445 research outputs found

    ToPoliNano: Nanoarchitectures Design Made Real

    Get PDF
    Many facts about emerging nanotechnologies are yet to be assessed. There are still major concerns, for instance, about maximum achievable device density, or about which architecture is best fit for a specific application. Growing complexity requires taking into account many aspects of technology, application and architecture at the same time. Researchers face problems that are not new per se, but are now subject to very different constraints, that need to be captured by design tools. Among the emerging nanotechnologies, two-dimensional nanowire based arrays represent promising nanostructures, especially for massively parallel computing architectures. Few attempts have been done, aimed at giving the possibility to explore architectural solutions, deriving information from extensive and reliable nanoarray characterization. Moreover, in the nanotechnology arena there is still not a clear winner, so it is important to be able to target different technologies, not to miss the next big thing. We present a tool, ToPoliNano, that enables such a multi-technological characterization in terms of logic behavior, power and timing performance, area and layout constraints, on the basis of specific technological and topological descriptions. This tool can aid the design process, beside providing a comprehensive simulation framework for DC and timing simulations, and detailed power analysis. Design and simulation results will be shown for nanoarray-based circuits. ToPoliNano is the first real design tool that tackles the top down design of a circuit based on emerging technologie

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten

    Redundant Logic Insertion and Fault Tolerance Improvement in Combinational Circuits

    Full text link
    This paper presents a novel method to identify and insert redundant logic into a combinational circuit to improve its fault tolerance without having to replicate the entire circuit as is the case with conventional redundancy techniques. In this context, it is discussed how to estimate the fault masking capability of a combinational circuit using the truth-cum-fault enumeration table, and then it is shown how to identify the logic that can introduced to add redundancy into the original circuit without affecting its native functionality and with the aim of improving its fault tolerance though this would involve some trade-off in the design metrics. However, care should be taken while introducing redundant logic since redundant logic insertion may give rise to new internal nodes and faults on those may impact the fault tolerance of the resulting circuit. The combinational circuit that is considered and its redundant counterparts are all implemented in semi-custom design style using a 32/28nm CMOS digital cell library and their respective design metrics and fault tolerances are compared

    Enabling Design and Simulation of Massive Parallel Nanoarchitectures

    Get PDF
    A common element in emerging nanotechnologies is the increasing complex- ity of the problems to face when attempting the design phase, because issues related to technology, specific application and architecture must be evalu- ated simultaneously. In several cases faced problems are known, but require a fresh re-think on the basis of different constraints not enforced by standard design tools. Among the emerging nanotechnologies, the two-dimensional structures based on nanowire arrays is promising in particular for massively parallel architec- tures. Several studies have been proposed on the exploration of the space of architectural solutions, but only a few derived high-level information from the results of an extended and reliable characterization of low-level structures. The tool we present is of aid in the design of circuits based on nanotech- nologies, here discussed in the specific case of nanowire arrays, as best candi- date for massively parallel architectures. It enables the designer to start from a standard High-level Description Languages (HDL), inherits constraints at physical level and applies them when organizing the physical implementation of the circuit elements and of their connections. It provides a complete simu- lation environment with two levels of refinement. One for DC analysis using a fast engine based on a simple switch level model. The other for obtaining transient performance based on automatic extraction of circuit parasitics, on detailed device (nanowire-FET) information derived by experiments or by existing accurate models, and on spice-level modeling of the nanoarray. Re- sults about the method used for the design and simulation of circuits based on nanowire-FET and nanoarray will be presente

    Advances in Nanowire-Based Computing Architectures

    Get PDF

    Improving the Fault Tolerance of Nanometric PLA Designs

    Get PDF
    Several alternative building blocks have been proposed to replace planar transistors, among which a prominent spot belongs to nanometric laments such as Silicon NanoWires (SiNWs) and Carbon NanoTubes (CNTs). However, chips leveraging these nanoscale structures are expected to be affected by a large amount of manufacturing faults, way beyond what chip architects have learned to counter. In this paper, we show a design ow, based on software mapping algorithms, to improve the yield of nanometric Programmable Logic Arrays (PLAs). While further improvements to the manufacturing technology will be needed to make these devices fully usable, our ow can signi cantly shrink the gap between current and desired yield levels. Also, our approach does not need post-fabrication functional analysis and mapping, therefore dramatically cutting on veri cation costs. We check PLA yields by means of an accurate analyzer after Monte Carlo fault injection. We show that, compared to a baseline policy of wire replication, we achieve equal or better yields (8% over a set of designs) depending on the underlying defect assumptions

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design
    corecore