24 research outputs found

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    The Modifications of Metallic and Inorganic Materials by Using Energetic Ion/Electron Beams

    Get PDF
    This book consists of original and review papers which describe basic and applied studies for the modifications of metallic and inorganic materials by using energetic ion/electron beams. When materials are irradiated with energetic charged particles (ions /electrons), their energies are transferred to electrons and atoms in materials, and the lattice structures of the materials are largely changed to metastable or non-thermal-equilibrium states, modifying several physical properties. Such phenomena will engage the interest of researchers as a basic science, and can also be used as promising tools for adding new functionalities to existing materials and for the development of novel materials. The papers in this book cover the ion/electron-beam-induced modifications of several properties (optical, electronic, magnetic, mechanical, and chemical properties) and lattice structures. This book will, therefore, be useful for many scientists and engineers who have been involved in fundamental material science and the industrial applications of metallic and inorganic materials

    Resistance switching devices based on amorphous insulator-metal thin films

    Get PDF
    Nanometallic devices based on amorphous insulator-metal thin films are developed to provide a novel non-volatile resistance-switching random-access memory (RRAM). In these devices, data recording is controlled by a bipolar voltage, which tunes electron localization length, thus resistivity, through electron trapping/detrapping. The low-resistance state is a metallic state while the high-resistance state is an insulating state, as established by conductivity studies from 2K to 300K. The material is exemplified by a Si3N4 thin film with randomly dispersed Pt or Cr. It has been extended to other materials, spanning a large library of oxide and nitride insulator films, dispersed with transition and main-group metal atoms. Nanometallic RRAMs have superior properties that set them apart from other RRAMs. The critical switching voltage is independent of the film thickness/device area/temperature/switching speed. Trapped electrons are relaxed by electron-phonon interaction, adding stability which enables long-term memory retention. As electron-phonon interaction is mechanically altered, trapped electron can be destabilized, and sub-picosecond switching has been demonstrated using an electromagnetically generated stress pulse. AC impedance spectroscopy confirms the resistance state is spatially uniform, providing a capacitance that linearly scales with area and inversely scales with thickness. The spatial uniformity is also manifested in outstanding uniformity of switching properties. Device degradation, due to moisture, electrode oxidation and dielectrophoresis, is minimal when dense thin films are used or when a hermetic seal is provided. The potential for low power operation, multi-bit storage and complementary stacking have been demonstrated in various RRAM configurations.Comment: 523 pages, 215 figures, 10 chapter

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    NASA Tech Briefs, September 1995

    Get PDF
    A special focus for this issue is Sensors. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. A section of Laser Tech Briefs is included

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    NASA Tech Briefs, July/August 1987

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences

    IRIDE: Interdisciplinary Research Infrastructure Based on Dual Electron Linacs and Lasers

    Full text link

    GSI Scientific Report 2011 [GSI Report 2012-1]

    Get PDF
    corecore