

Dedicated to my beloved father Mr. Abdul Aziz Khan

iii

ACKNOWLEDGMENTS

In the name of Allah, the Most Beneficent, the Most Merciful

All praise be to Allah (The One and The Only Creator of everything) for His

limitless blessings. May Allah bestow peace and His choicest blessings on the last

prophet, Muhammad (Peace Be Upon Him), his family (May Allah be pleased

with them), his companions (May Allah be pleased with them) and his followers.

I would like to express my profound gratitude and appreciation to my thesis

committee chairman and adviser, Dr. Aiman Helmi El-Maleh, whose expertise,

understanding, and patience, added considerably to my graduate experience. I

appreciate his vast knowledge and skill in many areas e.g., digital system design,

modeling, synthesis, testing, fault-tolerance. Dr. El-Maleh is the one professor

who truly made a difference in my life. It was under his tutelage that I developed

a focus and became interested in research. He provided me with direction, intel-

lectual support and became more of a mentor than a professor. It was through

his persistence, understanding and kindness that I completed my degree. I doubt

that I will ever be able to convey my appreciation fully, but I owe him my eternal

gratitude.

iv

I am grateful to Computer Engineering department Chairman Dr. Adnan

Abdul-Aziz Gutub for providing me an opportunity to work on this thesis project

with my adviser. Without his support and understanding at the very initial stages,

this thesis work would have been impossible.

I would like to thank my co-adviser Dr. Muhammad El-Rabaa and the other

member of my committee Dr. Abdelhafid Bouhraoua for the guidance they pro-

vided at all levels of the coursework projects and thesis research. Finally, I would

like to thank Dr. Sadiq Mohammed Sait for his very useful suggestions and for

taking out time from his very busy schedule to serve as committee member.

I would also like to thank my friends at Computer Engineering Department,

particularly Ahmed Al-Masri, Abdul Rahman Elshafei and Syed Usama Idrees for

our exchange of knowledge, ideas, skills, and venting of frustration during Master’s

studies, which helped enrich the experience. I also sincerely appreciate the help

provided by my friends Ihab Hawari, Omair Khan, Ali Zaidi, Rahil, Zeeshan,

Babar, Monim, Khizer, Zeehasham and Asif during my stay in the university.

I would also like to thank my family for the support they provided me through-

out my life and in particular, I must acknowledge my beloved father and best

friend, Mr. Abdul Aziz Khan, without whose love and encouragement, I would

not have accomplished anything worthwhile in my career.

In addition, I acknowledge that this research would not have been possible

without the support and assistance provided by the King Fahd University of

Petroleum & Minerals.

v

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xii

ABSTRACT (ENGLISH) xvii

ABSTRACT (ARABIC) xix

1 INTRODUCTION AND MOTIVATION 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Techniques for Reliable Design of Nanoelectronics 4

1.4 Thesis Objectives . 5

1.5 Thesis Contributions . 5

1.6 Thesis Organization . 7

2 LITERATURE REVIEW 9

2.1 Introduction . 9

2.2 Definitions . 10

2.2.1 Defects, Faults and Errors 10

2.2.2 Defect (or Fault) Models 11

2.2.3 Yield . 14

2.2.4 Reliability . 14

2.2.5 Fault Tolerance . 16

vi

2.2.6 Defect Tolerance . 17

2.3 Defect-Tolerant Design Techniques 19

2.3.1 Von Neumann’s Multiplexing 19

2.3.2 N-tuple Modular Redundancy (NMR) & Triple Modular Re-

dundancy (TMR) . 21

2.3.3 Intervowen Redundant Logic & Quadded Logic 24

2.3.4 N-tuple Intervowen Redundancy (NIR) & Triple Intervowen

Redundancy (TIR) . 29

2.4 Defect Avoidance Design Techniques 33

2.4.1 Mishra & Goldstein’s Technique 33

2.4.2 Chen He and M. F. Jacome’s Technique 35

2.5 Transient & Soft Error Mitigation Techniques 37

2.5.1 Single Event Upsets and Single Event Transients 38

2.5.2 Single Event Upset Mitigation Techniques 43

2.5.3 Single Event Upset Mitigation Techniques for FPGAs . . . 50

2.5.4 Empirical Model for Soft Error Rate Estimation 54

2.5.5 Soft-Spot Analysis . 54

2.6 Defect-Tolerant Crossbar Design Techniques 60

2.6.1 Crossbar Architecture . 60

2.6.2 Tahoori’s Defect-Tolerant Design Techniques for 2D Crossbars 65

2.6.3 Hogg and Snider’s Defect Tolerant Design Technique . . . 69

2.6.4 DeHon and Naemi’s Defect Tolerant Design Technique . . 73

2.7 Defect-Tolerant FPGA Design Techniques 76

2.7.1 Field Programmable Gate Array Architecture 76

2.7.2 Categorization of Defect and Fault-Tolerant Techniques for

FPGAs . 78

2.7.3 Survey of Defect-Tolerant Techniques for FPGAs 82

3 DEFECT-TOLERANT N2-TRANSISTOR STRUCTURES 84

3.1 Introduction . 85

vii

3.2 N2-Transistor Structures . 86

3.2.1 Quadded-Transistor Structure 87

3.2.2 Nona-Transistor Structure 93

3.3 Experimental Results . 100

3.3.1 Stuck-Open and Stuck-Short Defect Analysis 103

3.3.2 Bridging Defect Analysis 108

3.3.3 Hybridization of Quadded and Nona-Transistor structures

with TIR and TMR . 110

3.4 Summary . 112

4 TRANSIENT AND SOFT ERROR MITIGATION USING

QUADDED-TRANSISTOR STRUCTURE 113

4.1 Introduction . 114

4.2 Quadded Modular Redundancy Technique 115

4.3 Quadded-Transistor based SEU Mitigation Technique (QT16) . . 118

4.4 Gate-specific Quadded-Transistor based SEU Mitigation Technique

(QT8) . 118

4.5 Experimental Results . 122

4.5.1 Quadded Modular Redundancy Technique Analysis 122

4.5.2 Quadded-Transistor based SEU Mitigation Technique Anal-

ysis (QT16) . 147

4.5.3 Gate-specific Quadded-Transistor based SEU Mitigation

Technique Analysis (QT8) 148

4.5.4 Reversed Gate-specific Quadded-Transistor based SEU Mit-

igation Technique Analysis (QT8R) 149

4.5.5 Circuit Reliability Comparison of QT(QMR1), QMR3,

TMR9, QT16 and QT8 Techniques 150

4.5.6 Circuit Area Comparison of QT, QMR, TMR, QT16 and

QT8 Techniques . 152

4.6 Summary . 153

viii

5 DEFECT-TOLERANT CROSSBAR DESIGN TECHNIQUE 154

5.1 Introduction . 154

5.2 Multi-Crosspoint Architecture . 157

5.2.1 Quadded MCP Architecture 157

5.2.2 Nona MCP Architecture 164

5.3 Experimental Results . 165

5.3.1 Reliability Analysis . 166

5.3.2 Area Analysis . 174

5.4 Summary . 177

6 DEFECT-TOLERANT FPGA DESIGN TECHNIQUE 179

6.1 Introduction . 179

6.2 Defect-Tolerant CLBs for FPGAs 180

6.3 Experimental Results . 182

6.3.1 Reliability Analysis . 182

6.3.2 Area Analysis . 185

6.4 Summary . 187

7 CONCLUSION 188

7.1 Conclusion . 188

7.2 Future Work . 191

REFERENCES 192

VITAE 206

ix

LIST OF TABLES

3.1 Comparison of circuit failure probability between quadded-

transistor structure and quadded logic approaches for stuck-open

and stuck-short defects. 106

3.2 Comparison of circuit reliability between quadded-transistor struc-

ture and quadded logic approaches for stuck-open and stuck-short

defects. 107

3.3 Circuit failure probability for the nona-transistor structure ap-

proach for stuck-open and stuck-short defects. 108

3.4 Circuit reliability for the nona-transistor structure approach for

stuck-open and stuck-short defects. 109

3.5 Comparison of circuit failure probability between quadded-

transistor structure and quadded logic approaches for bridging de-

fects. 110

4.1 Comparison of circuit reliability between QMR and TMR tech-

niques for a module size of 1 (i.e., full QT implementation). . . . 143

4.2 Comparison of circuit reliability between QMR and TMR tech-

niques for a module size of 3. 143

4.3 Comparison of circuit reliability between QMR and TMR tech-

niques for a module size of 5. 145

4.4 Comparison of circuit reliability between QMR and TMR tech-

niques for a module size of 7. 145

x

4.5 Comparison of circuit reliability between QMR and TMR tech-

niques for a module size of 9. 146

4.6 Comparison of circuit reliability between quadded-transistor based

technique and TMR9 technique for SEU mitigation. 148

4.7 Comparison of circuit reliability between gate-specific quadded-

transistor based technique and TMR9 technique for SEU mitigation.149

4.8 Comparison of circuit reliability between reversed gate-specific

quadded-transistor based technique and QT8 technique for SEU

mitigation. 150

4.9 Circuit area comparison of QT, QMR, TMR, QT16 and QT8 tech-

niques. 153

5.1 Comparison of circuit reliability between quadded MCP and

monomorphism-based reconfiguration approaches. 172

5.2 Comparison of circuit reliability between nona MCP and

monomorphism-based reconfiguration approaches. 173

5.3 Crossbar area in terms of number of crosspoints for the

monomorphism-based reconfiguration architecture. 175

5.4 Crossbar area in terms of number of crosspoints for the quadded

MCP architecture. 176

5.5 Crossbar area in terms of number of crosspoints for the nona MCP

architecture. 177

6.1 Comparison of circuit failure probability between QT CLB and 2

spares based reconfiguration approaches. 186

6.2 Comparison of circuit failure probability between QT CLB and 3

spares based reconfiguration approaches. 186

6.3 Comparison of area in terms of number of transistors and CLBs for

QT based CLB approach and 2 and 3 spares based approach. . . . 187

xi

LIST OF FIGURES

1.1 Growth of transistor counts for Intel processors (dots) and Moore’s

law (vertical log scale). 2

2.1 Von Neumann NAND Multiplexing. 20

2.2 A Triple Modular Redundant (TMR) structure. 23

2.3 Nonredundant complementary half adder implemented with NAND

logic. 26

2.4 Quadded implementation of the complementary half adder. 27

2.5 TIR implementation of the complementary half adder. 31

2.6 TMR configuration of the TIR complementary half adder. 32

2.7 Three-level design hierarchy showing abstractions in the form of

region, mapping unit and component on the upper level and be-

havioral abstractions on the lower level. 36

2.8 Upsets hitting combinational and sequential logic. 38

2.9 Single Event Upset (SEU) effect in a SRAM Memory cell. 39

2.10 Single Event Transient (SET) Effect in Combinational Logic based

on [53]. 40

2.11 Single Event Upset (SEU) effect in a SRAM Memory cell. 42

2.12 Full Time Redundancy. 45

2.13 TMR implemented in the entire device. 46

2.14 TMR memory cell with single voter. 47

2.15 TMR memory cell with three voters and refreshing. 47

xii

2.16 Full time redundancy scheme for combinational logic combined with

full hardware redundancy in the sequential logic. 49

2.17 Full hardware redundancy scheme for combinational and sequential

logic. 49

2.18 Duplication to mitigate SET in combinational logic. 50

2.19 Time redundancy to mitigate SET in combinational logic. 51

2.20 Example of INVERTER logic with the code word state preserving

(CWSP) in the duplication and time redundancy to mitigate SET

in combinational logic. 51

2.21 The effective noise window. 56

2.22 Automatic soft-spot analysis. 59

2.23 Schematic view of a molecular crossbar from two different perspec-

tives. 61

2.24 Implementing the AND/OR function X = A + BC with a diode

crossbar and resistor. 63

2.25 (a) 4 x 4 2D nanoscale crossbar (b) Bipartite graph representation. 67

2.26 Resource Allocation: Searching for a monomorphism between cir-

cuit and a crossbar graph. 70

2.27 (a) A logic array of NanoPLA (b) Programmed logic array. 74

2.28 (a) Crosses show defective junctions (b) Graph of the OR-term

nanowiores and OR functions (c) One possible assignment. 75

2.29 Simplified example of an FPGA with 16 CLBs. 79

3.1 (a) Transistor in original gate implementation, (b) First quadded-

transistor structure, (c) Second quadded-transistor structure. . . . 88

3.2 Defect-tolerant N2-transistor structure. 92

3.3 (a) Transistor in original gate implementation, (b) First nona-

transistor structure, (c) Second nona-transistor structure. 94

3.4 Gate reliability comparison between quadded-transistor structure

(Q), nona-transistor structure (N) and conventional CMOS. . . . 101

xiii

3.5 Reliability obtained both theoretically (t) and experimentally (e)

based on quadded-transistor structure and stuck-open and stuck-

short defects. 104

3.6 Reliability obtained both theoretically (t) and experimentally (e)

based on nona-transistor structure and stuck-open and stuck-short

defects. 105

3.7 Comparison of circuit failure probability for an 8-stage cascaded

half-adder circuit for stuck-open and stuck short defects. 111

4.1 Quadded-Transistor based technique for permanent defects. 116

4.2 Quadded Modular Redundancy technique for a simple 2-input circuit.117

4.3 Quadded-Transistor based technique for SEU Mitigation. 119

4.4 Gate-specific connections for NAND gate to mask faulty transistors. 121

4.5 Triple Modular Redundancy technique for single stage of 2-input

complementary half adder. 125

4.6 Quadded Modular Redundancy technique for single stage of 2-input

complementary half adder. 126

4.7 Comparison of circuit failure probability for a 1-stage complemen-

tary half-adder circuit for transient faults. 127

4.8 Comparison of circuit failure probability for a 2-stage cascaded

complementary half-adder circuit for transient faults. 127

4.9 Comparison of circuit failure probability for a 4-stage cascaded

complementary half-adder circuit for transient faults. 128

4.10 Comparison of circuit failure probability for a 8-stage cascaded

complementary half-adder circuit for transient faults. 128

4.11 Comparison of circuit failure probability for a 16-stage cascaded

complementary half-adder circuit for transient faults. 129

4.12 Comparison of circuit failure probability for a 32-stage cascaded

complementary half-adder circuit for transient faults. 129

xiv

4.13 Comparison of area in terms of number of transistors for 1, 2, 4, 8,

16 and 32-stage cascaded complementary half adders for QMR and

TMR implementation. 130

4.14 Example Circuit. 134

4.15 Application of modular TMR algorithm on example circuit for a

module size of 1. 135

4.16 Application of modular TMR algorithm on example circuit for a

module size of 2. 136

4.17 Application of modular TMR algorithm on example circuit for a

module size of 3. 137

4.18 Application of modular TMR algorithm on example circuit for a

module size of 1. 140

4.19 Application of modular TMR algorithm on example circuit for a

module size of 2. 141

4.20 Application of modular TMR algorithm on example circuit for a

module size of 3. 142

4.21 Comparison of circuit reliability for QMR and TMR techniques

module sizes of 1, 3, 5, 7 and 9. 144

4.22 Comparison of circuit reliability of all approaches for ISCAS bench-

marks for injecting 0.1% faults. 151

4.23 Comparison of circuit reliability of all approaches for ISCAS bench-

marks for injecting 0.5% faults. 152

5.1 Crossbar implementation for a simple function X = A + BC. . . . 158

5.2 Multi-crosspoint architecture using row and column redundancy for

a simple function X = A + BC for k = 2. 159

5.3 Allowable defect configuration in which the function will remain

X = A + BC. 160

5.4 Allowable defect configuration in which the function will remain

X = A + BC. 160

xv

5.5 Allowable defect configuration in which the function will remain

X = A + BC. 161

5.6 Allowable defect configuration in which the function will remain

X = A + BC. 161

5.7 Obstructive defect configuration in which the function will become

X = 1. 162

5.8 Obstructive defect configuration in which the function will become

X = BC. 162

5.9 Obstructive defect configuration in which the function will become

X = 1. 163

5.10 Obstructive defect configuration in which the function will become

X = 1. 163

5.11 Multi-crosspoint architecture using row and column redundancy for

a simple function X = A + BC for k = 3. 165

5.12 A 3-bit adder which adds two 3-bit numbers (denoted as the bits

A2A1A0 and B2B1B0, respectively) to produce a 4-bit sum (with

bits S3S2S1S0). 169

5.13 A 3-bit adder implemented as 2-level logic in a single diode crossbar.170

5.14 Reliability comparison of quadded, nona and monomorphism-based

approaches for 3-bit adder shown in Figure 5.12. 170

5.15 Reliability comparison of quadded, nona and monomorphism-based

approaches for 3-bit adder shown in Figure 5.13. 171

6.1 A basic FPGA logic block. 181

6.2 Schematic of 4-input LUT. 181

6.3 Comparison of circuit failure probability for alu4 benchmark. . . . 185

xvi

THESIS ABSTRACT

NAME: Farhan Khan

TITLE OF STUDY: Transistor-Level Defect-Tolerant Techniques for Reliable

Design at the Nanoscale

MAJOR FIELD: Computer Engineering

DATE OF DEGREE: June 2009

Nanoelectronics based systems offer an attractive alternative for present day

CMOS technology. It is estimated that nanoelectronics can achieve very high den-

sities (billion devices per centimeter square) and operate at very high frequencies.

With such high device densities, nanotechnology has the potential to take electronic

circuits to the next higher level of integration. Nanoelectronic devices like carbon

nanotubes (CNT), silicon nanowires (NWs) and quantum dot cells have already

been demonstrated successfully by researchers. These devices are normally manu-

factured using bottom-up self-assembly fabrication process which results in higher

defect densities in comparison to conventional lithography-based VLSI fabrication.

Therefore, there is a renewed interest in using hardware redundancy to mask faulty

behavior in order to increase reliability of nanoelectronic components.

xvii

In this thesis, detailed investigation of a recently proposed transistor-level

defect-tolerant technique for nanoelectronics is performed. The investigated tech-

nique replaces each transistor by a N2-transistor structure (N = 2, 3, .., k) and

guarantees defect tolerance of all permanent defects of multiplicity ≤ (N − 1) in

each transistor structure. The theoretical and experimental analysis for the defect

tolerance of stuck-open and stuck-short defects for quadded-transistor structure

i.e.,(N = 2) is extended for the nona-transistor structure i.e.,(N = 3). Compari-

son of defect tolerance of transistor structures (N = 2, 3) against other techniques

like Triple Intervowen Redundancy (TIR) and Quadded Logic (QL) is carried out

experimentally. It is shown that the combinations of defect tolerance at both the

transistor level and gate level have significantly improved circuit defect tolerance.

For this, combination of Triple Modular Redundancy (TMR) with majority gate

implemented with N2-transistor structure is investigated in this thesis.

Application of N2-transistor structure for handling soft errors is also inves-

tigated and a novel approach based on quadded-transistor structure is proposed.

Finally, techniques for the defect tolerance of logic implemented using crossbar

switches and FPGAs are also investigated.

Keywords: Defect Tolerance, Quadded Logic, Quadded-Transitor structure,

Triple Modular Redundancy , Triple Intervowen Redundancy, Quadded Modular

Redundancy, Defect-tolerant Nanoscale Crossbars, Defect-tolerant FPGAs

xviii

xix

 ملخص الرسالة

 فرحان خان :الاسم

 للتصميم الموثوق بمقياس النانو الترانزستورتقنية احتمال العيوب على مستوى :عنوان الدراسة

 ھندسة الحاسب الآلي :التخصص

 2009يونيو :التخرج سنة

ً بديلاً النانو إليكترونيات أنظمةتوفر أن المقدر فمن ، الأيام ھذه في المستخدمة CMOS لتقنية جذابا
 على وتعمل) مربع سنتيمتر لكل ترانزستور مليار(الكثافة من عالية درجات تحققأن يمكن النانو إلكترونيات
الالكترونية إلى بھذه الكثافة العالية تملك تقنية النانو المقدرة لتطوير مستوى تكامل الدوائر .جداً عالية ترددات

الصغر المتناھية السليكون أسلاكو) CNT(نانوتيوب الكربون مثل أجھزة النانو الكترونيات .أعلى المستويات
)NWs (ما عادة ھذه الأجھزة .من قبل الباحثينعملھم بنجاح خلايا نقطة الكم قد تم بالفعل توضيح البرھنة علىو

الذاتي والتي تنتج أجھزة بنسب خلل وأعطال تقنية التصنيع بالتجميع باستخدام أعلى إلى أسفل من مصنوعة تكون
لذلك .)VLSI(الطباعة الحجرية التقليدية في تصنيع دارات التكامل الفائق عالية في ھذه الأجھزة مقارنة بطريقة

دوائر إلكترونية احتياطية أو كنسخ إضافية لحجب أخطاء تلك الدوائر في حال جدد لاستخدام ھناك اھتمام مت
 .وجودھا مما يزيد من فعالية وموثوقية مكونات الكترونيات النانو

ً مفصلاً لتقنية احتمال العيوب التصنيعية على مستوى رانزستور التفي ھذه الأطروحة ، نقدم تحقيقا
من) 2ن(باستبدال كل ترانزستور بـتشكيلة أو بنية مكونة من ھذه التقنية تقوم .والتي تم عرضھا مؤخراً

، ھذه) ك...، 4، 3، 2= ن (الترانزستورات بحسب مستوى السماحية للعيوب المطلوبة بحيث تكون
ن فيھا عدد الترانزستورات الإضافية تضمن تغلب الدائرة الاكترونية على جميع العيوب الدائمة فيھا بتعددية تكو

التحليل النظري والتجريبي .المختارة في كل بنية واحدة من الترانزستورات) 1-ن(تلك العيوب أقل أو تساوي
لاحتمال العيوب عندما يكون ھذا العيب عالقاً كدائرة فتح أو عالقاً كدائرة غلق لتشكيلات الترانزستورات الرباعية

في ھذه الرسالة ، كذلك تمت مقارنة احتمالية العيوب) 3= ن (تمديده للتشكيلات التساعية قد تم) 2= ن (
والدوائر المنطقية) TIR(بتلك التقليدية مثل التكرار الثلاثي المتشابك) 3، 2= ن (لتشكيلات الترانزستورات

رھا احتمال وجود عيوب على يتبين أن التركيبات التي في مقدوعن طريق إجراء التجارب ، .)QL(الرباعية
موثوقية الدوائر الإلكترونية بشكل مستوى الترانزيستور أو مستوى البوابات المنطقية أدت إلى تحسين مستوى

بوابة الغالبية بين الإشارات القيام بدمج تقنية الوحدات الثلاثية مع تنفيذ ه تم بحث وتحقيقفإنملحوظ وملفت ، لھذا
 . حصول على موثوقية أعلى للدوائر الرقميةلل) 2ن(الرقمية بتقنية

تم من الترانزستورات ھو معالجة الأخطاء الخافتة) 2ن(واحد من التطبيقات المستخدمة لتشكيلات
أخيراً البحث فيه و تم تقديم طريقة جديدة استناداً على تقنية الترانزستور الرباعية المقترحة في ھذه الأطروحة ،

ً تحقيق الأطروحة قدمت في شبكة الخطوط المستعرضة و للدوائر المنطقية على استخدام تقنيات احتمال العيوب ا
).FPGA(مصفوفة البوابات المنطقية القابلة للبرمجة

احتمال العيوب ، المنطق الرباعي ، بنية الترانزستورات الرباعية ، الوحدات : الكلمات الرئيسية
، الوحدات الرباعية المتكررة ، شبكة الخطوط المستعرضة المقاومة المتشابكالتكرار الثلاثي الثلاثية المتكررة ،

 .المقاومة للعيوب مصفوفة البوابات المنطقية القابلة للبرمجة للعيوب ،

CHAPTER 1

INTRODUCTION AND

MOTIVATION

1.1 Introduction

In the past few decades, the rapid pace with which microelectronics has progressed

is driven by the continual miniaturization of CMOS technology. This miniaturiza-

tion of CMOS technology is manifested in the popular Moore’s law which states

that the number of electronic components per chip doubles every 18 months (for-

merly 2 years). The growth by Moore’s law is shown in Figure 1.1. As the CMOS

technology enters the nanometer scale, quantum mechanical effects come into play

creating many technological challenges for further scaling of CMOS devices [34].

This has triggered research in two dimensions. One dimension of research is the

invention and investigation of novel CMOS structures to achieve more scaling in

current CMOS technology. The other dimension of work is the exploration of

1

Figure 1.1: Growth of transistor counts for Intel processors (dots) and Moore’s
law (vertical log scale).

alternative technologies for information processing [34]. Nanoelectronic devices

and circuits based on nanotechnology-based fabrication are expected to offer the

extra density and performance to take electronic circuits to the next higher level

of integration stage. It is estimated that nanoelectronics can achieve very high

densities (1012 devices per cm2) and operate at very high frequencies (of the order

of THz) [1]. Several research groups have proposed and successfully demonstrated

novel nanoelectronic devices at the logic circuit level. These devices include reso-

2

nant tunneling diodes (RTDs), single electron tunneling (SET) devices, quantum

cellular automata (QCA), rapid single flux quantum (RSFQ), supercon, carbon

nanotubes (CNTs), silicon nanowires (SiNWs), molecular nanoelectronics, quan-

tum dot cells etc. [2, 3, 4, 5, 34]. These nanoelectronic devices share one or

more characteristics such as extremely small dimensions, high switching speed,

low power consumption, ease of fabrication and very good scaling potential [34].

It is expected in near future that one or more of these devices will be integrated on

a CMOS platform, serving as complementary components to CMOS. Moreover, in

the long run, one can expect nanoelectronics to serve as an alternative to present-

day CMOS technology [34]. Nanoelectronic devices are normally manufactured

using bottom-up self assembly fabrication processes as compared to normal CMOS

fabrication which uses top-down lithography based fabrication. Due to fabrication

regularity imposed by the self-assembly fabrication process, nanoelectronic devices

are presently being manufactured as regular structures like two-dimensional (2-D)

crossbars.

1.2 Motivation

Nanoscale devices whether manufactured using self-assembly or lithograpy-based

processes have several characteristics which impose limitations on their use in

nanoelectronic architectures. The most prominent characteristics are the devices’

lower reliability and higher defect rates. This low reliability and higher defect

rates of nanoelectronic devices arise from two sources [34].

3

• One source is the inherent imprecision and randomness in the bottom-up

manufacturing process which results in a large number of defective devices

during the fabrication process [34].

• The other source is the reduced noise tolerance of these devices which can

be responsible for inducing device malfunctions by external influences like

EMI, thermal perturbations, cosmic radiations etc [34].

Therefore, permanent defects may emerge during manufacturing process and

transient errors can happen during the operation rendering nanoelectronic con-

nections, wires and devices effectively unusable [4, 6, 7]. In order to address issues

of unreliability in nanoelectronics and to ensure reliable system design and opera-

tion, defect tolerant design techniques need to be devised and applied for emerging

nanoelectronic devices.

1.3 Techniques for Reliable Design of Nanoelec-

tronics

The techniques for reliable design of nanoelectronics can be categorized as defect-

tolerant and defect avoidance techniques. Defect-tolerant design techniques are

based on adding redundancy in the design to mask faulty behavior due to defects

or faults. However, defect avoidance techniques are based on identifying defects

and bypassing them based on reconfiguration. Both these techniques are discussed

in detail in Chapter 2. For defect-tolerant techniques, hardware redundancy can

4

be added at logic block level, gate level or transistor level. The work investigated

in this thesis is based on adding redundancy at the transistor level. The proposed

work will be discussed in detail in Chapters 3, 4, 5 and 6.

1.4 Thesis Objectives

The main goal of this work is to develop novel transistor-level defect-tolerant

techniques that can be employed at nanoscale to afford enhanced reliability to

the nanoelectronic circuits. In addition, defect-tolerant techniques have also been

developed for specific nanoscale architecture like crossbars and FPGAs.

1.5 Thesis Contributions

The work presents the results of investigation related to the objectives mentioned

in previous section. In particular, the main contributions can be summarized as

follows:

• A recently proposed transistor-level defect-tolerant technique called

Quadded-Transistor structure [31, 32] is studied in detail and is extended

to develop another transistor-level defect-tolerant technique called Nona-

Transistor technique. Both theoretical and experimental analysis is per-

formed for tolerating transistor stuck-open and stuck-short defects. Relia-

bility and failure rate analysis of Nona-Transistor technique and Quadded

Logic technique for transistor stuck-open and stuck-short defects has proved

5

that Nona-Transistor technique has outperformed Quadded Logic technique

in terms of defect tolerance. Nona-Transistor technique has also shown bet-

ter reliability than Quadded-Transistor technique at the cost of higher area.

• Hybridization of Nona-transistor technique with TMR is proposed in order

to achieve higher reliability following the idea of hybridization of quadded-

transistor technique with TMR as proposed in [31, 32].

• A new transistor-level technique is proposed for mitigating transient and soft

errors in digital circuits. The proposed technique is based on selective appli-

cation of the Quadded-Transistor structure and is called Quadded Modular

Redundancy(QMR). Simulation-based comparison of QMR with TMR for

transient faults has shown that QMR affords more tolerance to transient

faults in comparison to TMR. Two more variants of the same technique are

also explored. Experimental analysis has shown that the proposed tech-

niques are more efficient in terms of defect-tolerance than TMR but at the

cost of higher area.

• A new defect-tolerant architecture for implementing logic circuits on par-

tially defective nanoscale crossbars is proposed. The proposed crossbar ar-

chitecture called Multi-crosspoint(MCP) architecture uses row and column

redundancy in order to achieve higher defect tolerance in nanoscale crossbar-

based circuits. A comparison of the proposed architecture is made with the

monomorphism based reconfiguration algorithm for defect-tolerant crossbar

design for a number of circuits and the experimental analysis has shown that

6

the MCP architecture performs better than monomorphism based approach

on circuits with more dense product terms.

• Transistor-level defect-tolerant FPGA design technique is also explored for

realizing reliable Configurable Logic Blocks (CLBs). Simulation based com-

parison of QT based CLBs is performed with 2-spares and 3-spares based

reconfiguration technique which shows that the QT based CLB affords bet-

ter defect tolerance than 2 spares based technique but is inferior to 3-spares

based technique.

1.6 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, a survey of defect-

tolerant design techniques available in literature is presented. The chapter covers

various techniques concerning the objectives of this work that are reported in lit-

erature, discussing relevant algorithms and architectures wherever required. The

chapter starts with surveying gate-level defect-tolerant design techniques. After

that, relevant literature pertaining to SEU mitigation in digital circuits is pre-

sented. Then defect-tolerant crossbar design techniques are briefly surveyed. At

the end of the chapter, defect-tolerant FPGA design techniques are briefly sur-

veyed.

Chapter 3 discusses in detail the proposed transistor-level defect-tolerant de-

sign techniques for masking the effects of transistor stuck-open, stuck-short and

bridging defects. The chapter covers in detail the theoretical and experimen-

7

tal analysis of Quadded-Transistor and Nona-Transistor techniques along with a

discussion on the simulation framework used for experimental analysis.

In Chapter 4, detailed discussion is presented on the proposed transistor-level

defect-tolerant technique for mitigating Single Event Upsets in digital circuits.

This is followed by a detailed discussion of the proposed defect-tolerant design

technique for crossbar-based designs in Chapter 5. Chapter 6 presents the pro-

posed defect-tolerant techniques for design of defect-tolerant FPGAs. This thesis

ends with conclusion and some future directions in Chapter 7.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a survey of various defect-tolerant design techniques is reported.

The chapter begins with definitions of important terms in the field of defect tol-

erant digital design. This is followed by a discussion of gate-level defect-tolerant

design techniques like NAND Multiplexing, N-Modular Redundancy (NMR),

Quadded Logic, N-tuple Intervowen Redundancy (Section 2.3). This is followed

by a brief description of defect avoidance design techniques (Section 2.4). Soft and

transient error mitigation techniques are discussed in Section 2.5. Section 2.6 de-

scribes algorithms for defect-tolerant crossbar design techniques. Defect-tolerant

FPGA design techniques are briefly described in Section 2.7.

9

2.2 Definitions

2.2.1 Defects, Faults and Errors

Many terms are used to describe incorrectness in electronic systems. One may

find that the terms defects, errors and faults are used in confusing ways. In the

next few sub-sections, the definitions of these terms as defined in the book by

Michael Bushnell [49] are presented.

Defect

A defect in the electronic system is the unintended difference between the imple-

mented hardware and its intended design.

Some typical defects in VLSI chips are:

• Process Defects - missing contact windows, parasitic transistors, oxide break-

down.

• Material Defects - bulk defects (cracks, crystal imperfections), surface im-

purities.

• Age Defects - dielectric breakdown, elctro-migration etc.

• Package Defects - contact degradation, seal leaks.

Defects occur either during manufacture or during the use of devices. Re-

peated occurrence of the same defect indicates the need for improvement in the

manufacturing process or the design of the device.

10

Fault

A representation of a “defect” at the abstracted function level is called a fault.

The difference between a defect and a fault is rather subtle. They are the

imperfections in the hardware and function respectively.

Error

A wrong output signal produced by a defective system (or circuit) is called an

error. An error is an “effect” whose cause is some “defect”.

Fabrication defects, fabrication errors and physical failures are collectively

termed as physical faults [50]. According to their stability in time, physical faults

can be classified as:

• Permanent faults : They are those which are always present after their oc-

currence.

• Intermittent faults : They are those which exist only during some intervals.

• Transient faults : They are one-time occurrence (also known as Single Event

Upsets (SEUs) or Single-Event Transients (SETs)) which are caused by a

temporary change in some environment factor e.g., due to α-particle radia-

tion etc.

2.2.2 Defect (or Fault) Models

While analyzing the defect tolerance of a circuit, the effect of defects in the circuit

needs to be simulated. The effect of a production defect can be complex. Accu-

11

rate defect modeling based on layout and geometrical considerations is normally

not an option when the effect of production defects is to be analyzed. For this

reason, several defect(or fault) models have been proposed at different levels of

abstraction. In the following, only those defect(or fault) models are defined which

are relevant to our work. For other defect (or fault) models, the interested reader

may refer to the book by Michael Bushnell [49].

• Stuck-at defect (or fault) model : It is based on assigning a fixed (0 or 1)

value to a signal line in the circuit. A signal line is an input or an output

of a logic gate or a flip-flop. The most popular forms are the single stuck-at

faults i.e., stuck-at-1 and stuck-at-0.

• Stuck-open and Stuck-short defect (or fault) model : It is used for modeling

transistor defects. In this model, a MOS transistor is modeled as an ideal

switch and a defect is modeled as the switch being permanently either in

the open (never conducting) or the shorted state(always conducting). In

general, a MOS logic gate consists of more than one transistor. This defect

model assumes just one transistor to be stuck-open or stuck-short. The

stuck-open and stuck-short defect (or fault) model is also called transistor

defect (or fault) model.

• Bridging defect (or fault) model : Usually modeled at the gate or transis-

tor level, a bridging fault represents a short between a group of signals.

The logic of the shorted net may be modeled as 1-dominant(OR bridge), 0-

dominant(AND bridge) or intermediate, depending upon the technology in

12

which the circuit is implemented. Non-feedback bridging faults are combina-

tional and their coverage by stuck-at fault tests is normally very high. It is

not always the case with the feedback bridging faults that produce memory

states in the otherwise combinational logic. Bridging faults are often used

as examples of “defect-oriented faults”.

• Crosspoint defect(or fault) model : It is used for modeling crosspoint defects

(or faults) in the programmable logic arrays (PLAs). In the layout of a PLA,

input and output variable lines are laid out perpendicular to the product

lines. Crossing signal lines either form specific types of connections or re-

main unconnected at crosspoints, depending on the function implemented.

There are two types of crosspoint defects (or faults). A missing crosspoint

defect means a missing connection at a crossing where a connection was in-

tended. An extra crosspoint defect means a faulty connection at a crosspoint

where no connection was intended. Based on their effect on AND and OR

planes of the PLA, the crosspoint defects (or faults) are further classified

as shrinkage, growth, appearance and disappearance defects (or faults). A

missing crosspoint in the AND plane is called a growth defect (or fault). An

extra crosspoint in the AND plane is called a shrinkage defect (or fault).

A missing crosspoint in the OR plane is termed as disppearance defect (or

fault). An extra crosspoint in the OR plane is termed as appearance defect

(or fault).

13

2.2.3 Yield

Yield can be defined as the ratio of the number of usable items after production

to the number of potentially usable items [62]. The main contributor to low

yield for ICs is defects during production and fabrication. Yield is an important

measure because only usable items are sellable. Low yield can make production

prohibitively expensive.

For chip production, the total yield is the product of wafer process yield,

device yield and module test yield. Wafer process yield is the ratio of usable

wafers. Device yield is the ratio of usable dies after photolithography and module

test yield is the ratio of usable chips after packaging. Device yield is the most

important component, and the only one that is dependent on the specific circuit

[71].

Redundancy techniques, such as the ones explained in Section 2.3 to 2.7, can

improve device yield by tolerating a certain amount of defects.

2.2.4 Reliability

The reliability of a system can be defined as the ability to perform the specified

function under stated conditions [63].

For hardware systems, the most common way of evaluating reliability is to

apply a probabilistic reliability function R(t) that gives the probability that a

system is working correctly between time 0 and time t, given certain conditions

and correct behavior at time 0. If the failure rate of the system is constant over

14

time, the reliability function is R(t) = e−λt where λ is the constant failure rate

for one unit of time. When λt is small, R(t) ≈ 1− λt.

In a system composed from several subcomponents, all of which must be work-

ing, the reliability of the system is given as R =
∏n

c=1 Rc where Rc is the reliability

of subcomponent c and n is the number of subcomponents. A defect-tolerant sys-

tem can continue to operate despite a certain number of defects. For such systems,

where not all subcomponents need to be working, more elaborate reliability cal-

culations need to be performed or, more realistically for complex systems, Monte

Carlo simulations need to be employed.

An alternative evaluation criterion is Mean Time To Failure (MTTF) which is

the average time a system will run before failing. MTTF is linked to the failure

rate in the following way: MTTF = (1/λ) . If λ is the failure rate per hour,

MTTF is the average number of hours before failing.

When considering how reliable a system is in the presence of production de-

fects, time is not relevant. MTTF is therefore not applicable and reliability is

simply R = (1− λ) where λ is the probability of failing under stated conditions.

It should be noted that reliability in this case is similar, but not the same as yield.

Yield is the percentage of chips that can be sold. Reliability is a probability of

working given certain conditions. These conditions need not be directly linked

to what actually causes unsellable chips. However, if the stated conditions are

realistic and relevant for what constitutes a sellable chip, high reliability will lead

to high yield [71].

15

2.2.5 Fault Tolerance

The term fault-tolerance first appeared in technical literature in 1967, defined as:

A system is fault-tolerant if its programs can be properly executed despite the

occurrence of logic faults [64].

The prime motivation at that time was challenges in interplanetary explo-

ration. Today, the importance of fault-tolerance is increasing, and, as mentioned

in Chapter 1, fault-tolerance is a long term grand challenge of the semiconductor

industry [65].

The objective of fault-tolerance is either to mask, or to recover from, faults

once they have been detected [66]. It is in contrast to the second method of

achieving system reliability, fault prevention, which seeks to eliminate all faults

before the system is put to use. Complete fault prevention is impossible to achieve

in practice and high degrees of prevention is costly [72].

Fault-tolerance is therefore commonly used in increasing system reliability,

often in combination with partial fault prevention. Much research on reliable sys-

tems is concerned with the detection of faults using error detecting and correcting

codes or fault-detecting and self-repairing circuits. The tolerance itself is achieved

using redundancy techniques. Such techniques can be classified as hardware, time,

information or software redundancy [66]. With hardware redundancy there are

spare elements available to replace faulty ones. Time redundancy implies that

elements still operating may perform the functions that were originally intended

to be performed by now faulty elements [67]. With information redundancy, re-

16

dundant information is added to an existing data set, for instance by using codes

that enable detection and correction of errors. Software redundancy uses tech-

niques such as N-version programming [68], where N independently constructed

programs run in parallel.

The research work reported in this thesis is concerned with only hardware re-

dundancy to afford defect tolerance in digital circuits particularly at the nanoscale.

Hardware redundancy can be implemented as either static or dynamic redundancy.

As defined in the next section, out of these two types, our approach is the appli-

cation of static hardware redundancy at the transistor level.

2.2.6 Defect Tolerance

A defect-tolerant circuit is a circuit that functions correctly even if there are

defective subcomponents, for example defective transistors and/or wires. Defect

tolerance can be seen as a special case of fault tolerance where only permanent

defects are considered. Transient faults that do not result in permanent damage

are not an issue [71].

A defect-tolerant circuit is a circuit that is designed to tolerate a certain

amount of defective components. The term defect coverage refers to the per-

centage of all possible defects a defect tolerant system can tolerate. 100% defect

coverage means that any possible single defect anywhere in the system is toler-

ated. Often, defect coverage is less than 100%, either because not all defect types

are tolerated or because some parts of the system are not defect- tolerant [71].

17

In the beginning of the history of digital electronic circuits, logic was built from

unreliable vacuum tubes. As a result, there was a significant amount of research on

how to build reliable computers from unreliable components and many of the most

well known defect tolerance techniques date from the early period of computing.

After the introduction of the IC, failure rates dropped drastically and reduced

the importance of defect and fault tolerance techniques, except for a few extreme

cases such as for space exploration. Recent predictions on failure rates in future

production processes have renewed interest in defect tolerance [71].

Defect tolerance is achieved through the use of redundancy techniques. Re-

dundancy techniques relevant for tolerating hardware defects can be classified as

static hardware redundancy and dynamic hardware redundancy [71].

• Static hardware redundancy involves having redundant hardware compo-

nents connected in such way that defects are tolerated without any need

to first detect the defects. They are briefly covered in section on Defect-

Tolerant Design Techniques.

• Dynamic hardware redundancy involves first detecting a defect and then

applying measures, for example reconfiguration, for avoiding the detected

defect. They are briefly covered in section on Defect Avoidance Design

Techniques.

18

2.3 Defect-Tolerant Design Techniques

Defect-tolerant digital system design techniques are based on the concept of adding

redundancy in order to mask faulty behavior in the nanoelectronic components

due to defects, faults or errors. Examples of defect-tolerant design techniques

are Von Neumann Multiplexing, N-tuple Modular Redundancy (and its derivative

Triple Modular Redundancy), Quadded Logic, N-tuple Intervowen Redundancy

(and its derivative Triplicated Intervowen Redundancy).

2.3.1 Von Neumann’s Multiplexing

In the 1950s, John von Neumann initiated the study of techniques for the design of

reliable systems using redundant unreliable components [9]. In his multiplexing

structure, von Neumann considered two types of basic logic, namely majority-

voting and NAND logic. He duplicated each logic gate N times and replaced each

input with a bundle of N lines, thus, each output bundle also had N lines. For

NAND logic, the inputs from the first bundle randomly pair with those from the

second bundle to form the input pairs of the duplicated NANDs (as illustrated

in Figure 2.1). Instead of requiring all or none of the output bundle’s lines to

produce correct answers, von Neumann set a certain critical (or threshold) level

∆ such that 0 < ∆ < 1/2. If the number of lines carrying the correct signal was

larger than (1−∆)N , he interpreted it as a positive state of the bundle, if it was

less than ∆N , he considered it a negative state. By using a massive duplication

of unreliable components, von Neumann concluded that the construction can be

19

Figure 2.1: Von Neumann NAND Multiplexing.

reliable with a high probability if the failure probability of the gates (denoted by ε)

is sufficiently low for example, lower than approximately 10−2 [9]. In general, von

Neumann’s construction requires a large amount of redundancy (N > 103) and a

low error rate for individual gates. These features motivated extensive research

efforts in later decades to find the complexity of redundancy required to cope

with errors. It is shown in [20] that for deep logic with a gate failure probability

ε = 0.01 and N = 100, it is possible to achieve circuit failure probability in the

order of 10−6. This required amount of redundancy is excessive and is considered

impractical. In order to reduce this large amount of redundancy, the works in

[21, 22] combine NAND multiplexing with reconfiguration.

Because CMOS devices became dominant in industry and showed an amaz-

ing performance in terms of reliability and scalability, chip designers never used

von Neumann’s multiplexing technique in practice. However, researchers have im-

20

plemented many redundancy techniques derived from von Neumann’s proposal,

such as triple modular redundancy (TMR) and error-correcting codes (ECC), in

high-reliability applications and in memory circuits [11].

2.3.2 N-tuple Modular Redundancy (NMR) & Triple

Modular Redundancy (TMR)

N-tuple modular redundancy (NMR) design of which TMR is the most-used par-

ticular case have been used as benchmarks for evaluating fault-tolerant approaches

and have been implemented in VLSI for high-reliability applications. NMR tech-

niques, generally implemented at the modular rather than gate level, use redun-

dant components to mask fault effects.

An NMR system (also known as M-of-N system) is a system that consists of N

modules and needs at least M of them for proper operation. Thus, the system fails

when fewer than M modules are functional. The reliability of an NMR system

as computed in [35] is presented next. The assumption is that the failures of

the different modules are statistically independent and that there is no repair of

failing modules. If R(t) is the reliability of an individual module (the probability

that the module is still operational at time t), the reliability of an NMR system

is the probability that M or more modules are functional at time t. The system

21

reliability is therefore given by:

RNMR(t) =
N∑

i=M

N

i

 Ri(t)[1−R(t)]N−i (2.1)

The assumption that failures are independent is the key assumption to the high

reliability of NMR systems. Even a slight extent of positively correlated failures

can greatly diminish their reliability. For example, suppose qcor is the probability

that the entire system suffers a common failure. The reliability of the system now

becomes:

RNMR(t) = (1− qcor)
N∑

i=M

N

i

 Ri(t)[1−R(t)]N−i (2.2)

If the system is not designed carefully, the correlated failure factor can domi-

nate the overall failure probability.

The best-known example of NMR type of systems is the triplex, which consists

of three identical modules whose outputs are voted on. This is a 2-of-3 system

so long as a majority of the modules produce correct results, the system will be

functional. In TMR, all the three identical modules perform the same operation,

and a voter accepts outputs from all three modules, producing a majority vote at

its output as shown in Figure 2.2. In such a structure, M = 2 and N = 3 and

a voter selects the majority vote. If a single voter is used, that voter becomes a

22

� � � � � �
� � � � � �
� � � � � �

� � � � �
Figure 2.2: A Triple Modular Redundant (TMR) structure.

critical point of failure and the reliability of the TMR structure is:

RNMR(t) = Rvoter(t)
3∑

i=2

3

i

 Ri(t)[1−R(t)]3−i

RNMR(t) = Rvoter(t)[3R
2(t)− 2R3(t)] (2.3)

where Rvoter(t) is the reliability of the voter. As shown in the above equation,

the reliability of TMR design is limited by that of the final arbitration unit (i.e.,

voter), making the approach difficult in the context of highly integrated nanosys-

tems [8]. In TMR, however, the reliability of a module imposes a demanding

requirement on a module’s size i.e., the modules involved in TMR should be mod-

est in size in relation to the error rate of an individual component in the circuit,

in other words, a module with many components will present a serious limit on

23

the upper bound of the device error rate that TMR can tolerate [11].

A TMR circuit can be further triplicated. The obtained circuit thus has nine

copies of the original module and requires two layers of majority gates to collect

information at outputs. This process can be repeated if necessary, resulting in

a technique called cascaded triple modular redundancy (CTMR). Spagocci and

Fountain [12] have shown that using CTMR in a nanochip with many (for exam-

ple, 1011 or 1012) nanoscale devices would require an extremely low device error

rate. However, the method might be effective in modest or small circuit modules.

Another disadvantage of the CTMR scheme is that it introduces an exponential

growth in redundancy as the cascaded layers increase. In [13], it is shown that

recursive voting leads to a double exponential decrease in a circuit’s failure prob-

ability. However, a single error in the last majority gate can cause an incorrect

result, hampering the technique’s effectiveness.

2.3.3 Intervowen Redundant Logic & Quadded Logic

Pierce [10] generalized von Neumann’s and his contemporaries’ ideas on fault-

tolerant logic to a theory termed interwoven redundant logic. This theory inter-

prets the faults it considers as 0 → 1 and 1 → 0 faults. The error correction

mechanism in interwoven redundant logic depends on asymmetries in the effects

of these two types of binary errors. The effect of a fault depends on the value of

the erroneous input and the type of gate. Consider a NAND gate, for instance.

If the binary value of one of its inputs is 0 while it should be 1, possibly because

24

of a faulty gate or interconnection, the NAND’s output value will remain a 1 re-

gardless of the values of other inputs. If an input value is 1 while it should be 0,

the output will not be stuck but will depend on other inputs. Thus, there are two

types of faults for a NAND gate. One is critical in the sense that its occurrence

on one of the inputs leads to a stuck output, the other is subcritical in the sense

that its occurrence alone does not cause an output error. Hence, alternating layers

of NAND (or NOR) gates can correct errors by switching them from critical to

subcritical.

Quadded logic [11, 14, 15] is an ad hoc configuration of the interwoven redun-

dant logic. It requires four times as many circuits, interconnected in a systematic

way, and it corrects errors and performs the desired computation at the same

time. Researchers have studied quadded logic for use with AND, OR, and NOT

logic, and for use with NOR logic. Consider the schematic of a complementary

half adder (computing the complements of carry and sum, denoted as cc and cs)

shown in Figure 2.3 and its quadded form in Figure 2.4, both implemented with

NAND gates (including inverters, considering them a special form of NAND gate).

Interconnection in Quadded Logic

The quadded implementation in Figure 2.4 replaces each NAND gate from Figure

2.3 with a group of four NAND gates, each of which has twice as many inputs

as the one it replaces. The four outputs of each group are divided into two sets

of two outputs, each providing inputs to two gates in a succeeding stage. The

25

Figure 2.3: Nonredundant complementary half adder implemented with NAND
logic.

interconnections in a quadded circuit are hence eight times as many as those used

in the nonredundant form. The interconnect patterns in a quadded network are

important to the network’s capability of error correction, yet the rules are simple.

The outputs of four gates, numbered 1 to 4 in Figure 2.4, are divided into two

sets. Each set forms a pair of inputs and each pair feeds the two gates with the

same numbers as the set in succeeding stages. If the four outputs are divided into

two sets of (1,3) and (2,4), for instance, set (1,3) will provide inputs to gates 1

and 3 in the next stage and set (2,4) will provide inputs to gates 2 and 4. There

are three possible ways to break four inputs into two sets to form an interconnect

pattern: (1,2) and (3,4); (1,3) and (2,4); and (1,4) and (2,3). The rule to arrange

these patterns is that the interconnect pattern at the outputs of a stage must

differ from the interconnect patterns of any of its input variables.

Error Correction in Quadded Logic

In the pattern of interconnection in quadded logic, any single error introduced

in the network is correctable by the network itself, provided that the network is

26

Figure 2.4: Quadded implementation of the complementary half adder.

27

large enough. In Figure 2.4, assume that output B1 in stage B is wrongly in the

0 state when it should be in the 1 state (a critical 1 → 0 error for the NAND

gate). Because of this error, outputs D1 and D3 of stage D must be 1, this can

be erroneous, but it would be a subcritical 0 → 1 error. Since outputs D2 and

D4 of stage D are not in error (thus in the correct 0 state), the subcritical errors

at outputs D1 and D3 are masked at stage E, producing the expected (correct) 1

state at all the outputs of stage E. It is observed that a subcritical 0 → 1 error is

even more promptly corrected in the NAND network. In general, a single critical

error in a quadded circuit will be eliminated after passing through two stages, and

a single subcritical error will be corrected in the next stage after its occurrence.

The error correction property of a quadded NAND network is in fact a result of

its logical characteristics. Consider the outputs of stage B in Figure 2.4: B1, B2,

B3, and B4. After passing through two NAND stages, the outputs of stage B can

be represented at stage E by the following Boolean function: B1B3 + B2B4. All

Bs in this function should be the same in the absence of errors, but any single

error in the Bs will not affect the function’s correct value. In a quadded circuit,

a single error is correctable in at most two logic layers. Errors occurring on the

circuit’s edge, however, might not be eliminated at outputs (more specifically, a

critical error within the last two layers or a subcritical error in the last layer is

not correctable at outputs). Therefore, the gates on the edge are critical in the

sense that the failure of any critical gate will cause a high probability of failure

for the whole circuit. Because a single error is corrected within a rather short

28

logical path, many multiple errors do not interact. Hence, multiple errors are also

correctable in many cases. This is a particular merit of quadded logic.

2.3.4 N-tuple Intervowen Redundancy (NIR) & Triple In-

tervowen Redundancy (TIR)

Jie Han and Pieter Jonker present a new design of interwoven redundant logic,

called random interwoven redundancy, which can serve as the basis for building

any realistic circuit. The investigation of the fault tolerance of random interwoven

redundant circuits is done through a simulation-based experimental approach [34].

Triplicated interwoven redundancy (TIR) is the simplest form of random in-

tervowen redundancy. Figure 2.5 shows the schematic of a TIR implementation

for the complementary half adder in Figure 2.3. The TIR circuit triplicates each

NAND gate in the nonredundant circuit, as well as all the interconnections. A

TIR circuit thus has three times as many gates and interconnections as the cor-

responding nonredundant circuit. The interconnections in a TIR circuit are, in

principle, arranged randomly. For example, in a TIR circuit comprising two-

input NAND gates, for instance, there are six possible pair connections: (1,1),

(2,2), (3,3), (1,1), (2,3), (3,2), (1,2), (2,3), (3,1), (1,2), (2,1), (3,3), (1,3), (2,1),

(3,2), and (1,3), (2,2), (3,1). The notation (i, j) means that the output of gate

i in a triplet of gates, pairs with the output of gate j in another triplet to form

the inputs of a gate in the next stage. The total interconnect pattern becomes 36

(or 6 × 6) if the gate orders of a triplication in the next stage are distinguished.

29

One method of arranging the interconnections is to randomly adopt one of the

36 connection patterns for all connecting pairs in adjacent layers. As shown in

Figure 2.5, the interconnect patterns used in the three layers from inputs to out-

puts of the circuit are (1,1), (2,2), (3,3), (1,2), (2,3), (3,1), and (1,3), (2,1), (3,2),

although the circuit can use any other interconnect pattern. Notice that, if the

pattern (1,1), (2,2), (3,3) is used in all layers for all interconnections, the circuit

in Figure 2.5 will perform a computation as three independent modules, it will

actually work as a TMR circuit, as depicted in Figure 2.6. TIR is hence a gener-

alization of TMR to allow for random interconnections. The randomness in the

TIR interconnections is particularly interesting in the physical implementation of

molecular electronics, for which stochastic chemical assembly will most likely be

the manufacturing method.

The principle of TIR is applicable to arbitrary logic circuits. A general proce-

dure for constructing a TIR circuit is as follows [34]:

1. Start with a nonredundant form of the circuit.

2. Triplicate each gate.

3. Following the interconnect pattern of the nonredundant circuit, randomly

select a gate from a triplet to use as an input for a gate that has no other

inputs from the same triplet.

4. Repeat Step 3 until all the gates are connected in the TIR circuit

As in TMR, a TIR circuit requires a decision element (a voter) as a restor-

30

Figure 2.5: TIR implementation of the complementary half adder.

31

Figure 2.6: TMR configuration of the TIR complementary half adder.

32

ing device. TIR can be extended to higher orders, namely, N-tuple interwoven

redundancy (NIR), similar to the extension of TMR to NMR. Hence, NIR is a

generalization of NMR, but with random interconnections [34].

2.4 Defect Avoidance Design Techniques

Unlike defect-tolerant techniques which are designed to work properly despite the

presence of defects, defect avoidance techniques are based on a different principle.

They are based on the identification of defective modules and replacing them

by other redundant modules through reconfiguration. Several researchers have

proposed defect-avoidance techniques [8, 16, 17]. Two of them are discussed in

this section.

2.4.1 Mishra & Goldstein’s Technique

Mishra & Goldstein [17] have proposed a defect avoidance methodology particu-

larly suited for Chemically Assembled Electronic Nanotechnology (CAEN) cen-

tered around reconfigurable devices. Their proposed technique first constructs

a map of the defects depending on the outcome of testing and defect detection.

Then when the device is configured to implement a particular circuit, the defects

are avoided by using only the good components of the device. Their testing tech-

nique is primarily concerned with finding the defects. Their testing algorithm for

finding defects in reconfigurable nanoblocks consists of two phases:

• the probability assignment phase

33

• the defect location phase

The probability assignment phase assigns each component a probability of

being defective and discards the components which have a high probability. This

results in a large fraction of defective components being identified and eliminated

from further testing. The remaining components are likely to have a small enough

defect rate that they can be tested in the defect location phase using a simple

method to identify all the defect-free components.

In each phase, the fabric components are configured into test circuits in a

particular orientation, or tiling, since each circuit uses only a small number of

components, many such circuits can be configured in parallel, or tiled, across the

fabric. After finding the defects, defect map is constructed for each nanoblock

and then a feasible configuration is synthesized offline realizing the application for

each nanofabric instance. Finally, each instance is configured accordingly.

The drawback of this approach is that it is not considered scalable for large

nanosystems because it requires mapping, synthesis and configuration at a very

fine level of granularity. Moreover, the two-phase group testing strategy used by

Mishra & Goldstein for defect mapping requires unlimited connectivity among

nanoblocks [8]. The main idea of Mishra and Goldstein’s technique for using

reconfiguration for achieving defect avoidance has been used by other researches in

their work as starting point. An example of such a technique using reconfiguration

for defect avoidance is Chen He and Margarida F. Jacome’s design paradigm [8]

which is discussed in next section.

34

2.4.2 Chen He and M. F. Jacome’s Technique

Chen He et al. have proposed a hierarchy of design abstractions aimed at ensuring

scalability not only during a nanosystem’s synthesis but also in the defect mapping

and configuration phases [8]. The innovative aspect of their approach is that it

addresses scalability jointly across these phases. Their approach is based on two

key ideas:

• The first idea is to structure designs as hierarchies of carefully dimensioned

reconfigurable fabric regions, while decomposing and assigning small func-

tional flows to each such region. By restricting the functionality preassigned

to a specific nanofabric region, the scope and complexity of the defect map-

ping and configuration tasks are limited. Because it requires working with

only a set of basic flows assigned to structured fabric regions of limited com-

plexity, it becomes possible to compute configuration alternatives. However,

to achieve high yields, it must be ensured that each region has sufficient de-

grees of freedom for configuration or capacity so that there is high probability

that associated flows can be instantiated [8].

• The second idea underlying their approach is to devise efficient defect map-

ping and configuration methods for such regions. There is no need to map

all defects in a region, instead, it is sufficient to establish the existence of a

feasible configuration for the region’s associated flows.

Figure 2.7 summarizes the three-level hierarchy used to design the nanofabric.

35

Figure 2.7: Three-level design hierarchy showing abstractions in the form of region,
mapping unit and component on the upper level and behavioral abstractions on
the lower level.

36

The proposed approach and design abstraction enables a substantial part of

the defect mapping and configuration tasks for structured nanofabrics to be per-

formed within the nanofabric itself. Specifically it is possible to independently

map defects in each fabric region and then configure the individual basic flows

mapped into such regions around the defects. The approach uses a set of test tiles

implementing a TMR configuration to systematically identify a region’s defective

PEs or connections. The experimental results show that the proposed technique

using scalable defect mapping and configuration performs better than TMR-based

design methodology.

2.5 Transient & Soft Error Mitigation Tech-

niques

Transient and soft errors due to Single Event Upsets (SEUs) (or Single Event

Transients (SETs)) which are caused mainly due to cosmic-ray neutrons or alpha

particles, are main reasons behind lower field-level product reliability [33].

In the following subsections, first a brief introduction of SEUs and SETs is

presented. After that, SEU mitigation techniques are briefly surveyed. This is

followed by a brief survey of SEU mitigation techniques for FPGAs. Then, a brief

description of an empirical model for estimation of soft error rate and soft-spot

analysis method for the identification of circuit areas most prone to soft-errors is

presented.

37

Figure 2.8: Upsets hitting combinational and sequential logic.

2.5.1 Single Event Upsets and Single Event Transients

A single particle can hit either the combinational logic or the sequential logic in

the silicon [54]. Figure 2.8 illustrates a typical circuit topology found in nearly

all sequential circuits. The data from the first latch is typically released to the

combinational logic on a falling or rising clock edge, at which time logic operations

are performed. The output of the combinational logic reaches the second latch

sometime before the next falling or rising clock edge. At this clock edge, whatever

data happens to be present at its input (and meeting the setup and hold times)

is stored within the latch.

When a charged particle strikes one of the sensitive nodes of a memory cell,

such as a drain in an OFF state transistor, it generates a transient current pulse

that can turn on the gate of the opposite transistor. The effect can produce an

inversion in the stored value, in other words, a bit flip in the memory cell. Memory

cells have two stable states, one that represents a stored 0 and one that represents

a stored 1. In each state, two transistors are turned ON and two are turned OFF

38

Figure 2.9: Single Event Upset (SEU) effect in a SRAM Memory cell.

(SEU target drains). A bit-flip in the memory element occurs when an energetic

particle causes the state of the transistors in the circuit to reverse, as illustrated

in Figure 2.9. This effect is called Single Event Upset (SEU), and it is one of the

major concerns in digital circuits.

When a charged particle hits the combinational logic block, it also generates

a transient current pulse. This phenomenon is called single event transient (SET)

effect [56]. If the logic is fast enough to propagate the induced transient pulse,

then the SET will eventually appear at the input of the second latch in Figure

2.8, where it may be interpreted as a valid signal. Whether or not the SET gets

stored as real data depends on the temporal relationship between its arrival time

and the falling or rising edge of the clock.

Figure 2.10 exemplifies the signal paths in a combinational logic. In [57, 58],

the probability of a SET becoming a SEU is discussed. The analysis of SET is

very complex in large circuits composed of many paths. Techniques such as timing

analysis could be applied to analyze the probability of a SET in the combinational

39

Figure 2.10: Single Event Transient (SET) Effect in Combinational Logic based
on [53].

logic being stored by a memory cell or resulting in an error in the design operation,

as presented in [59]. Additional invalid transient pulses can occur at the combina-

tional logic outputs as a result of SETs generated within global signal lines that

control the function of the logic. An example of this would be SETs generated

in the instruction lines to an ALU. In [60], the widths of some induced transient

pulses are measured to obtain more precise models for fault-tolerant analysis.

It is worth noting that according to the logic fan-out, a single SET can produce

multiple transient current pulses at the output. Consequently, SETs in the logic

can also provoke multiple bit upsets (MBU) in the registers once the SETs are

captured by the flip-flops.

Performing a more detailed analysis, the sensitive regions of an integrated

circuit are the surroundings of the reverse-biased drain junctions of a transistor

biased in the OFF state [61], as for instance the drain of the OFF p-channel tran-

sistor as shown in Figure 2.11. As current flows through the struck transistor,

40

the transistor in the ON state (n-channel transistor in Figure 2.11) conducts a

current that attempts to balance the current induced by the particle strike. Actu-

ally, there are three current components at the struck node. The current induced

by the particle strike IP , the current ION that flows through the transistor in the

on-state, and the current IC that charges the parasitic capacitances at the node.

The current IC(t) is the current that will charge the node equivalent capacitance

and cause the bit flip, and is given by:

IC(t) = IP (t)− ION(t) (2.4)

If the current induced by the particle strike is high enough, the ON transistor

can not balance the current and a voltage change at the node will occur. This

voltage change can be propagated to the opposite inverter and lead to the flipping

of the bit stored in the memory cell. If the voltage transient is fed back through

the opposite inverter, a SEU occurs. If the voltage on the struck node is recovered

by the current feed through the ON transistor, no SEU will be observed.

The critical charge has been reduced in new process technologies because of

scaling. For constant field scaling, for example, as all physical device dimen-

sions such as gate length L, gate width W , and gate oxide thickness TOX , are

reduced, the supply voltage VDD and the threshold voltage VTH are also reduced

proportionately. This fact results in proportionately lower drain current (ION),

proportionately lower load capacitance (C), and proportionately lower circuit gate

delay (C ∗V DD/ION). This means that less charge or current is required to store

41

Figure 2.11: Single Event Upset (SEU) effect in a SRAM Memory cell.

information. Consequently, devices are becoming more vulnerable to radiation

and this means that particles with small charge, which were once negligible, are

now much more likely to produce upset [51].

Traditionally, SEUs have been a threat mostly in aerospace applications, but

as discussed in previous paragraph, more recently ICs are becoming more and

more sensitive to upsets at ground level due to continual evolution of fabrication

technology. Device shrinkages, power supply reduction and increasing operating

speeds significantly reduce noise margins and reliability because of the interal noise

sources which very deep-submicron devices face . With device dimension shrinking

to nanometer scales, this trend is approaching a point at which it will be infeasible

to produce ICs that are free from these effects. Therefore, tolerance of soft and

transient errors is no longer a matter exclusively for aerospace applications, it is

important for the designers of next-generation terrestrial applications as well [47].

42

2.5.2 Single Event Upset Mitigation Techniques

In [51], Kastensmidt et al. have detailed several SEU mitigation techniques. The

authors describe that the first SEU mitigation solution that has been used for

many years in spacecraft and other aerospace applications was shielding, which

reduces the particle flux to very low levels, but it does not completely eliminate it.

This solution was sufficient to avoid errors caused by radiation effects for many

years in the past. However, due to the continual evolution of the fabrication

technology process, electronic circuits are becoming more and more sensitive to

radiation particles, and the charged particles that once were negligible are now

able to cause errors in the electronic design. Consequently, extra techniques must

be applied to avoid radiation effects.

Several SEU mitigation techniques have been proposed in the last few years

in order to avoid faults in digital circuits, including those implemented in pro-

grammable logic [51]. They can be classified as:

• Fabrication process-based techniques such as:

– Epitaxial CMOS processes

– Advanced process such as silicon-on-insulator (SOI)

• Design-based Techniques

– Detection Techniques

∗ EDC (Error Detection Coding)

∗ Self-checker techniques

43

– Mitigation techniques

∗ Hardware redundancy like Triple Modular Redundancy (TMR),

Multiple redundancy with voting

∗ Time redundancy

∗ EDAC (Error detection and correction coding)

∗ Hardened memory cell level

• Recovery Techniques (applied to FPGAs only)

– Reconfiguration

– Partial configuration

– Rerouting design

In the next few subsections, design based mitigation techniques based on time

and hardware redundancy are briefly discussed. Mitigation Techniques for FPGAs

based on TMR as well as reconfiguration will be briefly surveyed in section 2.7.

Full Time and Hardware Redundancy

The use of full time redundancy in the combinational logic permits voting the

correct output value in the presence of a SET. The name full redundancy comes

from the complete N-modular redundancy, when N is equal to three, it is triple

modular redundancy. In this case, the output of the combinational logic is latched

at three different moments, where the clock edge of the second latch is shifted by

the time delay d and the clock of the third latch is shifted by the time delay 2d.

44

Figure 2.12: Full Time Redundancy.

A voter chooses the correct value. The full time redundancy scheme is illustrated

in Figure 2.12. The area overhead comes from the extra sample latches and the

performance penalty is given by clk + 2.d + tp, where d depends on the duration

of the transient current pulse and tp is the delay from the majority voter.

In the case of the full hardware redundancy, for instance in the well-known

Triple Modular Redundancy (TMR) approach, the logic is triplicated and voters

are placed at the output to identify the correct value. The first possibility that

was largely used in space applications is the triplication of the entire device,

Figure 2.13. This approach uses a voter as a fourth component in the board.

It needs extra connections and it presents area overhead. If an error occurs in

one of the three devices, the voter will choose the correct value. It protects both

combinational and sequential logic against upsets. However, if an upset occurs in

the voter, the TMR scheme is ineffective and a wrong value will be present in the

45

Figure 2.13: TMR implemented in the entire device.

output. Another problem of this approach is the accumulation of upsets, hence

an extra mechanism is necessary to correct the upset in each device before the

next SEU happens.

A more efficient implementation of the TMR is applied focussing on the sen-

sitive logic, for example the memory cells to protect against SEU, Figure 2.14.

However, this solution does not avoid the accumulation of upsets in the sequential

logic and the voter is vulnerable to upsets.

In order to restore the corrected value, a solution using three voters with a

feedback was proposed [52], Figure 2.15. The upsets in the latches are corrected

by extra logic in order to avoid accumulation. The load frequency (refreshing)

can be set by the multiplexor control signal.

46

Figure 2.14: TMR memory cell with single voter.

Figure 2.15: TMR memory cell with three voters and refreshing.

47

The combinational logic must also be protected to avoid SET. There are many

possibilities. One is to use time redundancy in the logic as shown in Figure 2.16.

Another possibility is to triplicate the combinational logic as well, as shown in

Figure 2.17.

Although the last proposed implementation of the TMR (Figure 2.17) presents

a larger area overhead compared to time redundancy, since it triplicates all the

combinational and sequential logic, it protects the logic against SET and SEU and

avoids accumulation of upsets. In addition, it does not have major performance

penalties, just the voter propagation time, and it does not need different clock

phases.

Another method to mitigate SET in combinational logic is based on duplication

and a Code Word State Preserving (CWSP) [53], as illustrated in Figure 2.18. This

method does not need voters or comparators. The duplication can be replaced

by time redundancy as well, which reduces the area overhead significantly, Figure

2.19. The main contribution of this method is the CWSP stage, which replaces

the last gates of the circuit by a particular gate topology, which is able to pass

the correct value in the combinational logic in the presence of a SET, Figure 2.20.

Additional techniques to cope with SET are presented in [54].

Some application systems concern about multiple upsets. However the problem

of multiple upsets must be carefully analyzed. Solutions are not trivial. For N -

Modular redundancy, where N is usually an odd integer, solutions with N larger

than 3 does not always present gains in reliability compared to the TMR because

48

Figure 2.16: Full time redundancy scheme for combinational logic combined with
full hardware redundancy in the sequential logic.

Figure 2.17: Full hardware redundancy scheme for combinational and sequential
logic.

49

Figure 2.18: Duplication to mitigate SET in combinational logic.

the result depends on the failure rate: λ [55].

For details of other SEU Mitigation techniques reported in literature, refer to

the book by Kastensmidt [51].

2.5.3 Single Event Upset Mitigation Techniques for FP-

GAs

SEU mitigation techniques and other fault-tolerant techniques have been exten-

sively investigated in the context of FPGAs [39, 40, 41, 42, 43, 19, 44, 46, 47, 48].

The reason for this interest is that FPGAs are preferred by designers of aerospace

systems because of their ease and flexibility of design and use. Many of these

mitigation techniques are variants of Triple Modular Redundancy (TMR) (which

is an example of static hardware redundancy) or reconfiguration based schemes.

50

Figure 2.19: Time redundancy to mitigate SET in combinational logic.

Figure 2.20: Example of INVERTER logic with the code word state preserving
(CWSP) in the duplication and time redundancy to mitigate SET in combina-
tional logic.

51

Categorization of SEU Mitigation Techniques for FPGAs

Kastensmidt et al. have provided the following categorization of fault-tolerant

FPGA design techniques for mitigating SEUs [51].

• SEU mitigation solutions at the architectural level : These techniques require

changing the architecture of the FPGA by replacing the traditional FPGA

blocks by hardened and fault-tolerant blocks like hardened memory cells,

fault-tolerant CLBs and fault-tolerant interconnection blocks.

• SEU mitigation techniques at the high level description: These techniques

involve developing a fault-tolerant design at the high level using TMR or

similar technique before targeting it into FPGAs.

• Recovery using Scrubbing : These techniques involve periodic refreshing of

the configuration memory of the FPGA so that transient errors due to SEUs

can be cleaned.

Survey of SEU Mitigation Techniques for FPGAs

Asadi et al. presented an evaluation for different single-event-upset (SEU) fault

tolerance schemes implemented on FPGAs [39].

The bottleneck in triple modular redundancy (TMR) implementations is the

voter. The reliability of the system is always limited by that of the voter. Samu-

drala et al. proposed implementing TMR on FPGAs. They suggest using tri-state

buffers (available on Xilinx Virtex FPGAs) to build SEU-tolerant voters [40]. By

doing so, they deal with the bottleneck in the reliability of the TMR. They use a

52

program to evaluate the nodes with a high probability of errors due to SEUs, and

selectively implement TMR at the potential gates.

The work in [41] investigates the ideal positioning of the voters for a TMR

system to achieve maximal robustness with minimal overhead. TMR is not the

only way to deal with SEUs in FPGAs. Some work in the past has compared

the efficiency of TMR with that of error detection (using duplication) followed

by recomputing. At low error rates, it is more efficient to use duplication with

recomputing.

Tiwari et al. proposed protecting against SEUs using parity bits in the memory

blocks of FPGAs [42]. If an error is detected, the memory is re-written. The

technique shows a significant power improvement compared to TMR.

Sterpone et al. suggest a place and route algorithm to reduce the susceptibility

to SEUs in FPGAs [43].

Duplication and concurrent error detection are used to tolerate transient and

permanent faults in FPGAs [47]. The authors use time redundancy as well as du-

plication with comparison. They also apply recomputation with shifted operands

and swapped operands. Their technique requires fewer I/O pads and consumes

less power than TMR. However, it takes more time and requires more flip flops.

For details of other SEU mitigation techniques for FPGAs reported in litera-

ture, refer to [51].

53

2.5.4 Empirical Model for Soft Error Rate Estimation

Hazucha et al. have derived an empirical model for estimation of soft error rate

(SER) [33]. They fabricated test circuits in a standard 0.6-µm CMOS process.

The neutron SER dependence on the critical charge and supply voltage was mea-

sured and time constants of the noise current were extracted from the measure-

ments and compared with device simulations in three dimensions. The empirical

model was calibrated and verified by independent SER measurements. One lim-

itation of the model is that it is only capable of predicting cosmic-ray neutron

SER of a circuit manufactured in the same process as the presented test circuits.

2.5.5 Soft-Spot Analysis

Zhao et al. have proposed a technique called Soft-Spot Ananlysis [38]. Their

argument is that only few nodes in the design are highly critical and they need to

be tolerant to faults. Soft-Spot analysis identifies regions in a circuit that are most

susceptible to multiple noise sources and their compound effects so that designers

can harden those spots for greater robustness.

For each node N in a given digital circuit, softness SN is defined as the node’s

vulnerability to noise, reflected by the node’s tendency to allow noise to propagate

through it with enough strength and proper timing to eventually cause observable

errors. An observable error is one that is latched into a memory element and

thus becomes a stable erroneous logic value. Soft-spot analysis determines the

magnitude of SN for all circuit nodes and identifies a collection of soft spots as

54

the nodes with high softness values.

The authors further argue that not all noise occurring in a digital circuit can

eventually cause functional errors. Three well-known masking effects viz. timing

masking, electrical masking and logic masking tend to prevent noise from causing

observable errors.

Timing Masking

Timing masking means that noise can cause an observable error only if it is cap-

tured by a memory element. To be captured, noise must arrive at the memory

element’s input within sampling window. For a DFF, the sampling window is

bounded by setup time tsu and hold time th around the active clock edge as

shown in Figure 2.21. To determine the required time interval for noise at a node

to reach a DFF within its sampling window, the authors [38] have defined the

effective noise window TWN
eff such that only noise existing at node N overlapping

with TWN
eff can reach at least one DFF during the DFFs sampling window. In

other words, if a noise originates or arrives at node N before the start (or after the

end) of TWN
eff , it will reach all DFFs before the start (or after the end) of their

sampling window and will therefore not be captured by any DFF. The TWN
eff of

a specific path (p) is bounded by start time tNp
start and end time tNp

end, determined

by the worst-case longest delay (∆T p)max and best-case shortest delay (∆T p)min

from N to the DFF through p, respectively. If the clock period is T , it is easy to

see that tNp
start = T − tsu − (∆T p)max and tNp

end = T − th − (∆T p)min.

Because there are usually multiple DFFs reachable from node N through many

55

Figure 2.21: The effective noise window.

logic paths, the authors have used the maximum (latest) tNp
end and the minimum

(earliest) tNp
start among all paths to calculate TWN

eff . Let P be the collection of all

possible paths through node N :

TWN
eff = maxp∈P [tNp

end]−minp∈P [tNp
start] (2.5)

Electrical Masking

Electrical masking means that noise must have enough duration and amplitude to

propagate through multiple logic gates. The strength of a single gate’s electrical

masking effect can be represented by the gate’s noise rejection curves (NRCs).

When using the NRC graphs, the noise propagation ratio RN
e can be defined

56

as:

RN
e =

(
Asen

Aimm

)

NRC

(2.6)

where Asen is the area of the noise-sensitive region and Aimm is the area of the

noise-immune region.

Logic Masking

Logic masking refers to the effect that noise ceases to propagate through a gate

whose output is solely determined by inputs other than the one carrying the noise.

The chances that noises occurring at different nodes will survive multiple levels

of logic gates and eventually reach the memory elements depend on the logic

structure. Complete determination of the logic masking effect requires exhaus-

tive exploration of the entire input vector space and prohibitively long dynamic

simulation time. The authors [38] have developed an efficient logic-path tracing

algorithm using the breadth-first search to estimate the propagation probability

PN
prop, defined as the ability of a glitch propagating from node N to extend to all

reachable DFFs through legitimate logic paths.

Using the above concepts, the softness SN is evaluated as a function of the

timing factor TWN
eff , the electrical factor RN

e , and the logic factor PN
prop. Therefore,

SN can be expressed as:

SN = WN

(
TWN

eff ×RN
e × PN

prop

)
(2.7)

57

where WN is an application-specific weighting factor at node N for designers

to convey design-related knowledge.

For the identification of soft spots using the above methodology, the authors

have developed an automated flow called the automatic soft-spot analyzer (ASSA)

shown in Figure 2.22.

The authors have proposed two useful applications of soft-spot analysis: ro-

bustness enhancement and robustness insertion.

• Robustness enhancement increases a circuit’s noise immunity by reducing

the three masking effects at the identified soft spots through localized and

limited design modifications at the gate level. As the analysis identifies soft

spots, reducing one or more of the three contributing factors can reduce the

spots’ softness.

• Robustness insertion judiciously adds circuit-hardening cells at the soft spots

to improve the circuits online reliability against transient errors. Spatial and

temporal redundancies that protect circuits from noise disturbances have

been important techniques for improving circuit online reliability. However,

without guidelines, excessive redundancy insertions incur unacceptable de-

sign overhead, and the protection might still not be efficient if the most

vulnerable circuit elements are underprotected and other circuit elements

are overprotected. The goal of robustness insertion is to find an optimal

protection scheme to achieve the highest level of robustness improvement

58

Figure 2.22: Automatic soft-spot analysis.

59

under given design constraints, using the guidelines of soft-spot analysis

and an efficient optimization algorithm.

2.6 Defect-Tolerant Crossbar Design Tech-

niques

Crossbar architectures are one approach to nanoelectronic circuits for memory

and logic applications [27, 85]. However, currently feasible manufacturing tech-

nologies introduce numerous defects so insisting on defect-free crossbars will give

low yields. Instead, defect-tolerant techniques need to be investigated for cross-

bar based designs in order to ensure correct operation of the circuit even in the

presence of defects.

In the following subsections, crossbar architecture and techniques for defect-

tolerant crossbar design as reported in literature are briefly discussed.

2.6.1 Crossbar Architecture

The crossbar architecture is a general approach for molecular electronics [27]. A

molecular crossbar consists of two parallel planes of molecular wire arrays sepa-

rated by a thin layer of a chemical species (called the ‘interlayer’) with particular

electrochemical properties as shown in Figure 2.23. Each plane consists of a num-

ber of parallel molecular wires (also called ‘nanowires’), with each wire in a plane

being of the same type. The wires in one plane cross the wires in the other plane

60

Figure 2.23: Schematic view of a molecular crossbar from two different perspec-
tives.

at a right angle. The region where two perpendicular wires cross is called a junc-

tion or crosspoint. Depending on the nature of the interlayer and nanowires, each

junction may be configured to implement an electronic device, such as a resistor,

diode or field effect transistor, or may be left unconfigured so the two crossing

wires forming the junction do not interact electrically.

The crossbar structure is an attractive architecture for molecular electronics

since it is relatively simple and inexpensive to fabricate using either chemical self-

assembly or nanoimprint lithography [27]. By suitable selection of the type of

connections at each crosspoint (e.g., no connection, or a diode in one direction

or the other), crossbars can be set to evaluate any logical formula expressed as

a combination of AND and OR operations. Figure 2.24 shows one example. To

see this, consider the output wire, labeled X. It is connected to ground through

a resistor, and via diode junctions to the second and third vertical wires. If both

vertical wires are at low voltage (OFF), then the output wire X will also be at

low voltage due to its connection to ground. On the other hand, if either of the

61

connected vertical wires is at high voltage (ON), the diode connection from the

high voltage vertical wire(s) will give a high voltage to the output wire (since,

by design, the diode resistance in the forward direction is much smaller than

the resistor connecting the output wire to ground). If only one of the vertical

wires is ON, the high resistance of the diode junction in the reverse direction

ensures that the output wire remains at high voltage. Thus this combination of

resistors and diode connections makes the output X equal to the logical-OR of

the inputs on the two vertical wires. Similarly, the connections from the inputs

A, B and C implement logical-ANDs. The crossbar of Figure 2.24 connects each

column, through a pullup resistor, to a positive voltage source. With the diode

directions shown here, each column implements the logical-AND of its inputs (the

horizontal wires). Each output row, connected to ground through a pulldown

resistor, implements the logical-OR of the columns connected to it through diode

junctions. Although this is not the only way to configure crossbar circuits, it

provides a simple functional form in which each output is the logical-OR of a

number of terms, each of which is the logical-AND of some inputs. An important

limitation of diode/resistor logic is its inability to implement logical inversion (i.e.,

a NOT gate). However, by presenting the circuit with two wires for each input (i.e.,

one wire representing the true input value, the other representing its complement),

the crossbars can produce internal signals in both the original and complemented

forms. Combining these signals using just AND and OR operations then allows

evaluating any logical formula. The complemented inputs to the crossbar are

62

Figure 2.24: Implementing the AND/OR function X = A + BC with a diode
crossbar and resistor.

readily produced by the external circuit, fabricated using conventional technology,

to which the crossbar is connected for input and output. Thus by doubling the

number of wires and presenting all primary inputs in both true and complemented

forms, the diode crossbar architecture can implement any logical formula just using

combinations of AND and OR operations [27].

There are three crossbar-based architectures reported in the literature:

• NanoFabric

• PLA-based

• CMOS-compatible crossbars

Goldstein and Budiu have proposed a chemically-assembled electronic nan-

otechnology FPGA-like architecture called NanoFabric [86]. Nano logic arrays,

also called Nanoblocks, implement a diode resistor logic (DRL) since crosspoints

act as programmable diodes. Since only AND and OR logic can be implemented

63

by DRL (i.e., no inversion), inputs and their complements are given to nanoblocks,

and the output function and its complement are generated. Signal restoration is

performed by using a molecular latch at the output of crossbars.

DeHon and Wilson have presented another array-based nanoarchitecture us-

ing Programmable Logic Arrays (PLAs) [87]. This architecture allows inversion

by using nanowire Field Effect Transistor (FET) devices as buffers. Logic func-

tionality is achieved in the form of two-plane PLAs. Each plane consists of a 2D

crossbar, implementing programmable OR array, followed by a restoration and

selective inversion array. Therefore, NOR-NOR logic is used in this architecture.

The third architecture is a CMOS-compatible crossbar memory array proposed

by Nantero Inc. called NRAM [88]. In this architecture, everything but nanoelec-

tromechanical switches are implemented in CMOS using conventional lithography

processes (CMOS-compatible fabrication). The programmable switches are real-

ized by a belt of carbon nanotubes (monolayer fabric of nanotubes). The same

technology can also be used to implement programmable logic and interconnection

network.

With currently feasible technologies, nanoscale crossbars will contain numer-

ous defective junctions. Thus as a practical matter for implementing logic opera-

tions, there is a need to create functioning circuits in spite of defects rather than

simply discarding any circuit with even a single defect (which would give unac-

ceptably low yield). For nanoscale crossbar devices, the main type of defect is that

introduced during manufacturing (so-called ”static defects”) rather than during

64

operation. This is reasonable for plausible technologies, which involve high tem-

peratures during manufacturing, and hence a relative ease of introducing defects,

but low temperature during operation, with much less chance of creating new

defects. In this situation, an appropriate systems architecture consists of a com-

piler to arrange for desired circuit behaviors by only using correctly functioning

components of a given crossbar circuit, as determined from a testing phase after

manufacture [16]. This approach of avoiding known defects gives defect-tolerant

crossbar architecture.

2.6.2 Tahoori’s Defect-Tolerant Design Techniques for 2D

Crossbars

Tahoori et al. have extensively explored the problem of utilizing a defective cross-

bar for implementing logic [19, 25, 29, 30] . The main idea behind all the ap-

proaches is to utilize a partilally defective nanoscale n × n crossbar as a smaller

defect-free k × k crossbar. The following sections describe briefly the various

algorithms proposed by Tahoori et al. for 2D crossbars.

Using Maximum Flow Algorithm

Tahoori et al. have studied the impact of defects on the routability of a 2D

crossbar [19]. The 2-D crossbar is represented by a bipartite graph B = (U, V, E).

The partition U represents the input nano-wires, while the partition V represents

the output nano-wires, E represents the programmable switches in the crossbar,

65

as illustrated in Figure 2.25. A matching T is a set of edges such that no two

edges share the same vertex. If an edge (vi, vj) is in the matching, then vertices vi

and vj are said to be matched. A perfect matching of a graph is a matching such

that all vertices are matched. A matching T of size k corresponds to the k signals

that can be routed through the crossbar simultaneously. Therefore, the maximum

matching of a bipartite graph B represents the so-called routing capacity of the

crossbar. In the fault-free case, a perfect matching exists in a fully populated

crossbar and thus N input signals can be routed to N outputs. However, in the

presence of defects, certain nanowires or switches might become unusable and

routability may drop. When the defect density is sufficiently high, the probability

of finding a perfect matching will be small. However, the crossbar can still be

used as a k × k (k < n) crossbar if a matching of size k can be found with a

high probability. In this case, signals can be routed from the k inputs to the k

outputs. The proposed technique identifies the probability of finding a k × k (so

that k inputs can be routed to k outputs) crossbar out of a faulty n× n (k < n)

crossbar at a specified defect density level. The following metric is used as figure

of merit for their proposed technique.

Metric Md
n,k: The probability of finding a matching of size k in an n × n

crossbar when the defect density is d.

The problem of finding the maximum matching in an arbitrary bipartite graph

B = (U, V, E), |U | = |V | = N, |E| = e is done by using the maximum flow

algorithm. The authors have obtained experimental results for different sized

66

Figure 2.25: (a) 4 x 4 2D nanoscale crossbar (b) Bipartite graph representation.

crossbars and for four types of faults namely switch stuck-open faults, switch

stuck-closed faults, nanowire open and nanowire bridging faults. The authors

have observed that switch stuck-closed faults in general have a significantly higher

impact on the manufacturing yield compared to switch stuck-open faults.

Using Recursive Biclique Algorithm

Tahoori has argued that given the graph model of the defective crossbar as shown

in Figure 2.25, the goal of finding a k × k crossbar within the original crossbar

corresponds to finding the maximum biclique in a bipartite graph [25, 29]. The

following yield metric is used as figure of merit for the techniques presented in

this and next section.

Yield Metric Y d
n,k: The probability of finding a biclique (defect-free crossbar)

of size k × k in an n× n crossbar when the defect density is d.

67

Finding the maximum biclique in a bipartite graph is an NP-complete problem.

In [29], a decision version of this problem is solved which is less complex compared

to the original optimization version. Instead of finding the maximum biclique in

G(U, V, E), the following decision (Yes/No) problem: “Does G(U, V,E) have a

biclique of size k1 × k2?” is solved. A recursive algorithm is presented in [29] for

solving the aforementioned decision problem.

Using Greedy Biclique Algorithm

Tahoori has proposed a greedy heuristic algorithm for finding the maximum bi-

clique [25, 30]. The approach is to convert the problem of finding a smaller k× k

defect-free crossbar to the problem of finding the maximum independent set in

the complement graph. The complement of a graph G is a graph Ḡ with the same

set of vertices such that two vertices of Ḡ are adjacent if and only if they are not

adjacent in G. An independent set S in a graph G is a subset of nodes that are

disconnected, i.e. there are no edges between any two nodes in an independent

set: ∀ u, v ∈ S, (u, v) /∈ E(G). The maximum independent set is an independent

set with the maximum number of nodes.

Even in the presence of defects (defect density < 30%), the corresponding bi-

partite graph model of the crossbar is still dense, i.e. |E| = O(n2) . Consequently,

the complement graph would be sparse and therefore, a heuristic approach can

be effectively used for finding the maximum independence set in the complement

graph. This is the main motivation behind converting the maximum biclique

problem into the maximum independent set problem in the complement graph

68

[30].

It is reported in [25] that for given size crossbars, the greedy biclique algorithm

is extremely faster (406 times faster) than recursive biclique algorithm for a given

value of defect density.

2.6.3 Hogg and Snider’s Defect Tolerant Design Technique

Hogg and Snider have examined the implementation of binary adders on defective

crossbars [26, 27]. The contribution of their work is follows:

• Two different ways of implementing binary adders have been proposed with

one implementation better in defect tolerance than the other.

• An allocation algorithm for mapping a circuit graph (representing the logical

formula to be implemented) onto a crossbar graph has been proposed.

Allocation Algorithm

The allocation algorithm uses graphs with annotated edges and nodes to represent

both the original circuit to be mapped onto a set of crossbars as well as the

crossbars themselves [27] . A wire in the crossbar is represented by a node in the

graph, and a junction is represented by an edge between the two nodes representing

the wires that define the junction. A perfect crossbar has an edge for every

junction. A defective crossbar has edges only for usable junctions. Allocation is

accomplished by

1. Creating graphs representing the desired circuit and compound crossbars

69

Figure 2.26: Resource Allocation: Searching for a monomorphism between circuit
and a crossbar graph.

2. Searching for an embedding or monomorphism between the circuit graph

and the compound crossbar graph.

Figure 2.26 illustrates this in detail.

The steps for allocation algorithm are as follows:

1. For the desired circuit (Figure 2.26(a)) create a circuit graph (Figure

2.26(b)) representing it: wires and junctions in the circuit are represented

70

by nodes and edges in the circuit graph, respectively.

2. For the desired target compound crossbar (Figure 2.26(c)), create a com-

pound tile graph (Figure 2.26(d)) representing it. As in circuit graph case,

wires and junctions in the crossbars are represented by nodes and edges in

the compound tile graph, respectively. A defective junction in a crossbar is

represented by the absence of its corresponding edge in the crossbar graph.

3. Annotate the edges of the circuit graph and the crossbar graph with anno-

tations representing the functionality of those edges (junctions in the circuit

represented by the graph). For example, edges in both graphs representing

resistors would all be tagged with identical annotations.

4. Annotate the nodes of the circuit graph and crossbar graph with annotations

to constrain matching between the two graphs. This is done to either enforce

input/output constraints between the desired circuit and other circuitry that

has been or will be mapped to other areas of a large compound tile graph, or

enforce directionality constraints on asymmetric junctions, such as diodes,

that must have, for example, an input delivered on a horizontal wire and an

output driven on a vertical wire; or enforce both.

5. Search for a monomorphism (Figure 2.26(e)) between the annotated circuit

graph and the annotated target crossbar graph to do allocation (Figure

2.26(f)), subject to the constraints that node and edge annotations must

match. In other words, a node in the circuit graph can only be matched

71

with a node in the crossbar graph if they both have identical annotations

or both have no annotations. Similarly, edges can only be matched if they

both have identical (or non-existent) annotations.

6. Use the monomorphism to complete the allocation or mapping of wires and

junctions in the desired circuit graph onto wires and junctions of the cross-

bar. For example, a node, A, in a circuit graph matched to a node, B, in

the crossbar graph will be used to allocate the crossbar wire represented by

B in the crossbar graph to carry the signal represented by A in the desired

circuit. Similarly, an edge, X, in a circuit graph matched to an edge, Y, in

the crossbar graph will be used to allocate the junction in the crossbar rep-

resented by Y in the crossbar graph for the electrical component represented

by X in the desired circuit.

Efficient algorithms for searching for a graph monomorphism are reported in

[89, 90, 91].

Using different implementations of the circuits on crossbars, the authors have

shown a tradeoff between defect tolerance and circuit area. It is shown that the

likelihood that defects are tolerable changes abruptly from one to near zero over

a small range of defect rates for a given crossbar size.

72

2.6.4 DeHon and Naemi’s Defect Tolerant Design Tech-

nique

DeHon and Naemi have proposed a strategy for tolerating defective crosspoints

and a linear-time greedy heuristic algorithm for mapping NanoPLA logic around

crosspoint defects [28].

NanoPLAs , like conventional PLAs consist of two programmable NOR planes.

Each of the NOR planes consist of two arrays: logic array and buffer/inverter

array. The logic array is the programmable part of each NOR plane. Its junctions

are the bistable crosspoints. The logic array implements the OR function of its

inputs which is why the outputs of this array are called OR-terms. Each of the

connected junctions behaves like a diode, and each OR-term is the wired OR logic

of its inputs. The output of each OR-term is pulled down weakly. If any of the

inputs is high, then it pulls up the OR-term outputs [87].

To implement a specific circuit on a nanoPLA, the logic arrays are pro-

grammed. This means that each OR function of a design is mapped to an OR-term

nanowire. The logical inputs are the set of inputs to the OR functions. The logical

inputs include the primary inputs of the nanoPLA and the signals that are fed

back from the other NOR plane. In each OR function, the set of logical inputs

that participate in the OR function is called ON-inputs and those that do not

participate are called OFF-inputs.

To map each OR function to an OR-term nanowire, the crosspoints of the OR-

term nanowire associated with the ON-inputs of the OR function are programmed

73

Figure 2.27: (a) A logic array of NanoPLA (b) Programmed logic array.

closed, and crosspoints of OFF inputs are left open. Figure 2.27 shows an example

of mapping four OR functions, f1 = a + b + c + d, f2 = a + c + e, f3 = b + c, and

f4 = d + e, with logical inputs, a, b, c, d, and e. The logic array inputs a to e

are assigned to input nanowires H1 to H5, respectively. In the case like Figure

2.27(b) where there is no defect in the array, each OR function can be mapped

to any nanowire. Here OR functions 1 to 4 are mapped to nanowires V 1 to V 4

respectively.

But, nanoscale logic array may contain defective crosspoints so the problem is

to find an assignment of the OR functions to the OR-term nanowires. The idea

of the proposed algorithm proposed is that since in each OR function there are

always some OFF inputs, i.e. some of the junctions will always be left open, if

there is a nanowire with defective junctions only at a subset of those positions,

74

Figure 2.28: (a) Crosses show defective junctions (b) Graph of the OR-term
nanowiores and OR functions (c) One possible assignment.

then this defective nanowire can be successfully assigned to the OR function [28].

Let F be the set of OR functions and W be the set of physical OR-term nanowires.

The problem is then to find an assignment of OR functions to the nanowires. The

problem can be formally stated as finding a bipartite matching from the set F to

the set W . Every matching of size |F | on the bipartite graph is a valid assignment

of the OR functions to the OR-term nanowires, because it finds an assignment for

all of the OR functions in F . Figure 2.28(b) shows a bipartite graph G(F,W,E).

Set F is the set of OR functions, and set W is the set of nanowires in the nanoPLA

of Figure 2.28(a). Figure 2.28(c) shows one possible matching.

Their proposed greedy heuristic algorithm maps the OR functions on a logic

array with defective crosspoints and is based on sorting fi of F based on the

75

expected value of their degree.

2.7 Defect-Tolerant FPGA Design Techniques

The regularity of FPGAs makes them suitable candidates for nanotechnology im-

plementation. Reconfigurability in FPGAs has historically been used as means

for mitigating the effect of defects. For permanent defects, a recent common prac-

tice for the largest two FPGA manufacturers has been to try mapping available

designs on working blocks of the FPGA and use it as an “application-specific”

FPGA [46].

The much more widely used fault tolerance application for FPGAs is fault tol-

erance for transient faults due to single event upsets (SEUs). Until recently, SEUs

due to charged particles have been a threat mostly in remote and space comput-

ers. As explained in Section 2.5, with device dimension shrinking to nanometer

scales, the threat of SEUs is now very significant even for terrestrial applications.

In the following sections, first a brief description of FPGA architecture is

presented followed by categorization and brief survey of defect-tolerant FPGA

design techniques.

2.7.1 Field Programmable Gate Array Architecture

FPGA architecture and terminology vary between vendors. A general and sim-

plifed FPGA architecture is shown in Figure 2.29 . The functional primitives of

an FPGA are termed as Confgurable Logic Blocks (CLBs) and the FPGA con-

76

sists of a regular array of CLBs. Each CLB contains at least one Look Up Table

(LUT) and Flip Flop (FF). A LUT consists of an SRAM and has typically four to

six inputs addressing the SRAM. A LUT can thus implement any logic function

with four inputs. To implement a function that is too large to fit in one CLB,

the function is split up and placed in several CLBs, connected through the config-

urable interconnect. The interconnect consists of lines, Switch Blocks (SBs) and

Connection Blocks (CBs). Each switch block is configurable and connects lines

entering and leaving the switch block. A connection block has a structure similar

to the switch block but connects the lines to the inputs and outputs of a CLB.

To be able to connect the configured circuit to the outside world, the FPGA also

contains Input/Output Blocks (IOBs). An IOB is often similar in structure to a

CLB but has additional circuitry for connecting to a physical pin on the FPGA

[71].

A modern FPGA is more complex than the FPGA shown in Figure 2.29. The

interconnect is more flexible, with long lines that bypass several switch blocks

for reduced delay. The CLBs are often clustered to reduce delay for local con-

nections. Each CLB also contains several configurable multiplexers to increase

the flexibility of internal CLB routing and dedicated carry chains to reduce delay

when implementing adder circuits. A LUT can also be configured as a small mem-

ory block or a shift register. The FPGA may also contain specialized units like

dedicated RAM blocks and complete processor cores, all embedded in the array

of CLBs. The FPGA is mostly SRAM based (although other types of FPGAs

77

are also availbele but only SRAM based FPGAs are relevant to this thesis work)

which means that all configurable elements are controlled by at least one SRAM

cell. The set of all configuration SRAM cells is called the configuration memory of

the FPGA. When a FPGA is to be programmed, a bit file containing a value for

every SRAM cell in the configuration memory is uploaded to the FPGA. This bit

file is the result of an automated design flow, where a circuit described in a Hard-

ware Description Language (HDL) is synthesised, placed, routed and converted

to a suitable bit file for the device [71].

2.7.2 Categorization of Defect and Fault-Tolerant Tech-

niques for FPGAs

Defect and Fault-tolerant techniques based on redundancy can be loosely classified

into three groups [46]:

• software based redundancy techniques,

• hardware based redundancy techniques and

• run-time based redundancy techniques.

Each of these approaches have their advantages, and typically trade-off be-

tween time (critical path delay and processing/application time) and resources

(silicon area, external storage, etc).

78

Figure 2.29: Simplified example of an FPGA with 16 CLBs.

79

Software based Redundancy Techniques

In a software-based redundancy approach, CAD tools are used to map around

faulty resources. This method typically has no hardware overhead. The effective-

ness and efficiency of correction is dependent on the abilities of the CAD tools.

Furthermore, this method is impractical in a production environment because:

1. generating a unique placement and routing solution for each FPGA is time-

consuming, and

2. verifying timing of each solution is impossible.

Xilinx solves these problems with their EasyPath [73] technology. Rather than

forcing the configuration bitstream to avoid the defects, Xilinx forces the defects to

avoid the bitstream. They do this by obtaining the customers final bitstream and

selecting chips which contain defects only in the unused portions of the chip. Two

other approaches have been proposed to solve these problems. The first method is

to precompute a number of placement and routing solutions for a particular design.

Each precomputed solution differs by its resource usage. When programming a

defective chip, defect correction simply involves selecting the appropriate solution

(one that does not use the defective resource(s)) [74, 75]. The second method

requires the reservation of spare resources. By carefully avoiding the use of certain

resources, it is possible to avoid defects by shifting the entire design [76] by one

row or column in the array. Design shifting can be applied in a relatively short

amount of time. Without special hardware support, however, shifting results in a

slight variance in IO timing. It can also be complicated by heterogeneous (memory

80

or DSP) blocks in the array. Furthermore, to support multiple defects, they must

be perfectly aligned to the spare locations.

Hardware based Redundancy Techniques

Hardware redundancy involves the addition of extra or spare resources. The spare

resources allow defective parts to be swapped with empty spare ones. This ex-

change reduces correction time since the time required to swap is typically less

than the time needed to generate a new placement and routing solution. The spare

row and column technique is one of the first hardware redundancy approaches and

has been successfully applied in industry [77]. This method adds one spare row

and one spare column to the layout. It also requires the routing network to be

modified. In the event of a defect, the row or column containing the defect is by-

passed, and the spare row or column is utilized. The ability to bypass entire rows

and columns gives this approach the ability to tolerate defect clusters. Unfortu-

nately, published research does not present the delicate circuit details needed to

perform the bypass. Altera patents provide some insight and indicate that addi-

tional circuitry is required for bypassing [78]. Redundancy can be implemented at

a finer level. For example, additional connections can be added inside the switch

block to tolerate one transistor defect per switch block [79]. Unfortunately, this

approach is impractical because it significantly alters delay.

81

Run-time based Redundancy Techniques

Fault tolerance can also be addressed during run-time. As transistor sizes shrink,

FPGAs become susceptible to transient faults such as single event upsets [80,

81]. To alleviate this problem, techniques have been developed to detect and

correct transient errors through reprogramming or bit scrubbing [82, 83]. However,

it is not clear whether these techniques can be extended to correct permanent

manufacturing defects; simply reprogramming is insufficient.

Combinations of software and hardware redundancy have also been proposed.

2.7.3 Survey of Defect-Tolerant Techniques for FPGAs

Yu et al. have proposed adding routing resources to facilitate and simplify de-

fect correction and a new switch block design to allow defects to be bypassed

by computing a new configuration for a small, localized part of the FPGA [46].

This ensures that areas outside of the neighborhood of the first defect can still

tolerate other defects. The affected neighborhood is so small that defect correc-

tion can be achieved by modifying the configuration bitstream alone. The defect

correction also introduces minimal timing disturbances. The paper also proposes

a fault-tolerant design for the switch blocks for yield enhancement. The proposed

technique is based on wrapping additional multiplexers around the switch blocks

to allow different routes for signals. The additional multiplexers lead to higher

probability of finding a route between endpoints.

Huang et al. presented a scheme for evaluating the fault tolerance of different

82

FPGAs based on reconfigurability of routing resources in the presence of faulty

switches [19, 44]. Routability (a realizable route between input and output end-

points) is used as a measure of fault tolerance. As switches fail, the probability

of finding a route between endpoints decreases. The paper uses open and short

switches as faults.

Yu et al. have also compared coarse and fine-grain redundancy in FPGAs

to tolerate defects [48]. For coarse-grain redundancy, they use spare rows and

columns, and for fine-grain redundancy they use the fault-tolerant switch block

design proposed in [46]. Their findings support using fine-grain redundancy since

it offers much higher fault tolerance. They argue that matching the fine-grain

fault tolerance using coarse-grain fault tolerance requires double the hardware

overhead of fine-grain redundancy, which is about 50%.

83

CHAPTER 3

DEFECT-TOLERANT

N2-TRANSISTOR

STRUCTURES

In this chapter, detailed investigation of a recently proposed transistor-level defect-

tolerant design technique called Quadded-Transistor structure is performed. The

theoretical and experimental analysis of Quadded-Transistor structure are ex-

tended to develop Nona-Transistor structure. Comparison of defect tolerance of

proposed transistor-level technique is performed with Quadded Logic technique

and the advantages of the proposed technique over other techniques are discussed.

Also, hybrid of quadded-transistor and nona-transistor technique with TMR tech-

nique is also investigated.

84

3.1 Introduction

As discussed in Chapter 2, two main approaches have been proposed in the context

of reliable nanoelectronics: defect tolerance and defect avoidance. Defect tolerance

techniques are based on adding redundancy in the design to tolerate defects or

faults. However, defect avoidance techniques are based on identifying the defects

and avoiding them possibly through the use of reconfigurable blocks. Recently,

traditional fault tolerance techniques such as triple-modular redundancy, triple

interwoven redundant logic, and quadded logic have been investigated [11] with

the aim to improve the defect tolerance of nanoelectronics design. It has been

demonstrated that such techniques are capable of making nanoelectronic circuits

more robust to defects.

The previous approaches of defect-tolerance for reliable nanoelectronics have

focused on adding redundancy at the functional or unit level such as TMR [12, 13],

or gate level such as quadded logic [11]. In this chapter, adding redundancy at

the transistor level is investigated and it is shown that it provides higher defect

tolerance than unit and gate levels. The work discussed in this chapter is mainly

inspired by the work reported in [31, 32] and should be considered as an extension

of it.

Adding redundancy at the transistor level itself to improve reliability is not

new. Indeed, in [23, 24] transistors were employed to improve the reliability of

relay networks. In this chapter, investigation of the effectiveness of transistor-

level approach when applied to ISCAS benchmark circuits is performed, since in

85

[23, 24] bipolar transistors were employed with very simple circuits. Circuit defect

tolerance based on N2-transistor structure with respect to stuck-open, stuck-short

and bridging defects is investigated. Furthermore, a comparison is made with

recent approaches proposed for defect tolerance in nanoelectronics.

This chapter is organized as follows. The proposed defect-tolerant technique

is described in Section 3.2. Experimental results analyzing the defect tolerance of

stuck-open, stuck-short and bridging defects are given in Section 3.3. Section 3.4

summarizes and concludes the chapter.

3.2 N 2-Transistor Structures

In this section, the proposed techniques for achieving defect tolerance based on

adding redundancy at the transistor-level for electronic circuits are described. Ap-

plication of transistor-level redundancy for nanoelectronic circuits is also equally

significant because it is reported in literature that few of the emerging nanoelec-

tronic technologies show MOSFET like behavior. IBM has recently demonstrated

experimentally that carbon nanotubes exhibit electrical characteristics that are

similar to that of the state-of-the-art Silicon based MOSFETs [84].

Two transistor structures are described in the following sections.

• Quadded-Transistor Structure

• Nona-Transitor Structure

86

3.2.1 Quadded-Transistor Structure

The quadded-transistor technique, proposed by El-Maleh et al. in [31] addresses

the defect tolerance of transistor stuck-open, stuck-short and bridging defects

between gate terminals of transistors. A transistor is considered defective if its

expected behavior changes regardless of the type of defect causing it. In order to

tolerate single defective transistors, each transistor, A, is replaced by a quadded-

transistor structure implementing either the logic function (A + A)(A + A) or the

logic function (AA) + (AA), as shown in Figure 3.1. In both of the quadded-

transistor structures shown in Figure 3.1(b) and (c), any single transistor defect

(stuck-open, stuck-short, AND/OR-bridge) will not change the logic behavior, and

hence the defect is tolerated. It should be observed that for NMOS transistors,

OR-bridge and stuck-short defects produce the same behavior while AND-bridge

and stuck-open defects have the same behavior. Similarly, for PMOS transistors,

OR-bridge and stuck-open defects produce the same behavior while AND-bridge

and stuck-short defects have the same behavior. Double stuck-open (or their cor-

responding bridge) defects are tolerated as long as they do not occur in any two

parallel transistors (T1&T2 or T3&T4 for the structure in Figure 3.1(b), and

T1&T2, T1&T4, T3&T2 or T3&T4 for the structure in Figure 3.1(c)). Double

stuck-short (or their corresponding bridge) defects are tolerated as long as they

do not occur in any two series transistors (T1&T3, T1&T4, T2&T3 or T2&T4 for

the structure in Figure 3.1(b), and T1&T3 or T2&T4 for the structure in Figure

3.1(c)). In addition, any triple defect that does not include two parallel stuck-open

87

Figure 3.1: (a) Transistor in original gate implementation, (b) First quadded-
transistor structure, (c) Second quadded-transistor structure.

defects or two series stuck-short defects or their corresponding bridging defects

is tolerated. Thus, one can easily see that using either of the quadded-transistor

structures, the reliability of gate implementation could be significantly improved.

It should be observed that the effective resistance of the quadded-transistor struc-

tures has the same resistance as the original transistor. However, in the presence

of a single defect, the worst case effective resistance of the first quadded-transistor

structure (Figure 3.1(b)) is 1.5R while that of the second quadded-transistor struc-

ture (Figure 3.1(c)) is 2R, where R is the effective resistance of a transistor. This

occurs in the case of single stuck-open (or corresponding bridge) defects. For tol-

erable multiple defects, the worst case effective resistance of both structures is 2R.

For this reason, the first quadded-transistor structure (Figure 3.1(b)) is adopted

in our theoretical and experimental work.

Next, the probability of circuit failure given a transistor defect probability

88

using quadded-transistor structures is determined according to the method given

in [31, 32]. A transistor is considered defective if it does not function properly

due to manufacturing defects.

Theorem 1 Given a transistor-defect probability, P , the probability of

quadded-transistor structure failure is

Pq =
3

2
P 2 − 1

2
P 3

Proof This is proved with respect to stuck-open and stuck-short defects as

bridge defects have equivalent behaviors to them as explained above.

If there are only two defective transistors in a quadded-transistor structure,

then there are four possible pairs of stuck-open and stuck short defects. In all

cases, only one of those pair of defects produces an error. Thus, the probability

of failure in this case is:

1

4

4

2

 P 2(1− P)2 =

3

2
P 2(1− P)2

If three transistors are assumed defective, then there are eight possible com-

binations of stuck-open and stuck short defects. In all cases, five out of those

89

combinations produce an error. Thus, the probability of failure in this case is:

5

8

4

3

 P 3(1− P) =

5

2
P 3(1− P)

If four transistors are assumed defective, then in this case there will always be

an error and the probability of failure is:

1

4

4

 P 4 = P 4

Thus, the probability of quadded-transistor structure failure is:

Pq =
3

2
P 2(1− P)2 +

5

2
P 3(1− P) + P 4

Pq =
3

2
P 2 − 3P 3(1− P) +

3

2
P 4 +

5

2
P 3 − 5

2
P 4 + P 4

Pq =
3

2
P 2 − 1

2
P 3(1− P)

Theorem 2 Given a transistor-defect probability, P, and a circuit with N

quadded-transistor structures, the probability of circuit failure and circuit reliability

90

are

Pf =
N∑

i=1

(−1)i+1

N

i

 (Pq)

i

R = 1− Pf =
N∑

i=1

(−1)i+1

N

i

 (Pq)

i

Theorem 2 is based on the inclusion-exclusion principle [97]. The probability of

circuit failure may also be computed based on the binomial distribution as

Pf =
N∑

i=1

N

i

(
Pq

i
)
(1− Pq)

N−i

which gives equivalent results. It is assumed in the work in [31, 32] that circuit

reliability represents the probability that the circuit will function correctly in the

presence of defects. It should be observed that while the result above represents

the exact circuit failure probability for stuck-open and stuck-short defects, it rep-

resents an upper bound for bridging defects. This is due to the fact that not all

bridging defects that result in a faulty quadded-transistor structure result in a

faulty gate behavior. For example, AND-bridging defects between gate terminals

of transistors within the same NAND gate do not change the gate behavior regard-

less of their multiplicity. Similarly, OR-bridging defects between gate terminals of

91

Figure 3.2: Defect-tolerant N2-transistor structure.

transistors within the same NOR gate do not change the gate behavior regardless

of their multiplicity.

The quadded-transistor structure, given in Figure 3.1(b), can be generalized to

an N2-transistor structure, where N ≥ 2. An N2-transistor structure is composed

of N blocks connected in series with each block composed of N parallel transistors,

as shown in Figure 3.2. An N2-transistor structure guarantees defect tolerance of

all defects of multiplicity less than or equal to (N − 1) in the structure. Hence, a

large number of multiple defects can be tolerated in a circuit implemented based

on these structures. It is obvious that quadded-transistor structure is an N2-

transistor structure with N = 2.

92

3.2.2 Nona-Transistor Structure

The nona-transistor structure is an extension of the quadded-transistor structure.

In the nona configuration (N = 3), each transistor, A, is replaced by a nona-

transistor structure implementing either the logic function (A + A + A)(A + A +

A)(A+A+A) or the logic function (AAA)+(AAA)+(AAA), as shown in Figure

3.3. In both of the nona-transistor structures shown in Figure 3.3(b) and (c), any

single transistor defect (stuck-open, stuck-short, AND/OR-bridge) will not change

the logic behavior, and hence the defect is tolerated. Double stuck-open (or their

corresponding bridge) defects are also always tolerated. Double stuck-short (or

their corresponding bridge) defects are also always tolerated. In addition, any

triple defect that does not include three parallel stuck-open defects or three series

stuck-short defects or their corresponding bridging defects is tolerated. Thus, one

can easily see that using either of the nona-transistor structures, the reliability of

gate implementation could be significantly improved.

The nona-transistor structure shown in Figure 3.3(b) is adopted in this work

for the same reason of having less resistance in case of tolerable defects in the tran-

sistors as explained in the previous section for quadded-transistor structure. Next,

the probability of failure for nona-transistor structure where N=3 is determined

based on a similar analysis as done for quadded-transistor structure [31, 32].

Theorem 3 Given a transistor-defect probability, P, the probability of a nona-

93

Figure 3.3: (a) Transistor in original gate implementation, (b) First nona-
transistor structure, (c) Second nona-transistor structure.

transistor structure failure is

Pn =
30

8
P 3 − 81

16
P 4 +

27

8
P 5 − 21

16
P 6 +

31

128
P 7 − 19

128
P 8 +

5

32
P 9 (3.1)

This is proved as follows.

Proof This is also proved with respect to stuck-open and stuck-short defects.

If there are only two defective transistors in a nona-transistor structure, the

defect will always be tolerated.

If three defective transistors are assumed defective in a nona-transistor struc-

ture, then there are eight possible combinations of stuck-open and stuck short

defects. In all cases, only one of those combinations of defects produces an er-

ror for 3 unique parallel (stuck-open) and 27 unique series (stuck-short) defective

94

transistor structures. Thus, the probability of failure in this case is:

(3× 1

8
+ 27× 1

8
)P 3(1− P)6

If four transistors are assumed defective, then there are sixteen possible combina-

tions of stuck-open and stuck short defects. Among those, only two combinations

produce an error for 18 unique parallel transistor structures. Moreover, only three

combinations produce an error for 81 unique series transistor structures. Thus,

the probability of failure in this case is:

(18× 2

16
+ 81× 3

16
)P 4(1− P)5

If five transistors are assumed defective, then there are thirty two possible combi-

nations of stuck-open and stuck short defects. Among those, only four combina-

tions produce an error for 18 unique parallel transistor structures. Moreover, only

eleven combinations produce an error for 27 series transistor structures which are

overlapping with parallel transistor structures. Also, nine combinations produce

an error for 81 series transistor structures which are non-overlapping with parallel

transistor structures. Thus, the probability of failure in this case is:

(18× 4

32
+ 27× 11

32
+ 81× 9

32
)P 5(1− P)4

If six transistors are assumed defective, then there are sixty-four possible combi-

nations of stuck-open and stuck short defects. Among those, only fifteen combina-

95

tions produce an error for 3 unique parallel transistor structures. Moreover, only

twenty-nine combinations produce an error for 54 series transistor structures which

are overlapping with parallel transistor structures. Also, twenty-seven combina-

tions produce an error for 27 series transistor structures which are non-overlapping

with parallel transistor structures. Thus, the probability of failure in this case is:

(3× 15

64
+ 54× 29

64
+ 27× 27

64
)P 6(1− P)3

If seven transistors are assumed defective, then there are one hundred and twenty

eight possible combinations of stuck-open and stuck short defects. Among those,

there are no unique parallel transistor structures. Moreover, only seventy-four

combinations produce an error for 1 series transistor structure which is overlap-

ping with parallel transistor structures. Also, seventy-nine combinations produce

an error for the other 35 series transistor structures which are overlapping with

parallel transistor structures. There are no series transistor structures which are

non-overlapping with parallel transistor structures. Thus, the probability of fail-

ure in this case is:

(1× 74

128
+ 35× 79

128
)P 7(1− P)2

If eight transistors are assumed defective, then there are two hundred and fifty six

possible combinations of stuck-open and stuck short defects. Among those, there

are no unique parallel transistor structures. Moreover, only one hundred and fifty

eight of those combinations produce an error for 1 series transistor structure which

96

is overlapping with parallel transistor structures. Also, two hundred and seven

combinations produce an error for the other 8 series transistor structures which

are overlapping with parallel transistor structures. There are no series transistor

structures which are non-overlapping with parallel transistor structures. Thus,

the probability of failure in this case is:

(1× 158

256
+ 8× 207

256
)P 8(1− P)

If nine transistors are assumed defective, then in this case there will always be

an error and the probability of failure is

1

9

9

 P 9 = P 9

97

Thus, the probability of nona-transistor structure failure is:

Pn = (3× 1

8
+ 27× 1

8
)P 3(1− P)6

+(18× 2

16
+ 81× 3

16
)P 4(1− P)5

+(18× 4

32
+ 27× 11

32
+ 81× 9

32
)P 5(1− P)4

+(3× 15

64
+ 54× 29

64
+ 27× 27

64
)P 6(1− P)3

+(1× 74

128
+ 35× 79

128
)P 7(1− P)2

+(1× 158

256
+ 8× 207

256
)P 8(1− P)

+P 9

Pn =
30

8
P 3 − 81

16
P 4 +

27

8
P 5 − 21

16
P 6 +

31

128
P 7 − 19

128
P 8 +

5

32
P 9

Theorem 4 Given a transistor-defect probability, P, and a circuit with N

nona-transistor structures, the probability of circuit failure and circuit reliability

are

Pf =
N∑

i=1

(−1)i+1

N

i

 (Pn)i

R = 1− Pf =
N∑

i=1

(−1)i+1

N

i

 (Pn)i

98

Based on the analysis of the quadded-transistor and nona-transistor structures, it

can be deduced that the probability of failure for an N2-transistor structure will

be O(PN). The N2-transistor structure, for N > 2, may be applied selectively for

critical gates due to its increased overhead.

An interesting advantage of the N2-transistor structure is that it fits well in ex-

isting design and test methodologies. In synthesis, a library of gates implemented

based on the N2-transistor structure will be used in the technology mapping pro-

cess. The same testing methodology will be used assuming testing is done at the

gate level based on the single stuck-at fault model. So, the same test set derived

for the original gate-level structure can be used without any change.

Figure 3.4 compares the reliability of several NAND gates of various inputs,

including 2, 4 and 8, implemented using the quadded-transistor structure, the

nona-transistor structure and conventional (pull-up, pull-down) CMOS implemen-

tation for stuck-open and stuck-short defects. As can be seen, the reliability of

gates implemented using the quadded-transistor and nona-transistor structures

is significantly higher than the reliability of conventional gate implementation.

For example, for an 8-input NAND gate, with a probability of transistor failure =

10%, the gate reliability for the nona-transistor structure-based design is 95%, the

gate reliability for the quadded-transistor structure-based design is 79%, while the

gate reliability for the conventional CMOS implementation is 19%. Furthermore,

as the number of inputs increases, the probability of gate failure increases and

reliability decreases, as expected.

99

The gate capacitance that the quadded-transistor structure induces on the

gate connected to the input A is four times the original gate capacitance. This

has an impact on both delay and power dissipation. However, as shown in [38], a

gate with higher load capacitance has better noise rejection curves and hence is

more resistant to soft errors resulting in noise glitches.

While the quadded-transistor structure increases the area, this increase is less

than other gate-level defect tolerance techniques as will be shown in the experi-

mental results. As with all defect tolerance techniques, the increase in area, power

and delay is traded off by more circuit reliability. This is justified given that it

is predicted that nanotechnology will provide much higher integration densities,

speed and power advantages [34].

3.3 Experimental Results

To demonstrate the effectiveness of the N2-transistor structure technique, ex-

periments have been performed on a number of largest ISCAS85 and ISCAS89

benchmark circuits (replacing flip-flops by inputs and outputs). Two types of

permanent defects are analyzed separately: transistor stuck-open and stuck-short

defects, and AND/OR bridging defects. For evaluating circuit failure probabil-

ity and reliability, the simulation-based reliability model used in [11] is adopted.

Circuit reliability based on the quadded-transistor and nona-transistor structures

is compared with the approaches in [11] including Triple Interwoven Redundancy

(TIR) and Quadded logic. A complete test set T that detects all detectable single

100

Figure 3.4: Gate reliability comparison between quadded-transistor structure (Q),
nona-transistor structure (N) and conventional CMOS.

101

stuck-at faults in a circuit is used. Test sets generated by Mintest ATPG tool [69]

are used. To compute the circuit failure probability, Fm, resulting from injecting

m defective transistors, the following procedure is used:

1. Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

2. Simulate the fault-free circuit by applying the test set T .

3. Randomly inject m transistor defects.

4. Simulate the faulty circuit by applying the test set T .

5. If the outputs of the fault-free and faulty circuits are different, increment K

by 1.

6. Decrement I by 1 and if I is not 0 goto step 3.

7. Failure Rate Fm = K/1000.

Assuming that every transistor has the same defect probability, P , and that defects

are randomly and independently distributed, the probability of having a number

of m defective transistors in a circuit with N transistors follows the binomial

distribution [11] as shown below:

P (m) =

N

m

Pm(1− P)N−m

102

Assuming the number of transistor defects, m, as a random variable and using

the circuit failure probability Fm as a failure distribution in m, the probability of

circuit failure, F , and circuit reliability, R, are computed as follows [11]:

F =
N∑

m=1

Fm × Pm

R = 1− F =
N∑

m=1

Fm × Pm

3.3.1 Stuck-Open and Stuck-Short Defect Analysis

Figures 3.5 and 3.6 show the reliability of some of the ISCAS85 benchmark circuits

obtained both theoretically and experimentally based on the above simulation pro-

cedure and formulas for stuck-open and stuck-short defects for quadded-transistor

and nona-transistor structures respectively. As can be seen, there is almost iden-

tical match, clearly validating the derived theoretical results.

For TMR to be effective, a careful balance between the module size and the

number of majority gates used needs to be made. For this reason, comparison of

the reliability of ISCAS benchmark circuits between the quadded-transistor and

nona-transistor structures and quadded logic is being presented in this chapter.

A comprehensive comparison of the probability of circuit failure between the

quadded-transistor structure and the quadded logic is given in Table 3.1 for several

103

Figure 3.5: Reliability obtained both theoretically (t) and experimentally (e)
based on quadded-transistor structure and stuck-open and stuck-short defects.

104

Figure 3.6: Reliability obtained both theoretically (t) and experimentally (e)
based on nona-transistor structure and stuck-open and stuck-short defects.

105

Table 3.1: Comparison of circuit failure probability between quadded-transistor
structure and quadded logic approaches for stuck-open and stuck-short defects.

Quadded-Transistor Structure Quadded Logic
Cct. Trans. 0.25% 0.5% 0.75% 1% Trans. 0.25% 0.5% 0.75% 1%
c880 7208 0.015 0.060 0.135 0.237 13616 0.452 0.783 0.905 0.978
c1355 9232 0.023 0.082 0.176 0.287 18304 0.531 0.846 0.975 0.995
c1908 13784 0.030 0.115 0.248 0.400 24112 0.673 0.94 0.984 ≈ 1
c2670 22672 0.047 0.188 0.375 0.569 36064 0.958 0.999 ≈ 1 ≈ 1
c3540 30016 0.067 0.238 0.457 0.674 46976 0.59 0.901 0.996 0.999
c5315 45048 0.095 0.341 0.614 0.816 74112 0.991 ≈ 1 ≈ 1 ≈ 1
c6288 40448 0.085 0.307 0.576 0.787 77312 0.685 0.962 0.999 ≈ 1
c7552 61600 0.136 0.441 0.732 0.909 77312 0.985 ≈ 1 ≈ 1 ≈ 1
s5378 35608 0.081 0.282 0.521 0.737 59760 ≈ 1 ≈ 1 ≈ 1 ≈ 1
s9234 74856 0.166 0.510 0.791 0.939 59760 0.999 ≈ 1 ≈ 1 ≈ 1
s13207 103544 0.212 0.625 0.888 0.980 150448 ≈ 1 ≈ 1 ≈ 1 ≈ 1
s15850 128016 0.257 0.697 0.936 0.992 171664 ≈ 1 ≈ 1 ≈ 1 ≈ 1

percentages of injected stuck-open and stuck-short defects. For all the circuits,

the quadded-transistor technique achieves significantly lower circuit failure proba-

bility than the quadded logic technique for the same and for twice the percentage

of injected defects. For 10 out of 12 circuits, it achieves lower failure probabil-

ity with four times the percentage of injected defects. In Table 3.2, the circuit

reliability results obtained based on the simulation procedure outlined above for

the quadded-transistor structure and quadded logic approaches for several transis-

tor defect probabilities based on stuck-open and stuck-short defects are reported.

The effectiveness of the quadded-transistor structure technique is clearly demon-

strated by the results as it achieves higher circuit reliability with 4 to 5 times

more transistor defect probability. This is in addition to the observation that

the quadded-transistor structure technique requires nearly half the area of the

quadded logic technique as indicated by the number of transistors.

106

Table 3.2: Comparison of circuit reliability between quadded-transistor structure
and quadded logic approaches for stuck-open and stuck-short defects.

Quadded-Transistor Structure Quadded Logic
Cct. Trans. 0.0001 0.001 0.005 0.01 Trans. 0.0001 0.001 0.005 0.01
c880 7208 0.999 0.997 0.934 0.767 13616 0.979 0.822 0.283 0.042
c1355 9232 0.999 0.996 0.917 0.713 18304 0.975 0.765 0.187 0.008
c1908 13784 0.999 0.994 0.879 0.596 24112 0.975 0.755 0.261 0.001
c2670 22672 0.999 0.991 0.809 0.427 36064 0.904 0.350 0.001 0
c3540 30016 0.999 0.989 0.755 0.327 46976 0.981 0.805 0.237 0
c5315 45048 0.999 0.984 0.656 0.185 74112 0.853 0.227 0.001 0
c6288 40448 0.999 0.986 0.685 0.222 77312 0.971 0.718 0.024 0
c7552 61600 0.999 0.978 0.562 0.101 77312 0.874 0.292 0 0
s5378 35608 0.999 0.985 0.717 0.263 59760 0.811 0.134 0.001 0
s9234 74856 0.999 0.972 0.496 0.061 59760 0.821 0.140 0 0
s13207 103544 0.999 0.961 0.379 0.023 150448 0.518 0.008 0 0
s15850 128016 0.999 0.953 0.302 0.008 171664 0.576 0.009 0 0

In Table 3.3, the circuit failure probability for the nona-transistor structure

technique for several percentages of injected defects based on stuck-open and

stuck-short defects is reported and in Table 3.4, the circuit reliability for the nona-

transistor structure technique for several transistor defect probabilities based on

stuck-open and stuck-short defects is reported. The nona-transistor structure

technique achieves higher circuit reliability than the quadded logic technique with

20 times more transistor defect probability. It also achieves higher circuit reli-

ability than the quadded-transistor structure technique with 4 to 5 times more

transistor defect probability. This should also be observed that the nona-transistor

structure technique requires higher number of transistors as compared to quadded-

transistor structure and quadded logic techniques.

107

Table 3.3: Circuit failure probability for the nona-transistor structure approach
for stuck-open and stuck-short defects.

Cct. Trans. 0.25% 0.5% 0.75% 1%
c880 16218 0 0.001 0.003 0.008
c1355 20772 0 0.001 0.006 0.011
c1908 31014 0 0.001 0.005 0.012
c2670 51012 0.001 0.004 0.006 0.020
c3540 67536 0 0.001 0.013 0.024
c5315 101358 0 0.008 0.019 0.028
c6288 91008 0 0.005 0.008 0.039
c7552 138600 0.001 0.006 0.015 0.049
s5378 80118 0.001 0.003 0.013 0.035
s9234 168426 0 0.004 0.032 0.074
s13207 232974 0 0.004 0.040 0.096
s15850 288036 0.003 0.006 0.051 0.128

3.3.2 Bridging Defect Analysis

In order to analyze the defect tolerance of the quadded-transistor structure and

the quadded logic techniques to bridging defects, the same simulation-based model

was used. The experiments were performed on the same set of ISCAS circuits.

The bridging defects were injected randomly between the gates of the defective

transistor and one of its neighbors, located within a window of local transistors

in the netlist (±8 transistors). Both AND and OR bridging defects were injected

equally. It should be observed that for injecting m defective transistors due to

bridges, only m/2 bridges need to be injected.

Table 3.5 shows the results obtained for several percentages of injected bridg-

ing defects for the quadded-transistor and the quadded logic techniques. As can

be seen, the quadded-transistor structure technique exhibits a much lower failure

probability than quadded logic technique. The quadded-transistor structure tech-

nique achieves failure rates lower than quadded logic for the same and twice the

108

Table 3.4: Circuit reliability for the nona-transistor structure approach for stuck-
open and stuck-short defects.

Cct. Trans. 0.0001 0.001 0.002 0.005 0.007 0.01 0.02 0.05 0.1
c880 16218 ≈ 1 0.999 0.999 0.999 0.997 0.993 0.948 0.453 0.002
c1355 20772 ≈ 1 0.999 0.999 0.998 0.997 0.991 0.934 0.363 0.0005
c1908 31014 ≈ 1 0.999 0.999 0.998 0.995 0.987 0.904 0.22 0.00001
c2670 51012 ≈ 1 0.999 0.999 0.997 0.992 0.979 0.847 0.083 0
c3540 67536 ≈ 1 0.999 0.999 0.996 0.99 0.972 0.803 0.037 0
c5315 101358 ≈ 1 0.999 0.999 0.994 0.985 0.959 0.719 0.007 0
c6288 91008 ≈ 1 0.999 0.999 0.995 0.987 0.963 0.744 0.011 0
c7552 138600 ≈ 1 0.999 0.999 0.992 0.981 0.944 0.637 0.0011 0
s5378 80118 ≈ 1 0.999 0.999 0.995 0.988 0.967 0.771 0.02 0
s9234 168426 ≈ 1 0.999 0.999 0.991 0.976 0.933 0.578 0.00027 0
s13207 232974 ≈ 1 0.999 0.999 0.988 0.967 0.908 0.469 0.00001 0
s15850 288036 ≈ 1 0.999 0.999 0.985 0.96 0.888 0.392 0 0

percentage of injected bridging faults. For 0.25% of injected defects, it achieves

failure rates nine times less than quadded logic and three times less for 0.5% of

injected defects in most of the circuits. It should be observed that for the same

percentage of defective transistors, the failure rate for bridging defects is less than

that of stuck-open and stuck-short defects. This is due to the fact that not all

bridging defects will result in a faulty gate behavior.

Since the defect tolerance of circuits using quadded-transistor structures in the

presence of stuck-open and stuck-short defects is a lower bound on those in the

presence of bridge defects, the defect tolerance of the nona-transistor structure

with respect to bridging defects is not performed.

109

Table 3.5: Comparison of circuit failure probability between quadded-transistor
structure and quadded logic approaches for bridging defects.

Quadded-Transistor Structure Quadded Logic
Cct. Trans. 0.25% 0.5% 0.75% 1% Trans. 0.25% 0.5% 0.75% 1%
c880 7208 0.011 0.046 0.084 0.134 13616 0.168 0.279 0.437 0.539
c1355 9232 0.008 0.047 0.095 0.158 18304 0.195 0.339 0.498 0.571
c1908 13784 0.018 0.091 0.201 0.272 24112 0.384 0.690 0.827 0.916
c2670 22672 0.034 0.110 0.229 0.381 36064 0.768 0.945 0.988 ≈ 1
c3540 30016 0.043 0.171 0.325 0.496 46976 0.303 0.532 0.683 0.803
c5315 45048 0.058 0.208 0.419 0.631 74112 0.648 0.866 0.953 0.984
c6288 40448 0.041 0.138 0.292 0.452 77312 0.163 0.324 0.480 0.588
c7552 61600 0.088 0.294 0.512 0.699 77312 0.574 0.837 0.935 0.973
s5378 35608 0.060 0.179 0.392 0.671 59760 0.672 0.793 0.924 0.940
s9234 74856 0.079 0.324 0.572 0.802 59760 0.733 0.929 0.982 0.995
s13207 103544 0.119 0.386 0.661 0.853 150448 0.998 ≈ 1 ≈ 1 ≈ 1
s15850 128016 0.110 0.357 0.649 0.846 171664 0.987 ≈ 1 ≈ 1 ≈ 1

3.3.3 Hybridization of Quadded and Nona-Transistor

structures with TIR and TMR

In Figure 3.7, comparison of the probability of circuit failure for a given percentage

of stuck-open and stuck-short defects between the quadded-transistor structure

(QT), nona-transistor structure (NT), quadded logic (QL) [11] and TIR logic [11]

is presented. The comparison is made based on an 8-stage cascaded half adder

circuit used in [11]. TIR logic is implemented by adding a majority gate for each

sum and carry-out signal at each stage. Majority gate is also implemented as

a single gate. As can be seen, adding transistor-level defect tolerance generates

circuits with significantly less probability of circuit failure than those that add

defect tolerance at gate level (QL) and unit level (TMR). This is in addition to

smaller area overhead in terms of smaller number of transistors used in the case of

quadded-transistor structure. The number of transistors in the quadded-transistor

110

Figure 3.7: Comparison of circuit failure probability for an 8-stage cascaded half-
adder circuit for stuck-open and stuck short defects.

structure implementation is 512, while it is 608 for TIR logic, 1024 for quadded

logic and 1152 for the nona-transistor structure.

The probability of circuit failure for TIR and TMR logic can be improved

by enhancing the reliability of majority gates. A hybrid approach for improved

defect tolerance as proposed in [31, 32] is being followed in this work by imple-

menting the majority gates in the 8-stage cascaded half adder TIR logic circuit

based on the quadded-transistor structure (TIR-MQT) and the nona-transistor

structure (TIR-MNT). As shown in Figure 3.7, the reliability of the implemented

circuit is improved compared to TIR circuit at the expense of increased number

of transistors (1280 for TIR-MQT and 2400 for TIR-MNT). However, the reli-

ability of the individual modules needs also more enhancements to improve the

111

overall reliability of the circuit. This shows an interesting potential application of

the N2-transistor structure in improving the reliability of voter-based redundancy

techniques.

3.4 Summary

In this chapter, extension of a recently proposed defect-tolerant technique called

quadded-transistor technique has been investigated. Quadded-transistor tech-

nique is based on adding redundancy at the transistor level. The theoretical

and experimental analysis of the investigated technique for stuck-open and stuck-

short defects is extended to develop another transistor level technique called nona-

transistor structure. The proposed nona-transistor technique provides defect tol-

erance against a large number of permanent defects including stuck-open and

stuck-short defects. Experimental results have demonstrated that the proposed

technique provides significantly less circuit failure probability and higher reliabil-

ity than recently investigated techniques based on gate level (Quadded Logic) and

unit level (Triple Modular Redundancy) but with higher overhead in terms of num-

ber of transistors. Hybridization of quadded and nona-transistor techniques with

TIR (and TMR) is also investigated by implementing only the majority voters

with quadded and nona-transistor techniques. The techniques have been inves-

tigated theoretically and by simulation using large ISCAS 85 and 89 benchmark

circuits and have significantly improved defect tolerance.

112

CHAPTER 4

TRANSIENT AND SOFT

ERROR MITIGATION USING

QUADDED-TRANSISTOR

STRUCTURE

In this chapter, the proposed transistor-level defect-tolerant design techniques

for transient and soft-error mitigation are described in detail. The experimental

analysis is presented along with a comparison of the proposed techniques with the

most popular technique for mitigating transient and soft errors i.e., TMR (Triple

Modular Redundancy).

113

4.1 Introduction

Integrated Circuits (ICs) are prone to upsets and transients that occur in aerospace

due to various charged particles like neutrons etc [41]. These upsets are the main

cause behind soft and transient errors in ICs which have to operate in aerospace-

related applications. More recently, ICs have also become prone to upsets at

ground level because of the continual evolution of fabrication technology for semi-

conductors. Drastic device shrinkage, power supply reduction and increasing op-

erating speeds significantly reduce noise margins and hence reduce reliability [47].

This trend is approaching a point at which it will be infeasible to produce ICs that

are free from these effects. Consequently, defect and fault tolerance is no longer

a matter exclusively for aerospace designers, it is important for the designers of

next generation ground level products as well [51].

As discussed in Chapter 2, the high-level SEU mitigation techniques used most

often today to protect designs against SEUs are based mainly on TMR [41]. The

TMR mitigation scheme uses three identical logic circuits (redundant blocks 0,

1, and 2) synthesized in the module. These circuits perform the same task in

parallel, with a majority voter circuit comparing corresponding outputs.

In this chapter, a new quadded-transistor based technique for transient and

soft error mitigation is proposed. The proposed technique is a majority voter-less

technique and is called Quadded Modular Redundancy (QMR). QMR technique

has less area overhead as compared to TMR and also affords more reliability.

In addition to QMR, this chapter also proposes another technique based on

114

direct application of QT(Quadded-Transistor) structure. This technique is called

QT based SEU mitigation technique. Reliability analysis has shown that this

technique also outperforms TMR in terms of reliability but has more area overhead

because all the gates are implemented using QT(Quadded-Transistor) structures.

A gate-specific version of QT based SEU mitigation technique is also proposed

which has half the area of the QT based SEU mitigation technique.

The rest of the chapter is organized as follows. In the next section, the QMR

technique for SEU mitigation is described. After that, Quadded-Transistor based

SEU mitigation technique is discussed followed by gate-specific QT based SEU

mitigation technique. After that, experimental analysis is presented followed by

a summary in the last section that concludes this chapter.

4.2 Quadded Modular Redundancy Technique

In chapter 3, two transistor structures were proposed for tolerating permanent

defects in the digital circuits. The same transistor structures can also be used for

mitigating SEUs. Out of the two proposed structures, only quadded-transistor

structure will be employed in our proposed work for SEU mitigation.

In the normal quadded-transistor (QT) technique as shown in Figure 4.1 for

tolerating permanent defects, the gate terminals of all the four transistors rep-

resenting a single transistor in the present level are fed by the same output line

emanating from the logic gate in the previous level which is feeding the logic gate

in the present level.

115

� � � � � �� �� � �� �� � �
� � �

Figure 4.1: Quadded-Transistor based technique for permanent defects.

The normal quadded-transistor technique can be directly applied for SEU mit-

igation but one characteristic of the quadded-transistor technique as mentioned

in the previous chapter is that the gate capacitance that the quadded-transistor

structure induces on the gate connected to an input is four times the original gate

capacitance. This has an impact on both delay and power dissipation. The main

idea behind the proposed Quadded Modular Redundancy (QMR) technique is to

selectively implement the quadded-transistor structure in some of the gates.

Quadded Modular Redundancy technique is based on making four copies of

each logic module using the conventional CMOS transistor implementation and

only selectively implementing the quadded-transistor structure in some of the

gates which are referred to as restoring gates in QMR. The restoring gate selected

116

� � � � � � � � � 	
 � �� � � � �� � � � � � � � �
 � � � �� � �
Figure 4.2: Quadded Modular Redundancy technique for a simple 2-input circuit.

for QT implementation receives a separate input to each of its input transistor

in the QT structure. This approach is shown in Figure 4.2 for a simple 2-input

circuit.

The advantage of this approach over the TMR approach is that it does not

require any other restoring module like Majority voter (which is the case with the

TMR) eliminating any single point of failure (SPF). The restoring gates are the

ones which are implemented using QT structure. Another advantage of the QMR

technique is that the resulting circuit will have normal gate capacitance because

every transistor is taking input from a separate copy of the gate in the previous

level and the circuit delay will not be affected as compared to QT implementation.

117

4.3 Quadded-Transistor based SEU Mitigation

Technique (QT16)

In the proposed QT based SEU mitigation technique as shown in Figure 4.3,

the idea is to implement all gates using quadded-transistor structure and also to

replicate every gate four times in such a manner that the gate terminals of all the

transistors belonging to a quadded structure in the present level are connected

from a different copy of the gate in the previous level feeding the gate terminals

of transistors in the present level.

The advantage of this technique is that this way permanent defects are taken

care of by the quadded-transistor structure and the transient faults are taken

care of by the four copies of every gate feeding a different input of the quadded-

transistor structure in the next level.

4.4 Gate-specific Quadded-Transistor based

SEU Mitigation Technique (QT8)

The technique proposed in the previous section requires high hardware overhead

in terms of number of transistors in the sense that four copies of each gate are

used and each gate is implemented using quadded-transistor structures. If the

specific structures implementing different gates at the transistor levels are taken

in account while connecting transistors together, it is possible to minimize the

number of gates by half.

118

� � �
� � � �� � � �

� � � �� � � �
� � � �� � � �

� � � �� � � �� � � �� � � �� �� � � �� �
� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � � �

� � �� � �

Figure 4.3: Quadded-Transistor based technique for SEU Mitigation.

119

The modified approach called gate-specific QT based SEU mitigation technique

is based on making only two copies of every logic gate in the previous level and

making the connections by considering the specific gate to which the connection

is made.

The connections for NAND and AND gates are made as follows:

• The outputs from the the same copy of the gate in previous level are con-

nected to the gate terminals of the two parallel PMOS transistors in the

quadded-transistor structure in the present level.

• The outputs from the the same copy of the gate in previous level are con-

nected to the gate terminals of the two series NMOS transistors in the

quadded-transistor structure in the present level.

The above mentioned connection scheme for a simple NAND gate is shown in

Figure 4.4.

The reason to do these connections is that if two NMOS transistors in series

in the quadded-transitor structure become OFF when they should be ON, the

other two non-defective ON transistors can mask the fault. Following the same

line of reasoning, if two parallel PMOS transistors become ON when they should

be OFF, the other two OFF transistors can mask the fault.

Another important reason to do these connections is that if two NMOS tran-

sistors in series in the quadded-transistor structure become ON when they should

be OFF, the fault will not propagate unless all the other inputs in the NAND

gate have a value of 1 when the fault occurs.

120

�� �
� �

� �
� �

� � �

Figure 4.4: Gate-specific connections for NAND gate to mask faulty transistors.

121

The connections for NOR and OR gates are made as follows:

• The outputs from the the same copy of the gate in previous level are con-

nected to the gate terminals of the two series PMOS transistors in the

quadded structure in the present level.

• The outputs from the the same copy of the gate in previous level are con-

nected to the gate terminals of the two parallel NMOS transistors in the

quadded structure in the present level.

Following the same line of reasoning as discussed for NAND/AND gates, it

is argued that the proposed connection scheme for NOR/OR gates will provide

more fault masking. For all the other gate types, any connection scheme can be

chosen.

The reliability analysis of all the above mentioned techniques is presented in

the next section.

4.5 Experimental Results

In the following sections, the experimental results obtained using simulations for

the above mentioned three techniques for SEU mitigation are presented.

4.5.1 Quadded Modular Redundancy Technique Analysis

To demonstrate the effectiveness of the QMR technique for SEU mitigation, ex-

periments have been performed on a number of largest ISCAS85 and ISCAS89

122

benchmark circuits.

Two types of faults are considered: a transient fault affecting the gate terminal

of a transistor erroneously switching it OFF (equivalent of a stuck-open fault) and

a transient fault affecting the gate terminal of a transistor effectively switching it

ON (equivalent of a stuck-short fault).

The comparison of circuit reliability of QMR technique with the TMR tech-

nique is performed using the simulation-based methodology presented in [11] but

with random test vectors instead of a complete test set. This is done to simulate

the random and transitory nature of the transient faults.

To compute the circuit failure probability, F and reliability R, resulting from

injecting m faults in the transistors, the following simulation procedure is used:

1. Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

2. Generate a random test vector.

3. Simulate the fault-free circuit by applying the random test vector T .

4. Randomly inject m transient faults in transistors.

5. Simulate the faulty circuit by applying the same random test vector T .

6. If the outputs of the fault-free and faulty circuits are different, increment K

by 1.

7. Decrement I by 1 and if I is not 0 goto step 2.

123

8. Failure Probability F = K/1000.

9. Reliability R = 1− F .

Using the aforementioned simulation model, a number of experiments were

carried out on multistage complementary half adder circuits and a number of

largest ISCAS85 and ISCAS89 benchmark circuits.

Comparison of circuit failure probability using QMR and TMR tech-

niques for multistage adders

In Figures 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12, a comparison of circuit failure prob-

ability for QMR and TMR techniques for different percentages of faults is shown

for 1, 2, 4, 8, 16 and 32-stage complementary half-adder circuits. TMR is imple-

mented at module level i.e., the sum and carry outputs of every stage are being

voted upon as shown in Figure 4.5 for a single stage. Similarly QMR is also im-

plemented in sum and carry outputs of every stage with every half-adder stage

looking as shown in Figure 4.6. It should be noted that the QMR implementation

of a single complementary half-adder stage involves implementing only CS and

CC NAND gates using quadded-transistor structure.

It is clear from Figures 4.7 to 4.12 that the QMR approach gives 25% to 50%

less circuit failure probability than the TMR approach for all the small percentages

of faults normally projected for CMOS process.

124

� � � � �� � �� � � � �� � �� � � � �� � �
� � 	
 �
� � 	
 �

� �
� �

� � � �� �

Figure 4.5: Triple Modular Redundancy technique for single stage of 2-input
complementary half adder.

125

� �
���������� � �� �

� � � �� �

Figure 4.6: Quadded Modular Redundancy technique for single stage of 2-input
complementary half adder.

126

Figure 4.7: Comparison of circuit failure probability for a 1-stage complementary
half-adder circuit for transient faults.

Figure 4.8: Comparison of circuit failure probability for a 2-stage cascaded com-
plementary half-adder circuit for transient faults.

127

Figure 4.9: Comparison of circuit failure probability for a 4-stage cascaded com-
plementary half-adder circuit for transient faults.

Figure 4.10: Comparison of circuit failure probability for a 8-stage cascaded com-
plementary half-adder circuit for transient faults.

128

Figure 4.11: Comparison of circuit failure probability for a 16-stage cascaded
complementary half-adder circuit for transient faults.

Figure 4.12: Comparison of circuit failure probability for a 32-stage cascaded
complementary half-adder circuit for transient faults.

129

Figure 4.13: Comparison of area in terms of number of transistors for 1, 2, 4, 8,
16 and 32-stage cascaded complementary half adders for QMR and TMR imple-
mentation.

Comparison of circuit area using QMR and TMR techniques for mul-

tistage adders

Figure 4.13 compares the area in terms of number of transistors for the 1, 2, 4, 8,

16 and 32-stage cascaded complementary half adder circuits. It is observed that

the QMR implementation requires 20% less area than the TMR implementation.

130

Comparison of circuit reliability using QMR and TMR techniques for

ISCAS benchmarks

Using the same simulation procedure, the circuit reliability analysis was carried

out for some ISCAS85 and ISCAS89 benchmark circuits.

Since in the TMR technique, the module size affects the circuit reliability,

therefore, the reliability results were obtained using different module sizes of 1,

3, 5, 7 and 9 for QMR and TMR techniques. For example in TMR, module size

of 3 means that a module consisting of a maximum of 3 gates is triplicated and

a majority voter is used to vote upon the three outputs from the three modules.

Similarly, in QMR, module size 3 means that in a module consisting of a maximum

of 3 gates, all the gates are replicated four times except the restoring gate to

which the four copies of the other gates feed their outputs and which provides the

output of the module. The restoring gate uses the quadded-transistor structure

in its implementation.

In order to do the comparison of QMR and TMR with different module sizes,

an algorithm reported in [99] for TMR has been adopted. The modular TMR

algorithm combines gates for a given module size and puts majority voter at

appropriate places in the TMR. It is expalianed in the following section.

Modular TMR Algorithm

Initially, the algorithm defines an array called “unprocessed” that will contain the

primary outputs. Starting from the outputs of the circuit, gates are added to

131

construct a module until one of the following cases occur: reaching the inputs of

the circuit, reaching a fanout point, or reaching the module size required. The

constructed module will then be triplicated and a majority voter will be inserted

for these three copies. All remaining gates where the algorithm stopped at for

this iteration will be added to the “unprocessed” array without replicating nodes

that already existed. Next, the algorithm will start processing the next node in

the unprocessed array doing same as explained in the previous step. This will

continue until all nodes in the “unprocessed” array are processed.

Following data structures are defined for the modular TMR algorithm.

• “unprocessed” array that will hold initially all circuit output nodes

• “unprocessed-inputs” array that will hold the input nodes for the currently

processed gate

• Module-Size variable that will hold the module size required for TMR mod-

ule construction

• Level variable which is the current module size reached in the current iter-

ation

The modular TMR algorithm is as follows:

A Put all outputs in the “unprocessed” array.

B For every node in the “unprocessed” array.

1. Initialize Level to 0.

132

2. Get the gate which outputs the current node.

3. Triplicate the retrieved gate and increment Level.

4. Add a Majority voter.

5. Get the inputs of the current processed gate and put them in

“unprocessed-inputs” array.

6. For every node in the “unprocessed-inputs” array.

while(Level < Module-Size and the current node is Not a Primary

Input or a Fanout)

(a) Triplicate the current gate and increment Level.

(b) Get the inputs of the current processed gate and add them to

the “unprocessed-inputs” array.

7. Add the remaining nodes which are still unprocessed from

“unprocessed-inputs” array to the “unprocessed” array.

Application of the Modular TMR algorithm for a simple logic circuit of Figure

4.14 is shown in Figures 4.15, 4.16 and 4.17 for modules sizes of 1, 2 and 3

respectively.

For QMR, the modular TMR algorithm is modified in order to convert only the

restoring gates of a module to quadded-transistor implementation. The modified

algorithm is as follows:

133

Figure 4.14: Example Circuit.

Modular QMR Algorithm

Initially, the algorithm defines an array called “unprocessed” that will contain

the primary outputs. Starting from the outputs of the circuit, gates are added

to construct a module until one of the following cases occur: reaching the inputs

of the circuit, reaching a fanout point, or reaching the module size required. All

the gates in the constructed module will then be replicated four times expect

the restoring gate of the module which provides output to other modules. Only

the restoring gate will be converted to quadded-transistor implementation. All

remaining gates where the algorithm stopped at for this iteration will be added to

the “unprocessed” array without replicating nodes that are already existed. Next,

the algorithm will start processing the next node in the unprocessed array doing

same as explained in the previous step. This will continue until all nodes in the

134

Figure 4.15: Application of modular TMR algorithm on example circuit for a
module size of 1.

135

Figure 4.16: Application of modular TMR algorithm on example circuit for a
module size of 2.

136

Figure 4.17: Application of modular TMR algorithm on example circuit for a
module size of 3.

137

“unprocessed” array are processed.

Following data structures are defined for the modular QMR algorithm.

• “unprocessed” array that will hold initially all circuit output nodes

• “unprocessed-inputs” array that will hold the input nodes for the currently

processed gate

• Module-Size variable that will hold that module size required for QMR mod-

ule construction

• Level variable which is the current module size reached in the current iter-

ation

The modular QMR algorithm is as follows:

A Put all outputs in the “unprocessed” array.

B For every node in the “unprocessed” array.

1. Initialize Level to 0.

2. Get the gate which outputs the current node. This is the restoring gate

of the module.

3. Convert the retrieved restoring gate to QT implementation and incre-

ment Level.

4. Get the inputs of the current processed gate and put them in

“unprocessed-inputs” array.

5. For every node in the “unprocessed-inputs” array.

138

while(Level < Module-Size and the current node is Not a Primary

Input or a Fanout)

(a) Replicate the current gate four times and increment Level.

(b) Get the inputs of the current processed gate and add them to

the “unprocessed-inputs” array.

6. Add the remaining nodes which are still unprocessed from

“unprocessed-inputs” array to the “unprocessed” array.

Application of the Modular QMR algorithm for a simple logic circuit of Figure

4.14 is shown in Figures 4.18, 4.19 and 4.20 for modules sizes of 1, 2 and 3

respectively. The gates which are marked with Q are the ones which will be

implemented with quadded-transistor structure.

One interesting observation after analyzing Figure 4.18 is that if module size

of 1 is chosen, all the gates of QMR implementation will be implemented with

quadded-transistor structure. Therefore, it can be said that the normal QT im-

plementation is a special case of QMR technique with a module size of 1. Alter-

natively, it can be said that the QMR technique is a generalization of normal QT

implementation with selective application of QT structure.

Circuit reliability of the QMR and TMR techniques for some ISCAS85 and

ISCAS89 benchmark circuits for different percentages of transient faults and for

module sizes of 1, 3, 5, 7 and 9 are compared in Tables 4.1, 4.2, 4.3, 4.4 and 4.5.

As shown in Tables 4.1 to 4.5, the circuit reliability of modular QMR is better

than that of modular TMR for all the percentages of injected faults and module

139

Figure 4.18: Application of modular TMR algorithm on example circuit for a
module size of 1.

140

Figure 4.19: Application of modular TMR algorithm on example circuit for a
module size of 2.

141

Figure 4.20: Application of modular TMR algorithm on example circuit for a
module size of 3.

142

Table 4.1: Comparison of circuit reliability between QMR and TMR techniques
for a module size of 1 (i.e., full QT implementation).

QMR TMR
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 7208 1 0.998 0.99 0.943 10768 0.977 0.79 0.307 0.081
c1355 9232 1 1 0.978 0.939 14568 0.972 0.764 0.284 0.051
c1908 13784 1 0.999 0.972 0.928 22658 0.957 0.667 0.149 0.038
c3540 30016 1 1 0.978 0.873 45878 0.953 0.652 0.08 0.007
c5315 45048 1 0.999 0.95 0.833 66084 0.921 0.447 0.015 0
c6288 40448 1 0.997 0.908 0.630 64160 0.826 0.09 0 0
s5378 35608 1 0.998 0.948 0.775 66222 0.879 0.215 0 0
s9234 74856 1 0.998 0.914 0.726 134500 0.792 0.067 0 0

Table 4.2: Comparison of circuit reliability between QMR and TMR techniques
for a module size of 3.

QMR TMR
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 7208 1 0.997 0.912 0.731 8374 1 0.897 0.494 0.156
c1355 9232 1 0.999 0.929 0.739 11264 0.979 0.812 0.302 0.091
c1908 13784 1 0.998 0.918 0.723 18836 0.981 0.746 0.23 0.077
c3540 30016 1 0.994 0.893 0.624 37072 0.973 0.689 0.102 0.004
c5315 45048 1 0.987 0.748 0.362 54828 0.958 0.563 0.048 0
c6288 40448 1 0.98 0.664 0.19 50720 0.845 0.189 0 0
s5378 35608 1 0.986 0.655 0.206 47614 0.95 0.453 0.007 0
s9234 74856 1 0.951 0.364 0.026 92990 0.9 0.264 0 0

sizes for all the ISCAS benchmarks. In the next section, the impact of module

size on the circuit reliability is discussed.

Impact of module size on circuit reliability in QMR and TMR Tech-

niques

In Figure 4.21, circuit reliability of QMR version of c880 benchmark circuit is

compared with that of the TMR version of c880 benchmark for module sizes of 1,

3, 5, 7 and 9.

An interesting observation after analyzing Figure 4.21 and the circuit reliability

143

Figure 4.21: Comparison of circuit reliability for QMR and TMR techniques mod-
ule sizes of 1, 3, 5, 7 and 9.

144

Table 4.3: Comparison of circuit reliability between QMR and TMR techniques
for a module size of 5.

QMR TMR
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 7208 1 0.997 0.881 0.609 7562 1 0.908 0.514 0.261
c1355 9232 1 0.99 0.924 0.699 10872 0.978 0.831 0.3 0.076
c1908 13784 1 0.995 0.86 0.601 16316 0.983 0.746 0.232 0.063
c3540 30016 1 0.989 0.834 0.475 34734 0.966 0.691 0.106 0.007
c5315 45048 1 0.98 0.607 0.185 47814 0.954 0.64 0.062 0.002
c6288 40448 1 0.989 0.647 0.204 50720 0.851 0.195 0 0
s5378 35608 1 0.978 0.499 0.074 43840 0.95 0.51 0.021 0
s9234 74856 1 0.928 0.205 0.001 84086 0.924 0.352 0.004 0

Table 4.4: Comparison of circuit reliability between QMR and TMR techniques
for a module size of 7.

QMR TMR
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 7208 1 0.996 0.846 0.566 7632 1 0.899 0.525 0.182
c1355 9232 1 0.998 0.921 0.698 10816 0.979 0.803 0.298 0.07
c1908 13784 1 0.997 0.846 0.582 15812 0.979 0.733 0.24 0.058
c3540 30016 1 0.985 0.787 0.432 34090 0.981 0.687 0.111 0.004
c5315 45048 1 0.986 0.591 0.178 46772 0.971 0.608 0.055 0
c6288 40448 1 0.982 0.634 0.206 50720 0.848 0.17 0 0
s5378 35608 1 0.955 0.441 0.051 42222 0.95 0.542 0.016 0
s9234 74856 1 0.894 0.073 0 80460 0.92 0.426 0.001 0

reported in Tables 4.1 to 4.5 is that for the QMR approach, there is no change

in number of transistors with varying module sizes. The impact of module size is

the increase in number of gates which are implemented using quadded-transistor

structure, hence smaller modular size results in better reliability. Noting this, it

can be claimed that for QMR, smaller module size will be better because more

gates will be implemented with the QT structure and hence will provide more

transistor-level defect-tolerance.

For TMR, the module has a significant impact on the reliability. The reason

is that with smaller module size, there are more majority voters in the circuit

145

Table 4.5: Comparison of circuit reliability between QMR and TMR techniques
for a module size of 9.

QMR TMR
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 7208 1 0.993 0.815 0.523 7450 1 0.91 0.53 0.195
c1355 9232 1 0.997 0.904 0.7 10760 0.981 0.834 0.308 0.1
c1908 13784 1 0.997 0.845 0.568 15784 0.99 0.776 0.236 0.073
c3540 30016 1 0.996 0.773 0.386 33502 0.961 0.693 0.114 0.009
c5315 45048 1 0.977 0.576 0.158 46036 0.967 0.656 0.0659 0.002
c6288 40448 1 0.987 0.645 0.174 50720 0.842 0.183 0 0
s5378 35608 1 0.961 0.414 0.037 41480 0.94 0.527 0.027 0
s9234 74856 0.999 0.882 0.053 0 78598 0.948 0.452 0.006 0

thereby increasing the probability that a fault will affect a majority gate effec-

tively resulting in a failure for the whole circuit. Increasing module size results

in fewer majority voters and hence improved circuit reliability. At the same time,

increasing module size will not result always in higher circuit reliability because

a larger module size also increases the possibility of failure of two copies in a

triplicated module thereby reducing circuit reliability. Therefore, in TMR, there

is a trade-off between module size and the circuit reliability which needs to be

considered while choosing a module size for a particular circuit.

As shown in Tables 4.1 to 4.5, the QMR technique for SEU mitigation out-

performs TMR technique in terms of both circuit reliability and circuit area

(measured in terms of number of transistors). This justifies the use of quadded-

transistor based technique not only for masking permanent defects but also for

transient faults.

146

4.5.2 Quadded-Transistor based SEU Mitigation Tech-

nique Analysis (QT16)

To demonstrate the effectiveness of the above mentioned quadded-transistor based

technique for SEU mitigation, experiments have been performed on a number

of largest ISCAS85 and ISCAS89 benchmark circuits. The same transistor-level

transient fault model was used for reliability analysis which was used for the QMR

and TMR techniques.

To compute the circuit failure probability, F and reliability R, resulting from

injecting m faults in the transistors, the same simulation-based procedure as de-

scribed in the previous section for QMR and TMR is used.

Circuit reliability of the QT16 and TMR9 are compared in Table 4.6 for dif-

ferent percentages of injected faults. The comparison of circuit reliability for

quadded-transistor based technique with the TMR using a module size of 9 is

performed because it was the best module size for TMR in the previous section.

As shown in Table 4.6, the quadded-transistor based technique for SEU mit-

igation outperforms TMR technique in terms of circuit reliability but the area

overhead in terms of number of transistors is very high. In fact, area is 4 times of

the normal QT implementation and 16 times of the original non-redundant circuit.

Another characteristic of the QT16 technique is that it will have higher circuit

delay because of the higher gate capacitance induced by QT structures so the

resulting circuit will be more defect-tolerant but slower than the non-redundant

circuit.

147

Table 4.6: Comparison of circuit reliability between quadded-transistor based
technique and TMR9 technique for SEU mitigation.

QT16 TMR9
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 28832 1 0.998 0.99 0.983 7450 1 0.91 0.53 0.195
c1355 36928 1 1 0.994 0.972 10760 0.981 0.834 0.308 0.1
c1908 55136 0.986 0.803 0.393 0.165 15784 0.99 0.776 0.236 0.073
c3540 120064 0.977 0.873 0.489 0.257 33502 0.961 0.693 0.114 0.009
c5315 180192 0.983 0.859 0.422 0.184 46036 0.967 0.656 0.0659 0.002
c6288 161792 1 0.997 0.995 0.987 50720 0.842 0.183 0 0
s5378 142432 1 0.999 0.98 0.939 41480 0.94 0.527 0.027 0
s9234 299424 1 1 0.975 0.902 78598 0.948 0.452 0.006 0

If the circuit reliability of QT16 and QMR with a module size of 1 is compared,

it is observed that QT16 offers less reliability for the given percentages of injected

faults. This is due to the 4 times increase in area which has negative impact on

reliability as the injected faults are the percentage of the number of transistors in

a circuit.

4.5.3 Gate-specific Quadded-Transistor based SEU Miti-

gation Technique Analysis (QT8)

To demonstrate the effectiveness of the gate-specific quadded-transistor based

technique for SEU mitigation, experiments have been performed on a number of

largest ISCAS85 and ISCAS89 benchmark circuits using the same transistor-level

fault model and simulation procedure used for QMR and TMR analysis.

Circuit reliability of the gate-specific quadded-transistor based approach and

TMR9 approach are compared in Table 4.7 for different percentages of transient

faults.

148

Table 4.7: Comparison of circuit reliability between gate-specific quadded-
transistor based technique and TMR9 technique for SEU mitigation.

QT8 TMR9
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 14416 1 1 0.99 0.944 7450 1 0.91 0.53 0.195
c1355 18464 1 1 0.987 0.945 10760 0.981 0.834 0.308 0.1
c1908 27568 1 1 0.974 0.929 15784 0.99 0.776 0.236 0.073
c3540 60032 1 0.999 0.958 0.85 33502 0.961 0.693 0.114 0.009
c5315 90096 1 0.998 0.933 0.757 46036 0.967 0.656 0.0659 0.002
c6288 80896 1 0.957 0.797 0.568 50720 0.842 0.183 0 0
s5378 71216 1 0.998 0.95 0.84 41480 0.94 0.527 0.027 0
s9234 149712 1 0.995 0.847 0.452 78598 0.948 0.452 0.006 0

As shown in Table 4.7, the gate-specific quadded-transistor based technique

for SEU mitigation gives us better circuit reliability as compared to the TMR

technique even with 10 times higher percentage of injected faults. This clearly

shows that the gate-specific quadded-transistor based technique is more efficient

than the TMR technique for mitigating SEUs but the area in terms of number

of transistors is still higher than TMR. In fact, area is 2 times of the normal

QT implementation and 8 times of the original non-redundant circuit. Another

characteristic of the QT8 technique is that it will have higher circuit delay because

of the higher gate capacitance induced by QT structures so the resulting circuit

will be more defect-tolerant but slower than the non-redundant circuit.

4.5.4 Reversed Gate-specific Quadded-Transistor based

SEU Mitigation Technique Analysis (QT8R)

To analyze the effectiveness of the proposed gate-specific connections, experiments

were also carried out with the reversed connections as well i.e., the connections

149

Table 4.8: Comparison of circuit reliability between reversed gate-specific
quadded-transistor based technique and QT8 technique for SEU mitigation.

QT8R QT8
Cct. Trans. 0.01% 0.1% 0.5% 1% Trans. 0.01% 0.1% 0.5% 1%
c880 14416 1 1 0.98 0.939 14416 1 1 0.99 0.944
c1355 18464 1 0.998 0.983 0.93 18464 1 1 0.987 0.945
c1908 27568 1 0.999 0.968 0.89 27568 1 1 0.974 0.929
c3540 60032 1 0.995 0.94 0.835 60032 1 0.999 0.958 0.85
c5315 90096 1 0.998 0.923 0.732 90096 1 0.998 0.933 0.757
c6288 80896 1 0.954 0.782 0.538 80896 1 0.957 0.797 0.568
s5378 71216 1 0.994 0.895 0.639 71216 1 0.998 0.95 0.84
s9234 149712 1 0.992 0.802 0.437 149712 1 0.995 0.847 0.452

proposed in the Section 4.4 for NAND/AND and NOR/OR gates were reversed.

The circuit reliability of the gate-specific quadded-transistor based technique

using reversed connections(QT8R) and QT8 are compared in Table 4.8 for several

percentages of faults. As expected, the reliability of reversed connections tech-

nique(QT8R) is worse as compared to the reliability for gate-specific quadded-

transistor based technique(QT8).

4.5.5 Circuit Reliability Comparison of QT(QMR1),

QMR3, TMR9, QT16 and QT8 Techniques

Figures 4.22 and 4.23 compare the circuit reliability for all the techniques(QT,

QMR, QT16, QT8 and TMR9) for all the ISCAS benchmarks for injecting 0.1%

and 0.5% of faults.

It is observed for most of the ISCAS benchmarks that in terms of circuit

reliability, QT is better than QT8 which is better than QMR3 which is better

than QT16 which is better than TMR9. The reason for choosing QMR3 and

150

Figure 4.22: Comparison of circuit reliability of all approaches for ISCAS bench-
marks for injecting 0.1% faults.

TMR9 is that for most of the benchmarks, QMR3 (i.e., QMR with module size of

3) and TMR9 (i.e., TMR with module size of 9) perform best in terms of circuit

reliability.

Although QT based techniques perform better in terms of circuit reliability

but as observed in Section 4.2, the implemented designs will involve higher delay

because of higher gate capacitance and will perform slower as compared to QMR

which only implements quadded-transistor structure in few selected gates.

151

Figure 4.23: Comparison of circuit reliability of all approaches for ISCAS bench-
marks for injecting 0.5% faults.

4.5.6 Circuit Area Comparison of QT, QMR, TMR, QT16

and QT8 Techniques

Table 4.9 specifies the area in terms of number of transistors occupied by QT,

QMR, QT16, QT8 and TMR1, TMR3, TMR5, TMR7 and TMR9 for all the

ISCAS benchmarks.

It is clear from the table that the QT16 requires highest area which is 4 times

of QT and QT8 occupies half of the area occupied by QT16 which is 2 times of

QT. QMR and QT require same area for all module sizes and TMR area varies

with the module size. For the chosen module sizes of 1, 3, 5, 7 and 9, modular

QMR is smaller in terms of area than their modular TMR counterpart circuits.

152

Table 4.9: Circuit area comparison of QT, QMR, TMR, QT16 and QT8 tech-
niques.

Cct. QT QMR QT16 QT8 TMR1 TMR3 TMR5 TMR7 TMR9
c880 7208 7208 28832 14416 10768 8374 7562 7632 7450
c1355 9232 9232 36928 18464 14568 11264 10872 10816 10760
c1908 13784 13784 55136 27568 22658 18836 16316 15812 15784
c3540 30016 30016 120064 60032 45878 37072 34734 34090 33502
c5315 45048 45048 180192 90096 66084 54828 47814 46772 46036
c6288 40448 40448 161792 80896 64160 50720 50720 50720 50720
s5378 35608 35608 142432 71216 66222 47614 43840 42222 41480
s9234 74856 74856 299424 149712 134500 92990 84086 80460 78598

4.6 Summary

In this chapter, transient and soft error mitigation techniques based on adding re-

dundancy at the transistor level have been investigated. Three techniques namely

QMR (Quadded Modular Redundancy), QT based SEU mitigation technique and

gate-specific QT based SEU mitigation technique have been proposed, discussed

and analyzed using a simulation-based methodology. Experimental analysis us-

ing a set of large ISCAS85 and ISCAS89 benchmark circuits has demonstrated

that the proposed techniques provide significantly less circuit failure probability

and higher reliability in comparison with the TMR technique which is the most

popular technique reported in literature for SEU mitigation. QMR also requires

less area overhead in terms of number of transistors as compared to TMR. The

impact of module size on QMR and TMR has also been discussed.

153

CHAPTER 5

DEFECT-TOLERANT

CROSSBAR DESIGN

TECHNIQUE

In this chapter, a defect-tolerant technique that utilizes redundancy in the rows

and columns of a nanoscale crossbar is described. The reliability analysis based

on stuck-open crosspoint defect model indicates an increase in defect-tolerance at

the cost of an increase in crossbar area.

5.1 Introduction

As discussed in Chapters 1 and 2, nanoscale technologies are increasingly being

explored as an alternative solution to sustaining and possibly surpassing current

performance trends of microelectronics. Hybrid technologies, whereby CMOS and

154

nanotechnologies are integrated to develop various devices, are seen as the next

step on the pathway to realizing fully functioning nanoscale devices. Nanowires

(NW) and Carbon Nanotubes (CNT) are emerging as the building blocks for

future nanoscale technologies [85].

Nanoelectronic devices consist of many unreliable components due to the

bottom-up fabrication methods, which makes defect-tolerance a necessity. In

this chapter, a defect-tolerant architecture is proposed that is based on adding

redundancy in the rows and columns of a molecular switch crossbar used for im-

plementing logic. This is referred to as the Multi-crosspoint (MCP) architecture.

Crossbar architectures [26, 27] have been demonstrated as a proof of con-

cept and have gained widespread acceptance as a design option for constructing

nanoscale crossbars based logic circuits [6]. Crossbar architectures can be used for

implementing logic functions [26, 27] or for bit storage in the crossbar nanomem-

ory [85]. IBM has recently demonstrated that CNT can exhibit electrical charac-

teristics that are similar to that of the state-of-the-art Silicon-based MOSFETs

[84]. Moreover, a nonvolatile random access memory (RAM), implemented with

nanoscale molecular switch crossbar arrays, has already been demonstrated to

show great potential as a practical memory device [6].

The nanoscale crossbar implementation using diodes and resistors

(diode/resistor logic) as explained in Section 2.6.1 is used as the basis for the

proposed defect-tolerant architecture in this chapter. This chapter’s work fo-

cuses on the reliability analysis of the defect-tolerant MCP architecture and its

155

comparison with the monomorphism-based reconfiguration approach for crossbars

[26, 27]. An AND-OR logical model of the crossbar as mentioned in Section 2.6.1

is used for the implementation of logic on the crossbars and a missing crosspoint or

stuck-open crosspoint defect model is used for analyzing reliability. The missing

crosspoint model or stuck-open switch model has been used in most of the pre-

vious works [19, 25, 30, 26] due to the reason that the main types of defects are

expected to be introduced during manufacturing of nanoscale crossbars. This is

due to the fact that the plausible technologies for manufacturing at the nanoscale

involve high temperature leading more probably to inoperative crosspoints rather

than shorts in the wires [27, 29].

The novelty of the work proposed in this chapter lies in the presentation of

the MCP architecture as an independent defect-tolerant nanoscale crossbar ar-

chitecture without any prerequisites for defect maps or reconfiguration for de-

fect avoidance. Furthermore, the work in this chapter presents the first attempt

to implement and analyze the reliability of logic functions by utilizing the row

and column redundancy using the proposed MCP architecture and comparing it

against the reliability gains realized in the nanoscale crossbar structures using

monomorphism-based reconfiguration algorithm [26, 27]. A row and column re-

dundancy based work for realizing nanoscale crossbar memories is reported in

[85].

The remainder of the chapter is organized as follows. In the next section,

the proposed MCP architecture is discussed. After that, reliability analysis and

156

comparison with reconfiguration are presented. The section after that discusses

the area analysis. The chapter is summarized in the last section.

5.2 Multi-Crosspoint Architecture

Crossbar architecture lends itself well as a good defect-tolerant architecture be-

cause its grid geometry allows for the direct implementation of redundancy [85]. In

this section, the effects on the reliability and tolerance of defects in the nanoscale

crossbars by having redundancy in the rows and columns of nanowires are dis-

cussed.

Defects in nanoscale electronics can take the form of hardware faults that occur

during manufacturing or transient faults resulting from such anomalies as random

charges in the devices, power supply fluctuations and crosstalk [65]. Defects in

this chapter refer to those that occur during the fabrication process leading to

defective crosspoints (also called switches or junctions), or other defects that cause

crosspoint stuck-open faults.

5.2.1 Quadded MCP Architecture

In the proposed quadded MCP architecture, a single literal A is represented by

a literal set AA + AA by taking advantage of the Boolean algebra equality A =

AA+AA and by mapping it to a crosspoint set on the crossbar instead of a single

crosspoint (as done in the normal implementation). This is achieved by adding

one extra row and column in the AND crossbar and only one extra column in the

157

Figure 5.1: Crossbar implementation for a simple function X = A + BC.

OR crossbar for a given literal. The resulting MCP architecture for k = 2 will be

referred to as quadded MCP architecture. The following example will clarify the

redundancy scheme proposed in MCP architecture.

For example, in the normal AND-OR based crossbar implementation, a func-

tion X = A + BC is implemented in the way shown in Figure 5.1. In com-

parison, in the MCP architecture, one redundant row and column is used for

every literal which is input to the AND crossbar. This can be denoted by

k = 2 where k represents the redundancy factor in the row and column in the

AND portion of the crossbar. So, a function X = A + BC is represented as

X = AA + AA + BBCC + BBCC. This is illustrated in Figure 5.2. The reason

for doing this is to improve defect tolerance of the partially defective crossbar on

which the logic functions are mapped.

Defects are thus tolerated when a connection exists in the crosspoint set be-

tween at least one of its rows or one of its columns given that the corresponding

158

Figure 5.2: Multi-crosspoint architecture using row and column redundancy for a
simple function X = A + BC for k = 2.

crosspoint in the OR array is intact. This suggests that only specific patterns of

defective crosspoints can be tolerated.

Few of the allowable defect configurations in which the defects are tolerated

for the function X = A + BC are shown in Figures 5.3, 5.4, 5.5 and 5.6.

Few obstructive defect configurations in which the defects will inhibit the im-

plementation of the function X = A + BC are shown in Figures 5.7, 5.8 and 5.9.

Conditions for failure to implement a given logic function in Quadded

MCP Architecture

The obstructive defect configurations shown in Figures 5.7 to 5.10 provide the

conditions for failure to implement a logic function in the presence of stuck-open

crosspoint defects for the proposed quadde MCP architecture.

159

Figure 5.3: Allowable defect configuration in which the function will remain X =
A + BC.

Figure 5.4: Allowable defect configuration in which the function will remain X =
A + BC.

160

Figure 5.5: Allowable defect configuration in which the function will remain X =
A + BC.

Figure 5.6: Allowable defect configuration in which the function will remain X =
A + BC.

161

Figure 5.7: Obstructive defect configuration in which the function will become
X = 1.

Figure 5.8: Obstructive defect configuration in which the function will become
X = BC.

162

Figure 5.9: Obstructive defect configuration in which the function will become
X = 1.

Figure 5.10: Obstructive defect configuration in which the function will become
X = 1.

163

The condition for failure in the AND portion of crossbar is the following:

• If there are stuck-open defects in the same column for two adjacent cross-

points in the crosspoint set (for a product term) in the AND portion of the

crossbar even if both of the corresponding crosspoints in the OR portion of

the crossbar are intact (depicted in Figure 5.10)

The condition for failure in the OR portion of crossbar is the following:

• If there are stuck-open defects in two adjacent crosspoints in the OR portion

of crossbar corresponding to the crosspoint set even if all the 4 crosspoints

in the corresponding crosspoint set in the AND portion are intact (depicted

in Figure 5.8)

The above conditions are shown in the figures for a simple single output func-

tion. Similarly, the successful implementation of a multiple output function will

require that all individual output functions are successfully implemented on the

crossbar.

5.2.2 Nona MCP Architecture

Following the same approach of row and column redundancy, the same function

X = A + BC is shown in Figure 5.11 with redundancy of two extra rows and

two extra columns in the AND crossbar. For the nona MCP configuration, the

redundancy factor k = 3.

The above configuration with redundancy factor k = 3 will afford more defect

tolerance and reliability but the area overhead also will be greater. The conditions

164

Figure 5.11: Multi-crosspoint architecture using row and column redundancy for
a simple function X = A + BC for k = 3.

for failure to implement a given logic function in Nona MCP architecture can be

obtained similarly by extending the conditions of the quadded MCP architecture

shown in previous section.

5.3 Experimental Results

To demonstrate the effectiveness of the row and column redundancy schemes, a

number of experiments are performed, firstly on two different implementations of

a 3-bit adder and then on 12 MCNC benchmark circuits. The type of defects used

in all experiments are the missing crosspoint or switch stuck-open defects. The

considered defects are also assumed to be randomly distributed and unclustered.

165

5.3.1 Reliability Analysis

For evaluating the circuit failure probability and circuit reliability, a modified

version of the simulation-based model presented in [11] is used. Reliability com-

parison of MCP architecture with redundancy factors of k = 2 and k = 3 was

performed with the monomorphism-based reconfiguration algorithm proposed in

[27].

The circuit reliability in the experiments is considered as the probability of

successfully implementing all output functions of a logic circuit on a given partially

defective crossbar [27].

To compute the circuit failure probability F and reliability R, resulting from

injecting m defective (stuck-open) crosspoints in the MCP architecture, the fol-

lowing procedure is used:

Inputs to the procedure:

1. Crossbar representation of the circuit to be mapped.

2. Target crossbar on which the circuit is to be mapped.

Procedure:

1. Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

2. Inject m random defects (stuck-open) in the crosspoints of the target cross-

bar.

166

3. If the injected defects result in an obstructive defect configuration in the

crossbar inhibiting successful mapping of all output functions, increment K

by 1.

4. Decrement I by 1 and if I is not 0 goto step 2.

5. Circuit failure probability F = K/1000.

6. Reliability R = 1− F .

To compute the circuit failure probability F and reliability R, resulting from

injecting m defective (stuck-open) crosspoints in the crossbar architecture for the

monomorphism-based reconfiguration algorithm, the following procedure is used:

Inputs to the procedure:

1. Crossbar representation of the circuit to be mapped.

2. Target crossbar on which the circuit is to be mapped.

Procedure:

1. Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

2. Inject m random defects (stuck-open) in the crosspoints of the target cross-

bar.

3. If the injected defects result in failure to find for the circuit a monomor-

phism on the target crossbar for successful mapping of all output functions,

increment K by 1.

167

4. Decrement I by 1 and if I is not 0 goto step 2.

5. Circuit failure probability F = K/1000.

6. Reliability R = 1− F .

Figure 5.12 shows the 3-bit adder circuit and its straight-forward implemen-

tation on a crossbar. The ripple-carry logic implementation (shown on top in the

figure) translates directly to a diode crossbar implementation (shown at the bot-

tom of figure) using feedback from some of the outputs to the inputs (gray lines).

The input wire marked −A0 gives the complement of input bit A0, and similarly

for the other inputs. Note that the carry bit between successive stages of the

crossbar implementation must be presented in both original and complemented

forms.

Figure 5.13 shows another implementation of the same 3-bit half adder circuit.

Although this approach uses more diodes, it consumes less area. Inputs and

outputs are labeled as in Figure 5.12.

Figure 5.14 compares the reliability obtained for quadded MCP, nona MCP

and monomorphism-based reconfiguration approaches for the adder circuit shown

in Figure 5.12 for injecting different percentages of stuck-open crosspoint defects.

It is observed that the reliability of monomorphism-based reconfiguration scheme

is better than nona MCP architecture whose reliability in turn is better than

quadded MCP architecture.

Similarly, Figure 5.15 compares the reliability obtained for quadded MCP, nona

MCP and monomorphism-based reconfiguration approaches for the adder circuit

168

Figure 5.12: A 3-bit adder which adds two 3-bit numbers (denoted as the bits
A2A1A0 and B2B1B0, respectively) to produce a 4-bit sum (with bits S3S2S1S0).

169

Figure 5.13: A 3-bit adder implemented as 2-level logic in a single diode crossbar.

Figure 5.14: Reliability comparison of quadded, nona and monomorphism-based
approaches for 3-bit adder shown in Figure 5.12.

170

Figure 5.15: Reliability comparison of quadded, nona and monomorphism-based
approaches for 3-bit adder shown in Figure 5.13.

shown in Figure 5.13 for injecting different percentages of stuck-open crosspoint

defects. Contrary to the trend in Figure 5.14, it is observed that the reliability

of nona MCP architecture is better than monomorphism-based reconfiguration

scheme whose reliability is in turn better than quadded MCP architecture.

Table 5.1 compares the circuit reliability between quadded MCP and

monomorphism-based reconfiguration approaches for 12 MCNC benchmarks.

For the MCNC benchmarks shown in Tables 5.1 and 5.2, the following flow

was adopted.

• The MCNC circuits were originally present in PLA format. The first step

performed was the logic optimization of the circuits using the ESPRESSO

tool [98].

171

Table 5.1: Comparison of circuit reliability between quadded MCP and
monomorphism-based reconfiguration approaches.

Quadded MCP Monomorphism
Cct. 0.5% 1% 5% 10% 20% 0.5% 1% 5% 10% 20%
bench1 0.993 0.972 0.335 0.002 0 1 0.998 0.939 0.473 0
dk17 0.999 0.998 0.887 0.514 0.019 1 0.997 0.945 0.693 0.005
ex1010 0.986 0.922 0.043 0 0 0.967 0.983 0.964 0.58 0
exp 0.996 0.986 0.534 0.037 0 0.884 0.76 0.2 0.002 0
inc 0.997 0.991 0.816 0.328 0.002 1 0.999 0.921 0.477 0.002
m1 0.996 0.991 0.67 0.131 0 0.873 0.782 0.085 0.001 0
m2 0.994 0.962 0.265 0.001 0 0.664 0.377 0.001 0 0
m3 0.989 0.953 0.235 0.003 0 .595 0.322 0 0 0
m4 0.989 0.951 0.165 0 0 0.55 0.13 0 0 0
p82 0.999 0.993 0.832 0.395 0.007 1 0.993 0.852 0.491 0.006
test1 0.991 0.971 0.36 0.005 0 1 1 0.919 0.589 0
test4 0.985 0.935 0.078 0 0 1 0.995 0.68 0.026 0

• The obtained optimized circuits were converted to crossbar implementation

by writing a conversion script. The resulting crossbar based representation

was used as input to the simulation procedures for MCP reliability analysis

and monomorphism based reconfiguration algorithm.

The monomorphism based reconfiguration algorithm which is used in our work

for comparison is the one reported in [89] and is part of the VF graph match-

ing library available from [91]. Since graph monomorphism is a complete search

method, a CPU time threshold of 30 sec was used to obtain monomorphism. The

30 sec CPU time threshold is also used in [27] from which the adder circuits of

Figure 5.12 and 5.13 for comparison have also been taken.

Table 5.2 compares the circuit reliability between nona MCP and

monomorphism-based reconfiguration approaches for 12 MCNC benchmarks.

As seen in the circuit reliability results shown in Tables 5.1 and 5.2, the ob-

172

Table 5.2: Comparison of circuit reliability between nona MCP and
monomorphism-based reconfiguration approaches.

Nona MCP Monomorphism
Cct. 0.5% 1% 5% 10% 20% 0.5% 1% 5% 10% 20%
bench1 1 1 0.965 0.75 0.022 1 0.998 0.939 0.473 0
dk17 1 1 0.966 0.958 0.652 1 0.997 0.945 0.693 0.005
ex1010 1 1 0.991 0.777 0 0.967 0.983 0.964 0.58 0
exp 1 0.999 0.982 0.835 0.12 0.884 0.76 0.2 0.002 0
inc 1 1 0.986 0.938 0.455 1 0.999 0.921 0.477 0.002
m1 1 1 0.99 0.883 0.242 0.873 0.782 0.085 0.001 0
m2 1 0.999 0.956 0.674 0.02 0.664 0.377 0.001 0 0
m3 1 1 0.954 0.655 0.003 .595 0.322 0 0 0
m4 1 1 0.959 0.573 0.005 0.55 0.13 0 0 0
p82 1 1 0.995 0.949 0.504 1 0.993 0.852 0.491 0.006
test1 0.999 0.999 0.967 0.769 0.037 1 1 0.919 0.589 0
test4 1 0.998 0.898 0.409 0 1 0.995 0.68 0.026 0

served reliability trend in some MCNC benchmarks is consistent with the one

which was obtained for the adder implementation in Figure 5.13 and shown in

Figure 5.15 i.e., the best reliability is obtained for nona MCP, second by monomor-

phism followed by quadded MCP. But in some MCNC benchmarks like exp, m1,

m2, m3 and m4, quadded MCP even outperformed monomorphism-based ap-

proach. Looking into the structure of the benchmarks gave the insight that those

benchmark circuits in which the product terms which need to be implemented

on the columns of the crossbar are large in terms of the number of literals, the

performance of the monomorphism-based reconfiguration algorithm is worse than

the MCP because of the relative difficulty in finding the defect free columns in

the crossbar to implement denser product terms. For circuits with sparse product

terms ie., having few literals in the product terms, the monomorphism approach

has more flexibility and it performs better. Also in some of the benchmarks like

173

dk17, inc and p82, the reliability results of the quadded MCP are close to those

of the monomorphism-based reconfiguration algorithm. The obtained reliability

results justify the adoption of MCP architecture.

5.3.2 Area Analysis

In order to calculate the area required by the proposed MCP architecture, the

approach presented in [27] is followed. It is based on counting the number of

crosspoints needed by the AND and OR crossbars and summing the two to form

the total area of the crossbar.

The total area in terms of number of crosspoints for the monomorphism-based

reconfiguration approach, quadded MCP and nona MCP is shown in Tables 5.3,

5.4 and 5.5. The first column is the name of the benchmark circuit, the second

column is the number of rows in the AND portion of crossbar. The third column

is the number of product terms which need to be implemented in columns of

crossbar. The fourth column is the number of rows in the OR portion crossbar.

The fifth and sixth and seventh columns are the number of crosspoints in AND,

OR and the full crossbar. It should be noted that smallest size crossbar needed to

implement all product terms of a benchmark is used for the monomorphism-based

reconfiguration approach.

Reliability results combined with area results show that for increasing degrees

of redundancy, the reliability of the MCP architecture improves with acceptable

area overheads. As observed in Tables 5.3, 5.4 and 5.5, the quadded MCP has

174

Table 5.3: Crossbar area in terms of number of crosspoints for the monomorphism-
based reconfiguration architecture.

Cct. Rows
in
AND
CB

Columns Rows
in OR
CB

AND
CPs

OR
CPs

Total
CPs

Adder1 19 25 11 475 275 750
Adder2 12 31 4 372 124 496
bench1 18 139 9 2502 1251 3753
dk17 20 18 11 360 198 558
ex1010 20 284 10 5680 2840 8520
exp 16 59 18 944 1062 2006
inc 14 30 9 420 270 690
m1 12 19 12 228 228 456
m2 16 47 16 752 752 1504
m3 16 66 16 1056 1056 2112
m4 16 105 16 1680 1680 3360
p82 10 21 14 210 294 504
test1 16 121 10 1936 1210 3146
test4 16 120 30 1920 3600 5520

on average 3 times more area requirements as compared to monomorphism-based

reconfiguration approach and nona MCP has on average 6 times more area re-

quirements as compared to monomorphism-based reconfiguration approach. The

average case is taken as the crossbar in which there are equal number of rows in

the AND portion and OR portion of the non-redundant crossbar. Keeping the

reliability and area results in view, it can be said that there is an area-reliability

tradeoff which needs to be considered while using any of the proposed MCP ar-

chitectures.

The greatest advantage of the MCP architecture is that it does not require any

type of defect diagnosis, defect mapping and consequently defect avoidance using

monomorphism or any other algorithm employing reconfiguration for avoiding the

175

Table 5.4: Crossbar area in terms of number of crosspoints for the quadded MCP
architecture.

Cct. Rows
in
AND
CB

Columns Rows
in OR
CB

AND
CPs

OR
CPs

Total
CPs

Adder1 34 50 11 1700 550 2250
Adder2 24 62 4 1488 248 1736
bench1 36 278 9 10008 2502 12510
dk17 40 36 11 1440 396 1836
ex1010 40 568 10 22720 5680 28400
exp 32 118 18 3776 2124 5900
inc 28 60 9 1680 540 2220
m1 24 38 12 912 456 1368
m2 32 94 16 3008 1504 4512
m3 32 132 16 4224 2112 6336
m4 32 210 16 6720 3360 10080
p82 20 42 14 840 588 1428
test1 32 242 10 7744 2420 10164
test4 32 240 30 7680 3600 11280

location of defects.

Reconfiguration algorithms for defect-tolerant crossbars of which monomor-

phism is an example require extensive time for execution and mapping of logic on

partially defective crossbars. For monomorphism, it is reported in [27] that it is

a complete search algorithm which can have prohibitive computational costs for

searching for a solution. Also there is no guarantee that for given defect locations,

a solution will always be found. Hence in a mass-production manufacturing con-

text where there can be hundreds of thousands of crossbars implementing logic, the

computing and testing time for reconfiguration based methods can be immense.

For such cases, the defect-tolerant architectures like the MCP architecture pro-

posed in this chapter have a clear edge in terms of reliability over reconfiguration

176

Table 5.5: Crossbar area in terms of number of crosspoints for the nona MCP
architecture.

Cct. Rows
in
AND
CB

Columns Rows
in OR
CB

AND
CPs

OR
CPs

Total
CPs

Adder1 57 75 11 4275 825 5100
Adder2 36 93 4 3348 372 3720
bench1 54 417 9 22518 3753 26271
dk17 60 54 11 3240 594 3834
ex1010 60 852 10 51120 8520 59640
exp 48 177 18 8496 3186 11682
inc 42 90 9 3780 810 4590
m1 36 57 12 2052 684 2736
m2 48 141 16 6768 2256 9024
m3 48 198 16 9504 3168 12672
m4 48 315 16 15120 5040 20160
p82 30 63 14 1890 882 2772
test1 48 363 10 17424 3630 21054
test4 48 360 30 17280 10800 28080

based defect avoidance methods.

5.4 Summary

In this chapter, defect-tolerant techniques for implementing logic on 2D crossbars

based on adding redundancy at the crosspoint level both in the crossbar rows

and columns are proposed and discussed. The proposed technique is called Multi-

crosspoint(MCP) architecture and the two versions presented in this chapter are

called quadded MCP and nona MCP architectures. The proposed techniques pro-

vide defect tolerance against a large number of defective(stuck-open) crosspoints.

Comparison of the proposed MCP architecture with monomorphism based recon-

figuration approach has shown that the nona MCP architecture affords better

177

reliability for most of the tested benchmark circuits. The comparison has also

shown that the quadded MCP architecture is slightly inferior in reliability to the

monomorphism-based approach but on some of the benchmark circuits it gives

better or equivalent reliability. This improvement in reliability by using the MCP

architecture is achieved at a higher overhead but the real advantage of the pro-

posed schemes is that they do not require any defect mapping or algorithmic steps

for circuit implementation and defect avoidance and are defect-tolerant by virtue

of their redundant geometry.

178

CHAPTER 6

DEFECT-TOLERANT FPGA

DESIGN TECHNIQUE

In this chapter, an investigation is made to find out the answer to the question:

“whether it is more feasible in terms of reliability to implement defect-tolerant

CLBs (Configurable Logic Blocks) using the quadded-transistor technique or is it

feasible to allocate more spare CLBs for the mapping of a given benchmark circuit

on FPGA”. The experimental analysis is carried out using the VPR tool [93].

6.1 Introduction

As discussed in Chapter 2, the high levels of integration and small submicron

device sizes used in present VLSI technologies and projected for future nanoelec-

tronic technologies for FPGAs can result in higher occurrences of defects and

operational faults. Thus, there is a critical need for defect tolerance and reconfig-

uration techniques for FPGAs to increase chip yields as well as system reliability

179

in the field.

Several methods as mentioned in Section 2.7 have been proposed to tolerate

faults in CLBs and interconnect of FPGAs. Most of these methods are based on

the concept of defect avoidance using spare CLB and interconnection resources

via reconfiguration in which the faults are detected and reconfigured around the

defective resources [92, 76].

In this chapter, a transistor-level defect-tolerant design for FPGA CLBs is

proposed. The focus of the work in this chapter is on masking permanent defects

in CLBs by utilizing the defect-tolerant quadded-transistor structure presented

in Chapter 3. The proposed defect-tolerant technique is compared to the spares-

based reconfiguration technique using 2 and 3 spare CLBs.

6.2 Defect-Tolerant CLBs for FPGAs

As described in Chapter 2, an FPGA consists of regular structures called Config-

urable Logic Blocks (CLBs) connected to each other via interconnection consisting

of wiring and Switch Blocks (SBs). A basic FPGA logic block is shown in Figure

6.1. Its main components are 4-input LUT, a Flip-Flop and a multiplexer.

The 4-input LUT can be implemented at the transistor level using the multi-

plexing scheme as shown in Figure 6.2.

In the proposed defect-tolerant CLBs, every transistor T in the CLB is re-

placed by the Quadded-Transistor structure as shown in Figure 3.1. This increases

the size of each CLB four times in terms of number of transistors but as demon-

180

Figure 6.1: A basic FPGA logic block.

Figure 6.2: Schematic of 4-input LUT.

181

strated in the next section, the quadded transitor implementation of CLB greatly

increases the probability to tolerate permanent defects in each CLB.

6.3 Experimental Results

To demonstrate the effectiveness of the quadded-transistor based CLB, experi-

mental analysis for estimation of circuit failure probability, reliability and area is

carried out using 8 MCNC benchmark circuits.

6.3.1 Reliability Analysis

The reliability analysis consists of two major steps.

• Placement of benchmark circuits on FPGA using the VPR Tool.

• Estimation of Circuit Failure Probability and Reliability using fault-

injection simulation.

The following flow is used for the FPGA placement of the benchmark circuits

using the VPR tool.

• Technology-independent logic optimization of all circuits is performed using

the SIS synthesis package [94].

• Then the circuits are technology-mapped into netlists with 4-input LUTs

and flip-flops using the FlowMap tool [95] resulting in .blif format netlists

of logic blocks.

182

• The .blif format netlists are then packed into logic blocks using the T-VPack

tool [96] resulting in .net format netlists which can be directly read by VPR.

• The netlists of circuits along with a 4-input LUT FPGA architecture de-

scription file are input to the VPR tool and the circuit is both placed as

well as routed using the VPR tool resulting in .place format file describing

circuit placement and .route format file describing circuit routing on FPGA.

The FPGA placements of benchmark circuits generated by VPR is used as the

starting point for reliability analysis.

The estimation of circuit failure probability and reliability for the benchmark

circuits is carried out using the following fault-injection simulation procedure:

• Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

• Randomly inject m transistor defects in the original FPGA placed circuit.

• If the injected transistor defects result in any defective CLB, increment K

by 1.

• Decrement I by 1 and if I is not 0 goto step 2.

• Circuit Failure Probability F = K/1000.

• Reliability R = 1− F .

In order to compare the circuit failure probability and reliability of the

quadded-transistor CLBs with the reconfiguration approach using spares, follow-

183

ing fault-injection simulation procedure is used.

• Set the number of iterations to be performed, I, to 1000 and the number of

failed simulations, K, to 0.

• Randomly inject m transistor defects in the original FPGA placed circuit

augmented with N spares for each CLB.

• If the injected transistor defects result in a defective CLB along with defects

in all N spares allocated for that CLB, increment K by 1.

• Decrement I by 1 and if I is not 0 goto step 2.

• Circuit Failure Probability F = K/1000.

• Reliability R = 1− F .

Using the aforementioned simulation procedures, experiments were carried out

on 8 MCNC benchmark circuits and comparison was performed with spare based

reconfiguration approach using 2 spares (N = 2) and 3 spares (N = 3). Figure 6.3

shows comparison of circuit failure probability for alu4 MCNC benchmark circuit

for different percentages of injected defects.

As shown in the comparison of alu4 benchmark circuit, the QT based CLB im-

plementation has less circuit failure probability than 2-spare based reconfiguration

approach but is inferior to the 3-spare based reconfiguration approach. Tables 6.1

and 6.2 compare the circuit failure probability of QT based CLB approach and

2 spares and 3 spares based reconfiguration approach for different percentages

184

Figure 6.3: Comparison of circuit failure probability for alu4 benchmark.

of injected defects. The same trend is observed in all the 8 MCNC benchmark

circuits with the QT based CLB approach performing midway between 2 spares

and 3 spares based reconfiguration approach.

6.3.2 Area Analysis

Comparison of circuit area in terms of number of transistors as shown in Table 6.3

reveals that the QT based CLB technique and 3 spares based reconfiguration ap-

proach have same area but 2 spares based approach occupies 25% less area in terms

of number of transistors. As reported in [92], the spares based reconfiguration not

only incurs area for additional number of CLBs used but also requires additional

routing resources (i.e.,channels, wiring and bypassing circuits) in order to provide

reconfiguration around the defective CLB. One advantage of the QT based CLBs

185

Table 6.1: Comparison of circuit failure probability between QT CLB and 2 spares
based reconfiguration approaches.

Quadded-Transistor CLB 2 Spares
Cct. Trans. 0.12% 0.25% 0.37% 0.5% Trans. 0.12% 0.25% 0.37% 0.5%
alu4 231344 0.124 0.425 0.705 0.887 173508 0.133 0.682 0.966 1
apex2 285456 0.14 0.484 0.793 0.936 214092 0.179 0.749 0.987 1
apex4 191824 0.101 0.358 0.617 0.84 143868 0.108 0.611 0.95 0.997
diffeq 227544 0.114 0.426 0.698 0.895 170658 0.132 0.696 0.977 1
elliptic 547808 0.284 0.73 0.942 0.999 410856 0.307 0.937 0.999 1
ex1010 698896 0.355 0.812 0.966 0.997 524172 0.4 0.974 1 1
ex5p 161728 0.098 0.315 0.588 0.793 121296 0.15 0.546 0.918 0.993
frisc 540512 0.292 0.72 0.942 0.991 405384 0.35 0.911 0.999 1

Table 6.2: Comparison of circuit failure probability between QT CLB and 3 spares
based reconfiguration approaches.

Quadded-Transistor CLB 3 Spares
Cct. Trans. 0.12% 0.25% 0.37% 0.5% Trans. 0.12% 0.25% 0.37% 0.5%
alu4 231344 0.124 0.425 0.705 0.887 231344 0.006 0.092 0.399 .741
apex2 285456 0.14 0.484 0.793 0.936 285456 0.009 0.118 0.441 0.802
apex4 191824 0.101 0.358 0.617 0.84 191824 0.006 0.085 0.334 0.687
diffeq 227544 0.114 0.426 0.698 0.895 227544 0.008 0.096 0.398 0.723
elliptic 547808 0.284 0.73 0.942 0.999 547808 0.022 0.202 0.645 0.955
ex1010 698896 0.355 0.812 0.966 0.997 698896 0.028 0.254 0.775 0.979
ex5p 161728 0.098 0.315 0.588 0.793 161728 0.006 0.071 0.277 0.609
frisc 540512 0.292 0.72 0.942 0.991 540512 0.014 0.216 0.686 0.968

is that no additional routing resources are needed by the CLBs because the defect

tolerance is built into every quadded-transistor structure implementing the CLB.

Another advantage of the QT based CLBs is that no defect mapping procedure is

required to identify the defective CLBs that should be avoided during the place

and route process due to the fact that the defect tolerance is built into every QT

based CLB.

186

Table 6.3: Comparison of area in terms of number of transistors and CLBs for
QT based CLB approach and 2 and 3 spares based approach.

QT CLB 2 spares 3 spares
Cct. CLBs Trans. CLBs Trans. CLBs Trans.
alu4 1522 231344 4566 173508 6088 231344
apex2 1878 285456 5634 214092 7512 285456
apex4 1262 191824 3786 143868 5048 191824
diffeq 1497 227544 4491 170658 5988 227544
elliptic 3604 547808 10812 410856 14416 547808
ex1010 4598 698896 13794 524172 18392 698896
ex5p 1064 161728 3192 121296 4256 161728
frisc 3556 540512 10668 405384 14224 540512

6.4 Summary

In this chapter, defect-tolerant CLB design technique for FPGAs using the

quadded-transistor structure is proposed. The proposed technique incurs addi-

tional area overhead in terms of number of transistors but provides appreciable

defect tolerance against permanent defects. A comparison of the proposed tech-

nique with the spare based reconfiguration using transistor-level fault injection

simulation has been performed and the technique is found to be better in defect

tolerance than the 2 spares based reconfiguration approach but inferior to the 3

spares based reconfiguration approach. It is also noted that the defect-tolerant

CLB approach does not need extra wiring and routing resources as the defect

tolerance is present in every quadded-transistor structure. It is expected that in

future nanoelectronics based FPGAs, the quadded-transistor structure may afford

more defect tolerance to the nanoscale based CLBs.

187

CHAPTER 7

CONCLUSION

7.1 Conclusion

Defect-tolerant digital system design techniques have recently attracted a con-

siderable amount of interest in the research community. This is due to the fact

that in comparison to CMOS, higher defect rates are being projected for future

nanoelectronics based digital circuits. The renewed interest in defect tolerance

has motivated researchers to re-investigate pre-CMOS era techniques which are

mostly gate level and module level. The work reported in this thesis is based on

detailed investigation of transistor-level techniques for designing reliable digital

circuits. Following are summary and conclusions of this research:

• A recently proposed transistor-level defect-tolerant technique called

Quadded-Transistor technique is studied in detail and is extended to develop

another transistor-level defect-tolerant technique called Nona-Transistor

technique. Both theoretical and experimental analysis are performed for tol-

188

erating transistor stuck-open and stuck-short defects. Reliability and failure

rate analysis of Nona-Transistor technique and Quadded Logic technique

for transistor stuck-open and stuck-short defects has proved that Nona-

Transistor technique has outperformed Quadded Logic technique in terms of

defect tolerance. Nona-Transistor technique has also shown better reliability

than Quadded-Transistor technique at the cost of higher area.

• Hybridization of Nona-transistor technique with TMR is proposed in order

to achieve higher reliability following the idea of hybridization of quadded-

transistor technique with TMR by implementing only majority voters using

Nona-transistor structure and it is concluded that combinations of gate-level

defect-tolerant techniques like TMR and transistor-level defect-tolerant tech-

niques like Quadded and Nona-tarnsistor structures will give higher defect

tolerance.

• A new transistor-level technique is proposed for mitigating transient and

soft errors in digital circuits. The proposed technique is based on selective

application of the Quadded-Transistor structure and is called Quadded Mod-

ular Redundancy(QMR). Simulation-based comparison of QMR with TMR

for transient faults and with different module sizes has shown that QMR

affords more tolerance to transient faults in comparison to TMR and with

less number of transistors. Two more techniques based on QT structure are

also proposed. Comparison based on reliability analysis has shown that the

proposed techniques are more efficient than TMR for mitigating SEUs but

189

have higher area overhead.

• A new defect-tolerant architecture for implementing logic circuits on par-

tially defective nanoscale crossbars is proposed. The proposed crossbar ar-

chitecture called Multi-crosspoint(MCP) architecture uses row and column

redundancy in order to achieve higher defect tolerance in nanoscale crossbar-

based circuits. Two variants of the MCP architecture called quadded MCP

and nona MCP with redundancy factors of 2 and 3 are evaluated using

simulations. A comparison of the proposed architecture is made with the

monomorphism based reconfiguration algorithm for defect-tolerant crossbar

design for a number of benchmark circuits and the experimental analysis

has shown that the nona MCP architecture performs better than monomor-

phism based approach on circuits with more dense product terms. For the

MCP architecture, it is concluded that it does not involve any defect diag-

nosis, mapping and avoidance but provides defect tolerance by virtue of its

redundancy only. The MCP architecture has higher overhead in terms of

number of crosspoints but is favorable for crossbar based implementations

which want to avoid computational time normally required by reconfigura-

tion approaches in searching for a feasible solution for individual crossbars.

• Transistor-level defect-tolerant FPGA design technique is also explored for

realizing reliable Configurable Logic Blocks (CLBs). Simulation based com-

parison of QT based CLBs is performed with 2 spares and 3 spares based

technique which shows that the QT based CLB affords better defect toler-

190

ance than 2 spares based technique but is inferior to 3 spares based tech-

nique. It is expected that for future nanotechnology based FPGAs, quadded-

transistor structure may be beneficial for masking manufacturing defects in

CLBs.

7.2 Future Work

This work can be extended to do further reserach in the following ways:

• Due to the lack of availability of real-world fabrication and defect data,

the transistor-level techniques have only been assessed using theoretical and

simulation based approaches. A very interesting extension of this work could

be the assessment of the impact of the proposed techniques on the reliability

of the fabricated nanoelectronic circuits in the presence of real fabrication

related defects.

• The proposed Multi-crosspoint (MCP) architecture can be used in the imple-

mentation of Hybrid CMOS / Nanoscale Crossbar based FPGAs particularly

for designing defect-tolerant nanoscale crossbar based LUTs.

• Defect-tolerant FPGA design technique reported in Chapter 6 has only

covered CLBs. Similar work can be explored for designing defect-tolerant

Switch Blocks (SBs) and Connection Blocks(CBs) as well as SRAM config-

uration memory in FPGAs.

191

REFERENCES

[1] M. Butts, A. DeHon and S. C. Goldstein, “Molecular Electronics: devices,

systems and tools for gigagate, gigabit chips,” Proceedings of International

Conference on Computer-Aided Design, pp. 433 - 440, 2002.

[2] T. N. A. Bachtold, P. Harley and C. Dekker, “Logic circuits with carbon

nanotube transistors,” Science, no. 294, pp. 1317 - 1320, 2001.

[3] Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled

using silicon nanowire building blocks,” Science, no. 291, pp. 851 - 853, 2001.

[4] Y. Huang, “Logic gates and computation from assembled nanowire building

blocks,” Science, no. 294, pp. 1313 - 1317, 2001.

[5] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum

cellular automata,” Journal of Applied Physics, no. 75, pp. 1818 - 1825, 1994.

[6] Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,

K. A. Nielsen, J. Fraser Stoddart, and R. S. Williams, “Nanoscale molecular-

switch crossbar circuits,” Nanotechnology, no. 14, pp. 462 - 468, Apr. 2003.

192

[7] D. Whang, S. Jin, Y. Wu and C. M. Lieber, “Large-scale hierarchical organi-

zation of nanowire arrays for integrated nanosystems,” Nanoletters, vol. 3, no.

9, pp. 1255 - 1259, Sep. 2003.

[8] Chen He, Margarida F. Jacome and Gustavo de Veciana, “A reconfiguration-

based defect-tolerant design paradigm for nanotechnologies,” IEEE Design

and Test of Computers, pp. 316 - 326, July-August 2005.

[9] John von Neumann, “Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components,” Automata Studies, pp. 43 - 98, Priceton

University Press, 1956.

[10] William H. Pierce, Failure-tolerant computer design. Academic Press, 1965.

[11] Jie Han, Jianbo Gao, Yan Qi, Pieter Jonker and Jose A. B. Fortes, “Toward

hardware-redundant, fault-tolerant logic for nanoelectronics,” IEEE Design

and Test of Computers, pp. 328 - 339 , July-August 2005.

[12] S. Spagocci and T. Fountain, “Fault rates in nanochip devices,” Proceedings

of Electrochemical Society, vol. 98, no. 19, pp. 582 - 593, 1999.

[13] Darshan D. Thaker, Francois Impens, Isaac L. Chuang, Rajeevan Amirthara-

jah and Frederic T. Chong, “Recursive TMR: Scaling fault tolerance in the

nanoscale era,” IEEE Design and Test of Computers, pp. 298 - 305, July-

August 2005.

[14] J. G. Tryon, Quadded logic redundancy techniques for computing systems. pp.

205 - 228, Spartan Books, 1962.

193

[15] P. A. Jensen, “Quadded NOR logic,” IEEE Transactions on Reliability, vol.

12, no. 3, pp. 22 - 31, 1963.

[16] J. R. Heath et al., “A defect-tolerant computer architecture: Opportunities

for nanotechnology,” Science, vol. 280, no. 5370, pp. 1716 - 1721, Jun. 1998.

[17] M. Mishra and S. C. Goldstein, “Defect tolerance at the end of roadmap,”

Proceedings of International Test Conference, pp. 1201 - 1211, 2003.

[18] W. B. Culbertson et al., “Defect tolerance on the Teramac custom com-

puter,” Proceedings of IEEE Symposium on FPGA-Based Custom Computing

Machines, pp. 116 - 123, 1997.

[19] J. Huang, M. B. Tahoori, and F. Lombardi, “On the defect tolerance of nano-

scale two-dimensional crossbars,” Proceedings of IEEE International Sympo-

sium on Defect and Fault Tolerance, pp. 96 - 104, 2004.

[20] Yan Qi, Jianbo Gao, and Jose A. B. Fortes,“Markov chains and probabilistic

computation - A general framework for multiplexed nanoelectronic systems,”

IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp. 194 - 205, Mar. 2005.

[21] Jie Han and Pieter Jonker, “A defect and fault-tolerant architecture for

nanocomputers,” Nanotechnology, vol. 14, pp. 224 - 230, Jan. 2003.

[22] A. S. Sadek, K. Nikoliae, and M. Forshaw, “Parallel information and compu-

tation with restitution for noise-tolerant nanoscale logic networks,” Nanotech-

nology, vol. 15, pp. 192 - 210, Jan. 2004.

194

[23] E. F. Moore and C. E. Shannon, “Reliable circuits using less reliable relays,”

Journal of Franklin Institute, vol. 262, pp. 191 - 197, Oct. 1956.

[24] J. J. Suran, “Use of circuit redundancy to increase system reliability,” Pro-

ceedings of International Solid-State Circuits Conference, pp. 82 - 83, Feb.

1964.

[25] M. B. Tahoori, “Application-independent defect tolerance of reconfigurable

nanoarchitectures,” ACM Journal on Emerging Technologies in Computing

Systems, vol. 2, no. 3, pp. 197 - 218, Jul. 2006.

[26] T. Hogg and G. S. Snider, “Defect-tolerant adder circuits with nanoscale

crossbars,” IEEE Transactions on Nanotechnology, vol. 5, no. 2, pp. 97 - 100,

Mar. 2006.

[27] T. Hogg and G. S. Snider, “Defect-tolerant logic with nanoscale crossbar

circuits,” HP Labs Technical Report, May 2004.

[28] H. Naeimi and A. DeHon, “A greedy algorithm for tolerating defective cross-

points in NanoPLA design,” Proceedings of International Conference on Field-

Programmable Technology, pp. 49 - 56, 2004.

[29] M. B. Tahoori, “Defects, yield and design in sublithographic nano-

electronics,” Proceedings of IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems, 2005.

195

[30] M. B. Tahoori, “A mapping algorithm for defect-tolerance of reconfigurable

nano-architectures,” Proceedings of International Conference on Computer

Aided Design, 2005.

[31] A. H. El-Maleh, B. M. Al-Hashimi and A. Al-Yamani, “N2-transistor struc-

ture for defect-tolerance at the nanoscale,” Proceedings of European Test Sym-

posium, 2007.

[32] A. H. El-Maleh, B. M. Al-Hashimi and Aissa Melouki, “Transistor-level based

defect-tolerance for reliable nanoelectronics,” Proceedings of Arab Interna-

tional Conference on Computer Systems and Applications, 2008.

[33] P. Hazucha and C. Svensson, “Cosmic-ray soft error rate characterization of

a standard 0.6-m CMOS Process,” IEEE Journal of Solid-State Circuits, vol.

35, no. 10, pp. 1422 - 1429, Oct. 2000.

[34] Jie Han, “Fault-tolerant architectures for nanoelectronic and quantum de-

vices,” Doctoral Dissertation, Delft University of Technology, 2004.

[35] Israel Koren and C. Mani Krishna, Fault-tolerant systems. pp. 20 - 21, Morgan

Kaufmann Publishers, 2007.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms. pp. 643 - 693, McGraw-Hill, 2001.

[37] G. Snider, P. J. Kuekes, and R. S.Williams, “CMOS-like logic in defective,

nanoscale crossbars,” Nanotechnology, vol. 15, pp. 881 - 891, 2004.

196

[38] Chong Zhao, Sujit Dey, and Xiaoliang Bai, “Soft-spot analysis: Targeting

compound noise effects in nanometer circuits,” IEEE Design and Test of Com-

puters, pp. 362 - 375, July-August 2005.

[39] G. Asadi, S. G. Miremadi, H. R. Zarandi, A. Ejlali, “Evaluation of fault-

tolerant designs implemented on SRAM-based FPGAs,” 10th IEEE Pacific

Rim International Symposium on Dependable Computing, pp. 327 - 332, Mar.

2004.

[40] Samudrala, P. J. Ramos, and S. Katkoori, “Selective triple modular redun-

dancy based single-event upset tolerant synthesis for FPGAs,” IEEE Trans-

actions on Nuclear Science, vol. 51, no. 5, pp. 2957 - 2969, Oct. 2004.

[41] F. L. Kastensmidt, L. Sterpone, L. Carro, M. S. Reorda, “On the optimal de-

sign of triple modular redundancy logic for SRAM-based FPGAs,” Proceedings

of Design, Automation and Test in Europe, pp. 1290 - 1295, Vol. 2, 2005.

[42] A. Tiwari and K. A. Tomko, “Enhanced reliability of finite-state machines in

FPGA through efficient fault detection and correction,” IEEE Transactions

on Reliability, vol. 54, no. 3, pp. 459 - 467, Sept. 2005.

[43] L. Sterpone, M. S. Reorda, M. Violante, “RoRA: A reliability-oriented place

and route algorithm for SRAM-based FPGAs,” Research in Microelectronics

and Electronics, vol. 1, pp. 173 - 176, Jul. 2005.

197

[44] J. Huang, M. B. Tahoori, F. Lombardi, “Probabilistic analysis of fault tol-

erance of FPGA switch block array,” Proceedings of the 18th International

Parallel and Distributed Processing Symposium, Apr. 2004.

[45] J. Huang, M. B. Tahoori, F. Lombardi, “Fault tolerance of switch blocks

and switch block arrays in FPGA,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 13, no. 7, pp. 794 - 807, July 2005.

[46] A. Yu, G. Lemieux, “Defect-tolerant FPGA switch block and connection

block with fine-grain redundancy for yield enhancement,” Proceedings of In-

ternational Conference on Field Programmable Logic and Applications, pp. 255

- 262, Aug. 2005.

[47] F. G. Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro, R. Reis, “De-

signing fault-tolerant techniques for SRAM-based FPGAs,” IEEE Design and

Test of Computers, vol. 21, no. 6, pp. 552 - 562, Nov-Dec 2004.

[48] A. Yu, G. Lemieux, “FPGA defect tolerance: Impact of granularity,” Proceed-

ings of IEEE International Conference on Field-Programmable Technology, pp.

189 - 196, Dec. 2005.

[49] Michael Lee Bushnell and Vishwani D. Agrawal, Essentials of electronic test-

ing for digital, memory, and mixed-signal VLSI circuits. Springer, 2000.

[50] Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, Digital sys-

tems testing and testable design. IEEE Press, 1990.

198

[51] Fernanda Lima Kastensmidt, Luigi Carro and Ricardo Reis, Fault tolerance

techniques for SRAM-based FPGAs. Springer, 2006.

[52] R. Katz, “An SEU-hard flip-flop for antifuse FPGAs,” Proceedings of Interna-

tional Conference On Military And Aerospace Applications Of Programmable

Logic Devices, 2001.

[53] L. Anghel, D. Alexandrescu and M. Nicolaidis, “Evaluation of a soft error

tolerance technique based on time and/or space redundancy,” Proceedings of

International Symposium on Integrated Circuits and Systems Design, 2000.

[54] D. Alexandrescu, L. Anghel and M. Nicolaidis, “New methods for evaluating

the impact of single event transients in VDSM ICs,” Proceedings of IEEE

International Symposium On Defect and Fault Tolerance in VLSI Systems,

pp. 99 - 107, 2002.

[55] Martin L. Shooman, Reliability of computer systems and networks: Fault

tolerance, analysis and design. John Wiley, 2002.

[56] J. Leavy, “Upset due to a single particle caused propagated transient in a

bulk CMOS microprocessor,” IEEE Transactions on Nuclear Science, vol. 38,

no. 9, pp. 1493 - 1499, Dec. 1991.

[57] J. Hass, “Mitigating single event upsets from combinational logic,” Proceed-

ings of NASA Symposium on VLSI Design, 1998.

[58] J. Hass, “Probabilistic estimates of upset caused by single event transients,”

Proceedings of NASA Symposium on VLSI Design, 1999.

199

[59] Kartik Mohanram, “Simulation of transients caused by single-event upsets in

combinational logic,” Proceedings of International Test Conference, pp. 1 - 9,

2005.

[60] M. Nicolaidis and R. Perez, “Measuring the width of transient pulses induced

by radiation,” Proceedigs of IEEE International Reliability Physics Sympo-

sium, pp. 56 - 59, IEEE Computer Society, 2003.

[61] P. E. Dodd and L. W. Massengill, “Basic mechanism and modeling of single-

event upset in digital microelectronics,” IEEE Transactions on Nuclear Sci-

ence, vol. 50, pp. 583 - 602, June 2003.

[62] A. V. Ferris-Prabhu, Introduction to semiconductor device yield modeling.

Artech House, 1992.

[63] D. P. Siewiorek and R. S. Swarz, Reliable computer systems, design and eval-

uation. Digital Press, 2nd edition, 1992.

[64] A. Avizienis, “Design of fault-tolerant computers,” Proceedings of 1967 Fall

Joint Computer Conference of AFIPS, pp. 733 - 743, 1967.

[65] I. R. Committee, “Executive Summary,” International Technology Roadmap

for Semiconductors, 2003. http://public.itrs.net.

[66] P. K. Lala, Self-checking and fault-tolerant digital design. Morgan Kaufmann

Academic Press, 1992.

200

[67] M. Chean and J. Fortes, “A taxonomy of reconfiguration techniques for fault-

tolerant processor arrays,” IEEE Computer, vol. 23, no. 1, pp. 55 - 69, Jan.

1990.

[68] L. Chen and A. Avizienis, “N-version programming: A fault tolerance ap-

proach to reliability of software operation,” Digest of the 8th International

Symposium on Fault-Tolerant Computing, pp. 3 - 9, 1978.

[69] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combina-

tional circuits,” Proceedings of International Conference on Computer-Aided

Design, pp. 283 - 289, Nov. 1998.

[70] Mihir R. Choudhury and Kartik Mohanram, “Accurate and scalable reliabil-

ity analysis of logic circuits,” Proceedings of Design Automation and Test in

Europe, pp. 1454 - 1459, 2007.

[71] Asbjorn Djupdal, “Evolving static hardware redundancy for defect-tolerant

FPGAs,” Doctoral Dissertation, Norwegian University of Science and Tech-

nology, April 2008.

[72] Morten Hartmann, “Evolution of fault and noise-tolerant digital circuits,”

Doctoral Dissertation, Norwegian University of Science and Technology, April

2005.

[73] Xilinx San Jose, CA., “EasyPath solutions, 2005”

http://www.xilinx.com/products/easypath/.

201

[74] W. J. Huang and E. J. McCluskey, “Column-based precompiled configuration

technique for FPGA fault tolerance,” Proceedings of IEEE Symposium on Field

Programmable Custom Computing Machines, pp. 137 - 146, 2001.

[75] J. Lach, W. H. Mangione-Smith and M. Potkonjak, “Efficiently supporting

fault-tolerance in FPGAs,” Proceedings of ACM International Symposium on

FPGAs, pp. 105 - 115, 1998.

[76] A. Doumar, S. Kaneko, and H. Ito, “Defect and fault tolerance FPGAs by

shifting the configuration data,” Proceedings of IEEE International Sympo-

sium on Defect and Fault Tolerance in VLSI Systems, pp. 377 - 385, 1999.

[77] F. Hatori, T. Sakurai, et al., “Introducing redundancy in FPGAs,” Proceed-

ings of Custom Integrated Circuits Conference, pp. 7.1.1-7.1.4, 1999.

[78] “Altera Corporation,” United States Patents 6,034,536, 6,166,559,

6,337,578, 6,344,755, 6,600,337 and 6,759,871, 20002004.

[79] A. Doumar and H. Ito, “Design of switching blocks tolerating defects/faults

in FPGA interconnection resources,” Proceedings of IEEE International Sym-

posium on Defect and Fault Tolerance in VLSI Systems, pp. 134 - 142, 2000.

[80] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation for

SRAM-based FPGAs,” Proceedings of ACM International Symposium on FP-

GAs, pp. 149 - 160, 2005.

202

[81] S. Hareland, “Impact of CMOS process scaling and SOI on the soft error rates

of logic processes,” IEEE Nuclear and Space Radiation Effects Conference, pp.

73 - 74, 2001.

[82] M. Abramovici, J. M. Emmert, and C. E. Stroud, “Roving stars: An inte-

grated approach to on-line testing, diagnosis and fault tolerance for FPGAs,”

Proceedings of NASA/DoD Workshop on Evolvable Hardware, 2001.

[83] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event up-

sets through Virtex partial configuration,” Xilinx Application Notes XAPP216

(v1.0), 2000.

[84] Y. Lin, J. Appenzeller, J. Knoch, and P. Avouris, “High-performance carbon

nanotube FET with tunable polarities,” IEEE Transactions on Nanotechnol-

ogy, vol. 4, no. 5, pp. 481 - 489, Sep. 2005.

[85] A. Coker, V. Taylor, D. Bhaduri, S. Shukla, A. Raychowdhury and K. Roy,

“Multijuction fault tolerance architecture for nanoscale crossbar memories,”

IEEE Transactions on Nanotechnology, vol. 7, no. 2, pp. 202 - 208, Mar. 2008.

[86] S. Goldstein and M. Budiu, “NanoFabrics: Spatial computing using molecu-

lar electronics,” Proceedings of International Symposium on Computer Archi-

tecture, pp. 178 - 189, 2001.

[87] Andre DeHon and M. J. Wilson, “Nanowire-based sublithographic pro-

grammable logic arrays,” Proceedings of ACM International Symposium on

FPGAs, pp. 123 - 132, Feb. 2004.

203

[88] Nantero Inc., “http://www.nantero.com”, 2005.

[89] L. P. Cordella et al., “An improved algorithm for matching large graphs,”

Proceedings of the 3rd IAPR-TC-15 International Workshop on Graph-Based

Representations, pp. 149 - 159, 2001.

[90] Yasser El-Sonbaty and M. A. Ismail, “A graph-decomposition algorithm for

graph optimal momomorphism,” Proceedings of the 8th British Machine Vi-

sion Conference, 1997.

[91] SIVALab. “VF graph matching library. University of Naples Federico II”,

2001.

[92] Fran Hanchek and Shantanu Dutt, “Methodologies for tolerating cell and

interconnect faults in FPGAs,” IEEE Transactions on Computers, vol. 47, no.

1, pp. 15 - 33, Jan. 1998.

[93] V. Betz and J. Rose, “VPR: A new packaging, placement and routing tool for

FPGA research,” International Workshop on Field-Programmable Logic and

Applications, pp. 213 - 222, 1997.

[94] E. M. Sentovich et al., “SIS: A system for sequential circuit analysis,” Tech-

nical Report No. UCB/ERL M92/41, University of California, Berkeley, 1992.

[95] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm

for delay optimization in lookup-table based FPGA designs,” IEEE Transac-

tions on CAD, pp. 1 - 12, Jan. 1994.

204

[96] V. Betz, “VPR and T-VPack user manual (Version 4.30),” ECE Department,

University of Toronto, Mar. 2000.

[97] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions.

Revised & Enlarged Edition, Reidel Publishing Co., Dordrecht, Netherland,

1974.

[98] Robert K. Brayton et al., Logic minimization algorithms for VLSI synthesis.

Kluwer Academic Publishers, 1984.

[99] A. Z. M. Almassri, “Design for defect-tolerant reliable digital systems at the

nanoscale,” Master’s Thesis, Department of Computer Engineering, KFUPM,

June 2009.

205

Vitae

• Farhan Khan

• Born in Hyderabad, Pakistan on Junauary 8, 1981

• Received Bachelor of Engineering (B.E.) in Computer Systems from N.E.D

University of Engineering and Technology, Karachi, Pakistan in February

2003.

• Received Master of Engineering (M.Engg.) in Computer Systems from

N.E.D University of Engineering and Technology, Karachi, Pakistan in June

2006.

• Joined King Fahd University of Petroleum and Minerals, Dhahran, Saudi

Arabia as a Research Assistant in September 2006.

• Completed Master of Science (M.S.) in Computer Engineering in June 2009.

• Email: farhankhan43@yahoo.com

• Present Address: Room 212, Bldg. 903, KFUPM, Dhahran 31261, Saudi

Arabia.

• Permanent Address: 4-B Staff Colony, Public School, Unit No. 2, Latifabad,

Hyderabad 71800, Pakistan.

