis only takes finite
graphs into account and, therefore, the numbers of nodes and edges are both finite. The number
of nodes is n ∈ N and the number of edges is m ∈ N.

2.1.1.1 Simple Graphs

Simple graphs consist of n nodes and have between 0 and n(n − 1)/2 = (n
2) edges. This means

that between any two nodes either an edge exists or not. Two nodes that are connected by an
edge are called adjacent, an edge that is connected to a node is called incident (to this node). In
simple graphs, only edges that are incident to two different nodes are allowed. An edge incident
to the same node twice is called a loop and a graph without loops is loop-free. An example is
given in Figure 2.1.
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Figure 2.1: A simple graph with n = 7 nodes and m = 10 edges.

2.1.1.2 Directed Graphs

A directed graph (digraph) is defined similar as a simple graph, but each edge has a particular
direction. This means it either directs to a node or away from it. Another difference to simple
graphs is the maximum number of edges. It is n(n − 1), as between any two nodes either no
edge exists, an edge from one to the other node exists, or two edges in either direction exist.
Figure 2.2 shows an example. Depending on the graphical representation, two edges in either
direction between two nodes can also be visualized as one edge with arrows at both ends or one
edge without any arrows.

Figure 2.2: A directed graph with n = 7 nodes and m = 12 directed edges.

2.1.1.3 Weighted Graphs

A weighted graph is a simple graph that additionally has edge weights as shown in Figure 2.3.
Which values the weights can have depends on the interpretation of the weights. Especially a
weight of 0 depends on the context because it can either be interpreted as “no edge” or as “edge
with weight 0”. An example is shown in Figure 2.3.

2 1.3

0.1

1

7
4.5

1

2.1

2.9
−3

Figure 2.3: A weighted graph with n = 7 nodes and m = 10 weighted edges.

2.1.1.4 Multigraphs

Multigraphs are like simple graphs, but they can have multiple edges between pairs of nodes.
Figure 2.4 shows an example. Depending on the representation, multiple edges can also be
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2.1 Graph Theory

interpreted asweighted edges. The number of edges between two nodes is then simply interpreted
as the weight of the edge.

Figure 2.4: A multigraph with n = 7 nodes and m = 13 edges.

2.1.1.5 Discussion

The presented graph types above give only an overview of types that are often defined in the
literature. It is sometimes hard to exactly distinguish different types, because some characteristics
of graphs can also be interpreted as a property a graph can have. An example are loops. All
types above must not have loops, but we did not present a “loop graph” type. However, in some
cases it is important to allow loops in a graph, independent if it is a directed graph, a multigraph,
and so on. On the contrary, the term “simple graph” refers exactly to the (informal) definition
above, which means a simple graph must not have loops. If loops are possible, we simply speak
of an undirected, unweighted graph without multiple edges that may has loops, instead of a
simple graph with loops.

It also can be necessary to combine multiple graph types, e.g., a directed and weighted graph
or a graph with directed and undirected edges. These examples show that it is unrewarding to
only think of disjoint graph types. Instead, we believe it is more helpful to think of properties
of graphs that can be combined. We go into more detail in Section 2.1.3.

Nonetheless, we want to mention another type of graph, which is different to all the examples
and explanations above. A hypergraph is a graph that consists of nodes, but the relations
between those nodes are not restricted to be defined on pairs of nodes. Such relations are called
hyperedges and an hyperedge is a relation between any number of nodes in the graph.

2.1.2 Graph Representations

We present two types of representation, namely matrix-based and set-based representations. As
for this thesis mostly simple graphs are of relevance, we mainly focus only on the definitions for
simple graphs given the different representations. At the end of this section we describe briefly
some other representations.

2.1.2.1 Matrix Representation

A graph G can be defined by a matrix A ∈ X n×n. X is some “useful” number system, in the
simplest form X = B. The binary matrix A determines direct relations between the n nodes: If
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ai j = 1, there is an edge from the node determined in row i to the node determined in row j.
Note that ai j references the matrix entry in row i and column j.

For simple graphs, the relation ai j = a ji, ∀i, j = 1, . . . , n must hold and aii = 0, ∀i, as loops
are not allowed. A is symmetric if the graph is simple. If we want to represent directed graphs,
only aii = 0, ∀i must hold. The matrix A is called adjacency matrix, as it represents the node
adjacencies. If only A is given, we cannot always distinguish if the graph is directed or not, as
ai j = a ji, ∀i, j = 1, . . . , n could hold even if the graph is directed.
We can compute the number of edges of a directed graph from the adjacency matrix as

m→ =
n

∑
i=1

n

∑
j=1

ai j . (2.1)

If G is undirected, Equation 2.1 counts edges twice. Therefore, we compute m for undirected
graphs as

m =
n

∑
i=1

n

∑
j=i

ai j (2.2)

to count only the right upper triangle of A (note the index definition of the inner sum).

Example 1. As one might have noticed, we tried to avoid giving nodes (and edges) any unique
identifiers/ids, labels, colors, or whatever distinguishing property they could have. The reason
is that, as, e.g., Biggs (1993, p. 7) states, a labeling of nodes is arbitrary. However, for this
example and the following ones we introduce a labeling of the nodes of the graphs in Figures 2.1–
2.4. This is necessary to have a clear connection between the visualization of the graphs and
their corresponding matrix representations. The labeling is shown in Figure 2.5 and the label
corresponds to the row and column indices of the adjacency matrices.

1

2 3

4

5

6

7

Figure 2.5: An arbitrary labeling of the nodes of the graphs in Figures 2.1–2.4.

The matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 0 0 0
1 0 1 0 0 0 0
1 1 0 1 1 0 0
1 0 1 0 1 0 0
0 0 1 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.3)
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is the adjacency matrix of the labeled simple graph shown in Figure 2.5. As it has no loops, the
diagonal of A contains only zeros. The number of rows and columns corresponds to the number
of nodes n = 7; m = 10 is the sum of all matrix entries above the diagonal. Due to the symmetry
of the matrix, the sums of the entries above and below the diagonal are equal.

Similarly, the matrix

A→ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 1 1 0 0
1 0 0 0 0 0 0
0 0 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.4)

is the adjacency matrix of the directed graph shown in Figure 2.2 (after labeling the nodes). It
is not symmetric along the diagonal and the number of edges is the sum over all of its entries,
which is m→ = 12.

If we choose X = R, we can also denote weighted graphs in adjacency matrix representation
and for X = N the same is true for multigraphs. Nonetheless, the information on how to interpret
the matrix is important to prevent misconceptions, as Bn×n ⊂ Nn×n ⊂ Rn×n holds. Loops can
easily be represented by non-zero entries on the matrix’ diagonal.

Example 2. The matrix

Aw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 2 1.3 0.1 0 0 0
2 0 1 0 0 0 0

1.3 1 0 7 4.5 0 0
0.1 0 7 0 1 0 0
0 0 4.5 1 0 2.1 2.9
0 0 0 0 2.1 0 −3
0 0 0 0 2.9 −3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.5)

represents the weighted graph shown in Figure 2.3 and

Am =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 3 1 1 0 0 0
3 0 1 0 0 0 0
1 1 0 1 2 0 0
1 0 1 0 1 0 0
0 0 2 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.6)

represents the multigraph in Figure 2.4.
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Other matrix representations of graphs are the incidence matrix or the Laplacian matrix: The
incidencematrixD is an n×m-matrix where nodes are determined by rows and edges by columns
(thus D is not necessarily symmetric). Biggs (1993, p. 24) defines D for the directed case as

d→i j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 edge in column j directs to node i

−1 edge in column j directs away from node i

0 otherwise

(2.7)

whereupon the values for “directs to” and “directs away from” are chosen arbitrarily and thus
can be swapped. For directed graphs this reduces to

di j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 edge in column j is connected to node i

0 otherwise
. (2.8)

This definition also allows an easy representation of hypergraphs, as it is possible to describe the
incidence of edges with more than just two nodes. Multigraphs can also be represented (directed
and undirected). For weighted graphs or graphs with loops, the definitions in Equations 2.7 and
2.8 have to be modified.

Example 3. The incidence matrix corresponding to the simple graph in Figure 2.1 is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.9)

with D ∈ B7×10, hence n = 7 and m = 10. The row indices correspond to the labels introduced
in Figure 2.5 and each column represents an edge. Similarly,

D→ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 −1 1 0 0 0 0 0 0 0 0
1 −1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 1 −1 −1 1 0 0 0 0
0 0 0 −1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 −1 −1 −1 1 0
0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.10)

is the incidence matrix of the directed graph shown in Figure 2.2. Each of the m = 12 columns
contains exactly one entry that is 1 and one that is−1 to represent the directions. For instance, the

20



2.1 Graph Theory

first column corresponds to the edge from node 1 to node 2, and the second column corresponds
to the edge between the same nodes but in the opposite direction.

The Laplacian matrix of a graph is defined as (e.g. Biggs, 1993, p. 27)

L = ∆ − A, (2.11)

where ∆ is the degree matrix of G. ∆ has the same dimensions as A but with non-zero entries
on the diagonal only (as for the identity matrix 1):

δi j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

deg(i) i = j

0 otherwise
. (2.12)

deg(⋅) is the degree function, which depends on the directedness of the graph. If G is directed,
one can distinguish between indegree and outdegree of a node. Indegree is the number of
“incoming” edges, i.e. the number of nodes relating to (pointing to) the considered node

deg→+ (i) =
n

∑
j=1

a ji (2.13)

and outdegree is the number of nodes the considered node relates to

deg→− (i) =
n

∑
j=1

ai j, (2.14)

respectively. In undirected graphs, the indegree and outdegree are the same, thus

deg(i) = deg→− (i) = deg→+ (i). (2.15)

Example 4. The degree matrix of the simple graph in Figures 2.1 and 2.5 results in

∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.16)
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The Laplacian is

L = ∆ − A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 0 0 0
1 0 1 0 0 0 0
1 1 0 1 1 0 0
1 0 1 0 1 0 0
0 0 1 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 −1 −1 −1 0 0 0
−1 2 −1 0 0 0 0
−1 −1 4 −1 −1 0 0
−1 0 −1 3 −1 0 0
0 0 −1 1 4 1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(2.17)

From this point of view, it is clear that any n × n-Matrix can be interpreted as a (possibly
weighted, directed, . . . ) graph and this correspondence allows to use the linear algebra toolset
on graphs. The analysis of graphs via its describing matrices is captured by spectral graph
theory (e.g. Biggs, 1993; Chung, 1997; Brouwer and Haemers, 2012), which aims to analyze
“graph related” matrices. Brouwer and Haemers (2012, p. 2) define the spectrum of a graph
as the spectrum of its adjacency matrix A and the Laplace spectrum as the spectrum of the
Laplacian L. The spectrum is the set of eigenvalues of a matrix and its multiplicities. Spectra
of graphs can be used to characterize graphs (Brouwer and Haemers, 2012, chapter 14) or as
input for graph clustering algorithms (see Section 2.5.4).

2.1.2.2 Set Representation

There is another widely used notation for graphs, which is based on set theory (e.g. Godsil and
Royle, 2001, p. 1). A graph G is defined by a 2-tuple (V, E) and the components correspond to
the sets of object types a graph consists of: Nodes and edges. In correspondence to the matrix
representations given above, the node set is

V = {1, 2, . . . , i, . . . , n} (2.18)

and the node labels match the row indices of the according adjacency matrix A. E denotes the
edge set and for directed graphs

E→ ⊆ V ×V (2.19)
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applies. This means an edge simply is a tuple of two nodes expressing the relation between both.
Therefore,

ai j = 1 ⇐⇒ (i, j) ∈ E→ (2.20)

holds. For simple graphs, this can be relaxed to sets instead of ordered tuples, thus

E ⊆ {{i, j} ∣ i, j ∈ V, i ≠ j} (2.21)

and
ai j = a ji = 1 ⇐⇒ {i, j} ∈ E. (2.22)

We can directly derive ∣V ∣ = n and ∣E∣ = m for directed and undirected graphs. To shorten nota-
tion, we sometimes simply write i j (∈ E) when we mean the edge between i and j. Occasionally
we also write V(G) (or E(G)) instead of simply writing V (or E) to emphasize that we mean
the set of nodes (or edges) of the graph G.
When we want to express multigraphs in a set-based representation, the set of edges E must be

replaced by a multiset that allows to contain the same object (an edge) multiple times. Weighted
graphs cannot be expressed directly by this representation.

Example 5. The labeled simple graph shown in Figure 2.5 is represented in set-based notation
as G = (V, E) with

V = {1, 2, 3, 4, 5, 6, 7} (2.23)

and

E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}, {5, 6}, {5, 7}, {6, 7}} . (2.24)

For the directed graph in Figure 2.2 the notation results in G→ = (V, E→) with

E→ = {(1, 2), (1, 3), (2, 1), (3, 2), (3, 4), (3, 5), (4, 1), (5, 3), (5, 4), (5, 6), (6, 7), (7, 5)} . (2.25)

2.1.2.3 Other Representations

Another possible representation, which we already implicitly used in Section 2.1.1, is to simply
draw a graph on a plane (called graph drawing). This representation sounds to be simple and
intuitive, but graph drawing brings up a whole new bunch of problems, as one normally wants
the visualization to “look good”. What that means is on the one hand quite subjective, on the
other hand there are properties (e.g. planarity) and methods (e.g. Kamada and Kawai, 1989;
Fruchterman and Reingold, 1991; Adai et al., 2004; Martin et al., 2011) to visualize graphs in an
appealing manner. Quite intuitively, the computation of a sophisticated layout is as least as hard
as the analysis of certain properties of the graphs themselves. This results from the arbitrariness
of the positioning of the nodes on the plane.
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Example 6. One possible drawing of the simple graph G with n = 7 nodes and m = 10 edges
was already given in Figure 2.5. The chosen layout is of course handmade and emphasizes the
structure of G. In Figure 2.6, the same graph is drawn with another far more generic layout: The
nodes are arranged in a circular manner, ordered by their arbitrary labels we have introduced.

1

2

3

4 5

6

7

Figure 2.6: A circular layout of the same graph as in Figure 2.5.

Another representation of graphs is in terms of functions that describe the relations between
the nodes or even properties of single nodes. For a simple graph, the function e ∶ V × V → B
describes the edge relations. This function can be replaced/modified for a weighted graph so
that w ∶ V ×V → R describes weighted edges. The definition of the relation functions influences,
e.g., if loops exist or not. Additionally, a function c ∶ V → N could represent a coloring of the
nodes. This function-based representation is very flexible and allows multiple properties for a
graph, each represented by a separate function.

2.1.3 Graph Properties and Further Definitions

So far, we have been quite vague on the distinction of “types” and “properties” of graphs and
we clarify this now. The properties, like weights, directed edges, loops, and so on, are all
constructive properties. That means a graph that has these properties has them by definition.
For instance, a weighted graph is always weighted, even if all edge weights are either just one or
zero. Every weighted graph is contained in the nondenumerable set Grw, which contains any
weighted graph with n nodes and m weighted edges. The denumerable set of simple graphs Gr

is a subset of Grw, as each graph with edge weights zero or one is also contained in the set of
weighted graphs.

The properties we introduce in this section are not present by definition but depend on the
actual graph, i.e. on the element G ∈ Gr (or ∈ Grw, etc.). We focus on simple graphs, but the
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properties can also be defined for other graph types. The first property is the mean degree for
every node of an undirected graph. Trivially, the sum of all degrees is

2m =
n

∑
i=1

deg(i) =
n

∑
i=1

n

∑
j=1

ai j = 2∣E∣, (2.26)

because we count each edge twice. From this follows the mean degree (see Newman, 2010,
p. 134)

deg = 2m
n
. (2.27)

The maximum of deg is of course n − 1, which is reached if every node is connected to every
other node (see also Section 2.1.4). If that is the case,

2m
n

= n − 1 ⇐⇒ m = n(n − 1)
2

= (n
2
) (2.28)

holds, as we already motivated in Section 2.1.1. With this we can define another property, which
is the density of a graph, and it is the fraction of actual and maximum possible edges (also
Newman, 2010, p. 134)

ρ = m
(n

2)
. (2.29)

Example 7. The average node degree of the simple graph shown in Figures 2.1 and 2.5 is

deg = 2 ⋅ 10
7

= 20
7
, (2.30)

i.e. every node is adjacent to nearly three other nodes on average. The density of the graph is
given by

ρ = 10
(7

2)
= 10

7⋅(7−1)
2

= 10
21
. (2.31)

Another important property of a graph is its connectedness. A simple graph is connected, if
there exists a path from an arbitrarily chosen node to every other node in the graph. A path from
the node i to the node j is a sequence of indices of the adjacency matrix

path(i, j) = i, k1, k2, . . . , kl, j, aik1 = ak1k2 = . . . = akl j = 1. (2.32)

If a graph is not connected (disconnected), there exists a reordering of the rows and columns of
A so that each disconnected part of the graph is determined by a distinct sub-matrix, and the
remaining row and column entries are all zero (as no edge to another part exists). Such reorder-
ings are called permutations and the resulting matrix manifests a graph, which is isomorphic to
the original one. We go into much further detail on this topic in Chapter 3.

Not a property but a convenient definition is the one of a subgraph. A subgraph G′ of a graph
G is defined by subsets V ′ ⊆ V and E′ ⊆ E. Godsil and Royle (2001, p. 3) distinguish between
spanning and induced subgraphs. Spanning subgraphs have exactly the same node set V ′ = V
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but a proper subset E′ ⊂ E, which is the same as removing some edges from G. An induced
subgraph is formed by a proper subset V ′ ⊂ V and E′ = {uv ∈ E ∣ u, v ∈ V ′} ⊂ E, which means
V ′ induces G′. Alternatively, an induced subgraph can be created by a proper subset E′ ⊂ E

together with the node set V ′ that contains all nodes that are adjacent by edges in E′.

Example 8. The spanning subgraph of the simple graph shown in Figures 2.1 and 2.5 that
is formed by the edge set E′ = {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {5, 6}, {5, 7}, {6, 7}} is shown in
Figure 2.7a. A subgraph that is induced by the node set V ′ = {1, 2, 3, 4} is shown in Figure 2.7b.
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4

5
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7

(a) A spanning subgraph of the simple graph shown in
Figure 2.5. The graph is disconnected, as, e.g., no
path exists from node 1 to node 5.
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(b) A node induced subgraph of the

simple graph shown in Figure 2.5.

Figure 2.7: Two examples for subgraphs.

Another interesting concept is the complement of a graph, noted as Ḡ and defined as Ḡ = (V̄, Ē)
with V̄ = V and

Ē = {uv ∣ u, v ∈ V, u ≠ v, uv ∉ E} . (2.33)

The complement of a connected graph is not necessarily connected again as we will see in an
example in Section 2.1.4.

Example 9. The complement of the graph shown in Figure 2.6 is shown in Figure 2.8.
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Figure 2.8: The complement graph of the graph in Figure 2.6.
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2.1.4 Graph Classes

Efforts are made to classify graphs based on their properties and/or type. A comprehensive
overview is provided by Brandstädt et al. (1999); de Ridder et al. (2010), but we only point
out some simple and trivial classes here. Classes (or families) do not partition the space of all
graphs, as a graph may belong to more than one class. Classes can also form hierarchies and
the more specialized a class is (i.e. being of lower hierarchy), the more properties does a graph
of this class fulfill.

Probably one of the simplest classes are the complete graphs. A complete graph has edges
between all of its n nodes and is denoted Kn with

E(Kn) = {uv ∣ u, v ∈ V(Kn),u ≠ v} . (2.34)

For the number of edges, one easily calculates m = (n
2), as this is the total number of node pairs.

The complement K̄n is disconnected and also has a name (and forms a class for all n): The
empty graph, as it has of course no edges at all. A complete subgraph Kn′ of a graph G is called
clique.

Another class is characterized by its node degrees. A graph is called k-regular if each node has
exactly degree k (for some k fixed). 2-regular graphs are somewhat special, as they are uniquely
determined for n fixed and up to isomorphism (we will define the meaning of this phrase in
Chapter 3). To construct a graph Cn where every node has exactly degree two, we can “pick”
one node at random (say 1) and connect it with any of the remaining nodes v ∈ V(Cn) ∖ {1}.
Without loss of generality, we connect it to 2 and now need a “partner” for this node again so
that the degree is two. Let this node be 3. If we continue this procedure, we produce a chain
of nodes, where each node has degree two, except for 1, where we started at, and k, where we
paused at. If, for any k > 1, we connected k to any existing node j in this chain (except to 1
and without producing multiple edges), j would have degree three and we failed 2-regularity.
If we connect k to 1 and k < n, both newly connected nodes would have degree two, but the
created graph is not connected, as disconnected nodes remain. The only way to end the overall
procedure is to continue the chaining up to k = n and then connect n to 1. With this, the chain
turns into a cycle and thus the name: Cycle graph Cn. For instance, Brandstädt et al. (1999,
p. 17) do not name these two classes as such but call them “special graphs”.

This brings us to the next class. A graph is called k-partite if the node set V can be divided
into k disjoint subsets Vi (i = 1, . . . , k) so that

∀Vi ∶ {uv ∣ u, v ∈ Vi} ∩ E = ∅ (2.35)

holds. That means only edges between nodes of different subsets are allowed but no “intra-
subset” edges. For k = 2 these graphs are called bipartite. Clearly, each graph Cn for n even is
bipartite and every graph is trivially n-partite (if ∣V ∣ = n). Bipartite graphs can be used to model
relationships between some entities that have different properties. An example are Petri-nets,
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which consist of places and transitions. Places may only be connected by directed edges to
transitions and vice versa. Furthermore, a hypergraphH = (V, E) can be expressed as a bipartite
graph G with V(G) = V(H) ∪ I(E). I is a mapping that assigns each hyperedge in E to some
node of G. All nodes in V(H) that are connected by a hyperedge in H are connected to the
corresponding node in I(E). The concept of completeness can also be extended to k-partite
graphs. Such a graph has edges between all pairs of nodes of all disjoint subsets of nodes. The
notation is similar as already stated: For instance, Ks,t is the complete bipartite graph of n = s+ t

nodes and m = s ⋅ t edges.
A definition closely related to k-partite graphs is the chromatic number χ. It expresses how

many colors are needed to color all nodes under the constraint that no two neighbors have the
same color. The chromatic number is defined as

χ(G) = arg min
k

{∀uv ∈ E(G) ∶ colork(u) ≠ colork(v), } (2.36)

where colork(⋅) is the function that assigns a node one of k available colors. If a graph has
chromatic number χ(G), it is, therefore, χ(G)-partite as no two nodes of the same color are
adjacent by definition.

The last class we want to mention here are planar graphs. Planarity means that a graph can
be drawn on a plane without any crossing edges (bent edges are allowed). Clearly, the graph in
Figure 2.5 is planar.

2.2 Graph Models

In this section we want to give an overview of different models of graphs. A graph model is
mostly determined by a constructive procedure that produces (normally given some parameters)
an instance of a certain type of graph. The constructive definition normally allows for a wide
range of analyses and the computation of indices, which distinguish the different models.

Themain difference between the graph classes in Section 2.1.4 and the graphmodels described
here is that the latter are statistical models, which try to characterize how a certain graph
originates from a random graph generating process. That means the focus lies on the stochastic
generation process instead of the separation into classes by strict properties (like the node
degree). This does of course not mean there may not exist constructive algorithms for graphs
belonging to a certain class, too. As a consequence, graphs that follow a certain model (or are
created using a probabilistic constructive model) are described by statistical qualities as, e.g.,
the distribution of node degrees or the mean path length. All the models are based either on
the random rewiring and/or addition of edges to an existing set of nodes and edges or on the
successive random addition of nodes and edges to a given graph.

We only want to give a brief overview of the most well-known models. Newman (2003, 2010)
and Albert and Barabási (2002) provide extensive surveys of such network models and their
properties. We loosely follow the structure of Newman (2010) in the following subsections.
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2.2.1 Properties of Real-World Networks

Before specific graph models are described, some properties of real-world networks are pre-
sented. An in-depth overview and analysis is given in (Newman, 2003) and (Newman, 2010,
chapter 8). Those properties are of crucial importance, as they can and must be used to dis-
tinguish and classify different networks, depending on their originating domain of application.
Moreover, it is helpful to have a basic understanding of the properties for the later analysis and
argumentation concerning symmetries and their impact on clustering. The principal properties
are

1. the existence of large components,

2. relatively short paths between any pairs of nodes,

3. the distribution of node degrees, and

4. the existence of modular community structures.

We will describe them next and/or in the following subsections.
A requirement we already mentioned in Section 2.1.3 is the connectedness of the graphs

we are interested in. From the clustering point of view this makes sense, as the search for
modular substructures in the graph is pointless for already separated components (see the details
in Sections 2.3 and 2.5). One could say that disconnected components are already naturally
clustered. The requirement can also be justified by the actual existence of one large component
in most real-world networks as Newman (2010, pp. 235 ff.) argues. He claims that situations that
would result in many small disconnected components when modeled as a graph are normally
not of interest for the analysis.

The second property—short paths between any two nodes on average—is motivated and
discussed in Section 2.2.5, where a model that builds on this so called small-world effect is
presented. However, the finding that stands behind this effect is that the average path length
between two nodes roughly grows logarithmic in the number of nodes n. As a result, even in
very large graphs it is likely that any two nodes are not too far away from each other.

Another major characteristic of a real-world network is its distribution of node degrees.
Plotting the histogram of the degrees for a certain graph often shows a right-skewed and
exponentially decreasing distribution. This means there are many nodes with a low degree and
substantially less nodes with a high degree. The property of this distribution is called power-law
(Newman, 2017) and a node u has degree k with a probability P (deg(u) = k)∝ k−α (“∝” means
“is proportional to”). α is a parameter that usually takes values between 2 and 3. Because of this
proportionality, graphs whose node degrees follow a power-law distribution are often referred
to as “scale-free” since the slope of the distribution of degrees is independent of the graphs’
size. The parameter can also be estimated from empirical data by using a maximum likelihood
estimator (Clauset et al. (2009) and Newman (2010, p. 255)), the use of a linear regression on the
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log-log scaled data is not recommended. An example of the degree distribution of a real-world
network is shown in Figure 2.9.
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(a) The histogram of degrees with linearly scaled axes.
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(b) The histogram of degrees with log-log scaled axes.

Figure 2.9: The degree histogram of the PGP network (Boguñá et al., 2004). The plot (a) shows the
rapid drop of occurrences of nodes with high degree. Using a log-log scale in (b) shows
a nearly linear dependency of the log-corrected data between degree and its frequency (at
least in the range between 1 and 26), which is an indication for a power-law distribution.

Networks obeying a power-law distribution—at least approximately—often emerge from a
growth process where more and more nodes and edges are randomly added to the graph over
time. One constructive model is described in Section 2.2.3.

A third important property that is evident in real-world networks is a significant degree of
clustering, i.e. groups of nodes exist that are somehow more connected to each other than to
all other nodes in the graph. Measures of this phenomenon are clustering coefficients; a global
version is presented in more detail in Section 2.2.2. Newman (2010, p. 265) furthermore defines
a local clustering coefficient, which simply counts the relative connectedness of the neighbors
of a node between each other: Let N(u,G) ∶= {v ∣ uv ∈ E(G)} be the set of all neighbors of u in
G, then the local clustering coefficient is defined as

Cl(u,G) ∶= ∣ {vw ∈ E(G) ∣ v,w ∈ N(u,G), v ≠ w} ∣
(∣N(u,G)∣2 )

. (2.37)
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Global clustering coefficients can be defined in a similar way by taking the fraction of the actual
appearance of some pattern (i.e. a subgraph) and the theoretical maximum of occurrences of this
pattern. One reason for a high degree of clustering, which is mentioned by Ravasz and Barabási
(2003), is a possible hierarchical organization that is intrinsic to the graph data.

A much more specific approach is presented by Milo et al. (2002), who search for so called
“motifs”—another term for the above “patterns”. They detected that different motifs occur with
different frequency in different types of networks (e.g. gene regulation networks, food webs,
electronic circuits, the World Wide Web). To quantify the frequencies, each analyzed graph
was compared to a randomized version of it that retained the distribution of node degrees. All
networks were directed, but in the supplementary material also results for undirected networks
are presented. Additionally, only motifs of a maximum of four nodes were taken into account.
The authors only briefly describe their method used in the supplementary material. In the end,
searching for motifs/patterns in a graph is equivalent to the subgraph isomorphism problem (see
Section 3.1), which is not easy to solve.

Song et al. (2005) investigate complex networks by the means of the properties “scale-free”
and “small-world”. Interestingly, they find evidence for so called self-similarity, i.e. recurring
properties, after successively scaling down the network by replacing groups of nodes that are
connected under the condition to have a shortest distance to each other smaller than a certain
maximum distance. Mislove et al. (2007) present an analysis of large online social networks.
Their results confirm power-law, “scale-free”, and “small-world” properties as well as a high
degree of group formation.

2.2.2 Erdős-Rényi Random Graph Model

One of the first statistical network models is named after the Hungarian mathematicians Pá(u)l
Erdős and Alfréd Rényi (ER-model in short). They prove several results on the connectivity
of random graphs (Erdős and Rényi, 1957, 1960). An earlier study of random networks is by
Solomonoff and Rapoport (1951).

Erdős and Rényi (1957) describe a random graph as a graph with n nodes and m edges,
which is randomly chosen with equal probability from the set of all such graphs Grn,m. This
model—often called G(n,m)—is slightly altered to the model G(n, p), which makes the study
of the properties of those graphs easier (Newman, 2010, p. 400). Here, p is the probability
for each of the (n

2) edges to be chosen and, therefore, added to the graph. To approximate
the model with fixed m, one can set p = m/(n

2) to obtain a random graph with an expected
number of m edges. Another direct consequence of this construction is a mean node degree of
c = (n − 1)p. Some rather simple considerations (see Newman (2010, p. 401f.) for the details)
allow to conclude that the node degrees of G(n, p) follow a binomial distribution, which, for
large n, can be approximated by a Poisson distribution.

Random graphs following this rather simple model are widely studied, but are, however, not
suitable to describe networks that are observed in reality (real-world networks). The main reason
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for this is the absence of a clustering structure in random graphs, which can be quantified by
the so called clustering coefficient (Newman, 2010, pp. 198 ff., 262 ff., 402 f.): It is basically a
measure of transitivity of node triples in a graph and several definitions exist. The most common
one is the quotient between the number of triangles and the number of connected triples. The
set of triangles is intuitively defined as

Triangles(G) ∶= {{u, v,w} ⊆ V(G) ∣ uv,uw, vw ∈ E(G)} (2.38)

and the set of connected triples as

Triples(G) ∶= {(u, v,w) ∣ u, v,w ∈ V(G), uv, vw ∈ E(G)} . (2.39)

The clustering coefficient is then

Cl(G) ∶= 3 ⋅ ∣Triangles(G)∣
∣Triples(G)∣

. (2.40)

The factor 3 is due to the fact that each triangle implies three connected triples. So Cl(G)
is a relative measure of actually existing transitive relations (u is connected to v and v is
connected to w implies u is connected to w) in contrast to the number of maximal possible
transitive connections. Newman (2010, p. 199, footnote 22) mentions that the origin of the term
“clustering coefficient” has nothing to do with graph clustering (see Section 2.5) without giving
a reference. We believe, however, that it has a connection to it: Because the higher the value
of C, the more “clustered” is the network in a sense that a high level of transitivity means that
many nodes are highly connected to each other. That is, at least partially, a good definition of
what a cluster is.
Albert and Barabási (2002, p. 59, figure 9) visualize the discrepancy between the clustering

coefficients observed in real-world networks and Cl(G(n, p)), the (expected) clustering coeffi-
cient of a graph obtained by the ER-model (ER-graph). Due to the construction of ER-graphs
follows

Cl(G(n, p)) =
3 ⋅ (n

3) ⋅ p3

(3
1) ⋅ (

n
3) ⋅ p2

= p (2.41)

with p3 (p2) the probability that three nodes form a triangle (connected triple), (n
3) the number

of subsets of length three, and (3
1) the number of arrangements of three nodes in a connected

triple (up to the node labels): (u, v,w), (u,w, v), and (v,u,w).
Yet, other more general random graph models exist and they are based on using different

degree distributions, which allow a very precise modeling of the structure of (parts of) graphs
(see especially Newman, 2010, chapter 13). The creation procedure is mostly similar to the ER-
model, but it respects the different node degrees so that the specified distribution (or sequence
of fixed node degrees) is obeyed. We do not go into further detail here, as it is a completely new
topic on itself, which does not add anything to the basic understanding of random graph models.
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Examples for applications of random graph theory are given by Kang and Petrášek (2014).
They mention phase transition of, e.g., molecules like water. The aggregation states are solid,
liquid, and gas. A random graph can be used to model the possible percolation of a liquid
through the material. Bonds between molecules are represented by edges and a large parameter
value p results in a very densely connected random graph, which corresponds to a solid or
liquid aggregation state. Conversely, a small value of p results in a graph that contains many
disconnected components, which corresponds to a gas. A liquid can only percolate through two
parts of a material if there is no bond between them. Other applications mentioned by Kang and
Petrášek (2014) are social sciences, “man-made” networks, life sciences, and brain networks.

2.2.3 Preferential Attachment

In contrast to pure random graph models, which are constructed from a fixed number of nodes
and a fixed number of edges or an edge probability, the preferential attachment model describes
evolution over time by the addition of new nodes that are connected to existing nodes following a
non-uniform distribution (Barabási and Albert, 1999). The Barabási-Albert model is effectively
a special case of the much older but less known model of Price (1965, 1976); however, the
former is the one most often referred to (Newman, 2010, p. 500).

The idea of bothmodels is to add a node that will be connected to a subset of the existing nodes,
whereas the probability to connect an existing node with the newly added node is proportional
to the degree of the existing node. This is motivated by Price (1965) as follows: Consider a
newly published scientific paper that cites a subset of the existing ones, how likely are citations
of popular and often cited papers in contrast to less known ones?

The creation algorithm starts with an initial number of nodes n0 (often n0 = 2) and in each
iteration, one new node is added to the graph. It is connected to c of the existing nodes and the
probability for an existing node u to be chosen is proportional to its degree deg(u). This means
that nodes with a higher degree are more likely to be chosen. The probability that a node in the
graph has degree k is given by Newman (2010, p. 502):

pk(c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2c(c+1)
k(k+1)(k+2) k ≥ c

0 else
. (2.42)

In the limit, pk(c) ∝ k−3 holds, which means the model creates graphs whose node degree
distribution follows a power-law with α = 3.
There exist several extensions of this model in terms of, e.g., vanishing nodes/edges or

non-linear preferential attachment in the node degree. Newman (2010, pp. 514 ff.) provides
information on these, but we do not go into further detail on this topic. Our purpose of presenting
several graph models is to give an understanding of how practically occurring networks are
composed.
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2.2.4 Copying Nodes

Another interesting model (or class of models, as several similar forms exist) is to simply copy
an existing node with all its connections—sometimes involving an error. Even without the exact
graph symmetry definitions, which follow in Section 3.2, it is clear that an exact copy of a node
represents a symmetry, as both nodes, old and new, have the same connectivity structure within
the graph. Furthermore, these models also generate graphs whose node degree sequence follows
a power-law, but with a different structural arrangement of the edges (Newman, 2010, pp. 537
ff.).

This behavior is also described by Chung et al. (2003), who present a node duplication model
for biological networks. It is noticeable that their model produces networks whose node degrees
follow the power-law but with an exponent α < 2, which contradicts the often made statement
that 2 ≤ α ≤ 3 normally holds (see Section 2.2.1 and e.g. Newman (2010, p. 258)). But as
Chung et al. (2003) state in their discussion, this gives evidence for different network structures
between domains of application.

2.2.5 Small-World Model

The small-world model goes back to the famous experiment by Milgram (1967), who gave a
sample of people in the United States the task to pass a message to a randomly chosen target
person that was only known by name and address. The restriction was to only pass the message
to a person from the circle of acquaintances that seemed to be the one most likely to have the
target person as an acquaintance themselves. The astonishing result was that the median amount
of intermediates between the person who was given the message first and the target person was
only five.

The interconnectedness between all nodes in a (connected) graph can be quantified by the
mean distance between all nodes

l ∶= 1
n
∑
u∈V

( 1
n − 1 ∑

v∈V, u≠v
d(u, v)) . (2.43)

The inner weighted sum is simply the average distance from a node u to all other nodes in the
graph and d(u, v) is the length of the shortest path(s) between two nodes. Therefore, a small
value of l indicates the existence of average shortest paths between all nodes in the graph.

Watts and Strogatz (1998) present a constructive model that starts with a cycle graph Cn.
Then, each node becomes directly connected to its k = c − 2 nearest neighbors, and, as a result,
the graph becomes c-regular. The clustering coefficient of this graph GWS is Cl(GWS) = 3(c−2)

4(c−1)
(Newman, 2010, p. 554), which tends to 3

4 for larger c. In contrast to the original model, Newman
and Watts (1999) continue to add edges between randomly chosen pairs of nodes, instead of
randomly rewiring existing edges. These edges are called “shortcuts”, as they normally provide
a shorter path from the nodes near one end of the edge to nodes near the other end of the
edge. They find that for relatively small p, which represents the probability that an edge is
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added, the clustering coefficient stays quite high while the mean distance between all nodes
decreases significantly. However, the model does not produce a degree distribution that follows
a power-law. Furthermore, for fixed c and p, the average distance between all nodes in the graph
increases only slowly (by order ln(n)) if n is increased.

2.3 Partitions

We will define a partition as a set of non-overlapping subsets of some set. Other concepts, such
as overlapping or fuzzy sets, are not the focus of this work and will not be discussed in the
following.

2.3.1 General Definition

A partition P is defined on a finite set S (∣S∣ = n > 0) as follows:

⋃
C∈P

C = S (2.44)

C ∩C′ = ∅ C ≠ C′, ∀C,C′ ∈ P (2.45)

C ≠ ∅ ∀C ∈ P (2.46)

As S is finite, so is P. Informally, P is a set of subsets of S; therefore, any axioms defined on sets
hold. The cardinality ∣P∣ ∈ N ∖ {0} is the number of elements of the partition. For the general
case, C ∈ P is called a cell. Throughout the rest of this thesis this definition is meant when we
talk about partitions if not stated otherwise. Sometimes a shorter notation besides the “correct”
set-wise one is useful, we abbreviate {{a, b, . . .}, {c, d, . . .}, . . .} by a, b, . . . ∣c, d, . . . ∣ . . . or even
ab . . . ∣cd . . . ∣ . . . if the meaning is clear.
Let ai ∶= ∣Ci ∣, Ci ∈ P, ∀i = 1, . . . , ∣P∣ be the associated set cardinalities. Then the type of a

partition is the partially ordered tuple (ai1, a j2, . . . ∣ ∀k ≤ l ∶ aik ≥ a jl). By additionally defining
#x ∶= ∣{C ∈ P ∣ ∣C∣ = x, x ∈ N}∣ as the number of cells of cardinality x, we can write the partition
type in a shorter way as (b#b1

1 , b#b2
2 , b#b3

3 , . . . ∣ (bi ∈ {∣C∣ ∣ C ∈ P}) ∧ (∀i ∶ bi > bi+1)). Of course
the invariant ∑b∈{∣C∣∣C∈P} #b ⋅ b = ∣S∣ holds.

What we call type of a partition is better known as the partition of an integer, as an integer
n > 0 can be decomposed into integers ai > 0 with the associated composition operation “+”.
The partition number p(n) (Andrews, 1998, pp. 1 f.) determines in how many different ways
the integer n can be decomposed, and, analogously, how many types exist to partition a set of
length ∣S∣ (OEIS Foundation Inc., 2017, sequence A000041).
The number of decompositions of a set S into partitions of cardinality ∣P∣ = k is given by the

so called Stirling number of the second kind (OEIS Foundation Inc., 2017, sequence A008277):

S(n, k) = 1
k!

k

∑
i=0

(−1)k−i(k
i
)in, 1 ≤ k ≤ n. (2.47)
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Consequently, summing these numbers over all k results in the number of possible partitions of
S (OEIS Foundation Inc., 2017, sequence A000110), which is

B(n) =
n

∑
k=1

S(n, k). (2.48)

It is called the Bell number and it increases rapidly (e.g. for n = 20 follows B(20) =
51,724,158,235,372). More details on the theory of partitions of sets are given by Andrews
(1998, pp. 214 ff.).

P(S) denotes the set of all partitions of S and it can be associated with a partial order “≤”
where ∀P,Q ∈ P(S) ∶

P ≤ Q ⇐⇒ ⋃
C∈Q

{C ∩C′ ∣ C′ ∈ P, C ∩C′ ≠ ∅} = P. (2.49)

Informally, when P ≤ Q, each cell of P is a subset of exactly one cell of Q and P is finer than
Q (Q is coarser than P). This also implies (a bit counterintuitive) ∣P∣ ≥ ∣Q∣. Furthermore, there
exists a sequence of unions of sets (cells) of P that results in Q. This sequence is not necessarily
unique. The set of partitions in P(S) together with the partial order (a poset) can be represented
by a simple graph H = (P(S), E) where an edge exists between partitions P,Q (the nodes) iff
(w. l. o. g.) P ≤ Q and joining exactly two cells in P results in Q. When this graph is drawn on a
plane, starting with the partition of single elements (corresponding to S(n, n) at the bottom) and
then successively adding partitions that are adjacent to this partition, the graph is called a Hasse
diagram. Each “level” l = 1, 2, . . . , n in this diagram corresponds to exactly those partitions that
are counted by S(n, n − l + 1). Each pair of consecutive levels induces a bipartite subgraph, as,
of course, for all partitions P, P′ on the same level neither P ≤ P′ nor P′ ≤ P holds. An example
is shown in Figure 2.10.

2.3.2 Graph Partitions

A partition of a graph is normally defined on its node set V , although it could be defined on the
set of edges, too. We call the partition P� ∶= {{v} ∣ v ∈ V} the singleton partition of a graph and
conversely P⊺ ∶= {V} the trivial partition. These partitions are the only ones having the partition
types (1n) and (n1), respectively.

A partition P of a graph’s node set always induces another graph, called quotient graph, which
has P itself as node set and there exists an edge between two cells of P if there is at least one
edge between two nodes in either of the cells. If there exists an edge between nodes of the same
cell, this node in the quotient graph has a loop. A special version of this type of induced graph
is defined and used in Section 5.3.
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1∣2∣3∣4 (= P�)

1, 2∣3∣4 1, 3∣2∣4 1, 4∣2∣3 2, 3∣1∣4 2, 4∣1∣3 3, 4∣1∣2

1, 2, 3∣4 1, 2, 4∣3 1, 2∣3, 4 1, 3, 4∣2 1, 3∣2, 4 1, 4∣2, 3 2, 3, 4∣1

1, 2, 3, 4 (= P⊺)

n = 1, l = 1
S(4, 4) = 1

n = 2, l = 2
S(4, 3) = 6

n = 3, l = 3
S(4, 2) = 7

n = 4, l = 4
S(4, 1) = 1

Figure 2.10: Hasse diagram for P({1, 2, 3, 4}) and the corresponding Stirling numbers (second kind)
per level. Each path from the node at level 1 to level 4 (or n in general) is called a join
path. The total number of partitions of four objects is B(4) = 15. All partitions on level 2
have type (2, 12), on level 3 some have type (22), some (3, 1).

2.4 Finite Permutation Groups

In this section we introduce the necessary concepts of permutations and permutation groups,
which will help us to understand how graph automorphisms (Section 3.2) work. The explana-
tions and notations closely follow Wielandt (1964). Another well written introduction is the
“Background Material” chapter of Holt et al. (2005, Chapter 2).

2.4.1 Permutations

A permutation is a function defined on a set Ω that maps an element of Ω to any other element
of Ω (Wielandt (1964) speaks of “points” instead of elements). We restrict Ω to be finite and
call the number of elements ∣Ω∣ = n cardinality (Wielandt (1964) calls it length). Let p ∶ Ω→ Ω
be a permutation. We denote the application of p on α by αp. Then p must have the following
properties:

1. ∀α ∈ Ω ∶ αp = β ∈ Ω (p maps every element of Ω) and

2. ∄α ∈ Ω ∶ βp = γp = α, β ≠ γ (the mapping is unique, different elements are not mapped to
the same element).
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Thus, a permutation is a bijective function andWielandt (1964, p. 1) simply calls it a “one-to-one
mapping”. The above definition also allows for elements to be mapped onto themselves (αp = α)
and we call such elements fixed by p. A permutation p can be explicitly written down as

p =
⎛
⎝
α β γ . . .

αp βp γp . . .

⎞
⎠

(2.50)

or in a compressed cycle notation as

p = (α αp (αp)p . . .) (β βp (βp)p . . .) . . . (2.51)

of subsequent mappings. The order of the different cycles (if any) is arbitrary as well as the
first element of a cycle. The last element of a cycle maps to the first element. Often the natural
ordering (if any) of elements is used when writing permutations.

Example 10. Let
Ω = {1, 2, 3, . . . , 10} (2.52)

be a set of objects. A possible permutation is

p =
⎛
⎝

1 2 3 4 5 6 7 8 9 10
1 10 8 4 2 3 9 5 7 6

⎞
⎠

= (1)(2 10 6 3 8 5)(4)(7 9).

(2.53)

The two elements 1, 4 ∈ Ω are fixed by p.

The application of more than one permutation on an element α ∈ Ω (whether the same or
different permutations are used) is written as

(αp)q = αpq. (2.54)

pq is the catenation of the two permutations

pq = p ○ q, (2.55)

and we keep to Wielandt (1964) by applying the leftmost permutation first (i.e. αpq = q(p(α))
in a functional notation). The catenation r of p and q maps each element α ∈ Ω directly to αr ,
instead of first applying the map α ↦ αp = β and then applying the map β ↦ βq = γ. This
means α ↦ αpq = γ is equivalent to α ↦ αr and, as a consequence, r = pq is itself a permutation.
The k-times catenation of a permutation with itself is written as

p ○ p ○ . . . = pk . (2.56)
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As Ω is finite, of course, also the number of possible different permutations on Ω is finite.
A special permutation is the one that maps each element onto itself (fixes each element). It is
called identity permutation and written as

1 = (α)(β)(γ) . . . = (). (2.57)

Cycles of permutations of length one are normally omitted for brevity of notation, and for the
identity permutation we will simply use empty parentheses instead of writing nothing. Note that
“1” is the function symbol we use to denote the identity permutation in general, and “()” is the
actual identity permutation written in cycle notation. The support of a permutation p is the set
of non-fixed elements

supp (p) ∶= {α ∣ αp ≠ α} . (2.58)

Example 11. We continue Example 10. By omitting the cycles of length one, the permutation
p = (1)(2 10 6 3 8 5)(4)(7 9) can be abbreviated as p = (2 10 6 3 8 5)(7 9). The catenation
p ○ p = pp = p2 is

p2 = (2 10 6 3 8 5)(7 9) ○ (2 10 6 3 8 5)(7 9)

= (2 6 8)(3 5 10).
(2.59)

For instance, (2p)p = 10p = 6 = 2p2= 2pp shows the equivalence of the maps 2
p↦ 10

p↦ 6 and

2
p2

↦ 6. The support of p is supp (p) = {2, 3, 5, 6, 7, 8, 9, 10}.

Every permutation p induces a permutation matrix P ∈ Bn×n with the entries

pi j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, ip = j

0, else
. (2.60)

Given an n × n matrix M , MP permutes the columns, PTM permutes the rows of M . In linear
algebra, a permutation matrix determines a base transformation of the coordinate system, thus
permutation matrices are orthogonal, i.e. PTP = 1, which induces PT = P−1. Interpreting PTP

as PT1P clarifies the relation, as permuting rows and columns of the identity matrix must result
in the identity matrix again. Clearly, the identity matrix corresponds to the identity permutation.
This is why we use the same symbol “1” to denote both concepts. However, which concept is
meant in particular is always clear from the context in which we use the symbol.
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Example 12. We continue Examples 10/11. The permutation matrix that corresponds to p =
(1)(2 10 6 3 8 5)(4)(7 9) is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.61)

The row and column sums are all 1, as each element of Ω is mapped onto exactly one other
element of Ω.

2.4.2 Permutation Groups

The set of all possible permutations on Ω is called the symmetric group SΩ (Wielandt, 1964,
p. 2). Often, if the actual set Ω is not of importance and due to the fact that SΩ is isomorphic to
the permutation group that acts on the integers 1, 2, . . . , n = ∣Ω∣, the symmetric group is denoted
Sn. Isomorphic means that there exists a bijective function φ ∶ Ω→ {1, 2, . . . , n} that maps each
element α ∈ Ω to an integer between 1 and n. Therefore, φ allows every permutation that is
defined on Ω to be represented as a permutation defined on 1, . . . , n. We use both notations
interchangeably. This group naturally has some properties:

1. 1 ∈ Sn; the identity permutation is a permutation of Ω.

2. ∀p, q ∈ Sn ∶ pq ∈ Sn, because any catenation of permutations on Ω must again be a
permutation on Ω.

3. ∀p ∈ Sn ∶ p−1 ∈ Sn and pp−1 = p−1p = 1, i.e. for every permutation exists an inverse for
which β ↦ βp−1= α (αp = β) holds.

4. ∀p, q, r ∈ Sn ∶ (pq)r = p(qr); catenation is associative.

We call permutations that exchange only two elements transpositions. A permutation p that is
its own inverse (p = p−1) is called involution and every transposition is an involution. We also
have p−1 ○ p1 = 1 = p−1+1 = p0.

Example 13. We continue Examples 10–12. The inverse of p = (2 10 6 3 8 5)(7 9) is

p−1 = (2 5 8 3 6 10)(7 9). (2.62)
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It is formed by simply reversing each cycle. Which element is written first in each cycle is
arbitrary, however, for convenience we normally write the smallest element first. It is easy to
check that

p ○ p−1 = p−1 ○ p = (2 5 8 3 6 10)(7 9) ○ (2 10 6 3 8 5)(7 9) = () = 1 (2.63)

as, e.g., 2
p−1

↦ 5
p↦ 2 and 2

p↦ 10
p−1

↦ 2. The inverse of p in the matrix representation P is simply
PT. Again, PTP = PPT = 1 is easily checked.

The order of the permutation group Sn is the number of its contained permutations ∣Sn∣.

Theorem 1 (Order of the symmetric group). The order of Sn is n!.

Proof. Clearly, for n = 1 only the identity permutation exists and ∣S1∣ = 1! = 1 holds. For n = 2,
only the transposition that exchanges both elements (α β) is added. ∣S2∣ = 2! = 2 holds. For
the case n = 3 the identity exists, additionally a transposition for every of the three pairs of
elements exists, and, lastly, the permutation (α β γ) and its inverse (α γ β) exists. Therefore,
∣S3∣ = 3! = 6 holds.
Let the symmetric group be Sn−1 for some n with ∣Sn−1∣ = (n − 1)!. Adding a new element ν

to Ω will imply n − 1 new transpositions (α ν),∀α ∈ Ω ∖ {ν}. By using the group operator ○,
we need to compute every catenation (α ν) ○ p for all p ∈ Sn−1. It is sufficient to only compute
those catenations because:

1. If α is fixed by p, (α ν) ○ p = p ○ (α ν),

2. and else (α ν) “inserts” ν in the cycle after α: p = (. . . α β . . .) and (α ν)○(. . . α β . . .) =
(. . . α ν β . . .) because p of course fixes ν. This is the same as p ○ (β ν), which inserts γ
before β (i.e. we could also compute all p ○ (α ν)).

3. Any catenations (α ν) ○ (β ν) = (α β) are already in Sn−1.

This gives us the new order as

∣Sn−1∣ + (n − 1) ⋅ ∣Sn−1∣ = ∣Sn−1∣ ⋅ (1 + (n − 1))

= (n − 1)! ⋅ n

= n!

= ∣Sn∣.

(2.64)

�

2.4.2.1 Subgroups and Generators

A subset G ⊆ SΩ is a subgroup of SΩ if G is a group (i.e. all group properties hold). It is denoted
as

G ≤ SΩ. (2.65)
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The proper case G ⊂ SΩ is denoted as
G < SΩ (2.66)

and G is called proper subgroup. The subgroup definition is not limited to subsets of SΩ, i.e. H

is a subgroup of G and a proper subgroup of SΩ iff H ≤ G < SΩ. However, H is of course also a
subgroup of SΩ and we can state that any group that acts on Ω is a subgroup of SΩ. As for Sn,
∣G∣ denotes the order of the group and means the number of permutations in G.
Up to this point, we implicitly assumed that a group G is represented by the explicit enumera-

tion of all the permutations it contains. However, as the group order often grows rapidly, a much
more compact representation is given by a set of generators. Any subset S ⊂ SΩ can be used to
generate a group G. This means G = S∪S and S contains all permutations that can be created by
catenating all possible combinations of permutations p, q, . . . ∈ S. A group obviously generates
itself and a set S that generates a group G is called generating set. The permutations p ∈ S are
called generators. If a set S ⊂ SΩ generates a group G we denote this by ⟨S⟩ = G. Note that S

and G are both subsets of SΩ, but generally only G (besides SΩ itself) is a group. An exception
is the case where S = G, which means S is already a group. A special case is S = {1} and we
call it trivial group or identity group.
The set that generates a group is usually not unique. A set S∗ with the smallest necessary

number of permutations to generate a group G is called a minimal generating set. S∗ is minimal
if no generators can be removed from S∗ but G can still be generated, formally

∀p ∈ S∗ ∶ ⟨S∗⟩ = G > G′ = ⟨S∗ ∖ {p}⟩. (2.67)

Equation 2.67 does not imply that a minimal generating set S∗ is unique. Therefore, if S∗ is
minimal there possibly exists another minimal generating set S̃∗ with ∣S̃∗∣ ≠ ∣S∗∣.

Example 14. We continue Examples 10–13. We can use the permutation p = (2 10 6 3 8 5)(7 9)
as a generator for a permutation group ⟨{p}⟩. In general, the Schreier-Sims-Algorithm (Sims,
1970) (see also Butler (1991) or Seress (2003, p. 57 ff.)) can be used as the basis for a
systematic group generation. However, the generation is very easy for this example, as only one
generator exists. To satisfy the group properties, p has to be catenated with itself until all other
permutations are computed (Table 2.1). Because of the associativity of the catenation, e.g.,
p7 = p6 ○ p = 1 ○ p = p, or, more generic, permutations pk and pl are equal for l ≡ k (mod 6).
From Tables 2.1 and 2.2 we can see that the order is ∣⟨{p}⟩∣ = 6.
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k p ○ pk−1 pk Permutation

⋮ ⋮ ⋮ ⋮
0 ⋮ () 1

1 (2 10 6 3 8 5)(7 9) ○ () (2 10 6 3 8 5)(7 9) p

2 (2 10 6 3 8 5)(7 9) ○ (2 10 6 3 8 5)(7 9) (2 6 8)(3 5 10) q

3 (2 10 6 3 8 5)(7 9) ○ (2 6 8)(3 5 10) (2 3)(5 6)(7 9)(8 10) r = r−1

4 (2 10 6 3 8 5)(7 9) ○ (2 3)(5 6)(7 9)(8 10) (2 8 6)(3 10 5) q−1

5 (2 10 6 3 8 5)(7 9) ○ (2 8 6)(3 10 5) (2 5 8 3 6 10)(7 9) p−1

6 (2 10 6 3 8 5)(7 9) ○ (2 5 8 3 6 10)(7 9) () 1

⋮ ⋮ ⋮ ⋮

Table 2.1: All possible permutations created by catenating p with itself k times.

Table 2.2 shows the so called Cayley table (Cayley and Forsyth, 1889, pp. 123 ff.) of ⟨{p}⟩ =
{1, p, q, r, q−1, p−1} where the results of all permutation catenations are presented.

○ p q r q−1 p−1 1

p q r q−1 p−1 1 p

q r q−1 p−1 1 p q

r q−1 p−1 1 p q r

q−1 p−1 1 p q r q−1

p−1 1 p q r q−1 p−1

1 p q r q−1 p−1 1

Table 2.2: The Cayley table of the group generated by p.

The cosets of a group H are defined as gH ∶= {gh ∣ h ∈ H} (the left coset) and Hg ∶=
{hg ∣ h ∈ H} (the right coset), respectively. We use the cosets to define normal subgroups. A
subgroup H ≤ G is called normal iff

∀h ∈ H,∀g ∈ G ∶ ghg−1 ∈ H, (2.68)

which is equivalent to
∀g ∈ G ∶ gH = Hg, (2.69)

i.e. the left and right coset are equal. We denote normal subgroups as H ⊴ G (⊲ for the proper
case) in accordance to most authors (e.g. Wielandt, 1964; Dixon and Mortimer, 1996).

2.4.2.2 Fixed Blocks, Orbits, and the Orbit Stabilizer Theorem

Given subsets ∆ ⊆ Ω and G ≤ SΩ, Wielandt (1964) defines

∆G ∶= {δg ∣ δ ∈ ∆, g ∈ G} (2.70)
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and calls ∆ a fixed block iff ∆ = ∆G. For ∣∆∣ = 1 (i.e. ∆ = {α}) and G ≤ SΩ we can write

αG ∶= {αg ∣ g ∈ G} (2.71)

and call this set the orbit of α. ∣αG∣ is the orbit length. Every element α ∈ Ω must lie on exactly
one orbit and the set of all orbits is clearly a partition of Ω. An orbit ∆i is of course always fixed
by G, i.e.

∆i = ∆G
i . (2.72)

Every group has at least two trivial fixed blocks, namely ∅ and Ω itself. If no other fixed blocks
exist, the group is called transitive because

∀α, β, γ ∈ Ω ∃g, h ∈ G ∶ (αg = β) ∧ (βh = γ) ⇐⇒ αgh = γ. (2.73)

This also means there is only one orbit αG = Ω. Trivially, the symmetric group is always
transitive.

The subgroup of permutations that fix α is defined as (Wielandt, 1964, p. 5)

Gα ∶= {g ∈ G ∣ αg = α} . (2.74)

Gα is called the pointwise stabilizer and the definition can be extended to more than one point
(Wielandt, 1964, p. 5):

G∆ ∶= ⋂
δ∈∆

Gδ . (2.75)

Equations 2.71 and 2.74 can be combined to a theorem that relates the length of an orbit and the
order of the stabilizer subgroup.

Theorem 2 (Orbit stabilizer theorem). The relation

∣G∣ = ∣Gα ∣ ⋅ ∣αG∣ (2.76)

holds for α ∈ Ω and G ≤ SΩ.

Proof. See Wielandt (1964, Theorem 3.2, p. 5). �

As Gα is a group, Theorem 2 can be applied recursively (if ∣Gα ∣ > 1, otherwise Gα already
fixes all elements, i.e. it is the trivial group). Therefore, ∣Gα ∣ = ∣(Gα)β ∣ ⋅ ∣βGα ∣ and

∣G∣ = ∣Gα ∣ ⋅ ∣αG∣ = ∣(Gα)β ∣ ⋅ ∣βGα ∣ ⋅ ∣αG∣ = ∣Gα,β ∣ ⋅ ∣βGα ∣ ⋅ ∣αG∣

= ∣Gα,β,γ ∣ ⋅ ∣γGα,β ∣ ⋅ ∣βGα ∣ ⋅ ∣αG∣

= . . . .

(2.77)

The stabilizer subgroups Gα,β, Gα,β,γ, and so forth, are just the stabilizer subgroups G∆ for
∆ = {α, β}, ∆ = {α, β, γ}, and so on.
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The relation from Equation 2.77 can also be used to prove Theorem 1 (∣Sn∣ = n!):

Proof. Let G = SΩ, then clearly ∣αG∣ = n and Gα = SΩ∖{α}. This procedure can be repeated
recursively; the orbit length of SΩ∖Θ is ∣Ω∣ − ∣Θ∣ = n − k and therefore

∣SΩ∣ = ∣αSΩ ∣ ⋅ ∣SΩ∖{α}∣ (2.78)

= ∣αSΩ ∣ ⋅ (∣βSΩ∖{α} ∣ ⋅ ∣SΩ∖{α,β}∣) (2.79)

= ∣αSΩ ∣ ⋅ (∣βSΩ∖{α} ∣ ⋅ (. . . (∣γSγ ∣ ⋅ ∣S{ζ}∣))) (2.80)

= n ⋅ ((n − 1) ⋅ (. . . (1 ⋅ 1))) (2.81)

=
n−1
∏
k=0

(n − k) (2.82)

= n! (2.83)

Note that α, β, γ certainly lie on the same orbit given SΩ but not after, e.g., fixing α and creating
SΩ∖{α}. �

Example 15. We continue Examples 10–14. Let ⟨p⟩ = ⟨(2 10 6 3 8 5)(7 9)⟩ = G. The orbit
partition of G is O = {{1}, {2, 3, 5, 6, 8, 10}, {4}, {7, 9}}. Therefore, the orbit of 7 is {7, 9} and
the subgroup of G that stabilizes 7 is G7 = {1, q, q−1} = {(), (2 6 8)(3 5 10), (2 8 6)(3 10 5)}.
See Table 2.1 to reassure that the other permutations do not fix 7. From the orbit stabilizer
theorem follows

∣G∣ = ∣7G∣ ⋅ ∣G7∣ = 2 ⋅ 3 = 6, (2.84)

which is true.

Next, we prove a theorem that will be used in Section 6.4.3.4.

Theorem 3 (Equiprobability of orbit elements). Given some fixed α with ∣αG∣ > 1. Then
P (αg = β) = 1

∣αG ∣ holds for β ∈ α
G and g ∈ G randomly chosen.

Proof. The probability P (αg = α) = ∣Gα∣
∣G∣ =

1
∣αG ∣ is a direct consequence of the orbit stabilizer

theorem. Let Gα = { f1, . . . , f k} and Gα→β ∶= {g ∈ G ∣ αg = β} = {g1, . . . , gl}. As each fi ∈ Gα

fixes α and each g j ∈ Gα→β maps α onto β, { fi ○ g j ∣ fi ∈ Gα, g j ∈ Gα→β} = Gα→β must hold.

1. Suppose P (αg = β) = ∣Gα→β ∣
∣G∣ < ∣Gα∣

∣G∣ =
1
∣αG ∣ , i.e. l < k. For some fixed g j′ ∈ Gα→β, the coset

Gαg j′ must contain k elements and each is a permutation that maps α onto β, as no i ≠ i′

with fi ○ g j′ = fi′ ○ g j′ can exist unless fi = fi′ . This is a contradiction to l < k.

2. The other way round, suppose P (αg = β) > 1
∣αG ∣ , i.e. l > k. The only possibility that this

relation can exist is that there is a β ≠ γ ∈ αG for which P (αg = γ) < 1
∣αG ∣ holds. But that

is impossible due to case 1.

We conclude that there cannot exist an element on an orbit that is more or less likely to map
onto, i.e. P (αg = β) = 1

∣αG ∣ for all β ∈ α
G. �
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2.4.2.3 Blocks

Another definition (also Wielandt, 1964, §6 on pp. 11 ff.) are blocks. Whereas in a fixed block
all elements are only fixed within the block. A subset Ψ ⊆ Ω is a block of a permutation group
G ≤ SΩ iff

∀g ∈ G ∶ (Ψg = Ψ) ∨ (Ψg ∩Ψ = ∅) (2.85)

holds. There are several trivial blocks: Again, the empty set ∅ and the set Ω itself are blocks,
but, additionally, every single element {α} ⊂ Ω is a block. The intersection of two blocks is
again a block (Wielandt, 1964, p. 12) and every Ψg with Ψ ∩ Ψg = ∅, g ∈ G is also a block.
Every fixed block is of course a block (thus orbits are blocks) and unions of fixed blocks are
again fixed blocks (therefore also blocks). A set of disjoint blocks partitions Ω. In contrast to
the partition of orbits, a partition of blocks can be finer concerning the definitions in Section 2.3,
as an orbit can possibly be further divided into smaller non-trivial blocks.

Example 16. We continue Examples 10–15. A partition of possible non-trivial blocks of
⟨p⟩ = ⟨(1)(2 10 6 3 8 5)(4)(7 9)⟩ is B = {{2, 6, 7, 8}, {3, 5, 9, 10}, {1, 4}} and, e.g., {2, 6, 7, 8}q =
{2q, 6q, 7q, 8q} = {8, 2, 7, 6} (case Ψ = Ψg) or {2, 6, 7, 8}p = {5, 10, 9, 3} (case Ψ ∩Ψg = ∅). The
set {1, 4} is the union of two trivial orbits, which form a (fixed) block.

2.4.3 Products of Permutation Groups

Several definitions of products of permutation groups exist and we present three of them, namely
the internal direct product, the semidirect product, and the wreath product. The products can be
seen from a constructive point of view, as they allow to compose new permutation groups from
given permutation groups, or from an analytic point of view, which allows to describe how a
given permutation group can be decomposed.

The internal direct product of two non-trivial normal subgroups H1 ⊲ G and H2 ⊲ G (H1 ≠ H2)
is defined as

H1 × H2 ∶= {ab ∣ a ∈ H1, b ∈ H2} (2.86)

where H1 ∩ H2 = {1}. Because of the associativity of permutations, this can be generalized to
k normal subgroups Hi, thus

G = H1 × . . . × Hk =
k

∏
i=1

Hi . (2.87)

Given a set of generators S, this set can be divided into k disjoint subsets Si with ⟨Si⟩ = Hi.
A group that cannot be calculated as inner product under the conditions above is said to be
indecomposable.

The theorem of Krull-Remak-Schmidt states that the composition of a group G from inde-
composable subgroups Hi (if possible) is unique up to isomorphism (proof for finite groups
by Remak, 1911, p. 298). An implication of this is that if a decomposition of a group into
smaller subgroups is possible, the group acts on different independent “areas”/subsets of the set
Ω. Furthermore, ∣G∣ = ∏k

i=1 ∣Hi ∣, as G combines all possible permutations of each subgroup
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Hi. This approach of decomposing a group G into independent subgroups is also described by
MacArthur et al. (2008, p. 3526 f.) and they call it the geometric decomposition. They also
prove that this decomposition does not depend on the actual choice of generators if they obey
certain conditions:

1. No generator is a composition of support disjoint permutations: ∄s ∈ S, g, h ∈ ⟨S⟩ ∶ s =
gh and supp (g) ∩ supp (h) = ∅

2. For each subgroup H1 × H2 = H ≤ G a subset S′ ⊆ S exists for which S′ = S1 ∪ S2 holds,
⟨Si⟩ = Hi, and S1 ∩ S2 = ∅

They call such a generating set essential and throughout this thesis all generating sets are assumed
to be essential. The authors furthermore state that algorithms like nauty (see Section 3.4), which
compute a set of generators for the graph automorphism group (see Section 3.2), return essential
sets.

Example 17. We continue Examples 10–16. Taking the permutation

s = (1 4) (2.88)

in addition to p = (1)(2 10 6 3 8 5)(4)(7 9) yields a new permutation group J = ⟨{p, s}⟩. It
can easily be seen that J = ⟨{p}⟩ × ⟨{s}⟩ = G × H because G ⊲ J and H ⊲ J. From ∣G∣ = 6 and
∣H ∣ = 2 follows ∣J∣ = ∣G∣ ⋅ ∣H ∣ = 12.

We follow Dixon andMortimer (1996, pp. 44 ff.) by defining the two other product operations
of groups. For two groups G and H , H ⋊ G denotes the so called semidirect product. H is a
group that acts on some set Ω and G is a group acting on H itself. This means each permutation
g ∈ G is defined to map a permutation h ∈ H onto another permutation h′ ∈ H , i.e. g ∶ H → H and
h ↦ hg is the image of g applied on h. The result is a group that contains pairs of permutations
and it acts on tuples (α, h) ∈ Ω × H . The group is defined as

J = H ⋊G ∶= {(h, g) ∣ g ∈ G, h ∈ H} (2.89)

together with the catenation defined as

(h1, g1)(h2, g2) ∶= (h1hg−1
1

2 , g1g2). (2.90)

The catenation of permutations in G and H is defined as in Section 2.4.1. The catenation in
Equation 2.90 is well-defined as g1g2 = g1○g2 ∈ G (by definition, G is a group) and hg−1

2 C h3 ∈ H ,
therefore, h1hg−1

2 = h1h3 = h1○h3 ∈ H (by definition, H is a group, too). So the semidirect product
of an arbitrary group and a group acting on this group (an automorphism group of the group) is
again a group with the group properties defined above.

The second operation is called wreath product and it can be used to describe groups that are
compositions of “copies” of smaller groups. Let H be a group (the “small” group to be copied)
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and define Fun(Λ,H) as the set of all functions f ∶ Λ → H , where Λ = {λ1, . . . , λk} is a set of
k symbols to identify each copy of H . Fun(Λ,H) is itself a group, as

( f g)(λ) ∶= f (λ)g(λ) ∀ f , g ∈ Fun(Λ,H), λ ∈ Λ (2.91)

is defined because f (λ), g(λ) ∈ H and H is a group. Furthermore, let G be a group that acts
on Λ and, therefore, can be interpreted as the “copying” group, which takes the actions of H

to each of its copies Hλi . A copy Hλi acts on a copy Ωλi = {αλi, βλi, . . .} of the element set
Ω = {α, β, . . .}. The wreath product is then defined as

H ≀Λ G ∶= Fun(Λ,H) ⋊G (2.92)

together with the operation

f g(λ) ∶= f (λg−1) g ∈ G, λ ∈ Λ, f ∈ Fun(Λ,H), (2.93)

which represents the action of g ∈ G on Fun(Λ,H). The wreath product H ≀Λ G acts on the
union ΩΛ ∶= ⋃λ∈ΛΩλ of the k labeled copies of Ω. An element ( f , g) ∈ H ≀ΛG is applied on an
element αλ ∈ ΩΛ as

α
( f ,g)
λ ∶= α f g(λ)

λg
−1 . (2.94)

We can set Λ = G if G acts regularly on itself (Dixon and Mortimer, 1996, p. 47), i.e. G must be
transitive (∀g, g′ ∈ G ∃g∗ ∶ gg∗ = g′) and fixed point free (∀g, g′, g∗ ∈ G ∶ gg′ = gg∗ ⇐⇒ g′ =
g∗). If so, the notation is shortened to H ≀G.

Example 18. Given the group H = {(), (1 2)}, a set Λ = {a, b} to distinguish two copies of H ,
and a group G = {(), (a b)} that acts on Λ. H clearly acts on Ω = {1, 2}. The wreath product
H ≀Λ G is then given by the semidirect product

Fun(Λ,H) ⋊G = {( f1, ()) , ( f1, (a b)) , ( f2, ()) , . . . , ( f4, (a b))} (2.95)

with

Fun(Λ,H) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ ()

b↦ ()
, f2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ (1 2)

b↦ ()
, f3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ ()

b↦ (1 2)
, f4 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ (1 2)

b↦ (1 2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (2.96)

The fi ∈ Fun(Λ,H) represent all possible functions from Λ to H and Fun(Λ,H) is a group
itself. Taking, for instance, f2, f3 ∈ Fun(Λ,H) we can form the catenation f2 ○ f3 as

f2 ○ f3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ ( f2 ○ f3)(a)

b↦ ( f2 ○ f3)(b)
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ (1 2) ○ ()

b↦ () ○ (1 2)
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ↦ (1 2)

b↦ (1 2)
= f4. (2.97)
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Furthermore, each fi represents a permutation on two copiesΩa = {1a, 2a} andΩb = {1b, 2b} of
the set Ω on which the copies Ha and Hb of H act. The wreath product H ≀ΛG = Fun(Λ,H)⋊G

acts on the set Ω{a,b} = {1a, 2a, 1b, 2b}. For example, ( f2, (a b)) ∈ Fun(Λ,H) ⋊G acts on Ωa,b

as follows:

1( f2,(a b))
a = 1 f2(a(a b)−1)

a(a b)−1 = 1 f2(a(a b))
a(a b) = 1 f2(b)

b = 1()b = 1b (2.98)

1( f2,(a b))
b = . . . = 1 f2(a)

a = 1(1 2)
a = 2a (2.99)

2( f2,(a b))
a = . . . = 2 f2(b)

b = 2()b = 2b (2.100)

2( f2,(a b))
b = . . . = 2 f2(a)

a = 2(1 2)
a = 1a (2.101)

This means ( f2, (a b)) corresponds to the permutation (1a 1b 2a 2b), which is the combination
of the transposition f2(a) = (1 2) that acts on Ωa and the transposition (a b) that maps Ωa

onto Ωb and vice versa. The group H ≀Λ G is isomorphic to S2 ≀ S2 as well as to, e.g.,

F = {(), (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 4 2 3), (1 3 2 4)} (2.102)

via the isomorphism (in explicit permutation notation)

φ =
⎛
⎝

1a 2a 1b 2b

1 2 3 4
⎞
⎠
. (2.103)

2.5 Graph Clustering

Graph clustering is an algorithmic approach to create a partition P of the node set V of a graph.
The way a clustering partition is formed often follows the idea of grouping nodes that are “more
similar” to each other into the same partition cell. Simultaneously, nodes in different cells should
be dissimilar. In this context, the cells are called clusters, and this informal definition implies
that the number of clusters is not an external parameter but inherently contained in the graph
structure. Other methods are not the focus of this work.

Two extensive overview articles are given by Schaeffer (2007) and Fortunato (2010). Both
distinguish between local and global definitions of functions that quantify desirable properties
for graph clustering and they discuss how they can be of use for determining clusters of graphs.
Fortunato (2010, section 3.2.1 on p. 83) states that “[n]o definition is universally accepted”.
Another review is by Harenberg et al. (2014), who compares several algorithms in terms of
partition quality and runtime.

Relatively independent of the definition(s) of what clusters are, it is possible to classify clus-
tering algorithms (or generic approaches) by their control strategies. One classification scheme
is to distinguish between hierarchical and non-hierarchical methods. A hierarchical method
produces a series of solutions by subsequently merging (agglomerative approach; bottom-up)
or dividing (divisive approach; top-down) clusters of a partition. Each series of solutions is a
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path through the poset of partitions as defined in Section 2.3. Normally, only one solution out of
the series is chosen as the result of an algorithm. In contrast, non-hierarchical methods produce
exactly one solution (but also out of the set of partitions P(V)).

One of the most important of the clustering criterion definitions for the graph clustering
problem, which leads to numerous new algorithms (Sections 2.5.2–2.5.4) and on which active
research is still focused on, is Newman’s modularity (Newman and Girvan, 2004).

2.5.1 Modularity

Newman and Girvan (2004) introduced modularity as a global criterion for graph clustering
partition quality. The formula can be written as

Q(P,G) =
∣P∣
∑
i=1

(eii − a2
i ), (2.104)

which is the sum over all clusters of nodes. The term over which is summed consists of

ei j =
∑vx∈Ci,vy∈Cj

mxy

2∣E∣
, (2.105)

ai =
∣P∣
∑
j=1

ei j, (2.106)

where, in this context, M = (mxy) denotes the adjacency matrix of G (instead if A) to avoid
possible confusion with the ai. The ei j also form a symmetric matrix E and, therefore, summing
over each row we get the column vector a = (ai). As each edge is counted twice in total (once
for each of the two adjacent nodes), the constant 2 is found in the denominator of the definition
of ei j . For eii, both adjacent nodes are in the same cluster and the constant is canceled out. E
can be interpreted as the adjacency matrix of a directed weighted graph with loops, which is a
coarsening of G, and a is the vector of node outdegrees of this graph. We want to call this graph
a partition induced graph G(P) of G given P. As the weights of the directed edges from i to
j and vice versa (i ≠ j) are equal (ei j = e ji), this graph is equivalent to an undirected weighted
graph with loops that has edge weights ei j + e ji = 2ei j for i ≠ j. This view on the computation of
modularity shows that the applicability of it is not limited to unweighted and loop-free graphs.
As E and a capture (aggregated) degree information, modularity is also a graph invariant, as it
will be defined in Section 3.3.
The sum from Equation 2.104 can, of course, be written as

Q(P,G) =
∣P∣
∑
i=1

eii −
∣P∣
∑
i=1

a2
i (2.107)

and this brings us an alternative definition of modularity

Q(P,G) = trace(E) − ⟨a, a⟩ = trace(E) − ∥a∥2
2. (2.108)
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The trace is just the sum of diagonal matrix entries, ⟨⋅, ⋅⟩ is the scalar product of two vectors and
∥ ⋅ ∥2 is the Euclidean norm.

Equivalent definitions of eii and ai are given by

eii =
mi

m
, (2.109)

with mi the number of edges of the subgraph induced by Ci. Furthermore,

ai = eii +
li

2m
(2.110)

with li the number of edges that connect Ci to the rest of the graph (the inter-cluster-edges).
Modularity expresses the aggregated differences of the actual number of edges within each

cluster and the expected number of edges within each cluster. The interpretation of Equa-
tion 2.109 is intuitive, the one of Equation 2.110 needs some explanation: ai is the fraction
of the number of incident edges with cluster Ci. Therefore, it is the relative probability of a
random edge to be incident with a cluster that has the same properties—expressed solely by
degree information—as Ci. Consequently, a2

i is the probability to randomly pick an edge that
is incident with two nodes that are expected to have the same properties and thus are in the
same cluster. Hence, a large difference eii − a2

i indicates a large deviation of the observed from
the expected cluster density, which indicates a non random relationship of the nodes within this
cluster.

2.5.1.1 Limits

In the following we give several limits of modularity.

Theorem 4 (Modularity of a singleton partition). For the singleton partition P�, Q(P�,G) < 0.

Proof. For each cluster, eii = 0 holds, as no intra-edges exist, but each ai > 0, because all incident
edges are counted. Thus

Q(P�,G) =
∣P�∣
∑
i=1

eii −
∣P�∣
∑
i=1

a2
i = −

n

∑
i=1

a2
i < 0. (2.111)

�

Theorem 5 (Modularity of a trivial partition). For the trivial partition P⊺, Q(P⊺,G) = 0.

Proof. Only one large cluster exists, which contains all nodes and edges. Thus

Q(P⊺,G) =
∣P⊺∣
∑
i=1

(eii − a2
i ) =

1
∑
i=1

(eii − a2
i ) = (e11 − a2

1) = 1 − 12 = 0. (2.112)

�
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Theorem 6 (Minimum Q (Brandes et al., 2008)). The minimum possible modularity value for
some partition is −1

2 .

Proof. A partition that minimizes Q has to minimize eii and maximize ai for all clusters Ci.
A cluster that minimizes Q needs to have no intra-edges and as many inter-edges as possible.
For the singleton partition P�, eii = 0 and ai = deg(i)

2m (for all i). The more non-adjacent nodes
that can be joined into a larger cluster by leaving eii = 0 and increasing ai, the better. The best
attainable result consists of two clusters with e11 = e22 = 0 and a1 = a2 = m

2m . The result is then
Q(P,G) = −2 ∗ ( m

2m)2 = −1
2 , and it can only be achieved if G is bipartite. �

We now rewrite the parts of the modularity formula (Equation 2.104) slightly:

eii = λi (2.113)

and
ai = λi +

1
2
µi (2.114)

where λi denotes the fraction of intra-cluster edges in Ci, µi denotes the fraction of inter-cluster
edges of Ci to other clusters.

∑
i
(λi +

1
2
µi) = 1 (2.115)

holds as well as λi ∈ [0, 1] and µi ≥ 0.

Theorem 7 (Supremum of Q). The supremum of modularity is 1.

Proof. To maximize Q, now eii must be maximized and ai minimized for each cluster individ-
ually. As maximizing λi for some fixed i would result in the trivial partition (with Q = 0 for
any graph), maximization is done “in parallel”, and w.l.o.g. λi ∶= λ ∀i as well as µi ∶= µ ∀i.
Minimizing ai means minimizing µi. In the limit we get

lim
λ→ 1

k
,µ→0

k [λ − (λ + 1
2
µ)2] = k [1

k
− (1

k
)

2
] = 1 − 1

k
(2.116)

with k the number of clusters and λ → 1
k because the fraction of intra-edges is equally distributed.

Finally,

lim
k→∞

1 − 1
k
= 1 (2.117)

gives us the claimed result. Unless G is disconnected, no µi can actually be zero, and unless G

is infinite, k cannot become infinitely large. Therefore, Q⊺ = 1 is the supremum of Q(P,G). �

Next, we want to look at the per-cluster contributions. By this we mean the term

λi − (λi +
1
2
µi)

2
, (2.118)
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which normally should be positive, when modularity is maximized. By setting Equation 2.118
to zero and solving it for µi we get (omitting the indices and for λi ≥ 0)

µ(λ) = 2
√
λ − 2λ, λ ≥ 0 (2.119)

as the function of µ that depends on λ. Equation 2.118 is strictly positive for all µ < 2λ + 2
√
λ

if λ ∈ (0, 1) and has a maximum at λ = 1
4 .

Figure 2.11 shows the plot of Equation 2.119 plus the additional constraint from Equa-
tion 2.115. For all points (λ′, µ) within the red area λ′ − (λ′ + 1

2 µ)
2 > 0 holds. The blue area

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
λ

0.0

0.1

0.2

0.3

0.4

0.5

µ

λ + 1
2
µ = 1

µ(λ) = 2 (√λ − λ)
λ + 1

2
µ < 1

(λ′, µ) ∈ (0, 1) × (0, µ(λ′))

Figure 2.11: Isolated view on a single cluster and its contribution to modularity in the space of intra-
cluster-edges and inter-cluster edges. The plot is independent of the actual number of
edges but indirectly depends on it, as not every combination is possible. The blue area cor-
responds to all feasible combinations of λ and µ, the red area corresponds only two those
combinations for which Equation 2.118 is strictly positive, and, therefore, the contribution
of this cluster to modularity is positive.

(including the border and the two axes) contains all feasible points (λ, µ) if there exists more
than only one (trivial) cluster. It is important to keep in mind that each combination strongly
depends on all the other clusters of the partition. From Figure 2.11 we can also directly see
that the only feasible point for a trivial partition is (1, 0) (with µ(1) = 0) and the modularity
contribution is zero for every combination (λ, µ(λ)).

Figure 2.12 extends the examination with a third dimension to show the actual modularity
contribution of one cluster, depending on the ratio of λ and µ. There is a maximum at (1

2, 0)
that is not feasible because of the constraint from Equation 2.115.
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λ
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Figure 2.12: The modularity contribution of one cluster depending on the fraction of intra-cluster edges
λ and inter-cluster edges µ. Red parts of the plot indicate a positive contribution, blue
parts a negative contribution. The color intensity expresses the strength of the contribu-
tion. Figure 2.11 shows the cutting plane for λ′ − (λ′ + 1

2 µ)
2 = 0.

The modularity for a given graph and a partition of it can be considered as the set of points
(λi, µi). Each point is evaluated in the space shown in Figure 2.12 and eventually summed
up. The interdependence between all points, given by the constraint in Equation 2.115 and the
non-negativity of λi/µi, makes modularity a global clustering criterion.

Theorem 8 (Modularity of a complete graph Kn). Q(P∗,Kn) = 0 for the modularity optimal
partition P∗.

Proof. Suppose there exists a partition P′ of Kn for that Q(P′,Kn) > 0 holds. From Theorem 5
we know P′ < P⊺ (P′ must be strictly finer than the trivial partition). For each Ci ∈ P′

eii =
(ni

2)
(n

2)
= ni(ni − 1)

n(n − 1)
(2.120)

and
ai = eii +

ni(n − ni)
2(n

2)
= ni(ni − 1)

n(n − 1)
+ ni(n − ni)

n(n − 1)
= ni

n
(2.121)
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holds with ni ∶= ∣Ci ∣. The modularity contribution eii − a2
i of one cluster is

ni(ni − 1)
n(n − 1)

− (ni

n
)

2
= n(ni(ni − 1))

n2(n − 1)
−

(n − 1)n2
i

n2(n − 1)

=
nn2

i − nni − nn2
i + n2

i

n2(n − 1)

= ni

<0
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(ni − n)

n2(n − 1)
< 0.

(2.122)

The only n∗i that maximizes the term above is n∗i = n leading to a value of zero, and, of course,
P∗ = P⊺, which is a contradiction. �

This result is desirable, as it captures the non-modularity of complete graphs.

2.5.1.2 Critique

We only shortly review the most important problem modularity has. Fortunato and Barthélemy
(2007) and Lancichinetti and Fortunato (2011) show that the modularity definition comprises an
inherent resolution limit. This is a direct consequence of the globality discussed in the previous
section. The impact on clustering algorithms that try to maximize modularity is that smaller
modular parts in the graph are merged to larger clusters, solely because the modularity increases.
On the opposite, large modular parts tend to be split up. Figure 2.13 visualizes this fact quite
well. Possible solutions to overcome the problem are given by Traag et al. (2011).

Van Laarhoven and Marchiori (2013) experimentally generalize this issue also to other ob-
jective functions than modularity and state that “the resolution bias of the objective function
matters most” (van Laarhoven and Marchiori, 2013, part of the title). Furthermore, Kehagias
and Pitsoulis (2013) present additional examples by defining families of graphs that consist of
natural clusters by construction, which modularity fails to identify.

Another problem are possibly high modularity values in random graphs that, by definition,
should not contain a structured modular organization. This issue, which is connected to the
resolution limit, is addressed by Reichardt and Bornholdt (2006).

2.5.2 The Randomized Greedy Algorithm and its Extensions

Ovelgönne et al. (2010) present anO(m ln n) time randomized greedy algorithm (RG), which is
based on the first algorithm that made use ofmodularity (Newman, 2004, having time complexity
O((m + n)n)). It is a heuristic hierarchical agglomerative modularity optimizer, which uses the
incremental increase of modularity∆Q(Ci,Cj) = 2(ei j−aia j) ifCi andCj are merged (Newman,
2004, p. 066133-2). The optimization procedure is straight forward:

1. Start with the singleton partition P� of the graph.
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Figure 2.13: The network rt_obama from networkrepository.com, which is part of the symmetry
analysis in Chapter 4. The colors represent the 52 clusters (Q = 0.932) that were found by
the so called Louvain algorithm of Blondel et al. (2008). It is built into the GEPHI tool for
graph analysis (Bastian et al., 2009), which was used to draw the graph utilizing the lay-
out algorithm OpenOrd (Martin et al., 2011). The network is a good example that shows
the resolution limit of modularity, as there can be found many small subgraphs, which ob-
viously form “good” communities, but are all part of a larger cluster: For example, the
brown cluster highlighted on the very left side of the drawing seems to consist of three or
four natural communities.

2. Randomly pick k = const (very small, often k = 2) clusters and compute for each of those
clusters and all of its neighbors the gradient ∆Q.

3. The pair of clusters with the highest ∆Q value is chosen for the next join, ties are broken
randomly.

4. Repeat steps 2 and 3 n−1 times to obtain a complete path through the partition poset from
P� to P⊺ (see Section 2.3).

5. Select the partition on the path with the highest value of Q as the final result.

The groundbreaking insight, which lead to such a speedup and increase in quality, is the existence
of many equivalent (in terms of∆Q) joins per iteration. This makes it superfluous to compute the
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modularity increase for every pair of connected clusters, as it is done in Newman’s “plain” greedy
algorithm. Additionally, the optimization following the steepest gradient not necessarily yields
the global maximum modularity (which is NP-complete in general (Brandes et al., 2008)),
but very often only a good local maximum. For pseudocode, an evaluation of the runtime and
modularity quality, and an analysis of equivalent joins, see Ovelgönne et al. (2010).

On the one hand, the randomization significantly speeds up the runtime, on the other hand,
errors due to misclassifications may tamper the result. As a consequence, the core group graph
clustering schema (CGGC) was developed (Ovelgönne and Geyer-Schulz, 2010; Geyer-Schulz
and Ovelgönne, 2014) as an adoption of the learning of a “strong classifier” from “several weak
classifiers” (Ovelgönne and Geyer-Schulz, 2013, p. 187). For graph clustering, this means to
create several (say k) partitions (not necessarily using RG) and combine them to one core group
partition using the (commutative and associative) binary operator

∧ (P,Q) = P ∧Q ∶= {CP ∩CQ ∣ CP ∩CQ ≠ ∅, CP ∈ P, CQ ∈ Q} (2.123)

defined on two partitions P and Q. The core group partition is then

PCG =⋀
i

Pi = P1 ∧ . . . ∧ Pk . (2.124)

This partition induces a graph (as described in Section 2.5.1), which is then used as input for the
(slightly modified) RG algorithm. The underlying idea is the interpretation of PCG as a saddle
point from which several local optima can be reached and, therefore, also an even better local
(hopefully global) optimum. Different local optima lie on different paths through the partition
poset and the core group partition is a finer partition of all Pi that were used to create PCG.

2.5.3 Label Propagation

Label propagation (LP) is a method to cluster a graph, which is very easy to understand and
implement, but yet very efficient (Biemann, 2006). Most articles cite the paper of Raghavan
et al. (2007) as seminal work on using label propagation for graph clustering (e.g. Ugander and
Backstrom, 2013; Staudt and Meyerhenke, 2016, to name only two). However, Biemann (2006)
published his paper with the exact same algorithm (thus not calling it label propagation) about
a year earlier. The main idea is based on propagating messages through a network like, e.g., the
ARP-protocol (Plummer, 1982), where a computer sends messages to all its neighbors on the
local network to find out the physical address of the receiver of a payload message. To use this
idea in clustering, each node gets assigned a label that is unique at the start of the procedure.
Then all nodes start propagating their labels and make an update of their own label, based on the
label they received most often. If labels occur equally often, one of them is chosen randomly.
As soon as a node has changed its label, it propagates the new label to its neighbors. The overall
process soon converges to a stable solution of labels, and, eventually, these are the clusters, i.e.
all nodes with the same label lie in the same cluster. Occasionally, there exist cases where the
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algorithm does not converge to a stable situation and the labeling oscillates between two or more
states. Biemann (2006) argues that this issue can be dealt with by setting a maximum number of
iterations or by defining another stop criterion like, e.g., stopping if only few label assignments
changed in the last iteration. Raghavan et al. (2007) mention this issue too, but only say that
“the mathematical convergence is hard to prove” (Raghavan et al., 2007, p. 036106-9).

This “distributed” approach allows to physically distribute label propagation algorithms over
several cores and/or computers (e.g. Staudt and Meyerhenke, 2016, in combination with the
CGGC scheme).

2.5.4 Other Approaches

There are numerous other approaches than the two mentioned (RG and its derivatives and label
propagation). A whole class are spectral clustering methods (e.g. von Luxburg, 2007), which
utilize methods from linear algebra on matrices that describe the graph (see Section 2.1.2.1).
Another relatively popular and well performing algorithm is the Louvain method (Blondel et al.,
2008). An overview of additional algorithms can be found in Ovelgönne (2011). A more recent,
but rather short, overview of different perspectives in terms of the general approaches is given
by Schaub et al. (2017); Zhao (2017) reviews the “theoretical advances of community detection
in networks”.

2.6 Entropy

2.6.1 General Definition

The term entropy goes back to Clausius (1867, p. 357) in the context of thermodynamics. It was
then picked up by Gibbs (1873) and Boltzmann (1896, p. 58) who used it in statistical mechanics.
In the 1930s, von Neumann (1996, p. 212ff.) adopted the concept for the theory of quantum
mechanics.

Some years later, Shannon (1948) formulated his famous entropy definition in terms of
information theory:

H(X) ∶= −K
k

∑
i=1
P (X = xi) logP (X = xi). (2.125)

H is the capital Greek letter η (eta). Here, X is some discrete random variable that has k

possible outcomes xi and K = const > 0 is some constant (“the constant K merely amounts to a
choice of a unit of measure”, Shannon, 1948, p. 12), mostly K = 1. The P (X = xi)C pi are the
probabilities of the outcomes xi to occur. The definition has three properties:

1. H is continuous in pi

2. H(X) = −K∑k
i=1

1
k log 1

k = K log k is monotonously increasing in k

3. H(X,Y) = H(X) + H(Y ∣ X)
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2.6 Entropy

Furthermore, H(X) ∈ [0,K log k]. The minimum value is reached if pi = 1 for some i and the
maximum value is reached if p1 = p2 = . . . = pk = 1

k . H(Y ∣ X) is the conditional entropy, which
is the weighted sum

H(Y ∣ X) ∶=∑
i

pi H(Y ∣ X = xi)

= −K∑
i

pi∑
j
P (Y = yi ∣ X = xi) logP (Y = y j ∣ X = xi).

(2.126)

of the conditional probabilities. Clearly, H(Y ∣ X) = H(Y) if X and Y are statistically indepen-
dent and H(Y ∣ X) = 0 if Y is determined by X .

One possibility to interpret the entropy is to view it as measure of uncertainty, which increases
the more uncertain the actual outcome of X is. Which logarithm base to use mainly depends on
the specific scenario. Often log2 C ld (logarithmus dualis) is used, especially if the underlying
alphabet is binary. This is true, e.g., for a (minimal) binary encoding, which Shannon (1948,
p. 19 f.) uses as an example.

2.6.2 Entropy of Graphs

Bianconi (2009) and Anand and Bianconi (2009) utilize the entropy definition on ensembles
of graphs and call it “structural entropy”. An ensemble of graphs is a set of graphs that all
have the same structural properties (e.g. follow the same degree distribution). The authors state
that structural entropy allows a quantification of the role of different structural properties on
the overall shape of the networks. These ideas are also reviewed by Garlaschelli et al. (2010,
section 3.6). In general, the entropy of an ensemble of graphs is defined as in Equation 2.125
(K = 1), where P (X = xi) represents the probability P (Gi) that the graph Gi is picked from the
ensemble (Garlaschelli et al., 2010, p. 1698).

Kim andWilhelm (2008) present and compare several complexity measures in order to find an
answer to the question: “What is a complex graph?” Two of their measures are entropy-based.
For instance, the spanning tree sensitivity (Kim and Wilhelm, 2008, p. 2642) is again defined as
in Equation 2.125 (K = 1), the sum runs over all edges of the graph, and P (X = xi) is replaced
by

al ∶=
Sl

uv

∑r Sr
uv
. (2.127)

The term Sl
uv is the sensitivity of the edge uv and it quantifies how sensitive the number of all

spanning trees reacts to the removal of uv. A spanning tree is a connected subgraph with n − 1
edges. They come to the conclusion that the complexity of a graph is high if it consists of many
different subgraphs.
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2 Foundations

Dehmer andMowshowitz (2011b) give a historical overview of graph entropymeasures. They
state the earliest defined measures are due to Rashevsky (1955) and Trucco (1956a,b), both take
the graph symmetry into account:

HV(G) = − ∑
C∈O

∣C∣
∣V ∣

log
∣C∣
∣V ∣

(2.128)

HE(G) = − ∑
CE∈OE

∣CE ∣
∣E∣

log
∣CE ∣
∣E∣

(2.129)

where O (OE) is the node (edge) orbit partition (see Sections 2.4.2 and 3.2). Both measures
tend to zero for very symmetric graphs (as the number of orbits decreases) and to the maximum
value for asymmetric graphs. In general, the entropy can be computed on any graph partition,
but, of course, the generation of the partition needs to be clearly defined, otherwise the measure
lacks a meaningful interpretation. Practically, every graph invariant (see Section 3.3) that
induces a partition of nodes and/or edges could be used to compute a graph entropy (Dehmer
and Mowshowitz, 2011a; Lu, 2017). For instance Raychaudhury et al. (1984) test different
“topological indices” for their discriminatory power in distinguishing graphs. A topological
index is a term from chemistry, which represents an index that is computed on the graph
that describes a molecule (e.g. Todeschini and Consonni, 2008). The indices compared by
Raychaudhury et al. (1984) are based on information theory and either take the node degrees
or distances between nodes into account. The higher the discriminating power of a topological
index, the better can molecules be distinguished by simply comparing the index values, which
should be different for different molecules.
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3 Graph Morphisms

This chapter will give a quick overview of graph morphisms and gets more into detail on
isomorphisms (Section 3.1) and automorphisms (Section 3.2). Any morphism is a function that
maps one graph to another graph or onto itself. Different mappings are defined differently and
have names ending with “-morphism”.

We follow Knauer (2011, Definition 1.4.3 on p. 8) with the following definitions. Given two
graphs G and G′, a function ϕ ∶ V(G)→ V(G′) is a homomorphism G → G′ iff

uv ∈ E(G) Ô⇒ ϕ(u)ϕ(v) ∈ E(G′). (3.1)

Knauer (2011) further defines an “egamorphism” (or weak homomorphism), which additionally
demands ϕ(u) ≠ ϕ(v) as condition for the mapping of an edge to be an edge in the image
of G. Godsil and Royle (2001, p. 6) state that requiring loop-free graphs already implies this
constraint. The definition in Equation 3.1 makes no assertion on what happens with non-edges
(e ∈ E(Ḡ)), therefore they can be mapped again onto a non-edge, an edge, or even a node.

Example 19. Consider G = ({a, b, c}, {ab, bc}) and let ϕ(a) = ϕ(c) = x and ϕ(b) = y. Then ϕ
clearly is a homomorphism from G to G′ = ({x, y}, {xy}), both edges in G are mapped to the
one edge in G′, the non-edge {a, c} is mapped onto x.

Example 20. Any graph G with n nodes can be mapped to the complete graph Kn by a
homomorphism.

Example 21. For any graph with chromatic number χ(G) = k ≤ n exists a homomorphism to
the complete graph Kk . Godsil and Royle (2001, p. 7) prove this.

The examples show that homomorphisms are not necessarily constructive, i.e. they are not
functions that create a new graph from the given graph G because it is not defined what happens
with non-edges.

A strong graph homomorphism ϕs ∶ V(G)→ V(G′) additionally requires “⇐”, so

uv ∈ E(G) ⇐⇒ ϕs(u)ϕs(v) ∈ E(G′) (3.2)

holds. As ϕs needs not to be bijective, ∣V(G)∣ ≠ ∣V(G′)∣ may be true.
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Example 22. G = ({a, b, c, d}, {ab, cd}) andG′ = ({1, 2}, {{1, 2}})with the associated function

ϕs ∶

⎛
⎜⎜⎜⎜⎜⎜
⎝

a

b

c

d

⎞
⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
2
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.3)

is a strong homomorphism.

Example 23. Let G be a graph given a partition P of its node set. The function cid(u, P) ∶=
min{C ∣ u ∈ C} returns the cell id for each node u of G, which is simply the smallest node id of
the cell u is part of. The mapping

ϕP ∶

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
2
⋮
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜
⎝

cid(1, P)
cid(2, P)

⋮
cid(n, P)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.4)

is a strong homomorphism and maps G to the quotient graph given P (see Section 2.3.2).

3.1 Graph Isomorphism

A function ϕ that is a strong homomorphism and bijective is called isomorphism (Knauer, 2011,
p. 8). Isomorphic graphs are completely identical in terms of adjacency structure, the only
difference is the way of labeling the nodes. Graph isomorphism induces an equivalence relation,
which is denoted “≅”.

As simple as the definition of this property is, as hard is its recognition (answering the
question “Are the graphs G and G′ isomorphic?”) and computation of the mapping function
ϕ ∶ G → G′ (see also Section 3.4). The graph isomorphism problem (GI) tends to be neither
in P (the class of problems solvable in polynomial time) nor in NPC (NP-complete; the class
of “the hardest problems in [NP]”1) (e.g. Lubiw, 1981; Babai and Luks, 1983; Fortin, 1996;
Hartke and Radcliffe, 2009). For a comprehensive explanation of these problems, see Gary
and Johnson (1979). For an introduction to complexity theory and an overview of complexity
classes, see Johnson (1990) (who coincidentally uses GI as introductory example), and for an
extensive overview of complexity classes, see Aaronson et al. (2017). Instead of delving into
complexity theory any further, it is sufficient to mention that problems in P are seen as not very
problematic, because algorithms exist that solve the problem in polynomial time O(nk) (n is a
variable depending on the input problem size and k ≥ 1 a positive constant independent of n).
P is a subset of NP , so problems in NP ∖ P are those that are not easy to solve in general,
but given a possible solution, correctness can be verified in polynomial time. A corresponding
1 https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#npc as ofMay 2017; calligraphic font series
added
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3.1 Graph Isomorphism

problem is subgraph isomorphism (SGI), which is known to be in NPC. SGI is about solving
the problem whether a graph G contains a subgraph that is isomorphic to a graph H (Gary and
Johnson, 1979, p. 202).

Applications of graph isomorphism recognition are manifold. One example is given by
Rensink (2007) who states that “isomorphism checking can be used as an effective technique
for symmetry reduction in graph-based state spaces” (Rensink, 2007, p. 1). Other applications
are to determine the equivalence of molecular structures (Balaban, 1985; Li et al., 2008),
of biochemical networks (Bonnici et al., 2013, e.g. “protein-protein interaction, metabolic
interaction, transcription factor binding, and hormone signaling networks”, p. 1), protein-protein
interaction network alignment (Elmsallati et al., 2016, an application of SGI), network motif
discovery (Grochow and Kellis, 2007, also an application of SGI), pattern recognition/image
processing (Conte et al., 2003; Sanfeliu et al., 2002; Sharma et al., 2012), and social network
analysis (Fan, 2012).

Finding a mapping function from one graph to another is obviously equivalent to finding
functions c, c′ that label the nodes of graphs G,G′ in a way that c(G) = c′(G′) ⇐⇒ G ≅ G′. It
is called canonical labeling, as it relabels the nodes of a graph in a deterministicway, independent
of the original labeling, so that eventually all isomorphic graphs have the same labeling. For
any “somehow” labeled graph exists a trivial isomorphism to a graph labeled 1, 2, . . . , n, which
can easily be constructed by mapping the label to its corresponding row/column index of the
adjacency matrix. Therefore, it is sufficient to restrict analysis on graphs labeled like that. It
follows that each isomorphism is a permutation of the set of nodes.

TwographsG,G′with adjacencymatrices AG, AG′ are isomorphic if there exists a permutation
matrix Φ so that AG′ = ΦTAGΦ is true. This relation also clarifies the fact that isomorphic
graphs only differ in their labeling of nodes, which is principally arbitrary (we pointed this out
already in Section 2.1.2).

Example 24. The two graphs in Figure 3.1 are isomorphic.

1 2

3

4 5 6

(a) The graph G

3 2

5

1 6 4

(b) The graph G′

Figure 3.1: Two isomorphic graphs with the permutation function ϕ = (1 3 5 6 4) that maps G to G′. Of
course, the inverse ϕ−1 = (1 4 6 5 3) maps G′ to G.
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3 Graph Morphisms

The adjacency matrix of G is

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.5)

and the permutation matrix corresponding to ϕ = (1 3 5 6 4) is

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.6)

Computing ΦTAGΦ yields (row/column labels are the “old” node labels of G)

(ΦTAG)Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6

4 0 1 1 0 1 0
2 1 0 1 1 0 0
1 0 1 0 0 0 0
6 0 0 0 0 1 0
3 0 1 0 1 0 0
5 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 2 1 6 3 5

4 0 1 0 0 1 1
2 1 0 1 0 1 0
1 0 1 0 0 0 0
6 0 0 0 0 0 1
3 1 1 0 0 0 0
5 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= AG′ . (3.7)

3.2 Graph Automorphism

A graph automorphism is an isomorphism from a graph to itself. Informally, this means there
exist structurally identical nodes so that a relabeling of them preserves adjacency completely.
Isomorphisms are permutations, so are automorphisms. But additionally, the set of all automor-
phisms of a graph forms a permutation group denoted by Aut(G), the automorphism group of
G (acting on the set of nodes V ). For the group size, ∣Aut(G)∣ ≥ 1 holds. Equality means that
only the trivial permutation, which maps each node to itself, is a valid automorphism for the
given graph. We will abbreviate the graph automorphism problem with GA.
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3.2 Graph Automorphism

The automorphism group captures any symmetries a graph contains and, analogously to
isomorphism, for an induced permutation matrix P that is an automorphism and the adjacency
matrix AG, the relation PTAGP = AG holds. Aut(G) is formally defined as

Aut(G) ∶= {g ∈ SV(G) ∣ e ∈ E ⇐⇒ eg ∈ E} , (3.8)

where SV(G) is the symmetric group that acts on the set of nodes. Of course, any other
definition for finite permutation groups, which we presented in Section 2.4, is applicable on the
automorphism group of a graph. For example, the orbit partition of G arranges the nodes in
equivalence classes.

The difference between isomorphisms and automorphisms can informally be explained with
graph drawing: When two isomorphic graphs (e.g. those in Figure 3.1)with trivial automorphism
group are drawn on a plane with some fixed layout omitting the labels, both drawings are exactly
the same and unique. Achieving this is of course not trivial, as it is equivalent to finding a
canonical mapping for each graph (which is the layout, i.e. coordinates on a plane). For a
graph with a non-trivial automorphism group, there exist several different drawings that (again
omitting labels) all look the same, but nodes on the same orbit can be permuted in the drawing.
However, the different drawings cannot be distinguished without having the labels. It follows
that the mapping of two automorphic graph “instances” (which are of course also isomorphic)
is not unique.

Example 25. The two graphs in Figure 3.2 are automorphic.

1

2 3

4

(a) A graph G

2

3 4

1

(b) A graph G′

Figure 3.2: Two automorphic graphs with the permutation function p = (1 2 3 4) that maps G to G′.

The adjacency matrix of G is

AG =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.9)

and the permutation matrix corresponding to p = (1 2 3 4) is

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.10)
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Computing PTAGP yields

PTAGP =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⋅ P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

= AG′ = AG . (3.11)

It is confirmed what already was obvious, both graphs are automorphic. Actually G = G′, so
they are not two graphs, but the same identical graph. However, contrary to the isomorphism
example in Section 3.2, also, e.g., for

P2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.12)

the relation (P2)TAGP
2 = AG holds.

G and G′ are both isomorphic to the cycle graph C4, which is the only connected graph that
is 2-regular. We mentioned this graph before in Section 2.1.4, now it is clear why cycle graphs
are unique up to isomorphism.

Erdős and Rényi (1963) proved that graphs tend to be asymmetric with probability 1, the larger
(concerning the node set) they become (see also Cameron, 1983, p. 107). This general result
is true for the class of all finite graphs. Magner et al. (2014) proved the same for graphs that
are created following a preferential attachment model (see Section 2.2.3), where the attachment
parameter c controls the number of neighbors a newly added node becomes associated with by
an edge. They come to the conclusion that for a parameter c ∈ {1, 2} the resulting graph will
contain symmetries with a positive probability. However, for c ≥ 3, the resulting graph is very
likely to be asymmetric.

Contrary to these theoretical results, we will give evidence in Chapter 4 that one cannot
automatically conclude that there are not many symmetric graphs (real-world networks), which
maybe have an effect on graph clustering. This fact implies that preferential attachment is not
sufficient to describe how real-world networks are formed.

We end this section by presenting the theorem of Frucht (1939).

Theorem 9 (Theorem of Frucht). For every abstract finite group there exist infinitely many finite
connected graphs with an automorphism group isomorphic to this group.

Proof. See Frucht (1939). �

Theorem 9 directly connects the theory of finite groups (especially permutation groups) to
the theory of graph symmetry.
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3.2.1 Simplification of Graphs

Automorphisms were only formally defined for simple graphs, but the concept of symmetry
can easily be extended for non-simple graphs. To do so, we want to interpret an edge between
two nodes as a relation, which can be described by a function e ∶ V × V → B = {0, 1}. If an
edge between the nodes u and v exists, e(u, v) = 1. A permutation g is, as defined above, an
automorphism of the graph if e(u, v) = e(ug, vg) (for all u, v ∈ V ) if we follow this interpretation.
Certainly, arbitrary relations could be possible, e.g. wn ∶ V → R or we ∶ V × V → R, which

assign a weight to a node or an edge, or c ∶ V → N, which assigns a color to a node. Each of
those functions describes a certain “property” and the abstract definition of an automorphism
is to retain all properties, i.e. that all functions that describe these properties of the given graph
are invariant under transformation.

Therefore, each property restricts the “degrees of freedom” of symmetry and, the other way
round, removing a property adds a degree of freedom. For example, the graph that has no
properties at all is just the empty graph, which has the maximally possible degree of freedom,
and—coincidentally—has the symmetric group as automorphism group.

Simplification of a graph means to remove a property by keeping all other properties the same.
As a consequence, the automorphism group of a structurally identical graph with additional
properties G′ is a subgroup of the automorphism group of G: Aut(G′) ≤ Aut(G). An example
of how simplification influences the automorphism group is shown in Figure 3.3.

1

2 3

4

1

2

1

2

(a) The weighted graph Gw+l,
which also has a loop at
node 3. It has the triv-
ial automorphism group
Aut(Gw+l) = {1}.

1

2 3

4

1

2

1

2

(b) A simplified (loops removed)
version Gw of the graph
Gw+l with the following
symmetries: Aut(Gw) = {1,
(1 2)(3 4), (2 3)(1 4),
(1 3)(2 4)}.

1

2 3

4

(c) The simple (weights re-
moved) graph G, which has
the automorphism group
Aut(G) = Aut(Gw)∪{(1 3),
(2 4), (1 2 3 4), (1 4 3 2)}.

Figure 3.3: Example of a two-step simplification of the graph Gw+l (a), which is asymmetric. Gw (b) is
still weighted but has a non-trivial automorphism group, and G (c) is simple with an even
larger automorphism group. Each automorphism group of the more complex graph(s) is a
subgroup of the simpler graph(s): Aut(Gw+l) ≤ Aut(Gw) ≤ Aut(G).

From a practical point of view, it is necessary to carefully think about the possible conse-
quences of such a simplification. It is particularly important to consider if the simplification,
besides the effect on symmetry, is valid for the given application context. For instance in Sec-
tion 4.3.2, we simplify graphs before we analyze their symmetry and argue that omitting weights
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3 Graph Morphisms

and directions of edges is acceptable in a clustering context, as many clustering algorithms do
not take them into account anyway.

3.2.2 Further Concepts

For now, we only defined and have looked at graph automorphisms as permutations that preserve
adjacency between nodes. However, it is also possible to define the edge automorphism group
that is defined as

AutE(G) = {g ∈ SV(G) ∣ uv,uw ∈ E ⇐⇒ ugvg,ugwg ∈ E} . (3.13)

Hence, it is the group of permutations that preserve edge incidence.
The transitivity property of a group (only one orbit exists) may also hold for AutE(G), but

in general, neither node transitivity implies edge transitivity nor vice versa (e.g. Lauri and
Scapellato, 2016, p. 10 ff.). That means there exist graphs that are node transitive but not
edge transitive, edge transitive but not node transitive, or even node and edge transitive. Even
“stronger” properties of the automorphism groups exist (like distance transitivity), but we do
not want to go into further detail, as these properties are highly unlikely to hold in real-world
graphs. Even transitivity (whether on the set of nodes or edges) is implied by a very high level of
symmetry, which is usually not found in practical applications (see Chapter 4 and Appendix B).
Already, the power-law distribution property of the node degrees (see Section 2.2.1) heavily
restricts the automorphisms that are theoretically possible, as nodes on the same orbit must have
the same node degree.

3.2.3 Symmetry Bounds

It is obvious that the complete graph Kn has an automorphism group isomorphic to Sn. A
question that could be posed is: How many edges need to be removed from Kn so that the
resulting connected graph G has ∣Aut(G)∣ = 1? Quintas (1967, p. 64) gives lower (upper)
bounds for the number of edges mn (Mn) an asymmetric graph with n nodes can have. Next, we
want to present these bounds and give an example. The definitions given by the author are for
n = 1 or n > 5, because there exist no graphs with n = 2, 3, 4, 5 nodes that are asymmetric (e.g.
Erdős and Rényi, 1963). Remember, we are only interested in connected graphs.

The lower bound mn is given by

mn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , n = 1

6 , n = 6

n − 1 , n > 6

(3.14)
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and the upper bound Mn by

Mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , n = 1

9 , n = 6

15 , n = 7
n(n−3)

2 +∑N
i=1 ai + w , n > 7

(3.15)

where ai is “the number of asymmetric trees having n [nodes]” (Quintas, 1967, p. 58). This
number is derived by Harary and Prins (1959) and can also be found in OEIS Foundation Inc.
(2017, sequence A000220). The quantity N can be determined by the inequality

N

∑
i=1

ai ⋅ i ≤ n <
N+1
∑
i=1

ai ⋅ i, (3.16)

and w must obey the constraints

n =
N

∑
i=1

ai ⋅ i + w(N + 1) + r, (3.17)

0 ≤ w < aN+1, and (3.18)

0 ≤ r < N + 1. (3.19)

These bounds induce the existence of connected asymmetric graphs with n = 1 or n > 5 nodes
that have at least mn or at most Mn edges. Note that a graph with n > 6 nodes and less than
mn edges is not connected anymore and the n nodes can always be connected in a way that this
disconnected graph is symmetric. Graphs with n > 6 nodes and more than Mn edges are always
symmetric and graphs whose number of edges lies between the lower and upper bound are either
symmetric or asymmetric.

Example 26. Let n = 8. The lower bound can be directly calculated from Equation 3.14, which
yields m8 = 7. For the upper bound, we first need to calculate N by using the values from

n 1 2 3 4 5 6 7 8 9 10 . . .
an 1 0 0 0 0 0 1 1 3 6 . . .

Table 3.1: The first ten values for the number of asymmetric trees having n nodes

Table 3.1 and inequality 3.16:

N

∑
i=1

ai ⋅ i = 1 ⋅ 1 + 0 ⋅ 2 + . . . + 0 ⋅ 6 + 1 ⋅ 7

= 8 ≤ 8 < 16

= 1 ⋅ 1 + 0 ⋅ 2 + . . . + 0 ⋅ 6 + 1 ⋅ 7 + 1 ⋅ 8 =
N+1
∑
i=1

ai ⋅ i

(3.20)
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and we find N = 7. Second, we find w by

8 =
7
∑
i=1

ai ⋅ i + w(7 + 1) + r = 8 + 8w + r (3.21)

⇐⇒ 0 = 8w + r (3.22)

⇐⇒ 0 = w = r (because w, r ≥ 0) (3.23)

This finally lets us calculate M8 = 8(8−3)
2 + (1 + 1) + 0 = 22. Because ∣E(K8)∣ = (8

2) = 28 we can
conclude that any connected graph with n = 8 nodes and more than 22 edges must be symmetric.
The graph shown in Figure 3.4 has exactly m8 = 7 nodes and is an example for an asymmetric
graph.

1 2 3

4

5 6 7 8

Figure 3.4: An example of a connected asymmetric graph that has the minimum number of edges m8 =
7 for which there must exist such an asymmetric graph.

3.3 Graph Invariants

We have seen in the two preceding sections that isomorphisms (and automorphisms) preserve
graph structure. This implies that a lot of other properties of graphs are also preserved, but are
probably far less expensive (in terms of complexity) to be computed. Formally,

G ≅ G′ Ô⇒ inv(G) = inv(G′) (3.24)

for some invariant inv. The opposite implication does not hold. If an invariant could be found
that holds in both directions, GI would be solved if the invariant can be obtained with reasonable
complexity (Read and Corneil, 1977, p. 344). Still, invariants are useful for pruning, fast checks,
and pre-classification of, e.g., nodes prior to using an algorithm. For instance, only graphs with
the same number of nodes and edges can be isomorphic by definition, both values are available
(mostly) “for free”. Other invariants are based on spectral properties (an overview is given
by Read and Corneil, 1977, p. 345) or distances between nodes (e.g. Corneil and Kirkpatrick
(1980, p. 287) and Khalifeh et al. (2009)). Also Dehmer et al. (2013) provide a good overview
of different invariants in their introduction as well as a method that combines several invariants
for a better discriminating power.

In chemistry, graph invariants are often used to distinguish different molecules (e.g. Basak
et al., 1991). De Melo et al. (2013) propose a polynomial time invariant to test for graph
isomorphism. It is based on the quadratic assignment problem, which is an optimization of
assigning n entities of one set to the n entities of another disjoint set. A graph that is represented
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by a quadratic adjacency matrix can be understood as the instance of either a flow matrix or a
distance matrix (deMelo et al., 2013, pp. 165 f.) that are both the input of a quadratic assignment
problem (each matrix represents one set of n entities). They state that the problem solution for
two isomorphic graphs G and H is a permutation that maps one graph onto the other. However,
the invariant is not a solution of the assignment problem itself—which isNP-hard according to
the authors—but to calculate the variances for the three assignment problems (G,G), (G,H),
and (H,H) for the two graphs G and H . The computational complexity of the variances is of
polynomial order and if G ≅ H , these variances are equal.
Another noticeable invariant is a special partition of the node set, called an equitable partition.

The invariant differs from the ones above, as it is an invariant on the node level. It is used by
algorithms like nauty (see Section 3.4) as a starting point for the search of generators of the
automorphism group. A graph partition is called equitable if every node u ∈ V has the same
degree to all other cells. Let

deg(u,C) ∶= ∣{uv ∈ E ∣ v ∈ C,C ⊆ V}∣ (3.25)

be the constrained node degree given some subset (partition cell) C. An equitable partition Pe

is defined as

Pe ∶= {Ce
1, . . . ,C

e
k ∣ ∀u, v ∈ Ce

i ∶ deg(u,Ce
j ) = deg(v,Ce

j ), i, j = 1, . . . , k} , (3.26)

and, as a consequence, all nodes in an equitable cell Ce
i have the same node degree. The idea

behind this definition is simple and it is based on two natural properties:

1. Isomorphic nodes must have the same node degree, and

2. the neighbors of isomorphic nodes must have the same node degrees.

All nodes contained in the same cell of an equitable partition can possibly be isomorphic, nodes
contained in different cells can not be isomorphic.

3.4 Algorithms

In this section an extensive overview of algorithms that solve the graph isomorphism and/or
automorphism problem is given. We will go into more detail for those algorithms that are
capable of computing a set of generators for the automorphism group, as this is the application
we will need for our analyses in Chapters 4 and 7. To classify different algorithms, we first
distinguish three different manifestations of the same problem in general and explicitly for GI
and GA in Table 3.2.

Mathon (1979) additionally gives the problem manifestations, which he calls AGEN(G) (find
the generators of Aut(G)) and APART(G) (find the orbit partition of Aut(G)), and proves some
equivalence results of the issues.
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Abstract problem GI GA

Decision Is there any solution to it? Are the graphs G and H iso-
morphic?

Is there a non-trivial automor-
phism that maps G onto itself?

Counting How many solutions exist? How many isomorphic map-
pings from G to H exist?

How many such mappings ex-
ist, i.e. what is ∣Aut(G)∣?

Enumeration Which are the solutions? Explicitly get all isomorphic
mappings from G to H .

Which are the g ∈ Aut(G)?

Table 3.2: The three abstract problem manifestations and what they mean for graph isomorphism (GI)
and graph automorphism (GA).

When comparing GI and GA, the counting and enumeration problems for both are equivalent:
Consider G ≅ H and ∣Aut(H)∣ > 1. Counting the isomorphisms φi ∶ G → H is obviously
the same as finding one φ ∶ G → H and ∣Aut(H)∣, as for all g ∈ Aut(H) the function φ ○ g
is defined as φ ○ g ∶ G

φ→ H
g→ H . This means each φ ○ g is an isomorphism from G to

H and there exist exactly ∣Aut(H)∣ of them. Moreover, also Aut(G) = Autφ−1(H) holds
with Autφ−1(H) = {g ○ φ−1 ∣ g ∈ Aut(H)}. From the latter relation, the equivalence of the
enumeration problems becomes clear as well. The decision problem, however, is not equivalent
for GI and GA: Asking if G is isomorphic to G is trivially always true, as at least the identity
G1 = G exists. In contrast to that, deciding if G and H ≠ G are isomorphic has no non-trivial
solution.

Booth and Colbourn (1979) provide proofs for many problems to be isomorphism complete,
i.e. they can be reduced to GI in polynomial time. As a consequence, these problems are as
complex as graph isomorphism. Examples of isomorphism complete problems involve many
special graphs (e.g. directed graphs, bipartite graphs), lattices, and combinatorial designs. The
authors do not provide any pseudocode or algorithms, however, the contribution shows that there
cannot exist any method that solves one of all these equivalent problems in, say, linear time while
all others are still in NP .

Most algorithms that are presented in the following are intended to solveGI by either producing
a concrete mapping between the two graphs or by determining a canonical labeling of the nodes,
which, as we have seen above, must be the same for isomorphic graphs. Our survey of algorithms
begins in the mid of the 1970s; an overview of older methods is, e.g., given by Read and Corneil
(1977). We loosely adhere to the following order: First, algorithms for special classes of graphs
are reviewed and then we come to algorithms that solve the general case. In each subsection, we
always try to retain the order of appearance of the different articles.

3.4.1 Efficient Algorithms for Special Graphs

Planar Graphs One of the first notable efficient algorithms for handling GI of planar graphs
is by Hopcroft and Wong (1974). The word “efficient” is used a bit arbitrary in this context
and only means “better than brute-force”, i.e. better than complete enumeration of all possible
solutions. They present an O(n) algorithm that determines isomorphism and—after modifying
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the procedure—returns an isomorphic mapping if one exists. Although pseudocode is provided,
the authors emphasize that their results are rather theoretical than practical. Kukluk et al.
(2004) evaluate their own method, which is based on results by Hopcroft and Wong (1974), and
compare it with other algorithms that follow a general approach. Surprisingly, their method is
outperformed in terms of runtime by the general algorithms (presented in Section 3.4.3). This
is admitted by the authors in their conclusion.

Trees In their book on the design and analysis of algorithms, Aho et al. (1974, pp. 84/85)
present a linear time algorithm to determine tree isomorphism. It successively labels the nodes,
starting at the leaves, and assigns to all inner nodes on each level of the tree a sorted tuple of
labels of its children. Each distinct tuple per level gets assigned its own label. The algorithm
stops if the sequences of tuples on one level are different for the two trees that are compared.
As a consequence, if the root node is reached, the tuples of labels in the root node for both trees
must be equal, too. This algorithm is an example of a problem solver that does not yield an
isomorphic mapping between the two graphs but only decides GI. A quite didactic approach
to motivate tree isomorphism is by Campbell and Radford (1991), who build upon the results
of Aho et al. (1974). A polynomial time algorithm to solve the automorphism group counting
problem for trees is given by Zhang et al. (2012).

Interval Graphs An O(n + m) algorithm is presented by Lueker and Booth (1979) for in-
terval graphs, which are graphs constructed from intervals in R. Given a set of intervals
I = {I1, I2, . . . , In} with Ii = [ai, bi], ai ≤ bi, each interval represents a node of the graph and
two nodes Ii, I j (i ≠ j) are adjacent iff Ii ∩ I j ≠ ∅ (i.e. either a j ∈ Ii or b j ∈ Ii). For exam-
ple, I = {I1, I2, I3} = {[4, 6], [5, 7], [7, 8]} implies GI = ({I1, I2, I3} , {{I1, I2} , {I2, I3}}). The
method first constructs a special tree (“PQ-tree”, where P and Q stand for different types of
tree nodes) from the graph and then creates a labeled version of it. The authors prove that both
sub-algorithms have complexity O(n + m) with n the number of nodes and m the number of
edges. Two such graphs are isomorphic if the trees are isomorphic, which can be tested by a
modified version of the algorithm of Aho et al. (1974).

Graphs of Bounded Genus The genus of a graph is defined as the minimal number γ so that
the graph can be embedded in an orientable surface Sγ (Gross and Tucker, 2001, pp. 24 ff.), i.e.
it can be drawn without crossing edges. Informally, the genus is the number of holes in the
surface. The surface S0 is a sphere and all planar graphs, which can be drawn on a plane, can
also be drawn on a sphere. Therefore, planar graphs have genus 0. For example, the complete
graph K5 is not planar, so its genus must be positive. In fact, K5 has genus γ = 1 and that means
it can be embedded into S1, which is, e.g., a torus (the surface of a “doughnut”, i.e. a surface
with a hole in it; see Figure 3.5 for an embedding of K5 in S1).

A polynomial time algorithm for isomorphism testing of graphs of bounded genus is given
by Miller (1980). His method computes a succinct code, which is the same as a canonical
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Figure 3.5: An embedding of the complete graph K5 onto the surface S1. All edges but {2, 5} can be
drawn on a plane without crossings. However, {2, 5} can be drawn through the hole that
exists for S1, which circumvents the crossing of at least {1, 3}.

labeling defined above. Besides providing pseudocode, the author proves his algorithm to have
a complexity of nO(γ).
The results of Miller (1980) coincide with those of Hopcroft and Wong (1974), as planar

graphs of genus 0 have complexity nO(0) = nO(1) = O(nc) ≈ O(n) for small c. It is, however,
questionable if the result is still correct, as Myrvold and Kocay (2011) have recently published
results that the algorithm for the embedding of graphs, on which the method is based on (and
other algorithms as well), is incorrect and actually has exponential complexity. They argue in
their conclusion that there are newer attempts to actually provide a polynomial or even linear
time algorithm (e.g. Mohar, 2006), but it is not clear if the proposed methods can be correctly
implemented.

Permutation Graphs A permutation graph is defined for a permutation p on V = {1, . . . , n}
as Gp = (V, {i j ∣ ∀i, j ∈ V ∶ (i − j)(p(i) − p( j)) < 0}). This means there exists an edge for every
two nodes where p inverts the ordering of the nodes under the permutation.

A polynomial time algorithm for this special class of graphs is given by Colbourn (1981). He
provides a method that tests GI by computing a canonical labeling of the graph. The algorithm’s
complexity is of order O(n3).

Graphs of Bounded Valence Luks (1982) presents a method to test isomorphism of graphs
that have bounded valence (i.e. degree). However, the algorithm does not directly solve the
isomorphism problem, but the polynomial-time reducible, and thus equivalent, color automor-
phism problem. The rough idea of the method is to join the two possibly isomorphic graphs
G and H and then find—given a set of generators for a permutation group that acts on a set of
colors—those generators that generate the subgroup of permutations that preserve the colors.
The details are relatively complicated. Luks (1982) uses many group theoretic tricks to reduce
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the problem’s complexity. Furthermore, he states in the notes at the end of his article that the
complexity of O(n5) of the algorithm could be further reduced by several authors.
Soon after, promising results were published by Babai and Luks (1983) who reduced the worst

case complexity for general graphs to exp(n
1
2+O(1)), which was a long standing upper bound for

GI until the year 2015 (see below).

Compact and Non-isomorphic Graphs A graph G is said to be compact if the convex hull
of its automorphism group equals the set of doubly stochastic matrices that commute with
the adjacency matrix of G (Brualdi, 1988). The graph automorphisms are represented as
permutation matrices as defined in Section 3.2, and the convex hull of the group is the set of all
linear combinations

Aut(G) ∶= {∑
i
λiP i ∣∑

i
λi = 1, P i ∈ Aut(G)} . (3.27)

A matrix is called doubly stochastic if all rows and columns sum up to one. Clearly, each
permutation matrix is doubly stochastic and so are all the matrices in the convex hull Aut(G).
Moreover, a matrix X commutes with another matrix A if AX = XA holds.
Tinhofer (1991) gives a polynomial time algorithm for GI that yields the correct result for

any pair of non-isomorphic graphs or if one of them is compact. For non-compact isomorphic
graphs, the correctness depends on the graphs’ structure. Brualdi (1988) also proves that trees
are compact graphs, i.e. the result of Tinhofer (1991) coincides with the complexity of tree
isomorphism. The algorithm’s result is an actual isomorphic mapping between the two graphs
if it exists. Interestingly, the approach of the algorithm is to successively refine partitions of
the node set that are unaffected by Aut(G). This general procedure is applied by most of the
algorithms for GA that we discuss in Section 3.4.3.

Graphs of Bounded Average Genus The average genus of a graph is defined as

γavg =
∑i i ⋅ gi

∑i gi
(3.28)

with gi being the number of embeddings into the surface Si.
Chen (1992) presents a linear time algorithm to check GI for graphs of bounded average

genus. The basic idea of the method is to combine “topological invariants with combinatorial
analysis” (Chen, 1992, p. 104) that allows to compute a finite number of “frames” for the graphs
of bounded average genus. A “frame” of a graph G is derived from it by the deletion of several
edges in G. As a consequence, the frames must be isomorphic iff the two compared graphs are
isomorphic and the distribution of a subset of edges is equal.
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Circulant Graphs A graph is considered circulant if it is isomorphic to a graph for which the
permutation (1 2 . . . n) is an automorphism. This includes of course the cycle graph Cn as well
as the complete graph Kn.

The second to last efficient algorithm is by Muzychuk (2004) and applicable for this type of
graphs. We note here that the author only gives an idea how an actual polynomial time algorithm
(with complexity O(n2)) could look like. Therefore, it is not clear how difficult it would be to
implement the method. A different approach, which comes to similar results, is presented by
Evdokimov and Ponomarenko (2004).

Graphs with Excluded Minors A graph minor is a subgraph of a graph that is obtained by the
contraction of edges, i.e. connected nodes are merged into a single node by keeping the edges
to all other nodes. Grohe (2010) proves that isomorphism decidability for graphs with excluded
minors is in polynomial time.

3.4.2 General Algorithms

Corneil and Gotlieb (1970) published a procedure that is based on the first author’s PhD thesis,
and it consists of several parts. It is based on refining the set of nodes into cells of equivalent
nodes in terms of their degrees. In fact, these partitions are equitable as defined in Section 2.3.2,
although the authors do not name them as such. Recall that all nodes in a cell have exactly the
same number of edges to all other cells and that this partition is invariant under automorphism.
From the computed equitable partition the so called directed quotient graph is formed. It has the
partition’s cells as nodes and directed weighted edges that represent the number of edges each
node in a cell has to another cell. In a second step, each cell is further refined by assigning a new
label to all its contained nodes and then the equitability property is restored. This procedure
results in several finer partitions as well as their corresponding quotient graphs. These quotient
graphs are isomorphic iff they are equal. The refinement is repeated until no cell was refined
anymore.

The final result of the second step is the so called terminal quotient graph, which is conjectured
to be the automorphism partitioning of the graph, i.e. all nodes in a cell are “somehow” mapped
onto each other. This definition corresponds to the orbit partition of the graph, however, this is not
mentioned by the authors. Indeed, Corneil and Gotlieb (1970, Figure 3) give a counterexample
of two non-isomorphic graphs that have the same terminal quotient graphs and this facts leads
them to the definition of the representative graph, which is derived from the terminal quotient
graph. The authors state that the equality of the derived representative graphs from the two
graphs that are tested for isomorphism is a necessary condition and it allows to determine
non-isomorphism if this condition does not hold.

In the last step, the reordered graph is derived to be a sufficient condition for graph isomor-
phism. As the name tells, a reordering (of the node labels) is equivalent to a canonical labeling.
However, on the basis of the authors’ conjecture, only equality of the two derived reordered
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graphs implies isomorphism. Non-equality would be a counterexample to the conjecture, which
could be resolved by “a deterministic nonefficient heuristic procedure” (Corneil and Gotlieb,
1970, p. 52). The overall complexity depends on whether there exists a “transitive h-strongly
regular” subgraph and it isO(n5) if no such subgraph exists,O(n5+h) otherwise. The two flaws
of the algorithm are (i) that it relies on the conjecture that the terminal quotient graph is the
automorphism partitioning and (ii) that h is only bounded by n, which could result in an O(nn)
worst-case complexity. Nonetheless, the method involves many ideas on which later algorithms
are based, like, e.g., the refinement of partitions.

In his article onMonte-Carlo algorithms in graph isomorphism testing, Babai (1979) is the first
who coins the term “Las Vegas” algorithm. Both general types of algorithms are probabilistic,
which means they do not yield deterministic results (Babai, 1979, pp. 2/3):

Monte-Carlo algorithm Given some input x and the expected result y = f (x), there is a certain
error smaller than 1

3 that f (x) ≠ y.

Las Vegas algorithm Given some input x and the expected result y = f (x), there is a proba-
bility less than 1

2 that f (x) can not be computed and the result is “?”.

In other words, the former method always gives a result but with a certain error, the latter
always gives a correct result but probably no result at all. The contribution of the publication
is an O(n4 log n) Las Vegas algorithm for colored graphs with bounded class size that tests if
there is a color-preserving mapping between two given graphs. Furthermore, the author utilizes
his procedure to obtain better theoretical upper bounds for GI for two special graph classes,
one of them are graphs with bounded valence. The author also highlights the shortcomings
of his method: There are heuristics that should be considered first, as O(n4 log n) is indeed
polynomial, but too slow in practice, and the algorithm does not provide a canonical labeling of
the nodes.

Babai and Luks (1983) present an algebraic approach (i.e. based on properties of permu-
tation groups) for the canonical labeling of general graphs—and therefore for GI—in time
exp(n

1
2+O(1)). This complexity result was the best standing upper bound for over 30 years.

The authors furthermore prove (new) upper bounds for, e.g., graphs with bounded valence and
tournament graphs. The latter are complete graphs, where each of the (n

2) edges has an explicit
direction. Pseudocode for a recursive algorithm that produces a “canonical placement” of a
string of length n given some alphabet of symbols is given by the authors. Canonical placement
is just another term for canonical labeling. The idea of the algorithm is to find a lexicographically
minimal string that stabilizes subsets of the node set for some group. For the symmetric group,
simply the lexicographically smallest string would be the correct placement. The first string
that acts as input for the algorithm is the one that can be constructed from the degree partition.
It is important to mention that stabilizing a (sub-)set of nodes is of course related to finding
automorphisms of the graph. Besides the theoretical relevance of the article, there does not
seem to exist an actual implementation of the method.
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Only recently, Babai (2016a,b) came up with a new proof that is claimed to reduce the worst-
case time complexity of GI to exp((log n)O(1)), which is called quasipolynomial complexity.
The ideas of Luks (1982) and Babai and Luks (1983) are picked up and used to provide
pseudocode for a conceptual algorithm that realizes the new upper bound. This especially
involves the subroutines of the algorithm to solve the string isomorphism problem rather than GI
directly. Babai (2016b, p. 684) states that his method builds on the divide-and-conquer algorithm
by Luks (1982) and additionally creates “local certificates” to test for local symmetry. Moreover,
Babai (2016b, section 5.5) argues that his results are not particularly helpful in practice but give
further evidence that GI is not NP-complete (Babai, 2016b, section 5.2).

3.4.3 Practical Algorithms

In this section we present “practical” algorithms to solve GI and/or GA, i.e. algorithms for which
actual implementations exist and that are efficient. Of course, the theoretical upper bounds of
the problems also hold for these algorithms, however, their expected performance on problems
is in practice much better. The following five algorithms are described:

nauty (McKay, 1981; McKay and Piperno, 2014)

saucy (Darga et al., 2004, 2008; Katebi et al., 2012)

bliss (Junttila and Kaski, 2007)

Traces (Piperno, 2008; McKay and Piperno, 2014)

conauto (López-Presa and Anta, 2009; López-Presa et al., 2014)

The first four methods have many concepts in common, as they all are backtracking algorithms,
which build and traverse a tree data structure to create a set of generators for the automorphism
group of the graph. nauty, bliss, and Traces are also able to produce a canonical labeling
of the input graph, which allows to test isomorphism. The last, conauto, only tests for
isomorphism by solving the decision problem. Especially nauty and saucy have undergone
some improvements over the years; implementations of nauty and Traces are available as one
package and are described by a joint article of McKay and Piperno (2014).

Of course, there are other algorithms that try to solveGI and/or GA (e.g. Tener, 2009; Stoichev,
2010), but they have not gained as much attention as the five algorithms selected. Therefore, we
will not describe them further.

Before describing the different algorithms separately, we give an idea of the generic procedure
of the tree traversal. The explanation is loosely based on the article ofMcKay and Piperno (2014,
section 2), but muchmore informal, as we believe it is most important to grasp the general idea of
these algorithms in this thesis’ setting. Each tree-node represents an ordered equitable partition
of the node set V(G) and each cell of a partition has a different color. An ordered partition has
the usual properties of a partition as defined in Section 2.3, but the cells obey some ordering (see
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also Hartke and Radcliffe, 2009). Ordering can be achieved by replacing the partition definition
as set of sets by the definition as ordered set of sets. An ordered set is represented by a sequence
of elements. This means {. . . ,C,D, . . .} (if C or D is noted first is arbitrary) is replaced by
(. . . ,C,D, . . .) (C noted before D is determined by the chosen ordering). Therefore, also equality
of two ordered partitions depends on the ordering. For example, {{1} , {2}} = {{2} , {1}} but
({1} , {2}) ≠ ({2} , {1}). Additionally, the explicit ordering allows to determine the position of
a cell so that, e.g., Ci is at position i, and if i < j, Cj comes after Ci.
The partition that represents the root node is created by either making the degree partition

or some other initially colored partition equitable. To “make equitable” simply means to refine
a given partition by dividing its cells until the resulting partition is the coarsest equitable one.
The definitions for coarser and finer are the ones described in Section 2.3, but they also must
obey the ordering, i.e. split cells of the finer partition must keep their position relative to
their ordering in the coarser partition. For example, ({1, 3} , {2, 4}) ≥ ({1, 3} , {4} , {2}) but
({1, 3} , {2, 4}) ≱ ({2} , {1, 3} , {4}) as {2} suddenly appears before {1, 3}, which destroys the
ordering of the coarser partition (Hartke and Radcliffe, 2009, p. 5).

By definition, the partition represented by the root node is invariant under the automorphism
group, which means that all nodes affected by Aut(G) (yet unknown) are only moved within the
cells. A singleton partition in this context is called discrete and induces (due to the ordering) a
permutation of the node setV(G). If the root node is already discrete, ∣Aut(G)∣ = 1, as each node
is fixed by the automorphism group. This is because it is the coarsest equitable refinement of the
initial partition. Otherwise, the full tree eventually consists of leaf nodes, which all represent
discrete ordered partitions, and each of the partitions induces a permutation (see Figure 3.7 in
the following Example 27). The question now is, what do these permutations express and what
are the inner nodes of the tree?

We begin by explaining the second part of the question. Each node of the tree represents
an equitable partition and, more specifically, each child node represents a coarsest equitable
refinement of the partition of its parent node. To derive the children for the root node or some
inner node, an arbitrary cell of the represented equitable partition is selected by a so called target
cell selector. For each node in the selected cell, a new partition is created by splitting off the
node from the cell and refining the resulting partition to make it equitable again. This procedure
is called individualization (of the specific node v). Recall the interpretation of the partition
represented by the root node: It is invariant under Aut(G), which means only nodes within
those cells may be affected by automorphisms, if they exist. Therefore, the tree is recursively
built by selecting a target cell of the partition representing the current node, individualizing all
nodes of it, and refining the result. This is repeated until discrete partitions are reached, those
represent the leaf nodes of the tree.

Let us now come to the first part of the above question (What do the permutations express?).
Due to the ordering of the partitions, the coarsest refinements differ for different individualized
nodes. As a consequence, all leaf nodes represent different permutations with respect to the
initial partition. The equitability property assures that only those permutations are created that
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have a possibility to be an automorphism of the graph. Let L denote the set of partitions
represented by leaf nodes. As a result, these permutations generate some group ⟨L⟩ = H

and Aut(G) ≤ H ≤ Sn holds. Therefore, the goal is to keep only those permutations so that
Aut(G) = ⟨L⟩ and, possibly, that L is a minimal generating set.
The individualization of a node u and the following partition refinement corresponds to a

fixation of u. Fixation means that all following inner nodes (the subtree rooted at the corre-
sponding tree-node) represent partitions in which u is assumed not to be affected by Aut(G). As
a consequence, the permutations represented by the leaf nodes of this subtree, which actually are
automorphisms of G, generate the stabilizer subgroup Aut(G)u ≤ Aut(G) (see Equation 2.74).
This means the repeated individualization of (necessarily different) nodes successively reduces
the possible automorphisms, as more and more nodes are fixed.

Example 27. Let B be the “butterfly” graph in Figure 3.6. The degree partition is Pdeg =
{{1, 2, 4, 5} , {3}} and it is equitable. The ordered representation of Pdeg is ({1, 2, 4, 5} , {3}),
which we abbreviate by (1, 2, 4, 5∣3). The actual ordering is arbitrary, as long as it is well
defined and used throughout the whole procedure. Here, lexicographical ordering is chosen.

1

2
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Figure 3.6: The butterfly graph B, which is clearly symmetric. ∣Aut(B)∣ = 8 and the globally mini-
mum number of generators needed to generate the group is two, as there are two “separate”
symmetric mappings: E.g. switch 1 and 2 or “mirror” {1, 2} and {4, 5} along the (thought)
vertical axis through node 3. The permutation group obtained at the end of Example 18 in
Section 2.4.3 by computing the wreath product of two symmetric groups S2 is isomorphic to
Aut(B).

Figure 3.7 shows the complete search tree concerning B. The root node represents the
initial partition, which is the coarsest refinement of the degree partition (it is just coincidence
that they are equal). Without any knowledge about Aut(B), the search is already reduced to
Aut(B) ≤ (SV(B))3, as node 3 must be fixed by Aut(B). The individualization of, say, node
1 requires also to separate node 2 from nodes 4 and 5 because (1∣2, 4, 5∣3) is not equitable
(not every node of cell {2, 4, 5} has an edge to cell {1}). None of the discrete partitions are
direct automorphisms of B, because the ordering relation of the partitions is a permutation
itself. Therefore, given two permutations induced by leaf nodes τi and τj , one must calculate
the catenation τ−1

i ○ τj . One partition, e.g. the one induced by τi, is the reference to which all
other τj must refer. For example, the two permutation under the first subtree (1∣2∣4∣5∣3) and
(1∣2∣5∣4∣3) represent

τ1 =
⎛
⎝

1 2 3 4 5
1 2 4 5 3

⎞
⎠

(3.29)
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Figure 3.7: The complete search tree for B. The edge labels determine which node of the target cell
is individualized. As there is exactly one non-singleton cell for the root node and each in-
ner node, this cell is selected. Below the leaf nodes of the search tree, the permutations
of V(B), which are derived from the discrete partitions represented by the leaf nodes, are
shown. The dashed arrows pointing towards them and the permutations themselves are not
part of the search tree and are only shown for didactic reasons.

and

τ2 =
⎛
⎝

1 2 3 4 5
1 2 5 4 3

⎞
⎠

(3.30)

so that

τ−1
1 ○ τ2 =

⎛
⎝

1 2 3 4 5
1 2 5 3 4

⎞
⎠
○
⎛
⎝

1 2 3 4 5
1 2 5 4 3

⎞
⎠
=
⎛
⎝

1 2 3 4 5
1 2 3 5 4

⎞
⎠
= (4 5). (3.31)

Recall that fixing node 1 means that the subtree rooted at (1∣2∣4, 5∣3) represents the stabilizer
subgroup that fixes 1 (and of course also 3). With the above result and by looking at B, one can
assert that (4 5) is the only permutation that is an automorphism of B if 1 is fixed.
When looking at the induced permutations below the leaf nodes in Figure 3.7 (the leftmost

partition is used as reference, which corresponds to 1) it can be seen that all these permutations
are actually automorphisms of B. This is, however, coincidence and can not be generalized.

Until now, we have only described how the search tree looks like and that it—by construction—
produces permutations of a subgroup of Sn; Aut(G) is itself a subgroup of this permutation
group. To find the actual automorphism group, one has to test each found permutation if it is an
automorphism of the graph. This is already better than brute-force search, but the complexity
is still exponential in the number of children of the tree in each level. If the initial partition,
represented by the root node, is the trivial partition, individualizing would result in exactly n

children on the first level. Each of those nodes could have a maximal number of n − 1 children,
and so on. Therefore, the tree could have a maximum of n ⋅ (n − 1)⋯ = n! leaf nodes, which
corresponds to all permutations of Sn.

To circumvent this issue, the tree traversal is performed in a more clever way. When the
first discrete partition is derived (i.e. the first path from the root to a leaf node is explored), the
tree traversal continues from the parent tree-node of the discrete partition with the next node to
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individualize. This results in a second discrete partition and, by using the procedure described
in Example 27, a permutation that is a possible automorphism is derived.

If the permutation is an automorphism of G (this must be checked), then it is saved as part of
the generating set of the group. Additionally, the orbit partition is gradually built by the revealed
information, as all nodes that lie on the same cycle of a given permutation must lie on the same
orbit. Therefore, at each level in the tree traversal it is sufficient to individualize only one of the
nodes that are known to lie on the same orbit. If, on the other hand, the derived permutation is
not an automorphism of the graph, the procedure continues.

Example 28. We continue Example 27. Figure 3.8 shows an example of how the tree actually
could be built and traversed for the butterfly graph B:

(a) The first node of the target cell of the root node is individualizedwith subsequent refinement.

(b) Individualization (node 4) and refinement of the finer partition; the first discrete partition
τ1 is found.

(c) Another discrete partition τ2 is found after individualizing node 5. The permutation
τ−1

1 τ2 = (4 5) is an automorphism of B and it is, therefore, added to the generating set.
Also, nodes 4 and 5 lie on the same orbit.

(d) As no other individualizations are possible, the procedure continues at the root node.
Node 2 is individualized.

(e) Again, a discrete partition τ3 is derived, τ−1
1 τ3 = (1 2) is an automorphism of B. The orbit

partition is updated.

(f) Node 5 is not individualized, as nodes 4 and 5 are already known to be equivalent. The
subtree is pruned, i.e. not generated and traversed further.

(g) Individualization again continues from the root node.

(h) τ5 is found and τ−1
1 τ5 = (1 4)(2 5) is an automorphism of B. With this additional

information, we know that all four nodes must lie on the same orbit.

(i) As nodes 1 and 2 are equivalent, the subtree is pruned.

(j) The last node of the target cell is also not individualized, as we already know that all
nodes in the target cell lie on the same orbit.

By using the orbit information, which is successively exploited by building and traversing
the tree, the effort can be decreased: Only 7 out of 12 individualization/refinement steps
are needed, and only 4 out of 8 discrete partitions are created. However, the generating set
L = {(4 5), (1 2), (1 4)(2 5)} is not minimal, as one out of the two transpositions would suffice to
generate Aut(B). It is possible to compute ∣Aut(B)∣ by the definition of the search tree utilizing
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Figure 3.8: A possible search tree traversal where subtrees are pruned (emphasized by the scissors that
cut off the subtrees) by orbit information. The steps (a) to (j) are described in the text; un-
derlined nodes are the ones that were individualized.

Theorem 2 (orbit stabilizer theorem). The leftmost subtree yields all generators that fix node 1,
so the subgroup Aut(B)1 contains two permutations (identity and the transposition (4 5)). Also,
the orbit {1, 2, 4, 5} of node 1 is known, therefore ∣Aut(B)∣ = ∣Aut(B)1∣ ⋅ ∣1Aut(B)∣ = 2 ⋅ 4 = 8.

A last “ingredient” of these types of search algorithms are node invariants, which are used
to compare tree-nodes. For details, see McKay and Piperno (2014, sections 2.4/3.3). A node
invariant is a function that depends on the graph and initial partition and that returns some value
for a given tree-node. If the values for two different tree-nodes are unequal, there must not exist
an automorphism that maps the partitions represented by those nodes onto each other (McKay
and Piperno, 2014, p. 98)). The purpose of such invariants is to further reduce computational
complexity by comparing tree-nodes (not only leaves!) to possibly allow additional pruning.

We have omitted certain details, like the target cell selection and the node invariants and we
have not proved the correctness of the procedure. For these details (which are out of scope of
this thesis) we refer to the articles we are going to cite in the next paragraphs and the references
that can be found therein. How to compute a canonical form of the graphs has also not been
discussed yet.

3.4.3.1 nauty

The first popular algorithm that employs the described search strategy is nauty (McKay, 1981).
McKay thoroughly describes the procedure with all its subroutines (e.g. refinement, tree gen-
eration) and proves the correctness of the method. The results go back to the author’s master
and PhD theses from 1976 and 1980 (McKay, 1981, p. 45, references 12 and 14). In section 3
of this article, McKay also describes the used data structures. For graphs, an adjacency matrix
representation is chosen, which is quite expensive in terms of storage (O(n2) space). The author
also discusses the time and storage complexity. Refinement of a partition is in O(n2 log n) and
the complexity of the main routine is (at the first sight) polynomial in n, but it also includes
several other variables like the number of tree nodes that follows a certain condition for which
no upper bound is known (McKay, 1981, section 3.7). The results of Miyazaki (1997) show that
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examples can be found that force nauty to have exponential time complexity. The first version
of nauty was implemented in Fortran and parts even in direct machine language (assembler)
(McKay, 1981, section 3.8). Pruning of the search tree is mainly done by using the found
automorphisms, which are used to update the orbit partition (as we have described above).
To obtain a canonical labeling, McKay (1981, p. 57) generally defines an indicator function

(another name for a node invariant) whose value is invariant under any permutation for a given
graph and partition. The value of such a function is an ordered set, the actual ordering is
arbitrary. In the end, the canonical labeling is the labeling implied by a partition that represents
a permutation (a discrete partition) for which the value of the indicator function is maximal.
The crucial part is that the indicator function employs a relabeling that is independent of the
actual labeling of the graph. As two isomorphic graphs have the same automorphism group, the
traversal of the search tree is identical (although the node labels differ) and, therefore, the values
of the indicator function (which must be of course fixed) are the same. As a consequence, the
maximal values must be the same iff the graphs are isomorphic.

The latest version of nauty2 (McKay and Piperno, 2014) is written in the C language
and contains several improvements as, e.g., the use of a randomized method (Seress, 2003,
randomized Schreier method, pp. 70 ff.) to compute the stabilizer subgroup at a certain point in
the search, which sometimes allows additional pruning. It is also possible for a user to provide
custom node invariants that are applicable for the input graph to speed up the computations.

3.4.3.2 saucy

Over 20 years nauty was the only algorithm that utilized the backtracking strategy, until Darga
et al. (2004) introduced saucy, whose background is purely application-driven: The automated
design of electric circuits can be transformed into a Boolean satisfiability (SAT) problem, which
needs to be solved efficiently. These satisfiability problems can be transformed into a conjunctive
normal form (CNF), so that the derived problem only consists of several clauses that must all be
true. Each clause Ci contains a number of Boolean variables v j (literals; possibly negated) that
are connected by OR operators; the clauses are combined by AND operators:

⋀
i
⋁
vj∈Ci

v j . (3.32)

An example is given by Darga et al. (2004). They also show how an undirected bipartite graph
(literals and clauses are colored differently) can be derived from a CNF formula. The bipartite
graph construction is an example of a different initial partition for the search tree generation.
Two SAT problems are equivalent if their induced graphs are isomorphic. The example of the
authors is

(¬a ∨ b ∨ c)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C1

∧ (a ∨ ¬b ∨ ¬c)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C2

∧ (¬b ∨ c)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

C3

(3.33)

2 Version 2.6r10 from October 2017, see http://pallini.di.uniroma1.it/ as of March 2018
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and the permutation (a ¬a)(b ¬c)(¬b c)(C1 C2) is an automorphism of the derived graph, i.e.
clauses C1 and C2 are equivalent after some relabeling. As a consequence of the equivalence,
the solution space of the SAT problem is reduced from 23 to 22 different literal assignments.
Darga et al. (2004, section 4) argue that graphs induced by CNF formulas are usually very
sparse and have a small average node degree, which leads to a major improvement compared to
nauty: Only connected cells (in terms of a partition represented by a node in the search tree) are
selected for the individualization-refinement procedure. In the authors’ evaluation, saucy has
a significant speed advantage over nauty for the used class of benchmark graphs. To underline
the role of sparsity, the authors use the respective complement graphs (which are very dense but
have the same automorphism group) and show that nauty’s performance is unaffected by this
transformation. As expected, saucy’s advantage for sparse graphs turns into a disadvantage for
these dense graphs. Note, however, that saucy can not create a canonical labeling of the graph.
Like nauty, also saucy was improved several times3:

• (Darga et al., 2008): Instead of detecting symmetry only in leaf nodes of the search tree,
saucy was improved to “short-circuit” paths from inner nodes to leaf nodes if certain
conditions hold. Again, these conditions hold very often for sparse graphs and decrease
the number of tree-nodes from quadratic to linear in terms of the number of generators.
Another change is to eliminate the strict target cell selection that always selects the same
cell per level in the tree. Instead, an arbitrary non-singleton cell is selected.

• (Katebi et al., 2012): The authors extend the definition of the search tree. Each node
represents an ordered partition pair (OPP), which consists of the so called top and bottom
partitions. These two partitions are refined simultaneously and correspond to the partitions
that result from the individualization of the first and last node of a given target cell. Both
partitions must always be isomorphic and if a conflict is found (i.e. the partitions are not
isomorphic), the subtree can be pruned. The isomorphism test is performed after each
step of the refinement procedure, as this invariant must hold at all time. The authors
call this isomorphism invariant for non-discrete partitions the representation of “partial
permutations” (Katebi et al., 2012, p. 256).

The improvements from saucy 2 (Darga et al., 2008) to saucy 3 (Katebi et al., 2012) are,
however, only relevant for the special class of Miyazaki graphs (Miyazaki, 1997), which was
created as a benchmark for nauty. Therefore, we believe that especially the improvements to
reduce the number of nodes of the search tree are another main competitive advantage for sparse
graphs. This advantage on sparse graphs can be carried over to the analysis of large real-world
graphs. Therefore, saucy is used for the analyses presented in Chapters 4 and 7.

3 Latest version 3 from “Spring 2012”, see http://vlsicad.eecs.umich.edu/BK/SAUCY/ as of March 2018
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3.4.3.3 bliss

Junttila and Kaski (2007) present bliss, which is—as saucy—a descendant of nauty. The
main advantage over nauty and saucy (note the date of publication, only the first version of
saucy was available) is the introduction of “incremental leaf certificates”, which are basically
node invariants that are not only computed for leaves, but already partially for inner nodes of the
tree. As soon as two partial certificates differ, the complete subtree can be pruned as—by the
invariance definition—no automorphisms of the graph can be found. Furthermore, the authors
emphasize their more efficient data structures that are used, which, e.g., allow a less expensive
target cell selection method. Yet another difference is that bliss keeps track of two orbit
partitions what sometimes allows additional pruning during the search. The authors compare
the algorithm with nauty and saucy (the available versions at that time) and find that bliss
outperforms both in many cases. Like nauty, bliss is also able to extract a canonical labeling
of the input graph.

In a later publication, Junttila and Kaski (2011) further improve their idea of using sequences
of node invariants (i.e. the partial leaf certificates) by additionally saving hash values of the
certificates of nodes that are not isomorphic to the first path that was traversed (i.e. the first
path from the root node to a leaf node). This allows, again, additional pruning of subtrees that
cannot result in automorphisms of the graph. A second improvement consists of saving another
colored partition for every node of the search tree, which makes it possible to prune subtrees
if two inner nodes are found to be isomorphic (a similar procedure that was introduced for an
improved version of saucy).

3.4.3.4 Traces

Besides small differences and improvements in detail, all three algorithms above follow the same
basic search procedure and act on the same abstract data structure. We have not yet explicitly
noted that the search strategy follows the depth-first search (DFS) pattern, i.e. the tree traversal
goes from the root to the leaves by exploring complete partition refinement paths one by one.

Piperno (2008) presents a quite different approach to tackle the canonical coloring problem.
Before going into algorithmic details, the author points out a major problem that results from
the DFS strategy: The actual runtime complexity for finding a canonical labeling depends on
the labeling of a graph, i.e. it may take longer for one graph to find the canonical labeling than
for another graph, although they are isomorphic. To deal with this issue, Traces’ traversal
strategy is breadth-first search. So instead of exploring a partition refinement path until a leaf
node is reached, each level of the search tree is created first. However, to retain the ability to
prune subtrees by already found automorphisms, one single refinement path (the “experimental
path”) is traversed for each tree node per level. By definition of the tree, all discrete partitions
represented by those leaf nodes can be used to find automorphisms of the graph. The overall
strategy tries to incorporate early pruning at each tree level and pruning by already found
automorphisms. As a further improvement of the latter procedure, Traces utilizes the Schreier-

86



3.4 Algorithms

Sims algorithm (e.g. Seress, 2003), which computes a strong generating set from a given set
of group generators, that then eases several helpful computations (e.g. “computing the orbits of
point stabilizers” Piperno, 2008, p. 11). Other implemented improvements are:

• The use of a 2-dimensional partition refinement (the 1-dimensional one is the “standard”
refinement, which, e.g., nauty implements) that—despite beingmore costly to compute—
may decrease the depth of the tree. The author argues that this invariant is applicable for
all classes of graphs, which, contrary to nauty, removes the need of the user’s background
knowledge to choose specialized invariants. This invariant, which is referred to as the
2-dimensional Weisfeiler-Lehman refinement (Weisfeiler, 1976), considers not only how
the neighbors of cells are colored, but also employs a coloring to the edges (treated as
directed). The edges are colored by the number of triangles in which they participate
in (Piperno, 2008, p. 12). As a result, this 2-dimensional refinement is finer than the
1-dimensional one.

• The comparison of inner tree nodes by partial leaf certificates like the ones bliss imple-
ments. However, each certificate is a vector of vectors called the “trace”. This is where
the algorithm’s name originates from (McKay and Piperno, 2014, p. 102).

The authors of nauty and Traces have joined forces (McKay and Piperno, 2014) and provide
explanations of the latest versions4 of both algorithms. Moreover, performance tests are shown
and the authors conclude that nauty is the preferable choice for small graphs, Traces is the
leading option for “difficult” classes of graphs (McKay and Piperno, 2014, section 5).

3.4.3.5 conauto

A quite different method is proposed by López-Presa and Anta (2009), who published an
algorithm, which they call “direct”, as it neither computes a canonical labeling nor does it find
generators for the automorphism group. Instead, it computes a mapping between two given
graphs (if it exists). At first, the authors argue that direct methods normally have a problem with
symmetric graphs, as they are not able to efficiently compute the automorphism group of either
of the two possibly isomorphic graphs. They claim to overcome this problem by partially taking
existing automorphisms into account, but only up to the point an isomorphic mapping is found or
can be ruled out (i.e. invariants, whichmust always be true for both graphs, fail). For this purpose
conauto stores and updates a “semiorbit” partition, which contains equivalence information of
nodes due to found automorphisms (but without keeping the actual permutation). The name
“semiorbit” comes from the fact that not necessarily the complete orbit of the automorphism
group is found during the procedure. The crucial part of the algorithm is performed recursively
and involves a backtracking strategy, just as all the other methods we have described above.
The general functionality of conauto can probably be best thought of as the traversal of a path
of the search tree of one of the graphs and then to find a matching path for the other graph.
4 Traces version 2.1, see http://pallini.di.uniroma1.it/ as of March 2018
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All the details can be found in the PhD thesis of the first author (López-Presa, 2009). The
gentle reader will also find the origin of the algorithm’s name, which combines the two words
con (Spanish “with”) and auto (short for automorphism(s)) so conauto simply means “with
automorphism(s)”.

With the second version of conauto (López-Presa et al., 2014), the algorithm is also capable
to compute a generating set of the automorphism group. Their approach involves several
techniques that make the implementation quite efficient compared to others:

EAD The early automorphism detection allows to uncover automorphisms in inner tree-nodes,
not only in leaves.

BJ Backjumping is an improved backtracking method (if a conflict is found), which makes it
possible to directly jump back to a certain ancestor that is on a higher level in the search
tree instead of backtracking to the parent node only.

DCS A novel dynamic cell selector is presented, which is necessary for the two preceding
techniques. The authors argue that the target cell selector is—due to its dynamism—very
good for diverse classes of graphs. The idea of DCS is that it favors those partitions as
refinement results that consist of many more cells than the input partition. This means
that DCS selects target cells in a way that the discriminating power is maximized and, as
a consequence, the search tree depth is reduced.

CDR Similar to the pruning procedure that was published with the latest version of bliss,
conflict detection and recording stores a hash value for tree-nodes at which a conflict
occurs. However, according to the authors’ observations—their method is superior to the
one of bliss.

López-Presa et al. (2014, pp. 8 ff.) evaluate the described techniques by testing against the
latest versions (at that time) of the four algorithms discussed above and also the older version of
conauto itself. They find a significant decrease in the number of explored tree-nodes for many
special classes of graphs compared to the competitors. The authors conclude with the remark
that their four improvements are general and can be integrated in any algorithm that follows the
node individualization and refinement approach.

3.4.4 Different Approaches and Algorithms for Related Problems

We only briefly want to review some related problems to GI/GA. A survey is given by Conte
et al. (2004).

One of those problems is subgraph isomorphism (SGI), which we already mentioned when
theoretical complexity was discussed in Section 3.1. An often cited approach is presented by
Ullmann (1976) and a more recent approach is by Cordella et al. (2004). The latter algorithm
is a direct method, as described above, and capable to decide GI as well as SGI by returning an
actual mapping.
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Sorlin and Solnon (2004) introduce a transformation of GI to a constraint satisfaction problem,
which also can be extended to be used for directed graphs or to solve SGI.

A method other than the backtracking algorithms described above is given byMansour (2017)
and it is based on message passing. First, the possibly isomorphic graphs are converted to a
canonical form and then the message passing algorithm is applied on both graphs resulting in an
output signature that must be equal if the graphs are isomorphic. However, a comparison with
nauty yields worse results of the described algorithm. An inexact method to solve GI based on
neural networks is proposed by Jain and Wysotzki (2005).

The article by Rudinger et al. (2013) could be used as an entry-point to approaches that tackle
GI by using quantum computing. The authors do not provide a new algorithm but compare
previously published ones.

Foggia et al. (2001) compare the performance of five different GI solvers, namely, nauty
(McKay, 1981; McKay and Piperno, 2014), the one of Ullmann (1976), VF (Cordella et al.,
1999), VF2 (Cordella et al., 2001), and a method presented by Schmidt and Druffel (1976).

3.5 Other Graph Symmetry Concepts

So far, only exact mappings of nodes onto nodes were discussed. In this section we review some
related and sometimes “weaker” concepts. Weaker is meant in the sense that exact symmetry
implies the weaker form of symmetry but not the other way round.

Pseudo-similarity Two nodes u, v of a graph are equivalent/similar if they lie on the same
orbit, i.e. there exists an automorphic mapping between those nodes (see Sections 2.4 and 3.2).
Let Gu = (V(G) ∖ u, Eu) and Gv = (V(G) ∖ v, Ev) be the induced subgraphs that result from
the removal of the nodes u and v (u ≠ v). As u and v lie on the same orbit, these two induced
subgraphs must be isomorphic, i.e. Gu ≅ Gv holds.

However, there may exist nodes u′, v′ (u′ ≠ v′) that do not lie on the same orbit, but their
induced subgraphs Gu′ and Gv′ are nonetheless isomorphic. Therefore, u′ and v′ are called
pseudo-similar if Gu′ ≅ Gv′ holds (Harary and Palmer, 1966; Kimble et al., 1981). An example
is shown in Figure 3.9.

Hidden Symmetry Liu (1997) presents a method to decompose a graph into a disconnected
graph that is isospectral, i.e. it has the same spectrum (eigenvalues) of the adjacency matrix
A. The resulting disconnected subgraphs normally have a higher degree of symmetry in terms
of exact automorphisms than the “original” graph, which the author calls “hidden symmetry”.
The method allows the construction of a group that is a subgroup of the Hamiltonian group of a
graph and that contains all matrices T for which T−1AT = A holds. The automorphism group
is a subgroup of this group, where the T are permutation matrices as defined in Section 3.1.
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(a) A graph G, which is nearly asymmetric ((1 2) is a symmetry).
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(b) The induced subgraph G3 that results from removing node 3.
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(c) The induced subgraph G6 that results from removing node 6.

Figure 3.9: Example from Kimble et al. (1981, figure 1). G is nearly asymmetric but, additionally, the
nodes 3 and 6 are pseudo-similar, as G3 ≅ G6.

Near Automorphisms In the article of Emerson and Trefler (1999) a relaxation of exact
automorphisms to “near automorphisms” is presented. They apply their idea on an example of
two computing processes—one is a reader, the other awriter—which depend on each other if they
want to access the same shared resource. The individual states of both processes are the same
(“Non-Trying” (N), “Trying” (T), “Critical Section” (C)) and the state flow is¼ N → T → C ¿.
Thismeans a process that is in state N (it is not trying to access the shared resource) can transition
into state T (it is now trying to access the resource) and, eventually, can transition into the state
C (the critical phase in which the resource is actually accessed). After accessing the resource,
the process state changes back to N . Their dependency is described as a directed state transition
graph (Emerson and Trefler, 1999, figure 1), which contains every possible pair of states as
nodes and connects those combinations that are possible transitions. For example, the combined
state is (N, N) (neither process wants to access the resource) and the possible transitions are
into (T, N) or (N,T) (one of the two processes tries to access the resource). The state transition
graph is asymmetric because of one edge breaking the symmetry, due to the fact that one process
is a writer and has a higher priority than the reader for accessing data: The only possible state
transition from (T,T) is into (C,T) if the first process is the writer. A transition into (T,C)
is not possible. Because of this fact, the state transition graph is asymmetric, although both
processes follow the exact same state transition flow. However, the presented relaxed definition
of symmetry allows to exchange both processes and one can see the similarity of them.

Stochastic Symmetry Garlaschelli et al. (2010) state that exact symmetry—as captured by
the automorphism group—is very unlikely to exist in complex networks. Therefore, the authors
define “stochastic symmetry” of a graph as the assignment of this graph to a graph ensemble with
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a high probability. An ensemble is simply a set of graphs that all share similar properties and—
considering a constructive model—have a certain probability to be generated by this model.
These probabilities sum up to one. They nicely motivate this idea with a simple circle, which is
perfectly symmetric in terms of rotations around its center. However, in reality it is very unlikely
that perfect circles actually occur, rather than objects that are approximately circles but with
small disturbances. Nonetheless, different objects that are all approximate circles with the same
radius form an ensemble. Furthermore, the authors also review “scale invariance” as presented
in Section 2.2.1.

In a second article, Ruzzenenti et al. (2010) apply the stochastic symmetry definition to the
world trade web, which is described as a directed network showing trade relations between
countries (the weights expressing actual monetary values are omitted). In fact, the authors
analyze an ensemble of such graphs that represent the global trade networks in the years
between 1948 and 2000. They especially emphasize the role of the degree sequence and state
that countries with the same degree (i.e. the same amount of trading relationships) are equivalent.
Furthermore, the authors find a strong relation between the GDP (Gross Domestic Product) and
trading activity (Ruzzenenti et al., 2010, p. 1736) but no dependence of spatial embeddings of
the network (i.e., for example, direct neighborship of countries or absolute distances given by
the road network).

Just recently, Schieber et al. (2017) introduced a dissimilarity measure for graphs that com-
bines global and local quantities (node distances, centrality). Isomorphic graphs have dis-
similarity 0 (they are similar), but the authors also state that they cannot guarantee that two
non-isomorphic graphs exist that also have a measure of zero. A positive value of the measure,
however, indicates non-isomorphism of two graphs. Schieber et al. (2017) evaluate their mea-
sure by comparing several random (using models as described in Section 2.2) and real-world
networks.
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4 Symmetry Analysis of Real-world
Graphs

We have introduced symmetry of graphs in Section 1.2 and presented formal definitions in
Section 3.2. So far, we have seen that literature on graph symmetry either refers to the formal
mathematical description and analysis, but independent of the actual relevance in graph data
analysis, or that a graph representation is used as an intermediate model to solve a symmetry
problem of another application domain (e.g. logical satisfiability problems (Darga et al., 2004)).
There is a lack of analyses and understanding if and when real-world graphs are symmetric. We
presented the most well-known graph models (e.g. Erdős-Rényi and preferential attachment)
in Section 2.2 and none of them directly involves symmetry considerations. Only models that
are based on the copying of nodes and their edges indirectly involve graph symmetry, as we
briefly discussed in Section 2.2.4. Furthermore, we found that the ER model (Erdős and Rényi,
1963) and the preferential attachment model (Magner et al., 2014) produce asymmetric graphs
in the limit, but only a few publications investigate “arbitrary” graphs from several application
domains for their symmetry properties:

• MacArthur et al. (2008): A symmetric decomposition (see Section 2.4.3) of the auto-
morphism group of graphs is presented by the authors and they exemplarily apply this
decomposition to 20 complex biological, technological, and social networks. They also
identify several small symmetric network motifs that often occur in the diverse graphs.

• Darga et al. (2008): The authors analyze graphs for symmetry as part of a benchmark of
their own method of computing a set of generators (a modified version of saucy).

• Xiao et al. (2008a): They define and compute “network quotients”, which are simplified
versions of a network that group structural equivalence (i.e. symmetry) in equivalence
classes. They apply their definitions on 11 real-world networks.

• Wang et al. (2009): These authors explore symmetry in the world trade network and find
many local symmetries. We define local symmetry in Section 5.2 in the same context as
Wang et al. (2009) but more thoroughly.

• Wang et al. (2012): In their article, the authors present an algorithm for the “symmetry
compression” of graphs that allows a faster discovery of networkmotifs (Milo et al., 2002).
They use 12 symmetric protein-protein-interaction networks to benchmark their method.
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To underline the importance of taking symmetry into account when analyzing network data,
we analyzed a large number of real world networks. The results are published in (Ball and
Geyer-Schulz, 2018a).

In total, over 1500 graph datasets have been obtained and analyzed from the meta-repository
networkrepository.com and over 70 % of them are symmetric. To quantify symmetry, the
measure “normalized network redundancy” is derived from results of MacArthur et al. (2008).
It is notable that symmetries are found in all types of graphs, independent of their size and
modularity.

4.1 Measures of Graph Symmetry

In this section some measures to quantify the symmetry of graphs are presented. They are either
based on the order of the automorphism group or on the number of orbits of the group. The
absolute size of the automorphism group ∣Aut(G)∣ itself (which grows faster than exponential
in n) is not a good measure, as the following example shows.

Example 29. Let G be a graph that has n = 100 nodes and 15 of them can be mapped onto
each other in any way, while all others are fixed. The group of this graph is isomorphic to
the symmetric group S15 with a size of ∣S15∣ = 15! ≈ 1.3077 × 1012. Compare this to a much
larger graph with, say, n = 1000 nodes and 15 of them form the cyclic group C15, the size of
this automorphism group is only ∣C15∣ = 15. As a consequence, the group order is completely
misleading because (i) the size of the graph is not taken into account and (ii) the group order
cannot be interpreted intuitively.

4.1.1 Measures Based on the Group Size

As was shown in Section 2.4, the maximal number of permutations on n elements (realized by
the symmetric group) is n!. Therefore, one measure of (relative) symmetry, which is used, e.g.,
by Zenil et al. (2014), is

symm1(G) ∶= ∣Aut(G)∣
n!

. (4.1)

It is the relation of actually existing permutations of the automorphism group of the graph
compared to the maximum number of permutations of its n nodes. Both values tend to become
very large, which makes the numeric computation of the measure difficult. The factorial of n

can be approximated by Stirling’s formula (e.g. Mortici, 2009)

n! ≈
√

2πn (n
e
)

n
(4.2)

and the order of the group is normally given as result of an algorithm that computes generators
for the group (like nauty or saucy). Besides numerical issues, even for very symmetric real-
world graphs, the order of the group is much smaller than n!, which would result in very small
values of the measure.
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Another—quite similar but more specific—measure is given by Zhang et al. (2012, defini-
tion 3), which they call “normalized symmetry”:

symm2(G) ∶= ∣Aut(G)∣
∏k∈{deg(u)∣u∈V} ∣ {u ∈ V ∣ deg(u) = k} ∣!

. (4.3)

Instead of relating the group order to the order of Sn, the measure only takes into account actually
possible symmetries, which are constrained by the node degrees of the graph. Therefore, the
inequality

symm1(G) ≤ symm2(G) (4.4)

holds and equality is obtained for regular graphs.
Based on symm2, one can also think of a measure that is not only based on the degree partition

but on the coarsest possible equitable partition Pe (see Section 3.3):

symm3(G) ∶= ∣Aut(G)∣
∏C∈Pe ∣C∣!

(4.5)

Again,
symm2(G) ≤ symm3(G) (4.6)

holds, as the coarsest equitable partition possibly divides the degree partition into finer cells.

4.1.2 Network Redundancy

MacArthur et al. (2008) take a detailed look at 20 real world networks from the biological,
technical, and social domain. They decompose the automorphism group of each graph G

into products of subgroups (see Section 2.4) and compute the index “network redundancy”
(MacArthur et al., 2008, p. 3530). It is defined as

rG = ∣OG∣ − 1
n

, (4.7)

where OG is the orbit partition of G and n = ∣V(G)∣. As ∣OG∣ ∈ [1, n], rG ∈ [0, n−1
n ] holds, and the

lower the value, the higher the symmetry of G. Using the orbit partition as source of redundancy
information is a good idea, as the orbits contain only the information that nodes are mapped
onto each other by Aut(G) but not how.
However, MacArthur et al. (2008) argue that nodes on non-trivial orbits increase the redun-

dancy of a network in terms of robustness; therefore, a higher value should indicate a greater
symmetry. We believe a better definition is

r ′G = 1 − ∣OG∣ − 1
n − 1

∈ [0, 1] , (4.8)

because correcting the denominator by −1 means having r ′G = 0 for asymmetric graphs instead of
some value near zero. The only restriction that arises is that r ′G is not defined for the unique graph
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with ∣V ∣ = 1, but this is no practical restriction. We call the measure in Equation 4.8 normalized
network redundancy. This normalization allows better comparability between several graphs
and there is no bias for small graphs (in terms of n).

Example 30. Let Ga be an asymmetric graph with ∣V(Ga)∣ = 10 and Gs be a symmetric graph
with ∣V(Gs)∣ = 100 and ∣OGs ∣ = 91. Using the redundancy definition of MacArthur et al. (2008)
yields

rGa =
10 − 1

10
= 9

10
= 90

100
= 91 − 1

100
= rGs . (4.9)

If the definition of r ′G is used instead,

r ′Ga
= 1 − 10 − 1

10 − 1
= 0 (4.10)

and
rGs = 1 − 91 − 1

100 − 1
= 1 − 90

99
≈ 0.091 (4.11)

hold.

A flaw that both measures have is that they do not quantify how many nodes are actually
affected by the automorphism group. This is because the quantity number of orbits does not
carry any information on the distribution of nodes relating to the number of trivial and non-trivial
orbits. For example, consider a graph with r ′G = 0.1 = 1 − ∣OG ∣−1

n−1 . Resolving for ∣OG∣ yields
∣OG∣ ≈ 0.9n and the two extreme cases are:

• There is exactly one long non-trivial orbit, all others are trivial.

• There are many short non-trivial orbits (length of two), the rest are trivial.

For the first case, nearly 90 % of the nodes are on trivial orbits, thus not affected by the
automorphism group. In the second case, there are only about 80 % nodes on trivial orbits, the
remaining 20 % are spread over the many short orbits. This means that between 10 and 20 % of
the nodes are actually affected. This observation is formalized in Appendix A.

4.2 Description of the Analysis Procedure

The complete analysis procedure is divided into the following steps:

1. Retrieval of network metadata (e.g. number of nodes/edges, file size, download link of the
dataset)1.

2. Downloading of the actual datasets, which are provided as compressed zip-archives.
Datasets are pre-selected by their file size, as the largest graphs have several gigabytes.

1 http://networkrepository.com/networks.php as of 10.02.2017
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3. Performing the main analysis procedure by loading, selecting, and transforming the graph
data and computing relevant properties, like modularity, automorphism group size, and
number of orbits.

4. Calculating relevant statistics (e.g. the normalized network redundancy) using the network
properties computed in step 3.

Each step is realized by an independent Python script. The complete details are given in
Appendix B and the scripts are available online2. An overview and an interpretation of the
results are given in the following sections.

4.2.1 Network Data

The network data was obtained from networkrepository.com (Rossi and Ahmed, 2015).
The repository website claims to be “[t]he first interactive data and network repository with
real-time analytics”3. Furthermore, they state to be “not only the first interactive repository,
but also the largest network and graph data repository with over 500+ donations”3. As of
February 2017, the website lists about 3900 network datasets, categorized by different types
(see Table 4.1). Users can contribute datasets and have a glance at individual networks by
several indices (such as number of nodes/edges, maximum/average node degree, average local/
global clustering coefficient), by visualization, by (cumulative) distributions of indices and by
scatterplots between pairs of indices. Information on graph symmetry is not captured. The
repository includes networks that can be found in many other repositories (e.g. the one of
GEPHI4 (Bastian et al., 2009), SNAP5 (Leskovec and Krevl, 2014), or the DIMACS challenges6
(Bader et al., 2014, 10th DIMACS challenge)). Using this kind of data repository allows to
access a large variety of datasets at one site and without the need to combine multiple sources.

4.2.2 Downloading the Datasets

A total of 3015 datasets were downloaded, each with a (compressed) size of about 70 megabytes
or less. The largest network in the sample in terms of nodes consists of n = 11,950,757 nodes
and m = 12,711,603 edges. Looking at the edges, the largest graph has n = 8,388,608 nodes and
m = 25,165,784 edges. Limiting the datasets’ size was a matter of the algorithmic complexity of
obtaining the automorphism group of a graph rather than a lack of disk-space. The complexity
increases at least linearlywith the size of the graph. All in all, datasetswith an overall compressed
size of 11.5 gigabytes were downloaded.

The graph data is encoded in either one of two plain-text data formats, namely:

• The Matrix Market exchange format (Boisvert et al., 1996) or
2 https://github.com/KIT-IISM-EM/networkrepository_analysis
3 http://networkrepository.com/ as of February 2017
4 https://github.com/gephi/gephi/wiki/Datasets as of February 2017
5 http://snap.stanford.edu/data/ as of February 2017
6 http://dimacs.rutgers.edu/Challenges/ as of February 2017
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4 Symmetry Analysis of Real-world Graphs

Type Name Short Type Name Count

BHOSLIB bhoslib 36
Biological Networks bio 9
Brain Networks bn 36
Cheminformatics chem 600
Collaboration Networks ca 16
DIMACS dimacs 78
DIMACS10 dimacs10 84
Dynamic Networks dynamic 22
Ecology Networks eco 6
Facebook Networks socfb 114
Infrastructure Networks inf 8
Interaction Networks ia 19
Massive Network Data massive 9
Miscellaneous Networks misc 2652
Recommendation Networks rec 13
Retweet Networks rt/retweet_graphs 62
Scientific Computing sc 11
Social Networks soc 57
Technological Networks tech 10
Temporal Reachability Networks tscc 38
Web Graphs web 27

∑ 3907

Table 4.1: Number of datasets for different network types on networkrepository.com. The “Type
Name” is directly taken from the navigational menu REPOSITORY3; the data grouped by
“Short Type Name” (column “Type” on the website) can be found in the overview table of
all network data1. For retweet networks, only the short type name rt will be used in the fol-
lowing.

• an edge list format (Kunegis, 2014, Chapter 9).

Both formats basically hold information for one edge per line and have additional meta-
information in the first lines of the file.

4.2.3 Analysis Procedure

The procedure is described in more detail in Appendix B. Here, we will give only a short
impression on what was done. The goal was to analyze a huge amount of network data for their
symmetry properties. Table 4.1 lists the different network categories and their unique (besides
“Retweet Networks”) short name. Most of the networks are uniquely assigned to one category,
however, some are contained in more than one category.

An important issue that had to be decided about is how to deal with non-simple graphs, i.e.
graphs that are weighted, disconnected, have loops or multiple edges, and/or are directed. A
helping factor for this decision is the fact that saucy, which is utilized for the analysis, can not
handle weights. The first idea was to simply exclude all non simple graphs from the analysis.
Other authors (e.g. MacArthur et al., 2008) often simplify the graphs and analyze only the
underlying structure, which is given by the undirected and unweighted edges. But as described
in Section 3.2.1, simplifying graphs by removing all “additional properties” like weights, loops,
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and multiple edges, is likely to “add” symmetry that is not existing in the original non-simple
graph. This is why we finally decided to split the main analysis procedure into two parts:
One that uses only the simple graphs and one that uses the remaining non-simple graphs and
simplifies them. Disconnected graphs are excluded.

For each graph (whether simple or simplified), we obtained the number of nodes n, the number
of edges m, and the density ρ. Furthermore, the randomized greedy algorithm (RG) for graph
clustering (Section 2.5.2) was used to compute a modularity optimal partition and saucy was
applied to compute the automorphism group of the graph. Modularity, the size of the group
∣Aut(G)∣, the number of generators ∣S∣, and the number of orbits ∣O∣ is saved. saucy itself does
not return the orbit partition, but it can be efficiently computed from the generators.

Yet another issue one must be aware of is the existence of duplicates. Sometimes the same
graph appears in more than one category (already described above), sometimes a graph is
duplicated within the same category. For the latter case, the datasets have different but similar
names, which often already indicates a duplication. However, in some cases the identification
of duplicates is not that easy. To deal with this issue, we used a semi-automatic approach that
groups the analyzed datasets by several attributes (n, m, ∣O∣, ∣S∣, ∣Aut(G)∣) that all have to be the
same for duplicated (thus isomorphic) graphs. The actual deletion of the duplicates is done after
a manual inspection by hand. This procedure is fail-safe, as false positives or false negatives are
very unlikely to occur.

From the 3015 downloaded datasets, a total of 1805 graphs are non-simple and another 277
graphs are disconnected. From the remaining 933 graphs, 31 were identified as duplicates. Most
of them were part of the “DIMACS10” class, which contains datasets from a graph clustering
and partitioning challenge held in 20127. All graphs of this special class are also contained in
one of the other classes.

For the second part of the analysis, the 1805 non-simple graphs were simplified. After
simplification, 383 were disconnected and another 420 datasets were invalid, which here means
that the provided adjacency matrix is not symmetric and it is not clear how to interpret this
fact. One possible explanation could be that they are bipartite: One node set is described by the
columns, the second node set by the rows. In the end, from the remaining 1002 graphs, only 797
were unique. This large number of duplicates is a result of the existence of many structurally
identical graphs, which, e.g., have different edge weights.

4.3 Analysis Results

In this section, we describe the most interesting results that were obtained from the analyses of
simple graphs (Section 4.3.1) and simplified graphs (Section 4.3.2). Each analysis consists of
statistics of the complete sample and of the data grouped by their categories. Duplicates are
eliminated for the first type of statistics, but kept for the second type to prevent a bias within the

7 http://www.cc.gatech.edu/dimacs10/, as of January 2018
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classes. All details can be found in Appendix B. The number of orbits is used to compute the
normalized network redundancy r ′G (see Equation 4.8).

4.3.1 Simple Graphs

In Table 4.2, basic statistics for the different properties of the simple graphs can be found, which
gives a first insight of how the data looks. The median values for n and m show that most
graphs are quite small. Nonetheless, also relatively large graphs exist. The columns for density
(ρ) and modularity (Q) underline that the graphs represent real-world networks: The density
is low and the modularity high. Symmetries exist, however, at least 75 % of the graphs have a
small automorphism group. Normalized network redundancy is about 0.18 or less for the same
percentage of datasets. In contrast, also very symmetric networks exist as the maximum values
for r ′G and ∣Aut(G)∣ show. We identified only 272 out of the 902 networks to be completely
asymmetric (∣Aut(G)∣ = 1), which means about 70 % of the analyzed networks contain non-
trivial automorphisms. Additionally, Figures 4.1–4.4 show histograms and box-plots for n, m,
ρ, Q and r ′G and thus give more specific information.

n m ρ Q r ′G ∣Aut(G)∣

count 902 902 902 902 902 902
mean 1.2796 × 105 4.1845 × 105 0.1981 0.5257 0.1514 6.3659 × 102,517,003

std 8.6096 × 105 1.8654 × 106 0.2420 0.2469 0.2345 1.9119 × 102,517,005

min 2 1 1.7801 × 10−7 0 0 1
25 % 27 51 0.0654 0.4156 0 1
50 % 42 84 0.1176 0.5793 0.0625 4
75 % 800 24,489 0.2053 0.6601 0.1818 24
max 1.1951 × 107 2.5166 × 107 1 0.9987 1 5.7420 × 102,517,006

Table 4.2: Statistics for the networkrepository.com datasets: Only 272 of the 902 graphs are asym-
metric. count is the number of datasets on which the statistics per column were computed on,
mean (std) is the respective mean value (standard deviation). min and max are the minimal/
maximal values observed and the three remaining rows in between denote the two quartiles
(25 % and 75 %) and the median (50 %). The columns n (m) yield statistics on the number
of nodes (edges) of the graphs, Q is the modularity, which measures (clustering) partition
quality. The last two columns contain information on the symmetries, r ′G is the normalized
redundancy (see Equation 4.8) and ∣Aut(G)∣ the size of the automorphism group.

The distributions for n and m in Figure 4.1 show a bias of the graph sizes. Most datasets consist
of 10 to 100 nodes and/or edges. Looking into the data clarifies this fact: Over 570 datasets are
part of the chem class (described below), which predominantly consists of graphs having less
than 100 nodes/edges. There is also an underrepresentation of symmetric medium-sized graphs
(2 ≤ log10 n < 4 and/or 4 ≤ log10 m < 6), which will be discussed below.

How the density is distributed can be seen in Figure 4.2. The high amount of quite sparse
graphs (i.e. with low density) is not surprising as its value normally decreases when the number
of nodes and edges are increased by some fixed constant factors. This is due to the non-
linear proportionality ρ ∝ m

n2 . Moreover, real-world networks are normally highly modular
and, as a matter of definition, only dense graphs can be highly modular. There even exists
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Figure 4.1: Histogram and box-plots for the number of nodes n (a) and the number of edges m (b). Each
figure distinguishes the symmetric graphs from all graphs. Note the log-scaled x-axes and
increasing class sizes. Most of the networks have between 10 and 100 nodes/edges. There
are significantly less symmetric graphs with 2 ≤ log10 n < 4 (4 ≤ log10 m < 6) nodes (edges).
This fact is explained in the text. However, there are symmetric graphs at all sizes.

the relation ρ ≤ 1 − Q, which means that density must decrease with increasing modularity.
This relation is proved in Appendix C. Furthermore, we have presented the relation between
density and symmetry in Section 3.2.3. The conclusion was that there exists an upper bound
for the number of edges depending on n for a graph to be asymmetric. This bound is Mn =
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n(n−3)
2 + o(n), thus graphs with m > Mn must be symmetric. For the density, this means

ρ = ( n(n−3)
2 + o(n))/( n(n−1)

2 ) = n−3
n−1 + o(1/n). Therefore, high density graphs are likely to be

symmetric.
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Figure 4.2: Histogram and box-plots for the density ρ, distinguished by all graphs and symmetric
graphs only. Dense networks are likely to be asymmetric, except very dense networks
(ρ > 0.95) are symmetric (which agrees with the symmetry bounds from Section 3.2.3).

As often pointed out (see Section 2.2.1), one large part of the characterization of real-world
networks is their expected high modularity. Figure 4.3 meets these expectations. There is no
valid limit for all graphs that distinguishes non-modular and modular graphs. Due to a matter
of design, higher values of modularity are desirable (e.g. Q > 0.8) for large graphs whereas
lower values for smaller graphs (e.g. Q > 0.3) are sufficient. The well-known Karate network
(Zachary, 1977) is quite small (n = 34, m = 78) and has a maximal modularity of nearly 0.42
(Ovelgönne and Geyer-Schulz, 2010).

It is a bit surprising to have such a large amount of asymmetric graphs with low modularity
(Q < 0.05), as can be seen in Figure 4.3. As discussed above, graphs with low modularity are
very likely to have a high density. This makes it impossible to find a partition of the nodes that
meets the requirement of having many more edges within the clusters as between them. By
investigating these graphs in the leftmost bin of the histogram, we find them to have indeed a
fairly high average density (ρQ<0.05 = 0.788, std 0.172). Most of the datasets come from the
dimacs and bhoslib categories. The first one contains networks that were used for the second
DIMACS challenge, which was about “Maximum Clique, Graph Coloring, and Satisfiability”8.
Those datasets are generated for benchmarking reasons (e.g. to contain cliques of a certain
size) and, therefore, are no proper real-world networks. All graphs in the latter category are

8 http://dimacs.rutgers.edu/Challenges, as of January 2018
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asymmetric, which will be discussed and described below. Another group of graphs come from
the misc category and have the names G1, G2, and so on. Helmberg and Rendl (2000) describe
how these datasets are generated, most of them emerge from a random model, and thus are no
real-world networks, too. This explains the high amount of asymmetry and low modularity.

0.0 0.2 0.4 0.6 0.8 1.0
Q

0 0

50 50

100 100

150 150

Fr
eq
ue
nc
y

Modularity Q for all graphs
Modularity Q for symmetric graphs

0.0 0.2 0.4 0.6 0.8 1.0
Box-plot for all graphs

0.0 0.2 0.4 0.6 0.8 1.0
Box-plot for symmetric graphs

Figure 4.3: Histogram and box-plots for the modularity Q, distinguished by all graphs and symmetric
graphs only. The bins all have equal width 0.05. Very non-modular networks seem to be
notably asymmetric, which is a contradiction that is discussed and investigated in the text.

Up to this point, the only distinction made between graphs was symmetric versus asymmetric.
Figure 4.4 shows the histogram of the normalized network redundancy. As already stated, most
of the graphs have a relatively low normalized redundancy (over 80 % of them with r ′G < 0.2)
and 272 of the datasets are asymmetric. On the other hand, 13 graphs are transitive. However,
we remind the fact discussed in Section 4.1.2 and Appendix A, which is about the actual number
of affected nodes that is not entirely reflected by the (normalized) network redundancy.

Going a step further, networks are now grouped by their type/category, which is shown in
Figure 4.5. The bias of very unequal group sizes results from the unbalanced classification of
networks (see Table 4.1) as well as from different properties many graphs of certain categories
have (e.g. retweet networks are often disconnected or ecological networks are all weighted).
Because of this, four categories (“Brain Networks”, “Ecology Networks”, “Massive Network
Data”, “Dynamic Networks”) are not present in this analysis, the rest of the datasets is spread
over 17 categories.
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Figure 4.4: Histogram and box-plot for the normalized network redundancy r ′G . The numbers of asym-
metric and transitive (only one orbit) graphs are emphasized, as they are contained in the
two buckets [0, 0.05) and [0.95, 1]. The distribution is right skewed, which is underlined by
a relationship that often holds: The median (0.0625) is smaller than the mean (0.1514).

Next, we give additional information for the six largest categories:

• bhoslib9: All these graphs are asymmetric. They all are generated from the “Model
RB” (Xu and Li, 2006), a derived random graph model that is able to generate a random
constraint satisfaction problem (CSP) that can be used as benchmark for algorithms solving
this problem. We do not want to elaborate on CSPs, but remind the fact that random graphs
are very likely to be asymmetric (Erdős and Rényi, 1963).

• chem: This largest class contains cheminformatics data, which has overall a large degree
of symmetry. The origin of all those networks is described by Borgwardt et al. (2005):
They extracted proteins from an online enzyme information system and transformed them
into undirected graphs. The nodes are labeled and we used this additional information
by providing a partition of colors as parameter for the saucy call (see the details in
Appendix B). saucy supports initially labeled nodes as starting point for the search
procedure.

• dimacs10: These datasets come from the second DIMACS challenge. We already have
seen that many of these graphs are asymmetric, but there is also a large amount of very

9 “Benchmarks with Hidden Optimum Solutions for Graph Problems”, http://www.nlsde.buaa.edu.cn/~k
exu/benchmarks/graph-benchmarks.htm, as of 4 September 2017

10 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/instruct.tex as of March
2017
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4.3 Analysis Results

symmetric graphs (e.g. Hamming graphs, which are distance transitive, see Brouwer and
Haemers (2012)).

• dimacs10: These are networks that were used in the tenth DIMACS challenge, which
was about efficient graph clustering. Therefore, these graphs are highly modular (average
modularity of nearly 0.9) and many of them contain symmetries as well. It is well
worth to mention the Randomized Greedy algorithm and its iterated core group version
(Section 2.5.2) has won the challenge in several categories (Bader et al., 2014).

• misc: This category contains datasets that seem not to fit in any of the other classes.
Therefore, it is hard to make any valid assertions.

• socfb: Although these networks seem to be mostly asymmetric, only four of the 29
actually are (see also Table B.15 in the Appendix). All these graphs are quite large—more
than 15,000 nodes on average—as they represent parts of the Facebook social network.

The 11 other classes contain nearly only symmetric graphs (54 out of 55).
The underrepresentation of symmetric medium sized graphs comes from the fact that all

graphs from the bhoslib category, most graphs from the dimacs category, and many other
asymmetric random graphs fall into the observed ranges of 2 ≤ log10 n < 4 for nodes and
4 ≤ log10 m < 6 for edges.

0.0 0.2 0.4 0.6 0.8 1.0
r′G

web (9/9)
tscc (1/1)
tech (6/6)

socfb (29/25)
soc (18/18)

sc (3/2)
rt (2/2)

rec (1/1)
misc (151/67)

inf (5/5)
ia (5/5)

dimacs10 (50/17)
dimacs (78/24)
chem (575/479)

ca (5/5)
bio (1/1)

bhoslib (36/0)

Ty
pe

Figure 4.5: Overview of the normalized network redundancy grouped by type/category of the graphs.
Duplicates are included to prevent a bias between classes. There is a total of 975 datasets,
which are spread over 17 different categories. The numbers in parentheses are the count of
networks of each category as well es the count of symmetric networks in the category. Full
names of the types are given in Table 4.1.
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4.3.2 Simplified Graphs

The results for the 797 simplified and unique graphs are presented in the same manner as in
Section 4.3.1. By comparing Tables 4.2 and 4.3, we can see a number of differences: The set
of analyzed simplified graphs contains more large graphs, as half of them have at least 10,605
nodes (89,927 edges) in contrast to 42 nodes (84 edges) for the simple graphs. Moreover, they
are even sparser, have a higher average modularity (0.7345 compared to 0.5257), and are more
symmetric (average r ′G of 0.4275 compared to 0.1514). The last fact is also underlined by less
asymmetric graphs (163 of 797), which means that nearly 80 % of the simplified graphs are
symmetric.

Once again, let us point out that the simplification of the graphs—by taking only the struc-
tural part into account—probably does not reflect the reality. We elaborated on this topic in
Section 3.2.1. However, depending on the purpose of the analysis, simplifying a graph can be
an appropriate instrument to reduce the complexity of the problem. Here, we are interested in
existing graph symmetry as potential cause of “irregularities” in graph clustering. Most graph
clustering algorithms only take the graph’s structural connections into account, a few others can
deal with edge weights, too. Directed edges are often turned into undirected ones. All in all,
we think it is appropriate to simplify the non-simple graphs as (i) this is the way to go in many
applications, (ii) we can compare the results to those of the simple graphs, and (iii) every graph
that emerges from a practical situation is already a simplification of reality, as normally not all
properties that distinguish the entities represented by nodes are considered for the creation of
the graph.

n m ρ Q r ′G ∣Aut(G)∣

count 797 797 797 797 797 797
mean 70,041 7.0852 × 105 0.0169 0.7345 0.4275 2.3286 × 107,237,014

std 2.9308 × 105 1.6665 × 106 0.0735 0.2005 0.3682 6.5740 × 107,237,015

min 16 46 3.1376 × 10−7 0 0 1
25 % 2534 11,173 0.0003 0.6518 0.0041 2
50 % 10,605 89,927 0.0015 0.7955 0.4925 3.3692 × 1032

75 % 43,618 5.5493 × 105 0.0072 0.8788 0.7642 2.9131 × 102486

max 6.6865 × 106 1.7233 × 107 1 0.9977 1 1.8559 × 107,237,017

Table 4.3: Analysis statistics for networkrepository.com datasets: 163 of the 797 graphs are asym-
metric

The two histograms and the corresponding box-plots in Figure 4.6 show that most graphs
consist of 103 to 105 nodes, a strong bias of the network sizes, as it could be seen for the simple
graphs, does not exist. The distribution of asymmetric graphs over the different sizes is very
homogeneous, which can be concluded by comparing the box-plots of all graphs to those of the
symmetric ones only: Median, quartiles, and extremes are close together, both, for nodes and
edges.

The very low density is completely reflected by Figure 4.7. As the simplified networks are
quite large, this “effect” is not unusual. Most growth models for real-world-like graphs add
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Figure 4.6: Histogram and box-plots for the number of nodes n (a) and number of edges m (b). Sym-
metric and asymmetric simplified graphs are distinguished. Note the log-scaled x-axes and
increasing class sizes.

nodes to an existing graph by adding a constant number of connecting edges. However, we have
seen that the density decreases when there is a constant increase in the number of nodes and
edges. Another explanation for this phenomenon could be that the simplified graphs represent
other relationships compared to the simple graphs.
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Figure 4.7: Histogram and box-plots for the density ρ, distinguished by all simplified graphs and sym-
metric graphs only.

The quite high average modularity also fits well with the overall large graph sizes. Again, the
asymmetric networks are distributed relatively homogeneous among the different modularity
values (see Figure 4.8).
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Figure 4.8: Histogram and box-plots for the modularity Q, distinguished by all simplified graphs and
symmetric graphs only.

The distribution of the normalized network redundancy in Figure 4.9 looks quite different
compared to Figure 4.4 for the simple graphs. There exists a large number of datasets with a
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relatively low r ′G (< 0.1). Only very few graphs have values of r ′G between 0.1 and 0.45. Then
there is an erratic increase in networks with a normalized network redundancy larger than 0.45
up to 1. Together with the median value of nearly 0.5 one can conclude that the simplified
networks are either nearly asymmetric or have a large degree of symmetry.
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Figure 4.9: Histogram and box-plot for the normalized network redundancy r ′G . The numbers of tran-
sitive (only one orbit) and asymmetric simplified graphs are emphasized, as, again, the left-
most and rightmost buckets contain these special graphs.

In contrast to the category-wise analysis of the simple graphs, there are plenty of differences
in Figure 4.10. The two largest categories are misc and rt, however the first one is by far
dominant in terms of the number of graphs. Some categories that are present in Figure 4.5 now
vanish (bhoslib, ca, chem, dimacs, sc, socfb, and tscc), others appear (bn, dynamic, and
eco).

Dynamic networks all contain timestamps and a positive (1) or negative (−1) indicator as
additional edge attributes. These carry the information at which point in time an edge was added
or removed from the graph. As mentioned above, ecological networks are all weighted. This is
why these datasets are not contained in the previous analysis of simple graphs. Again, for the 11
small categories, 27 of 33 graphs contain symmetries, which is a relatively large amount. And,
as before, we have a more detailed look into the two largest categories:

• misc: The normalized network redundancy among the networks in the miscellaneous
category is distributed very heterogeneously and—as in the simple case—there are no
large subgroups of datasets that stand out. There are datasets that obviously belong
together, identified simply by looking at their naming scheme. However, we are not
interested in investigating the details in the context of this thesis.
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Figure 4.10: Overview of the normalized network redundancy grouped by type/category of the simpli-
fied graphs. Between-category duplicates are included to prevent a bias between classes,
within-category duplicates are removed. There is a total of 816 datasets, which are spread
over 13 different categories. The numbers in parentheses are the count of networks of each
category as well es the count of symmetric networks in the category. Full names of the
types are given in Table 4.1.

• rt: Retweet networks are tightly connected to the famous Twitter11 social network,
which allows registered users to publish short messages (“tweets”). These may contain
additional content like images and so called hashtags, which allow to mark a message
with unique tags. A core feature of Twitter is that users can share messages of others
(“retweeting”), hence the name of the category. A user sees messages of other users
(original or retweeted) he or she follows. These information can be used to create a graph
of users that are connected to other users, e.g., if they retweet one or more messages of
them. For instance, Cherepnalkoski and Mozetič (2016) present a method on how such
a network can be created and analyzed. Normally, independent of the actual method
of construction, retweet graphs represent only a small section of the full online social
network. And additionally, these type of networks often contain a rather small amount of
densely connected hubs (e.g. Newman, 2010, pp. 245/246), which, e.g., are very influential
users like persons of interest from politics or entertainment, or institutional users like a
government or news agencies. Although every user can publish messages that may be
shared within the network, it is clear that the probability that messages of influential
users are shared is much higher. Therefore, retweet networks normally consist of a few
densely connected areas (communities) and many tree-like appendices around these areas.
Figure 2.13 in Section 2.5.1 shows a visualization of the retweet network rt_obama from

11 https://twitter.com/, as of January 2018
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the rt category. The visualization shows the existence of some very dense areas on the one
hand, and many tree-like, sparse appendices. As a consequence, the degree of symmetry
of the retweet networks is relatively high, as can be seen in Figure 4.10.

4.3.3 A Comparison of the Symmetries in Simple and Simplified Graphs

Let us briefly review the key similarities and differences in the findings between simple and
simplified graphs. The simple graphs are dominated by the datasets from the category of chem-
informatics networks, whereas the simplified graphs are dominated by miscellaneous networks.
There is also a major difference in the average graph sizes (in terms of the number of nodes
and edges) that also directly influences the density, the modularity, and the average amount of
symmetry. The main reason for the fact that the analyzed simple graphs are smaller on average,
are the many small graphs from the chem category.

Also, there are a lot of datasets that emerge from some random graph model in the set of
the simple graphs and they are far less symmetric or even asymmetric. This results in a less
homogeneous distribution of the graphs among the bins of the histograms, especially modularity
is distributed quite differently (Figures 4.3 and 4.8). Furthermore, simplified graphs are overall
more symmetric, independent of their size. This fact is reflected by the distributions of the
normalized network redundancy in Figures 4.4 and 4.9, which is a relative symmetry measure.

Besides some individual differences between simple and simplified graphs that emerge from
divergent graph sizes, the two datasets have in common to contain numerous symmetric graphs
in all sizes. Therefore, we conjecture that a certain degree of symmetry is another property that
characterizes real-world networks, besides the properties presented in Section 2.2.1 (power-law
distribution of node degrees, a high clustering coefficient, small-world effect).

4.3.4 Discussion

The purpose of this study was to find evidence of symmetry in real-world graphs. And, indeed,
we have found strong evidence for the frequent existence of symmetry in real-world graphs.
The two analyses with a total sample size of about 1700 network datasets uncover the frequent
occurrence of graphs (1264 of 1699, i.e. over 74 %) that have a non-trivial automorphism
group. The selection of the datasets follows rather a convenience sample, but we act on the
assumption that a large number of networks that are often used in a scientific environment (e.g.
for performance benchmarks in graph clustering) are covered by our analyses. It can be seen that
there exist differences between different categories of networks, which gives room for further
inspections. We tried to highlight at least some details of the larger categories, especially when
there are interesting or unexpected results.
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The results of the previous chapter show that symmetries in real-world graphs exist. In this chap-
ter we give some ideas and facts what possible reasons for these symmetries can be (Section 5.1).
Furthermore, precise definitions for local and global symmetry are given in Section 5.2 and a
weak symmetry definition in terms of a node partition is presented in Section 5.3.

5.1 Reasons for Symmetry in Graphs

Only few references of actual reasons for symmetry in graphs could be found, but, as is noted
in the introductory Chapter 1, existence of symmetry in physical systems is apparent. As graph
representations are a general “modeling tool” for diverse circumstances, any transformation
into a graph of a system/problem/phenomenon/. . . containing symmetry is a candidate to be
symmetric itself. Before we discuss examples from the literature, different possible sources
of symmetry in graphs are listed. These sources may also be the reason for any kind of weak
symmetry. However, weak symmetry is not deepened further.

By (natural) law If a graph is constructed from a structure that follows certain (natural) laws that
involve symmetry, the graph itself will be symmetric. For instance, Feynman et al. (1963,
Chapter 52, heading) describe “Symmetry in Physical Laws”. But also much “simpler”
laws can lead to symmetry like, e.g., rules of a game, economical “rules”, or the search
path to the optimal solution of a mathematical problem (e.g. graph clustering).

By construction Symmetry may also emerge if it is necessary or preferred by construction. For
example, redundancy (by design) of technical systems or data networks (e.g. the internet)
can cause symmetry.

By simplification/abstraction A graph, due to its simplest mathematical definition, has no
attributes that describe, e.g., nodes any further. Technically, a graph even does not have
node labels, as we have seen in Section 2.1.1. Nonetheless, in accordance to graph
simplification described in Section 3.2.1, one can easily make up an extended definition
of graphs that have additional attributes. However, graphs are mostly simple (or maybe
weighted, directed, . . . ), which means they already represent merely the structure of a
much more complex real-world system. Van Fraassen (1989, pp. 233 ff.) describes this
fact in a philosophical way by stating that “[p]roblems which are essentially the same
must receive essentially the same solution” (van Fraassen, 1989, p. 236). In practice,
two problems are essentially the same if the transformed problems that result from only
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keeping the essential information (here: the structural relations that define a graph) are
the same.

By aggregation This point is quite similar to the preceding one. However, in detail it differs:
Instead of omitting unimportant attributes from an already given network structure, the
network itself is built from a finer network by aggregating (e.g. clustering) subgraphs. In
the resulting coarser network, these aggregates are simply represented by nodes and the
relations between the aggregated subgraphs by edges. The exact relations between pairs of
finer subgraphs are omitted. A possible construction of such graphs based on aggregation
is defined in Section 5.3.

By error Measurement of any real-world data variables comes at the cost of possible errors.
There exist diverse causes and they are not within the scope of this thesis. If, e.g., an entity
that is represented as a node in the network and its relations are erroneouslymeasuredmore
than once, there exist exact copies of this entity, which results in “accidental” symmetry.

By chance The last possible cause for symmetry in networks is simply coincidence. It is
perfectly possible by (possibly very small) chance that two or more nodes have exactly the
same relations to all other nodes of the network. Although Erdős and Rényi (1963) and
Magner et al. (2014) proved for several graph models that the probability of asymmetry
tends to 1, this does not mean there cannot exist symmetry at all. Furthermore, many
graphs are neither described by the ER random graph model nor by the preferential
attachment model.

It is clear that also a combination of several causes can result in symmetric graphs.
The other way round, a graph may be asymmetric if the symmetry of the underlying structure

was broken. Physicists distinguish explicitly and spontaneously broken symmetries (e.g. Brading
et al., 2003, Section 4). Remember, for instance, the concept of “near automorphisms” (Emerson
and Trefler, 1999) that was shortly discussed in Section 3.5: Two processes that may access
and modify the same data source with identical states (non-trying, trying, critical section) are
coupled together. One of them is a reader process; the other is a writer process that has a
precedence over the former. The graph of the combined possible state transitions (i.e. all pairs
of states for both processes) is asymmetric due to the precedence of the writer. Therefore, this
precedence breaks the symmetry.

Let us now come to some examples in the literature for most of the above reasons. Chung et al.
(2003) present a node duplication model, which describes the formation and growth of biological
networks better than others, like, e.g., the preferential attachment model (see Section 2.2.3). The
basic idea of the graph model is to duplicate existing nodes and connect them to the rest of the
graph in the same way as the copied node (full duplication) or only partially the same (partial
duplication). Nodes to copy are chosen at random with probability proportional to the orbit
lengths. They justify their model with two facts: (i) Preferential attachment models can produce
only graphs whose degree distribution follows a power law with exponent α > 2, while in
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biological networks 1 < α < 2 is likely to be true, and (ii) biological processes involve a high
degree of duplication of information (e.g. duplication of genome segments (Chung et al., 2003,
p. 684)). The graph model itself, as well as the justification of it, show that—especially in
biological networks—a certain amount of symmetry “by law” can be expected: Full duplication
of a node directly results in exact symmetry of the graph, partial duplication at least involves a
certain degree of weak symmetry, as the duplicated node is nearly identical to the one copied.
The number of biological networks analyzed in Chapter 4 is unfortunately very small (one
simple, one simplified graph) so that we cannot underline the elaboration of Chung et al. (2003).
However, both networks are actually symmetric. Wang et al. (2012) give further evidence that
symmetry in biological networks is not unusual.

Expander graphs describe highly connected networks that are at the same time very sparse
(Hoory et al., 2006). Their construction involves a high degree of symmetry (see, e.g., Hoory
et al. (2006, section 11) or Chee and Ling (2002)) and they have several applications, like
constructing telephone networks or virtual circuits (Chee and Ling, 2002, p. 294). Therefore,
systems that are designed on the basis of the properties of expander graphs involve a high degree
of symmetry and are an example for graph symmetry by construction. Another example is
the anonymization method for social networks of Wu et al. (2010). They define k-symmetry
anonymity as the property of a graph to have orbit lengths of at least k. If a graph is not k-
symmetric, orbits are copied and the new nodes are connected to the rest of the graph so that the
orbit lengths increase. The details of the whole anonymization procedure is not of importance
here, but it is clear that such a k-symmetric graph with k > 1 is symmetric by design.
An example for symmetry by aggregation comes again from the biological domain, where

protein-protein-interaction (PPI) networks are used to model interdependencies between pro-
teins. Proteins are macromolecules that consist of amino acid residues, which are themselves
smaller molecules (built from atoms). The proteins can be represented as graphs, as we have
seen in the discussion of the graph symmetry analysis results (the chem class in Section 4.3.1).
However, in PPI networks the proteins are modeled as nodes and the edges represent interactions
induced by the formation of covalent bonds (Sardiu and Washburn, 2011, p. 23647). Stelzl
et al. (2005) create a human PPI network and—although the authors do not explicitly analyze it
regarding symmetry—it can be seen that the resulting graphs (Stelzl et al., 2005, Figures 5 A
and B) are definitely symmetric. This symmetry could possibly vanish if the graph would have
been created by using the exact relations on the smaller molecule level or even on the atomic
level.

Yet another example for symmetry by aggregation is given by Lorrain andWhite (1977). They
describe a method for the analysis of social networks, which takes different relations between
individuals into account by utilizing a category theoretic approach. Each relation (which the
authors call “role”) is a morphism, and several morphisms can be composed to new morphisms.
The authors define two objects (i.e. entities of the social relationship) as structurally equivalent if
all morphisms are exactly the same (Lorrain and White, 1977, p. 81). Note that this definition is
just the one of graph automorphisms, as the morphisms are represented by edges. If structurally
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equivalent objects are identified, they are combined into a reduced category. This symmetry,
however, results from an aggregation of several different relations between the objects.

We could not find any examples for symmetry by error or chance in the literature. This is, of
course, not too surprising, as both causes can not be easily detected by their nature. Nonetheless,
we believe that the symmetry in the Karate network (Zachary, 1977) could be seen as an example
for symmetry by chance: The nodes are members of a karate club, who are related to each other
in terms of friendships. The existing symmetries (see Figure 6.6 in Chapter 6) are not explained
by Zachary (1977), and they are only very local (for a formalization of local symmetry, see the
next Section 5.2). The emergence of the graph is based on the fact that there was a fission of the
club’s members into two groups, one led by the president of the group and one by the instructor
of the karate lessons. The groups are formed by the supporters of either of the two influential
persons in the club (nodes 0 and 33). The persons represented by the nodes 14, 15, 18, 20, and
22 all have the mutual friends 32 and 33 (the club’s president, see Figure 5.1).

14 15 18 20 22

32 33

G′
5 11

Figure 5.1: An extract of the Karate network (Figure 6.6) that shows a certain existing symmetry. G′

denotes the rest of the graph. Nodes 14, 15, 18, 20, 22 are all equivalent; nodes 32 and 33
are not. The latter have a different number of connections to G′, which is illustrated by the
edge weights.

A simple explanation for the symmetry (the nodes 14, 15, 18, 20, and 22 are all equivalent)
could be that person 32 brought friends to the club (thus all of them know this person) and
introduced them to the president first (which definitely makes sense). However, these friends
of 32 are from different social communities, which explains why they are not befriended with
each other. Our attempt to give an explanation of the shown symmetry fits quite well to the idea
of symmetry by chance, as this linkage pattern seems to be quite obvious and is likely to occur
(also discovered by MacArthur et al., 2008).

Xiao et al. (2008b) introduce a modified preferential attachment model (see Section 2.2.3),
which they call similar linkage pattern. They are inspired by the findings of MacArthur et al.
(2008) and analyze the actual occurrences of bicliques (full bipartite graphs) as subgraphs in
real-world graphs. In the extended model, a parameter α ∈ (0, 1] controls the ratio between
plain preferential attachment (α = 1) and preferential attachment with single linkage (α < 1).
For α < 1, graph instances of the model have a very high probability to be symmetric in the
described way (existence of bicliques). We pick up this type of frequently occurring symmetric
motif in Section 6.3.2, where we analytically show the impact of this symmetry on modularity
clustering.
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5.2 Local and Global Symmetry

The possible impact of a non-trivial automorphism group is closely tied to the number of nodes
that are affected. The (normalized) network redundancy presented in Section 4.1.2 is based
on the number of orbits. This measure reflects—as the name suggests—how redundant the
structure of the graph is. However, network redundancy does not suffice to give an estimation on
which and on how many areas in the graph are affected by the automorphism group. The length
of an orbit gives a hint how many nodes are equivalent, nonetheless, it is not a good indication
of how many nodes are affected independently.

Example 31. Consider the two generating sets (for j ≤ n, j even) S1 = {(1 2), (3 4), . . . ,
([2 j −1] [2 j])} and S2 = {(1 2)(3 4)⋯([2 j − 1] [2 j])}. Both generated groups induce j orbits
of length two, but the group generated by S1 acts much more “locally” in terms of the number
of affected nodes (only pairs of nodes are mapped onto each other independently), whereas ⟨S2⟩
always affects all 2 j nodes at the same time (therefore “globally”).

5.2.1 Definitions of Local and Global Symmetry

To deal with the issue shown in Example 31, the idea of decomposing a group into k normal
subgroups Hi, as defined in Section 2.4, is used. Additionally, the method of dividing a set of
generators (MacArthur et al., 2008) can be applied to create these subgroups.

The result is a partition of the set of generators S into k disjoint parts and Aut(G) = H1 ×
H2 × . . . × Hk = ⟨S1⟩ × ⟨S2⟩ × . . . × ⟨Sk⟩ holds. Let us extend the definition of the support of a
permutation to a set of permutations S:

supp (S) ∶= ⋃
p∈S

supp (p) . (5.1)

All subsets Si, Sj ⊂ S, i ≠ j are pairwise support disjoint, whichmeans that supp (Si)∩supp (Sj) =
∅ (provided S/Aut(G) is decomposable). Clearly, if ⟨S⟩ = H then supp (S) = supp (H) (for any
finite permutation group H). Note also that

∣ supp (H) ∣ = ∑
o∈O(H)∶∣o∣>1

∣o∣ (5.2)

where O(H) is the orbit partition of H .
By Theorem 9 (theorem of Frucht (1939)), there always must exist a connected and undirected

graph whose automorphism group is isomorphic to a given permutation group. This is important
here, as wewant to define local symmetry in graphs, which—intuitively—should have something
to dowith a spatial proximity of nodes. This spatial proximity corresponds to short paths between
nodes that is given by their connectedness to each other. The purpose of this definition is to
understand how symmetry in complex real-world networks acts. The findings of MacArthur
et al. (2008), which show how a graph’s automorphism group can be decomposed into smaller
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permutation groups that act on small disjoint sets of nodes, suggest that the symmetry found in
real-world networks is restricted to certain affected areas in the graph. Theorem 10 formalizes
the idea that nodes that are affected by an indecomposable normal subgroup of the automorphism
group must be all part of a connected area of the graph.

Theorem 10 (Connected orbits). Let G be a graph with the decomposable automorphism group
Aut(G) =∏i Hi. Every subgroup Hi ⊲ Aut(G) induces a connected subgraph GHi via the edge
set EHi ∶= {uv ∈ E(G) ∣ u ∈ supp (Hi)}. The node set VHi contains all nodes that are adjacent
by edges in EHi . It follows Aut(GHi) ≅ Hi (the groups are generally not identical, as Hi acts on
V(G) and Aut(GHi) acts on V(GHi) ⊆ V(G)). GHi describes the local area on which Hi acts
in G.

Proof. By definition, ∀g ∈ Hi ∃ux ∈ EHi ∶ [(ux)g = vy ≠ ux] ∨ [g = 1], thus g ∈ Hi ⇒ g ∈
Aut(GHi). The other way round, ∄h ∈ Aut(GHi), h ∉ Hi,ux ∈ EHi ∶ (ux)h = vy ≠ ux, because Hi

is a group. Therefore, h ∈ Aut(GHi)⇒ h ∈ Hi and, as a consequence, Hi ≅ Aut(GHi) holds.
Suppose GHi is disconnected, i.e. there exist at least two subgraphs G1

Hi
and G2

Hi
that are not

connected by an edge: As Hi is an indecomposable subgroup of Aut(G), there must exist an
isomorphism g ∈ Hi ∶ (G1

Hi
)g = G2

Hi
. Otherwise, Hi could be decomposed into support disjoint

H1
i × H2

i ≅ Aut(G1
Hi
) × Aut(G2

Hi
). However, then also two nodes u ∈ V(G1

Hi
), v ∈ V(G2

Hi
) with

v ∈ uAut(GHi
) must exist. Additionally, either uv ∈ EHi or ux, vx ∈ EHi , as otherwise G would be

disconnected. This is a contradiction and, therefore, GHi must be connected. �

Example 32. Weuse the example ofMacArthur et al. (2008, p. 3529, Fig. 1) to show in Figure 5.2
how the different symmetric areas of a graph are characterized by Theorem 10.

It follows that all permutations from a set of (essential, see Section 2.4.3) generators that do not
fix the non-trivial orbit uAut(G)must also act on the neighbors of u. Therefore, the decomposition
of Aut(G) into smaller non-trivial and normal subgroups Hi that cannot be decomposed any
further reflects the different “areas” in the graph that are affected by independent symmetries.
The support supp (Hi) of each subgroup Hi represents all affected nodes and it is the union of
all the non-trivial orbits whose nodes are connected as described by Theorem 10.

This connectedness allows us to state that all nodes affected by Hi ⊲ Aut(G) are only locally
automorphic. The term “local” must always be considered relative to the size of the whole
graph. If, e.g., a graph is transitive, Aut(G) cannot be decomposed, as all nodes are affected
and the symmetry is global. These considerations lead to the following two definitions:

Definition 1. Given a graph G, its relative symmetry rsG is given by

rsG ∶= ∣ supp (Aut(G)) ∣
n

. (5.3)
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H1

H2

H3 H4

H5

(a) The symmetric graph G with the decomposable automorphism group Aut(G) = H1 × H2 × H3 ×
H4 × H5. Nodes on the same orbit (per subgroup Hi) have the same color, white nodes are fixed by
Aut(G). This example is from MacArthur et al. (2008, p. 3529, Fig. 1).

GH1

GH2

GH3

GH4

GH5

(b) The five connected subgraphs GHi of G that are induced by the indecomposable normal subgroups
Hi.

Figure 5.2: Example of subgraphs induced by indecomposable subgroups Hi of Aut(G).

Definition 2. Given a graphG, whose automorphism group can be decomposed into k subgroups
Hi as described above, its mean global symmetry gsG is given by

gsG ∶= 1
k

k

∑
i=1

∣ supp (Hi) ∣
n

. (5.4)

As the subgroups Hi are support disjoint by definition, the equation

gsG = ∣ supp (Aut(G)) ∣
kn

= 1
k

rsG (5.5)

is, of course, equivalent.

The relative symmetry in Definition 1 can also be considered as an overall measure of
symmetry and the smaller the mean global symmetry from Definition 2 becomes compared
to rsG, the more local the symmetry acts in the graph. If Aut(G) can not be decomposed,
gsG = rsG follows. Otherwise, if Aut(G) can be decomposed “completely”, each subgroup acts
on exactly two nodes and there exist k = ∣ supp (Aut(G)) ∣/2 subgroups in total. Normalizing
Definition 2 leads to a relative measure of global symmetry.
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Definition 3. The normalized mean global symmetry for a given a graph G and its mean global
symmetry gsG = ∣ supp(Aut(G))∣

kn is

ngsG ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 , if ∣ supp (Aut(G)) ∣ = 0

1 , if ∣ supp (Aut(G)) ∣ = 2
1
k

rsG− 2
n

rsG− 2
n

=
1
k
∣ supp(Aut(G))∣−2
∣ supp(Aut(G))∣−2 , else

. (5.6)

The normalized global symmetry takes values between 0 and 1 and only depends on the
number of affected nodes and on the number of decomposed subgroups. This means, any fixed
nodes are not taken into account and the measure is constant in terms of the spatial proximity of
symmetry.

Next, we discuss some of the properties of ngsG:

• The minimum value of 0 is only reached if Aut(G) can be decomposed into k groups with
∣ supp (Hi) ∣ = 2, ∀i = 1, . . . , k.

• Themaximum value of 1 is reached if k = 1, whichmeans Aut(G) can not be decomposed.

• If G is asymmetric, ngsG = 0. There is no meaningful interpretation of this fact; however,
it does not make sense to try to distinguish local from global symmetry if no symmetry
exists.

• The general form in Equation 5.6 is undefined for ∣ supp (Aut(G)) ∣ = 2. However, the
value of ngsG can safely be set to 1 in this case, as no decomposition of the automorphism
group can be performed. Thus the symmetry is global.

• Not every value in the interval [0, 1] can be reached: For k > 1 follows
1
k
∣ supp(Aut(G))∣−2
∣ supp(Aut(G))∣−2 < 1

2 .
This first seems counter-intuitive, but makes sense from a mathematical point of view, as
lim∣ supp(Aut(G))∣→∞ ngsG = 1

k .

• As seen in the previous bullet point, ngsG can be approximated for large ∣ supp (Aut(G)) ∣
by 1

k .

• The measure does not take into account the distribution of the different subgroup supports.
But what would it mean, if the group could be decomposed into, e.g. say, two subgroups
with supports ∣ supp (H1) ∣ = ∣ supp (H2) ∣ or ∣ supp (H1) ∣ ≫ ∣ supp (H2) ∣, respectively?
How could the different sizes be interpreted? Would the one area of the graph be more
globally affected than the other? There is no simple answer to that, which could be used
to pour this information into a single measure.

5.2.2 Examples

Example 33. Given the graph in Figure 5.3, which has n = 3 j + 1 nodes. It has a total
of j independent symmetries, as only each pair of nodes connected to the path 2 j + 1, 2 j +
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2, . . . , 3 j, n can be mapped onto each other by a simple transposition (e.g. (1 2)). There are
∣ supp (Aut(G)) ∣ = 2 j nodes affected, which results in a relative symmetry of rsG = 2 j

3 j+1 ≈
2
3 (for

large j). The automorphism group can be “perfectly” decomposed ( j = k) into Aut(G) = H1 ×
. . .×Hk = ⟨(1 2)⟩×. . .×⟨(2 j−1 2 j)⟩, which yields a mean local symmetry of gsG = 1

j ⋅
2 j

3 j+1 =
2

3 j+1

and a normalized global symmetry of ngsG =
1
j
⋅2 j−2
2 j−2 = 0. All orbits have a length of two.

1 2 3 4 2 j

n

Figure 5.3: A relatively symmetric graph (r ′G = 1 − (2j+1)−1
(3j+1)−1 = 1

3 ), where about two thirds of all nodes
are affected by the automorphism group. However, all symmetries are completely local in
terms of the Definitions 1–3.

In contrast to Figure 5.3, the graph in Figure 5.4 also has only j short orbits of length two and
n = 2 j + j + 1 nodes. However, its automorphism group can not be decomposed, which results
in a very global symmetry: Again, rsG = 2 j

3 j+1 , but gsG = 1
1 ⋅ rsG = rsG and ngsG = rsG−2

rsG−2 = 1.

1

2

3

4 2 j

n

Figure 5.4: Another relatively symmetric graph, which shares many properties with the graph in Fig-
ure 5.3 (same number of nodes and orbits), but is in contrast to it completely globally sym-
metric.

Note that the normalized global symmetry of the graph in Figure 5.4 would be the same if there
was only one additional node 2 j + 1 to break the symmetry “along the y-axis”. We constructed
the graph in Figure 5.4 to keep the number of nodes between this one and the graph in Figure 5.3
identical and, therefore, have the same relative symmetry. This underlines that ngsG is a relative
measure of local graph symmetry. These two graphs are examples for the two different sets of
generators discussed in Example 31, which motivated the idea of local symmetry.

Example 34. Consider again the graph in Figure 5.2. It has n = 33 nodes and ∣ supp (Aut(G)) ∣ =
21. Therefore, G has a relative symmetry rsG = 21

33 ≈ 0.636 and a mean global symmetry of
gsG = 1

5 ⋅
21
33 =

7
55 ≈ 0.127, as Aut(G) can be decomposed into k = 5 support disjoint subgroups.

The normalized mean global symmetry is ngsG =
1
5 ⋅21−2
21−2 =

11
5

19 ≈ 0.116.

5.2.3 Implications of Local Symmetry

The reason why we motivated and introduced local and global symmetry is simple: Graph
clustering (algorithms) merge nodes that are similar in terms of their connections to each other

121



5 Graph Symmetries

into the same cluster. Hence, if only quite local symmetries exist, the probability that they affect
a clustering solution bymapping nodes from one cluster to nodes of other clusters decreases with
larger cluster sizes. Nonetheless, the mean global symmetry must always be seen in contrast
to the relative symmetry of the graph and, additionally, it is not sufficient to judge the actual
impact of symmetry. That is because the clustering partition of a relatively symmetric graph
with very global symmetry can, nevertheless, be unaffected by the symmetry. This effect is
shown in Section 6.3 for two specific locally symmetric structures for modularity clustering.
Furthermore, the actual impact of existing symmetry on modularity clustering partitions is
investigated in Chapter 7.

It would be even possible to further decompose the support disjoint normal subgroups. As
we have seen in Section 2.4.3, (permutation) groups can be written as products of smaller
groups. For the following explanations we refer to Aschbacher (2004). A (finite) group is
called simple if there do not exist any normal subgroups other than the trivial group, which
only contains the identity permutation and the group itself. For a group G, one can write
{1} = G0 ⊲ G1 ⊲ . . . ⊲ Gn = G, which is a series of proper normal subgroups, thus named normal
series. If no proper normal subgroup is “left out” (i.e. ∄i′,Gi ⊲ Gi+1 ∶ Gi ⊲ Gi′ ⊲ Gi+1), the
series is called composition series and each Gi+1/Gi is itself a simple group called factor group.
Gi+1/Gi is defined as the set of cosets of Gi concerning Gi+1, i.e. Gi+1/Gi ∶= {gGi ∣ g ∈ Gi+1}
(recall that gGi = {gh ∣ h ∈ Gi} is a coset of Gi; see Section 2.4), together with the group
operation gGi ○ hGi = ghGi. The operation is a result of the normality of Gi, as per definition
gGi = Gig and thus gGi ○ hGi = (gGi)(hGi) = g(Gih)Gi = g(hGi)Gi = (gh)(GiGi) = (gh)Gi.
The group Gi+1/Gi is, therefore, defined on the cosets of Gi, i.e. not on its elements, and each
Gi+1/Gi is isomorphic to a specific simple group whose classification problem is the issue
Aschbacher (2004) addresses.
Most interestingly, there exists only a small number of different types (not groups!) of finite

simple groups that are sufficient to compose any other finite simple group. Moreover, the
factorization of a group needs not be unique but, nonetheless, these finite simple groups are
often analogously referred to in the same way as prime numbers, which can be used to factorize
any integer numbers (Aschbacher, 2004, p. 736). Within the scope of this thesis, we do not
go into further detail of this topic. However, further group decomposition could maybe give
additional insights into the structure of complex symmetric networks.

5.3 Weak Symmetry Based on Clustering

Picking up the idea from Section 2.5.1 of seeing the matrix E, which is a result of computing
the modularity of a partition P, as the adjacency matrix of a partition induced graph G(P), we
now want to give a weak symmetry definition.

First, let us repeat the definition of E = (ei j). P is a partition of V(G), possibly as the result

of a clustering algorithm. The entries of E are defined as ei j =
∑vx∈Ci,vy∈Cj

mxy

2∣V(E)∣ , where M = (mxy)
is the adjacency matrix of G. The normalizing factor (2∣V(E)∣)−1 is only important for the
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modularity definition and not for the following idea, but it is kept to make clear the analogy
between modularity and weak symmetry.

Definition 4. Given a graph G, a partition P of V(G), and the matrix E = (ei j) that is derived
from the definition of modularity (see Equation 2.105). P induces the undirected weighted graph
G(P) with adjacency matrix

AG(P) = (ai j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eii i = j

2ei j i ≠ j
. (5.7)

The loops of G(P) represent the intra-cluster edge fractions and every node i corresponds to
the cluster Ci ∈ P. The weight ai j of an edge i j (i ≠ j) reflects the fact that the entries ei j = e ji

correspond to directed weighted edges of the graph with adjacency matrix E. This concept is
similar to the quotient graph described in Section 3.4.

Example 35. Let G be the graph in Figure 5.5a with the partition P = {{1, . . . , 5} , {6, . . . , 10}}.
The adjacency matrices are given in Equation 5.8.

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

given P↝ EG =
⎛
⎝

5
11

1
22

1
22

5
11

⎞
⎠

(5.8)

It is important to note that EG is implicitly the adjacency matrix of a directed weighted graph
(Figure 5.5b) due to the definition of modularity: The entry e12 = 1

22 reflects the inter-cluster
connections from C1 to C2 and e21 vice versa. Derived from EG, the adjacency matrix AG(P) is
shown in Equation 5.9.

EG =
⎛
⎝

5
11

1
22

1
22

5
11

⎞
⎠

↝ AG(P) =
⎛
⎝

5
11

1
11

1
11

5
11

⎞
⎠

(5.9)

The edge between the nodes C1 and C2 of the graph G(P) has weight 1
11 , which is the sum of the

weights of the two directed edges e12 and e21 (Figure 5.5c).

Based on this coarsened graph definition, we now define weak symmetry.

Definition 5. Given a partition P of a graph G that induces the graph G(P). If ∣Aut(G(P))∣ > 1,
G is weakly symmetric.
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1

2

3

4

5 6

7

8

9

10

C1 C2

(a) A graph G divided into two clusters. Aut(G) = ⟨(1 2)(3 4)⟩

C1 C2
1

22

1
22

5
11

5
11

(b) The directed weighted graph that has adja-
cency matrix EG .

C1 C2
1

11
5

11
5

11

(c) The partition induced subgraph G(P) with the
adjacency matrix AG(P) that is derived from EG .

Figure 5.5: Example of a partition induced subgraph of a graph (n = 10, m = 11) and a given partition
of two clusters (represented by the dashed line).

Definition 6. A graph G is strictly weakly symmetric given a partition P if ∣Aut(G)∣ = 1 and
∣Aut(G(P))∣ > 1.

Definitions 5 and 6 formalize the idea that parts of a graph (i.e. subgraphs) are nearly the
same, but no exact automorphism that would map one part onto the other exists. This does not
mean that the original graph must be asymmetric itself (except in the strict case) as Example 35
shows. Reasons for this can be

• different connections of the parts to the rest of the graph or

• slightly different connections within the parts.

The clusters are regarded as equivalence classes and the partition induced graph aggregates these
equivalent nodes. The exact connections between those nodes are relaxed, only the number of
connections (the intra-cluster edges count) remains. They are represented by the weighted
loops. The same happens for the inter-cluster connections, which are also aggregated to single
weighted edges. As a result, the partition induced graph is made up of aggregated information
from the source graph. Furthermore, symmetries of the partition induced graph itself are weak
symmetries of the original graph.

See for example Figure 5.5: The graph is weakly symmetric given the partition into two
clusters, as clearly Aut(G(P)) = {1, (C1 C2)}. In loose accordance to geometry, we want to
call two subgraphs that are induced by Ci,Cj ∈ P for some partition P congruent if (Ci Cj) ∈
Aut(G(P)). Jiang et al. (2017) make use of a similar technique to match two graphs based on a
coarser aggregation level of the nodes (i.e. by using partitions).

124



6 Partition Stability

In this chapter we present several formal definitions of partition stability (Sections 6.1 and 6.2).
By this we mean the property of a partition (as defined in Section 2.3) to be invariant under the
graph’s automorphism group. This means that applying a permutation (an automorphism) on
the partition does not change it given the standard properties of a set.

Furthermore, we prove partition stability under certain circumstances for two often occurring
graph motifs, namely stars and complete bipartite graphs, assuming modularity clustering is
used (Section 6.3). We finally transfer the definition of Kolmogorov-Sinai Entropy to the graph
clustering domain, which results in a quantitative uncertainty measure of the problem’s solution
space (Section 6.4).

6.1 Search Space Partition

In Chapter 2.4 orbits of permutation groups were defined. It could be seen that the group (of
a graph) induces a partition of the elements (nodes) of the set on which the group acts, called
orbit partition. But a group that acts on a set of elements also acts on combinatorial structures
of this set (e.g. Beth et al., 1993, p. 149). Hence, Aut(G) also acts on the set of partitions P(V).
Each permutation g ∈ Aut(G) ∶ V Ð→ V acts on P ∈ P(V) by element-wise application of g:

Pg ∶= {Cg ∣ C ∈ P} , (6.1)

Cg ∶= {vg ∣ v ∈ C} . (6.2)

This allows us to define the orbit partition of P(V) analogously to the orbit partition of V as

P(V)Aut(G) ∶= {PAut(G) ∣ P ∈ P(V)} , (6.3)

where the term PAut(G) is the image set (i.e. the orbit)

PAut(G) ∶= {Pg ∣ g ∈ Aut(G)} . (6.4)

From these definitions we want to deduce a first definition of partition stability.

Definition 7. A partition P of a graph G is said to be stable if ∣PAut(G)∣ = 1.

In the next Section 6.2 we present three stability definitions, which are all equivalent. As
Aut(G) induces a partition of equivalence classes of the node setV , it also induces an orbit parti-
tion of P(V). Analogously to the definitions from Section 2.3, the space of partition equivalence
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classes can be arranged in a diagram. Each node in the diagram is now an equivalence class of
partitions and the partial ordering is given by ≤H (H is a group acting on V , e.g. H = Aut(G)),
which is defined as

PH,QH ∈ P(V)H ∶ PH ≤H QH ∶⇐⇒ ∃P′ ∈ PH, Q′ ∈ QH ∶ P′ ≤ Q′. (6.5)

Example 36. Consider again P({1, 2, 3, 4}) from Figure 2.10. Let G be the “paw graph” shown
in Figure 6.1 with its automorphism group Aut(G) = {(), (1 2)}.

1

2

3 4

Figure 6.1: The paw graph whose space of symmetry induced partition equivalence classes is shown in
Figure 6.2.

The equivalence classes induced by P({1, 2, 3, 4})Aut(G) together with the partial ordering
≤Aut(G) results in the space shown in Figure 6.2. It can be seen that, e.g., the partitions
P = {{1, 3, 4} , {2}} and Q = {{2, 3, 4} , {1}} lie on the same orbit because they are equivalent.
Certainly, P is unstable, as ∣PAut(G)∣ = 2 > 1 holds.

[1∣2∣3∣4]

[1, 2∣3∣4] [1, 3∣2∣4; 2, 3∣1∣4] [1, 4∣2∣3; 2, 4∣1∣3][3, 4∣1∣2]

[1, 2, 3∣4] [1, 2, 4∣3] [1, 2∣3, 4] [1, 3, 4∣2; 2, 3, 4∣1] [1, 3∣2, 4; 1, 4∣2, 3]

[1, 2, 3, 4]

Figure 6.2: Diagram for P({1, 2, 3, 4})Aut(G). Every node is an equivalence class that is induced by the
automorphism group of the paw graph. The equivalence class that contains P and Q is set
in bold font.

Each path through the space of partitions was called a join path in Figure 2.10, and we now
see that a (non-trivial) automorphism group of a graph reduces the number of possible join paths
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and, therefore, the number of possible solutions for a hierarchical clustering algorithm. For the
complete graph Kn, only one unique (of course only up to isomorphism) path exists through the
space of equivalence classes. However, to possibly benefit from this observation in clustering,
the equivalence classes have to be identified.

6.2 Equivalent Stability Definitions

In this section we present three equivalent definitions of partition stability (Ball and Geyer-
Schulz, 2018c). Each of them (i) represents a different point of view on the problem and (ii)
may be better practically applicable depending on the specific setting of the analysis. We use
those definitions to present a conceptual algorithm that tests partition stability (Section 6.2.5).

Clustering partition stability is not a very tangible term and there are several definitions
(probably not exhaustive) that could be thought of. Given a partition P . . .

. . . as the result of an algorithm (e.g. clustering), the algorithm’s result on the same input
should always be the same. This implies that the used method must be deterministic.

. . . as the result of an algorithm (e.g. clustering), the algorithm’s result on slightly perturbed
input should not differ significantly (Ben-Hur et al., 2001; Tibshirani and Walther, 2005;
von Luxburg, 2010).

. . . being optimal concerning some (quality) criterion (e.g. modularity), the addition and/or
removal of a few edges should change the criterion’s value only marginally, so that the
optimal partition stays the same (e.g. Karrer et al., 2008). This implies stability of the
graph’s topology concerning the given criterion against small changes.

. . . the class memberships should be unambiguous (Gfeller et al., 2005), which means there
should exist a unique clustering partition and no nodes that cannot be assigned to exactly
one cluster.

. . . (independent of its origin), no visible changes should occur due to symmetries of the
graph (captured by its automorphism group).

The last point is the approach considered here. It is somewhat similar to the idea of Gfeller
et al. (2005) who identify nodes that cannot be uniquely assigned to exactly one cluster of the
partition. However, such ambiguities need not be caused by automorphisms of the graph.

6.2.1 Splitting the Automorphism Group

The automorphism group Aut(G) is a finite set of permutation functions that can be split into
two subsets, one of which may be empty.

Definition 8. Let P be a partition of G. Aut(G) is split into two subsets Πintra and Πinter with
Πintra containing all permutations for which Pg = P and Πinter containing all permutations for
which Pg ≠ P. The partition P is stable iff Πinter = ∅.
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Definition 8 implies that for a stable partition P every automorphism of G must only act
“locally”, by mapping nodes onto each other that are within the same cluster anyway, or
“globally”, by mapping entire clusters onto each other. As we have seen, the automorphism
groups can easily become very large so that testing stability for each of the permutations is very
expensive to perform. However, generating the whole group is not necessary.

Theorem 11 (Partition stability by splitting the set of generators). Given a partition P of
G and a set of generators S (Aut(G) = ⟨S⟩) that is split into Π̃intra = {g ∈ S ∣ Pg = P} and
Π̃inter = {g ∈ S ∣ Pg ≠ P}. P is stable iff Π̃inter = ∅.

Proof. Let S be a set of generators, i.e. ⟨S⟩ = Aut(G). Furthermore, two subsets of Aut(G)
regarding a partition P as described in Definition 8 are given, namely Πintra and Πinter ≠ ∅.
Suppose Π̃intra = S and Π̃inter = ∅. Then for some g ∈ Πinter (obviously g ∉ Π̃intra), there must
exist a sequence of generators (h1, . . . , hk) for which h1 ○ . . . ○ hk = g holds and hi ∈ Π̃intra, i =
1, . . . , k. But this is a contradiction, as each hi individually either fixes all nodes within allCi ∈ P

or maps all nodes from one cluster to another cluster. For arbitrary compositions of multiple hi

in the sequence above, this property is retained, as composing permutations means successively
executing the mapping of each permutation in the given order. Associativity assures that it
does not matter which permutation is used first, as long as the order does not change. So for
h1 ○ . . . ○ hk = g ∈ Πinter , at least one hi ∈ Π̃inter must exist, which contradicts Π̃inter = ∅. �

Example 37. Let S = {(1 2), (7 8)} so that ⟨S⟩ = {1, (1 2), (7 8), (1 2)(7 8)} = Aut(G). The
partition P = {{1, 2, 3} , {4, 5, 6} , {7, 8}} is stable because P(1 2) = P as well as P(7 8) = P. The
partition Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} is, of course, unstable, as

Q(1 2) = {{2, 3} , {1} , {4, 5, 6} , {7, 8}} ≠ Q. (6.6)

The partitions of S and Aut(G) regarding Q are S = Π̃intra ∪ Π̃inter = {(7 8)} ∪ {(1 2)} and
Aut(G) = Πintra ∪Πinter = {1, (7 8)} ∪ {(1 2), (1 2)(7 8)}, respectively.

It is obvious that ⟨Π̃intra⟩ = Πintra ≤ Aut(G) is the subgroup that stabilizes the partition P.

6.2.2 Partition of Blocks

This approach builds on the block definition from Section 2.4.2.3. Recall that for a permutation
group Aut(G) a block is defined as a subset C ⊆ V for which either C ∩Cg = C or C ∩Cg = ∅
holds for all g ∈ Aut(G). Informally, the permutations either map the block onto itself or all
nodes to a different subset C′ ⊆ V , which of course must also be a block.

Definition 9. A partition P is stable

1. if every Ci ∈ P is a block of Aut(G) and

2. if for every Ci ∈ P with Ci ∩Cg
i = ∅, Cg

i ∈ P holds.
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Definition 9 is strongly coupled with the first approach in Section 6.2.1. It explicitly uses
a general property of permutation groups (1.), but additionally requires (2.) to be true. The
second condition is important as the example will show.

Example 38. Let S = {(1 4)(2 3), (1 5)(2 6)(3 7)(4 8)} generate the permutation group

Aut(G) = {1, (1 4)(2 3), (5 8)(6 7), (1 5 4 8)(2 6 3 7), (1 8 4 5)(2 7 3 6),

(1 4)(2 3)(5 8)(6 7), (1 8)(2 7)(3 6)(4 5), (1 5)(2 6)(3 7)(4 8)}.
(6.7)

The partition P = {{1, 2} , {3, 4} , {5, 6} , {7, 8}} is stable because both conditions hold. Each
g ∈ Aut(G) either fixes Ci or maps it onto another Cj = Cg

i ∈ P.
When analyzing Q = {{1, 2, 3, 4} , {5, 6, 7} , {8}} we can see that it is not sufficient to only

consider all g ∈ S. {5, 6, 7}(1 4)(2 3) = {5, 6, 7} fixes the cluster and {5, 6, 7}(1 5)(2 6)(3 7)(4 8) ∩
{5, 6, 7} = {1, 2, 3} ∩ {5, 6, 7} = ∅. However, {5, 6, 7} is not a block as, e.g., for (5 8)(6 7) ∉ S

the equation {5, 6, 7}(5 8)(6 7) ∩ {5, 6, 7} = {8, 7, 6} ∩ {5, 6, 7} = {6, 7} holds, but clearly {6, 7} ∉
{∅, {5, 6, 7}}.

Consider R = {{1, 2, 3, 4} , {5, 6} , {7, 8}}. For example {5, 6} is a block of Aut(G) but
{5, 6}(1 5)(2 6)(3 7)(4 8) = {1, 2} ∉ R. Therefore, R is unstable because condition (2.) of Defini-
tion 9 is not fulfilled and we see that condition (1.) alone is not sufficient.

The second approach for defining the stability of a partition based on the graph’s automorphism
group shows the connection between a pure permutation group property and its application to
data analysis. Compared to Definition 8, this comes at the cost of the necessity to completely
enumerate the automorphism group. However, the decomposition method of MacArthur et al.
(2008) could be incorporated if this approach is implemented.

6.2.3 Partition Refinement Lattice

The last approach involves the refinement lattice of all possible partitions of the node set V (see
Section 2.3). The set of all partitions is denoted by P(V).
Recall from Section 2.3 that P(V) can be arranged as lattice given the partial ordering ≤.

Informally, P ≤ Q is true if each cluster in P is a subset of a cluster in Q. The refinement
lattice also illustrates the search space of a hierarchical clustering method. Each dendrogram
represents a path through the lattice from level 1 to level n.

Definition 10. P ∈ P(V) is stable iff ∀g ∈ Aut(G) ∶ Pg ≤ P.

The point of view of Definition 10 shows that there must always exist a special finest stable
partition for a given automorphism group (see also Ball and Geyer-Schulz, 2017). Naturally,
this is the partition of all orbits O.

Theorem 12 (Stability of partitions coarser than the orbit partition). Given P ∈ P(V) and the
orbit partition O regarding the automorphism group Aut(G), P is stable if P ≥ O.
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6 Partition Stability

Proof. Clearly, O is stable by definition, as each subset/cluster contains exactly those nodes that
can be mapped onto each other. This property is retained for any C∪ = C′ ∪C′′, C′,C′′ ∈ O. The
argument holds recursively for joins. Thus any partition P that can be created by successively
joining clusters of O must be stable, too. However, this is exactly the refinement definition
P ≥ O. �

It is worth noting that the conclusion of Theorem 12 is not that any stable partition must be
coarser than O. There can be numerous other stable partitions that are not coarser or even finer
than the orbit partition. One trivial counterexample is the partition of singletons (each node
forms one cluster) P�, which is always stable.

Example 39. Let us again look at Aut(G) = {1, (1 2), (7 8), (1 2)(7 8)} and the partition
P = {{1, 2, 3} , {4, 5, 6} , {7, 8}}. It is coarser than the orbit partition O = {{1, 2} , {3} , {4} , {5} ,
{6} , {7, 8}} (see Figure 6.3) and it is of course coarser than every Pg, g ∈ Aut(G). Thus, P is
stable.

The partition Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} is unstable as, e.g., Q(1 2) ≰ Q. In Figure 6.3
one can see that Q and Q(1 2) are of course on the same level in the lattice, but none of them is
coarser than O.

{{1} , . . . , {8}}

. . . . . .

O = {{1, 2} , {3} , {4} , {5} , {6} , {7, 8}}. . . . . .

. . .. . .. . .

Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} Q(1 2) = {{2, 3} , {1} , {4, 5, 6} , {7, 8}}. . .

P = {{1, 2, 3} , {4, 5, 6} , {7, 8}}. . . . . .

. . . . . .

{1, . . . , 8}
Level:

1

2

3

4

5

6

7

8

Figure 6.3: Extract of the partition refinement lattice for V = {1, . . . , 8}. Partitions become coarser on
higher levels. O is the orbit partition, which is the special finest stable partition of Aut(G) =
{1, (1 2), (7 8), (1 2)(7 8)}.

6.2.4 Equivalence of the Definitions

The equivalence of Definitions 8–10 is quite obvious, however, we formally prove it in this
section.

Theorem 13. Definitions 8 and 9 are equivalent.
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Proof. Given a partition P of G and the corresponding automorphism group Aut(G) that is
divided into Πintra and Πinter .

1. a) If Πinter = ∅ then P = Pg for all g ∈ Aut(G) holds. This can only be true if
∀C ∈ P, ∀g ∈ Aut(G) ∶ Cg ∈ P holds. Cg ∈ P for some g and C means either Cg = C

or Cg = C′ ≠ C with C ∩ C′ = ∅ and C′ ∈ P. Therefore, each C ∈ P is a block of
Aut(G) and Cg ∈ P, ∀g ∈ Aut(G).

b) If conversely all C ∈ P are blocks of Aut(G) and ∀C ∈ P, ∀g ∈ Aut(G) ∶ Cg ∈ P.
This directly implies Pg = P, ∀g ∈ Aut(G) and, therefore, Πinter = ∅.

2. a) If Πinter ≠ ∅ then ∃g ∈ Πinter ∶ P ≠ Pg. This also means ∃C ∈ P ∶ Cg ∉ P, which
violates the second condition of Definition 9.

b) Consider there exists C ∈ P that is not a block. This implies C ∩ Cg ∉ {∅,C} and
consequently Cg ∉ P for some g ∈ Aut(G). Therefore, P ≠ Pg and with this also
Πinter ≠ ∅.

�

Theorem 14. Definitions 8 and 10 are equivalent.

Proof. Again, given a partition P of G and the corresponding automorphism group Aut(G),
which is divided into Πintra and Πinter .

1. a) From P = Pg, g ∈ Aut(G) directly follows P ≥ Pg, g ∈ Aut(G).

b) Given P ≥ Pg for all g ∈ Aut(G). By definition, for each C′ ∈ Pg must exist C ∈ P

so that C′ ⊆ C. As permutations g are bijective, ∣P∣ = ∣Pg∣. By definition of the
refinement lattice, there cannot be any neighbors on the same level. Therefore, the
only possibility for P ≥ Pg to hold is P = Pg.

2. a) If P ≠ Pg for some g ∈ Πinter , there exists Cg ∉ P. Additionally, ∄C′ ∈ P ∶ Cg ⊂ C′,
as g is bijective. Therefore, ∣C∣ = ∣Cg∣, and the only possibility for Cg ⊆ C′ ∈ P is
Cg = C′, which is a contradiction.

b) In the case P ≱ Pg for some g ∈ Aut(G), a cluster Cg ⊈ C′ ∈ P must exist. Due to
the bijectivity of g it can directly be deduced that Cg ∉ P. Therefore, P ≠ Pg and
Πinter ≠ ∅.

�

Lemma 1. Definitions 9 and 10 are equivalent.

Proof. Follows from the transitivity of the equivalence relation together with the equivalences
of Definitions 8 and 9, and Definitions 8 and 10. �
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6 Partition Stability

For the three equivalent definitions no special properties of graphs (besides how Aut(G) is
defined) are used. We only require partitions of a finite set of length n and a permutation group
that acts on this set and hence also on the partitions. The reason for this is that these definitions
are completely generalizable for any partition of objects, provided the symmetry group is known.
In Section 6.2.5 we exploit Definitions 8 and 10 for an implementation of a fast stability testing
algorithm.

6.2.5 Fast Partition Stability Analysis

After the formal equivalence of the three provided characterizations of stability based on sym-
metry was proved, one might ask, which one should be preferred. Before arguing about
consequences of the definitions, it is important to mention that all our considerations only
become relevant if the data contains symmetry at all. For a trivial automorphism group (i.e.
∣Aut(G)∣ = ∣ {1} ∣ = 1) every partition of nodes is stable.
From an analytic point of view, Definition 9 shows the connection to a permutation group

property (blocks). The practical applicability of it is, nonetheless, limited because it requires
to actually enumerate the whole group to check if clusters of a partition are blocks. However,
from a didactic point of view, it shows that the transfer of results from the theory of permutation
groups to data science often requires some modifications.

Definition 8 is of greater practical use. An algorithm that computes the automorphism group
of a graph (like nauty or saucy) normally computes a set of generators of the group and returns
them to the caller. Theorem 11 shows that the generators suffice to test stability by checking
Pg ≥ P, ∀g ∈ S.
Looking at Definition 10 also gives some insights what happens if symmetries exist, especially

concerning the search space. The stability test procedure is similar to the one of Definition 8, as
the proof of Theorem 14 shows the equality of the stability definitions P = Pg and P ≥ Pg.
The additional idea of having a special finest stable partition leads to Algorithm 1. The orbit

partition O can be computed from the generators and the test involves only one comparison of
partitions (instead of ∣S∣).
The computation of the orbit partition O in Algorithm 1 can be memoized (e.g. Geyer-Schulz,

1989) to avoid repeated computation for stability tests of different partitions of the same graph.
The actual implementation of this computation and the partition comparison test (≥) strongly
depends on the data structures that are used to represent partitions and permutations. nauty and
saucy represent permutations using an explicit form1, where each permutation g is an array of
length n with g[i] = ig. Partitions can also be represented by arrays of length n, where the entry
at position i is some arbitrary cluster id. All nodes in the same cluster have the same cluster id.
Another representation—which relates to the mathematical notation of a set of sets—is storing
a partition as array of arrays.

1 W. l. o. g., we assume V = {0, . . . , n − 1} to allow array indexing starting from 0, which normally is the standard
way in programming languages.
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Algorithm 1 Test partition stability based on the automorphism group of the graph
Require: P is a partition of G; S is a set of generators for Aut(G), i.e. ⟨S⟩ = Aut(G)

1: function testStability(P, S)
2: if S = ∅ then ▷ The group is trivial, the graph is asymmetric
3: return True
4: O ← computeOrbitPartition(S, ∣P∣)
5: if P ≥ O then ▷ The partition is coarser than the orbit partition
6: return True
7: for g ∈ S do
8: if P ≱ Pg then ▷ Instability detected; P ≥ Pg is equivalent to P = Pg

9: return False
10: return True

We present efficient algorithms to compute the orbit partition from the set of generators S

(Algorithm 2) and to check if one partition is coarser than another partition (Algorithm 3) in
Appendix D. The complexity of Algorithm 1 mostly depends on the number of generators ∣S∣.
Finding upper bounds or the exact value for the size of a minimal generating set is an old but
still open research issue except for special classes of groups (Lucchini et al., 2004). However,
the results in Chapter 4 show that the algorithmic output of saucy is very promising in terms of
the actual number of generators returned.

6.3 Impact of Specific Graph Structures on Modularity
Optimal Partitions

In this section we want to show for two rather trivial symmetric motifs of graphs under which
circumstances they affect modularity optimal partitions.

6.3.1 Star Graphs

A k-star is a special tree of depth one that consists of k + 1 nodes and is created by connecting
each node of the empty graph K̄k to the k + 1st node. This graph is equivalent to the complete
bipartite graph K1,k , and its automorphism group is of course isomorphic to the symmetric
group Sk . MacArthur et al. (2008, p. 3529) state “that stars were the predominant symmetry
structure present in all the networks”. Following this conclusion, we now want to examine if the
existence of star subgraphs in a graph affects the modularity optimal partition. As the leaf nodes
of this structure are connected to the rest of the graph through exactly one node (the root), it is
sufficient to look at those k nodes and the cluster the root node is contained in (see Figure 6.4).
The partition is only stable if all these nodes remain singletons or become part of the root

node’s cluster. Already, Ovelgönne et al. (2010, section 3.2) showed that nodes connected
through only one edge to the graph can be preprocessed by merging them with their only
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u1 u2 u3 uk

v

C ∖ {v} G′

Figure 6.4: A star subgraph K1,k with nodes v,u1, . . . ,uk ∈ V(G). v is part of cluster C, thus connected
to it via at least one edge (possibly more). C is of course connected to G′ (the “rest” of G)
via at least one edge, too, and v is also possibly connected to other nodes in G′. The dashed
edges represent those optional edges.

neighbor if modularity graph clustering is performed. This is because there always will be a
positive contribution to the overall modularity.

We generalize and transfer this idea to our symmetry considerations and prove that merging
the leaf nodes of a star (sub-)graph to their root’s cluster is necessary to possibly yield maximum
modularity. As a consequence, modularity optimal partitions of graphs that have stars as
subgraphs will not be affected by the symmetries these stars “contribute” to the automorphism
group (each H ≅ Aut(K1,k) is a subgroup of Aut(G)).

Theorem 15 (Effect of star subgraphs on partitions). The symmetry of star subgraphs does not
affect a modularity optimal partition.

Proof. The proof idea is to show that the contribution to modularity of the clusterC that contains
the root node of the star graph is higher if all k leaf nodes are part of this cluster (say C′). Let
mC be the number of edges within C, k the number of edges that connect the leaf nodes to their
root (therefore to C), and l the number of edges that connect C to the rest of the graph. The
contribution to modularity of C is

mC

m
− (2mC + k + l

2m
)

2
, (6.8)

the contribution of C′ is
mC′

m
− (2mC′ + l

2m
)

2
, (6.9)

and clearly mC′ = mC + k. So

mC + k
m

− (2(mC + k) + l
2m

)
2
> mC

m
− (2mC + k + l

2m
)

2
(6.10)

must hold.
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It follows:

mC + k
m

− (2(mC + k) + l
2m

)
2
> mC

m
− (2mC + k + l

2m
)

2
(6.11)

⇐⇒ k
m
− 1

4m2 (2mC + 2k + l)2 > − 1
4m2 (2mC + k + l)2 (6.12)

⇐⇒ 4mk − ((2mC + l) + 2k)2 > − ((2mC + l) + k)2 (6.13)

(6.14)

The term (2mC + l)2 appears on both sides of the inequality after expansion and can be canceled
out:

4mk − 2 (2mC + l)2k − (2k)2 > −2 (2mC + l) k − k2 (6.15)

⇐⇒ 4mk − 4k (2mC + l) − 4k2 > −2k (2mC + l) − k2 (6.16)

⇐⇒ 4mk > 2k (2mC + l) + 3k2 (6.17)

⇐⇒ 4m > 4mC + 2l + 3k (6.18)

⇐⇒ m > mC +
1
2

l + 3
4

k (6.19)

The last term 6.19 is always true. �

Lemma 2 (Modularity optimal partition of a star graph). The optimal partition of K1,k is the
trivial partition with modularity Q∗ = 0.

Proof. Direct consequence of the proof of Theorem 15: m > mC + 1
2 l + 3

4 k with m = k and
mC = l = 0, so k > 0 + 1

2 ⋅ 0 +
3
4 k holds and all k + 1 nodes must be put into the same cluster for

maximal modularity. This results in the trivial partition, which always has modularity zero. �

This result is quite pleasing, as this means a large number of actually occurring symmetric
structures in real-world graphs does not affect the optimality of modularity.

6.3.2 Complete Bipartite Subgraphs

A star K1,k can be generalized to an arbitrary complete bipartite graph K j,k . We can even relax
the exact condition of being bipartite (no adjacent nodes within the two disjoint node sets V1

and V2) by allowing edges between nodes of one of the two disjoint node sets (say V1). The
nodes in V1 are connected to the rest of the graph and, as described, possibly interconnected to
each other. The nodes in V2 are not connected, and because of the completeness of connections
between V1 and V2, clearly a group isomorphic to Sk acts on V2.

Modeling the Problem in Terms of Modularity We restrict our examination to the case where
each of the j nodes in V1 is in a different cluster (see Figure 6.5). Moreover, no isomorphisms
between the j clusters Ci exist and they must neither be merged nor split due to the resolution
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u1 u2 uk

C1 C2 Ci Cj

G′

V1

V2

Figure 6.5: A complete bipartite subgraph K j,k with node sets V1,V2 ⊂ V(G). Each vi ∈ V1 is part
of cluster Ci. The Ci are connected to G′ (not necessarily every Ci) in a way that G is a
connected graph. Again, the dashed edges represent possibly more than one edge (or maybe
even no edge). For example, C1 could also be adjacent to Cj , but no edges are drawn to keep
the figure clear. All nodes ui are obviously on the same orbit on which a group isomorphic
to Sk acts.

limit of modularity (Fortunato and Barthélemy, 2007). The contribution to modularity of each
Ci is influenced by the number of intra-cluster-edges mi, the fraction λi of the k nodes from V2

that are also part of Ci, and the number of edges li that connect Ci to the rest of the graph. This
results for each Ci, i = 1, . . . , j in

eii − a2
i =

T1
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
mi + λi k

m
− (

2⋅T1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
2(mi + λi k)+

T2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
λi k( j − 1)+

T3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 − λi)k +

T4
³·µ

li

2m
)

2

(6.20)

with m the total number of edges of the graph, as usual. Remember that each edge in the term
for ai is counted twice (see Section 2.5.1). Let us explain the different parts T1–T4:

T 1 = m i + λ ik This is the number of intra-cluster-edges. mi are all edges within cluster Ci and
λi k are the additional edges by adding λi of the k nodes from V2.

T 2 = λ ik( j − 1) The number of edges between those nodes u ∈ Ci to the remaining Cl (l ≠ i).
Each node u ∈ V2 has j neighbors. Therefore, each u ∈ Ci has j −1 connections to all other
clusters Cl (l ≠ i) and λi k is the number of nodes of V2 that are part of Ci.

T 3 = (1 − λ i)k This is the number of remaining connections to those nodes u ∉ Ci.

T 4 = l i These are the edges that are incident with Ci and either the rest of the graph G′ or any
of the other Cl (l ≠ i). Those edges are not part of the complete bipartite subgraph.
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The term 2T1 +T2 +T3 +T4 is, in accordance to the definition of ai, the sum of all edges that are
incident with a cluster Ci. However, the definition in Equation 6.20 is only an approximation
because the λi ∈ [0, 1] are not restricted in a way that λi k ∈ N holds.
To check if all the j ⋅ k edges of the complete bipartite graph K j,k are correctly assigned to the

j clusters in dependence of the λi, we sum over the edges between the clusters Ci and the nodes
u ∈ V2. The edges from one cluster Ci to all the nodes of V2 are expressed by the term

2T1 +T2 +T3 +T4 − 2mi − li = 2λi k + λi k( j − 1) + (1 − λi)k . (6.21)

If λi = 0, the term in Equation 6.21 yields k, which are all the edges from Ci to all k = ∣V2∣ nodes.
In contrast, if λi = 1, Equation 6.21 yields 2k + k( j − 1), which are twice the k edges from Ci to
every u ∈ V2 plus the j −1 edges from every u ∈ V2 to all other clusters. Eventually, this results in

j

∑
i=1

(2λi k + λi k( j − 1) + (1 − λi)k) = k
j

∑
i=1

(2λi + λi( j − 1) + 1 − λi)

= k
j

∑
i=1

(λi + λi( j − 1) + 1)

= k
j

∑
i=1

(λi j + 1)

= k (
j

∑
i=1
λi j +

j

∑
i=1

1)

= k ( j + j) = 2k j

(6.22)

as of course ∑i λi = 1. Again, each edge is counted twice and we see that the sum above gives
the correct result.

The per-cluster modularity from Equation 6.20 can be simplified to

eii − a2
i =

mi + λi k
m

− (2mi + λi j k + k + li

2m
)

2
. (6.23)

The term λi j k + k describes all edges between Ci and the u ∈ V2: On the one hand, there are
always k edges from Ci to all u1, . . . ,uk , independent of the actual number of these nodes that
are part of Ci. On the other hand, there is a fraction λi of all j k edges from V2 to V1 that are part
of Ci.
Next, we want to check under which conditions the partition of the graph that contains the

described subgraph construction will be stable. Again, this means all k nodes must be part of
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one of the j clusters. The modularity ratio of the j clusters together with the k nodes connected
to them is

q(λ) = q(λ1, . . . , λ j) ∶=
j

∑
i=1

(mi + λi k
m

− (2mi + λi j k + k + li

2m
)

2
)

=
j

∑
i=1

mi

m
+

j

∑
i=1

λi k
m

−
j

∑
i=1

(2mi + λi j k + k + li

2m
)

2

=
j

∑
i=1

mi

m
+ k

m
− 1

4m2

j

∑
i=1

(2mi + λi j k + k + li)2 .

(6.24)

Formulation of the Optimization Problem This leads to the following (continuous) optimiza-
tion problem:

max q(λ) = min−q(λ)

s. t.
j

∑
i=1
λi − 1 = 0

−λi ≤ 0 ∀i = 1, . . . , j

(6.25)

which can be solved using a system of Karush-Kuhn-Tucker conditions (Karush, 2014; Kuhn
and Tucker, 1951, and Appendix E). The Lagrangian2 for the problem above is

L(λ,u, v) = −q(λ) +
j

∑
i=1

ui(−λi) + v (
j

∑
i=1
λi − 1) (6.26)

and it is sufficient to solve

∇L(λ,u, v) = ∇(−q(λ)) +
j

∑
i=1

ui∇(−λi) + v∇(
j

∑
i=1
λi − 1) = 0

ui ≥ 0 i ∈ I(λ)

−λi = 0 i ∈ I(λ)

−λi < 0 i ∉ I(λ)
j

∑
i=1
λi − 1 = 0

(6.27)

with ∇ f (x1, x2, . . .) denoting the vector of partial derivatives

∇ f (x1, x2, . . .) =
⎛
⎜⎜⎜
⎝

∂ f
∂x1
∂ f
∂x2

⋮

⎞
⎟⎟⎟
⎠

(6.28)

2 The definition is for minimization; therefore, we take −q(λ), as we have a maximization problem.
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and I(λ) being the set of indices of active constraints. Computing ∇L(λ,u, v) results in

∇L(λ,u, v) =
⎛
⎜⎜⎜
⎝

∂L
∂λ1

⋮
∂L
∂λ j

⎞
⎟⎟⎟
⎠
= j k

2m2

⎛
⎜⎜⎜
⎝

2m1 + λ1 j k + k + l1

⋮
2m j + λ j j k + k + l j

⎞
⎟⎟⎟
⎠
+
⎛
⎜⎜⎜
⎝

−u1

⋮
−u j

⎞
⎟⎟⎟
⎠
+ v

⎛
⎜⎜⎜
⎝

1
⋮
1

⎞
⎟⎟⎟
⎠
. (6.29)

Clearly, all (in-)equality constraints of 6.27 are linear (thus convex) and also −q(λ) is convex,
as using the C2-characterization of convexity (e.g. Stein, 2012) shows: The Hessian is

D2(−q(λ)) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

j2k2

2m2 0 ⋯ 0
0 j2k2

2m2 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 j2k2

2m2

⎞
⎟⎟⎟⎟⎟⎟
⎠

= j2k2

2m2 1, (6.30)

which is clearly a positive definite matrix. Due to the linearity of all constraints, the linearity
constraint qualification holds as well. Therefore, the problem in 6.25 is a convex optimization
problem, which allows us to state that each local optimum is also a global optimum.

This, however, does not imply that only one unique solution can exist. We have restricted
that the Ci are not isomorphic, but there could exist weakly isomorphic clusters in terms of the
definition of Section 5.3. In that case, the contribution to modularity of the weakly isomorphic
Ci (without taking the u ∈ V2 into account) is the same, and, therefore, the assignment of the
nodes u is not unique.

Solving the Optimization Problem Instead of solving 6.27 in general, we are interested in the
case λi′ = 1 for some cluster Ci′ and of course λi = 0, ∀i ≠ i′. The labels for the j clusters are
arbitrary, so relabeling is possible. With the assumption λ j = 1 we have I(λ) = {1, . . . , j − 1}.
Simplifying 6.29 together with 6.27 results in

j k
2m2

⎛
⎜⎜⎜⎜⎜⎜
⎝

2m1 + k + l1

⋮
2m j−1 + k + l j−1

2m j + j k + k + l j

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ v

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
⋮
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

u1

⋮
u j−1

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

ui ≥ 0 i ∈ I(λ)

−λi = 0 i ∈ I(λ)

−1 = −λ j < 0
j

∑
i=1
λi − 1 =

j−1
∑
i=1

λi + λ j − 1 = 0

(6.31)
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which leads to

j k
2m2

⎛
⎜⎜⎜
⎝

2m1 + k + l1

⋮
2m j−1 + k + l j−1

⎞
⎟⎟⎟
⎠
− j k

2m2 (2m j + j k + k + l j)
⎛
⎜⎜⎜
⎝

1
⋮
1

⎞
⎟⎟⎟
⎠
≥ 0 (6.32)

⇐⇒
⎛
⎜⎜⎜
⎝

2(m1 − m j) + (l1 − l j) − j k

⋮
2(m j−1 − m j) + (l j−1 − l j) − j k

⎞
⎟⎟⎟
⎠
≥ 0. (6.33)

The solution in inequality 6.33 can be interpreted as follows:

• Each cluster but Cj , which contains all k additional nodes of the graph motif, must ideally
have many more intra-cluster-edges as well as inter-cluster-edges (to exceed j k) than Cj .

• With increasing j and/or k, the ratio must increase, too.

• At the same time, the amount of inter-cluster-edges normally must be reasonably smaller
than the intra-cluster edges, as otherwise the partition would not have been modularity
optimal. This is a direct consequence of the above assumption that the j clusters are
neither merged nor split.

This means j − 1 clusters need to be of rather balanced size and the j-th cluster is reasonably
smaller so that assigning the k additional nodes to it will result in an overall more balanced
partition. This is exactly the behavior that is described by the resolution limit of modularity
(Fortunato and Barthélemy, 2007). Inequality 6.33 shows that multiple optimal solutions cannot
exist under the made assumptions, as otherwise a cluster Ci with mi = m j and li = l j must exist,
which contradicts 2(mi − m j) + (li − l j) − j k = − j k ≥ 0.

Examples

Example 40. Let j = k = 2 and m1 = 10, m2 = 8, and l1 = l2 = 1. As m1 > m2 we assume λ2 = 1
and therefore

2(m1 − m2) + (l1 − l2) = 2(10 − 8) + (1 − 1) = 2 ⋅ 2 + 0 ≥ j k = 2 ⋅ 2 (6.34)

is actually true. If, for instance, if C1 ∪C2 ∪ {u1,u2} = V we have m = 10 + 8 + 1 + 4 = 23 and

Q = 20
23

− (2 ⋅ 10 + 4λ1 + 2 + 1
46

)
2
− (2 ⋅ 8 + 4λ2 + 2 + 1

46
)

2

= 20
23

− (23 + 4λ1

46
)

2
− (19 + 4λ2

46
)

2
.

(6.35)

Putting the two nodes u1, u2 into C2 (λ2 = 1) yields Qλ2=1 = 20
23 − (23

46)
2 − (23

46)
2 ≈ 0.3696. This

is the maximum, as the clusters are of equal size regarding the intra-cluster-edges.
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Example 41. Modifying Example 40 by setting k = 4 we get

2(m1 − m2) + (l1 − l2) = 2(10 − 8) + (1 − 1) = 2 ⋅ 2 + 0 ≥ j k = 2 ⋅ 4 ☇ (6.36)

and again for C1 ∪C2 ∪ {u1, . . . ,u4} = V we have m = 10 + 8 + 1 + 8 = 27 with

Q = 22
27

− (2 ⋅ 10 + 8λ1 + 4 + 1
54

)
2
− (2 ⋅ 8 + 8λ2 + 4 + 1

54
)

2

= 22
27

− (25 + 8λ1

54
)

2
− (21 + 8λ2

54
)

2
.

(6.37)

The modularity is maximal for λ1 = 1
4 , as, again, edges are distributed equally among both

clusters: Qλ1= 1
4
= 22

27 − (25+8⋅ 14
54 )

2
− (21+8⋅ 34

54 )
2
= 22

27 − 2 (27
54)

2 ≈ 0.3148. However, the partition
is unstable as one of the four equivalent nodes {u1, . . . ,u4} is part of one cluster and the other
three nodes are part of the other cluster.

Example 42. For the special case j = 1 we have the same situation as for star graphs in
Section 6.3.1 and from Equation 6.23 follows

eii − a2
i =

mi + 1 ⋅ k
m

− (2mi + 1 ⋅ 1 ⋅ k + k + li

2m
)

2
= mC + k

m
− (2mC + 2k + l

2m
)

2
, (6.38)

which is the same as in Equation 6.9.

Example 43. Another example is based on the well known Karate network (Zachary, 1977). The
graph is shown inFigure 6.6 and the clusters of themodularity optimal partition are distinguished
by four different colors. Additionally, the four non-trivial orbits of the automorphism group of
the Karate network are emphasized by different node shapes (other than circles). The partition
is stable, as none of the orbits crosses the cluster boundaries.

However, due to a slight misclassification, the partition with C′
1 ∶= C1 ∪ {0, 11, 17} and

C′
2 ∶= C2 ∖ {0, 11, 17} is sometimes found as clustering solution. This leads to an unstable

situation, where the two nodes 17 and 21 (which are on the same orbit) cross the cluster
boundaries of C′

1 and C′
2. According to Figure 6.5, we have j = k = 2 and the question is, for

which λ1 = 1 − λ2 is the modularity maximal? There are m1 = 11 (m2 = 11) intra-cluster-edges
and l1 = 9 (l2 = 14) inter-cluster-edges (see Figure 6.7). To test, the sum (e11 − a2

1) + (e22 − a2
2)

must be computed for every possible value of λ1 and by using the parameters above (utilizing
Equation 6.23). Of course, only λ1 ∈ {0, 0.5, 1} makes sense:

arg max
λ1∈{0,0.5,1}

(e11 − a2
1) + (e22 − a2

2) = 1. (6.39)

Testing the requirement of Equation 6.33 for λ1 = 1 yields

2(11 − 11) + (14 − 9) − 2 ⋅ 2 = 1 ≥ 0 (6.40)
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Figure 6.6: The modularity optimal partition (Q ≈ 0.4197; determined by node colors, separated by
dashed inter-cluster-edges) of the Karate network K . Non-trivial orbits are emphasized by
node shapes other than circles. The nodes 17 and 21 (on which S2 acts), as well as the nodes
14, 15, 18, 20, and 22 (on which S5 acts), are, together with their neighbors, isomorphic to
the complete bipartite subgraphs K2,2 and K2,5, respectively. However, both orbits do not
cross cluster boundaries, therefore the proposed effect does not impact the partition. In fact,
Aut(K) ≅ S5 × S2

2 , where one of the S2 groups is isomorphic to a group that acts on the
nodes 4, 5, 6, and 10, thus ∣Aut(K)∣ = 5! ⋅ 2!2 = 480.

and for λ2 = 1
2(11 − 11) + (9 − 15) − 2 ⋅ 2 = −9 ≱ 0. (6.41)

This result seems to be a contradiction, because it suggests to put both nodes of the orbit into
cluster C′

1. Certainly, there is a simple explanation for this issue: The suboptimal partition was
found using the RG algorithm, which has a certain probability of misclassifications due to its
randomized behavior. This means that an unstable solution can be found that is only locally but
not globally optimal. A refinement strategy that tries to exchange nodes over cluster borders to
achieve a higher modularity could resolve this issue (Ovelgönne, 2011, section 3.2.6).

Conclusion If complete bipartite subgraphs as shown in Figure 6.5 exist, the resulting partition
will only be stable if one of the clusters to which all nodes ui are connected to is reasonably
smaller than the others and/or has reasonably less inter-cluster-edges. Otherwise, the nodes are
spread over the different clusters, which leads to an instability.

6.4 Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai Entropy is named after Andrey Nikolaevich Kolmogorov—the “grand-
father” of modern probability theory—and Yakov Grigorevich Sinai—a student of Kolmo-
gorov—who received the Abel Prize for his work in 2014 (Raussen and Skau, 2015). The
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Figure 6.7: A suboptimal partition of the Karate graph where the orbit {17, 21} crosses the boundaries
of the clusters C′

1 and C′
2. Therefore, the partition is unstable.

Kolmogorov-Sinai Entropy is the application of the entropy concept, which is introduced in Sec-
tion 2.6, to ergodic theory, which “is the study of the long-term behavior of systems preserving
a certain form of energy” (Coudène, 2016, p. 3). We abbreviate the Kolmogorov-Sinai Entropy
by KSE.

6.4.1 Dynamical Systems

A dynamical system consists of some state-space X together with a state transition function
T ∶ X → X . Given some state x(t) ∈ X at some point in time t, T(x(t)) = x(t + 1) is the state in
the next period. The point in time is arbitrary and only needed for descriptive reasons. The next
state is solely defined by the previous one, independent of t.
Given an additional sigma-algebra X of X and a measure µ that is invariant under T , the tuple

(X,X , µ,T) is called a measure-preserving dynamical system. Measure-preserving means that
for each measurable Y ⊆ X the equality µ(T−1(Y)) = µ(Y) must hold.

Example 44. This example is from Einsiedler and Ward (2011, pp. 14 ff.). It is widely used
throughout the literature. The space X is the half-closed interval [0, 1) and the subsets Y are
the intervals [a, b) ⊆ [0, 1), a ≤ b. The measure µ is the so called Lebesgue measure, which is
simply defined as the length µ([a, b)) = b − a and µ(⋂i Yi) = ∑i µ(Yi) for all pairwise disjoint
Yi (i.e. supYi ≤ inf Yj or supYj ≤ inf Yi for i ≠ j). A measure preserving transformation is
T ∶ [0, 1) → [0, 1), x ↦ 2x mod 1. Its inverse T−1 is clearly determined by the pre-image
{ x

2,
x
2 +

1
2}, which corresponds to the union of point-intervals [

x
2,

x
2) ∪ [ x

2 +
1
2,

x
2 +

1
2).

143



6 Partition Stability

For an interval Y = [a, b) this extends to T−1(Y) = [ a
2 +

b
2) ∪ [ a

2 +
1
2,

b
2 +

1
2). Therefore,

µ(T−1([a, b))) = µ([a
2
+ b

2
) ∪ [a

2
+ 1

2
,

b
2
+ 1

2
))

= µ([a
2
+ b

2
)) + µ([a

2
+ 1

2
,

b
2
+ 1

2
))

= (b
2
− a

2
) + ((b

2
+ 1

2
) − (a

2
+ 1

2
))

= b − a = µ([a, b))

(6.42)

shows that T is measure preserving.

In general, it is important to require µ(T−1(x)) = µ(x), as T(x) needs not be defined.

Example 45. Let the situation be as in Example 44. µ(T([0.25, 0.5))) = µ([0.5, 0)) = µ(∅) =
0 ≠ 0.25 = µ([0.25, 0.5)) is a counterexample that shows why the inverse is used in the definition
of a measure preserving transformation. The shown problem relates to the fact that the given
transformation T is surjective, as, e.g., T(0) = T(0.5) = 0.

6.4.2 Ergodic Theory and Entropy

According to Petersen (1983, p. 1), “[e]rgodic theory is the mathematical study of the long-term
average behavior of systems”. One could, e.g., think of a spinning top that looks like to spin
forever. However, with ongoing time the friction will slow down the spinning motion and the
system will eventually become unstable and the top will collapse.

The important pointwise ergodic theorem by Birkhoff (1931) states that for a measure pre-
serving system for any f ∈ L1(X,X , µ) the following relation holds “almost everywhere”:

lim
n→∞

1
n

n−1
∑
i=0

f (T i x) = f̄ (x). (6.43)

This simply means that an average behavior of the system actually exists.
Entropy can be used to measure the disorder of the space that emerges from the transformation

T . Petersen (1983, chapter 5) nicely motivates the topic, also beginning with entropy in physics
as we did (Section 2.6). He then brings an example of an infinite symbol stream . . . , xi, xi+1, . . .

over some finite alphabet A of symbols and argues that—instead of measuring the occurrence
probabilities of single symbols—one can group them into blocks. He defines the average
information per symbol as

Hk ∶= −
1
k
∑

B∈Bk
P (B) ldP (B), (6.44)

with Bk the set of all blocks of length k given A.

Example 46. Think of a classic typewriter, which has a finite amount of different letters (the
alphabet), and instead of a sheet of paper, there is an infinite tape that is pulled through the
machine (i.e. there are no line-breaks). Every time a key associated to a letter is hit, the letter
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is printed on the tape and it is pulled one step further. For simplicity, the amount of ink is also
infinite. The person (or probably a cat) that hits the keys corresponds to the transformation T

and we are now interested in the uncertainty of the overall system.
Therefore, we begin looking at the tape at some arbitrary point in time and count the occur-

rences of the different letters in the order they appear on the tape. This is the procedure for
k = 1. For k > 1, one has to count the occurrences of groups of length k.
Let us assume a very minimalist typewriter that has only the two letters A = {a, b} and a part

of the stream may look like

..baaababbabbbaabaaaabbababbabbababababababaabababaababbabbbabaaabaaab..

Using this cutout yields P (a) = 35
68 and P (b) = 33

68 for k = 1 and P (aa) = 12
67 , P (ab) = 23

67 ,
P (ba) = 23

67 , and P (bb) = 9
67 . The entropy is H1 = 0.9994 and H2 = 0.9462, respectively.

The question that now arises is: Which k should be chosen? There is no clear answer to it, but
now the pointwise ergodic theorem from Equation 6.43 comes into play. Utilizing the theorem
results in the definition of the “entropy of the source” (Petersen, 1983, p. 231):

h ∶= lim
k→∞

−1
k
∑

B∈Bk
P (B) ldP (B). (6.45)

The ergodic theorem assures that this limit exists, but what does it mean? Taking the limit
assures that any patterns that possibly occur in the symbol stream are captured. A pattern is
just a fixed sequence of symbols that occurs more often than random and, therefore, represents
a certain amount of order in the dynamical system.

Example 47. Continuing Example 46, the two letters a and b occur nearly equiprobable.
However, for k = 2, it appears that the two patterns ab and ba have a higher probability than
aa and bb. Note that this rather short cutout of the whole stream does not suffice to yield good
results for larger k, as the number of possible blocks increases exponentially in k (∣A∣k , to be
exact). It could even be possible that the occurrence of the two more likely patterns is only a
random effect that results from the short total length of the cutout.

Every deterministic system has an entropy of zero. An infinite symbol stream can be inter-
preted as a sequence of system states but also as the output of a system:

• A deterministic system either stops after a certain amount of time, which means that only
the symbol representing this state is put into the stream, or

• it produces a finite output that “ends” at some time, or

• it produces an infinite output that follows a deterministic pattern (e.g. the states of a traffic
light).

For the first two cases, the block size k can be chosen large enough so that it covers the complete
output that does not represent the end-state. For the third case, Example 48 shows what happens.
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Example 48. Consider the symbol stream

...aabbaabbaabbaabbaabbaabb...

which is infinite, but for a certain large enough k it will be found that this stream follows a
deterministic pattern. Table 6.1 shows the probabilities for different blocks of a certain length
k and it can be seen that with increasing k the number of different blocks is constant for k > 1.

k Blocks B Probability P (B)

1 a, b 0.5
2 aa, ab, bb, ba 0.25
3 aab, abb, bba, baa 0.25
4 aabb, abba, bbaa, baab 0.25
⋮ ⋮ 0.25

Table 6.1: Blocks that occur with positive probability for certain k for the given symbol stream.

Thus, the entropy of the dynamical system that produces the symbol stream is

h = lim
k→∞

−1
k

Hk = lim
k→∞

−1
k
⋅ 4(1

4
ld

1
4
) = lim

k→∞
2
k
= 0. (6.46)

As we have seen in Section 2.6, the maximum entropy is bounded by the number of possible
outcomes of a random variable. Here, this is tied to the number of possible blocks ∣Bk ∣ = ∣A∣k .
This maximum value is of course reached for complete uncertainty, i.e. each block is seen with
the same probability, independent of k.

Example 49. We look again at the symbol stream from Example 46, but consider we can look at
it for much longer, i.e. we can increase k without risk of running into sampling errors too early.
The result is shown in Table 6.2.

k Block entropy Hk

1 1.0000
2 1.0000
3 0.9999
4 0.9999
5 0.9999
6 0.9998
7 0.9997
8 0.9992
9 0.9988
10 0.9979

Table 6.2: Observed entropy for a simulated symbol stream that randomly yields one of the two sym-
bols for the first ten values of k. The cutout of the stream has length 2 × 1015. It can be seen
that all values are very close to the maximal value of 1 but slowly drop due to an increase in
the sampling error.

As the stream is completely random, every block should ideally occur equiprobable. However,
there is an increasing sampling error for larger k because of the fact that—although the sample
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size is very large—some blocks occur less frequent than the theoretical consideration (Table 6.3)
would suggest.

k Blocks B Probability P (B) Block entropy Hk

1 a, b 0.5 1
2 aa, ab, bb, ba 0.25 1
3 aaa, aab, aba, abb, bbb, bba, bab,baa 0.125 1
⋮ ⋮ ⋮ ⋮
k . . . 2−k 1

Table 6.3: Probabilities for all possible blocks to occur for given k if the symbol stream is completely
random. The entropy is constantly 1.

Analyzing the random symbol stream theoretically yields the maximum entropy:

h = lim
k→∞

Hk = lim
k→∞

−1
k
∑

B∈Bk

1
2k ld

1
2k = lim

k→∞
−1

k
⋅ 2k ⋅ 1

2k ld
1
2k = lim

k→∞
1
k

ld 2k = 1. (6.47)

A similar analysis as in Example 49 is performed by Choe and Kim (2000) for the number π,
which is assumed to be normal, i.e. each digit in the infinite decimal places occurs equiprobable.
They report an approximate entropy of 1, which underlines the assumption (log10 was used by
the authors). The actual proof that π is normal is still an open problem (e.g. Bailey and Borwein,
2016).

Frigg (2004) also provides the definitions we have made above, but, furthermore, motivates
the case where the next symbol in the stream depends on the previous ones. He calls this the
“history” of the system. However, for our purpose we can assume that all probabilities of the
different symbols are independent. The author also states that every system having positive
entropy is uncertain in the sense that there exists no point in time where the system’s history is
sufficient to completely predict the future behavior.

Sinai (1959) (Sinai, 2010, for an English translation) defines the entropy for Lebesgue spaces
given an automorphism T . This space is just (X,X , µ,T), which we have introduced earlier: A
measure preserving system. To achieve this, he divides X into disjoint subsets Ai, which have
the properties of a partition (see Section 2.3). The partition itself is A = {A1, A2, . . .}. The
entropy of such a partition is simply

h(A) ∶= −∑
i
µ(Ai) log µ(Ai), (6.48)

and, in accordance to the entropy of a source,

hT(A) ∶= lim
k→∞

1
k

h(⋁
k

T k−1 A). (6.49)
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The unfamiliar definition that is used as a parameter for the entropy function is the repeated
refinement of two partitions. It is defined as

A∨ B ∶= {Ai ∩ B j ∣ Ai ∈ A, B j ∈ B, Ai ∩ B j ≠ ∅} . (6.50)

According to the definition of a partial ordering of partitions in Section 2.3, A∨B is the coarsest
partition that satisfies both, A∨ B ≤ A and A∨ B ≤ B. T i A is simply the application of i times T

on A. The repeated refinement is defined as

⋁
k

T k−1 A ∶= A∨T A∨T2 A∨ . . . ∨T k−1 A. (6.51)

Please note that these definitions are equivalent to those in Section 2.5.2, where core group
partitions are introduced. There, we used the more intuitive notation “⋀” instead of “⋁”; the
latter is widely-used in the literature on ergodic theory.

Definition 11 (Kolmogorov-Sinai Entropy). The KSE is finally defined as

hT ∶= sup
A

hT(A). (6.52)

The purpose of taking the supremum is to assure a finite partition is chosen that yields the
maximum possible entropy as, e.g., hT(⋁k T k−1 {X}) = hT({X}) = 0 holds (independent of T).

6.4.3 Kolmogorov-Sinai Entropy of a Graph

In this thesis’ setting, (V,P(V), µ,T(Aut(G))) can be considered a measure-preserving dynam-
ical system. V is the set of nodes of a graph G and P(V) is the power set of V . Aut(G) is—as
usual—the automorphism group of G. It is crucial to understand that, although in the literature
on ergodic theory T is called an automorphism of the space, our case of application is discrete
and not continuous. Therefore, the transformation that acts on V is not a single permutation but
the group itself. Let σ ∶ Ω × Y → Ω be the function that selects an element ω ∈ Ω, given the
random variable Y with the outcomes Ω. That means

σ(Ω,Y) ∶= ω ∈ Ω, if Y = ω (6.53)

returns an arbitrary element from Ω depending on the outcome of Y . Hence, we define

T(Aut(G)) ∶= σ(Aut(G),Y) (6.54)

together with

P (Y = g) = 1
∣Aut(G)∣

, g ∈ Aut(G). (6.55)
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Therefore, eachT(Aut(G)) is an arbitrary permutation of Aut(G), and each element g ∈ Aut(G)
has the same probability to be chosen. This means in particular, e.g., T(Aut(G))2 = gh for two
randomly chosen g, h ∈ Aut(G).
The measure µ can be anymeasure that is unaffected by Aut(G). If µ is a probability measure,

(X,X , µ) is a probability space. Here, µ is the probability µ(C) ∶= P (v ∈ C ∣ v ∈ V). To achieve
this kind of measurement, the different clusters must be identifiable. One possibility is to define
partitions as ordered sets, where each element (a set that represents a cluster) gets assigned some
number that allows a unique ordering, independent of the elements in the cluster:

Pord ∶= ({. . .}1 , {. . .}2 , . . . , {. . .}k) . (6.56)

The order is denoted by the subscripts of the different sets. This definition allows to dis-
tinguish clusters that contain the same elements, e.g., P = {{1} , {2}} = {{2} , {1}} but
Pord = ({1}1 , {2}2) ≠ ({2}1 , {1}2). The actual ordering of sets does not matter, and, therefore,
it is also not important of what happens to the ordering when two partitions are refined using
“∨”. A second possibility to represent partitions with identifiable clusters is to use a (column)
vector P of labels L, i.e. P ∈ Ln. The entry at position i = 1, . . . , n, determines the cluster id of
which node i is part of. In accordance to the definition of Pord , we choose L = {1, 2, . . . , k}.
Clearly, defining µ as described is invariant regarding Aut(G). Because permutations are

bijective, using the transformations T k instead of T−k (as argued in Section 6.4.1) is equivalent.
Frigg (2004) shows the equivalence of KSE and “CTE” (“communication-theoretic entropy”)

by a construction that is relatively similar to what will follow. The idea of KSE is to successively
refine the partition of the state-space and measure the cells of the partition for computing the
entropy. The author compares this measurement to the (infinite) symbol stream by saying
that continuously “reporting” the cell that contains the current system’s state is the same as
observing the symbol stream of elements from an alphabet. Hence, the cells Ai of the partition
A correspond to the alphabet A, but with the difference that A is not constant for KSE. Forming
the limit over the blocks of increasing length is equivalent to the repeated refinement of the
state-space. This refinement can be interpreted as improving the measurement of the process by
looking at it at a more detailed level. However, if a dynamical-system has positive KSE, there
is no finite measurement that is so exact (in terms of uncovering all invisible information) that
it can completely describe and predict the behavior of the system.

Before we define the KSE for graphs, there is a last important fact that must be pointed out.
All the given definitions and explanations are based on one dynamical system, i.e. there exists
exactly one orbit. Indeed, the automorphism group of a graph is not restricted to describe only
one orbit, but it can have between one (transitive graph) and n (asymmetric graph) orbits: Some
of the orbits may be trivial, others are not. Some of the orbits may be independent of others,
whereas other orbits may depend on each other due to the same indecomposable permutation
group that affects more than one orbit. For information on local and global symmetry, see
Section 5.2.
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Example 50. The interplay of different orbits can be illustrated nicely by imagining a tabletop
soccer. It consists of:

• A plane board that represents the soccer field (the state-space).

• The ball that is moved on the field, for simplicity we assume there are no holes that
represent the goals.

• A couple of bars on which the “players” are mounted at some fixed position. All bars are
installed in parallel across the shorter side of the field and can be moved to and fro a bit
to move the players. Again, for simplicity, we omit the rotation of the bars that simulate
the kicks.

Within this state-space, the movements of the ball and each individual player represent different
dynamical systems with different orbits. The movement of different bars is independent, however,
the movement of the players mounted on the same bar are clearly not independent. These
observations are similar to the considerations from Section 5.2: The automorphism group
can be decomposed into support disjoint subgroups, but indecomposable subgroups can also
possibly act on more than one orbit.

To formalize the entropy of multiple random variables, we must extend the definitions.
Fortunately, there is already the concept of joint entropy that captures this case:

H(X,Y) = H(X) + H(Y ∣ X) (6.57)

where H(Y ∣ X) is the conditional entropy of Y given X (see Section 2.6). This can be
generalized to

H(X1, X2, . . . , Xk) = H(X1) + H(X2 ∣ X1) + H(X3 ∣ X1, X2) + . . .

+ H(Xk ∣ X1, X2, . . . , Xk−1).
(6.58)

The question now is, what are the different Xi? As we stated above, a dynamical system is
characterized by its orbit, hence each orbit of the graph is a separate dynamical system.

6.4.3.1 Entropy of a Graph Partition

Bringing together all these considerations, we can define the entropy of a graph G and a given
partition P:

hAut(G)(P) ∶=∑
i

hHi(P) = −∑
i

∑
l∈L(P)k

µHi(l) ld µHi(l). (6.59)

The outer sum goes over all normal subgroups Hi for which Aut(G) =∏i Hi holds, and µHi(l)
is the probability that the label vector l (see below) is observed under the actions of Hi.
This decomposition corresponds to the different independently symmetric areas of G we have
presented in Section 5.2. This simplification is possible, as these areas imply also statistical
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independence so that all other orbits vanish in the conditional entropy. As a result, if (w.l.o.g.)
all X1, X2, . . . Xi are dependent but independent of all other Xi+1, . . . , Xk , and Xi+1, . . . , Xi′ are
dependent as well but independent of all others, etc., then

H(X1, X2, . . . , Xk) = H(X1) + H(X2 ∣ X1) + . . .+

H(Xi ∣ X1, X2, . . . , Xi−1)

+ H(Xi+1) + H(Xi+2 ∣ Xi+1) + . . .+

H(Xi′ ∣ Xi+1, . . . , Xi′−1)

+ . . .

= H(X1, X2, . . . , Xi) + H(Xi+1, . . . , Xi′) + . . .

(6.60)

holds. Also, all trivial orbits of length one vanish, as they have entropy zero.
The inner sum in Equation 6.59 is over l ∈ L(P)k . L is the set of all cluster labels, as

defined above, and we write L(P) here to clarify that these are the labels of P. As L(P)k =
L(P) × . . . × L(P) (k times), l is a vector of cluster labels; k is the number of (non-trivial)
orbits of the current subgroup Hi. This means, instead of measuring the clusters separately,
we measure an ensemble of clusters to capture the interdependence of orbits. The state of
the dynamical system is, therefore, expressed by a vector of states of the different dependent
subsystems. It is clear, for k = 1, this corresponds to the “usual” KSE definition. Coming back
to the symbol stream analogy, this corresponds to have k symbol streams in parallel at which
we look at the same time. Or, alternatively, this can be thought of as one symbol stream over
the alphabet L(P)k . Please note that summing over the different support disjoint subgroups is
already a simplification of the situation as the following example will show.

Example 51. Consider the graph G in Figure 6.8 and the partition illustrated in this picture.

1 2 3 4

5 6 7

C1

C2

Figure 6.8: A graph G that has an automorphism group that is generated by S = {(1 2), (3 4)}. It has
two non-trivial orbits and three trivial ones. The partition P is denoted by the dashed box:
Cluster C1 consists of the nodes within the box, C2 of all nodes outside of it.

The full automorphism group is

Aut(G) = {(), (1 2), (3 4), (1 2)(3 4)} . (6.61)
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To compute hAut(G)(P), we form the sum of the entropies per disjoint subgroup. These are
H1 = ⟨(1 2)⟩ and H2 = ⟨(3 4)⟩ and both consist of only one orbit. Thus, given the alphabet of
system states L(P) = {C1,C2},

hAut(G)(P) = −[ (µH1(C1) ld µH1(C1) + µH1(C2) ld µH1(C2))+

(µH2(C1) ld µH2(C1) + µH2(C2) ld µH2(C2)) ]

= − [(1
2

ld
1
2
+ 1

2
ld

1
2
) + (1

2
ld

1
2
+ 1

2
ld

1
2
)]

= −2 ⋅ ld 1
2
= 2.

(6.62)

Alternatively, we could have computed hAut(G)(P) without decomposing the group by assuming
that all orbits are dependent of each other. Therefore, we must measure all ∣L(P)∣5 = 32 possible
vectors of cluster labels in L(P)5 (there are five orbits in total):

hAut(G)(P) = −
⎛
⎝
µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C1

C1

C1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C1

C1

C1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) + µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C1

C1

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C1

C1

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

)+

. . .+

µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) + µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

)
⎞
⎠
.

(6.63)

As all vectors but four have measure zero, Equation 6.63 can be simplified to

hAut(G)(P) = −
⎛
⎝
µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C1

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) + µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

)+

µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C1

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C1

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) + µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

) ld µ(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C2

C2

C2

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

)
⎞
⎠
,

(6.64)
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and, as the entry in the vectors for the trivial orbits is always the same in Equation 6.64, we can
omit them from the computation:

hAut(G)(P) = −(µ(
⎛
⎝

C1

C1

⎞
⎠
) ld µ(

⎛
⎝

C1

C1

⎞
⎠
) + µ(

⎛
⎝

C1

C2

⎞
⎠
) ld µ(

⎛
⎝

C1

C2

⎞
⎠
)+

µ(
⎛
⎝

C2

C1

⎞
⎠
) ld µ(

⎛
⎝

C2

C1

⎞
⎠
) + µ(

⎛
⎝

C2

C2

⎞
⎠
) ld µ(

⎛
⎝

C2

C2

⎞
⎠
))

= −4(1
4

ld
1
4
) = 2.

(6.65)

We see, the results of Equations 6.62 and 6.65 are the same. Also, the one to one correspondence
of the independence of H1 and H2 and the resulting symbol stream is visible: Aut(G) = H1×H2

means computing the cross product of all elements from the two groups and exactly the same
happens for the clusters that have positive measure. Here, C1 and C2 have positive measure for
H1 and H2, therefore, all four combinations of C1 and C2 have positive measure and it is just
the product of measures, e.g.,

µ(
⎛
⎝

C1

C2

⎞
⎠
) = µ(C1) ⋅ µ(C2). (6.66)

Example 52 shows the importance of not considering dependent orbits as independent.

Example 52. Given the tree graph T in Figure 6.9 and the shown partition.

1 2

3 4 5 6

C1

C2

Figure 6.9: A binary tree graph T that has an automorphism group that is generated, e.g., by S =
{(1 2)(3 5)(4 6), (3 4)}. It has three orbits, all nodes per level are on the same orbit.
Clearly, the root node lies on a trivial orbit, the (inner) leaves lie on non-trivial orbits. The
partition P is denoted by the dashed line.

The full automorphism group is

Aut(T) = {(), (3 4), (5 6), (3 4)(5 6), (1 2)(3 5)(4 6),

(1 2)(3 6)(4 5), (1 2)(3 5 4 6), (1 2)(3 6 4 5)},
(6.67)

and it is indecomposable.
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If we would proceed as in Example 51 and consider the two non-trivial orbits as independent,
the result would be

h′Aut(T)(P) = −(2 ⋅ 1
2

ld
1
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Orbit {1,2}

−(1
4

ld
1
4
+ 3

4
ld

3
4
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Orbit {3,4,5,6}

= 1 + (1
2
− 3

4
(ld 3 − ld 4))

= 1 + (2 − 3
4

ld 3) ≈ 1.8113.

(6.68)

However, the orbits are clearly not independent of each other. Given we have chosen the nodes
1 and 3 as orbit representatives that we use for evaluation. Then, e.g., if the orbit {1, 2} is in
state C2, the orbit {3, 4, 5, 6} cannot be in C1 at the same time, as there exists no permutation
g ∈ Aut(T) that maps node 1 onto node 2 (therefore state C1 to state C2) but fixes node 3 and,
consequently, the state C1. This results in the joint probabilities P (C1,C1) = 1

4 , P (C1,C2) = 1
4 ,

P (C2,C1) = 0, and P (C2,C2) = 1
2 . Using these values yields

hAut(T)(P) = −(2 ⋅ 1
4

ld
1
4
+ 1

2
ld

1
2
) = −(−1

2
⋅ 2 − 1

2
) = 3

2
(6.69)

and clearly hAut(T)(P) < h′Aut(T)(P) as a consequence of less “disorganization” of the graph.

6.4.3.2 Entropy of the Graph

Until now we have defined the entropy of a graph for a given partition of the graph. In the KSE
definition for dynamical systems, the partition of the space must be successively refined to get
a more and more detailed picture how T acts on the state-space. The crucial part is to form the
limit for k →∞, which means to infinitely refine the state-space. For the case of (finite) graphs,
this is of course not possible, as the most refined partition (depending on the actual graph) is
the singleton partition. However, even though the singleton partition will always result in the
maximum possible entropy, this is not necessarily the only partition for which this is the case.

Several special partitions can be distinguished:

1. The finest non-trivial partition that has entropy zero, which is just the orbit partition
O. Independent of how the different orbits are interrelated, every measurement of the
cells/clusters of O will have measure zero. Moreover, every finer partition would mean to
divide a non-trivial orbit into disjoint parts and for these parts, the measure must then be
positive.

2. The coarsest non-trivial partition having maximum entropy, which is, informally spoken,
the opposite of O. It combines all trivial orbits into one large cluster and all non-trivial
orbits are split up into separate clusters. However, clusters that contain nodes from
different orbits can be merged again. This partition is, therefore, not unique.
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3. An invariant coarsest partition with maximum entropy that is defined as the coarsest
partition above, butwith the additional constraint that it is not affected by the automorphism
group and, therefore, stable in terms of the definitions of Section 6.2.

Note that the third type of partition implies that there can exist stable partitions that, nonetheless,
have positive KSE. Remember the situation where ∃g ∈ Aut(G),C ∈ P ∶ Cg ∩ C = ∅, i.e. all
nodes are mapped into a different cluster. Due to the definition of partitions based on sets,
nothing changes. The definition of KSE for partitions, however, requires the identifiability of
clusters that eventually leads to a positive entropy, as the following example shows:

Example 53. Reconsider the butterfly graph B (Figure 3.6) and the stable partition P = {{1, 2} ,
{3} , {4, 5}}. There exist automorphisms that map {1, 2} onto {4, 5} and vice versa. The entropy
of the partition is hAut(B)(P) = 1.

This finally brings us to the definition of the KSE of a graph, which is simply the standard
definition applied to Equation 6.59:

hAut(G) ∶= sup
P

hAut(G)(P). (6.70)

Every partition P′ that separates all nodes of each orbit into different clusters satisfies the
supremum condition of Equation 6.70, e.g., P′ = P�.
When applying the definition from Equation 6.70 to two structurally different graphs with the

same number of nodes, one can find a quite surprising result.

Example 54. Let Kn andCn be a complete graph and a cycle graph, respectively, of n nodes. Both
are transitive, i.e. they have only one orbit and the only partition for which hAut(G) = hAut(G)(P)
is the singleton partition. As a consequence, independent of which orbit representatives are
chosen, hAut(G) = ld n holds, as each state is equiprobable. Of course, for every other partition
P′ also hAut(Kn)(P′) = hAut(Cn)(P′) holds.

Have we done something wrong? The complexity of Aut(Kn) is much higher than the one of
Aut(Cn) in terms of group order, why is this not reflected in the entropy?
The short answer is: No, the group order does not matter! The general purpose of entropy

is to measure uncertainty; for a dynamical system this means, the uncertainty of the next state.
Generally, the state-space is continuous and, therefore, there are infinitely many states, which we
cannot enumerate, but we can successively refine a partition of the state-space and enumerate and
measure its cells. In the limit, the system has positive KSE if, no matter how fine the partition
is, there is an increasing number of cells with positive measure. The exact states are unknown
and there exist theoretically infinitely many possibilities to reach one state from another. Frigg
(2004, Figure 2) illustrates this fact in a clear manner: He shows a state-space M ⊂ R2 that is
divided into 18 equally sized cells and draws a trajectory that crosses several of them. However,
the state is not measured in every cell, i.e. what happens during the transition from one measured
state to another is unknown (see Figure 6.10).
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M

Figure 6.10: A state-space M ⊂ R2 (Frigg, 2004, Figure 2) with a trajectory through it. Only the black
dots are observed and thus measured.

In our graph setting, we already have seen that no infinite refinement is possible (and nec-
essary), as the state-space is discrete. Moreover, only finitely many transitions from one
state to another are possible and there exist more of them in Kn than in Cn. Suppose
E(Cn) = {{i mod n, i + 1 mod n} ∣ i ∈ N}, then state j can be reached from state i (i ≠ j)
in exactly two ways: Following around the cycle in either direction and passing all other states
in between. For Kn, every path from one state to another is possible by definition. This phe-
nomenon is also reflected by the assumption that every possible transition (automorphism) is
equiprobable, which means that every state (node on the orbit) is equiprobable, too (recall the
proof in Section 2.4.2).

In the continuous case, the question, which path was taken from one state to another, is
addressed by the successive refinement of the state-space partition. In our discrete case, however,
this is only possible to a certain degree. Therefore, the group order does not matter.

6.4.3.3 Discussion

The definitions of the two previous sections strongly depend on how the state-space of the
dynamical system is defined. We have defined the state-space in a way that the orbits of the
graphs’ automorphism groups correspond to the orbits of the dynamical system, because the
nodes represent the different states. This is why the state is observed and measured per orbit and
Example 51 showed that only the non-trivial orbits are actually important for the computation
of the KSE. However, as we discussed shortly after Example 54, which showed that the entropy
of the complete and the cycle graph of n nodes are identical, our definitions do not capture the
uncertainty caused by the larger order of the automorphism group of the complete graph.

If the order of the group is of importance, another definition of the state space is necessary:
The states X are the set of all possible partitions of G and X is a corresponding sigma-algebra.
The measure µ still counts the occurrences of the different states, but now the label vectors that
represent the states contain entries for all nodes instead of only one entry for each orbit. The
partitions of the state-space are also not directly related to the graph partitions anymore. Instead,
they are partitions of the space of all partitions. When the supremum is taken over the partitions,
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the maximum value is reached for the partition that results in the maximum number of different
cluster labels per node. This maximum number is, of course, exactly the group order.

Example 55. Reconsider Example 54. The graphs Kn and Cn both have only one orbit of length
n and instead of using one arbitrary node to observe the current state, all n nodes are observed
in parallel. Clearly, for both graphs the singleton partition yields the maximum entropy, but
with the alternative definition of the state-space, there are ∣Cn∣ = n different states for Cn and
∣Kn∣ = n! different states for Kn. As a consequence, the entropy ofCn is smaller (−n ⋅ 1

n ld 1
n = ld n)

than the entropy of Kn (−n! ⋅ 1
n! ld 1

n! = ld n!).

Both definitions of the state-space have advantages and disadvantages. The one we have
presented in detail and will use in the following Chapter 7 has the advantage that the graph
symmetry and the partitions directly relate to the associated dynamical system. The disadvantage
is that it cannot distinguish the different group complexities in terms of the group order. For the
alternate definition, which we briefly discussed in this section, the situation is exactly the other
way round, i.e. the advantages become disadvantages and vice versa.

6.4.3.4 Computing the Entropy

In this section we describe how the KSE of a graph can be efficiently computed. First, the
entropy of a graph partition is discussed, as it is the more complex part on the one hand, and the
more interesting part, in terms of an analysis, on the other hand.

As we have discussed above,

hAut(G)(P) = −∑
i

∑
l∈L(P)k

µHi(l) ld µHi(l) (6.71)

is already a simplification, as we decompose the automorphism group into its support disjoint
normal subgroups Hi.
A further computational simplification is to skip all subgroups Hi for which ∀o ∈ O(Hi)∃C ∈

P ∶ o ⊆ C. O(Hi) is the orbit partition that is induced by Hi. This is of course equivalent to
∣PHi ∣ = 1. The reason is obvious: If each orbit that is induced by the subgroup is a subset of
one of the clusters, all local symmetry is restricted to nodes of the cluster(s). As a consequence,
µHi(C) = 1, and the entropy for this subgroup is zero.
Although Aut(G) is decomposed and some subgroups can possibly be omitted for the compu-

tation, generating a subgroup by complete enumeration is often still computationally expensive.
Fortunately, it is not necessary to actually generate the group. All that needs to be done is to
find one permutation g ∈ Hi for which

1. supp (g) = supp (Hi) and,

2. with g = c1c2⋯ck , k = ∣O(Hi)∣.
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Condition 1 assures that g acts on every node on which the whole group acts on, and from
condition 2 follows that all nodes per orbit are mapped onto each other. The ci in condition 2
are the different disjoint cycles of g. Note that no subgroup Hi fixes any node, i.e. there are
no trivial orbits in O(Hi). If a permutation g that suffices these conditions is found (there not
necessarily exists such a permutation), only h⟨{g}⟩(P) needs to be computed.

Theorem 16 (Equality of KSE for groups with the same orbits). For g ∈ Hi with supp (g) =
supp (Hi) and g consists of exactly k = ∣O(Hi)∣ cycles, h⟨{g}⟩(P) = hHi(P) holds.

Proof. The two conditions that g must fulfill assure that ⟨{g}⟩ ≤ Hi has the same orbits as Hi.
The result of Theorem 3 states that every node on an orbit has the same probability to be reached
(in terms of permutation maps) by any other node on the same orbit. Therefore, h(P) only
depends on the orbits, not on the actual group that defines them. �

Lemma 3. If ∣O(Hi)∣ = 1, hHi(P) = h⟨{po}⟩(P) holds, with po an arbitrary permutation of the
nodes on the only orbit o.

Proof. As there is only one non-trivial orbit, no dependencies to other orbits exist and Theorem 3
assures the relation. �

Combining all the simplifications, the definition of the KSE of a graph partition is

hAut(G)(P) ∶= − ∑
i∶∣PHi ∣>1

∑
l∈L(P)k

µ⟨{gi}⟩(l) ld µ⟨{gi}⟩(l). (6.72)

The gi for each normal subgroup Hi must fulfill the conditions of Theorem 16.

Example 56. Consider the graphC4 in Figure 6.11 with the shown partition. The automorphism
group is generated by g1 = (1 2 3 4) and g2 = (1 4)(2 3), clearly has only one orbit, and it is
indecomposable. As a result, hAut(C4)(P) = − (µ(C1) ld µ(C1) + µ(C2) ld µ(C2)) = 1. However,

1

23

4
C1

C2

Figure 6.11: The cycle graph C4, which is transitive and thus has only one non-trivial orbit.

for g′ = (1 3 4 2) ∉ Aut(C4) follows h⟨{g′}⟩(P) = hAut(C4)(P) due to Lemma 3.
In contrast to the situation in Figure 6.11, there are two dependent non-trivial orbits in the

graph T in Figure 6.12.
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1 2

3 4 5 6

C1

C2

Figure 6.12: The same graph as in Figure 6.9, but with a different partition.

If we would use the permutation g′ = (1 2)(3 4 5 6) ∉ Aut(T) instead of, e.g., g =
(1 2)(3 5 4 6) ∈ Aut(T) to generate a group that has the same orbits as Aut(T), the en-
tropy values differ:

h⟨{g′}⟩(P) = −(µ((C1 C1)T) ld µ((C1 C1)T) + µ((C2 C1)T) ld µ((C2 C1)T)+

µ((C1 C2)T) ld µ((C1 C2)T) + µ((C2 C2)T) ld µ((C2 C2)T))

= − ld
1
4
= 2

(6.73)

and

h⟨{g}⟩(P) = − (µ((C1 C1)T) ld µ((C1 C1)T) + µ((C2 C2)T) ld µ((C2 C2)T))

= − ld
1
2
= 1.

(6.74)

Example 57. Figure 6.13 shows the famous Petersen graph. All its nodes lie on the same orbit;
however, none of the 120 permutations that form its automorphism group is a single cycle that
goes over all nodes. Nonetheless, because of the equiprobability Theorem 3, it is sufficient to
consider a group that is generated by, say, (a0 a1 . . . a4 b0 . . . b4) for the computation of the
KSE of a partition.

This brings us to the computation of the KSE of a graph. In Section 6.4.3.2 we have argued
that any partition that separates all nodes on non-trivial orbits into different clusters yields the
maximum entropy. That allows us to implicitly use the singleton partition. However, we do
not need to use the explicit definition from Equation 6.72 but can derive and apply further
simplifications. We still make use of the decomposition of Aut(G) into its support disjoint
normal subgroups that describe the local symmetries. By definition, each of these subgroups
has to be taken into account for the computation and, thus, we want to simplify the computation
of hHi(P�) (P� is the singleton partition, as defined in Section 2.3.2). We know from Theorem 3

159
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a0

a1

a2

a3 a4

b0

b1

b2

b3 b4

Figure 6.13: The Petersen graph, which is transitive, but its automorphism group does not contain a
single cycle that permutes all the nodes at once.

that all nodes on the same orbit are equiprobable. This means, if Hi implies only one non-trivial
orbit O(Hi) = {o}, the entropy is simply

− ∑
C∈P�

µHi(C) ld µHi(C) = −∣o∣ 1
∣o∣

ld
1
∣o∣

= ld ∣o∣. (6.75)

But what if ∣O(Hi)∣ > 1? Remember, the subgroups Hi induce only orbit partitions that consist
of non-trivial orbits. Theorem 17 answers this question.

Theorem 17 (KSE of a graph in terms of a group with the same orbits generated by a single
permutation). Let H be an indecomposable graph automorphism group and P a partition
that suffices hH = sup hH(P) (e.g. P = P�). Then, for ⟨{g}⟩ ≤ H with O(⟨{g}⟩) = O(H),
hH = h⟨{g}⟩ = ld ∣⟨{g}⟩∣ holds.

Proof. As we already have seen, the entropy of a graph partition depends only on the orbits. For
P = P� we set L(P) = V , i.e. each singleton cluster has simply the node label of its containing
node as cluster id. For each non-trivial orbit of H , choose an orbit representative and construct
the initial label vector lid ∈ L(P)k . For the chosen P, all the label vectors with µH(l) > 0 are
just the images (lid)H . �

Lemma 4. For a g that suffices Theorem 17, hH = ld lcm(∣c1∣, ∣c2∣, . . . , ∣c j ∣), where lcm is the
least common multiple of the lengths of the disjoint cycles of g = c1c2⋯c j .

The least common multiple of two numbers is defined as the smallest positive integer that is
divided by both numbers. Clearly, the least common multiple of j numbers is then the smallest
possible integer divisible by all the j numbers. It can be calculated relatively efficient (Knuth,
1997, pp. 333 ff.).
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6.4 Kolmogorov-Sinai Entropy

Proof. Given g = c1c2⋯c j . For each individual cycle c, c∣c∣ = () holds. So for some fixed c′,

g∣c
′∣ = c∣c

′∣
1 ⋯c′∣c

′∣⋯c∣c
′∣

j = c∣c
′∣

1 ⋯()⋯c∣c
′∣

j , (6.76)

i.e. c′ vanishes. The smallest k for which gk = (), i.e. all cycles vanish simultaneously, is just
k = lcm(∣c1∣, . . . , ∣c j ∣). �

Lemma 5. For an indecomposable group H , hH = ld lcm(∣o1∣, ∣o2∣, . . . , ∣ok ∣) with oi ∈ O(H).

Proof. As it is known that every possible node on the orbit is reached, it is not necessary to
actually find a permutation that generates a subgroup that realizes this behavior. It is only
important to find the number of different symbol vectors, which are all equiprobable. However,
this number is just the least common multiple of the lengths of all orbits. �

Lemma 5 gives a very convenient way to actually compute the KSE of a graph. Note, however,
that the lemma is only applicable on indecomposable groups. If Aut(G) can be decomposed
into several subgroups, hAut(G) = ∑i hHi holds, and the sum goes over all support disjoint normal
subgroups.

Example 58. Reconsider the two graphs in Figures 6.11 and 6.12 of Example 56. C4 has one
non-trivial orbit of length 4, therefore hAut(C4) = ld 4 = 2.
The tree graph T has an indecomposable automorphism group. For applying Theorem 17,

the permutation g = (1 2)(3 5 4 6) can be used, which generates the group

⟨g⟩ = {(), (1 2)(3 5 4 6), (3 4)(5 6), (1 2)(3 6 4 5)} < Aut(T). (6.77)

An initial label vector is, e.g., lid = (1 3)T and the resulting label vectors are (lid)⟨g⟩ =
{(1 3)T, (2 5)T, (1 4)T, (2 6)T}. This results in h⟨g⟩ = ld ∣⟨g⟩∣ = ld 4 = 2. When Lemma 4
is used, g consists of the two cycles c1 = (1 2) and c2 = (3 5 4 6) of lengths 2 and 4, respectively.
The least common multiple is of course lcm(2, 4) = 4, which also results in h⟨g⟩ = ld 4 = 2. And,
of course, as Aut(T) induces the two orbits {1, 2} and {3, 4, 5, 6} of the same lengths as the two
cycles of g, also the application of Lemma 5 gives to correct result.
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7 Impact of Symmetry on Clustering
Partitions of Real-world Graphs

In this chapter a second empirical analysis of real-world graphs is carried out to finally test the
actual impact of symmetry on graph clustering. The datasets are the same simple and symmetric
graphs as in Chapter 4, therefore, we refer to this chapter for a rough description of them. We
want to find evidence and the extent of unstable “optimal” partitions if we use the iterated version
of the randomized greedy algorithm, which is based on the core group graph clustering schema
(CGGCRGi). The algorithm is a heuristic, but the iterated approach and the use of an ensemble
of partitions (the CGGC schema) assures a very good quality of the clustering result, which
hopefully is close to the global optimum. Furthermore, we want to get an understanding of the
causes of instability of partitions.

In Section 7.1 we describe how the impact can be quantified by measurement. After that,
in Section 7.2, we formulate hypotheses that are checked in Section 7.4. Section 7.3 gives an
overview of the analysis procedure.

7.1 Measurement

We have already defined a rich toolset to characterize and quantify symmetry and the corre-
sponding stability of graph partitions. In Section 5.2 local graph symmetry was introduced,
which is based on considerations of the decomposability of the automorphism group. The
relative symmetry of a graph rsG is a measure of overall graph symmetry, and it is based on
the number of nodes on non-trivial orbits. Derived from it, the mean global symmetry gsG

is a measure of expected global symmetry. This means that by using the information of how
many decomposable subgroups exist, the smaller the measure becomes, the more locally the
automorphism group acts on the graph. Finally, a normalized version ngsG was presented. In
Appendix D, we present Algorithm 4, which computes a decomposition of the set of generators
S into sets of support disjoint generators Si (i = 1, . . . k).
We now define two additional measures that will be used in our analysis. The average support

of a permutation group H is

avg ∣ supp (H) ∣ ∶= ∣ supp (H) ∣
k

, (7.1)

where k is the number of support disjoint (i.e. decomposed) subgroups. Note that this definition
implicitly assumes equally sized subgroup supports.
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The normalized version
∣ supp(H)∣

k − 2
∣ supp (H) ∣ − 2

(7.2)

equals ngsG. Another indicator is the maximum support, which is simply defined as

max
i

∣ supp (Hi) ∣ (7.3)

over all i = 1, . . . , k. When a partition P of the node set is given,

n
∣P∣

(7.4)

reflects the average cluster size. The assumption of balanced cluster sizes is supported by the
findings of Fortunato and Barthélemy (2007), who show that modularity optimal partitions tend
to have balanced cluster sizes. Normalizing the average cluster size gives

n
∣P∣ − 1

n − 1
≈ 1

∣P∣
. (7.5)

The fraction of generators that cause instability

∣Π̃inter ∣
∣S∣

(7.6)

is a measure of partition stability: The higher the relation, the more generators result in another
partition when they are applied on P. Π̃inter is the set of generators that cause instability, as
defined in Section 6.2.1. Recall that the number of generators does not reflect the size of the
generated permutation group. Therefore, a better measure would be ∣Πinter ∣

∣Aut(G)∣ , but this requires
an enumeration of the whole group, and we argued already that this is often computationally
infeasible.

As a quantitativemeasure of partition stability, we have defined theKolmogorov-Sinai Entropy
(KSE) for graph partitions in Section 6.4, which we also use for the analysis in this chapter. An
overview of all the measures and how they are be interpreted is given in Table 7.1.

7.2 Hypotheses

Before we delve into the details of the analysis, let us formulate some hypotheses that are going
to be tested. For all hypotheses that are related to partitions, we consider the partitions to be
modularity optimal.

H1.1 Graphs with a low mean global symmetry (i.e. with local symmetries) are unlikely to have
an unstable partition.

H1.2 Graphs with a high mean global symmetry are likely to have an unstable partition.
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7.2 Hypotheses

Name Symbol Description

Relative symmetry rsG The relative fraction of nodes that are affected by sym-
metry. A high value means that many nodes lie on a
non-trivial orbit.

Mean global symmetry gsG The relative fraction of nodes that are affected per
decomposed subgroup of the automorphism group.
Lower values compared to rsG imply a good decom-
posability of the group, and the symmetry is rather
local.

Normalized mean global
symmetry

ngsG A normalized version of gsG with respect to the max-
imum relative symmetry. A high (low) value implies
bad (good) decomposability of the group. It must al-
ways be viewed in the context of rsG or gsG , as it does
not measure relative symmetry of the graph.

Average support ∣ supp(H)∣
k

Measures the absolute average number of affected
nodes per decomposed subgroup of the group H . Must
be compared to other absolute values to make valid
statements.

Maximum support maxi ∣ supp (Hi) ∣ The maximum number of nodes affected by a decom-
posed subgroup.

Average cluster size n
∣P∣

An absolute measure for the average number of nodes
per cluster.

Normalized average cluster
size

n/∣P∣−1
n−1 A relative measure of cluster size.

Fraction of instability caus-
ing generators

∣Π̃inter ∣

∣S∣
High values may imply a bad decomposability of the
group or generally a large symmetry impact on the
partition. A value of zero implies partition stability.

Kolmogorov-Sinai Entropy KSE Measures the disorganization of the space. A value
of zero implies partition stability; higher values re-
flect disorganization of the space but not necessarily
instability of the partition.

Table 7.1: Overview of the different symmetry impact measures that are used in this chapter.

H1.3 Graphs with a stable partition have a low mean global symmetry.

H1.4 Graphs with an unstable partition have a high mean global symmetry.

H2 Graphs with unstable partitions have a higher average mean global symmetry.

H3.1 Graphs with an average cluster size smaller than the average support are very likely to have
an unstable partition.

H3.2 Graphs with an average cluster size smaller than the maximum subgroup support are very
likely to have an unstable partition.

H4 Graphs with unstable partitions are no real-world networks.

165



7 Impact of Symmetry on Clustering Partitions of Real-world Graphs

7.3 Description of the Analysis Procedure

In the same manner as described in Chapter 4, the analysis is split into several phases. The two
abstract steps are:

1. Analyze the datasets by computing a modularity optimal partition and a set of generators
of the automorphism group, and then test if the partition is stable. Compute coefficients
that allow the calculation of the measures shown in Table 7.1.

2. Use the obtained data to calculate statistics, plot illustrative figures, and test the hypotheses
formulated in the preceding Section 7.2.

We use the same simple datasets as in Chapter 4 but exclude the asymmetric graphs as well
as duplicates in advance. Other issues that are discussed in Chapter 4 and in Appendix B
(like data formats, details of duplicate cleaning, etc.), are also important, but not repeated here.
Moreover, only the simple graphs are considered. In the first step, we report the graph’s name
as well as its number of nodes n and edges m as “general” information of the dataset. Then, a
modularity optimal partition P is computed using the iterated CGGCRG algorithm (Ovelgönne
and Geyer-Schulz, 2013). From its result, we report the modularity Q and the number of clusters
∣P∣. The partition itself is kept as well to allow testing its stability.

Subsequently, saucy is used to compute a generating set S. Each generator s ∈ S is used to
test Ps = P, and the number of generators that violate this partition stability condition ∣Π̃inter ∣
and its counterpart ∣Π̃intra∣ are computed. The set S is partitioned into subsets of independent
subgroups using the method of MacArthur et al. (2008). From this decomposition we can
eventually derive the total support of the automorphism group ∣ supp (Aut(G)) ∣, the number of
disjoint subgroups k, and the maximum support maxi ∣ supp (Hi) ∣. All other measures described
in Section 7.1 can be computed from these coefficients.

TheKolmogorov-Sinai Entropy is computed by taking into accountmany of the simplifications
described in Section 6.4.3.4. However, for some datasets it becomes necessary to enumerate
the automorphism group or a normal subgroup (obtained by decomposition) of it, which is too
large. Although we have shown how the computation of KSE is efficiently possible, it is not
trivial to obtain a simpler subgroup that acts on the same set of orbits and, therefore, has the
same entropy value. This is why we could not obtain the KSE for every graph. Besides this
issue, the actual stability of the corresponding partition can also be derived from the coefficient
∣Π̃inter ∣, which is zero if P is stable.

7.4 Analysis Results

First, the results are analyzed using mainly descriptive statistics. This allows a first glance on
the symmetry impact. Second, graphs that have unstable partitions are compared to those with
stable partitions. After that, we try to distinguish the graphs having stable partitions from those
having unstable partitions by using a simple and naïve classifier that is based on hypothesis H3.1.
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The mediocre result of the attempted prediction leads to a more detailed investigation of the
graphs that have unstable partitions. This reveals that there exist graphs with certainly unstable
and “randomly” unstable partitions. A refined prediction that uses this fact yields better results
and, therefore, supports this finding.

7.4.1 General

A summary of descriptive statistics of the analyzed datasets is shown in Table 7.2. In comparison
to Table 4.2, Table 7.2a yields relatively similar distributions of the values: Overall, the average
graph sizes (in terms of n and m) are slightly smaller here, the values of modularity as well. The
average graph size is relatively small (remember the large class chem) and most of the graphs
seem to have a “good” partition based on the modularity values.

n m Q ∣P∣ n
∣P∣

count 629 629 629 629 629
mean 1.0997 × 105 3.7126 × 105 0.5578 39.4980 478.5000
std 8.1360 × 105 1.6998 × 106 0.2109 188.7100 2138.7000
min 2 1 0 1 2
25 % 24 47 0.4738 3 6.6667
50 % 36 71 0.5997 4 8.4000
75 % 54 103 0.6631 6 13
max 1.1951 × 107 1.7846 × 107 0.9988 2477 35,517

(a) Statistics on the graphs’ sizes and partitions.

∣supp (Aut(G)) ∣ ∣supp(Aut(G))∣
k

rsG gsG KSE ∣Π̃inter ∣

∣S∣

count 629 629 629 629 606 629
mean 21,576 2750.6000 0.3228 0.1493 0.2460 0.0554
std 1.1922 × 105 45,495 0.2855 0.2491 1.1048 0.2205
min 2 2 1.2795 × 10−5 3.5568 × 10−7 0 0
25 % 4 2 0.1026 0.0488 0 0
50 % 7 2.1154 0.2381 0.0735 0 0
75 % 18 3 0.4465 0.1136 0 0
max 1.5949 × 106 1.0486 × 106 1 1 14.3800 1

(b) Statistics on the graphs’ symmetry and its impact on partitions

Table 7.2: Partition stability statistics for networkrepository.com datasets: 557 of the 629 graphs
that were analyzed have a stable modularity optimal partition. 72 graphs have unstable mod-
ularity optimal partitions. There exist 58 graphs with positive entropy, 3 of these have a sta-
ble modularity optimal partition. Note that KSE could not be computed for all graphs.

Table 7.2b reveals that the average relative symmetry rsG is about 32 % and that most
automorphism groups are decomposable. However, by comparing the maximum values of rsG

and gsG, we can see that at least one completely symmetric graph with an indecomposable group
must exist. This assumption is supported by Figures 7.1a and 7.1b: Most graphs seem to have
a decomposable automorphism group, except those with rsG ≥ 0.95. Moreover, this fact is, of
course, also reflected in the two columns ∣ supp (Aut(G)) ∣ and ∣ supp(Aut(G))∣

k .
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(a) The mean relative symmetry is about 0.3, the median is lower. The frequency of graphs with a
higher rsG decreases. As an exception, there exist more than 50 graphs with rsG ≥ 0.95.
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(b) In direct comparison to (a), it can be assumed that most graphs have either a decomposable au-
tomorphism group or, if not, already have a low rsG . In contrast, the groups of most graphs with
rsG ≥ 0.95 cannot be decomposed.

Figure 7.1: Comparison of the distributions of rsG and gsG . Most graphs—with only a few
exceptions—have a relatively local symmetry.

The distribution of the values of Kolmogorov-Sinai Entropy is very skewed, which is due to
the finding that only 72 out of 629 graphs actually have an unstable partition (see also Figure 7.2).
The same effect can be seen for ∣Π̃inter ∣

∣S∣ (see also Figure 7.3). For a list of the simple graphs with
unstable modularity optimal partitions we refer the reader to Table 7.6.
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Figure 7.2: The histogram and boxplot of the distribution of KSE values. Only few graphs have positive
KSE and even then the value is low, which implies minor instability. The KSE value could
not be obtained for 23 of the 629 datasets (see also Table 7.2b).
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Figure 7.3: The fraction of generators that cause instability is mostly zero (or at least very low) or (near)
one. Intermediate values ∣Π̃inter ∣

∣S∣ ∈ [0.05, 0.95) are scarce.

Summary This first superficial descriptive analysis result shows that there indeed exist graphs
that have unstable partitions, i.e. the graphs’ symmetries have an effect on the clustering results.
However, the actual effects are minor, as the (maximum) KSE is low. Another interesting insight
is given by the fact that the automorphism groups are often decomposable into smaller indepen-
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dent subgroups, which implies more local symmetries. This finding matches the observations
of MacArthur et al. (2008).

7.4.2 Comparison of Graphs with Stable and Unstable Partitions

To better understand what causes instability, we now distinguish stable and unstable partitions.
Very natural conditions for instability—which we capture by hypotheses H3.1 and H3.2—are the
relations

∣ supp (Aut(G)) ∣
k

> n
∣P∣

(7.7)

and
max

i
∣ supp (Hi) ∣ >

n
∣P∣
. (7.8)

The Hi are normal subgroups of Aut(G), obtained by decomposition. Equation 7.7 implies
instability, because if the average support of the decomposed symmetry subgroups is larger than
the average size of the clusters, it is very likely that at least one support set of nodes crosses
the boundaries between two or more clusters. The second relation in Equation 7.8 suggests the
same, but it is a weaker condition: Only the maximum support, not the average support is taken
into account and, especially, maxi ∣ supp (Hi) ∣ ≥ ∣ supp(Aut(G))∣

k holds. Therefore, if Equation 7.7
holds, also Equation 7.8 holds.

In Figure 7.4, both relations are visualized by scatterplots of the corresponding measures (i.e.
n
∣P∣ compared to ∣ supp(Aut(G))∣

k or maxi ∣ supp (Hi) ∣, respectively) for all datasets. Graphs with

stable and unstable partitions are distinguished by color. The drawn border ∣ supp(Aut(G))∣
k = n

∣P∣
(maxi ∣ supp (Hi) ∣ = n

∣P∣ , respectively) reveals a reasonably good separation of stable and unstable
partitions, especially in Figure 7.4a.

Nonetheless, there also exist a number of graphs for which neither relation holds, especially
if the partition is unstable. A quick visual inspection of both Figures 7.4a and 7.4b shows
that most datapoints above the drawn line seem to be the same in both figures. These points
are those for which the relation from Equation 7.7 (or 7.8, respectively) holds. This suggests
indecomposability of the automorphism groups of these graphs, as, for those points that are
the same, ∣ supp(Aut(G))∣

k = maxi ∣ supp (Hi) ∣ holds. We investigate both findings in the following
sections.

In Figure 7.5, we compare the mean global symmetry gsG for graphs with stable and unstable
partitions. Hypothesis H1.3—graphs with stable partitions have low gsG—is supported by
Figure 7.5a, albeit there exist seven exceptions. By direct inspection of the datasets, one finds
out that all these graphs have either a partition with a modularity valueQ = 0 and only one cluster
(six graphs), or a partition consisting of two clusters and very low modularity Q ≈ 0.0439 (one
graph). Furthermore, one network (ENZYMES-g193) is the complete graph K2. The networks
are Hamming graphs that come from the dimacs category (Hasselberg et al., 1993, p. 465) and
are very dense (which explains the low modularity). Thus, these exceptions only have stable
partitions due to their high density, which implies the non-existence of meaningful clusters
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(b) As for (a), for most graphs with unstable partitions the relation maxi ∣ supp (Hi) ∣ ≤ n
∣P∣ seems to

hold. However, the values for maxi ∣ supp (Hi) ∣ are much more scattered than for ∣ supp(Aut(G))∣
k

.

Figure 7.4: Visualization of the relations between average cluster size and average support (a) as well
as maximum support (b). Graphs with stable partitions are represented by red dots, graphs
with unstable partitions are represented by blue crosses. All axes are log-scaled.
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under the assumptions that underlie the modularity definition. This means that the symmetry
is “hidden” within the clusters and does not conflict with H1.3, as partitions that consist of only
one cluster are always stable, independent of the how global the symmetry is.

The distribution of gsG for graphs with unstable partitions visualized in Figure 7.5b reflects
the fuzzy picture of Figure 7.4. This is inspected further in the next sections.

However, as Table 7.3 shows, hypotheses H1.3 and H1.4 hold. The hypotheses are tested by the
non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945), which does not assume a normal
distribution of the values. The threshold for a high mean global symmetry (0.5) is justified as
follows: gsG = 1 if rsG = 1 and the group is indecomposable (k = 1), therefore, gsG = 0.5 if
rsG = 1 and k = 2. Smaller values either imply a lower rsG or a higher k, which both suggests a
more local symmetry.

Hypothesis H1.1
§ H1.2

§ H1.3
† H1.4

† H2
‡

ps
gsG<0.1 > ps ps

gsG>0.5 < ps avg gssG < 0.1 avg gsuG > 0.5 avg gssG < avg gsuG

Tested null hypothesis ps
gsG<0.1 ≤ ps ps

gsG>0.5 ≥ ps avg gssG ≥ 0.1 avg gsuG ≤ 0.5 avg gssG ≥ avg gsuG
Statistic value – – 41,518.5000 757.0000 13,501.0000
p-value 0.0001 0.0000 0.0000 0.0013 0.0000

Table 7.3: Test-statistic and p-valuesa for five hypotheses. The two tests marked with § are performed
using a binomial test, those marked with † by the one-sided Wilcoxon signed-rank test, and
‡ is tested by the Mann-Whitney-U-test. ps is the probability that a partition is stable (de-
termined from the data) and ps

cond is the conditional probability of partition stability (“cond”
stands for some condition). avg gssG (avg gsuG) is the average gsG for graphs with stable (un-
stable) partitions. The statements that shall be supported by those tests are formulated as
alternative hypotheses, the complementary events as null hypotheses. The p-values for all
tests are below the 1 % confidence level (p < 0.01), thus all null hypotheses must be rejected
in favor of the alternative hypotheses.

a For all performed tests, the tested null hypothesis must be rejected if the p-value is below a chosen confidence
level. The null hypotheses are, therefore, formulated opposite to the desired result.

Both hypotheses are confirmed at a reasonably small confidence level and suggest that also
H2—the mean global symmetry for graphs with stable partitions is smaller than for unstable
partitions—should be supported. Test results that support this proposition are also shown in
Table 7.3. They are obtained by the Mann-Whitney-U-test (Mann and Whitney, 1947), which is
preferred to the t-test, as it does not assume normally distributed data.

Hypotheses H1.1 and H1.2 are tested as well. They are more or less the opposite formulations
of H1.3/H1.4, as they make assumptions about partition stability given a low or high mean global
symmetry. Therefore, both hypotheses are checked using a binomial test, which compares
the actual positive outcomes (i.e. stable partitions) against a hypothesized probability (i.e. the
empirical probability of partition stability). The same thresholds as above for a low (0.1) and
high (0.5) gsG are used. Both hypotheses can be supported, i.e. low mean global symmetry has
a positive effect on the expected partition stability, high mean global symmetry has a negative
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(a) Histogram and boxplot of gsG for graphs with stable partitions. All graphs have a relatively low
mean global symmetry, but there are also seven exceptions. They are discussed in the text in Sec-
tion 7.4.2.
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(b) Histogram and boxplot of gsG for graphs with unstable partitions. The situation is completely dif-
ferent than in (a) and needs further investigation. Most graphs have either very low global symmetry
or very high global symmetry, intermediate values a scarce.

Figure 7.5: Comparison of the mean global symmetry gsG for graphs with stable (a) and unstable (b)
partitions.
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effect. For all statistical tests, the implementations of the scipy.stats Python package1 were
used.

Summary Comparing the graphs with stable partitions to those with unstable partitions, and
graphs with low mean global symmetry to those with high mean global symmetry, gives some
interesting results. It can be shown that the symmetry of graphs with stable partitions is
significantly more local than for graphs with unstable partitions. Conversely, graphs with a
more local symmetry are more likely to have a stable partition and, the other way round, graphs
with a more global symmetry are more likely to have an unstable partition. Nonetheless, there
seem to exist two groups of graphs with unstable partitions: Those with a low mean global
symmetry and those with a high mean global symmetry. This needs to be examined further.
Another interesting finding is the relation of average cluster size and average support, which
differs between stable and unstable partitions. An attempt to use this relation for the prediction
of partition stability is employed in the next section.

7.4.3 Predicting Partition Stability: First Approach

We come back to the hypotheses H3.1 and H3.2 (Graphs with an average cluster size smaller than
the average/maximum support are very likely to have an unstable partition) and employ the naïve
classifiers described in Equations 7.7 and 7.8. As in the previous section, we apply a binomial
test to check the hypotheses statistically. Table 7.4 shows the results for H3.1/H3.2 as well as their
inverse hypotheses. In both directions, the thresholds for a low and high probability of stability
are chosen to allow an error rate of about 10 %. It can be seen that both hypotheses can not be
supported by the tests but their inverses can. This means the naïve classification works only well
to determine stable partitions, but not the other way round.

Hypothesis H3.1 inv H3.1 H3.2 inv H3.2
ps
(7.7) < 0.1 ps

¬(7.7) > 0.9 ps
(7.8) < 0.1 ps

¬(7.8) > 0.9

Tested null hypothesis ps
(7.7) ≥ 0.1 ps

¬(7.7) ≤ 0.9 ps
(7.8) ≥ 0.1 ps

¬(7.8) ≤ 0.9
p-value 0.4878 0.0000 1.0000 0.0000

Table 7.4: Results of binomial tests for hypotheses H3.1 and H3.2 as well as their inverses (prefixed by
“inv”). The conditions from Equations 7.7 and 7.8 (both suggesting partition instability) are
negated by changing inequalities “<” to “≥”. ps

cond is again the conditional probability of
partition stability. So, e.g., ps

¬(7.7) is the probability P (P stable ∣ n
∣P∣ ≥

∣ supp(Aut(G))∣
k

).

In Table 7.5 the confusion matrices for both classifications are shown: The true classes (stable
or unstable) are described per row, the predicted classes per column. As the main goal is to
identify instability, the values in the cell (Unstable, Unstable) are the true positives (T P), (Stable,
Stable) are the true negatives (T N). The type I errors (false positives, FP) are (Stable, Unstable),
type II errors (false negatives, FN) are (Unstable, Stable), i.e. we recognize a partition as stable
that is actually unstable.
1 http://scipy.org/scipylib/ as of July 2018, release version 1.1.0 was used
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Prediction
Unstable Stable

Truth Unstable 43 29
Stable 4 553

(a) Confusion matrix for the naïve prediction of
partition stability using Equation 7.7: Precision
for class “Unstable” is 0.9149, recall is 0.5972.
Precision for class “Stable” is 0.9502, recall is
0.9928. The overall accuracy is 0.9475.

Prediction
Unstable Stable

Truth Unstable 57 15
Stable 21 536

(b) Confusion matrix for the naïve prediction of
partition stability using Equation 7.8: Pre-
cision for class “Unstable” is 0.7308, re-
call is 0.7917. Precision for class “Stable” is
0.9728, recall is 0.9623. The overall accuracy
is 0.9428.

Table 7.5: Confusion matrices for both naïve classifiers, which are given by Equations 7.7 and 7.8.

Although the overall accuracy ((T P + T N)/(T P + T N + FP + FN)) for both classifiers is
quite high (over 94 %), the test results of Table 7.4 show a high rate of type II errors (low recall
for the classUnstable). Precision is the fraction of correctly classified partitions compared to all
predictions of one class (T P/(T P+FP) and T N/(T N +FN)); recall is the fraction of correctly
classified partitions compared to the true classes (T P/(T P + FN) and T N/(T N + FP)).
The high accuracy is due to the large number of negatives (i.e. stable partitions) that are

classified correctly, which hides the fact of many type II errors in Table 7.5a and many type I
and II errors in Table 7.5b. Not unexpected, the weaker classifier, in terms of the strength of the
condition (using the maximum support), has a higher recall for unstable partitions, but at the
cost of a lower precision for unstable and a lower recall for stable partitions.

Summary The hypotheses that graphs with an average cluster size smaller than the average or
maximum support are very likely to have an unstable partition can not be supported, however
their inverses can. This means that it is possible to predict partition stability with a very small
statistical error, but it does not work for instability. Therefore, we can conclude that there must
exist other causes, besides the relation of average cluster size and locality of the symmetric
group, that influence partition instability. To investigate this matter further, we concentrate
solely on the graphs with unstable partitions in the next section.

7.4.4 Graphs with Unstable Modularity Optimal Partitions

The naïve attempt to predict the stability of a graph clustering partition, in terms of the relation
between local graph symmetry and average size of clusters, has turned out to be only half-
successful in the previous Section 7.4.3: There exists a large number of graphs with unstable
partitions although the instability conditions of Equations 7.7 and 7.8 are not met. Table 7.6
shows the values that are obtained directly by the analysis procedure described in Section 7.3
(except KSE) and the derived values that are described in Section 7.1.

In contrast to Figure 7.4, where all graphs are visible, Figure 7.6 only shows graphs with
unstable partitions and distinguishes them by their mean global symmetry gsG. Obviously, it
can be seen in Figure 7.6a that most of the graphs for which Equation 7.7 does not hold (i.e. the
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average support is smaller than the average cluster size, which should suggest a stable partition)
have a mean global symmetry smaller than 0.5 (i.e. a local or intermediately local symmetry).

The next step is to find a meaningful classification, which hopefully gives clues for an
explanation what else are important graph properties that cause partition instability. Due to the
exploratory manner of this analysis, we decided to use a clustering method. Figure 7.7 shows
the clusters that result from utilizing DBSCAN (Ester et al., 1996) with a neighborhood distance
parameter of ε = 0.1. Using instead the famous k-means clustering with k = 4 results in very
similar clusters. As either method is based on distances between data points, a normalization or
standardization should be performed in advance. That is why the normalized versions of mean
global symmetry (ngsG) and average cluster size are used.
By inspecting the datapoints within the four clusters, there can be found several properties

that distinguish them and, therefore, underline that a good separation of the data is found. Next,
we describe these properties per cluster and then compare the clusters. Table 7.6 shows the
properties of all graphs with unstable partitions. Descriptive statistics of the four clusters can
be found in Table 7.7.

Cluster 0 This cluster contains the so called “noise points” of the DBSCAN method, i.e. these
points form not an actual cluster in terms of the algorithm, as they lie too far apart of each
other (DBSCAN forms clusters of data points that lie in the same ε-neighborhood of one
data point; here, ε = 0.1). There are seven graphs in this cluster and they all are quite
small (20 ≤ n ≤ 200, 37 ≤ m ≤ 1534) and have a notable clustering structure in terms of
modularity. The mean global symmetry is strictly smaller than 1, which means that all
automorphism groups can be decomposed. Similarly, ∣Π̃inter ∣

∣S∣ is also strictly smaller than 1
and for each graph ∣Π̃inter ∣ = 1 holds. The KSE could be computed for all but one partition,
and it is 1 for all graphs. Six graphs of this cluster are from the chem category; the last
graph is called c-fat200-1. For five graphs the average classifier fails, and for only one
graph the maximum classifier fails.

Cluster 1 This cluster contains 33 graphs. The sizes in terms of nodes and edges are diverse
and range from small graphs (ENZYMES-g509 with n = 41 and m = 88) to relatively large
graphs (debr with n = 1,048,576 and m = 2,097,149). Modularity is reasonably high,
however, there are five graphs with a (very) low modularity (Q < 0.17). All graphs have
in common that their automorphism group is indecomposable (k = 1) and for 25 of them
even rsG = gsG = 1 holds (i.e. every node lies on a non-trivial orbit). For another six
graphs, rsG = gsG > 0.91 holds and the remaining two graphs have a rather low gsG. The
values for ∣Π̃inter ∣

∣S∣ are also very diverse: For 26 graphs ∣Π̃inter ∣
∣S∣ = 1 holds, for five graphs

∣Π̃inter ∣
∣S∣ < 0.006 holds (all named c-fat...), and for two graphs the values lie between

these two extremes. Both naïve classifiers hold for all graphs except the one with the
lowest mean global symmetry (ENZYMES-g523 with gsG = 0.0417). The KSE could be
computed for 27 graphs and the values range from 1 to 11.4551.
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(a) For most graphs with low and intermediate mean global symmetry (gsG < 0.5) the relation from
Equation 7.7 does not hold. Therefore, most of these data points lie below the drawn line that rep-
resents the separation of the naïve classifier (points above the line are classified as unstable, points
below the line as stable).
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(b) In contrast to (a), graphs with low mean global symmetry are much more scattered concerning
Equation 7.8, which does not allow a clear distinction.

Figure 7.6: Relations between average cluster size and average (a) or maximal (b) support for graphs
with unstable partitions only. All graphs are visually separated by low, high, or intermediate
mean global symmetry.
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Name n m Q ∣P∣ ∣ supp (Aut(G)) ∣ maxi ∣ supp (Hi) ∣ k Π̃inter Π̃intr a

c-fat200-1 200 1534 0.7133 8 200 194 2 1 162
ENZYMES-g161 22 42 0.4504 3 16 10 3 1 2
ENZYMES-g293 96 109 0.7693 11 16 12 3 1 2
ENZYMES-g468 20 37 0.4481 3 16 4 6 1 5
ENZYMES-g531 40 82 0.6401 4 38 28 2 1 1
ENZYMES-g540 49 92 0.6295 6 18 12 3 1 2
ENZYMES-g578 60 103 0.6734 7 20 10 3 1 2

auto 448,695 3,314,611 0.9308 47 443,120 443,120 1 1 4
bfly 49,152 98,304 0.8026 61 49,152 49,152 1 3 0
c-fat200-2 200 3235 0.6082 5 200 200 1 1 181
c-fat500-1 500 4459 0.8061 10 500 500 1 1 419
c-fat500-10 500 46,627 0.4049 3 500 500 1 1 491
c-fat500-2 500 9139 0.7342 7 500 500 1 1 459
c-fat500-5 500 23,191 0.5794 5 500 500 1 1 483
cage 366 2562 0.1692 11 366 366 1 8 0
cca 49,152 69,632 0.9264 72 49,152 49,152 1 12 0
ccc 49,152 73,728 0.8428 67 49,152 49,152 1 4 0
debr 1,048,576 2,097,149 0.8541 73 1,048,576 1,048,576 1 2 0
diag 2559 4092 0.9384 32 2558 2558 1 2 0
ENZYMES-g509 41 88 0.5648 4 16 16 1 1 0
ENZYMES-g523 48 111 0.5964 4 2 2 1 1 0
EX1 560 4368 0.4581 8 560 560 1 5 0
EX2 560 4368 0.4275 7 560 560 1 4 0
EX4 2600 35,880 0.4678 9 2520 2520 1 1 0
fe-sphere 16,386 49,152 0.9139 36 16,386 16,386 1 3 0
G48 3000 6000 0.8605 25 3000 3000 1 4 0
G49 3000 6000 0.8617 24 3000 3000 1 4 0
G50 3000 6000 0.8644 19 3000 3000 1 4 0
GD06-theory 101 190 0.3789 10 100 100 1 25 21
GD97-a 84 166 0.5660 7 84 84 1 2 0
GD98-c 112 168 0.5333 10 112 112 1 3 0
grid1 252 476 0.7308 11 230 230 1 1 0
grid1-dual 224 420 0.7311 11 224 224 1 1 0
johnson16-2-4 120 5460 0.0084 6 120 120 1 14 0
johnson32-2-4 496 107,880 0.0019 7 496 496 1 30 0
johnson8-2-4 28 210 0.0544 6 28 28 1 6 0
johnson8-4-4 70 1855 0.0312 4 70 70 1 6 0
se 32,768 49,150 0.8431 51 32,768 32,768 1 2 0
ukerbe1 5981 7852 0.9233 37 5936 5936 1 1 0
ukerbe1-dual 1866 3538 0.8985 25 1866 1866 1 1 0

as-22july06 22,963 48,436 0.6754 34 13,229 326 2163 2 10,978
bio-dmela 7393 25,569 0.4662 27 1665 31 583 1 1050
ca-citeseer 227,320 814,134 0.9038 201 110,078 104 38,128 1 70,022
ca-dblp-2010 226,413 716,460 0.8671 193 101,526 58 37,170 1 62,776
com-dblp 317,080 1,049,866 0.8354 163 134,021 38 50,168 1 81,680
com-youtube 140,959 276,042 0.6140 36 120,316 11,966 3689 1 116,624
ENZYMES-g272 44 78 0.6871 5 34 10 9 1 11
power 4941 6594 0.9392 44 823 12 302 1 413
rt-islam 4497 4616 0.6206 45 4252 2540 122 13 4065
rt-retweet-crawl 1,112,702 2,278,852 0.7078 217 764,347 627 68,414 4 695,037
soc-buzznet 101,163 2,763,066 0.3163 9 24,405 10,567 829 16 23,553
soc-flickr 513,969 3,190,452 0.6692 825 237,949 220 52,983 2 182,706
soc-gowalla 196,591 950,327 0.7172 175 32,917 1877 10,894 2 20,950
soc-twitter-follows 404,719 713,319 0.6924 145 324,947 457 6816 1 318,126
soc-youtube 495,957 1,936,748 0.6933 592 144,953 1637 30,483 2 110,324
soc-youtube-snap 1,134,890 2,987,624 0.7319 951 549,788 7184 93,492 10 435,964
tech-as-skitter 1,694,616 11,094,209 0.8565 148 443,488 721 102,827 2 319,735
tech-internet-as 40,164 85,123 0.6933 37 23,444 532 3809 36 19,440
web-arabic-2005 163,598 1,747,269 0.9967 1336 132,452 2148 10,354 19 111,420
web-edu 3031 6474 0.9522 61 2858 676 82 1 431
web-indochina-2004 11,358 47,606 0.9432 86 9681 424 904 6 5898
web-sk-2005 121,422 334,419 0.9907 363 100,724 765 7498 10 53,097
web-uk-2005 129,632 11,744,049 0.9976 822 129,491 48,090 159 1 127,007
web-wikipedia2009 1,864,433 4,507,315 0.8635 355 591,531 879 125,669 2 446,979

ENZYMES-g352 9 8 0.3047 2 6 6 1 1 0
ENZYMES-g55 7 12 0.2188 2 6 6 1 1 2
keller4 171 9435 0.0669 2 170 170 1 2 2
keller6 3361 4,619,898 0.0350 2 3360 3360 1 1 5
MANN-a27 378 70,551 0.0016 2 378 378 1 6 0
MANN-a45 1035 533,115 0.0006 2 1035 1035 1 3 0
MANN-a81 3321 5,506,380 0.0002 2 3321 3321 1 8 0
MANN-a9 45 918 0.0119 2 45 45 1 4 0

Table 7.6: Computed properties of simple graphs with unstable partitions. The horizontal lines divide
the clusters 0 (top) to 3 (bottom) shown in Figure 7.7.
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Name hAut(G)(P) rsG gsG
∣Π̃inter ∣

∣S∣
∣ supp(Aut(G))∣

k
n
∣P∣

c-fat200-1 1 0.5000 0.0061 100 25
ENZYMES-g161 1 0.7273 0.2424 0.3333 5.3333 7.3333
ENZYMES-g293 1 0.1667 0.0556 0.3333 5.3333 8.7273
ENZYMES-g468 1 0.8000 0.1333 0.1667 2.6667 6.6667
ENZYMES-g531 1 0.9500 0.4750 0.5000 19 10
ENZYMES-g540 1 0.3673 0.1224 0.3333 6 8.1667
ENZYMES-g578 1 0.3333 0.1111 0.3333 6.6667 8.5714

auto 1 0.9876 0.9876 0.2000 443,120 9546.7021
bfly 5.9205 1 1 1 49,152 805.7705
c-fat200-2 1 1 0.0055 200 40
c-fat500-1 1 1 0.0024 500 50
c-fat500-10 1 1 0.0020 500 166.6667
c-fat500-2 1 1 0.0022 500 71.4286
c-fat500-5 1 1 0.0021 500 100
cage 3.4246 1 1 1 366 33.2727
cca 11.4551 1 1 1 49,152 682.6667
ccc 5.9894 1 1 1 49,152 733.6119
debr 2 1 1 1 1,048,576 14,364.0548
diag 2 0.9996 0.9996 1 2558 79.9688
ENZYMES-g509 1 0.3902 0.3902 1 16 10.2500
ENZYMES-g523 1 0.0417 0.0417 1 2 12
EX1 5.7180 1 1 1 560 70
EX2 7.5850 1 1 1 560 80
EX4 1 0.9692 0.9692 1 2520 288.8889
fe-sphere 5.5850 1 1 1 16,386 455.1667
G48 4.6174 1 1 1 3000 120
G49 4.5558 1 1 1 3000 125
G50 4.1930 1 1 1 3000 157.8947
GD06-theory 0.9901 0.9901 0.5435 100 10.1000
GD97-a 3 1 1 1 84 12
GD98-c 6 1 1 1 112 11.2000
grid1 1 0.9127 0.9127 1 230 22.9091
grid1-dual 1 1 1 1 224 20.3636
johnson16-2-4 2.4887 1 1 1 120 20
johnson32-2-4 2.7881 1 1 1 496 70.8571
johnson8-2-4 2.5216 1 1 1 28 4.6667
johnson8-4-4 1.9948 1 1 1 70 17.5000
se 2 1 1 1 32,768 642.5098
ukerbe1 1 0.9925 0.9925 1 5936 161.6486
ukerbe1-dual 1 1 1 1 1866 74.6400

as-22july06 1.3228 0.5761 0.0003 0.0002 6.1160 675.3824
bio-dmela 1 0.2252 0.0004 0.0010 2.8559 273.8148
ca-citeseer 1 0.4842 1.2700 × 10−5 1.4281 × 10−5 2.8871 1130.9453
ca-dblp-2010 1 0.4484 1.2064 × 10−5 1.5929 × 10−5 2.7314 1173.1244
com-dblp 1 0.4227 8.4251 × 10−6 1.2243 × 10−5 2.6714 1945.2761
com-youtube 1 0.8536 0.0002 8.5745 × 10−6 32.6148 3915.5278
ENZYMES-g272 1 0.7727 0.0859 0.0833 3.7778 8.8000
power 1 0.1666 0.0006 0.0024 2.7252 112.2955
rt-islam 0.9455 0.0078 0.0032 34.8525 99.9333
rt-retweet-crawl 0.6869 1.0041 × 10−5 5.7551 × 10−6 11.1724 5127.6590
soc-buzznet 0.9993 0.2412 0.0003 0.0007 29.4391 11,240.3333
soc-flickr 2 0.4630 8.7380 × 10−6 1.0946 × 10−5 4.4910 622.9927
soc-gowalla 2.3710 0.1674 1.5370 × 10−5 9.5456 × 10−5 3.0216 1123.3771
soc-twitter-follows 1 0.8029 0.0001 3.1434 × 10−6 47.6741 2791.1655
soc-youtube 2.3710 0.2923 9.5879 × 10−6 1.8128 × 10−5 4.7552 837.7652
soc-youtube-snap 0.4844 5.1816 × 10−6 2.2937 × 10−5 5.8806 1193.3649
tech-as-skitter 0.2617 2.5451 × 10−6 6.2551 × 10−6 4.3130 11,450.1081
tech-internet-as 14.3800 0.5837 0.0002 0.0018 6.1549 1085.5135
web-arabic-2005 0.8096 7.8194 × 10−5 0.0002 12.7924 122.4536
web-edu 0.9429 0.0115 0.0023 34.8537 49.6885
web-indochina-2004 0.8524 0.0009 0.0010 10.7091 132.0698
web-sk-2005 0.8295 0.0001 0.0002 13.4334 334.4959
web-uk-2005 0.9989 0.0063 7.8735 × 10−6 814.4088 157.7032
web-wikipedia2009 2 0.3173 2.5247 × 10−6 4.4745 × 10−6 4.7071 5251.9239

ENZYMES-g352 1 0.6667 0.6667 1 6 4.5000
ENZYMES-g55 1 0.8571 0.8571 0.3333 6 3.5000
keller4 2.2296 0.9942 0.9942 0.5000 170 85.5000
keller6 2.5850 0.9997 0.9997 0.1667 3360 1680.5000
MANN-a27 1.3799 1 1 1 378 189
MANN-a45 5.2763 1 1 1 1035 517.5000
MANN-a81 1 1 1 3321 1660.5000
MANN-a9 1.3001 1 1 1 45 22.5000

Continued Table 7.6: Properties derived from the computed properties of simple graphs with unstable
partitions.
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Figure 7.7: Clustering results for the graphs with unstable partitions. Cluster 0 contains the “noise
points” of the DBSCAN procedure; the parameter was set to ε = 0.1.

Cluster 2 The sizes of the 24 graphs are as diverse as in Cluster 1 (28 ≤ n ≤ 1,864,433 and
78 ≤ m ≤ 11,744,049) and modularity is relatively high as well, however, without any
downward outliers as in Cluster 1. Nonetheless, the graphs are larger on average (the
second smallest graph rt-islam has n = 4497 and m = 4616). The relative symmetries
are distributed between 0.1666 and 0.9989; however, all automorphism groups are highly
decomposable. As a consequence, the mean global symmetry is very small, with the
largest value of only 0.0859. This means that the symmetry for all graphs is very local.
The values of ∣Π̃inter ∣

∣S∣ are also very low, i.e. only few generators from a large number of
generators affect the modularity optimal partition. Additionally, the average classifier
fails for all graphs but one; the maximum classifier fails for 13 graphs. For nine graphs
we could not obtain the KSE, and for the other graphs the values are distributed between
0.9993 and 2.3710. Only one graph (tech-internet-as) has a much higher KSE of
14.3800.

Cluster 3 This cluster contains eight graphs of small to medium size. The most interesting
commonality is that all their partitions consist of exactly two clusters. Two graphs are
from the chem category and have a reasonably high modularity, the other six graphs have
a very low modularity (Q < 0.07). All graphs have an indecomposable automorphism
group. The relative and mean global symmetry of the two former graphs is relatively
high (0.6667 and 0.8571), and for all the latter it is nearly or exactly 1. Besides their
high degree of symmetry, all graph automorphism groups are generated by only a few
generators (∣S∣ ≤ 8). ∣Π̃inter ∣

∣S∣ is also quite high and the KSE could be computed for seven
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graphs. The values for the KSE range from 1 to 5.2763. Both classifiers correctly suggest
partition instability for all graphs.

After this detailed description of the four clusters, we can see that clusters 0 and 2 and clusters
1 and 3, respectively, contain similar graphs in terms of their symmetry properties. Clusters 0
and 2 contain graphs with a decomposable automorphism group and only (very) few generators
that actually cause the partition instability. In contrast to them, clusters 1 and 3 both contain only
graphs with an indecomposable automorphism group (k = 1) and a large number of generators
cause partition instability. It is interesting to see that the graphs in all clusters have a large degree
of symmetry in terms of rsG, but, based on the different possibilities of group decomposition,
the graphs in clusters 0 and 2 are generally only locally symmetric, those in clusters 1 and 3
are mostly very globally symmetric. Another difference is the performance of the two naïve
classifiers, especially the one of the stronger average classifier (Equation 7.7): It mostly fails for
the graphs in clusters 0 and 2 and mostly predicts instability correctly for the graphs in clusters
1 and 3. The KSE is, of course, positive for all graphs it could be computed for; the actual
values are relatively independent of the four clusters. Also, the modularity of most of the graphs
(with only few exceptions) is reasonably high and, therefore, suggests the existence of a modular
organization of the graphs.

When comparing not only quantitative properties of the graphs in the different clusters, it
becomes apparent that there also exists a distinction in the underlying network models. Whereas
clusters 0 and 2 mostly contain collaboration/social/retweet/web networks or graphs from the
chem category, clusters 1 and 3 mainly contains very different graphs. Many of them are
generated, either by a random model or by a deterministic one (e.g. Johnson graphs J(n, k),
which are determined by two parameters). Furthermore, several subgroups of similar graphs—
recognizable by their naming scheme—are contained. Common schemes are c-fat###-# (e.g.
c-fat500-1), EX# (e.g. EX1), G# (e.g. G48), GD##-# (e.g. GD97-a), johnson##-#-# (e.g.
johnson16-2-4), and MANN-a## (e.g. MANN-a27). It is questionable in what way these graphs
can be considered real-world networks. A summary of the comparison of the cluster properties
is given in Table 7.8.

All in all, the largest differences between the clusters are the capability of correct classification
of the naïve classifiers and the values of the fraction ∣Π̃inter ∣

∣S∣ . Because of this finding, we conjecture
that the partitions of the graphs in clusters 1 and 3 are certainly unstable, whereas the partitions
of the graphs in cluster 2 (and probably also in cluster 0) are randomly or accidentally unstable.
The reason for the latter “type” of instability could be the very large number of generators
paired with the randomized graph clustering heuristic, which makes it likely to accidentally
get an unstable partition. Moreover, the graphs with randomly unstable partitions are mostly
real-world networks, based on their names. Because of this fact, hypothesis H4 (graphs with
unstable partitions are no real-world networks) cannot be supported.
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n m Q rsG gsG
∣Π̃inter ∣

∣S∣
KSE

count 7 7 7 7 7 7 6
mean 69.5710 285.5700 0.6177 0.6207 0.2343 0.2866 1
std 63.0080 551.2300 0.1242 0.3288 0.1819 0.1567 0
min 20 37 0.4481 0.1667 0.0556 0.0061 1
25 % 31 62 0.5399 0.3503 0.1168 0.2500 1
50 % 49 92 0.6401 0.7273 0.1333 0.3333 1
75 % 78 106 0.6933 0.8750 0.3587 0.3333 1
max 200 1534 0.7693 1 0.5000 0.5000 1

(a) Statistics for Cluster 0 (the noise points)

n m Q rsG gsG
∣Π̃inter ∣

∣S∣
KSE

count 33 33 33 33 33 33 27
mean 52,156 1.8291 × 105 0.6156 0.9480 0.9480 0.8108 3.4014
std 1.9524 × 105 6.6899 × 105 0.2966 0.1944 0.1944 0.3808 2.5712
min 28 88 0.0019 0.0417 0.0417 0.0020 1
25 % 200 1855 0.4581 1 1 1 1
50 % 500 5460 0.7309 1 1 1 2.5216
75 % 3000 46,627 0.8605 1 1 1 5.1012
max 1.0486 × 106 3.3146 × 106 0.9384 1 1 1 11.4550

(b) Statistics for Cluster 1

n m Q rsG gsG
∣Π̃inter ∣

∣S∣
KSE

count 24 24 24 24 24 24 15
mean 3.7249 × 105 1.9720 × 106 0.7680 0.5679 0.0048 0.0040 2.2296
std 5.3368 × 105 3.1665 × 106 0.1730 0.2726 0.0175 0.0169 3.4039
min 44 78 0.3163 0.1666 2.5247 × 10−6 3.1434 × 10−6 0.9993
25 % 20,062 48,228 0.6842 0.3110 9.9276 × 10−6 1.0353 × 10−5 1
50 % 1.5228 × 105 7.6530 × 105 0.7246 0.5303 0.0001 5.9197 × 10−5 1
75 % 4.2753 × 105 2.3999 × 106 0.9127 0.8146 0.0004 0.0010 2
max 1.8644 × 106 1.1744 × 107 0.9976 0.9989 0.0859 0.0833 14.3800

(c) Statistics for Cluster 2

n m Q rsG gsG
∣Π̃inter ∣

∣S∣
KSE

count 8 8 8 8 8 8 7
mean 1040.9000 1.3425 × 106 0.0800 0.9397 0.9397 0.7500 2.1101
std 1459.1000 2.3156 × 106 0.1167 0.1210 0.1210 0.3564 1.5231
min 7 8 0.0002 0.6667 0.6667 0.1667 1
25 % 36 691.5000 0.0014 0.9599 0.9599 0.4583 1.1500
50 % 274.5000 39,993 0.0234 0.9999 0.9999 1 1.3799
75 % 1606.5000 1.5548 × 106 0.1049 1 1 1 2.4073
max 3361 5.5064 × 106 0.3047 1 1 1 5.2763

(d) Statistics for Cluster 3

Table 7.7: Statistics of the clusters shown in Figure 7.7. Especially the differences of gsG and ∣Π̃inter ∣
∣S∣

among them are notable. Other properties are discussed in the text.
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Cluster k rsG gsG
∣Π̃inter ∣

∣S∣
Miscellaneous observations

1 = 1 > 0.9 = rsG mostly = 1 six outliers, described in the text
3 = 1 > 0.6 = rsG ∈ (0.15, 1] ∣P∣ = 2

2 ≫ 1 ∈ (0.15, 1) ≪ 0.1 ≪ 0.1 mostly large collaboration/social/retweet/web
networks

0 > 1 ∈ (0.15, 1] ∈ (0.05, 0.5) ∈ (0.005, 0.5] noise points of DBSCAN, small graphs (n ≤
200), mostly chem networks

Table 7.8: Overview of the four clusters and its properties (see Figure 7.7). Clusters 1 and 3 contain the
graphs with certainly unstable partitions, clusters 0 and 2 contain the graphs with randomly
unstable partitions, as described in the text. Both pairs of clusters differ significantly in au-
tomorphism group locality, in the fraction of how many generators actually cause instability,
and in the performance of the naïve classifiers.

Summary To investigate differences between graphs with unstable partitions a simple cluster
analysis was employed. From the total of four clusters (including the “noise points” cluster as
argued above) two pairs of clusters are found with only minor differences within the pairs but
significant discrepancy between them. The main differences are the results of the two naïve
classifiers defined in Equations 7.7 and 7.8, as well as the gap between the fraction of generators
that affect stability. Thus, we conjecture that there exist graphs with certainly and randomly/
accidentally unstable partitions.

7.4.5 Predicting Partition Stability: Refined Approach

To emphasize our finding from the previous section, a refined naïve classification approach is
presented. The only difference to Section 7.4.3 is that the 24 graphs with randomly unstable
partitions, which are identified in cluster 2, are now removed from the data. The classification
results can be seen in Table 7.9.

Prediction
Unstable Stable

Truth Unstable 42 (43) 6 (29)
Stable 4 553

(a) Confusion matrix for the naïve prediction of
partition stability using Equation 7.7: Precision
for class “Unstable” is 0.9130 (0.9149), recall
is 0.8750 (0.5972). Precision for class “Stable”
is 0.9893 (0.9502), recall is 0.9928 (0.9928).
The overall accuracy is 0.9835 (0.9475).

Prediction
Unstable Stable

Truth Unstable 46 (57) 2 (15)
Stable 21 536

(b) Confusion matrix for the naïve prediction of
partition stability using Equation 7.8: Preci-
sion for class “Unstable” is 0.6866 (0.7308),
recall is 0.9583 (0.7917). Precision for class
“Stable” is 0.9963 (0.9728), recall is 0.9623
(0.9623). The overall accuracy is 0.9620
(0.9428).

Table 7.9: Confusion matrices for both naïve classifiers given by Equations 7.7 and 7.8 after 24 graphs
with randomly unstable partitions are removed. All the values in parentheses are those from
Table 7.5 (the first classification).

The accuracy for both approaches increases from 0.9475 to 0.9835, and from 0.9428 to
0.9620, respectively. Especially the classifier that compares the average cluster size to the
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average support of the automorphism group benefits from the removal of the critical graphs:
The number of falsely identified stable partitions decreases from 29 to 6, whereas only one of
the correctly identified stable partitions vanishes (see Table 7.9a). As a result, the precision
of the class “Unstable” only slightly decreases; for the class “Stable” there is an increase. The
highest improvement is a significant increase of the recall (decrease of type II error) for unstable
partitions.

As the second classifier already performed better for true negatives and false positives, but
worse for false negatives, its precision for the class “Unstable” decreases (see Table 7.9b).
Moreover, many graphs that were correctly predicted by the second classifier in the first attempt
are now removed. This negative result, however, is not obvious by only comparing accuracy,
precision, and recall.

7.4.6 Discussion

In the past sections we have presented the empirical analysis of a large number of symmetric
simple graphs (629 in total) concerning an actual impact of graph symmetry on the modularity
clustering results, in a similar manner as in Chapter 4. The modularity optimal partitions of 72
graphs are actually affected by the graphs’ symmetry.

In what followed, two naïve classifiers were presented that both perform relatively well.
However, falsely identified unstable partitions are an issue. The most interesting part is the
further inspection of graphs having unstable partitions, as there could be identified roughly two
different subgroups, namely those with certainly and those with randomly unstable partitions.
The latter are mostly actual real-world networks (e.g. social or collaboration networks), which
are normally themain objective for exploratory analysis by graph clustering. These are, however,
the ones with unstable partitions the naïve classifiers often fail to identify.

We want to point out that the purpose of trying to classify graphs, whether they have a stable
or an unstable partition, is not a practical but a meta-analytic one. Our findings show that—given
a graph partition and the corresponding symmetries that act thereon—it is not only a matter
of the locality of the symmetry but also a matter of chance. This means if a very symmetric
graph is analyzed with a graph clustering algorithm, the resulting partition may be affected by
this symmetry simply by coincidence. The reasons for this phenomenon are diverse: Either the
algorithm is not deterministic (as in our case), or the graph contains a symmetric structural motif
that is spread over more than one cluster in the modularity optimal partition, or the (heuristic)
algorithm is indeed deterministic, but deterministically yields a local optimum that is affected
by symmetry. However, in an exploratory setting it is normally unknown (without explicitly
testing) if a graph is symmetric or not.

Of course, we must limit these statements to the experimental conditions (modularity cluster-
ing using a non-deterministic algorithm), but we do not believe that there exists a simple solution
(e.g. using another objective function or algorithm) to fix the issue of unstable partitions. For
instance, for every algorithm that produces more and smaller clusters than modularity optimiza-
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tion methods (e.g. algorithms that allow the number of clusters as an external parameter), the
effect of symmetry can be assumed to increase due to the ideas our naïve classifiers are based
on. Nonetheless, we also could show that symmetry as such not necessarily leads to partition
instability However, instability heavily depends on the locality of this symmetry.

From another point of view, our results could also be used to criticize modularity as a
function for graph clustering partition quality. Fortunato and Castellano (2012, p. 491) says that
“[c]ommunities are groups of vertices which probably share common properties and/or play
similar roles within the graph”. Garlaschelli et al. (2010, p. 1705) asserts that “[t]he modular
structure of real networks can be therefore seen as a symmetry-breaking property”. Clearly, both
statements contradict the results shown in this chapter. However, it is not the goal of this thesis
to criticize modularity, mainly because we believe that other goal functions or optimization
procedures are also affected by graph symmetry.
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8 Conclusion and Outlook

The title of this thesis captures its main goal: Does graph symmetry affect the partition that
results from graph clustering? The road leading to an answer of this question is bumpy, as it
involves numerous theoretical concepts, which are—once understood—not overly hard to get
but are, nevertheless, necessary to bring together the ideas from different scientific disciplines.

Literature concerning graph symmetry, i.e. literature about graph isomorphisms and automor-
phisms, often comes from a purely mathematical community. As a downside for our purpose,
most of the time only very theoretical considerations are in the focus of, e.g., the recognition
of graph symmetry, and literature about symmetry in real-world graphs is scarce. In contrast
to that, publications in the field of data analysis, more specifically, publications on graph clus-
tering/community detection and everything in the closer neighborhood, do not consider graph
symmetry at all. Additionally, possible symmetry effects in data analysis as a whole are mostly
not taken into account at all, which is different to physics, where symmetry is an inherent part
of the entire discipline.

This is why the main part of this thesis started with a very obvious and “practical” analysis,
where the question is answered, if there even exists symmetry in real-world graphs. If the answer
would have been “no”, we could have come to an end, as every theoretical consideration that
followed would have stayed what it is: A theoretical consideration with no practical impact.
Fortunately (in the light of this thesis), it could be shown that many graphs involve a certain
amount of symmetry, which made it worthwhile to further investigate the possible effects.

Before the climax of the thesis, in form of a second (again quite obvious) analysis, was
reached, several theoretical considerations regarding, both, graph symmetry itself and partition
stability in particular, were presented. One important part is the idea to break down the graph
symmetry to the smallest independent “areas” within the graph that are actually affected by
the symmetry. We call this the “locality” of symmetry and later used the idea in the analysis.
Moreover, it is necessary to formally define partition stability concerning symmetry and we
came up with several equivalent stability definitions that all allow slightly different views on
the problem. In short, partition stability means that the graph symmetry does not affect the
partition by exchanging nodes between different clusters. To quantify this effect, additionally an
entropy-based measure was defined.

We finally analyzed a large sample of graphs concerning a symmetry impact and could come
to the conclusion that for more than 10 % of the considered networks there actually exists an
effect. One of the most important contributions of the whole thesis is that partition instability
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can happen counterintuitively, just because a graph is very symmetric and independent of the
locality of symmetry.

To circumvent instability in a practical application context, our theoretical definitions and
tools help to efficiently test a graph clustering partition. This is completely independent of the
origin of the partition (i.e. which algorithm was used). Regarding the generalizability of our
findings, we believe that, on the one hand, further research is needed (e.g. using other algorithms,
other optimization goals etc.); on the other hand, we hope that others will incorporate the idea
that symmetry as such should be considered in (graph) data analysis. Also, it could be worth
trying to explain partition instability in terms of other graph properties—which make the actual
computation of the symmetry group superfluous—or by partition sampling. Besides that, our
experience in the practical application of graph symmetry algorithms (especially saucy) allows
us to state that actually solving this problem is feasible, even for larger graphs.

Furthermore, it could be checked if the graphs with partitions identified as randomly unstable
actually have unstable partitions by a repeated analysis. Another issue we have not addressed
is how existing instability should be handled or interpreted. Ideas could be to simply ignore
instability if the effect is small (measured by the Kolmogorov-Sinai Entropy), to break the
symmetry before any further data analysis is performed, or to use some kind of fuzzy clustering
that allows ambiguous cluster memberships. To summarize, there are roughly two paths of
further research: One that concentrates on the handling and interpretation of symmetry effects,
and one that tries to further refine the understanding of the conditions that cause partition
instability. The latter also implies the need for a deepened understanding of when and why
graph symmetry occurs, whether based on constructive graph models or based on the graphs’
domain of origin. In a wider sense, also symmetry effects in other data analysis areas beyond
graph clustering could be interesting to investigate.
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A Fraction of Affected Nodes for Fixed Normalized
Redundancy

Theorem 18. Given the normalized network redundancy r ′G = λ (for λ ∈ [0, 1]), approximately
a fraction of λ to min{2λ; 1} nodes are affected by Aut(G).

Proof. Let r ′G = 1 − ∣OG ∣−1
n−1 = λ. The cardinality of the orbit partition ∣OG∣ can be written as the

sum of the number of trivial orbits k(l)—the unaffected ones—and the number of non-trivial
orbits l: k(l) + l = ∣ {o ∈ OG ∣ ∣o∣ = 1} ∣ + ∣ {o ∈ OG ∣ ∣o∣ > 1} ∣. All nodes on non-trivial orbits are
affected by Aut(G). It follows that (1− λ)n ≈ k(l)+ l with l ≥ 1, as at least one non-trivial orbit
must exist if Aut(G) is not trivial. So for l = 1, about k(l) ≈ (1− λ)n nodes are unaffected, thus
λn nodes are affected by Aut(G).
As n is fixed, k decreases with increasing l, which means the number of affected nodes

increases. Additionally, n = k(l) + ∑l
i=1 ∣oi ∣ must hold with oi being the non-trivial orbits.

Combining both requirements yields n = (1 − λ)n − l + ∑l
i=1 ∣oi ∣, which can be simplified to

λn = ∑l
i=1(∣oi ∣ − 1). Maximizing the factor l is possible up to ∣oi ∣ = 2,∀i, as any shorter orbit

would be trivial. It follows λn = l, thus k(l) = (1 − λ)n − λn = (1 − 2λ)n nodes are unaffected
by Aut(G) and 2λn nodes are affected. �

Lemma 6. If r ′G = 0.5, possibly all nodes are affected by Aut(G).

Proof. This is a direct consequence of the proof of Theorem 18. �

Example 59. The graph in Figure A.1 has r ′G ≈ 0.5 although all its nodes are affected by
Aut(G) = {1, (1 2)(3 4)(5 6)⋯(n − 1 n)}. The orbit partition isOG = {{1, 2}, {3, 4}, {5, 6}, . . . ,
{n − 1, n}}, which implies r ′G = 1 − n/2−1

n−1 = n/2
n−1 ≈ 0.5 (for large n).

1

2

3

4

5

6 n

Figure A.1: A graph of an even number of nodes n for which the normalized network redundancy does
not capture the high degree of symmetry, as no node is fixed by the automorphism group.
The example shows that the (normalized) redundancy does not distinguish between the
questions how many redundancies exist (r ′G ≈ 0.5 means 50 % of the nodes have a redun-
dant counterpart) and how robust is an existing redundancy (r ′G ≈ 0.5 means 50 % are
structurally identical, therefore redundant, and the other 50 % are not redundant).
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B Graph Symmetry Analysis Procedure

This appendix gives additional and more detailed information concerning the first empirical
analysis. It has the goal to check how many graphs actually contain symmetries, and the main
results are presented in Chapter 4.

The second empirical analysis, which is described in Chapter 7, is based on the same graph
datasets and the same algorithms (saucy and the RG family) are used. Therefore, many
descriptions of this appendix are also related to this second analysis, especially Sections B.1.3–
B.1.5 and, for a brief description of the implementations of the algorithms, also Section B.1.6.

B.1 Detailed Description of the Analysis Procedure

We describe how the analysis of network data from networkrepository.com was performed
in detail. The idea was, according to MacArthur et al. (2008), to compute the symmetries of
the graphs with nauty, but at a much larger scale. During the process, nauty was found to
be too inefficient for larger graphs and we ended up by using saucy instead. Furthermore,
the modularity Q (Newman and Girvan, 2004) should be computed to give a hint how much
clustering structure a network has. As MacArthur et al. (2008), we present the automorphism
group size ∣Aut(G)∣ and the “normalized network redundancy” r ′G (see Equation 4.8).

Because of the large scale of the analysis, Python1 scripts were written to automate the
different sub-tasks:

• Retrieve graph metadata

• Download network data

• Compute properties of the graphs (including modularity and symmetry)

• Calculate basic statistics on the computed results

B.1.1 Graph Metadata

The graph metadata is simply the overview table of all available datasets2 that already contains
attributes extracted from the graphs. However, we do not use these information, as (i) it is often
inaccurately aggregated (e.g. “1K” nodes) and (ii) we do not want to rely on them to eliminate
possible errors. The only information used is (i) the download link to the dataset, (ii) the “Type”
(category) of the dataset, (iii) the “Graph Name”, and (iv) the approximate file size for the
download selection. The result is saved as a comma-separated values (csv) file.

1 https://www.python.org/ as of March 2017, release version 2.7.13 was used
2 http://networkrepository.com/networks.php, as of February 2018
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B.1.2 Download of Network Data

Instead of downloading all available data from networkrepository.com, we decided to down-
load only a subset. The only reason is that the network sizes differ in a wide range. Small
networks only have a couple of nodes and edges and, therefore, have quite small file sizes. For
the largest available networks the number of nodes and edges is sometimes not even reported,
but their file sizes are often several gigabytes (GB). All data is already compressed via standard
zip-archive compression, the graph data formats themselves are plain text. As computation of
modularity and symmetry is very time (and space) consuming for huge graphs, we decided
to download all graphs that have about 70 megabytes (MB) or less in their compressed form.
This may sound quite small compared to the very large available data, but, nevertheless, the
largest graph has about two million nodes already. In total, we downloaded 3015 datasets with
a cumulative size of about 11.5 GB.

B.1.3 Parsing of Network Data

The downloaded datasets are compressed zip-archives, and each of them normally contains at
least two files: First, a readme.html that unfortunately contains only general acknowledgment
references for networkrepository.com (Rossi and Ahmed, 2015) and only rarely further
information on the origin of the network data. Therefore, we did not try to extract any further
information (e.g. references that describe the data) from this file. Also, the detail page of
a dataset (which allows interactive exploration etc., see Section 4.2.1) provides only little
additional information. Second, the remaining file(s) usually describe the network itself and we
observed two (quite similar) data formats.

Matrix Market Exchange Format The first is the so called “MatrixMarket Exchange Format”3
(Boisvert et al., 1996), which is a sparse matrix ASCII file format (file extension .mtx) that
allows several matrix structures. The first line of the text file looks like

%%MatrixMarket matrix <structure type> <field domain> <symmetry type>

where <structure type> is either coordinate (matrix entries ai j are described by their
coordinates i, j) or array (matrix entries are described by a sequence of values and the format
m × n). None of the datasets had array format, so we focus on coordinate.
The <field domain> provides the domain of the matrix entries (real, complex, integer,

or pattern). pattern is of relevance for simple graphs, as only entries of ones are given;
the zero-entries are implicit (this exactly describes an unweighted graph). All other domains
describe weights, which can be dismissed if a graph is simplified.

The last modifier denotes symmetry properties of the matrix and we restrict this to be
symmetric (undirected graph) if we want only simple graphs; general is allowed if a graph
shall be simplified. To sum up, simple graphs have the format
3 http://math.nist.gov/MatrixMarket/formats.html#MMformat as of February 2017
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%%MatrixMarket matrix coordinate pattern symmetric

and the attribute sets for simplifiable graphs are shown in Table B.1.

Graph type <structure type> <field domain> <symmetry type>

Simple graph coordinate pattern symmetric

real or
symmetric or
general

Simplifiable graph coordinate complex or
integer

Table B.1: Differences between the Matrix Market formats for simple graphs and those that can be sim-
plified.

The second line of the text file for the coordinate format holds the information on the matrix
dimensions (m × n) and how many entries (l) the matrix has in the form

<m> <n> <l>

Here, m = n holds, as we have adjacency matrices of graphs. Datasets with m ≠ n were not
analyzed. Comments per line are also possible and start with %. The entry lines simply have the
format

<i> <j>

in the pattern domain mode. If the matrix is determined to be symmetric, additionally i ≥ j

holds, which means ai j = a ji, but only one entry is actually present in the file. If the domain
mode is other than pattern, one line has the format

<i> <j> <w>

with w being the matrix entry ai j = w in the specified domain format. These values are neglected
if a non-simple graph is simplified (i.e. w is set to 1).
The two routines scipy.io.mminfo and scipy.io.mmread were used to parse the Matrix

Market Exchange format.4 scipy.io.mmread returns a matrix that can then be used as input
parameter for a networkx.Graph5.

Edge List Format The second format was unfortunately not documented at all in a “standard”
way. The network data archive file contained (besides the “readme” file) a plain text file with
the extension .edges, in rare cases another file with the extension .nodes was present. No
standard documentation on a graph format that uses these extensions could be found, but, of
course, the semantic of the extensions and the syntax of the file content itself were helpful.

Sometimes the first and also second line contained some metainformation, for example

4 http://scipy.org/scipylib/ as of February 2017, release version 0.18.1 was used
5 http://networkx.github.io/ as of February 2017, release version 1.11 was used
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% directed pos

% 312342 23132 23132

and the remaining lines were two-, three or four-tuples of values, separated by a delimiter (mainly
comma or blank). After some further research, KONECT (The Koblenz Network Collection) was
found (Kunegis, 2013), which is yet another online network repository. In the official handbook
(Kunegis, 2014, chapter 9), a graph data format is described that mostly matches how the .edges
files are structured in the first two lines (taken from Kunegis, 2014, p. 47):

% FORMAT WEIGHTS

% RELATIONSHIP-COUNT SUBJECT-COUNT OBJECT-COUNT

The FORMAT is either sym (symmetric adjacency matrix, undirected edges), asym (asymmetric
adjacency matrix, directed edges) or bip (bipartite graph, undirected edges) and WEIGHTS
are either unweighted or one of eight other possibilities, which we do not mention here,
as they all imply weighted edges and/or multiple edges. The second line is optional and
RELATIONSHIP-COUNT is the number of edges, SUBJECT-COUNT and OBJECT-COUNT are the
number of nodes in the two node sets V1 and V2 of bipartite graphs or simply the total number
of nodes for non-bipartite graphs.

The following lines contain the edges in the form

FROM_ID TO_ID WEIGHT TIMESTAMP

The last two columns are optional. The column delimiter can be “any sequence of whitespace”
(Kunegis, 2014, p. 47). Dynamic networks (i.e. edges are added/removed over time) are modeled
by giving weights −1 or 1 and usually the timestamp of change.

It appeared to be problematic that not every .edges file follows this format strictly. Fur-
thermore, node ids for bipartite graphs are not unique due to a subsequent increase from 1 to
n = ∣V1∣ + ∣V2∣, instead they are numbered from 1 to ∣V1∣ (FROM_ID) and from 1 to ∣V2∣ (TO_ID).
This had to be handled before creating the graph data structure.

If a .nodes file is present, the information that can be found in this file are used as well.
Mostly datasets from the chem category have this file, which contains additional node labels/
colors. This information is used as input for saucy as initial partition for the search procedure.

Format Issues As described above, sometimes it was not easy to correctly parse the graph
data. The Matrix Market Exchange Format was relatively easy to parse, only sometimes files
started with %MatrixMarket instead of %%MatrixMarket. We solved this issue by simply
adding the missing character automatically before loading the data by the described functions
scipy.io.mminfo and scipy.io.mmread.

Problems with the edge list format were much more substantial: Some files did not have a
“header” (the first and sometimes second line) but began directly with the first edge. Other
datasets used invalid (in terms of the KONECT graph format) modifiers like bipartite instead
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of bip or undirected instead of sym. Additionally, sometimes other column delimiters (mostly
commas) instead of whitespace characters were used to separate the columns, or the third column
contained timestamps (which is also not allowed in the KONECT graph format). To overcome
these issues, a custom parser was written that only accepts files as simple graphs that either had

• no header and a simple (two column) edge list,

• a header with FORMAT bip unweighted or bipartite unweighted and a simple edge
list,

• a header with FORMAT sym unweighted, symmetric unweighted, or undirected
unweighted and a simple edge list,

• a header or not (according to the rules above) and a three column edge list, where the third
column’s values are timestamps, not weights.

For bipartite graphs we shifted all node ids in the TO_ID column by ∣V1∣ to have unique node
ids in total. After this procedure, the nodes from the two disjoint node sets V1 and V2 are not
distinguished anymore, even though for networks that are explicitly modeled bipartite in terms
of the data format. Nodes from the two disjoint node sets normally represent different real-world
entities (e.g. users and products for a recommendation network).

All these inaccuracies coming from the datasets led to the decision to write our own parser,
which is capable to precisely distinguish graphs that are simple from those that are not, but can
be simplified.

B.1.4 Data Selection

The decision which of the datasets to use for the actual analysis was not as easy as first thought.
As mentioned in Section 2.1, we want to focus on simple graphs only. The naïve approach is to
exclude every graph that is not simple, i.e. which is weighted, directed, contains multiple edges
(or combinations of those) etc., and/or is disconnected. The disadvantage is that a lot of graphs
would drop out of the analysis.

Another way to deal with a non-normal graph is to “normalize” it. If the adjacency matrix
is asymmetric (i.e. the graph is directed), the “missing” entries on the right upper/left lower
triangle can be filled in. If the graph is weighted, all non-zero weighted edges can be changed
to have weight one; loops can be removed. All these procedures transform a non-simple graph
into a simple one (so did, e.g., MacArthur et al., 2008). This can be interpreted as keeping
the structure of the graph and relaxing the “additional properties” (see Section 3.2.1). If a
network is disconnected, the largest connected component (the largest connected subgraph) can
be extracted.

In terms of clustering, turning directed edges into undirected ones is the least invasive
transformation (except for algorithms that explicitly work on directed graphs). The directions
add no additional information on how dense a local area in the graph is. Therefore, clustering
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algorithms that have the maximization of local density as part of their procedure (implicitly or
explicitly) are not influenced by this transformation.

Similarly, dropping the explicit information of the two node sets in bipartite graphs does not
influence the clustering result at all. One might think that it is not a good idea to “mix” the
different real-world entities represented by the disjoint sets. But in the end, (unsupervised)
clustering is about finding a partition of the graph that separates the nodes in a certain way and
the entity information can be used after the clustering for a proper interpretation of the results.

The relaxation of edge weights regarding graph clustering has much more influence. Some
algorithms can directly deal with weights, others can normally be extended to take weights into
account (e.g. the modularity definition can be modified for weighted (undirected) graphs). The
weights are an essential property, as they express the strength of a relation. Relaxing themwould
highly influence the expected result.

All in all, we decided to split the analysis into two parts, one that only uses the simple graphs
and another that uses the remaining connected non-simple graphs, which are simplified before
the analysis is performed.

B.1.5 Duplicate Cleaning

It was quite difficult to recognize duplicated network datasets, as there are several sources of
confusion. The following explanations are for the datasets that can be obtained directly from
networkrepository.com.

1. The first class of duplicates are networks that are in more than one category but have the
same name. The caveat with cleaning those is that the statistics of results grouped by
category would be biased, as the “true” unique category is unknown.

2. Less obvious are independently duplicated datasets (probably resulting fromdifferent users
contributing the same network without recognizing it already exists). These duplicates do
not have the same name (e.g. “karate” and “soc-karate” or “movielens-10m-ui” and “rec-
movielens-user-movies-10m”) andmay be in the same or in different categories. However,
they can be recognized by comparing properties (such as node/edge count, automorphism
group size, number of generators, etc.), which must have the same values. Again, the
problem of biased statistics emerges if the duplicates are in different categories.

3. The third class contains (non-)duplicates that are even harder to recognize. They all seem
to be “false positives”, which means that they have similar but different names and the
same properties. This phenomenon emerges from the fact that all the given properties
are computed for undirected and unweighted graphs. Therefore, they are all exactly
equal as for structurally isomorphic graphs, even if the graphs are not isomorphic when
taking directions/weights/. . . into account. For instance, the two graphs “s3dkt3m2” and
“s4dkt3m2” look like duplicates, but the first one is weighted; the second one is structurally
the same, but unweighted.
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Because of the described difficulties, we dropped networks using a semi-automatic procedure,
which is described in Section 4.2.3, andwe did this only for statistics on the complete dataset. We
further grouped networks by their category/type (see next section) and dropped duplicates after
the grouping and per group. This means duplicates in different categories are kept, duplicates
in the same category are removed.

B.1.6 Analysis Procedure

For each network several properties were gathered. Trivial properties like the number of nodes
n and the number of edges m are, of course, directly available “for free”, quite similar to the
density of the graph (see Equation 2.29). Furthermore, we use the name of a network (the
name of the file containing the data) to identify graphs (or detect duplicates). And because we
concentrate on graph clustering and symmetries in graphs, we compute the modularity value Q

(see Equation 2.104) and use saucy to compute the automorphism group.
To get Q, we use the “original” C++ implementation of the RG algorithm (Ovelgönne and

Geyer-Schulz, 2010) and pick the best result from a total of ten runs. For a better integration, a
Python extension called pycggcrg6 was developed, which allows to call the different algorithms
(RG, CGGCRG, CGGCRGi) directly from Python.
saucy7 is called through our own Python binding pysaucy8, the result is a seven-tuple:

group size base and group size exponent As permutation groups can become quickly
quite large, these two values represent the group order ∣Aut(G)∣ as group size base ×
10group size exponent. The value of group size base is a floating point number, group
size exponent an integer.

levels Indicates the maximum depth of the search tree (see Section 3.4).

nodes The number of executed partition refinements.

bads The number of times saucy needed to actually backtrack.

number of generators The size of the generating set ∣S∣.

support The sum of the support of all generators ∑s∈S supp (s).

orbits A Python list o of length n, where o[i] is some integer that is the orbit id of node i.
Nodes on the same orbit have, of course, the same id.

All return values, except the last one, are directly returned by saucy itself. saucy provides the
possibility to call a user-defined function every time a new generator is found (i.e. a “callback
function”). This mechanism is used to compute the orbit partition as list of orbit ids in an

6 https://github.com/KIT-IISM-EM/pycggcrg, as of February 2018, release version 0.2.3 was used
7 http://vlsicad.eecs.umich.edu/BK/SAUCY/ as of February 2018, release version 3 was used
8 https://github.com/KIT-IISM-EM/pysaucy, as of February 2018, release version 0.3.1 was used
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iterative manner within pysaucy. From the returned values, only the group size and the length
of the orbit partition is used for the further analysis.

All these properties are extracted by running a Python script, which is also responsible for
loading the data (parsing) and selecting which networks to use. The result is a csv-file containing
the described information (namely name, n, m, density, modularity, aut_group_size,
aut_group_size_exp, num_generators, num_orbits; the first line is a column header, the
following lines represent the analyzed data). This script is executed for the simple graphs and
the non-simple graphs separately. The simplification is also performed by this script.

Another script was then used to compute statistics on the extracted data (see the next section).
To recover the categories of the networks, we combine the data with the information that is
directly obtained from networkrepository.com (these attributes were also used to create
Table 4.1). For the data processing pandas9 in combination with numpy10 is used.

B.2 Detailed Results

This section provides some more detailed results for each individual category/type. Therefore,
we provide for both analyses (on simple and simplified graphs) the tables of standard descriptive
statistics. All the tables have the same format as Table 4.2 in Chapter 4. Some tables involve
“nan” values (“not a number”), which emerge from the inability to compute the standard deviation
for categories that contain only one analyzed graph.

B.2.1 Simple Graphs

n m ρ Q r ′G ∣Aut(G)∣

count 36 36 36 36 36 36
mean 1042.5000 6.5212 × 105 0.8653 0.0071 0 1
std 620.5700 1.2043 × 106 0.0251 0.0022 0 0
min 450 83,151 0.8231 0.0028 0 1
25% 595 1.4887 × 105 0.8424 0.0054 0 1
50% 945 3.8748 × 105 0.8687 0.0066 0 1
75% 1272 7.1408 × 105 0.8834 0.0090 0 1
max 4000 7.4252 × 106 0.9284 0.0115 0 1

Table B.2: Analysis statistics for category “bhoslib” on networkrepository.com: 36 of the 36 ana-
lyzed graphs are asymmetric

9 http://pandas.pydata.org/ as of March 2017, release version 0.19.2 was used
10 http://www.numpy.org/ as of March 2017, release version 1.12.0 was used
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n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

std nan nan nan nan nan nan
min 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

25% 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

50% 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

75% 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

max 7393 25,569 0.0009 0.4196 0.1444 6.1562 × 10482

Table B.3: Analysis statistics for category “bio” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 5 5 5 5 5 5
mean 3.2880 × 105 3.7294 × 106 3.9911 × 10−5 0.8351 0.3221 3.4402 × 10180,274

std 1.2820 × 105 6.4390 × 106 3.6608 × 10−5 0.0404 0.1210 7.6927 × 10180,274

min 2.2641 × 105 7.1646 × 105 1.4829 × 10−5 0.7864 0.2187 2.2864 × 1026,554

25% 2.2732 × 105 8.1413 × 105 2.0885 × 10−5 0.8064 0.2637 1.2879 × 1029,719

50% 3.1708 × 105 8.2064 × 105 2.7953 × 10−5 0.8458 0.2834 4.7476 × 1031,831

75% 3.3269 × 105 1.0499 × 106 3.1510 × 10−5 0.8464 0.3155 8.7666 × 1033,586

max 5.4049 × 105 1.5246 × 107 0.0001 0.8906 0.5293 1.7201 × 10180,275

Table B.4: Analysis statistics for category “ca” on networkrepository.com: 0 of the 5 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 575 575 575 575 575 575
mean 32.3500 62.0260 0.1616 0.5733 0.1199 61.1510
std 15.0450 25.6430 0.1130 0.1128 0.1182 772.9400
min 2 1 0.0182 −2.7756 × 10−17 0 1
25% 22 43 0.0975 0.5241 0.0303 2
50% 31 59 0.1307 0.5971 0.0930 4
75% 41 82 0.1917 0.6483 0.1739 16.0000
max 125 149 1 0.7677 1 18,432

Table B.5: Analysis statistics for category “chem” on networkrepository.com: 96 of the 575 ana-
lyzed graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 78 78 78 78 78 78
mean 644.4100 3.2093 × 105 0.6648 0.0934 0.3023 3.8856 × 10689

std 724.0100 9.3042 × 105 0.2425 0.1789 0.4566 3.4316 × 10690

min 28 210 0.0357 9.6794 × 10−5 0 1
25% 200 15,591 0.5012 0.0127 0 1
50% 400 57,775 0.7001 0.0228 0 1
75% 800 2.0746 × 105 0.8989 0.0471 0.9614 40,320
max 4000 5.5064 × 106 0.9988 0.8055 1 3.0308 × 10691

Table B.6: Analysis statistics for category “dimacs” on networkrepository.com: 54 of the 78 ana-
lyzed graphs are asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 45 45 45 45 45 50
mean 1.9897 × 106 4.0216 × 106 0.0054 0.9119 0.0702 1.4723 × 10198,709

std 3.2674 × 106 5.7674 × 106 0.0342 0.1168 0.2018 1.0411 × 10198,710

min 39 170 1.7801 × 10−7 0.2598 0 1
25% 32,768 89,440 1.4305 × 10−6 0.8880 0 1
50% 2.1476 × 105 8.1413 × 105 4.5772 × 10−5 0.9149 0 1
75% 2.2167 × 106 7.0140 × 106 0.0002 0.9870 0.0069 48.0000
max 1.1951 × 107 2.5166 × 107 0.2294 0.9987 0.9772 7.3617 × 10198,710

Table B.7: Analysis statistics for category “dimacs10” on networkrepository.com: 30 of the 45
analyzed graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 5 5 5 5 5 5
mean 31,908 1.2050 × 105 0.0376 0.4642 0.3517 8.5050 × 1041,955

std 37,362 1.5268 × 105 0.0794 0.1848 0.3159 1.9018 × 1041,956

min 32 89 8.5032 × 10−5 0.2862 0.0387 4
25% 1266 6451 0.0001 0.3345 0.0645 3.0298 × 1018

50% 32,430 54,397 0.0003 0.3867 0.4011 3.8484 × 1014,520

75% 33,696 1.8081 × 105 0.0081 0.5936 0.4469 2.2605 × 1035,904

max 92,117 3.6077 × 105 0.1794 0.7199 0.8070 4.2525 × 1041,956

Table B.8: Analysis statistics for category “ia” on networkrepository.com: 0 of the 5 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 4 4 4 4 4 5
mean 2.4340 × 106 2.8306 × 106 0.0001 0.9774 0.0350 2.6048 × 1011,227

std 2.9453 × 106 3.0079 × 106 0.0003 0.0305 0.0414 5.8245 × 1011,227

min 4941 6594 3.1376 × 10−7 0.9319 0.0043 5.1851 × 10152

25% 8.1691 × 105 1.1578 × 106 1.1595 × 10−6 0.9742 0.0155 2.3742 × 103804

50% 1.5223 × 106 2.1510 × 106 2.0240 × 10−6 0.9899 0.0198 2.3742 × 103804

75% 3.1394 × 106 3.8238 × 106 0.0001 0.9931 0.0392 1.4304 × 106080

max 6.6865 × 106 7.0140 × 106 0.0005 0.9977 0.0962 1.3024 × 1011,228

Table B.9: Analysis statistics for category “inf” on networkrepository.com: 0 of the 4 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 146 146 146 146 146 151
mean 5.8136 × 105 1.2644 × 106 0.0178 0.6722 0.1771 3.8026 × 102,517,004

std 1.7977 × 106 3.5403 × 106 0.0377 0.2928 0.3220 4.6728 × 102,517,005

min 23 27 1.8548 × 10−7 0.0971 0 1
25% 1000 5910.2000 8.2713 × 10−5 0.3782 0 1
50% 4941 19,990 0.0010 0.8112 0 1
75% 1.0813 × 105 3.4393 × 105 0.0139 0.9171 0.2084 480.0000
max 1.1549 × 107 2.5166 × 107 0.2294 0.9977 1 5.7420 × 102,517,006

Table B.10: Analysis statistics for category “misc” on networkrepository.com: 81 of the 146 ana-
lyzed graphs are asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

std nan nan nan nan nan nan
min 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

25% 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

50% 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

75% 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

max 91,813 1.2570 × 105 2.9825 × 10−5 0.9895 0.0758 3.3631 × 102037

Table B.11: Analysis statistics for category “rec” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 2 2 2 2 2 2
mean 5.5860 × 105 1.1417 × 106 0.0002 0.6449 0.7705 1.6312 × 10671,985

std 7.8362 × 105 1.6081 × 106 0.0003 0.0231 0.2054 2.3068 × 10671,985

min 4497 4616 3.6812 × 10−6 0.6286 0.6253 2.8427 × 109652

25% 2.8155 × 105 5.7318 × 105 0.0001 0.6368 0.6979 2.8427 × 109652

50% 5.5860 × 105 1.1417 × 106 0.0002 0.6449 0.7705 3.2623 × 10671,985

75% 8.3565 × 105 1.7103 × 106 0.0003 0.6531 0.8431 3.2623 × 10671,985

max 1.1127 × 106 2.2789 × 106 0.0005 0.6613 0.9157 3.2623 × 10671,985

Table B.12: Analysis statistics for category “rt” on networkrepository.com: 0 of the 2 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 3 3 3 3 3 3
mean 2.8461 × 106 9.9127 × 106 0.0005 0.9157 0.4033 1.1624 × 1024,589

std 4.8000 × 106 1.3246 × 107 0.0005 0.0617 0.3543 2.0134 × 1024,589

min 54,870 1.3112 × 106 7.1525 × 10−7 0.8781 0 1
25% 74,882 2.2861 × 106 0.0004 0.8801 0.2730 1
50% 94,893 3.2610 × 106 0.0007 0.8821 0.5459 4.3346 × 1012,764

75% 4.2418 × 106 1.4213 × 107 0.0008 0.9345 0.6050 3.4873 × 1024,589

max 8.3886 × 106 2.5166 × 107 0.0009 0.9870 0.6641 3.4873 × 1024,589

Table B.13: Analysis statistics for category “sc” on networkrepository.com: 1 of the 3 analyzed
graphs is asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 18 18 18 18 18 18
mean 4.9906 × 105 2.2585 × 106 0.0125 0.5304 0.3340 1.4911 × 101,777,025

std 6.2574 × 105 2.1664 × 106 0.0373 0.1550 0.2051 6.3260 × 101,777,025

min 34 78 2.4873 × 10−6 0.2795 0.0328 4
25% 91,879 4.4732 × 105 1.1066 × 10−5 0.3783 0.2106 3.0142 × 109994

50% 3.0066 × 105 2.0150 × 106 2.5711 × 10−5 0.5625 0.2955 1.5698 × 10110,447

75% 6.1329 × 105 3.1397 × 106 0.0003 0.6627 0.4320 1.4463 × 10400,685

max 2.5234 × 106 7.9188 × 106 0.1390 0.7327 0.7861 2.6839 × 101,777,026

Table B.14: Analysis statistics for category “soc” on networkrepository.com: 0 of the 18 analyzed
graphs are asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 29 29 29 29 29 29
mean 15,239 5.4513 × 105 0.0134 0.4069 0.0360 1.4729 × 106172

std 15,144 4.8493 × 105 0.0135 0.0955 0.1832 7.9316 × 106172

min 1446 2981 0.0004 0.3028 0 1
25% 3068 1.1916 × 105 0.0030 0.3626 0.0004 8
50% 9885 4.8222 × 105 0.0085 0.3868 0.0011 5.8982 × 105

75% 22,900 8.3595 × 105 0.0220 0.4235 0.0019 4.8318 × 109

max 63,392 1.5907 × 106 0.0570 0.8087 0.9882 4.2714 × 106173

Table B.15: Analysis statistics for category “socfb” on networkrepository.com: 4 of the 29 ana-
lyzed graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 6 6 6 6 6 6
mean 3.3703 × 105 2.0075 × 106 0.0004 0.6789 0.3019 5.1937 × 10258,834

std 6.6827 × 105 4.4566 × 106 0.0008 0.1475 0.1527 1.2722 × 10258,835

min 7476 53,381 7.7265 × 10−6 0.4721 0.1501 4.6242 × 10655

25% 29,897 63,988 4.3898 × 10−5 0.5941 0.2014 4.8567 × 107282

50% 51,362 1.1650 × 105 9.0553 × 10−5 0.6725 0.2386 2.3575 × 1019,475

75% 1.5883 × 105 4.9268 × 105 0.0001 0.7964 0.4313 6.5455 × 1020,197

max 1.6946 × 106 1.1094 × 107 0.0020 0.8507 0.4995 3.1162 × 10258,835

Table B.16: Analysis statistics for category “tech” on networkrepository.com: 0 of the 6 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

std nan nan nan nan nan nan
min 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

25% 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

50% 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

75% 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

max 6809 4.7145 × 106 0.2034 0.1424 0.2936 6.4900 × 101052

Table B.17: Analysis statistics for category “tscc” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 9 9 9 9 9 9
mean 3.1374 × 105 2.8476 × 106 0.0008 0.9017 0.6526 5.2232 × 10406,573

std 6.0295 × 105 4.1827 × 106 0.0011 0.1686 0.2954 1.5670 × 10406,574

min 3031 6474 2.5933 × 10−6 0.4743 0.0818 6.6973 × 10181

25% 11,358 37,375 5.5341 × 10−5 0.9349 0.6986 6.8272 × 103909

50% 1.2142 × 105 3.3442 × 105 0.0002 0.9522 0.7323 7.4476 × 1046,073

75% 1.6360 × 105 4.5073 × 106 0.0014 0.9948 0.7775 3.9497 × 10230,509

max 1.8644 × 106 1.1744 × 107 0.0033 0.9976 0.9970 4.7009 × 10406,574

Table B.18: Analysis statistics for category “web” on networkrepository.com: 0 of the 9 analyzed
graphs are asymmetric
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B.2.2 Simplified Graphs

n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

std nan nan nan nan nan nan
min 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

25% 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

50% 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

75% 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

max 453 2025 0.0198 0.4308 0.0752 1.9327 × 1010

Table B.19: Analysis statistics for category “bio” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 2 2 2 2 2 2
mean 644.5000 53,450 0.4348 0.1419 0 1
std 610.2300 52,836 0.3929 0.1285 0 0
min 213 16,089 0.1570 0.0511 0 1
25% 428.7500 34,770 0.2959 0.0965 0 1
50% 644.5000 53,450 0.4348 0.1419 0 1
75% 860.2500 72,130 0.5737 0.1873 0 1
max 1076 90,811 0.7126 0.2328 0 1

Table B.20: Analysis statistics for category “bn” on networkrepository.com: 2 of the 2 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 5 5 5 5 5 5
mean 1.4280 × 106 2.4781 × 106 0.0008 0.8642 0.4657 1.5677 × 10175,224

std 2.9421 × 106 2.7727 × 106 0.0014 0.1099 0.2786 3.5056 × 10175,224

min 36,417 2.2451 × 105 3.1376 × 10−7 0.6967 0.0043 3.1392 × 10882

25% 41,731 2.5881 × 105 5.1685 × 10−5 0.8561 0.4484 2.3742 × 103804

50% 49,989 2.1542 × 106 0.0002 0.8579 0.5106 6.0441 × 106232

75% 3.2556 × 105 2.7390 × 106 0.0003 0.9126 0.6609 1.9621 × 109356

max 6.6865 × 106 7.0140 × 106 0.0032 0.9977 0.7045 7.8387 × 10175,224

Table B.21: Analysis statistics for category “dimacs10” on networkrepository.com: 0 of the 5 ana-
lyzed graphs are asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 6 6 6 6 6 6
mean 12,924 30,798 0.0999 0.3871 0.3001 8.5315 × 1017,077

std 19,979 45,456 0.1522 0.3086 0.3589 2.0898 × 1017,078

min 113 2196 8.9348 × 10−5 0.0892 0 1
25% 350 4196.5000 0.0003 0.1371 0.0306 288.0000
50% 3854 7358 0.0089 0.3359 0.2219 1.6738 × 107505

75% 15,555 37,960 0.1802 0.5459 0.4033 1.3023 × 109798

max 51,083 1.1657 × 105 0.3470 0.8747 0.9260 5.1189 × 1017,078

Table B.22: Analysis statistics for category “dynamic” on networkrepository.com: 1 of the 6 ana-
lyzed graphs is asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 5 5 5 5 5 5
mean 95.2000 1371.4000 0.2889 0.1556 0.0220 21.2000
std 33.6850 762.4000 0.0545 0.0201 0.0204 24.6310
min 54 350 0.2446 0.1217 0 1
25% 69 880 0.2553 0.1578 0 1
50% 97 1446 0.2591 0.1583 0.0313 8
75% 128 2075 0.3106 0.1671 0.0394 48.0000
max 128 2106 0.3751 0.1733 0.0394 48.0000

Table B.23: Analysis statistics for category “eco” on networkrepository.com: 2 of the 5 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 167 3250 0.2345 0.1167 0.0422 288.0000
std nan nan nan nan nan nan
min 167 3250 0.2345 0.1167 0.0422 288.0000
25% 167 3250 0.2345 0.1167 0.0422 288.0000
50% 167 3250 0.2345 0.1167 0.0422 288.0000
75% 167 3250 0.2345 0.1167 0.0422 288.0000
max 167 3250 0.2345 0.1167 0.0422 288.0000

Table B.24: Analysis statistics for category “ia” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

std nan nan nan nan nan nan
min 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

25% 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

50% 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

75% 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

max 6.6865 × 106 7.0140 × 106 3.1376 × 10−7 0.9977 0.0043 2.3742 × 103804

Table B.25: Analysis statistics for category “inf” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 754 754 754 754 754 754
mean 63,715 6.9753 × 105 0.0155 0.7422 0.4205 2.4614 × 107,237,014

std 1.7938 × 105 1.5414 × 106 0.0684 0.1927 0.3687 6.7587 × 107,237,015

min 16 46 2.0407 × 10−6 2.0579 × 10−14 0 1
25% 2423.5000 14,092 0.0004 0.6636 0.0021 2
50% 11,233 1.0670 × 105 0.0017 0.7986 0.4886 1.2160 × 1017

75% 45,150 5.6556 × 105 0.0074 0.8814 0.7600 1.0694 × 101593

max 1.7548 × 106 1.6138 × 107 1 0.9963 1 1.8559 × 107,237,017

Table B.26: Analysis statistics for category “misc” on networkrepository.com: 159 of the 754 ana-
lyzed graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 3 3 3 3 3 3
mean 1.1770 × 105 1.0012 × 107 0.0021 0.3151 0.0547 1.9422 × 1010,036

std 89,524 7.2109 × 106 0.0018 0.0726 0.0563 3.3639 × 1010,036

min 61,989 2.8115 × 106 0.0007 0.2340 0.0010 2.2218 × 1038

25% 66,072 6.4014 × 106 0.0011 0.2855 0.0254 2.2218 × 1038

50% 70,155 9.9913 × 106 0.0015 0.3371 0.0498 3.3507 × 109619

75% 1.4556 × 105 1.3612 × 107 0.0028 0.3556 0.0816 5.8267 × 1010,036

max 2.2097 × 105 1.7233 × 107 0.0041 0.3741 0.1134 5.8267 × 1010,036

Table B.27: Analysis statistics for category “rec” on networkrepository.com: 0 of the 3 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 29 29 29 29 29 29
mean 6067 7893.9000 0.0005 0.7069 0.7268 3.8621 × 1029,975

std 3318.4000 8060.6000 0.0003 0.1953 0.1744 2.0798 × 1029,976

min 2139 2464 0.0002 0.1993 0.4039 6.4446 × 101286

25% 3698 4435 0.0003 0.6459 0.5897 9.8489 × 102883

50% 4904 6385 0.0005 0.7808 0.7244 1.6607 × 104250

75% 7974 8534 0.0007 0.8348 0.8954 5.2621 × 1012,323

max 18,470 48,053 0.0012 0.9053 0.9808 1.1200 × 1029,977

Table B.28: Analysis statistics for category “rt” on networkrepository.com: 0 of the 29 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 6 6 6 6 6 6
mean 1.1939 × 105 3.8734 × 105 0.0807 0.3587 0.3110 6.7128 × 10670,798

std 1.7313 × 105 3.1315 × 105 0.1972 0.1646 0.2735 1.6443 × 10670,799

min 16 58 7.7094 × 10−6 0.1547 0 1
25% 28,824 1.5382 × 105 0.0001 0.3087 0.2056 2.2670 × 1010,415

50% 78,240 4.6852 × 105 0.0002 0.3147 0.2088 2.2324 × 1011,246

75% 81,406 4.9547 × 105 0.0005 0.3879 0.3971 1.0998 × 1012,189

max 4.6502 × 105 8.3354 × 105 0.4833 0.6494 0.7838 4.0277 × 10670,799

Table B.29: Analysis statistics for category “soc” on networkrepository.com: 1 of the 6 analyzed
graphs is asymmetric
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n m ρ Q r ′G ∣Aut(G)∣

count 1 1 1 1 1 1
mean 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

std nan nan nan nan nan nan
min 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

25% 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

50% 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

75% 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

max 10,680 24,316 0.0004 0.8780 0.2562 4.4963 × 101251

Table B.30: Analysis statistics for category “tech” on networkrepository.com: 0 of the 1 analyzed
graphs are asymmetric

n m ρ Q r ′G ∣Aut(G)∣

count 2 2 2 2 2 2
mean 3.2564 × 105 1.9145 × 106 3.6117 × 10−5 0.9246 0.5787 1.9909 × 10246,936

std 121.6200 1.1659 × 106 2.2017 × 10−5 0.0170 0.0964 2.8156 × 10246,936

min 3.2556 × 105 1.0901 × 106 2.0549 × 10−5 0.9126 0.5106 7.8387 × 10175,224

25% 3.2560 × 105 1.5023 × 106 2.8333 × 10−5 0.9186 0.5446 7.8387 × 10175,224

50% 3.2564 × 105 1.9145 × 106 3.6117 × 10−5 0.9246 0.5787 3.9818 × 10246,936

75% 3.2569 × 105 2.3268 × 106 4.3901 × 10−5 0.9306 0.6128 3.9818 × 10246,936

max 3.2573 × 105 2.7390 × 106 5.1685 × 10−5 0.9367 0.6468 3.9818 × 10246,936

Table B.31: Analysis statistics for category “web” on networkrepository.com: 0 of the 2 analyzed
graphs are asymmetric

205



Appendices

C Dependency of Modularity and Density

Theorem 19 (Maximum modularity in dependence of the density). The maximum modularity
of a graph is bounded by its density in the form Q ≤ 1 − ρ.

Proof. Fortunato and Barthélemy (2007) show that a graph with maximum modularity can be
constructed as a cycle of k ≥ 3 connected and equal sized cliques. Such a graph has m = k ⋅(n′

2)+k

edges, where n′ ≥ 2 is the number of nodes per clique. n′ = 1 and k = 1 are not valid solutions
(see Section 2.5.1.1). Modularity yields

Q(n′, k) ∶= k ⋅
⎡⎢⎢⎢⎢⎢⎣
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−
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(C.1)

For k = 2 one would find Q2(n′) ∶= (n
′

2 )
(n′2 )+

1
2
− 1

2 , as m = 2(n′
2) + 1. With n = k ⋅ n′ we have

ρ = m
(n

2)
=

k(n′
2) + k

(kn′)⋅(kn′−1)
2

=
n′(n′−1)

2 + 1
n′(kn′−1)

2

= n′(n′ − 1) + 2
n′(kn′ − 1)

(C.2)

for k ≥ 3 and

ρ2 =
m
(n

2)
=

2(n′
2) + 1

(2n′)⋅(2n′−1)
2

= n′(n′ − 1) + 1
n′(2n′ − 1)

(C.3)

for k = 2, respectively.
Clearly, Q(n′, k) < 1 − 1

k C Q′(k), thus Q′ ≤ 1 − ρ Ô⇒ Q ≤ 1 − ρ and if follows

1 − 1
k
≤ 1 − n′(n′ − 1) + 2

n′(kn′ − 1)
(C.4)

⇐⇒ 1
k
≥ n′(n′ − 1) + 2

n′(kn′ − 1)
(C.5)

⇐⇒ kn′2 − n′

k
≥ n′2 − n′ + 2 (C.6)

⇐⇒ −n′

k
≥ −n′ + 2 (C.7)

⇐⇒ n′

n′ − 2
≤ k (C.8)

which is true for n′ ≥ 3, as n′
n′−2 ≤ 3 ≤ k.
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For n′ = 2 follows

Q(2, k) = 1
2
− 1

k
≤ 1 − 2

2k − 1
(C.9)

⇐⇒ 2
2k − 1

− 1
k
≤ 1

2
(C.10)

⇐⇒ 4
2k − 1

≤ k + 2
k

(C.11)

⇐⇒ 4k ≤ (k + 2)(2k − 1) (C.12)

⇐⇒ 0 ≤ 2k2 − k − 2, (C.13)

which holds for k ≥ 3.
Finally, for k = 2 follows (again, Q2(n′) < 1 − 1

k = 1
2 )

Q2(n′) ≤ 1 − ρ2 (C.14)

⇐⇒ 1
2
≤ 1 − n′(n′ − 1) + 1

n′(2n′ − 1)
(C.15)

⇐⇒ n′(n′ − 1) + 1
n′(2n′ − 1)

≤ 1
2

(C.16)

⇐⇒ 2n′(n′ − 1) + 2 ≤ n′(2n′ − 1) (C.17)

⇐⇒ 2(n′)2 − 2n′ + 2 ≤ 2(n′)2 − n′ (C.18)

⇐⇒ 2 ≤ n′ (C.19)

which is true, as we argued above. �

Figure C.1 exemplarily shows the proved relation between modularity and density. However,
this is not a very tight upper bound, as there are many networks for which Q ≪ 1 − ρ.

D Algorithms

In Algorithms 3 and 4 a hashmap is used, which is a surjective mapping of a set of keys to their
corresponding values. For a hashmap H , H[k] returns the value v the key k maps to. Due to
surjectivity, it is possible that ∃k1 ≠ k2 ∶ H[k1] = H[k2]. The operation k ∈ H tests if the key k

maps to some value in H .

D.1 Create Orbit Partition from Generators

Algorithm 2 shows an efficient implementation of the computation of the orbit partition from
a set of generators. The idea is to color all nodes that are on the same orbit by successively
iterating over the cycles of each generator, starting from a given node. Nodes on the same orbit
are used as starting points in the next iteration. This procedure follows a breath-first search
strategy. Coloring simply means to set a cluster id for each node; all nodes on the same orbit
have the same color.
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Figure C.1: Scatterplot between the modularity Q and density ρ of the simple graphs from network-
repository.com that are analyzed. The drawn line represents the relation ρ = 1 − Q for
Q ∈ [0, 1] and the points (Q(G), ρ(G)) lie below or onto this line for all graphs G, as a
consequence of Theorem 19.

When a cycle of a permutation g is explored, for each node i on that cycle the tuple (i, g) is
added to the set U to prevent that the same cycle is repeatedly explored. This allows us to give
an upper bound for the time complexity of Algorithm 2.

1. The outer loop is in O(n) (Algorithm 2, lines 4–27).

2. Initializations of O, c, N , and U are all in O(1) or O(n) (Algorithm 2, lines 2, 3, 6, 7).

• If a node is already colored, no work is performed (Algorithm 2, line 5).

• If a node is uncolored, all equivalent nodes are determined by a successive search
(Algorithm 2, lines 8–27, the inner loop).

3. The search starts from a given node j and iterates over all s ∶= ∣S∣ generators. It is,
therefore, in O(s) (Algorithm 2, lines 13–25).

• If the cycle of a permutation was already explored, it is skipped (set insertion/lookup
is normally in O(1)) (Algorithm 2, line 14).

• Otherwise, the cycle is explored; i.e. each uncolored node is colored and added to
the set of new starting points for the search (Algorithm 2, lines 15–25).

4. A permutation can consist of at most n/2 cycles and each is guaranteed to be explored
only once, independent of the starting node i.

Combining all the facts results in an overall worst case complexity of O(s ⋅ n
2) = O(sn), as

over time each cycle is explored at most once. This is an upper bound, as an early exit may be
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possible (Algorithm 2, line 26) if all nodes are already colored, even if not every cycle needed
to be explored.

Algorithm 2 Compute the orbit partition O from a set of generators
Require: S is a set of generators for Aut(G), i.e. ⟨S⟩ = Aut(G); n is the number of nodes of G

1: function computeOrbitPartition(S, n)
2: O ← [−1, . . . ,−1] ▷ Initialize “empty” orbit partition array of length n
3: c ← 0 ▷ Variable to count the number of colored nodes
4: for i ← 0, . . . , n − 1 do
5: if O[i] ≠ −1 then continue ▷ Skip already colored nodes
6: N ← {i} ▷ Set to save visited nodes as new starting points
7: U ← ∅ ▷ Set to save which cycles were already explored
8: repeat
9: j ← pop(N) ▷ pop(N) removes an arbitrary element from N
10: if O[ j] = −1 then
11: O[ j]← i ▷ Use i as color
12: c ← c + 1 ▷ Increase the number of colored nodes c
13: for g ∈ S do
14: if ( j, g) ∈ U then continue ▷ Do not search a cycle more than once
15: U ←U ∪ {( j, g)} ▷ Remember which cycle was already explored
16: k ← g[ j]
17: while k ≠ j do ▷ Color all nodes on the cycle
18: if O[k] = −1 then
19: O[k]← i
20: c ← c + 1
21: N ← N ∪ {k} ▷ Add explored node to set of starting points
22: U ←U ∪ {(k, g)}
23: else
24: assert O[k] = i ▷ All nodes on an orbit are successively colored!
25: k ← g[k]
26: if c = n then return O ▷ Early exit if all nodes are already colored
27: until N = ∅ ▷ Repeat, as long as there are new starting points
28: return O

It is important to understand that in Algorithm 2 all colored nodes are successively explored
(lines 8–27) until no new nodes were colored. This implies that for a given node (e.g. i = 0 in
the beginning) its complete orbit is explored and colored in this inner loop before i is increased
by one in the outer loop.

D.2 Test Coarser-or-Equal for Partitions

Algorithm 3 is an efficient implementation to check if a partition P is coarser than or equal to
partitionQ as defined in Section 6.2.3. As the cluster ids are arbitrary, a hash map is used to keep
track of the mappings of cluster ids. If the cluster ids also come from the domain {0, . . . , n − 1},
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an array can be used instead of a hash map. The time complexity of the comparison is O(n), as
inserting and reading from a hash map is O(1).

Algorithm 3 Test P ≥ Q for two partitions P and Q
Require: Two partitions P and Q in array representation and of the same length

1: function geq(P, Q)
2: M ← hashmap( ) ▷ A hash map to save mappings of cluster ids
3: n ← ∣P∣
4: for i ← 0, . . . , n − 1 do
5: if Q[i] ∈ M then ▷ Tests if there exists a value for the given key
6: c ← M[Q[i]] ▷ Get the already saved mapping
7: else
8: c ← P[i]
9: M[Q[i]]← c

10: if P[i] ≠ c then return False
11: return True

D.3 Decompose Set of Generators into Support Disjoint Sets

Algorithm 4 can be used to decompose a set of generators for a permutation group into support
disjoint sets of permutations. Each of these subsets generates a normal subgroup, and the
composition of all these subgroups yields the input group. There are three different cases, which
are discussed below.

The procedure successively builds subsets of the generating set S, which are support disjoint
after each iteration of the outer loop (Algorithm 4, lines 3–17). The (intermediary) results are
put into a hash map, which saves for each node the set of permutations whose support contains
this node (Algorithm 4, line 2). This mapping is surjective, i.e. all nodes that are part of the same
support set map to the same set of permutations. For each generator g is tested if there already
exist subsets of permutations whose support overlaps supp (g) (Algorithm 4, line 4; also recall
that we defined the support for single permutations and sets of permutations). Three different
cases can occur:

Case 1 If no subsets exist, a new one that contains g is created (Algorithm 4, lines 5 and 6).

Case 2 If exactly one subset exists, g is added to it (Algorithm 4, lines 7 and 8).

Case 3 This case captures the situation that there are multiple subsets of S that have an over-
lapping support with g. To resolve this situation, g is added to an arbitrary subset Si

(Algorithm 4, lines 10 and 11), and for the remaining subsets, NS is updated (Algorithm 4,
lines 12–14). Then, Si is updated to be the union of all these subsets (including Si itself;
Algorithm 4, line 15).
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Algorithm 4 Decompose the set of generators S of a permutation group ⟨S⟩ = H into disjoint
sets Si that generate support disjoint normal subgroups ⟨Si⟩ = Hi, as presented by MacArthur
et al. (2008).
Require: A set of generators S that is essential (MacArthur et al., 2008, p. 3527)

1: function decompose(S)
2: NS ← hashmap( ) ▷ A hash map to save mappings of nodes to sets of permutations
3: for g ∈ S do
4: S̃ ← {NS[u] ∣ u ∈ supp (g) ∧ u ∈ NS} ▷ Get all sets of permutations whose support

overlaps supp (g)
5: if S̃ = ∅ then ▷ Case 1
6: Si ← {g}
7: else if S̃ = {Si} then ▷ Case 2
8: Si ← Si ∪ {g}
9: else ▷ Case 3
10: Si ← pick(S̃) ▷ pick(S̃) returns a random element of S̃
11: Si ← Si ∪ {g}
12: for Sj ∈ S̃ ∖ Si do ▷ Update the mappings for all subsets
13: for u ∈ supp (Sj) do
14: NS[u]← Si

15: Si ← ⋃Sj∈S̃ Sj ▷Merge permutation sets that are not support disjoint anymore

16: for u ∈ supp (g) do
17: NS[u]← Si ▷ Set the mappings for g
18: return {NS[u] ∣ u ∈ NS}

If this last case occurs, support disjoint subsets of permutations (up to this iteration in the
procedure) are recognized to be not support disjoint, thus they are merged.
In a last step, the mapping NS is updated for all nodes that are part of the support of g

(Algorithm 4, lines 16 and 17). When the algorithm terminates, it returns a partition of S into
support disjoint subsets S1, . . . , Sk of permutations.

E Karush-Kuhn-Tucker Conditions for Non-Linear
Constrained Optimization

The Karush-Kuhn-Tucker conditions are a system of equations and inequations that must hold
for every optimal point of a non-linear constrained optimization problem of the form (we loosely
follow Nickel et al., 2011, pp. 269 ff.):

min f (x)

s.t. gi(x) ≤ 0 ∀i

h j(x) = 0 ∀ j

(E.1)
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The system that needs to be solved is:

∇ f (x) +∑
i
λi∇gi(x) +∑

j
µ j∇h j(x) = 0

λi ≥ 0 ∀i

gi(x) ≤ 0 ∀i

λigi(x) = 0 ∀i

h j(x) = 0 ∀ j

(E.2)

which is equivalent to

∇ f (x) +∑
i
λi∇gi(x) +∑

j
µ j∇h j(x) = 0

λi ≥ 0 i ∈ I(x)

gi(x) = 0 i ∈ I(x)

gi(x) < 0 i ∉ I(x)

h j(x) = 0 ∀ j

(E.3)

with I(x) ∶= {i ∣ gi(x) = 0}. As solutions for the two equivalent systems rely on the linearization
of the non-linear problem, the solution set must satisfy regularity conditions, also known as
constraint qualifications (CQ). We only mention the linearity constraint qualification (LCQ),
which holds if all functions gi/h j , which describe the solution set, are linear.

An optimization problem is convex, if the goal function f and all constraints gi are convex;
all h j must be linear (that implies convexity). The theorem of Karush-Kuhn-Tucker for convex
optimization problems states that if there exists a point x, which is a local minimum of a convex
and continuously differentiable problem, and there exists another point for which all constraints
gi are strictly less than zero, then x is a KKT-point of the problem. Furthermore, if x is a
KKT-point of such a problem, it is a global minimum.
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