ToPoliNano: Nanoarchitectures Design Made Real

S. Frache, D. Chiabrando, M. Graziano, F. Riente, G. Turvani, and M. Zamboni
Electronics and Telecommunications Department, Politecnico di Torino, c.so Duca degli Abruzzi 24, Torino, Italy
Email: {stefano.frache, mariagrazia.graziano, maurizio.zamboni} @polito.it

Abstract—Many facts about emerging nanotechnologies are yet
to be assessed. There are still major concerns, for instance, about
maximum achievable device density, or about which architecture
is best fit for a specific application. Growing complexity requires
taking into account many aspects of technology, application
and architecture at the same time. Researchers face problems
that are not new per se, but are now subject to very different
constraints, that need to be captured by design tools. Among the
emerging nanotechnologies, two-dimensional nanowire based ar-
rays represent promising nanostructures, especially for massively
parallel computing architectures. Few attempts have been done,
aimed at giving the possibility to explore architectural solutions,
deriving information from extensive and reliable nanoarray
characterization. Moreover, in the nanotechnology arena there
is still not a clear winner, so it is important to be able to target
different technologies, not to miss the next big thing.

We present a tool, ToPoliNano, that enables such a multi-
technological characterization in terms of logic behavior, power
and timing performance, area and layout constraints, on the basis
of specific technological and topological descriptions. This tool
can aid the design process, beside providing a comprehensive
simulation framework for DC and timing simulations, and
detailed power analysis. Design and simulation results will be
shown for nanoarray-based circuits.

ToPoliNano is the first real design tool that tackles the top down
design of a circuit based on emerging technologies.

I. INTRODUCTION

The end of a remarkably successful era in computing
is approaching. Its the era where Moore’s Law reigns and
processing power per dollar doubles every year.

There have been many attempts to keep pace according to
Moore’s law: massive parallelism is one of these. In fact,
parallel computation has been around for a while, and it
has been a driving topic since the development of integrated
architectures. It is now even more a reality with multipro-
cessors systems, thanks to the integration capabilities reached
by scaled technologies. However, parallelism levels now fea-
sible, even though more relevant than ever, allow to achieve
only a tiny portion of what could really be faced in certain
breakthrough applications (biological related processing in
medicine could be one of the examples [1]). Thus, even though
research and technology is expected to greatly improve in
this field during the following years, the predicted limits of
CMOS technology [2] will prevent substantial revolutions in
the amount of information that can be processed in parallel.

A new era, though, is on the horizon [3]: the nanoelectronics
era, with ever smaller devices and higher densities, to keep up
with pace.

Manifold nano-structures have been proposed in recent
years [4], and probably few of them will survive feasibility and

selection [5]. The explored solutions for what concerns mas-
sive parallelism are based on nanowire arrays [6], organized in
matrices [7], which allow the creation of active nanodevices
(diodes and FETSs) in their crosspoints [8]. In general these
structures are conceptually organized in two-dimensional tiled
arrays. In particular, nanoscale programmable logic arrays, e.g.
nanoPLA, have been proposed in [9], while [10], suggests
molecular/nanowire array based solutions, e.g. CMOL. NA-
SICs designs have been proposed in [11], [12], [13], as a way
to achieve denser designs with better fabric utilization and
efficient cascading of circuits with respect to general-purpose
programmable fabrics (PLAs). Authors in [14] and [15] show
how such structures are suitable for developing massively
parallel architectures like cellular neural networks or image
processors. Nevertheless, despite their promising characteris-
tics, these structures have to cope with not negligible defect
rates, primarily due to the critical manufacturing processes at
nanoscale level. Defect tolerant techniques have been widely
proposed in connection with nanoscale arrays [16], [17], [18],
[19], thus clarifying that faults analysis is mandatory when
dealing with nanoarray-based structures.

Nanoscale array structures, albeit still in their infancy both
from technological and design points of view, show promising
perspectives in the direction of massively parallel computing
structures [20].

Epoch-making changing brings new challenges into play.
New devices require newly developed approaches to fabri-
cation and integration, new methods to simulate them, and
new architectures to unleash their power. There is, then, a
need for design tools that capture the specificities of these
technologies, to explore the space of possible solutions, and
to validate proposed circuits and architectures. In other words,
researchers need to rethink the methodologies and design tools
involved.

Here we present such a tool, ToPoliNano (Torino Politec-
nico Nanotech design tool), along with preliminary results. It
has the ability, starting from a VHDL circuit description, to
aim at different disruptive nanotechnologies (Nanoarray-based
circuits, as in Figure 1, targeted here as a possible example,
but not limited to), to place and route circuits on a low-level
floorplan (details in a later section) and then to simulate it, in
an integrated fashion.

The aim of this tool is the study of complex systems based
on emerging electronic nanotechnologies. More specifically,
we are interested in studying dimensions, performance, power
consumption and, as a consequence, in developing optimized
architectures. A key feature of ToPoliNano is the ability

MICROWIRE - INTERFACE TO CMOS
MICRO-NANO INTERFACE,
NANOWIRE

nanowire

nanowire

microwire

Fig. 1.

to base its high level analysis of complex structures onto
low-level information, derived from actual device technology,
circuit topology and post-placement circuit layout parasitics
extraction, in an efficient way. The expected overall result
is thus an accurate characterization of the design, based on
detailed technological parameters and device-level simulation
results.

The paper is organized as follows: section II introduces
previous works in the field and our case study structure;
section I describes the general organization and features
of the ToPoliNano software; section IV introduces its low-
level floorplanning capabilities and related results; section V
is about logic simulation and results; section VI deals with
timing simulation.

II. PREVIOUS WORKS AND CASE STUDY STRUCTURE

Circuits based on nanoarrays have been the subject of
several previous studies [5], [9], [10], [13]. They have been
investigated, among other reasons, for the high theoretical
density of devices that can be obtained, for the high frequency
of operation, for the low power consumption [1], and for the
possibility of being integrated with CMOS structures.

What seems problematic, however, is to study in details
circuits and architectures, taking simultaneously into account
aspects like device density, device defectiveness, power con-
sumption, frequency of operation, etc, since it is clear the
interdependence of the results obtained.

It is important to assess which parameters have the greatest
impact on the feasibility of an architecture and its perfor-
mance, to choose the actions to be undertaken in a given
technology and to determine which are the key aspects to
be further investigated. Authors in [21] give an important
overview of a possible architecture based on the regular
composition of variably sized NASIC tiles, and this kind of
exploration is of aid towards a real implementation.

An high level approach to the evaluation of global per-
formance of these technologies can not determine which is
the impact of the variation in a transistor’s technological
parameter on the performance of a realistic circuit. Moreover,
it is not possible to neglect the impact of the actual layout
of the circuits, after all the constraints of placement and
routing have been taken into account, because it could lead
to an overestimation of the expected performance of these
technologies.

oy NPUT/GUTRUT
| [
5 - g 1 5
o o
5 5
5 ==—e! | 5
g s
3 I sl =
I M —i—8
— INPUT/OUTPUT

NASIC tile A) General structure of the fabric B) Different sub-tiles composing the design C) Exemplification of design constraints.

Besides all the attractive aspects of these technologies
(device density, low power consumption, high frequency of
operation), there are other reasons of study, related to the
importance of handling the high defectiveness of these struc-
tures, which also has been investigated [17], [19]. Different
techniques of fault tolerance have been applied to these fabrics;
of the so-called built-in type, either through the reconfiguration
of the fabrics. The defectiveness of these nanofabrics is a
delicate point to be treated, because it is much higher than in
the CMOS case. High defect rates are likely to considerably
reduce the advantage in terms of maximum device density
that can be reached after the implementation of effective fault
tolerance techniques.

One evident problem arising from literature analysis is the
lack of design and simulation tools specifically dedicated to
nanoarray architectures. One system level approach has been
developed in [22], where a framework based on a variety
of models allows the architect to map an application on a
wide range of emerging nanofabrics. Based on models of a
particular fabric, e.g. computational, architectural, technologi-
cal and fault, this framework suits the need of the designer
to compare different nanoarray approaches. Anyway, it is
based on high level models of a whole tiled nanoarray, while
the specific nanoarray organization, its logic topology, the
nanowire and nanodevices technological description are not
directly included, thus allowing a system level perspective
and not a detailed array behavior characterization. A device-
level approach has been proposed in [23], where a crossed
nanowire field-effect transistor is 3-D modeled and device
level characteristics are extracted to validate at SPICE level the
dynamic circuit style adopted in the NASIC approach. Though
this is a fundamental step for the validation phase, it cannot
be inherited at higher description levels, for the inefficiency
in both describing and simulating a complex tiled structure or
even more a nanoarray architecture.

Though we aim, like in [18], to maintain the simulator
general, so that it can be adapted to the evolving fabric styles
proposed in literature, we underline that the key feature of our
simulator is the ability to take into account technological pa-
rameters, circuit style, topology, layout and, at the same time,
to efficiently analyze the behavior of complex architectures, as
will be shown by means of the obtained results. As far as the
defect analysis is concerned, we have addressed the problem
in a previous work, with a preliminary version of this tool

[24]. The capability to perform this type of analysis has been
extended to work on arbitrarily complex circuits, and is now
integrated into ToPoliNano, but it is not dealt with in this
paper. Similarly, we investigated and implemented the power
consumption analysis capability in [1]: for the sake of brevity,
it is not discussed in this paper.

To introduce the ToPoliNano tool we choose a crossed-
nanowire based architecture, of the kind depicted in Figure
1A. ToPoliNano, in fact, is able to handle manifold nanoarray-
based architectures. The manner in which the tool is capable
of treating variants of the same technology, and ultimately
different nanotechnologies, is detailed in the next section. In
particular, we choose the NASIC architecture.

According to its proponents [11], the elemental units in
NASIC are called tiles. These are circuits for adders, mul-
tiplexers, and flip-flops. Individual tiles can then be connected
with nanowires or microwires to form a larger, multi-tile
structure. As we pointed out before, all nanoscale computing
systems have to deal with the high defect rates of nanodevices
and faults introduced by manufacturing of fabrics, and so do
NASICs. Their nanoscale underpinning is based on a grid
of NWs (or CNTs). The grid crossings can be programmed
either as FETs, P-N type diodes, or can be disconnected, thus
implementing a two-level logic architecture. NASIC designs
do not have logic planes of fixed size and wiring/routing
between them, as in PLA-type designs. Furthermore, NASICs
have been proposed in both static-ratioed and dynamic styles
[11], with the latter that enables pipelining and overcomes the
many limitations of a static design.

Finally, micro-wires are used to carry power and control
signals from the CMOS level. Faults are handled by masking
them in the circuit and/or architecture design itself, imple-
menting a multi-tiered built-in fault tolerance approach [17].
Dataflow in NASICs is through a multi-phase progression and
the control signals from the CMOS level coordinate these
phases.

III. TOPOLINANO GENERAL ORGANIZATION

How to cope with a multi-technological scenario. ToPoli-
Nano is a design and simulation tool that supports a variety
of nanotechnology, from NML (Nano Magnetic Quantum Dot
Cellular Automata) [25] to nanoarrays based on SiNWs or
CNTs. This choice is dictated by the importance of evaluating
several promising technologies, among which it is not yet clear

VHDL circuit
description

Parser

Low-level
floorplanner

Place & Route
engine

Simulation
engine

Output results

Fig. 2. Basic ToPoliNano flow.

what will be successful. It is necessary to evaluate them in
different fields of application and with specific architectures
for each of them.

To support different technologies one can follow several
approaches. The most obvious, but also less economical in
terms of lines of code and development time, is to write
specific code for each technology. A less obvious approach,
but that saves you both lines of code and time, is to exploit the
similarities existing even between different nanotechnology to
unify large portions of code, which turn out to be shared. One
might think that this way will necessarily lead to inefficiencies,
perhaps in terms of memory usage, or long simulation times.
The benchmarks that we performed to assess the timing of
design and simulation phases say quite the opposite, as we
show in the results (see section IV-B). Each nanotechnology
fabric, in fact, has unique characteristics but, at the same
time, shares technological constraints, which are a main cause
for unification of certain fundamental aspects. One of these
aspects is the requirement of a two-dimensional array as
the underlying structure for computing [20], [7], [9]. This is
evident from the crossbar structures, but is perfectly applicable
also to the case of NML, for example.

The “building brick” principle. Described in literature are
numerous variations on the theme of architectures based on
crossed nanowires [13],[10]. To be able to treat them all
within the tool, the tool itself has been designed to exploit
some common elements in these structures. First of all is the
regularity of the 2D array. One can imagine the plane of the
circuit covered with tiles of different sizes, each containing a
maximum of three components, in precise positions.

With reference to Figure 1B, one can see the variety of basic
tiles (from a to u) that can be created with a reduced set of
elementary components. To design a NASIC circuit, in fact, re-
quires only 5 such elemental components, rotations excluded:
p-type and n-type transistor, contact, nanowire, microwire.
By composing these pieces one can get all the richness of
expression needed to describe an arbitrarily complex circuit.

The recursive hierarchical composition principle. Another
key aspect in the generalization of the different architectures
is the application of a principle of recursive hierarchical
composition. Each element, thus, may be part of the architec-
ture at any level of the hierarchy. This allows for maximum
extendibility of the tool, because you can always improve
on the design of circuits. Provided you can describe it in
terms of elemental components, whatever your library of
elemental components is, you can aggregate them and reuse
the aggregates in turn as components. A brief example of the
application of this principle to NML will be given in section
IVv.

The fundamental steps. ToPoliNano integrates all the tools
involved in the design and simulation of circuits based on so-
called disruptive nanotechnologies in just one cross-platform
tool. It actually runs on three platforms: Linux, Mac OS,
Windows. It has been entirely developed in C++, and currently
counts around 87k lines of code, external libraries excluded.

The main application organization and flow is briefly dis-
cussed: see Figure 2 for a very simplified one.

After application’s first launch, the user is presented a
wizard, to choose the target technology among the supported
ones (currently NML and Nanofabrics) and the technological
node of interest, beside performing early configuration of the
related simulation parameters. At this stage, or at a later one,
the user can describe the circuit by means of VHDL files.

Parser. The tool features a HDL parser, presently imple-
menting essential parts of the VHDL specification. A design
can be described at different abstraction levels, i.e. in terms
of elemental components (patterns of sub-tiles, etc.), as well
as in terms of complex tiles (i.e. plain NASIC tiles) based on
the available elemental components in a dedicated Component
Library or with previously defined tiles. This works in a
hierarchical fashion, through the Component Library which
is user-expandable. The user inputs a VHDL description of
the circuit, by recalling the components through the familiar
component statement of the VHDL language. The parser will
analyze the code and create an internal representation of the
circuit, used to compose it with items from the library itself or
the output from a synthesizer, which will then feed the library.

Place and Route engine. At this stage, an intermediate form
representation is used to place the circuit, once a new low-level
floorplan is defined or a previously defined one is chosen.
Fig.1c shows the constraints (nanowire and microwire pitch
and size, non routable areas in gray, microwire dedicated
areas, position of inputs and outputs, etc.) that have to be
taken into account at the lowest floorplanning level. This
is one of the design steps which differs a lot with respect
to conventional CMOS technology. In fact, the standard cell
approach has totally different constraints to enforce. In the
context of nanotechnologies, we have to handle very different
constraints across nanotechnologies, even if they can all be
thought-of in terms of elemental components. The automatic
constrained routing phase can then take place.

Simulation engine. The tool supports a variety of nan-
otechnologies, and so does the simulation engine, which must
therefore allow cross-technology operation. Parts of the tasks
related to simulation (i.e. input/output vectors handling) can
be shared by all technologies, but there are specific aspects of
the low level simulations that must be customized, because the
underlying physics differ. To maximize the portion of code that
can be shared across technologies an event driven approach
was adopted, and will be further discussed in section V.

IV. LOW LEVEL FLOORPLAN: DISCUSSION AND RESULTS

A. Dynamic floorplanning and placement

Each nanotechnology brings with itself the constraints relat-
ing to the physical characteristics of the devices it exploits. If
Silicon nanowires and Carbon nanotubes have similar physical
structure, though distinct technological parameters, things are
different for technologies such as NML, based on nanomag-
nets. The constraints to which the devices are subject are
fundamentally different [26].

mamd

<
3
-
. L

r tile

= ‘cgut output tile

Fig. 3. 8 bit Adder layout, with zoom of the input tile, 1bit FA tile, buffer
tile, and output tile.

In the case of nanowires/nanotubes, the constraints are
those of a crossbar structure. With reference to Figure 1C,
among the constraints to take into account there is the wire
pitch (affecting the size of the area in aquamarine), the area
devoted to the microwires (in light gray), the routability of
interconnections among tiles (black lines with ending dots), the
position of inputs and outputs (both primary and secondary),
the alignment of blocks of different size, etc.

Different is the case of nanomagnets. These require a
number of current flows below the plane of the magnets, in
order to influence their magnetization vector. The structure
through which the current is distributed under the plane of the
magnets generates areas where you can not place magnets,
and thus constraints. In Figure 4E a representation of the main
constraints in NML technology.

The constraints that the different technologies arise, to
position the devices on the plane of the circuit, require an

i s e
FD) s Mns B0 40w 6ns 720 G40ns %Qns 1080w I

SUM_OUT_0

B)

y

T
1
S LT L L]
[—¥ - .
. . « o i '
| 1 1 f 0 R N 0 B Bl
| S

ST S E e
-
y L)
- :
ENEEEEEEEEEEEn
kyy] = ay

3

%]

e

F AN

=
1
1
W1
Mok

»

1
B i e e D)

Fig. 4. NML FA (Full Adder). A) Null Convention Logic (NCL) based FA circuit B) FA layout: snake-clock-compliant floorplan and routing C) Layout of
a Th34 NCL port D) Majority Voter: one simulation step E) Detail of a place & route constraint F) Th34 simulation.

appropriate partitioning of the available space. We call low-
level floorplan the particular partitioning of the space at device
level that depends on the specific technological constraints. We
do not refer to partitioning at the level of functional units, to
which the term floorplan usually refers to.

To capture the constraints of different technologies, while
maintaining a common data structure, we introduced an ab-
straction at the level of subdivision of the plane of the circuit.
A graph represents the plane of the circuit, its partitioning
and all its parts. The constraints are represented by specific
classes, which became part of the class hierarchy as one or
more concrete classes: they implement the abstract base class
to represent constraints in the specific technology. In this way,
to introduce a new technology does not require extensive
rewriting of the code, but only the introduction of specific

function
azazagagbibabrbgcacscecg +
azasarbibsbsbgcicscgerdr +

Fig. 5. A
aiasagagbzbybscicacacgcy +
aiagagaragbabsbsbebgcacscocrcgdy

layout after synthesis.
agagagbobrbgcscr +

28-input

classes for the new constraints and/or the extension of existing
classes, wherever a greater reuse of the code is possible.

Dynamic low-level floorplanning is possible by performing
operations on the common graph structure. This allows for
resizing, displacement of circuit parts, and also for easy
placement of the circuit elements. Because all the classes that
represent circuit parts must conform to a common interface,
due to the adherence to a hierarchical recursive composition
principle, it is lighting-fast to move entire portions of a circuit
from one point of the low-level floorplan to another.

B. Results

Figure 3 shows the layout of an 8-bit adder, based on eight
1bit Full Adders, after VHDL parsing, placement and routing
on a low-level floorplan. In particular, details are shown of the
complementary structures: the input and output tiles, as well
as a buffer tile between one stage and the next. This represents
an evolution of traditional NASIC designs, that comprises a
modification of the structure that manages the control signals
of the vertical nanowires, now included in the buffer tile. It
is possible for the tool to automatically generate this kind of
tile that, among its tasks, also features the routing of the input
signals, as shown in the same figure.

Figure 5 shows the layout of a 28-input function after syn-
thesis and placement on a low-level floorplan. Also depicted
in figure, the routing of the input signals from the left, which
perfectly shows the cost of routing the signals and the need
to carefully plan the orientation of the tiles in a design.

In order to hint to the multi-technological capabilities of
ToPoliNano, Figure 4 summarizes results for an example
targeted to NML. The Full Adder circuit (A) was described in
VHDL in terms of Null Convention Logic [27] gates (twoTh23
ports and two Th34). It has been placed and routed (B)
respecting NML constraints (E), e.g. properties of the snake
clock, magnet phase, size, BLIND zone, etc. A detail for a
Th34 gate layout based on nanomagnets is in Figure 4C. The
whole circuit has been simulated at low-level considering the
correct magnetization switching (D). A transient waveform for
the Th34 is in figure inset F.

nput a2

1
2.8 Ere
).6
).4
).2
L 10 20 30 | ‘? 50 60 70 80
ime(ns) L
1 Resulf of function N
28 N
38
2 S
10 0 300 -4 50 0 70 80
“ Time?ns)
Fig. 6. 28-input function logical simulation result. The function

f = a2a3a6a9b1babrbgcacscecg + azagagbabrbocscy +
arasagagbzbsbgcicacacgcg + aszasarbibsbsbgcicscecrdy +
araqagaragbababsbegbgcacacacrcgds is evaluated for input a2 transitioning
from logic value O to logic value 1.

To give an idea of the performance of the tool, preliminary
benchmarks on a Linux box (Ubuntu 10.10, Core2DUO t8300
processor) have been performed on designs of different sizes.
The instantiation of one Th23 gate (2280 nanomagnets area)
took 0,231 seconds. A 103 times increase in components and
low-level floorplan size required an increase in time of 10%.
The maximum memory occupation for an area of 22.8-10°
nanomagnets, with 2.6-105 magnets actually instantiated, just
required 819 Mb main memory and 837 Mb Virtual Memory.

V. LOGIC SIMULATION: DISCUSSION AND RESULTS
A. Logic simulation engine

The simulation engine belongs to the class of the event-
driven simulators. It follows the information flow inside the
structure under simulation and generates specific events, when
necessary, to correctly handle the propagation of information.
To better understand this process, lets turn back for a while to
the sub-tiles and their regular structure, as portrayed in Figure
1B. We can imagine each sub-tile as a four-port device, with
each port identified by a cardinal point.

A change in the information at a given port may need to
be propagated inside the sub-tile, if there is an appropriate
component to support propagation (e.g. a nanowire). We do
not need to know anything about the electrical properties of
the component to perform a logical analysis. As a function of
the port at which the change in information happens, and the
original direction of propagation of this piece of information,
we can check whether there is support for further propagation
and, if this is the case, to change the information on another
port of the sub-tile by means of the supporting element. This,
in turn, will trigger an update event over the sub-tile, if any,
connected to the first one by means of the output port. By
following the very same process, the information is propagated
inside the structure, only where it is needed.

There could be an active device inside the sub-tile, and the
propagation of information could lead to a change in its status.
Should this happen, another kind of event would be enqueued
in the event queue, waiting to be processed to take into account
a possible change of information in a direction of propagation
that is orthogonal with respect to the one that originated the

event. This approach is very flexible, indeed, because it allows
for different kind of control of dynamic circuits (number of
phases) since the phase sequence is not embedded into the
simulator but is coded in the input control sequence (like the
example in Figure 3) and the same approach can thereby be
used in many different scenarios. It is also quite efficient, as
pointed out by the following results.

a |11110000| 10101010
sum|00000000| [1111111
b
oooollir|olololol o I 0
ci | 0
Result of sum(0)
Oé — — - — - Y — - sumo) —
0.6
0.4
0.2 1
00 100 200 300 400 500 600 700
Time(ns)
Result of sum(1)
0&13 T 1 nnnnnn . sum(l) ==
0.6 {
0.4
0.2
00 100 200 300 400 500 600 700
Time(ns)

Result of sum(2)
Oé.....4.....4—mo)_.
0.6 {
0.4
0.2

0 0 100 200 300 00 500 600 700
Time(ns)
Result of sum(3)
o.é T 0=
0.6 {
0.4
0.2
00 100 200 300 00 500 600 700
Time(ns)

Result of sum(4)
oé — - ~ — g — — — T - _su'n(4)_
0.6
0.4
0.2

P 0 100 200 300 00 500 600 700
Time(ns)

Result of sum(5)
oé — — — — o — — — - T - ms)_
0.6
0.4
0.2

9 0 100 200 300 00 500 600 700
Time(ns)
KesuIt oT sum(b)
O.é SUM(B) ==
0.6
04
0.2
0 0 100 200 300 400 500 600 700
Time(ns)
Result of sum(7)
o é Surf(7) ==
0.6
04
0.2
g 0 100 200 300 00 500 00 700
Time(ns)
Result of co
o é CO ==
0.6
0.4
0.2
br 100 200 300 400 500 600 700
Time(ns)
Fig. 7. 8bit Adder logic simulation results.

]
-100.0M =

I viheva)

1000.0M —

500.0M =
200,00 =
BnE

B vism

1000.0M —

500.0M =
200,00 —
BniE

| KIGN

1000.0M —

500.0M=

200.0M=
-100°0M =

0 vis2)

1000.0M

u
a
i
|

B visz)

L000.0M —

500.0M —
200,00 —|
-Ton.om =

I vis4)

{_

L000.0M —

B wiss)

{_

1000.0Mm

HEEHHHEHEE

500.0M =]
200.0mM =]
-100°0M =

L)) O L] L] L

OO O
O C C

I wise)

1000 0M —;

0 wis?)

Voltage [V] Voltage [Vl Voltage [V] Voltage [V] Voltage [V] Voltage [V] Voltage [V] Voltage [V] Voltage [V] Voltage [V]

I vicouy

ran
=2
=45
==
==
o J{LLULL
’ ? ;

10

UL

12 14 16 18

Time [clk cyclel

Fig. 8.

B. Results

We performed logic simulations on both the 8bit Adder of
Figure 3, and the 28-input function of Figure 5.

Figure 6 shows the correct output result for input a2
transitioning from logic value O to logic value 1. The time
required to complete the logic simulation of this 28-input
function, with input a2 transitioning from logic level O to
logic level 1 was 47ms. Figure 7 shows the correct output
result for the input values reported in the figure itself. The
time required to complete the logic simulation of the FA under
the aforementioned input conditions was 140ms for each input
vector.

VI. ELECTRICAL SIMULATION: DISCUSSION AND RESULTS
A. Electrical modeling and spice-compatible netlist extraction

In order to carry out an accurate timing simulation, care
must be taken in evaluating all the parasitics that, inevitably,
affect the layout of a circuit, once it has been placed and
interconnected. The extraction of these parameters takes place
automatically in ToPoliNano after the layout is defined.

Waveforms of the 8bit Adder simulations for the same inputs of Figure 7.

To illustrate the principle by which it is being conducted,
we refer to Figure 9, where a generic pair of crossed wires is
shown. In a real circuit the wires may be either nanowires,
or microwires or both kind. Obviously, these wire have a
distributed capacitance and a resistance, and also a coupling
capacitance, as shown. It is possible to calculate these quan-
tities by geometric considerations, starting from the structure

Fig. 9. Example of parasitics in a pair of crossed wires.

of the circuit and the definition of the materials of the parts.
We previously showed (see Figure 1B) how a NASIC circuit
can be thought-of as composed by sub-tiles. This approach
is useful also in the present context. Each of the sub-tile
comprises a maximum of three elements, for each of which
the tool is able to determine the necessary technological
parameters, depending on the technology node set by the user,
and automatically calculate the required values. Once these
parameters have been calculated, the tool can proceed to the
generation of a spice-compatible netlist. In fact, there are small
differences in syntax among simulators, e.g. UC Berkeley and
Mentor Graphics Eldo Spice. The netlist can be generated in
both formats.

Before being able to get accurate timing results, an accurate
model of the nanowire FETs is mandatory, because the avail-
able transistor models are not well suited to this aim. In fact,
they do not scale well down to the few nanometers channel
length, typical of these structures. As a proof of concept,
to show the complete netlist extraction capability, with all
the parasitics, we show in Figure 9 the ELDO simulated
waveforms, normalized to a clock period.

We are currently working on a compact model to accurately
describe this kind of devices, that will be later used in the
simulation engine to provide the required accuracy in the
results. Without accuracy in the model, the prospected results
would be unreliable.

VII. CONCLUSION

In this paper we mainly focused on a NASIC structure as
a working platform to illustrate our design and simulation
methodology and tool.

ToPoliNano is the first example in the literature that enables
the design from a top to bottom of a circuit based on
emerging nanotechnologies. It allowed to design, place, route
and simulate the behavior of a basic arithmetic circuit (an 8bit
Adder) and to synthesize, place, route and simulate a random
28-input function in NASIC nanotechnology. The 8bit Adder
was also subject to post-layout parasitic parameter extraction,
and it has been showed that a netlist can be automatically
extracted and fed to spice-compatible simulation software, to
get timing analysis of an arbitrarily complex circuit. All the
simulations were benchmarked, and the benchmarking results
show good performances, both in terms of execution speed
and memory footprint.

A 1bit Full Adder was designed, placed routed and simu-
lated in NML (magnetic QCA) technology too, to show the
cross-technology capabilities of the tool.

These preliminary results show that the tool is well suited
to design and test complex circuits and architectures, which
are part of our future work plans.

REFERENCES

[1] S. Frache, L.G. Amaru, M. Graziano, and M. Zamboni, Nanofabric power
analysis: Biosequence alignment case study, in “Nanoscale Architectures
(NANOARCH), IEEE/ACM International Symposium on”, pp. 9198,
2011.

[2] International Technology Roadmap of Semiconductor, Ed. 2009.

3

—_

International Technology Roadmap of Semiconductors, Update, Emerging

Research Device, http://public.itrs.net, 2010.

European Commission IST programme Future and Emerging Technolo-

gies Technology Roadmap for Nanoelectronics.

[5] J. A. Hutchby et al., Emerging Nanoscale Memory and Logic Devices: A
Critical Assessment, in “IEEE Computer”, vol. 41, Issue 5, 2008.

[6] W. Lu et al., Semiconductor nanowires, in “J. Phys. D: Applied Physics”,
n. 39, pp. 387-406, Oct. 2006.

[71 Y. Luo et al.,, Two-Dimensional Molecular Electronics Circuits, in
“ChemPhysChem”, vol. 3, no. 6, pp. 519-525.

[8] Y. Huang et al., Logic Gates and Computation from Assembled Nanowire
Building Blocks, in “Science”, vol. 294, pp. 1313-1317, 9 Nov. 2001.

[9] A. DeHon, Nanowire-Based Programmable Architectures, in “ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC)”, vol. 1,
Issue 2, pp. 109-162, July 2005.

[10] K. K. Likharev, A. Mayr, I. Muckra, O. Tiirel, CrossNets: High-
performance neuromorphic architectures for CMOL circuits, in “Ann.
New York Acad. Sci.”, vol. 1006, pp. 146-156, 2003.

[11] C. A. Moritz et al., Latching on the wire and pipelining in nanoscale
designs, in «31d Non-Silicon Comput. Workshop (NSC-3)”, Munich,
Germany, 2004.

[12] P. Narayanan et al., Manufacturing Pathway and Associated Challenges
for Nanoscale Computational Systems, in “O™ IEEE Nanotechnology
conference (NANO 2009)”, July 2009.

[13] P. Narayanan, J. Kina, P. Panchapakeshan, P. Vijayakumar, S. Kyeong-
Sik, M. Rahman, M. Leuchtenburg, I. Koren, C. Chi On, C.A. Moritz,
Nanoscale Application Specific Integrated Circuits, in “Nanoscale Archi-
tectures (NANOARCH)”, 2011 IEEE/ACM International Symposium on,
pp. 99-106, 8-9 June 2011.

[14] P. Narayanan et al., Image Processing Architecture for Semiconductor
Nanowire Fabrics, in IEEE Nanotechnology conference (NANO 2008)”.

[15] P. Narayanan et al., Comparison of Analog and Digital Nano-Systems:
Issues for the Nano-Architect, in “IEEE International Nanoelectronics
Conference (INEC)”, 2008.

[16] J. Dai et al., Defect tolerance for molecular electronics-based nanofab-
rics using built-in self-test procedure, in “IEEE International Symposium
on Nanoscale Architecture”, 2007.

[17] C. A.Moritz et al., Fault-Tolerant Nanoscale Processors on Semiconduc-
tor Nanowire Grids, in “IEEE Transactions on Circuits and Systems,
Regular papers”, vol. 54, n. 11, pp. 2422-2437, novembre 2007.

[18] T. Wang et al., Heterogeneous 2-level Logic and its Density and Fault
Tolerance Implications in Nanoscale Fabrics, in “IEEE Transaction on
Nanotechnology”, vol. 8, n. 1, pp. 22-30, Jan. 2009

[19] S. Ahn et al., A Floorprint-based Defect Tolerance for Nano-scale
Application-Specific IC, in “IEEE Transaction on Instrumentation and
Measurement”, vol. 58 , Issue 5, May 2009.

[20] K. L. Wang et al., More than Moore’s Law: Nanofabrics and Archi-
tectures, in “Bipolar/BICMOS Circuits and Technology Meeting, BCTM
’07. IEEE”, pp. 139-143, Sept. 30 2007 - Oct. 2 2007.

[21] C. Teodorov, P. Narayanan, L. Lagadec, and C. Dezan, Regular 2D
NASIC-based architecture and design space exploration, in “Nanoscale
Architectures (NANOARCH)”, 2011 IEEE/ACM International Sympo-
sium on, pp. 70-77, 8-9 June 2011.

[22] C. Dezan et al., Towards a framework for designing applications onto
hybrid nano/CMOS fabrics, Microelectronics J., Elsevier, n. 40, 2009.

[23] P. Narayanan et al., CMOS Control Enabled Single-Type FET NASIC,
in “IEEE Computer Society Annual Symposium on VLSI”, 2008.

[24] S. Frache, M. Graziano, and M. Zamboni, A flexible simulation method-
ology and tool for nanoarray-based architectures, Computer Design
(ICCD), 2010 IEEE International Conference on, Amsterdam, pp. 60—
67, 2010.

[25] A. Orlov, A. Imre, G. Csaba, L. Ji, W. Porod, and G.H. Bernstein,
Magnetic Quantum-Dot Cellular Automata: Recent Developments and
Prospects, in “ASP Journal of Nanoelectronics and Optoelectronics”, vol.
3, n. 1, pp. 55-68, 2008.

[26] M. Graziano, M. Vacca, A. Chiolerio, M. Zamboni, An NCL-HDL
Snake-Clock-Based Magnetic QCA Architecture, Nanotechnology, IEEE
Transactions on , vol. 10, n. 5, pp. 1141-1149, September 2011.

[27] KM. Fant, and S.A. Brandt., NULL Convention Logic™™, A Com-

plete and Consistent Logic for Asynchronous Digital Circuit Synthesis,

International Conference on Application Specific Systems, pp. 261-273,

Chicago-Illinois, USA, 1996.

[4

—_

