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Resistance Switching Devices Based on Amorphous Insulator-Metal Thin
Films

Abstract
Nanometallic resistance switching devices based on amorphous insulator-metal thin films are developed to
provide a novel non-volatile resistance-switching random-access memory (RRAM) that is CMOS-compatible
and meeting technological demand. In these devices, data recording/converting is controlled by a bipolar
voltage, which tunes electron localization lengths, hence resistivity, through electron trapping and detrapping.
The low-resistance state is a metallic state while the high-resistance state is an insulating state, as established by
conductivity studies from 2K to 300K.

The material is exemplified by a Si3N4 thin film with randomly dispersed Pt or Cr. It has been extended to
other materials, spanning a large library of oxide and nitride insulator films, dispersed with transition and
main-group metal atoms. Metallic nanoparticles, which form at metal levels greater than 10 atomic percent,
are nonessential for resistance switching: nanometallicity and resistance switching in nanometer thin films
start at levels well below the metal percolation threshold.

Nanometallic RRAMs have superior properties that set them apart from other RRAMs. The critical switching
voltage is independent of the film thickness, device area, operating temperature and switching speed. Trapped
electrons are relaxed by electron-phonon interaction, adding stability which enables long-term memory
retention despite a low switching voltage. As electron-phonon interaction is mechanically altered, trapped
electron can be destabilized, and sub-picosecond switching has been demonstrated using an
electromagnetically generated stress pulse. The resistance state is finely tunable throughout the entire
continuum between the fully metallic state and the fully insulating state, by voltage, thickness and
composition. AC impedance spectroscopy confirms the resistance state is spatially uniform, providing a
capacitance that linearly scales with area and inversely scales with thickness. The spatial uniformity is also
manifested in outstanding uniformity of switching properties. Device degradation, due to moisture, electrode
oxidation and dielectrophoresis, is minimal when dense thin films are used or when a hermetic seal is
provided. The potential for low power operation, multi-bit storage and complementary stacking have been
demonstrated in various RRAM configurations.

These studies furnish a firmer understanding of nanometallicity and nanometallic switching. They also
establish nanometallic RRAM as a viable candidate for emerging memory.
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ABSTRACT 
 

RESISTANCE SWITCHING DEVICES BASED ON AMORPHOUS 

INSULATOR-METAL THIN FILMS 

Xiang Yang 

I-Wei Chen 

 

Nanometallic resistance switching devices based on amorphous insulator-metal thin 

films are developed to provide a novel non-volatile resistance-switching random-access 

memory (RRAM) that is CMOS-compatible and meeting technological demand. In these 

devices, data recording/converting is controlled by a bipolar voltage, which tunes electron 

localization lengths, hence resistivity, through electron trapping and detrapping. The low-

resistance state is a metallic state while the high-resistance state is an insulating state, as 

established by conductivity studies from 2K to 300K. 

The material is exemplified by a Si3N4 thin film with randomly dispersed Pt or Cr. It 

has been extended to other materials, spanning a large library of oxide and nitride 

insulator films, dispersed with transition and main-group metal atoms. Metallic 

nanoparticles, which form at metal levels greater than 10 atomic percent, are nonessential 

for resistance switching: nanometallicity and resistance switching in nanometer thin films 

start at levels well below the metal percolation threshold.  

Nanometallic RRAMs have superior properties that set them apart from other 

RRAMs. The critical switching voltage is independent of the film thickness, device area, 
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operating temperature and switching speed. Trapped electrons are relaxed by electron-

phonon interaction, adding stability which enables long-term memory retention despite a 

low switching voltage. As electron-phonon interaction is mechanically altered, trapped 

electron can be destabilized, and sub-picosecond switching has been demonstrated using 

an electromagnetically generated stress pulse. The resistance state is finely tunable 

throughout the entire continuum between the fully metallic state and the fully insulating 

state, by voltage, thickness and composition. AC impedance spectroscopy confirms the 

resistance state is spatially uniform, providing a capacitance that linearly scales with area 

and inversely scales with thickness. The spatial uniformity is also manifested in 

outstanding uniformity of switching properties. Device degradation, due to moisture, 

electrode oxidation and dielectrophoresis, is minimal when dense thin films are used or 

when a hermetic seal is provided. The potential for low power operation, multi-bit storage 

and complementary stacking have been demonstrated in various RRAM configurations.  

These studies furnish a firmer understanding of nanometallicity and nanometallic 

switching. They also establish nanometallic RRAM as a viable candidate for emerging 

memory. 
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Chapter I. Introduction 

 

1.1   Background 

1.1.1   Traditional Memory and Emerging Memory 

The increasing demand for electronic memory has motivated intensive research in 

academia and industry over several decades. Such demand never saturates, instead it has 

accelerated in this era of big data and cloud computing/storage. An ideal memory should 

feature fast read and write access, high density and low cost, low voltage/power operation, 

robust endurance and retention during the product cycle. Clearly, these features are 

difficult to realize within any one memory today, hence the need for new product. For 

example, static RAM (SRAM), serving as CPU on-chip cache for temporarily storing 

computed results within nanosecond, has a fast access time ~100 ps but suffers from high 

cost, large cell size and extremely poor retention (volatile). On the other hand, flash 

memory, which has non-volatility (>10 years), high density, and a steadily more 

competitive cost, sadly needs hundreds of microsecond and high power to drive. To cope 

with this issue, data and instructions in computer architecture follow a hierarchical 

arrangement referred to as memory hierarchy. Instead of one “universal” memory 

solution, data and instructions are implemented and stored in different memory levels, 

depending on their priority and system performance trade-off. A memory hierarchy 

design typically consists of embedded memory (SRAM, eDRAM) as on-chip caches, 

commodity DRAM as main memory, and a peripheral drive (HDD or SSD) as storage. 

Generally, the closer the memory is to the microprocessor, the faster and higher 
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bandwidth it must present, but at the cost of a lower density or high expense (Figure 1.1). 

Within a memory module, functional blocks regardless of specific memory type 

essentially share similar structures as shown in Figure 1.2. Memory inputs typically 

consist of data, address and control signals, while memory outputs consist of data and 

status signals. A binary address of some prescribed length and structure is sent to a 

decoder which generates a memory readable address (e.g. one-hot) to select a specific 

memory unit. Input data are then written to such unit or the content of such unit is read 

out through write/read circuits.  

Following Moore’s law over the past several decades, CMOS technology has eventually 

approached the size of ~10 nm today. At this size, the increasing leakage current and the 

dynamic power density for SRAM/DRAM pose the greatest challenge for 

circuit/architecture designers. In addition, the slow speed of hard disk has long become a 

bottleneck in computer systems with increasingly faster speed. These needs have 

motivated the pursuit of disruptive technologies for future memory hierarchy designs.  

 

 

Figure 1.1. A memory hierarchy: as the distance from the processor increases, 

so does the size, but opposite for speed and cost (adapted from ref.
1
). 
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Figure 1.2. Memory functional block diagram (adapted from ref.
2
). 

 

Since 1990s, a variety of emerging memory technologies have been proposed, including 

magnetoresistance RAM (MRAM), ferroelectric RAM (FeRAM), phase-change RAM 

(PRAM), resistive RAM (RRAM), nanomechanical memory, Mott memory, molecular 

memory, etc. A common goal of such emerging memory technologies is to combine the 

speed of SRAM, the density of DRAM, and the non-volatility and low cost of hard drive. 

Among them, MRAM, PRAM, RRAM and FeRAM are considered promising and thus 

have attracted much attention. Table 1.1 lists demonstrated properties of these emerging 

memories in comparison with commercialized state-of-art memory in 2013.  

 

 RRAM PRAM MRAM FeRAM  SRAM DRAM Flash HDD* 

 Prototypes  Commercialized technologies 

W/E time (ns) 1 100 35 65  0.2 10 105 106 
Read time (ns) 1 12 35 40  0.2 10 105 106 

Retention 10 yr 10 yr 10 yr 10 yr  [D] 64 ms 10 yr 10 yr 
Endurance (#)  10

12
 109 1012 1014  1016 1016 105 104 

F-Size (nm) 5 45 65 180  45 36 16  
Density (F

2
) 4F

2
 4F2 20F2 22F2  140F2 6F2 4F2 2/3F2 

W/E voltage 

(V) 
0.6 3 1.8 

1.3-3.3 
 1 2.5 15 --- 

Read V. (V) 0.1 1.2 1.8 1.3-3.3  1 1.8 4.5 --- 
Energy/bit (pJ) 0.1 6 2.5 0.03  0.0005 0.004 10 109 
Cell elements 1T(D)1R 1T(D)1R 1(2)T1R 1T1C  6T 1T1C 1T --- 
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Table 1.1. Comparison of state-of-art memory/storage technology from 

2013 International Technology Roadmap for Semiconductors (ITRS)
3
. 

All parameters represents stand-alone device. RRAM: resistive switching 

RAM; PRAM: phase change RAM; MRAM: magnetoresistance RAM; 

FeRAM: ferroelectric RAM; SRAM: static RAM; DRAM: dynamic RRAM; 

Flash: NAND stand-alone flash cell; HDD: hard disk drive. *Adapted from 

ref.
4
  

 

Although there is a desire for “universal” memory, at least for now this is not possible by 

direct replacement of existing hierarchy with emerging memories. This is at least for the 

following reasons. (1) Although MRAM can reduce the cache miss rate with a larger 

capacity, using high density MRAM to replace SRAM as on-chip cache causes longer 

write latency and thus degrade the performance for write-intensive applications. (2) 

Likewise, although high density on-chip memory will reduce CPU requests to the off-

package DRAM, hence decrease the average access time, more extra space needed on 

CPU must be taken up by tags and logics, which would have been better utilized as the 

next level cache. (3) It is common for emerging memory to be non-volatile, but it 

generically takes a longer time and more energy for write operation. (4) Some emerging 

memory such as PRAM has an issue with lifetime reliability, which could be a major 

obstacle for using it as storage class memory even though it is suitable for working 

memory
5
. A better interim solution may be to leverage the benefits of traditional 

SRAM/DRAM and the emerging memory in a hybrid memory architecture, such as 

MRAM/SRAM hybrid on-chip cache
6
 or PRAM/DRAM hybrid main memory

7
. The idea 
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is to keep most write-intensive data within SRAM/DRAM while use high-density 

emerging memory as fast local storage. 

 

1.1.2   Resistive Random Access Memory (RRAM)  

As shown in 2013 ITRS (Table 1.1), RRAM exhibits many desired features of “good 

memory”: fast speed, low energy and high endurance of SRAM and low cost, high 

density and non-volatility of flash memories. The basic structure of RRAM is a MIM 

“capacitor” with an active layer (I) sandwiched between two electrodes (M), as shown in 

Figure 1.3. The top electrode (TE) and the bottom electrode (BE) can be the same or 

different metals, which may participate in the switching process in some devices. Usually, 

the active layer is the key component, where switching occurs. The MIM structure must 

hold at least two stable resistance states: a high resistance state (HRS) and a low 

resistance state (LRS), which can be repeatedly converted between them by electrical 

stimuli (e.g., voltage, current).  

 

Figure 1.3. Schematic of a typical RRAM structure. 

 

Ultrathin metal/oxide/metal films showing pronounced resistive switching began to 

attract interest in 1960s
8-9

. However, the rise of silicon integrated circuit technology put 

off the progress of resistive switching devices, despite some theoretical interest expressed 
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by Chua and coworkers
10,11

. Intensive studies of RRAM reappeared in late 1990s in view 

of the seemingly imminent end-of-the-road-map for silicon technology. In the past two 

decades, RRAM has advanced at a remarkably pace and single-device performance has 

apparently achieved a satisfactory status for memory applications (Figure 1.4). Industry 

has also engaged in RRAM technology, notably at Fujitsu, Sharp, Samsung Electronics, 

Hynix Semiconductor, Micron Technology, HP, Adesto Technology Inc. (a spin off 

company from AMD), Crossbar Inc., 4DS, Elpida (acquired by Micron) and Unity 

Semiconductor (acquired by Rambus)
5
. Although the majority of efforts are on materials 

and devices, some circuit/architecture-level issues have also been addressed. For example, 

in 2013 ISSCC, Sandisk and Toshiba successfully demonstrated a metal-oxide based 32 

Gb RRAM prototype developed in 24 nm technology
12

. 

 

 

Figure 1.4. Device requirements for main applications (adapted from ref.
4
). 

A higher point on the axis represents a higher required value of the specific 

property. The dash line is the best reported RRAM data (from different 

RRAM
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devices). Quantitative data is summarized in Supplementary Information in 

ref 
4
.  

 

1.1.3   RRAM Classification 

There are several classifications for RRAM. A phenomenological one is based on the 

apparent electrical polarity required for resistive switching, namely unipolar and bipolar
13

. 

In a “unipolar” RRAM, the switching procedure is independent of the polarity of voltage 

and current (Figure 1.5a). The current for the OFF-to-ON (“set”) transition is usually 

limited by the compliance current (CC), which is always smaller than the current required 

for the ON-to-OFF (“reset”) transition; meanwhile, the set voltage is always higher than 

the reset voltage. A unipolar RRAM can be used in either one-polarity (+ or -) or two-

polarity (+ and -) mode. In contrast, a bipolar RRAM requires two opposite voltage 

polarities to trigger set and reset switching with or without CC (Figure 1.5b). Certain 

asymmetry elements (materials, electrodes or geometries) need to be introduced to 

bipolar systems to realize such polarity preference Unipolar and bipolar switching can 

coexist in some materials such as TiO2 (ref.
14

), NiO (ref.
15

) and SrTiO3 (ref.
16

), and 

depends on the compliance control (CC)—a high CC typically results in unipolar 

switching while a low CC leads to bipolar switching. Even in the same bipolar category, 

opposite polarities (clockwise or counterclockwise switching directions in the loops of 

Figure 1.5b) can coexist, as seen in TiO2 (ref.
17

) and SrTiO3 (ref.
18

). This may be caused 

by the competition of the top and bottom electrode interfaces which see opposite 

electrical fields.  
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Figure 1.5. Classification of resistive switching (adapted 

from ref.
13

): (a) Unipolar switching. (b) Bipolar switching.  

 

One can also classify RRAMs by active-layer material. For example, binary oxide 

RRAMs include transition-metal oxides such as TiOx
19-21

, NiO
22-25

, HfOx
26-27

, TaOx
28-29

, 

ZrOx
30

 and MoOx
31

, as well as simple oxides such as SiOx
32-33

, AlOx
34

, MgO
35

 and their 

oxynitrides or nitrides such as SiOxNy
36

 and Si3N4
37-38

. Perovskite RRAMs include 

SrZrO3
39

, SrTiO3
40-41

 and (Ba, Sr)TiO3
42

 with or without doping (e.g., by Cr, Nb, V, Mo), 

some being colossal magnetoresistance perovskites such as Pr0.3Ca0.7MnO3 (PCMO)
43-44

, 

La1-xSrxMnO3 (LSMO)
45-46

 and La1-xCaxMnO3 (LCMO)
47

. Polymer RRAMs include 

polystyrene
48

 or other organics
49-50

, often with conducting metallic nanoparticles
50

 or 

nanowires
48

. Ionic conductor RRAMs include Ag-Ge-S(Se)
51-53

, Cu-Ge-S(Se)
53-54

, etc. 

Semicondutor RRAMs include amorphous Si
55

, etc.. Indeed, one is inclined to believe 

that every dielectric material can be made into an RRAM. Therefore, such material-based 

classification seems not informative and may even be misleading since sometimes the 

most critical switching mechanisms may occur at the interface and not in the “dielectric” 

layer. 
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Classification based on the dominant transport mechanism divides RRAMs into two 

categories: ionic RRAMs and electronic RRAMs. In addition, ionic RRAMs typically 

involve generation/dissolution of certain conducting filaments populated by cations (e.g., 

metal M
n+

) or anions (e.g., oxygen O
2-

) that can relatively easily migrate in these conduits,  

and electronic RRAMs typically involve electronic trapping/detrapping, space-charge 

limited current (SCLC), or strongly correlated electron effects. By and large, ionic 

RRAMs have been the major focus of recent research, which is briefly described below.  

 

1.1.3.1   Ionic RRAM 

Ionic RRAMs can be further divided into two sub-categories: cation devices and anion 

devices.  

 

Cation devices 

In the literature, cation devices are sometimes referred to as electrochemical metallization 

(ECM) memory, programmable cells, conductive bridging RAM (CBRAM) or atomic 

switches. In 1976, Hirose et al. first reported a polarity-dependent memory effect 

demonstrating conducting Ag dendrite growth in amorphous As2S3 films under an 

electrical field
56

. The mobile species here are believed to be metal cations. After three 

decades’ studies, it is widely accepted that offon resistive switching occurs through 

the following steps, which occur in localized filaments (see Figure 1.6 from ref.
57

):  

(i) Anodic dissolution of metal M: M  M
n+

 + ne
-
; 

(ii) M
n+

 migration across the solid-electrolyte towards cathode under the electrical 
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field; 

(iii) Reduction and electrocrystallization on the surface of cathode: M
n+

 + ne
-
 M.  

 

Figure 1.6. Schematic of operation of an ECM memory (adapted from 

ref.
57

). 

 

If a reverse voltage is applied, onoff switching occurs during which the previous 

cathode with deposited M becomes anode and will dissolve. The dissolution will bring 

the device back to the original insulator state. Any of these steps could be rate-limiting 

for the event of resistive switching, depending on the specific material system. For 

example, cation migration (step ii) rate is usually high in chalcogenides and thus redox 

process (step i and iii) are the rate limiting factors. In the other extreme, in dense 

dielectrics (e.g. SiO2 or amorphous Si), cation migration is very low and thus rate 

limiting. Different rate limiting processes can lead to very different filament shapes. In 

fast ion conductors (e.g., chalcogenides), the large population of cations and the low 



 

12 
 

reduction rate dictate that cations can easily arrive at the inert electrode long before 

reduction occurs, hence forming a cone-shaped filament growing from the inert electrode 

to the active electrode. However in a sluggish conductor (SiO2 or amorphous Si), the 

reduction rate is high compared to the limited ion solubility and mobility. Therefore, 

cations prefer to migrate for a shorter distance and become reduced at the end of the 

existing filament. This leads to a reversed cone-shaped filament.  

This switching mechanism has been confirmed by several (in-situ/ex-situ) TEM 

experiments
58-59

. An example (in SiO2) is shown in Figure 1.7, in which Ag dendrites 

eventually form a reversed cone-shaped filament initiated from the Pt electrode. It is 

worth noting that although in-situ TEM seems to be a powerful technique to study 

filament dynamics, it might also easily introduce “filament growth” because of its high 

energy electron beam. In this sense, ex-situ TEM examination may provide more reliable  

information with fewer artifacts. 

 

Figure 1.7. Dynamic filament growth in SiO2. (a) TEM image of an as-

fabricated SiO2-based planar device. (b) TEM image after the forming 

process. (c) TEM image after erasing. Scale bar: 200 nm (adapted from 

ref.
58

). 
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A cation-based device must use an electrochemically active material as anode, which 

may be Cu, Ag or an alloy of these metals. In contrast, the cathode is typically an 

electrochemically inert metal, such as Pt, Au, W, Mo, Ir, Ru, TiW, or TaN (ref.
57

). The 

dielectric material can be a traditional electrolyte chosen from sulphides, iodides, 

selenides, tellurides, ternary chalcogenides and even water
60

. Other materials such as 

insulating oxides, nitrides, amorphous Si, C, doped organic semiconductors and vacuum 

gaps
61-62

 can also serve the same purpose. One noticeable effect of evolving from 

traditional electrolytes to oxide materials is on the switching voltage, which can increase 

from below 0.3 V to above the operating voltage of CMOS devices
4
. 

In the above mechanism, the electrical field provides the major driving force; its 

thermodynamics also guarantees bipolar switching. However, Joule heating is not always 

negligible, especially poor electrolyte materials, such as oxides or amorphous Si, are used 

because of the higher switching voltage required (thus substantial heating). Thermally 

assisted diffusion has been demonstrated to be critical in Cu/Ta2O5/Pt during reset 

switching
60

. Under extreme circumstances where the ON-state has a very low resistance 

(~1 ), onoff switching could be triggered by heating-induced filament breakdown. In 

this scenario, the non-polar thermal effect overwhelms the directional electrical field drift, 

leading to unipolar switching. Because of the substantial thermal energy involved, 

unipolar RRAMs typically exhibit worse reliability than bipolar RRAMs. 

From the device perspectives, key advantages of ECM are its good endurance (>10
10

 

cycles demonstrated
63

), scalability (<20 nm demonstrated
64

), fast speed (<1 ns 
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demonstrated
65

) and low energy operation (1 pJ (W) and 8 pJ (E) demonstrated
66

). 

Current research challenges for ECM lie in obtaining assurance of robust operation, 

developing reliability models, reducing random telegraph noise (RTN), improving 

memory controller design and CMOS compatibility, and finding compatible reliable 

selectors
3
. 

 

Anion devices  

Compared to cation devices, the study of anion devices are less mature in the sense that 

switching mechanisms are still under debate. In general, these devices are based on anion 

migration (e.g., oxygen), which can lead to two effects. First, the accumulation/depletion 

of oxygen ions (or its counterpart “oxygen vacancies”) at the electrode/oxide interface 

may modify the energy profile of the Schottky barrier and thus induce interface-type 

resistive switching (non-filament)
67

. Second, the migration and redistribution of oxygen 

vacancies can induce a localized valence change and thus form a new phase (filament). 

This RRAM category is sometimes referred to as valence change memory (VCM), 

covering oxide insulators (transition metal oxides, complex oxides), nitrides and 

chalcogenides. Similar to cation devices, most anion devices can switch in both unipolar 

and bipolar modes depending on the details of device fabrication and electrical operation 

conditions. 

Starting from early exploration of resistive switching 50 years ago
8-9

 (referred as negative 

resistance at that time), a rich family of simple oxides have been extensively investigated, 

including MgOx, TiOx, ZrOx, HfOx, VOx, NbOx, TaOx, CrOx, MoOx, WOx, MnOx, FeOx, 
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CoOx, NiOx, CuOx, ZnOx, AlOx, GaOx, SiOx, GeOx, SnOx, BiOx, and SbOx (ref.
4
). Their 

detailed switching mechanism varies from system to system, but basic principles are 

quite similar. Before the material becomes repeatedly switchable, a high voltage 

electroforming process is usually required to define a highly localized new phase region, 

i.e., a filament. During electroforming, electro-reduction and defect creation (e.g., oxygen 

vacancies) is triggered by the high electrical field, possibly enhanced by Joule heating. 

Next, O
2-

 ions drift towards the anode and are discharged there, creating O2 gas and 

possibly causing physical deformation
68

. After electroforming, subsequent switching 

occurs locally within the newly formed phase region and resistance states are determined 

by its various oxidation/structural states.  

TiO2 is one of the best understood simple oxides. Resistive switching in TiO2 was 

believed to occur by locally reducing the stoichiometric TiO2 phase to a more conducting 

TiO2-x phase under the electrical field
19-20,69

. The maximum value of x to maintain  

statistically non-associated point defects is on the order of 10
-4

 (ref.
70-71

), above which 

extended defects (e.g., vacancy chains, Wadsley defect
71

) form easily. Recent studies 

aided by in-situ/ex-situ TEM technique confirmed the conducting channels to be made of 

TinO2n-1, a Magnéli phase, a product of local oxygen deficiency
21

. Specifically, a locally 

reduced Ti4O7 filament can be observed in the on-state of a Pt/TiO2/Pt device, which is 

then oxidized to TiO2 phase in the off-state (Figure 1.8). (The same conclusion was also 

reached in other studies
72

.) Convincing TEM evidence for VCM was too seen in the ZnO 

system, in which Zn-rich ZnO1-x and ZnO phases were demonstrated to be responsible for 

switching
73

. 
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Figure 1.8. Magnéli phase in the switched TiO2 device
21

. (a) High-resolution TEM 

image of a Ti4O7 filament. (b) Selected-area diffraction pattern. (c) Dark-field image 

obtained from the diffraction spot marked as a circle in (b), (d) FFT image of the high 

resolution image of Ti4O7. (e) Simulated diffraction pattern. (f)–(j) Disconnected Ti4O7 

structure in the conical shape. The images are presented in the similar manner as for the 

connected filament in (a)–(e). (Adapted from ref. ref. 
21

). 

 

HfO2 is another model material, which is CMOS compatible and already suitable for gate 

oxide in MOSFET. As a resistive switching material, it features outstanding endurance 

(>10
10

 cycles), retention (>10 years) and fast switching speed (<1 ns)
26

. Like other VCMs, 

oxygen vacancy migration driven by the electrical field is believed to induce local 

stoichiometry changes between insulating HfO2 and conducting HfO2-x. Similar valence 

change probably also applies to Ta2O5 RRAM, which also features >10
10

 cycles of 
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switching
29

. Noting the significant performance (e.g., endurance) difference between 

HfOx, TaOx and other transition metal oxides such as TiOx. Yang et al.
29

 argued that HfOx 

and TaOx are unique because their phase diagrams contain only two stable phases (one 

being insulating and nearly stoichiometric, the other conducting and oxygen deficient); 

no other intermediate phase exists unlike the case of TiOx containing many Magnéli 

phases. This implies the phases in HfOx and TaOx are rather stable with a reasonably 

large barrier to any other metastable phases, whereas many if not all the phases TiOx are 

easily convertible making them susceptible to degradation at the elevated temperature 

caused by Joule heating in the device. This idea suggests reliable VCM materials should 

be associated with a simple phase diagram such as the one shown in Figure 1.9: the two 

compatible phases are stable and do not form any intermediate phase even at high 

temperature
4
. According to this proposal, the MOx phase in the phase diagram is the 

insulating phase and the M phase is the conducting phase in the filament. Since the latter 

has a large solubility for oxygen, the filament can easily accommodate mobile oxygen 

ions. 
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Figure 1.9. Proposed phase diagram of a metal-oxygen (M-O) system by Joshua 

Yang, etc., with two solid-state phases at low temperature. MOx phase is a 

stoichiometric (insulating) phase. M phase is a metal-oxygen solid solution 

(conduction channel). The two phases are thermodynamically compatible with 

each other (adapted from ref.
4
).  

 

Resistive switching performance can be further improved by engineering electrode/active 

layer interface. For example, electrical uniformity of HfO2 RRAM is greatly enhanced by 

stacking other oxide thin layers such as AlOx (ref.
27

), ZrOx (ref.
74

) and Ge (ref.
75

) into the 

HfO2 layers. Such embedded layer technique is thought to help better control of the 

generation of conductive filaments through ionic diffusion. A significant improvement 

was also found in the Ta2O5 system by using TaO2-x as a base layer to provide a better 

control of filament growth and to reduce the current and power consumption. Using this 

technique, a Ta2O5-x/TaO2-x bilayer RRAM can achieve 10
12

 cycles (a record to-date), 10 

ns and <60 µW switching (ref.
28

). Another technique is to introduce metallic 
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nanoparticles (e.g., Ru nanodots) at the interface, probably for field concentration,   

which can more effectively define the formation of filaments in the device (e.g., using 

TiO2)
76

.     

NiO is another intensively studied model material for RRAM. Using a Hg drop as a 

temporary electrode on NiO, Son and Shin
23

 were able to observe multiple conducting 

filaments (instead of one single filament) in the LRS under conducting AFM (Figure 

1.10). To provide a direct proof of ion migration in response to different voltages, 

Yoshida et al. incorporated 
18

O tracer into NiO film and examined the 
16

O and 
18

O 

profiles using time-of-flight secondary ion mass spectroscopy. Clear evidence of oxygen 

migration led them to conclude that resistance changes originated from the voltage-

induced δ variation in Ni1-δO (δ=+/- or 0) 
24

. Although NiO is antiferromagnetic and this 

was observed by Son et al. in the magnetization hysteresis loops (M-H) at the OFF state, 

they found a ferromagnetic hysteresis loop with exchange coupling at the ON state, 

indicating the formation of ferromagnetic Ni during resistive switching 
25

.  
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Figure 1.10. (a) The CAFM image of the NiO at different states. White dot 

indicates conducting channels. At OFF-state, only leaky current exists near grain 

boundary. Pictorial view of the filament model reveals a “local break” nature. 

(adapted from ref.
23

) 

 

From the device perspective, the key advantages of VCM are its good endurance (>10
12

 

cycles demonstrated
28,77

), scalability (<5 nm demonstrated
78

), fast speed (<1 ns 

demonstrated
79

), low energy operation (115 fJ (W)
80

, 1 pJ (E)
81

) and CMOS compatibility. 

Current key research challenges for ECM lie in obtaining a better understanding of the 

physical mechanisms, improving reliability and uniformity, reducing random telegraph 

noise (RTN) and finding compatible and reliable selectors
3
. 

 

1.1.3.2   Electronic RRAM 

As early as 1960s, an electronic mechanism for resistive switching was reported by 

Simmons and Verderber in the Au:SiOx system
82

. It was postulated that Au atoms 
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introduce a broad band of localized impurity levels within the band gap of the insulator. 

Such impurity band allows electrons tunneling through adjacent sites, but the associated 

barrier can be repeatedly modified by trapping/detrapping events under a high field, 

resembling gate-channel modulation in flash FET. In 2000s, researchers extended the 

idea to other systems, e.g., using Co, Ni (ref.
83

), Ge (ref.
84

), Mg, Ag, Al, Cr, CuPc (ref.
50

) 

to replace Au, and using complex oxide
85

 or polymers
49-50

 to replace SiOx. Meanwhile, 

another electronic switching mechanism was also reported
40,44,86

.  This mechanism occurs 

at the interface between a conducting oxide and a metal, by way of modulation of the 

Schottky barrier by the trapped electrons near the interface. As the population of the 

trapped electrons may be altered by the applied field, it can also cause a large resistance 

change for the electronic transport across the Schottky barrier. Another electronic 

switching mechanism is proposed for strongly correlated electron systems, which are 

typically based on transition-metal complex oxides (e.g., perovskite). Here, electron 

injection/removal under an electrical field acts like doping to change the charging state, 

therefore inducing electron localization/delocalization. Such metal-insulator transition 

has been demonstrated in La0.67Ca0.33MnO3 (ref.
87

) and Pr0.7Ca0.3MnO3 (ref.
88

). In addition, 

nanometallic RRAM
89

, the focus of this thesis, operates on an electronic mechanism as 

will be extensively discussed in several later chapters. 
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1.1.3.3   Summary of Reported RRAM Systems 

Table 1.2 summarizes reported RRAM systems in the literature. The data of ionic 

devices are largely based on Yang’s review paper (see the section of Supporting 

Information of ref. 
4
). 

 

Table 1.2A. Cation devices (adapted from ref.
4
) 

Active Layer BE TE Mode 
Ta2O5 Pt Cu Bipolar 

SiO2 W Cu Uni/Bipolar 

HfO2 Pt Cu Bipolar 

WO3 Pt Cu Bipolar 

ZrO2 Ag Au Bipolar 

SrTiO3 Pt Ag Bipolar 

TiO2 Pt Ag Bipolar 

CuOx Cu Al Unipolar 

ZnO (Pt, Al):ZnO Cu Bipolar 

Al2O3 Al Cu Bipolar 

MoOx Cu Pt Bipolar 

GdOx Pt Cu:MoOx Bipolar 

GexSx W Ag Bipolar 

As2S3 Au Ag Bipolar 

Cu2S Cu Pt Bipolar 

ZnxCd1-xS Pt Ag Bipolar 

AgI Pt Ag Bipolar 

RbAg4I5 Pt Ag Bipolar 

GexSey W Ag, Cu Bipolar 

GexTey TiW Ag Bipolar 

Ge-Sb-Te Mo Au, Ag Bipolar 

MSQ Pt Ag Bipolar 

Doped organic semiconductors Pt Cu Bipolar 

Nitrides Pt Cu Bipolar 

Amorphous Si p+-Si Ag Bipolar 

Carbon Pt Cu Bipolar 

Vacuum gaps RbAg4I5/Ag, Ag2S/Ag W, Pt Bipolar 

 

Table 1.2B. Anion devices (adapted from ref.
4
) 

Active Layer BE TE Mode 
MgO Pt Pt Unipolar 

TiOx Ru, Pt Al, Pt Uni/Bipolar 

ZrOx p+-Si, n+-Si Pt, Cr Uni/Bipolar 
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HfOx TiN, Ti TiN, Pt Bipolar 

NbOx p+-Si Pt Unipolar 

TaOx Ta, Pt Pt, Ta Bipolar 

CrOx TiN Pt Bipolar 

MoOx Pt Pt-Ir Uni/Bipolar 

WOx W, FTO TiN, Au Bipolar 

MnOx Pt Al, TiN Bipolar 

FeOx Pt Pt Uni/Bipolar 

CoOx Pt Pt Unipolar 

NiOx Pt Pt, Hg Uni/Bipolar 

CuOx TiN, TaN, SRO, Pt Pt Bipolar 

ZnOx Pt, Au TiN, Ag Bipolar 

AlOx Ru, Pt Pt, Ti Uni/Bipolar 

GaOx ITO Pt, Ti Bipolar 

SiOx Poly-Si, TiW Poly-Si, TiW Unipolar 

SiOxNy W Cu Bipolar 

GeOx ITO, TaN Pt, Ni Bipolar 

SnO2 Pt Pt Unipolar 

BiOx Bi W, Re, Ag, Cu Bipolar 

SbOx Pt Sb Uni/Bipolar 

SmOx TiN Pt Bipolar 

GdOx Pt Pt Unipolar 

YOx Al Al Unipolar 

CeOx Pt Al Bipolar 

EuOx TaN Ru Uni/Bipolar 

PrOx TaN Ru Bipolar 

ErOx TaN Ru Unipolar 

DyOx TaN Ru Unipolar 

NdOx TaN Ru Unipolar 

Ba0.7Sr0.3TiO3 SrRuO3 Pt, W Bipolar 

SrTiO3 SrRuO3, Au, Pt Au, Pt Bipolar 

SrZrO3 SrRuO3 Au Bipolar 

BiFeO3 LaNiO3 Pt Bipolar 

Pr0.7Ca0.3MnO3 YBCO, Pt, LaAlO3 Ag Bipolar 

La0.33Sr0.67FeO3 Au Al Bipolar 

PryLa0.625-yCa0.375MnO3 Ag Ag Bipolar 

AlN Al, TiN, Pt Al, TiN, Pt Bipolar 

ZnTe Si Au Bipolar 

ZnSe p+-Ge In, In-Zn Bipolar 

Polymers Al, ITO, Cu Al, ITO, Cu Bipolar 

 

Table 1.2C. Electronic devices (adapted from ref.
4
) 

Active Layer BE TE Mode 
Zr+:ZrO2

90 n+-Si Au Bipolar 

SiOx
82 Al Au Bipolar 

Pr0.7Ca0.3MnO3
88  SRO, Pt Ti, Au Bipolar 

La0.67Sr0.33MnO3
46  Ag N/A Bipolar 

La0.7Ca0.3MnO3
47  Pt Ag Bipolar 
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Sm0.7Ca0.3MnO3
86  Ti N/A Bipolar 

Nb:SrTiO3
40 N/A SRO Bipolar 

Cr:SrZrO3
39  SRO Pt Bipolar 

(Au, Co, Ni): SiO2
83 p+-Si Al Bipolar 

Polymers50 Al, Cr, Cu, ITO, Au, Ni Al Bipolar 

LaNiO3:LaAlO3
89,91 SRO Pt Bipolar 

SrRuO3:LaAlO3
89,91 SRO Pt Bipolar 

LaNiO3:CaZrO3
89,91 SRO Pt Bipolar 

SrRuO3:CaZrO3
89,91 SRO Pt Bipolar 

Pt:SiO2
33,89,92 SRO, Mo Pt Bipolar 

*(Al, Cr, Cu, Ta, Pt):Si3N4 SRO, Ti, TiN, Mo, Ta Pt Bipolar 

*Pt:SiOxNy Mo Pt Bipolar 

*Pt: (MgO, Al2O3, Y2O3, HfO2, 

Ta2O5) 
Mo Pt Bipolar 

* will be covered in this thesis 

 

1.1.4   The Need for A New RRAM 

Ionic RRAM devices, which rely upon physical migration of cations (metal
+
) or anions 

(O
2-

), come with some intrinsic problems that may affect their performance. One is the 

physical damage incurred during operation because of excess Joule heating or high-field 

breakdown. For example, Joule heating in unipolar devices causes irreversible 

unidirectional atom migration; these devices typically only lasts ~10
2
 cycles

93
. As another 

example, electrodes can be easily blown off in TiO2 devices during electrical switching 

21,72
. The stochastic nature of localized filament development is another origin of poor 

device performance. To mitigate this problem, uniform dopants in the dielectric layers (to 

provide conduction bridges or seed crystals
94-95

) and nanodot “dopants” near one 

electrode (to serve as field concentrators) have been attempted
76

. A suboxide layer
96-97

, a 

multilayer architecture
98

, and a selection switch
99

 have also been introduced to the 

RRAM stack to improve its performance. These reliability issues are clearly important 

for RRAM and their uncertain nature is intrinsic to ionic RRAM stemming from its 
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thermoionic transport mechanism and filamentary paths. Moreover, some ionic devices 

do have outstanding endurance: a TaOx ionic-RRAM lasting ~10
12

 cycles was reported by 

the Samsung group
28

, which much exceeds the requirement for a typical non-volatile 

storage (e.g., flash memory
100

) of 10
5
-10

6
 cycles. Such large disparity in the endurance 

limit of ionic RRAM devices is not understood, adding to the uncertainty of the state of 

affairs.  

Another problem of ionic RRAM is the switching speed, which is strongly dependent on 

the applied voltage
101-102

. Again, this is intrinsic to the ionic RRAM since physically, a 

larger voltage injects more energy into the filaments and generates a higher temperature, 

thus facilitating ion migration to achieve switching within a shorter time. Typically, a few 

fold increase of the switching voltage is required to increase the switching speed from 

100 s to 100 ns. Since a low voltage/power circuit is desired in modern digital electronics, 

the large switching voltage demanded by a fast RRAM is certainly a drawback for future 

applications. 

In view of this background, we believe there is a need to develop another RRAM based 

on electronic switching mechanisms and not relying on filamentary-type of switching 

paths. Nanometallic materials described next contain atomically dispersed metal atoms in 

a uniform amorphous dielectric matrix. Such a uniform composition with dispersed metal 

atoms may have some advantages. It may effectively spread the electric field across the 

entire film, it may make the film immune to local Joule heating problems, and it may 

provide electronic conduction thus obviating the need for ionic transport. These features 

may in turn provide better RRAM characteristics, leading to superior device performance. 
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1.2   Nanometallicity in Random-Electron Materials 

Random-electron materials are ones that do not provide a periodic structure for electrons. 

They include amorphous materials, but they may also include solid solutions of an 

insulator and a conductor set in a crystalline framework. Amorphous materials have a 

non-periodic structure containing “randomness”. They lack long-range order but, 

typically, some short-range order still exists at the local, atomic level due to the specific 

nature of chemical bonding. Amorphous materials cover a wide variety of materials 

classes including polymers, oxides, nitrides, borides, chalcogenides, semiconductors and 

even metals. In fact, it was realized as early as 1960s that “nearly all materials can, if 

cooled fast enough and far enough, be prepared as amorphous solids”
103

. 

Due to non-periodicity, amorphous materials cannot be described within the framework 

of traditional band theory. However, one can still use the term extended states referring to 

electronic states which have wave functions with appreciable amplitude throughout the 

solid. They may be contrasted with localized states that have wave functions with 

decaying amplitudes. In random materials, lacking periodic boundary conditions, there is 

no well-defined band gap; instead states are allowed to continuously distribute within the 

“band gap”. But these states have relatively low density of states, meaning their available 

sites are sparse and they are spread far apart in space. That is, they are localized states 

through them “percolation” is difficult. By replacing band edge with mobility edge as 

shown in (see Figure 1.11)
103

, band pictures are still applicable in amorphous materials 

to some extent, which can facilitate our understanding. 
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Figure 1.11. Schematic density of states for a crystalline 

and amorphous semiconductor (adapted from ref.
103

). 

 

The wave function of states can be formally described as  /exp~|| 2 rP  ,  which 

is the probability P of finding electrons. A localized state has a finite ξ, and its wave 

function falls off exponentially vanishing at distance r much larger than ξ from the 

localization center. This localization length ξ is the “diffusion distance” ζ of Anderson
104

. 

It provides a straightforward criterion to distinguish a random insulator from a conductor: 

ζ describes how far a free electron can tunnel elastically at 0 K, thus an insulator has a 

finite ζ, while a conductor has an infinite ζ. 

Our concept of nanometallicty stems from the realization that, even for localized states, 

their electrons can be visualized as “free” when the relevant spatial extent is less or on the 

order of ξ. The concept implies a size-triggered metal-insulator transition: a material is 
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insulating if the sample size is much larger than ξ, but conducting if the size is much 

smaller than ξ. This size-dependent idea was experimentally confirmed by my colleagues; 

they realized “nanometallicity” by either reducing the sample size of an insulator to fall 

below the diffusion length; or by increasing the diffusion length through addition of 

metallic content to an insulator
89,91-92

. Remarkably and technologically importantly, they 

also discovered that the diffusion length in a given sample can be manipulated by a 

voltage in a reversible manner: for example, a positive critical voltage apparently causes 

ξ to decrease, and a negative critical voltage apparently returns ξ to the original value. 

This latter finding enables a new class of RRAM, the nanometallic RRAM. This thesis 

seeks to explore the generality of nanometallicity and nanometallic RRAM in various 

random materials, and provide an experimental foundation to understand and to guide 

future nanometallic materials selection and design. This will hopefully contribute to the 

development of novel and superior materials and devices for the emerging memory 

technology. In the next section, some background for the underlying amorphous materials 

is provided.  

 

1.3   Structures and Properties of Si3N4 

Silicon nitride is one of the most studied materials, as it exhibits excellent mechanical 

properties, high tolerance to harsh chemical/thermal environment, superior creep and 

tribological/wear resistance, and desirable dielectric responses including a high dielectric 

strength. Bulk, crystalline silicon nitride and its modifications are deployed in a variety of 

industrial applications such as automobile engine components, pump seal parts, heat 
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exchangers, bearings and cutting tools, while amorphous silicon nitride films are widely 

used as dielectrics in modern electronics
105

. These outstanding properties and knowledge 

base make silicon nitride an excellent base and benchmark material for exploring 

amorphous nanometallic RRAM in this thesis.  

There are three crystalline phases for Si3N4, known as α, β and γ phase. The γ phase (a 

cubic spinel structure with a space group Fd-3m, a=7.7339 ± 0.0001Å)
106

 is synthesized 

under a high pressure and high temperature although it can be retained at ambient 

conditions afterwards, but both α and β phases are commonly produced under normal or 

slightly elevated processing pressure condition. The latter phases in their pure form 

exhibit the same chemical composition and essentially identical measured densities. They 

are present in a hexagonal structure but with different stacking sequences: ABCD in α 

(Space group: P31c, a=7.748 ± 0.001Å, c=5.617 ± 0.001Å) and ABAB in β (Space group: 

P63/m, a=7.608 ± 0.001Å, c=2.9107 ± 0.0005Å)
107

. As a result of the longer stacking 

sequence, the α-phase has a higher hardness than the β-phase because of the larger 

Burgers vector required for slip dislocations
108

. In its pure Si3N4 form, the α-phase is 

thermodynamically metastable compared to the β-phase, which means at high 

temperature the α-phase always converts to the β-phase
109

. Under typical 

processing/synthesis conditions (sintering, hot pressing, etc.), during the α-β phase 

transformation, the newly grown β crystals consume the unstable matrix and tend to form 

whiskers, resulting in a self-reinforced composite. This long-rod microstructure endows 

high toughness and strength to β-Si3N4. However, with the addition of stabilizing cations 

and tailoring of powders, it is also possible to form rod-containing, self-reinforced α-
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Si3N4 (more precisely, its cation-stabilized oxynitride) which has high toughness and 

strength in addition to superior hardness
110

. Amorphous silicon nitride can be easily 

obtained through low temperature processing such as sputtering and low temperature 

CVD. X-ray diffraction radial distribution studies suggest the short-range order in 

amorphous silicon nitride is similar to that in β-Si3N4 (ref.
111

). Basic Si3N4 properties are 

summarized in Table 1.3.  

 

Property Value 

Mass density 3.169 kg/m
3
 (Ref.

112
) 

Melting point 1900
o
C (Ref.

113
) 

Energy band gap 4.6 eV (Ref.
114

) 

Young’s modulus 
Dense ~300 GPa 

Reaction-bonded ~170 GPa (Ref.
113

) 

Poisson ratio 0.28 (Ref.
115

) 

Tensile or fracture strength 
Dense ~400-950 GPa 

Reaction-bonded ~120-220 GPa (Ref.
113

) 

Residual stress on silicon 600 MPa (compressive) (Ref.
116

) 

Thermal conductivity 
Dense ~15-50 Wm

-1
K

-1
 

Reaction-bonded ~4-30 Wm
-1

K
-1

 (Ref.
113

) 

Thermal expansion coefficient 2.9-3.6×10
-6 o

C
-1

 (Ref.
113

) 

Dielectric constant 7 (Ref.
117

) 

Refractive index 2.016 (Ref.
118

) 

Electrical conductivity 10
12

 Ω
.
cm (Ref.

119
) 

Wet etching BHF/Phosphoric acid (Ref.
120

) 

Plasma etching SF6/O2/N2 (Ref.
121

) 

Adhesion to SiO2 Good (Ref.
122

) 

Hydrophobicity 
No, but achievable by chemical surface 

modification (Ref.
123

) 

Table 1.3. Basic parameters of Si3N4. Data are extracted from 

cited literature which may be valid for a specific phase (e.g., β-

phase). 

 

Silicon nitride can be extended to silicon oxynitride SiOxNy by substituting O for N in the 

structure. This is especially straightforward in an amorphous structure since it is based on 
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silicon tetrahedra connected by corner N or O. (Each Si atom is coordinated by four N/O 

atoms, while N/O atoms are coordinated by three/two Si atoms, respectively
124

.) 

Regarding the bonding states, ideal silicon oxynitride can be quantitatively described by 

the random bonding (RB) model: SiOxNy is composed of five types of tetrahedra SiOνN4-ν, 

where ν=(0, 1, 2, 3, 4). The distribution function of SiOνN4-ν tetrahedra with a particular 

composition x and y is formulated as
124-125

: 
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Such formula presumes that SiOxNy does not contain intrinsic defects (e.g., Si-Si, Si-O-

O-Si, or N-O bonds). The experimental Si 2p XPS spectra show perfect agreement with 

the above formula (Figure 1.12)
125

. 
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Figure 1.12. Si 2p XPS spectra of SiOxNy films with different 

compositions. Dotted lines: experimental data. Solid lines: 

simulation from RB model (adapted from ref.
125

). 

  

Despite the agreement, chemical shifts of Si 2p (also N 1s) were observed in some SiNy 

films, which cannot be simply predicted by the RB model
126

. The underlying reason lies 

in the fact that random mixing of Si and Si3N4 do exist to some extent and the RB model 

need to be modified, i.e., the intermediate mixing (IM) model is needed
114

. The IM model 

incorporates the presence of separate “phases” of Si and Si3N4 in the film with sub-

nitrides on the interfaces. The associated band diagram can be visualized as Figure 1.13, 
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where the insulating large band gap of Si3N4 is randomly disturbed by the 

semiconducting small band gap of Si.  

 

Figure 1.13. (a) 1-D energy band diagram for SiNx; (b) the 

corresponding spatial chemical composition fluctuation (adapted from 

ref.
126

). 

 

1.4   Thesis Outline 

Nanometallic RRAM research was initiated by my colleagues Yudi Wang and Soo Gil 

Kim (ref.
91

). Nanometallicity and nanometallic RRAM were documented, for the first 

time in the PhD thesis of Yudi Wang
91

 using crystalline thin films of four perovskites 

(LaAlO3:LaNiO3, LaAlO3:SrRuO3, CaZrO3:LaNiO3, CaZrO3:SrRuO3) expitaxilly grown 

(by pulse laser deposition) on SrTiO3 single crystals of 110 and 111 orientations. Despite 

their crystalline lattice framework, these materials are random-electron systems since 

cations of the conducting component perovskites (LaNiO3 and SrRuO3) are randomly 
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mixed with cations of the insulating component perovskites (LaAlO3 and CaZrO3). Their 

pioneering work was followed by my colleagues Albert B. K. Chen and Byung Joon Choi 

(ref.
92

) who extended the material category for nanometallicity and nanometallic RRAM 

from crystalline to amorphous materials (SiO2:Pt and Si3N4:Pt), which have the benefit of 

not requiring a special substrate, being CMOS compatible, and using a much more 

manufacturable process such as sputtering. (The work on SiO2:Pt was documented in the 

PhD thesis of Albert B. K. Chen
92

.)  

In this thesis, my first aim is to explore the generality of the “random mixture” idea by 

extending the SiO2:Pt work to other insulators (various oxides, nitrides, and oxynitrides) 

and to other metals beyond Pt (non-noble metals including main-group metals.) This 

work is successful as documented in Chapter II, which provides some of the very best 

RRAMs available today. (This chapter also includes a preview of our best understanding 

of the nanometallic RRAM mechanism to date.) Such extension adds considerable 

flexibility to nanometallic RRAM design and applications.  

The above work is followed by a detailed study of three topics of fundamental 

importance to the understanding of nanometallicity and nanometallic RRAM: a non-

electrical, mechanical stimulus—both static ones and dynamic, sub-picosecond ones— 

for electronic switching in Chapter III, dielectric properties in Chapter IV and electron 

conduction mechanisms in Chapter V. In addition, the environmental effect is described 

in Chapter VI to provide a practical view of additional transport (including ionic current) 

and degradation mechanisms at ambient temperature in the presence of moisture. This 

research goes much beyond the level and depth of past RRAM research, and will 
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hopefully aid the understanding and modeling of not only our but all RRAM materials 

and devices. 

The last part of the thesis explores several means to model and build practical devices 

that are of technological relevance to RRAM applications: a phenomenological (parallel 

circuit) model in Chapter VII, a multibit memory in Chapter VIII, a low-power 

memory in Chapter IX, and a complementary memory in Chapter X. Additional 

information of documentary interest but too long or too numerate to include in the main 

chapters of the theses are provided in Appendices.  
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Chapter II. Nanometallic Thin Films: Material Characteristics and 

Voltage Induced Metal-Insulator Transition 

 

2.1   Introduction 

An electron in random materials does not propagate as plane wave; instead it is repeatedly 

scattered and redirected to random directions in a way akin to random walk, termed 

diffusion by P. W. Anderson (1958)
1
. Along the way, the amplitude of the random-walk 

wave function may decay: such decay signifies electron localization and the decay 

distance  defines the localization length. A conventional random insulator has a finite , 

whereas a conventional random metal has an infinite . But if the sample size  falls 

below , then even a bulk-insulating sample is effectively metallic. This simple idea of 

size-defined metal insulator transition (MIT) in random materials was not revealed until 

our group’s recent work
2-3

: by randomly inserting atomically dispersed conducting 

components into an insulating matrix (e.g., Pt to SiO2),  can be raised above 5-40 nm, 

the film thickness) and a size-dependent MIT is demonstrated. Importantly, a sudden 

decrease of  can too be rendered at a critical voltage Vc by injected charge that alters the 

landscape of the Coulomb repulsion, which curtails electron “diffusion”. After voltage 

removal, trapped charge still remains, apparently indefinitely, unless it is released by an 

opposite voltage. Such voltage-triggered MIT forms the basis of a new type of nonvolatile 

resistive switching random access memory (RRAM).  

In this chapter, we will explore the basic characteristics of such electronic memory to set 

the stage of a more detailed investigation in later chapters on several new aspects not yet 
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fully explored in nanometallic memory. The data on electrical switching properties 

presented here were primarily obtained from Si3N4:Cr films, namely amorphous Si3N4 

films with atomically dispersed Cr of various compositions. But the same observations 

and picture were also found in other CMOS-compatible compositions. We will 

demonstrate RRAMs from these materials feature fast switching speed, long retention, 

high endurance, easy scaling and superior statistical uniformity. On the physics side, since 

the high resistance state (HRS) falls into the localization regime, its resistance 

exponentially increases with thickness in agreement with the random-walk quantum 

physics but in gross violation of Ohm’s law. Such thickness-sensitivity, along with 

thickness-composition map that defines the size-dependent MIT, offers new degrees of 

freedom to engineer material resistance. In addition, the voltage-time dilemma commonly 

encountered by electronic memory will be addressed and a solution based on lattice 

relaxation will be proposed. This is fundamentally important because the resolution of the 

dilemma assures that the memory can be simultaneously fast, robust, with a long retention 

yet a low switching voltage. To explain all the experimental evidence, we will provide a 

detailed switching model at the end of the chapter.  

 

2.2   Sample Preparation 

Magnetron co-sputtering is the main tool for thin film fabrication in this thesis. As 

introduced in the previous chapter, sputtering can deposit almost any amorphous material 

composition using proper targets at low temperature. The stoichiometry depends on the 

DC/RF power, working gas pressure, target and substrate geometry, temperature, etc. For 
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co-sputtering, separate control of sputtering conditions for different materials is of great 

importance; these conditions can be quite different for different materials. A precise 

determination of the stoichiometry must rely upon proper post-deposition 

characterization, which in turn informs the best deposition conditions for optimal film 

composition and quality. 

There are several choices for substrates in this work. The most commonly used one is a 

moderately doped p-type (100) silicon wafer (resistivity~10 ohm-cm) covered with 200 

nm thermal oxide film. Others are highly doped silicon wafers and fused silica. The 

bottom electrode (BE), ~20 nm in thickness, was first deposited by DC sputtering. An 

“active” mixture layer containing an insulator (I=Si3N4, SiO2, etc.) and a metal (M= Pt or 

non-noble metals) component were next co-sputtered by RF magnetron sputtering using 

appropriate targets. The metal composition was controlled by varying the RF power of 

the metal target. Before deposition, the deposition chamber was evacuated to reach a 

typical vacuum <10
-6

 Torr. Finally, a top electrode (TE) was deposited, again by 

sputtering, through a shadow mask; or it was deposited without a mask but 

photolithographically patterned later. The deposition geometry is shown in Figure 2.1a. 

The final device geometry is shown in Figure 2.1b. In the following, devices or samples 

will be referred to by their composition of the bottom electrode, nanometallic film, and 

top electrode, such as Mo/Si3N4:20%Cr/Pt. Wherever appropriate, the thickness of the 

nanometallic film (e.g., 10 nm) and the size of the top electrode (e.g., 100 m x 100 m) 

are also specified.  
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Figure 2.1. (a) Sputter deposition configuration, (b) Device configuration. 

 

2.3   Chemical Bonding and Stoichiometry 

2.3.1   Infrared (IR) Spectroscopy 

IR is suitable for examining chemical bonding and stoichiometry information. 

Transmission spectra in the IR range were performed by a Fourier transform infrared 

spectrophotometer (FT-IR, Nexus 470, Thermo Nicolet, International Equipment Trading 

Ltd. Vernon Hills, Illinois, USA). To minimize background signal, two-side-polished IR-

transparent KBr crystals (International Crystal Laboratories, Garfield, NJ) were used as 

substrates. Thicker films on the order of 100 nm thick, much thicker than typical device 

ones, were used to maximize the IR signal. The data were analyzed and fitted using a 

self-developed Mathematica program. 

Generally speaking, oxygen introduction was unavoidable during nitride sputtering under 

the deposition conditions in this work. Oxygen contamination was more severe when the 

argon pressure was high or when the deposition rate was slow. For example, in Figure 

2.2b, a film deposited under a high argon pressure using a Si3N4 (Reactive bonded Si3N4, 

free of sintering aids) target is mostly SiO2 according to the strong Si-O peak at 1060/cm 
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(ref.
4
). However, when the argon pressure is sufficiently low, the characteristic Si-N 

bonding at 860/cm becomes prominent (see Figure 2.2)
5
. This is understood as follows: a 

higher Ar working pressure yields more collisions, so the sputtered Si atom has a larger 

probability to be oxidized. The optimized deposition condition of Ar was 5 sccm (Figure 

2.2e), which was used for all subsequent work described below unless otherwise noted.  

 

Figure 2.2. IR transmission data of films deposited with different Ar flow rate (a) 

45 sccm (SiO2 target), (b) 45 sccm (Ar 45 sample, Si3N4 target), (c) 32 sccm (Ar 

32 sample, Si3N4 target), (d) 20 sccm (Ar 20 sample, Si3N4 target), and (e) 5 

sccm (Ar 5 sample, Si3N4 target). 
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Figure 2.3. IR spectroscopy data fitting. (a) Experiment vs. fitting 

of transmission data based on Drude-Lorentz model. (b) Calculated 

dielectric constant. (c) Calculated refractive index.  

 

Simulation was performed to fit the spectrum of the Ar5 sample using the Drude-Lorentz 

model and to extract complex dielectric constant (ε’+iε’’) and refractive index (n+ik) as a 

function of wavenumber. In the Drude-Lorentz model, dielectric response arises from 

harmonic oscillators with (Drude) or without damping (Lorentz),  
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Here, ω0m is the resonant frequency, ωpm is the oscillator strength at ω=0, Γm is the 

damping coefficient and ε∞ is the permittivity at infinite frequency. Since our study 

indicated the existence of both Si-N and SiO bonding, and each distinct chemical bonding 

has three normal modes (stretching, bending, and rocking
4
), six oscillators (see Figure 

2.3a) are used for fitting. This model gives very good fitting with the experimental data, 

as shown in the red curve of Figure 2.3a. With the fitting parameters listed in Table 2.1, 

we then compute the dielectric constant and refractive index in Figure 2.3b and Figure 

2.3c. The minimum in transmission at ~860/cm is now seen to be related to the peak of 
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the imaginary part of dielectric constant and refractive index, i.e., poor transmission is 

due to strong resonant absorption. Our calculated optical parameters of the Ar 5 sample 

are consistent with Engheta et al.’s for Si3N4 covering the same energy range. This 

provides some confidence that we have indeed obtained a Si3N4 film. 

 

Parameter Value  Parameter Value 

ε∞ 7    

ω01 471.77  ω04 935.16 

Γ1 168.64  Γ4 193.11 

ωp1 859.351  ωp4 1439.00 

ω02 838.14  ω05 1167.36 

Γ2 162.79  Γ5 100.21 

ωp2 1336.52  ωp5 367.53 

ω03 1015.33  ω06 1203.3 

Γ3 203.20  Γ6 1056.57 

ωp3 1365.85  ωp6 1547.9 

Table 2.1. Fitting parameters in Figure 2.3a. 

  

2.3.2   Electron Energy Loss Spectroscopy (EELS) 

The influence of deposition condition on O/N contents was confirmed using EELS, 

which is especially suited for light element mapping. Thin films (δ=10 nm) were directly 

deposited on regular TEM grids and EELS spectra were collected in a transmission 

electron microscopy (TEM, 200 kV JEOL 2010F). Figure 2.4 shows that as the working 

pressure decreases, the nitrogen to oxygen ratio increases. The residue oxygen in the Ar 2 

sample is the lowest and may be attributed to the contamination (or surface 

oxygen/hydroxyl/water) of the TEM grid because a bare grid also shows a similar, small 

oxygen edge. 
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Figure 2.4. Electron energy-loss due to N and O for Si3N4 samples deposited 

under different Ar pressure. As Ar pressure decreases, N to O ratio greatly 

increases corresponding to better nitride film. (a) Ar 45, (b) Ar 12, (c) Ar 5, (d) 

Ar 3, and (e) Ar 2. 

 

Film stoichiometry was further studied by energy-loss near edge structure (ELNES) of 

silicon L-edge, as shown in Figure 2.5. The fine structures of SiO2, SiON and Si3N4
 
in 

the literature
6
 (Figure 2.5e) were used as benchmark fingerprints for SiO2, SiON and 

Si3N4 bonding. As Ar pressure decreases, the Si L-edge moves from 108 eV to 105 eV 

and the post-edge shoulder at ~ 115 eV gradually disappears, indicating a change from 

SiON to Si3N4. These results are consistent with the IR results where Si-N ionic bonding 
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dominates at Ar 5. We thus conclude good silicon nitride films were obtained under Ar 5 

sccm (3.5 mtorr) condition.  

 

 

Figure 2.5. Silicon L-edge near edge fine structure for various Ar pressure. 

(a) Ar 45 sccm, (b) Ar 12 sccm, (c) Ar 5 sccm, (d) Ar 3 sccm, (e) Ar 2 sccm. 

(f) Standard silicon L-edge near edge fine structure for various silicon 

compounds (ref.
6
). 
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Figure 2.6. EDX data showing Si and Cr peaks at 0-10 keV energy 

range. Cu peak comes from TEM grid. 

 

2.3.3   Energy-dispersive X-ray Spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) cannot differentiate N and O because the 

energy resolution is too coarse (~keV) to resolve the C/N/O peaks. However, it can be 

used to verify the amount of metal elements, which increases with the sputtering power. 

Figure 2.6 shows the EDX spectra of a representative set of Si3N4:Cr films. The Cr peaks 

increase as the sputtering power of the Cr target increases. Using the integrated peak 

intensity for silicon and chromium, calibrated by the EELS data, we find the Cr 

concentration can be fitted to the power P (in Watt) by:   
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222 1040.21093.9%)( PPatomCr    

 

2.4   Microstructure  

2.4.1   Film Density 

X-ray-reflectometry (XRR) is a non-destructive method for thin film characterization. It 

is useful to determine the film density, roughness and thickness. As shown in Figure 2.7, 

pure Si3N4 film (i.e., film deposited without any co-sputtering metal) has a density ~3.5 

g/cm
3
, close to the ideal density. Comparing the XRR-determined film density with the 

following theoretical density, which assumes no porosity and no density (deviation) of 

mixing,  

3/4
)1( SiNCrCrCrlTheoretica ff    

we find a reasonably good comparison only for 93%SiN4/3:7%Cr, which is 3% less than 

the above estimate, indicating it is 97% dense. Here f is the atomic fraction of metal, and 

3/4SiN =3.44g/cm
3 

and Cr =7.19g/cm
3 

are theoretical densities of pure Si3N4 and Cr, 

respectively. In all other cases, a negative density of mixing is seen suggesting nano 

pores are generated during deposition. The relative density and nanoporosity have a 

profound influence on microstructure and electrical properties, as will be discussed in 

Chapter VI. 
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Figure 2.7. XRR fitting for (a) SiN4/3, (b) 93%SiN4/3:7%Cr, (c) 

77%SiN4/3:23%Cr, and (d) 47%SiN4/3:53%Cr. (e) Experimental data vs. 

theoretical prediction. 

 

2.4.2   Crystallinity 

The crystallinity of nanometallic films was investigated by x-ray diffraction (XRD) using 

Cu K radiation. As shown in Figure 2.8, the Si/SiO2 substrate exhibits one strong peak 

only: it is located at 69
o 
corresponding to Si (100) of the substrate. This peak is present in 

all other samples since the same substrate was used. For pure Si3N4 film, there is no 

obvious difference between its XRD spectrum and that of the bare substrate, suggesting 

the amorphous nature of nitride film. Sputtered Cr film, on the other hand, exhibits two 

peaks, at 45
o 

(100) and 82
 o

 (211), indicating it is polycrystalline. However, these peaks 

are not seen in Figure 2.8 in 88%SiN4/3:12%Cr and 76%SiN4/3:24%Cr films (both are 

0 20 40 60

3

4

5

6  XRR

 Theoretical


 

g
/c

m
3


f
Cr

 (at. %)

 Data

 Simulation

100%SiN
4/3

Density: 3.5g/cm3

 Data

 Simulation

93%SiN
4/3

:7% Cr

Density: 3.62g/cm3

 Data

 Simulation

77%SiN
4/3

:23% Cr

Density: 3.67g/cm3

(a)

(d)

(b)

(e)

(c)

0.4 0.6 0.8 1.0

 Data

 Simulation

2 (degree)

47%SiN
4/3

:53% Cr

Density: 3.88g/cm3



 

58 
 

typical compositions for device). Therefore, we conclude that metal atoms (e.g., Cr) 

mostly assume the same amorphous structure of the matrix Si3N4 films. That is, metal 

atoms are atomically dispersed in the amorphous matrix for the most part, and they do not 

crystallize even though some of them may have clustered, most likely by chance. This 

conclusion is further supported by high resolution TEM image as will be shown in a later 

section.  

 

Figure 2.8. X-ray diffraction (-2) patterns of Si3N4:Cr films on Si 

substrate (film thickness: 100 nm). Also displayed are patterns of 

polycrystalline Cr film (showing (110) and (211) peaks, as labeled, 

Cr (200) is located at 64
o
 but too weak to be observed) on same 

substrate, and substrate itself (Si with native SiO2 oxide). Si3N4:Cr 

nanometallic films show no obvious Cr crystal reflection.  

 

40 50 60 70 80 90

Si (100)

Cr (211)

Si/SiO
2
 Sub

Pure SiN
4/3

SiN
4/3

:12%Cr

SiN
4/3

:24%Cr

Pure Cr

In
te

n
s

it
y

 (
a

.u
.)

2 (degree)

Cr (110)



 

59 
 

2.4.3   Surface Morphology 

Since our film is only ~10 nm thick, whose electrical integrity is critical, surface 

roughness of the bottom electrode and the active film is extremely important and must be 

kept well below 10 nm. In general, a larger sputtering power results in a larger roughness 

because surface atoms do not have sufficient diffusion time before the arrival of the next 

atomic layer. This would yield more porosity or poorer density. Roughness also 

accumulates as the film becomes thicker.  

Surface morphology of some optimized films is shown in Figure 2.9. The uniform dark 

region is covered by a Si3N4:Pt hybrid film with 0.29 nm rms roughness (Figure 2.9b). 

Bright regions are covered by 40 nm thick Pt top electrodes, which have a similar 

roughness. This indicates both the active film and the electrode-covered devices are 

uniform in thickness. 
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Figure 2.9. (a) AFM image of surface morphology of 

Mo/Si3N4:Pt/Pt device on Si/SiO2 substrate. (b) Line scan 

profiles at 5 randomly selected locations. 

 

Surface conductivity of as-fabricated devices was also examined by employing a 

conducting atomic force microscope (CAFM) technique. Figure 2.10 shows a uniform 

black color (indicating low current) in the exposed region of the hybrid film regions, 

indicating an extremely resistive circuit when the contact area is limited to that of the 

AFM tip. No pinhole for large current passage is apparent. On the other hand, electrode 

regions show a much higher current (reaching 2 nA, which is the current compliance 

limit set by Asylum AFM) because there is a large equivalent measurement area as 

defined by the electrode size. A further check using a smaller voltage to stay within the 

compliance confirmed that the current is indeed proportional to the electrode area 

obeying Ohm’s law. 
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Figure 2.10. (a) Surface morphology vs. (b) electrical current 

map. (c) 3D current map. 

 

2.4.4   Nanostructure 

Nanostructure of the hybrid films was examined using TEM. To simplify the comparison, 

we show below only films of the same thickness (10 nm) but with different concentration. 

The results vary with material systems, which can be summarized into two cases: 

1) In the Si3N4-based system, at low or moderate concentrations, metal-rich regions 

are not crystallized. As shown in Figure 2.11, Si3N4 and Si3N4:Cr films up to 17% Cr 

(Figure 2.11a-e) exhibit similarly uniformly amorphous morphology with a worm-like 

structure. This suggests that Cr atoms are atomically dispersed within the Si3N4 matrix. 

Non-uniformity occurs when Cr concentration reaches ~26%. As shown in Figure 2.11 f-

h, the metal-rich clusters have different bright and light contrast which is likely due to 

different diffraction conditions of differently oriented crystals (Moire fringes seem 

unlikely because the thickness within the distance between clusters is probably the same) 

(a)

(b)

(c)
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since high resolution images and electron diffraction patterns still suggest an amorphous 

structure without noticeable lattice fringes or diffraction spots. In other words, 

conventional metallic nanocrystals have not formed in these films; instead, there are 

amorphous Cr-rich clusters. Difficulty in crystallization may lie in the low atomic 

mobility of Cr, but it may also be caused by the (relatively) high density of the Si3N4 

matrix, which provides little room for Cr to move. Therefore, any extra Cr atoms are 

forced to disperse atomically within the matrix. Interestingly, the relative density starts to 

decrease as the Cr concentration increases according to Figure 2.7. Eventually, it leads to 

nanopore generation and Cr crystallization, i.e., a two-phase structure containing Cr 

nanocrystals and a nanoporous amorphous Si3N4 matrix. 

2) In the SiO2 and the SiOxNy system, metal inclusions form at moderate 

concentrations. As shown in Figure 2.12, Pt atoms in SiOxNy matrices quickly cluster 

into Pt rich (black) regions. Differently from the Si3N4:Cr case, even at low metal 

concentrations, these black regions already exhibit lattice fringes (Figure 2.13) indicating 

Pt atoms are indeed crystallized. The reason for such difference becomes transparent if 

we recall that the relative density of SiOxNy:Pt film is rather low and a large amount of 

nanopores exist. Therefore, Pt atoms which are immicible in SiOxNy prefer to settle in the 

porous region and not enter the amorphous matrix. This will in turn allow fast surface 

diffusion/reorganization and eventual crystallization. 
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Figure 2.11. TEM image for Si3N4:Cr mixture film. Non-uniformity 

(still amorphous) starts to form at 25% Cr. 

 

 

Figure 2.12. TEM image for SiOxNy:Pt mixture film. Non-uniformity 

(crystallized) starts to form near 9% Pt. 

 

(a) SiN (b) SiN+5%Cr (c) SiN+8%Cr (d) SiN+12%Cr

(e) SiN+17%Cr (f) SiN+25%Cr (g) SiN+43%Cr (h) Cr

5 nm

(b) SiON+1%Pt(a) SiON (c) SiON+5%Pt (d) SiON+9%Pt

(e) SiON+15%Pt (e) SiON+26%Pt (f) SiON+40%Pt (g) Pt

10 nm
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Figure 2.13. High resolution TEM image for 60%SiOxNy:40%Pt mixture film.  

 

From these observations, we may summarize the hybrid film growth kinetics as in Figure 

2.14. (a) In a fully dense amorphous dielectric matrix, metal atoms are dispersed 

randomly except for chance coalescence into dimers, trimmers and oligomers, thus an 

amorphous hybrid structure forms, and (b) in a less dense, nanoporous amorphous 

dielectric film, some metal atoms are randomly dispersed in the matrix but many are 

deposited onto surfaces of nanopores of almost atomic size or (c) nanometer size. In (c), 

they tend to crystallize into metal nanocrystals.  

SiON+40%Pt5 nm
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Figure 2.14. Schematic nanostructures of nanometallic films. (a) Dense film. 

(b) Less dense film with atomic-sized porosity. (c) Porous film with larger 

porosity. White regions are pores; red dots are metal atoms. 

 

2.5   Voltage Induced Metal Insulator Transition 

2.5.1   DC & AC Measurement 

We next describe electrical characterization using voltage as the main control variable. 

First, (Quasi) DC measurements used digitized DC voltage segments, each lasing 20 ms 

before changing to the next segment over a transient (rise/fall) time of <1 ms. The 

increment or decrement between segments is controllable (typically from 0.001 V to 1 V). 

As shown in Figure 2.15a, at a critical forward voltage bias (defined as having a positive 

voltage, ~4 V on the TE), the current suddenly drops, which transitions the cell from the 

low resistance state (LRS, or “on” state) to the high resistance state (HRS, or “off” state). 

(a)

(b)

(c)
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The state is “non-volatile” and “bipolar” in that the high resistance is maintained at 0 V. 

In fact, it is typically orders of magnitude higher than the resistance at the critical voltage 

because of the non-Ohmic resistance-voltage dependence. Only a reverse bias of a critical 

voltage can switch it back to the low resistance state (LRS, or “on” state). The latter 

switching typically involves increasing current going through multiple stages. Having a 

Pt TE and a Mo BE, the switching direction in Figure 2.15 is counterclockwise in the R-

V hysteresis, changing from the LRS to the HRS at a positive bias and vice versa at a 

negative bias. 

Switching is quite robust as evidenced by the cycling/fatigue test. In Figure 2.15b, 

consecutive 100 DC sweeping cycles were performed on a Mo/Si3N4:Cr/Pt device (the 

voltage from –5 V to +6 V with 0.2 V increment), showing overlapping R-V curves 

without noticeable change (degradation). To test over more cycles, AC measurements 

used 1 µs square shaped voltage pulses (between –5 V and +7 V) for excitation, followed 

by DC measurements of resistance (at 0.1 V) after each pulse, and the process was 

repeated over many cycles. These cyclic tests found both HRS and LRS are stable 

(Figure 2.15c). (The device performance of SiO2:Pt is worse due to moisture effects on 

nanoporous devices, as will be described in Chapter VI.) 
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Figure 2.15. (a) Typical I-V and R-V curve for resistive switching 

device. (b) Consecutive 100 cycles of DC R-V curves for 

Mo/Si3N4:Cr/Pt device. (c) AC pulse tests for Mo/Si3N4:Cr/Pt device. 

(fCr=7%, δ=10 nm). 

 

2.5.2   Thickness-Composition Map 

Devices (100×100 μm
2
) of Mo/Si3N4:Cr/Pt with various Si3N4:Cr film thickness and 

composition were tested to determine their characteristics of nanometallic transition. 

Nanometallicity occurs at a nominal metal fraction f well below the bulk percolation limit 

fp. This is demonstrated in Figure 2.16a, which depicts a thickness-composition -f map 

for the electrical conduction. The map at large  follows the conventional percolation 

transition: above fp the conducting region reigns; below fp it is the insulating region. Here 

fp~0.45, which is comparable to the value determined for thin films of (1-f ) SiO2:f Pt 

(ref.
2-3

)
 
and several granular mixtures of oxides and metals

7
. However, below fp, there is 

still a conducting region at small , which we call the nanometallic region. Moreover, 

below fp, there is also a (voltage-triggered) switching region between the nanometallic 

region and the conventional insulating region. Both the nanometallic region and the 

switching region apparently can extend to f→0 when  approaches 0. This means that: if 

 is small enough, there is always nanometallicity. Traversing vertically in the map, we 

can see that the nanometallic MIT is a transition defined by the size. Figure 2.16b 

illustrates that at fCr=7%, as the thickness decreases from 35 nm, to 17 nm, to 10 nm, to 5 

nm, the device characteristics changes from insulating, to switching to conducting. 

Traversing horizontally in the map, we can see that the nanometallic MIT is a transition 
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defined by the composition. Figure 2.16c illustrates that at 10 nm film thickness, as the 

Cr concentration increases from 2%, to 7%, to 30%, the device characteristics changes 

from insulating, to switching to conducting.  

 

 

Figure 2.16. (a) δ-f map for Si3N4:Cr system delineating data points for 

insulating (I), conducting (C) and switching (S) behaviors, showing percolation 

at metal composition f=0.45, nanometallicity at thinner thickness from f~0 to 

f=0.45, and switching when thickness ≈, the latter in black dot line. (b) R-V 

curves for insulating (non-Ohmic, 93%SiN4/3:7%Cr, 35 nm), conducting 



 

69 
 

(Ohmic, 93%SiN4/3:7%Cr, 5 nm) and switching (hysteretic, 93%SiN4/3:7%Cr, 

10 nm (green) and 17 nm (orange)) films sandwiched between Pt and Mo. (c) R-

V curves for insulating (non-Ohmic, 98%SiN4/3:2%Cr, 10 nm), conducting 

(Ohmic, 70%SiN4/3:30%Cr, 10 nm) and switching (hysteretic, 93%SiN4/3:7%Cr, 

10 nm) films sandwiched between Pt and Mo. During switching, an initially 

conducting film transitions to high-resistance insulating state at +2V and returns 

to low-resistance metallic state at 1.5 V.  

 

2.5.3   Scaling Laws 

The area dependence of HRS resistance follows Ohm’s law, AR /1 , as shown in 

Figure 2.17. This is an indication of the overall uniformity nature of the HRS: there is no 

variation over the length scale of the smallest size in Figure 2.17 (20 μm). On the other 

hand, the value of LRS seems to be area independent. Such independence comes from an 

artifact and the metallic nature of the LRS. In our film, the LRS is not a unique metallic 

state in that the resistance value of the film is affected by the history of voltage, current 

compliance, etc., and it may be so low that it falls below the resistance of the electrodes. 

(The bottom electrode, which is very thin, is especially resistive, typically ~ 100-1000 Ω. 

Most of this resistance is due to the spreading resistance from the bottom of the cell to the 

edge of the chip where the probe electrode makes contact.) When this happens, which is 

common, the LRS resistance primarily reflects the resistance of the spreading resistance, 

which has a very weak cell area dependence. We will formally deal with the LRS area 

scaling after developing a circuit model in Chapter VII. 
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Figure 2.17. (a) Area scaling of HRS. Blue dots are experimental 

data and red dash line is fitted straight line with slope=1. (b) Area 

scaling of LRS. (fCr=7%, δ=10 nm). 

 

The resistance of the HRS reveals an unconventional (non-Ohmic) thickness dependence, 

as shown in Figure 2.18a. It exponentially increases with thickness, apparently following 

Anderson’s scaling theory   /exp0RR  . (We will revisit this subject in a later chapter, 

since strictly speaking Anderson’s picture of random wave physics only holds at 0 K 

where electron movement is not thermally assisted. This is not the case at the room 

temperature.) By fitting the HRS resistance with this form, we can obtain the localization 

length for various metal concentrations. As shown in Figure 2.18b, the localization 

(diffusion) length of the HRS increases with metal concentration, indicating electrons can 

reach further as more metals are incorporated into the film. Meanwhile, the localization 

length of the LRS can be obtained from the switching region in Figure 2.16, by assigning 
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it to the value halfway between the insulating boundary and the conducting (nanometallic) 

boundary. The localization lengths of the two states are compared in Figure 2.18b 

illustrating a large increase from the LRS to the HRS. It is this increase, caused by a 

voltage trigger, that is responsible for the metal insulator transition in RRAM. These 

results are consistent with the ones previous seen in the SiO2 system
2-3,8

. From a practical 

viewpoint, the above exponential dependence offers new freedom to engineer the device 

resistance without affecting other switching characteristics. An example of utilizing such 

highly tunable HRS is discussed in Appendix. 

 

Figure 2.18. (a) Thickness dependence of HRS. (b) Diffusion 

length (ζ) of HRS and LRS. 

 

The switching voltage is found to be device independent (Figure 2.19), always ~1 V 

irrespective of the TE dimension and the film thickness. Therefore, switching is not 

controlled by the electrical field; instead, it is an energy (voltage) controlled process. This 

finding has a direct bearing on the candidate mechanisms that may explain the transition.  
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Figure 2.19. (a) Area and (b) thickness dependence of off→on switching 

voltage. (fPt=5%). 

 

2.6   UV Induced Metal Insulator Transition 

Although a relatively small voltage is used in our testing, even a small voltage can easily 

lead to a large field in the thin film (e.g., 1 V across a 10 nm film results in a field of ~10
6
 

V/cm, which is quite large). Under such high electrical field, ionic and (metallic) atomic 

migration is possible, especially in a nanoporous films. To determine whether ion 

migration is involved during switching or not, an alternative non-electrical excitation is 

required. In a later chapter, we will describe how a mechanical stress can provide such 

excitation. Here we borrowed the idea in standard Erasable Programmable ROM 

(EPROM), where exposure to UV light is used to remove trapped charge on the floating 

gate
9
. For the following experiment, we used a UV light source (ELC-403, Electro-Lite 

Corp., Bethel, CT), which provide a wavelength of 300-420 nm (4.2-3.0 eV) with an 
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output power of 70 mW/cm
2
 at 3.4 eV. In order to minimize substrate absorption, UV-

transparent fused silica (two-side polished) was used as the substrate and the radiation 

was shone from below (Figure 2.20a). The resistance was examined using a small 

reading voltage of 0.2 V, which is insufficient to cause switching according to our 

previous tests.  

 

Figure 2.20. (a) Schematic of set up for UV test of 

Mo/Si3N4:Cr/Pt device. (b) Initially HR state. (c) Initially LR 

state. TE/BE electrodes are in series with external circuit. 

(fPt=5%, δ=10 nm). 

 

As shown in Figure 2.20b, a device initially at the HRS immediately drops to the LRS as 

UV is turned on, and it remains in the LRS even after UV is shut off. (This excludes the 

possibility of enhanced current being a photocurrent). On the other hand, UV has no 

effect on the LRS as shown in Figure 2.20c. Since the nanometallic film is only 10 nm 

thick, it is unlikely to cause any significant attenuation of the UV radiation. Therefore, 

the UV irradiation does not impose any directional field, which rules out any possibility 

of ion/atom transport. Since ion/atomic transport cannot be the mechanism of 
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nanometallic switching, electronic transport is the only mechanism that may be 

responsible for nanometallic switching. Very likely, the HRS corresponds to an 

energetically metastable state with trapped electrons, which can be detrapped with the 

excitation of photons of an appropriate energy. The hypothesis of HRS being a 

metastable state will be further tested in Chapter III. 

 

2.7   Device Performance 

2.7.1   Retention 

Retention test was performed by switching a device to the HRS or LRS and monitoring 

its resistance change (periodically read at 0.1 V) as a function of time. According to these 

tests, both HRS and LRS are stable, see Figure 2.21. If the small resistance change of the 

HRS is extrapolated to 10 years, it will amount to a 3× increase in resistance. The origin 

of the resistance increase will be explored in Chapter VI. 
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Figure 2.21. Resistance retention (Mo/93% Si3N4: 7%Cr/Pt) at 

room temperature. (δ=10 nm). 

 

2.7.2   Uniformity 

As already shown in Figure 2.15b-c, switching curves of the Mo/Si3N4:Cr/Pt device are 

highly reproducible and the resistance values of the HRS and the LRS remain constant 

over many cycles. The Weibull plot provides a quantitative comparison between our data 

and those from the literature, on ionic-type RRAM. The Weibull distribution for the 

cumulative probability (F) of a random variable x is prescribed by a shape parameter k 

(or Weibull exponent): 

  k
xxxF 0/exp1)(   

where x0 is a scaling constant for x. It is apparent that a higher k indicates a narrower 

distribution and thus higher uniformity. This k value is related to the ratio of standard 
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deviation (Δ) to mean (μ), Δ/μ, of the distribution, through the following analytical 

expression: 

    
 k

kk

/11

/11/21
/

2/12




   

where Γ is the Gamma function. This is verified in Figure 2.22 using our data (from 

Figure 2.15b-c) and those in the literature, which shows a tight correlation between our 

Δ/μ and k data and those in the literature.  (We analyzed the statistics of the data of ionic 

devices reported in the literature, from which k and Δ/μ values were computed.) Along 

with the previous data on another nanometallic RRAM (SiO2:Pt), our Si3N4:Cr device 

clearly have outstanding uniformity for all switching parameters (resistance values of 

HRS and LRS, as well as on/off switching voltages.) Such uniformity would benefit 

multi-bit storage for which multiple resistance states need to be distinguished within a 

relatively narrow switching window (we will describe a multi-bit storage in Chapter 

VIII). 
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Figure 2.22. k vs. Δ/μ plot of (a) resistance value and (b) switching 

voltage of Mo/Si3N4:Cr/Pt device (green points), compared with 

reported data of other devices in the literature. The literature data can 

be found in Ref. 
2,8

. 

 

2.7.3   Endurance 

Endurance tests beyond the one shown in Figure 2.15b were performed for Si3N4:Cr 

devices. They can maintain its switching capability up to ~10
6
 cycles (Figure 2.23a). The 

endurance is expected to be improved if (a) mechanical contact is avoided during testing 

(see Chapter III), (b) the device is isolated from ambient moisture (see Chapter VI) and 

(c) the quality of electrodes is improved to avoid wear, decohesion or oxidation. For 

example, our former colleague Dr. B-J. Choi fabricated a crossbar nanometallic device 

made of SiO2:Pt, which allows electrical testing without direct mechanical contact of the 

cell. He reported an improved endurance of >3×10
7
 cycles (Figure 2.23b)
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Figure 2.23. Endurance test for (a) Si3N4:Cr device, (fCr=7%, 

δ=10 nm) and (b) SiO2:Pt device (data from ref.
10

). 

 

2.7.4   Switching Speed 

To test the switching speed, we again employed a pump-probe method (previously 

described as the AC test in Section 2.5.1): an square-shaped excitation voltage pulse with 

a certain width (from 20 ns to 1s) and height (from 0 V to the switching voltage) was first 

provided to the device, then a small probe DC voltage (0.2 V) was used to read the 

resistance to determine the current resistance state. A switch box was employed to isolate 

the two electrical sources used in the two steps (Figure 2.24). 
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Figure 2.24. Schematic of measurement system. 

 

Figure 2.25a shows the on→off switching voltage for different pulse widths for a 

400×400 μm
2

 cell, which was initially set to the LRS. (After the resistance change 

reached the ~MΩ range, taken to be already in the HRS, the cell was reset to the LRS for 

additional testing.) It is clear that the switching voltage is independent of the pulse width 

over the range from 1 s to 10 μs. However, at shorter pulse widths, the on→off switching 

voltage rapidly increases, reaching 10 V for a pulse width of 100 ns. A similar 

observation was found for off→on switching (Figure 2.25b). 
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Figure 2.25. Switching speed testing for (a) on→off (b) off

→on of 400×400 μm
2
 cell. (fPt=5%, δ=10 nm). 

 

Similar observations were made with other cell sizes. As shown in Figure 2.26a & b, the 

threshold pulse width below which the switching voltage significantly increases varies 

with the device size: a smaller size exhibits a smaller threshold pulse width. For the 

smallest cell size tested, having a 2 μm cell, the threshold pulse width apparently falls 

below our instrumental capability (from 20 ns to 1 s), as both the on→off and off→on 

switching voltages are constant within the testing range. This is counter to the 

observation of ionic-RRAM for which there is typically a 4 fold increase of the switching 

voltage as the pulse width decreases from 1 s to 100 ns. (See Chapter I) It is also counter 

to the expectation that smaller cells are more difficult to switch because of the less 

favorable statistics of finding a switching filament. 

0 5 10
10

2

10
3

10
4

10
5

10
6

1s~1s

500ns

R




V (V)

100ns(a)

-8 -6 -4 -2 0
10

2

10
3

10
4

10
5

10
6

500ns

1s~1s

200ns

R




V (V)

100ns

(b)



 

81 
 

 

 

Figure 2.26. Threshold voltage of square-shaped voltage pulse 

required for switching in devices of various lateral sizes. (a) Von→off, 

vs. pulse width. (b) Voff→on vs. pulse width. (fPt=5%, δ=10 nm). 

 

The size dependence of the threshold voltage in our devices turns out to be a circuit 

artifact related to its RC delay as illustrated in Figure 2.27a. The delay is controlled by 

the product of device capacitance and the load resistance. In our device, the dominant 

load resistance is identified as RBE originating from the bottom electrode resistance, 

interface resistance or any parasitic line resistance. For a square-wave pulse of applied 

voltage V, the steady state voltage V*cell=(Rcell/(Rcell+RBE))V for the cell is not reached 

until a transient time ~RBEC has passed. Therefore, a pulse width shorter than this 

transient time is not able to provide the steady state voltage to the cell, thus necessitating 

a higher applied voltage to trigger switching. The analytical solution to the cell voltage 

problem  
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 exp1  

in which the RC-delay time is  BEcellcellBE RRRCR / . Assuming a linear capacitor for the 

cell, for which C=εd
2
/δ (ε: dielectric constant, d: cell lateral length, δ: film thickness), and 

a size-independent RBE which is dominated by the size-insensitive spreading resistance, 

we can expect the delay time ~RBEC to exhibit a strong size dependence, proportional to 

the cell area. For a 400 µm cell, we let C=700 pF, RBE=800 Ω, Rcell, HRS=1 MΩ and 

Rcell,LRS=400 Ω, 
offon

cellV
 =3 V and onoff

cellV
 =-1 V (from DC switching data), the computed 

switching voltages for on→off and off→on switching are shown in Figure 2.27b and c. 

These plots capture the experimentally observed switching characteristic; in particular, 

for a cell size of 2 µm or less, it shows RBEC=800 Ω 18 fF=15 ps, so there is no obvious 

increase in the switching voltage within the 1 s to 1 ns test range in Figure 2.26. 

Therefore, the size dependence of the switching voltage of our devices is a purely a 

circuit artifact. 
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Figure 2.27. (a) Equivalent circuit. Simulated data for (b) Von→off 

vs. pulse width (c) Voff→on vs. pulse width for various lateral sizes. 

 

The above interpretation is consistent with the observation of time-independence of the 

switching voltage in other nanometallic RRAM. For example, both SiO2:Pt (Figure 2.28a, 

data from ref.
2
) and perovskite nanometallic film LaAlO3:LaNiO3 (Figure 2.28b, data 

from ref.
11

) exhibit a similar switching-time -independence. In both cases, the apparent 

switching voltage only rises when the pulse widths are less than 100 ns, which is 

approximately the estimated RC delay. 
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Figure 2.28. Threshold voltage vs. pulse width in (a) SiO2:Pt (adapted 

from ref. 
2
) and (b) LaAlO3:LaNiO3 (adapted from ref. 

11
) devices. 

 

To estimate the threshold pulse width in practical devices, we consider the scaling laws 

of IC circuits in CMOS technology. The interconnect line resistance is expected to follow 

a linear relation RlN, where N×N is the memory size, and the capacitance to follow 

CN
-2

, giving RCN
-1

. Thus, the RC delay rapidly decreases with N. To provide a rough 

numerical estimation for a state-of-the-art 1 Tbits (10
6
×10

6
) memory CMOS technology, 

we use a typical sheet resistance of 0.05 Ω/sq for the metal conductor layer to estimate 

the interconnect line resistance, which is 0.05 Ω/sq  10
6
 sq or 50 kΩ. We also estimate 

the capacitance of a 100×100 nm
2 

cell to be of 0.1 fF based on the measured C=100 pF 

for a 100×100 μm
2
 cell. Therefore, the estimated RC delay for the 1 Tbit nanometallic 

memory is ~5 ps. This is fast enough to easily support any nanosecond or even 25 ps 

memory device. 

Our data above provides an upper limit of the intrinsic switching time to be 20 ns, which 

is the end of the test range which did not cause any voltage rise in the 2 μm device in 

Figure 2.26. Our former colleague Dr. B. J. Choi tested a SiO2:Pt nanometallic device in 

a circuit that has a much smaller RC delay; he demonstrated a switching time <100 ps 

(Figure 2.29)
10

. In the above test and even in the state-of-art electrical circuit (RC~1 ps) 

the capacitance is ultimately dominated by the parasitic capacitance, whereas we believe 

the intrinsic switching time is ultimately determined by electron’s trapping/detrapping 

time within a nanometer trap barrier, which could be as short as ~femtosecond. Therefore, 

probing the intrinsic switching time is far beyond the capability of any electrical testing 
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method today. In Chapter III, I will describe an entirely different setup using a  stress-

trigger to demonstrate the HRS to LRS switching that apparently occurs within 0.1 ps. 

 

Figure 2.29. SiO2:Pt device (5×5 µm
2
) during (a) set and (b) reset 

operations with 100 ps (FWHM) pulses (adapted from ref.
10

). 

 

2.7.5   Size Limitation 

To investigate the size limitation of nanometallic devices, nano-sized devices were 

fabricated using electron beam lithography. The fabrication procedure is summarized as 

follows. 1) A Mo bottom electrode (~20 nm) was DC sputter-deposited, followed by 

nanometallic film (Si3N4:Pt) deposition. This step is identical to the one used in 

fabricating micron-sized devices described above. 2) PMMA (A4 495) was spin-coated 

onto the nanometallic film at 4000 rpm, then baked for 10 min at 180 ºC. After that, a 

second PMMA (A2 950) layer was spin-coated and baked in an identical manner. This 

two-layered e-beam resist containing PMMA of different molecular weights was used to 

facilitate the lift-off process in later steps. 3) The e-beam resist was exposed to e-beam in 

an Elionix ELS-7500EX (current: 100 pA, dose: 500-800 µC/cm
2
). The CAD file used 
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included square shaped patterns from 20×20 nm
2
 to 2×2 µm

2
. After exposure, it was 

developed in MIBK(1):IPA(3) developer for 1 min (ultrasonication was not used). 4) A 

Pt top electrode (~40 nm) was RF sputter-deposited, followed by 2 min ultrasonication in 

acetone. The obtained pattern examined by SEM (Figure 2.30a and b) showed the 

desired square shape for the larger patterns (from 200×200 nm
2
 to 2×2 µm

2
), but below 

100×100 nm
2
 devices had rounded corners due to imperfect exposure. The pattern was 

also checked by AFM (Figure 2.30c and d), confirming the electrode thickness and 

surface flatness.  

  

Figure 2.30. Nano-devices fabricated by e-beam lithography. (a) 

SEM image of nano-devices from 20×20 nm
2
 to 2×2 µm

2
; higher 

(a) (b)

(c) (d)

2 µm
500 nm
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magnification image shown in (b). (c) & (d) AFM images of 

fabricated nano-devices. (fPt=5%, δ=10 nm). 

 

Electrical characterization was performed by a customized conducting AFM (C-AFM). 

By rerouting connections of Asylum MFP-3D (equipped with a Pt/Ir-coated CAFM tip 

with a diameter <20 nm) to an external circuit board, we obtained a larger range of 

current compliance for our devices. (The built-in circuit in Asylum MFP-3D ORCA has a 

2 nA current compliance, compared to our customized compliance, up to 100 mA, 

provided by our own source meter.) Figure 2.31 shows a series of R-V curves for various 

cell sizes ranging from 2×2 µm
2
 to 100×100 nm

2
. All devices present resistive switching 

with a similar switching voltage undistinguishable from that of the micron-devices. This 

provides evidence that the nanometallic RRAM has no size limit down to ~100 nm, 

which can support a ～10 Gbit/cm
2
 memory.  

 



 

88 
 

 

Figure 2.31. (a) Measurement set up. (b)-(f) R-V characteristics 

of nano-device from 2×2 µm
2
 to 100×100 nm

2
. (fPt=5%, δ=2 nm). 

 

2.7.6   Crossbar Feasibility 

On an application level, individual RRAM devices need to be integrated to RRAM arrays. 

The most straightforward scheme is a 2-D crossbar structure, in which top and bottom 

electrodes are accessed by word and bit lines controlled by peripheral circuits. In the 

literature, RRAM crossbar structures have been reported. For example, Kim et al. 

fabricated 32×32 arrays for a 1 kbit TiO2 RRAM without cross-talk problems
12

. A 3D 

cross-point architecture is also possible
13-14

 and may have some advantage, but it  must 

utilize a conformal deposition method (e.g., ALD), and its read/write feasibility 

(including demonstrating the absence of crosstalk) remains to be verified experimentally. 

We have fabricated a crossbar structure for the nanometallic RRAM. A set of 40 nm Pt 

(with a thin Mo adhesion layer) bottom “word lines” was first obtained by conventional 
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photolithography. A nanometallic Si3N4:Pt film was next deposited on these word lines, 

fully covering the metal line and beyond in order to avoid short circuit during later cross-

bridging. Finally, a set of top Mo “bit lines” were fabricated by conventional 

photolithography with appropriate alignment. The fabricated structure and associated 

electrical characteristics are shown in Figure 2.32 to demonstrate the same switching 

behavior as our standard micron-size devices. (Crosstalk was not addressed here since 

our experiment only involved one individual crossbar structure, which is the same status 

as that for the 3D crossbar architecture mentioned above.) 

 

Figure 2.32. A crossbar structure of nanometallic RRAM. (a) 

Schematic of 2-D crossbar structure. (b) Top view of 

photolithographically fabricated crossbar nanometallic RRAM 

and its high magnification picture (c). (d) Characteristic I-V (R-V) 

curve. (fPt=5%, δ=10 nm). 
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2.8   Other Nanometallic RRAMs 

2.8.1   Nanometallic Films 

Before addressing the switching mechanism of nanometallic RRAM at the end of this 

chapter, we first take a broader view of the nanometallic materials universe to establish 

the generality of the observed phenomena. Nanometallic resistive switching turns out to 

be a quite general phenomenon，observed in a large set of materials, listed in Table 2.2. 

The insulator matrices cover oxides/oxynitrides/nitrides of group II, III, IV and transition 

metals, and the metal atoms cover both main group metals (e.g., Al) and transition metals 

(not limited to noble metals). Surprisingly, films of all combinations exhibit resistive 

switching phenomenon with almost identical switching characteristics (Figure 2.33). 

Such remarkable universality confers simplicity and flexibility to CMOS design and 

manufacturing.  

 

Table 2.2. Atomic insulator:metal hybrids exhibiting 

nanometallic transitions and switching behavior. 

Insulator : Metal Insulator : Metal

SiO2:Pt AlN:Pt

MgO:Pt Si3N4: Al

Al2O3:Pt Si3N4: Cr

Y2O3:Pt Si3N4: Cu

HfO2:Pt Si3N4: Ta

Ta2O5:Pt Si3N4: Pt

SiOxNy: Pt
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Figure 2.33. Characteristic switching R-V curves. For several other insulator : 

metal systems: Si3N4:Al, Si3N4:Cu, Si3N4:Ta, Si3N4:Pt, SiO2:Pt, SiOxNy:Pt, 

Al2O3:Pt, AlN:Pt, HfO2:Pt, Y2O3:Pt, MgO:Pt, Ta2O5:Pt. Bottom electrode: Mo; 

top electrode: Pt.  

 

As we have shown earlier in Figure 2.8, all switchable films appeared amorphous to 

conventional X-ray diffraction, but their TEM nanostructures ranged from ones with a 

worm-like contrast (typical for amorphous networks) without any resolvable inclusion  to 

ones with metal-rich inclusions embedded in an amorphous background (Figure 2.11 and 

Figure 2.12). As already discussed earlier, the interesting questions here are: how are 

these different nanostructures correlated to device characteristics, and what is inclusion’s 

role in nanometallicity and switching? 
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To answer these questions, we performed R-V tests on devices fabricated with various 

compositions. The insulating matrices of all the films are amorphous as evident from the 

worm-like appearance in the plan-view micrographs shown in Figure 2.34. At the highest 

f (right column, Figure 2.34 (g, h, i)), dark-colored inclusions associated with metal-rich 

compositions, which derive the contrast from atomic number (ZPt,Cr,Si,Al,O,N =78, 24, 14, 

13, 8, and 7, respectively) differences, are readily visible. Some clusters appear to be in 

contact with each other; not surprisingly, these films are always conducting regardless of 

thickness (hence above the percolation threshold, fp), which was confirmed by the R-V 

curves in the insets. In contrast, at the lowest f (left column, Figure 2.34 (a, b, c)), no 

such inclusion is visible. Yet with a suitable  these structureless films are switchable 

featuring “generic” R-V curves (see insets) for the voltage-controlled MIT. At an 

intermediate f (middle column, Figure 2.34 (d, e, f)), dark inclusions are also visible but 

obviously separated from each other. Again, with a suitable  these films are switchable 

featuring R-V curves (see insets) identical to their lower-f counterparts but for a lower 

insulator resistance.  
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Figure 2.34. Nanostructure and switching. Plan-view TEM images (bright 

field) of Si3N4:Cr (a, d, g), SiOxNy:Pt (b, e, h) and Al2O3: Pt (c, f, i) 

systems. Scale bar: 5 nm. Inset within each image is the characteristic R-V 

curve for film of the corresponding composition at the thickness specified, 

under identical voltage (V) scan between -2 V to +3 V, drawn with 

identical resistance (R) range from 80 Ω to 20 MΩ for ease of comparison. 

(a, b, c): switching films without metal-rich clusters; (d, e, f): switching 
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films with metal-rich clusters; (g, h, i): conducting films with percolating 

metal-rich clusters. 

 

These observations verified that contacting metal-rich clusters are indeed needed for bulk 

percolation, but whether any cluster exists or not is immaterial for nanometallicity and 

switching. Since nanoclusters are ruled out as the cause for nanometallicity, we must 

explain conduction by Anderson’s picture: in a random material some electrons of 

atomically dispersed metal atoms can tunnel to span a sufficiently large distance , thus 

rendering nanometallicity. Likewise, since nanoclusters are also ruled out as the cause for 

switching, we suggest that localization must arise from the lack of tunneling paths and/or 

the presence of Coulomb barriers (due to trapped charge injected during voltage-triggered 

MIT), thereby decreasing  Such localization effect decreases at a higher f, where a 

higher electron concentration is expected in Anderson’s random lattice together with the 

contribution from metal-rich clusters. Thus, unlike metal-nanocrystal memory, which 

stores electrons in discrete metal nanodots (e.g., Au and Pt in SiO2, ref.
15-17

), isolated 

metal-rich clusters are merely spectators of nanometallic MIT. Random-wave electrons 

must have come from the random network itself, most likely from the electron-rich metal 

atoms/oligomers dispersed on the three-dimensional insulator scaffold.  

 

2.8.2   Electrode Combinations 

Electrode is a critical factor for nanometallic switching. Electrodes in contact with the 

nanometallic film provide definite work functions, which decisively control the ease and 
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direction of electron injection, removal, trapping and detrapping. We have investigated 

various electrode combinations and found the following correlations. 

(1) If identical electrodes are used in a cell, no bipolar switching can be observed. 

From symmetry, this is completely expected. More specifically, a cell with identical low 

work-function electrodes (e.g., Mo-Mo) is in a non-switching conducting state while a 

cell with identical high work-function electrodes (e.g., Pt-Pt) results in a non-switching 

insulating state.  

(2) Devices with dissimilar electrodes are switchable and their switching polarity 

depends on the relative work function of the electrodes. If the top electrode has a higher 

work function, then switching is counterclockwise (Figure 2.15), which is our standard 

configuration. Conversely, if the bottom electrode has a higher work function, then 

switching is clockwise. This correlation is summarized in Figure 2.35. Asymmetric 

electrodes are likely to provide directional electron injection/removal/trapping/detrapping 

and therefore bipolar switching. 

These correlations will be fully addressed in Section 2.9.4. 
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Figure 2.35. Electrode effect on switching polarity. “+” represents 

counterclockwise switching, “-” represents clockwise switching. (Polarity 

convention was previously defined in Figure 2.15) 

 

2.9   Mechanism and Discussion 

2.9.1   Localization Length 

Resistance change between different states can be attributed to a corresponding change in 

localization length (ζ) , i.e. )( , where  is a state variable depending on the 

resistance state, doping level, field, etc. The LRS enjoys a large localization length, 

ζLRS>δ, allowing “free” electron diffusion across the film thickness. In this case, 

    /1/exp 00  RRR , so there is a weak thickness dependence for resistance. As 

electrons gain energies from the external voltage, at a critical voltage Vc some electrons 

can overcome certain barriers and land on certain metastable sites that are local minima 

in the energy landscape. If these states are separated from the conduction patch, then the 
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electrons there are trapped and become “permanent”. Their Coulombic repulsion will turn 

away other (itinerant) electrons and curtail their localization lengths to ζHRS<δ, which can 

be a drastic reduction (Figure 2.18b). This change is non-volatile until a negative voltage 

-Vc is applied to empty the trapped charge.  

 

 

Figure 2.36. Schematic of electron conduction in (a) LRS and (b) HRS.  

 

2.9.2   Trapping Centers and Negative-U centers 

Where are these traps? In crystalline solids, likely locations for electron trapping sites are   

point defects. However, nanometallic films are amorphous, which have no well-defined 

defects. We believe trapping sites are associated with dangling bonds, which are common 

in amorphous compounds. With the insertion of metal atoms, ionic bonds (e.g., O-Si-O) 

may be interrupted and dangling bonds (e.g. O-Si-) may form. These unpaired dangling 

bonds are energetically favorable sites for acquiring one additional electron; thus, they 

may provide the trapping centers (Figure 2.37).  
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Figure 2.37. Schematic of electron trapping site comparing (a) ideal 

Si-O bonding, (b) Si with dangling bond and (c) dangling bond 

capturing one extra electron.  

 

Existence of dangling bonds implies the possibility of the so-called negative-U centers
8
. 

Electronically, U refers to the on-site electron energy, which is positive under normal 

circumstances mostly because of the on-site Coulomb repulsion. A negative-U center 

nevertheless arises when local bond/atomic distortions lower the system energy so much 

that the net on-site energy may be regarded negative despite a positive Coulomb 

contribution
18

. The prerequisite for such negative-U states is (a) the addition of a second 

electron, and (b) a strong electron-phonon interaction that leads to a sufficiently large 

local structural distortion. In this sense, it is a polaron albeit a highly localized one, at the 

electron trapping site and not found everywhere in the material. The above bond 

relaxation occurs shortly after (over a time of 10
-13

 to 10
-12

 s) electron filling (happening 

in ~10
-15

 s) and lasts well within the residence time of the electron at the defect/center 

(ranging from 10
-9

 to 10
-4

 s, which would be the natural retention time of an electronic 

memory)
19

. Naturally, the need for easy structural distortions dictates that these centers 
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tend to be situated near internal defects (e.g. vacancies)
19-22 

and surfaces (e.g. internal 

voids)
19

 in a crystalline solid, and they are especially common in amorphous materials in 

which flexible (cation/anion) polyhedra with dangling bonds are commonplace
18-20

. 

Indeed, the negative-U center was first proposed for amorphous chalcogenides because 

chalcogenides are relatively flexible and covalent, thus accentuating the electron-phonon 

interactions
18

. (Incidentally but not surprisingly, we also note that the negative-U centers 

have been studied in phase change memory materials that use similar chalcogenides
23

.)  

In addition to amorphous chalcogenides
 
and SiO2,

 
negative-U centers have been studied 

in a broad range of materials. A cursory literature search found negative-U centers have 

been investigated in the materials listed in the following table. 

Materials with experimentally verified negative-U: 

Semiconductor: Si
24-25

, GaAs
26-27

, AlxGa1-xAs
28

, CdTe
29

, GaSb
30

, HgCdTe
31

. 

Oxides: SiO2
19-20

, HfO2
32

,BaTiO3
33

. 

Nitrides: Si3N4
34-35

,GaN
36

. 

Other Chalcogenide: (Ge2Sb2Te5)
23

. Additionally, it was for elementary chalcogenides  (S 

and Se)
37

 where Anderson
18

 first proposed the negative-U mechanism. 

Theoretically predicted negative-U: 

Semiconductor: SiC
38

, Ge
39

, ZnSe
40

.  

Oxides: ZnO
22

, HfO2
41

, ZrO2
41

, FeO
42

. 

Nitrides: AlN
43

, GaN
44

. 

All strongly ionic Halides
45

. 
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We believe such negative-U centers broadly exist in nanometallic films, given its rich 

dangling bonds. The metal-rich nanometallic pathways can then supply mobile electrons 

to these negative-U centers, and when two-electron filling is made at a center—which 

occurs when the Fermi level is sufficiently lifted by Voff to counter the internal bias 

caused by the work function differential between the electrodes—off-switching (electron 

trapping/localization) takes place at the site. Since the spontaneous conversion of mobile 

electrons to localized electrons at the negative-U centers is energetically irreversible after 

Voff’s removal, the trapped electrons and the local Coulomb barriers they erect will 

remain. They can “choke off” the electron passage in the nearby nanometallic paths, 

making non-volatile memory possible. Later, from the fact that a critical opposite bias, 

−Von, can reverse the process and cause delocalization again, we estimate the stabilization 

of the negative U contribution is about Von+Voff/2. We will provide more experimental 

evidence on negative-U centers in Chapter III. 

 

2.9.3   Voltage-time Dilemma 

As we have shown in Section 2.7, fast switching (<ns or <ps) and long retention (>10 

years) can be achieved simultaneously, which seems contrary to the “voltage-time 

dilemma” that is believed to prevail in all electronic systems. The rationale behind this 

dilemma is that the same barrier that need to be overcome, by tunneling, thermal 

emission, or their combination, with and without a field assistance cannot be too difficult 

to overcome (thus good for retaining data) on one hand, yet too easy to overcome (thus 

good for fast programming at a low voltage) on the other hand. Schroeder et al. provided 
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a quantitative assessment for a metal/insulator/metal thin film stack
46

. Their calculation 

confirms the dilemma: there is an incompatibility between the requisite long retention 

time (10 years) and the desired short (≤100 ns) read/write current pulses at low voltages 

(≤1 V). However, negative-U centers provide a solution to the dilemma by offering a 

variable energy barrier, which dynamically adjusts the barrier for during programming 

and for electron storage. We will revisit this topic in Chapter III. 

 

2.9.4   Mechanism for Nanometallic Switching 

Key experimental observations that must be explained by the model are summarized as 

follows. 

(1) Switching voltage is insensitive to temperature and film thickness; device resistance is 

polarity-symmetric before switching occurs. 

(2) The initial state is Ohmic conducting down to <2K. 

(3) Switching is bipolar: on-switching at a negative voltage, off-switching at a positive 

voltage. 

(4) After on-switching there is no further unipolar switching at more negative voltages; 

after off-switching there is no further unipolar switching at more positive voltages. 

(5) Both the HRS and LRS are non-volatile at zero voltage. 

(6) When a low-work-function metal is used as both top and bottom electrodes, the 

device is always at the LRS. 
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(7) When a high-work-function metal is used as both top and bottom electrodes, the 

device is initially conducting but permanently switches to the HRS at either a positive or 

a negative voltage. 

 

2.9.4.1   Electron energy states in an insulator:metal film 

Nanometallic film contains metal atoms randomly separated at various spacing. As 

shown in Figure 2.38a, when metal atoms are closely spaced, their outer-electron orbitals 

overlap forming band structures of the conventional type. For the simplest case of metal 

atoms with only one outer-electron per atom, the conduction band is half filled, up to the 

level of Ef, the Fermi energy. Adding an extra electron to the metallic state requires Ef, 

the same energy as filling the last electron. Nanometallic film also contains metal atoms 

of a larger spacing, with less overlapping of outer-electron orbitals, for which the band 

structure progressively deforms as shown in Figure 2.38b-d. The deformation is caused 

by the (positive ) on-site Coulomb potential: adding a second electron to the same orbital 

of an already highly localized electron entails Coulomb repulsion between the two 

electrons; in effect, the second electron must occupy a higher energy state as shown in 

Figure 2.38d. (This effect, the so-called correlated-electron effect, is absent in the 

conventional band structure, in which the Coulomb potential is small because of 

delocalization.) Therefore, with close atomic spacing, a delocalized-electron system of 

one-electron per metal atom is a conductor (Figure 2.38a-b), whereas with large atomic 

spacing a partially-localized-electron system of the same is an insulator (Figure 2.38c-d). 

In nanometallic films, negative-U centers associated with Figure 2.38d ensures the 
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following features for the trap: (i) adding an extra electron to the trap requires a critical 

energy, (ii) the added electron is localized, (iii) with the extra electron the trap becomes 

negatively charged, and (iv) the trapped charge is stable after bond relaxation.  

 

 

Figure 2.38. Schematic energy/density of states for one-electron metal atoms 

placed at various spacing (a-d). Correlated-electron effects increase from (a) to 

(d). (e) The energy level of (a) depends on whether a second electron (the 

second red dot) occupies the (d) state (the right panel) or not (the left panel). (f) 

Simplified representation of (e) with electron-phonon interaction included, 
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which lowers the energy level of the second electron. In (e) and (f), the states 

derived from (a) form the conduction channel, the states derived from (d) form 

the gate channel. 

 

2.9.4.2   Two channel model: Conduction channel and gate channel 

As-fabricated device is designed to contain enough metal atoms to form enough metallic 

states (Figure 2.38a), so that there exist some continuous conducting paths between the 

two electrodes. They will be referred to as the conduction channel. An isolated 

conduction channel has a characteristic energy Eb. Since the conduction channel coexists 

with traps, its energy can be influenced by the traps. When a trap is occupied by an extra 

electron, it becomes negatively charged and creates a long-range (inter-site) Coulomb 

repulsion. As a result, it raises the energy of the nearby conduction channel from Eb to 

Eb
int

 as shown in Figure 2.38e. This may choke off conduction. Therefore, the traps will 

be referred to as the gate channel. Note that there is a fundamental difference between the 

two channels. The correlated-electron effect is absent or weak for the conduction channel, 

so additional electrons can be accommodated at the same (Fermi) energy Ef. In contrast, 

the effect is strong for the gate channel, so there needs an extra energy to add an electron 

to the gate channel.  

In the following, we will use the simplified drawing of Figure 2.38f to represent Figure 

2.38e. In Figure 2.38f, we also introduce the electron-phonon interaction fep, which 

lowers the energy of the second electron to counter the correlated-electron effect. The 

conduction channel is represented by a rectangular box: the operating one reflecting the 

current status of the gate channel (and its interaction) is drawn in solid lines, and the 
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hypothetical one reflecting a past/future status of the gate channel is drawn in broken 

lines. The gate channel is represented by a blue circle with up to three states occupied by 

up to two electrons (as red dots). The lowest level is the one-electron state, the highest 

level is the two-electron state, and the middle level is the two-electron state after partial 

stabilization by the electron-phonon interaction fep. The exact magnitude of fep is 

unimportant. If it is large enough, then the energy state of the second electron becomes 

lower than that of the first electron, which is the case of negative-U. In the figures shown 

below, for simplicity a smaller fep is used. But the essential results below are all 

preserved if a larger fep is used instead. Different cell configurations and resistance states 

will be illustrated to show the model can explain all the observations listed at the start of 

this section. 
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Figure 2.39. Device with top electrode made of higher-work-function metal and 

bottom electrode made of lower-work-function metal. (a) Metal concentration 

rich enough to have conducting device at V=0. (b) Positive V applied to top 

electrode, causing off-switching, then back to V=0, with device in insulating 

state. (c) Negative V applied to top electrode, causing on-switching, then back to 

V=0. 

 

2.9.4.3   Device with electrodes of different metals: the initial state 

Consider a film in contact with a bottom electrode I (e.g., Mo, with a lower work function) 

and a top electrode II (e.g., Pt, with a higher work function). After the conduction channel 

redistributes electrons between the two electrodes to establish a constant Ef, the 

accumulated charge on the two electrodes causes all energy levels to shift, hence 

asymmetry arises. Suitable electron doping (via adjusting the metal concentration during 

fabrication) can create an as-fabricated state as shown in Figure 2.39a, with side I having 

two electrons in the gate channel and side II having one electron in the gate channel, plus 

an Ef high enough to allow electron flow through Eb
int(I)

 and Eb
(II)

. This is the low-

resistance state (LRS): the electron can flow in either direction. 

 

2.9.4.4   Off-switching 

At a critical positive voltage, +V*
+
, electron filling (by an electron from the bottom 

electrode) of the gate channel on side II becomes energetically feasible (top panel of 

Figure 2.39b). As this proceeds to completion, shown in the second panel of Figure 

2.39b, four effects set in. (i) The energy of the two-electron state in the gate channel is 

lowered by electron-phonon interaction fep; (ii) the energy of the conduction channel on 
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side II is raised to Eb
int(II) 

by long-range Coulomb repulsion; (iii) if Ef now lies below 

Eb
int(II)

, then there is no electron flow to Eb
int(II)

, so the device is switched to the high-

resistance state (HRS), and (iv) the voltage in the film next readjusts to reflect the fact 

that side II is insulating while side I remains conducting. It is worth noting that without 

fep, non-volatility cannot be achieved in the model. This is shown in the third panel in 

Figure 2.39b. A sufficiently large fep and a sufficiently high Fermi energy (controlled by 

metal concentration) will ensure the HRS is stable at zero voltage, i.e., it is non-volatile. 

 

2.9.4.5   On-switching 

At a critical negative voltage, V*

, the release of the second electron (returning to the 

bottom electrode) in the gate channel on side II becomes energetically feasible (top panel 

of Figure 2.39c). As this proceeds to completion in the second panel of Figure 2.39c, 

four effects set in. (i) The energy of the (empty) two-electron state in the gate channel 

recovers to the previous level prior to fep stabilization; (ii) the energy of the conduction 

channel on side II is lowered to Eb
(II) 

as the long-range Coulomb repulsion disappears; (iii) 

if Ef now lies above Eb
(II)

, then the electron flow in Eb
(II)

 resumes, the electron flows back 

to the bottom electrode, and the device is switched to the low-resistance state (LRS), and 

(iv) the voltage in the film next readjusts to reflect the fact that both side II and side I are 

conducting; indeed, the actual voltage across the electrodes through the film must drop if 

the applied voltage also passes through an external load. Moreover, the LRS is stable at 

zero voltage, i.e., it is non-volatile, as shown in the third panel of Figure 2.39c.  
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2.9.4.6   Device with electrodes of identical low work function metal 

As shown in Figure 2.40, when a low-work-function metal is used for both electrodes, 

the Fermi energy Ef lies above the (repulsion-elevated) conduction band edge Eb
int

, so 

there is always conduction. This is despite the fact that there is trapped charge in the film, 

which elevates the conduction band energy from Eb to Eb
int

.  

 

 

Figure 2.40. Device with top and bottom electrodes made of same low-work-

function metal. Metal concentration rich enough to have conducting device 

initially. 

 

2.9.4.7   Device with electrodes of identical high work function metal 

As shown in Figure 2.41a, when a high-work-function metal is used for both electrodes, 
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this conducting state is unstable: once a critical voltage is applied, electron trapping on 
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 to rise to 

Eb
int(II)

, which now lies above Ef, as shown in the first two panels of Figure 2.41b. Thus 

the device is switched off. This is despite the fact that there is no trapped charge on side I 

of the gate channel. At the opposite voltage polarity, trapped electron on side II are 

detrapped but they are immediately trapped again on side I. Therefore, the device will 
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always remain in a HRS after initial trapping, although microscopically the trapped 

electrons are allowed to internally exchange within the nanometallic film. 

 

 

Figure 2.41. Device with top and bottom electrodes made of same high-work-

function metal. (a) Metal concentration rich enough to have conducting device 

initially. (b) Positive V applied to top electrode, causing off-switching, then back 

to V=0, with device remaining in insulating state. 
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2.10   Conclusions 

1. Nanometallicity have been found in thin films of a wide variety of 

oxide/nitride/oxynitride:metal combinations, with metal constituents atomically 

dispersed in an amorphous hybrid. Thickness ()-composition (f) maps constructed 

for these thin films demonstrated nanometallicity and nanometallic switching 

regardless of the presence/absence of metallic clusters, even at compositions far 

below the cluster percolation threshold.  

2. Reproducible bipolar resistive switching phenomenon triggered by a set of 

characteristic switching voltages (~ 1 V) independent of device thickness, area (100 

nm × 100 nm), composition, and switching speed is found for nanometallic films 

sandwiched between two electrodes of different work functions. They provide an 

RRAM with outstanding performance: fast speed (<100 ps), long retention (>10 

years), high endurance, scalability, and excellent reproducibility and uniformity.  

3. Nanometallic switching is purely electronic: the insulator to metal transition can be 

alternatively triggered by UV irradiation. The insulating state (the high resistance 

state or HRS) is a metastable state, with a resistance that scales with thickness and 

composition exponentially. The low resistance state is stable with a resistance that 

can be arbitrarily lowered by depleting residual trapped charge.  

4. Electrons in nanometallic films can be trapped at negative-U centers. The negative-U 

effect, which involves lattice distortion (electron-phonon interaction) to stabilize 

trapped electrons and provide resistance-state-dependent adjustable energy barriers, 

enables nanometallic RRAM to simultaneously satisfy the requirements of fast 
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switching speed at low voltage and good memory retention. Thus, the voltage-time 

dilemma that plagues electronic memory is fully resolved in nanometallic RRAM. 

5. A two-channel model that assigns metal atoms of different spacing, thus different 

correlated electron effects, to “gate” and “conduction” channels is proposed. When 

aided by electron-phonon interaction that stabilizes trapped electrons in the gate 

channel, the model can explain all the experimental observations including 

nonvolatile switching and electrode effects. 
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Chapter III. Stress Induced Metal-Insulator Transition 

 

3.1   Introduction 

In Chapter II, we demonstrated nanometallic RRAM has an electronic nature， free 

from the “voltage-time dilemma” that troubles conventional electronic memories. 

Theoretically, no energy barrier (having two independent characteristics: barrier height 

and width) that separates a trapped-charge-state from a free-charge-state can 

simultaneously satisfy three specifications: low programming voltage (<1 V), fast 

programming time/speed (<100 ns) and long retention time (>10 years)
1-5

. Moreover, 

since the trapped-electron-state often experiences an on-site Coulomb repulsion (the 

Hubbard U), the positive-U electron sees a lowered barrier making the state even less 

capable of retaining memory. However, such dilemma can be lessened or eliminated by 

converting a positive-U state to a “negative-U” state through strong electron-phonon 

interaction, which lowers the energy of a trapped electron by fep, as schematically 

illustrated in Figure 3.1. Atomically, this requires a local bond distortion (relaxation) 

around the newly trapped electron, stabilizing both the electron and the bond. Since the 

electron trapping/escape times are short (~1 fs)
6
, the rate-limiting step for memory 

switching in a nanometallic RRAM is that of bond distortion, which takes about the time 

for one atomic vibration, or 0.1-1 ps.  
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Figure 3.1. Energy of state of freshly captured electron (upper) and 

the relaxed state (lower) in configuration coordinate. 



 

Figure 3.2. Four experiments in this chapter: CIP, CAFM, FIB, ebunch. 
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In this chapter, we provide four pieces of experimental evidence revealing the existence 

of electron-phonon interaction and its ability to directly influence switching (Figure 3.2). 

These experiments demonstrate another degree of freedom to trigger the metal-insulator 

transition: mechanical stress. A surprisingly modest mechanical excitation of the orders 

of 20 to 300 MPa covering a very wide time domain from 10
-13

 s to 10
3
 s can destabilize 

a trapped-charge state, converting it to a free-charge state, thus leading to a one-way 

resistance switching. Beyond RRAM, the ultra-fast test methodology developed in this 

chapter could also be of use for probing mechanical/ electrical properties of other 

materials. 

 

3.2   Pressure Induced MIT at 10
3
 s 

Our first mechanical test was performed using a uniform isostatic pressure of 300 MPa 

applied to all the devices on a chip inside a Cold Isostatic Press (CIP). The system uses 

oil as working fluid, which guarantees an isotropic compressive stress and thus avoids 

tensile or shear deformation, cracking and other anisotropic damage. Device was 

mounted, with silver paste, on a rounded metal plate and covered by an aluminum foil (as 

charge sink), then placed inside an evacuated rubber glove before inserted into the 

pressure vessel. 
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Figure 3.3. (a) Cold Isostatic Press (CIP) system. (b) 

Schematic of RRAM arrays under isotropic pressure. 

 

3.2.1   Results 

Before pressurization, cells in an RRAM array were first checked for their initial 

resistance states (HRS or LRS). As shown in Figure 3.4a, as-fabricated cells are in either 

state, with the fraction of the LRS being higher in larger cells. (Each array contains many 

cells of different sizes.) This is common in our experience, and the statistical presence of 

the HRS despite the fact that all cells have the same thickness and composition is 

attributed to processing-introduced trapped charge (e.g., excess charges during sputtering 

deposition). Then samples were loaded into a CIP and isotropic pressure of 300 MPa was 

applied at room temperature (Figure 3.3b). A range of loading time (typically between 

10 min and 1 hour) was used, but it is not expected to make any difference. After 

depressurization, samples were removed and electrically tested again. 
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Figure 3.4. (a) Fraction of LRS before and after 300 MPa pressure 

treatment (the tested cells are all in their fresh states without preset). 

(b) R-V characteristics of pressure-switched device being switched 

back to HRS under positive voltage. (c) Calculated percentage change 

(HRS to LRS) caused by pressure treatment in (a) (largest size data is 

not shown because it is 100% after pressure treatment). Device: 

Mo/Si3N4:5%Pt/Pt, δ=10 nm. 

 

Post-pressurization measurements found that, with increasing device sizes, an increasing 

percentage of HRS devices had switched to LRS (Figure 3.4a & c). We also found the 
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devices could repeatedly switch in either direction with the same characteristic R-V 

curves as before (Figure 3.4b). But unlike an electrical voltage that can trigger two-way 

switching, pressure only induced one-way switching: the transitions only occur in HRS 

cells (HRS→LRS) while all LRS cell remains unchanged. We can thus conclude that the 

HRS is metastable from an energy perspective, which irreversibly transitions to the LRS, 

the ground state, under a mechanical perturbation. The above experiment was also 

repeated using arrays with preset cells, some to the HRS, and some to the LRS. The same 

observations were made, so the same conclusion remains. In addition, HRS→LRS 

switching percentage increases with applied pressure. As shown in Figure 3.5, switching 

percentage increases from ~20% to ~50% as the applied stress varies from 200 MPa to 1 

GPa. 

 

Figure 3.5. Switching percentage as a function of stress/pressure level 

(Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, size: 256256 μm
2
). 
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3.2.2   Discussion 

The key feature of the stress induced switching involved in mechanically triggered 

switching that differs from electrically triggered switching is the absence of ion migration. 

Since hydrostatic pressure is spatially uniform, there was no biased field to drive ion 

motion. Therefore, pressure-induced switching must be due to electron de-trapping. But 

can electron de-trapping be induced by mere 300 MPa—well below the critical pressure 

(~3-30 GPa) typical for electronic transitions? Indeed, the estimated strain is <0.002 if a 

typical Young’s modulus of 100 GPa (ref.
7
) and a Poisson’s ratio of 0.2 (ref.

8
) are 

assumed for the amorphous 95% Si3N4:5% Pt film used. We believe the answer lies in the 

fact that amorphous materials are not elastically uniform: they contain locally soft atomic 

spots
9
 which may buckle under a modest pressure. These spots may have provided the 

sites for electron trapping and de-trapping. More importantly, this reveals electron-

phonon interaction plays an active role during switching, which is a critical evidence for 

negative-U sites: the negative-U state is able to drive bond distortion to reduce the energy 

of a freshly trapped electron by fep, turning the state into a stable negative-U 

configuration; conversely, once an opposite bond distortion unravels fep, restoring the 

state to the positive-U configuration, it must prompt electron de-trapping.  

In our material, these negative-U sites are localized to some soft atomic sites. The 

pressure experiment unequivocally confirmed two key elements expected of the above 

mechanism: the action of electron-phonon interaction must (a) entail a strain via bond 

distortion (thus a stress can unravel fep), and (b) be predicated on electron occupancy 

(thus a stress can induce de-trapping but not trapping). Moreover, at least some trap sites 



 

123 
 

must coincide with the locally soft atomic spots, which have locally low atomic density
9
, 

so that even a modest pressure can induce switching. 

 

3.3   Contact Stress Induced MIT at 10
2
 s 

To repeat the above experiment under a different (and more complicated) stress state, 

CAFM technique was employed. The conducting AFM was a conventional non-

conducting AFM module with an external circuit connecting the AFM tip to a 

semiconductor measurement unit (SMU), as shown in Figure 3.6. This homemade circuit 

allows a more flexible signal control (e.g., a current compliance: 100 mA) than the build-

in CAFM mode (e.g., current compliance: 2 nA). It is suitable for DC measurement but 

not optimal for AC measurement (>1 MHz) because of the use of extraneous BNC and 

unshielded lines. A Pt/Ir coated AFM tip was used to provide a mechanical force and 

electrical contact. The standard contact mode was used during testing. 

 

Figure 3.6. (a) Schematic of CAFM circuits. (b) Sample connections. 
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3.3.1   Results 

The testing procedure is shown in Figure 3.7. First, a topographical profile was obtained 

using the tapping mode, which minimized tip wear. Second, a cell was selected and set to 

the HRS or LRS using a positive (HRS) or negative (LRS) voltage. Third, a random point 

on the top electrode of the cell was selected and engaged with a certain force set by the 

AFM controller. Fourth, the resistance (R) was monitored continuously by using a small 

reading voltage (+0.1 V), while the applied force was kept constant (made possible by the 

feedback mechanism of the AFM controller.) This continued for certain time or until the 

cell resistance showed an abrupt change to the value expected for the other state. After 

testing, the cell was electrically cycled again to check its switchability, and to examine 

whether there was any permanent damage to the cell.  

 

Figure 3.7. CAFM testing procedure. 
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Figure 3.8a shows the in-situ resistance variation of an HRS cell under a 100 nN 

compressive force. The resistance monitored at 0.1 V experienced a sudden transition to a 

LRS-“1” at ~100 s, followed by a second transition to LRS-“2” ~100 s later. The 

transition was non-transient: the low-resistance remained after removing the tip and 

voltage. It was also non-damaging: the device switched normally in subsequent tests 

(Figure 3.8b). Note that although the small reading voltage was positive, its electro-

mechanical interaction cannot aid switching because the stress-free HRS→LRS transition 

in the device normally requires a negative voltage. Again, force only induced one-way 

switching: no LRS device identically tested switched.  

 

Figure 3.8. (a) In-situ resistance under 100 ncompression by CAFM tip (tip 

radius ~20 nm). HRS transitions to LRS (1) at ~100 s and to LRS (2) at ~200 s. 

(b) R-V curves of state (1) and (2), both switching to HRS under a positive 

voltage. (Device: Mo/Si3N4:5%Pt/Pt, δ=2 nm, size: 22 μm
2
). 
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As shown in Figure 3.9, the waiting time for the HRS→LRS transition decreases as the 

applied force or stress increases. A 50 nN force requires a significantly longer time (~10
3
 

s) than a 200 nN force (~10
2
 s). This suggests that a larger local stress, which induces a 

large lattice distortion, can facilitate electron-phonon interaction. However, my 

experience with the experiment was that it was difficult to reproduce, i.e., different tests 

yielded different waiting time. 

Stress also affects switching voltage. This was demonstrated in another experiment in 

which the R-V curve was measured while a constant CAFM force was applied. As shown 

in Figure 3.11 and Figure 3.12, the switching voltage Von→off varies from 1.6 V to 2.4 V 

as the force/stress increases from 25 nN to 250 nN. However, the Voff→on remains 

unchanged under different stresses. Experiments are reproducible. 

 

3.3.2   Discussion 

One reason for the poor reproducibility may lie on the AFM tip which was worn during 

testing: it is hard to maintain an identical tip shape and contact radius between tests (see 

Figure 3.10). It is also impractical to check tip wearing in-situ, which would introduce 

uncertainty in stress estimation. For example, for the same 100 nN, an unworn tip with a 

tip diameter 20 nm results in a nominal stress σ=F/A=318 MPa, a slightly worn tip in 

Figure 3.10 (left, with a diameter~100 nm) would lead to σ=13 MPa, and a severely worn 

tip in Figure 3.10 (right, with a tip diameter ~2 μm) would lead to σ=32 kPa. Such wide 

range of tip size makes true stress determination very difficult if not impossible.  
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Figure 3.9. In-situ resistance under various AFM forces F and post R-V check. 

(Device: Mo/Si3N4:5%Pt/Pt, δ=2 nm, size: 22 μm
2
). 

 

 

Figure 3.10. Two randomly picked AFM tips, after testing. 
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independent. Since stress facilitates electron-detrapping process, a higher stress allows 

more electrons detrapped thus reaching a more conductive state, which is physically 

equivalent to applying a more negative voltage during the HRS→LRS transition. 

Therefore, a larger Von→off is expected. On the other hand, since Voff→on is history 

independent, it should not be affected by stressed-induced detrapping. Therefore, Voff→on 

is the same under different stresses. 

 

Figure 3.11. R-V curves for switching cycle under different AFM forces F. 

(Device: Mo/Si3N4:5%Pt/Pt, δ=2 nm, size: 22 μm
2
). 
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Figure 3.12. (a) Von→off vs. F and (b) Voff→on vs. F in Figure 3.11. (Device: 

Mo/Si3N4:5%Pt/Pt, δ=2 nm, size: 22 μm
2
). 

 

3.4   Bombardment Stress Induced MIT at 10
-6

 s 

A FIB system, which provides energetic Ga
+
 ions (30 keV) to bombard the device surface 

(Figure 3.13), was employed to provide a compressive force on the sample. As the 

momentum of Ga
+
 ions is transferred to the sample, an impact is made according to Δp/Δt. 

A beam with a Gaussian size of ~1 nm scanning a ~100 μm
2 

area during a scanning time 

~10 s spends ~0.1 s at every point. Therefore, this offers a stress testing method on the 

order of 1 microsecond. 
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Figure 3.13. (a) Focus ion beam (FIB) system. (b) Schematic 

of Ga
+
 bombardment inside FIB. 

 

3.4.1   Results 

As shown in Figure 3.14, device exhibits visible physical change after Ga
+
 ion 

bombardment over the entire scanned region (15×12 μm
2
). This change increased with 

current and was apparent even at the smallest current used. However, the electrodes were 

still intact and thus allowed post electrical characterization. Resistance measured ex-situ 

(Figure 3.15) shows a drop beginning with 50 pA bombardment; 300 pA bombardment 

caused a drop comparable to that of a typical voltage-triggered HRS→LRS transition. 

Similar to the previous cases, beam-induced resistance transition was non-transient, non-

damaging as shown in Figure 3.16. In addition, such transition is one-way only: LRS 

devices treated identically did not switch. This confirms that the HRS is a metastable 

state. 

A Ga
+
 carrying energy E with an effective mass m has a velocity        . Since the 

momentum is entirely transferred to the sample when Ga
+
 stops there, the momentum 
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transfer is         (if Ga
+
 bounces, the momentum transfer is even larger). The 

number of Ga
+
 ions per unit time, delivered by a beam current I, is      . Therefore, 

the total force as a result of momentum transfer per unit time is:       . 

Furthermore, considering a beam size ~1 nm or area A ~1 nm
2
, the normal stress or 

pressure over the beam cross section is: 

  
 

 
 

     

  
 

Using m=1.210
-25 

kg,     =3.410
-20 

kgm/s, e=1.610
-19

C, A=1 nm
2
, we get σ=21.3 

MPa for I=100 pA, or σ=213 MPa for I=1 nA. With these estimate, we find the results in 

Figure 3.15 sets a threshold stress (at 50 pA) of ~10 MPa, which is even lower than the 

already low pressure used earlier in the hydrostatic pressure experiment. 

Lastly, since any Ga
+
 accumulation on the top electrode would produce a positive bias 

whereas HRS→LRS switching under the stress-free condition requires a negative bias, 

we can safely exclude the possibility of charge accumulation induced switching. To 

further corroborate this, parallel experiments were performed with 30 keV electrons, 

which would produce an opposite charge accumulation. None of the devices experienced 

any resistance change, and all remained switchable after bombardment (Figure 3.17). 

The lack of response was expected because the impact pressure of electrons (~100 kPa) 

was a factor of (mGa/me)
1/2

, or 356×, significantly smaller than that of Ga
+
. 
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Figure 3.14. SEM images of 20×20 m
2
 devices after 20 s bombardment 

of Ga
+
 ions at various beam current (a) 10 pA, (b) 30 pA, (c) 50 pA, (d) 

100 pA, (e) 300 pA, (f) 1000 pA. Bombarded regions (15×12 μm
2
) show a 

brighter contrast than the remainder of the square-shaped electrodes. Scale 

bar: 5 m. (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm). 
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Figure 3.15. HRS resistance after 20 s bombardment by 30 keV Ga
+
 

ions of various currents. Switching to intermediate states starts at >50 

pA, becoming nearly complete at 300 pA. (Device: Mo/Si3N4:5%Pt/Pt, 

δ=10 nm, size: 2020 μm
2
). 

 

 

Figure 3.16. Device R-V curves after bombardment started at (a) 

HRS after 30 pA bombardment; (b) intermediate state after 50 pA 

bombardment, which switched to HRS at ~+1 V; (c) LRS after 300 

pA bombardment, which switched to HRS at ~+4 V. (Device: 

Mo/Si3N4:5%Pt/Pt, δ=10 nm, size: 2020 μm
2
). 
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Figure 3.17. Resistance after bombardment by 30 keV electrons of 

various duration. No resistance change is observed. (Device: 

Mo/Si3N4:5%Pt/Pt, δ=10 nm, size: 2020 μm
2
). 

 

3.4.2   Discussion 

Comparing with isotropic pressure, FIB requires a lower stress to trigger resistive 

switching. This is reasonable because bond distortion requires a shear stress, which 

cannot be provided by a pressure in an elastically homogeneous continuum (our 

amorphous films are not elastically homogeneous), but can be efficiently generated by a 

uniaxial compression/tension.  

The gradual resistance transition in Figure 3.15 may be rationalized using the concept of 

a “parallel circuit” in Chapter VII. The total resistance R of the device of a parallel 

connection of an HRS component and an LRS component depends on the weights of the 

components, which change according to the stress once the stress exceeds a threshold 

value σ
*
. The weight of the HRS is initially unity, and it subsequently decreases with 

stress; the weight of the LRS is initially zero, and it subsequently increases with stress. 

One representation which may account for the observed transition is 

 

 
 

      
    

 
 
 

 

 

    
 

        
    

 
 
 

 

 

    
 

in which the numerators are the weights. Here (…)+ represents the positive part of (…): 

when it negative, it is set at zero;  the exponent n prescribes the steepness of the transition 

and ∆ is a scaling factor for stress. In the Ga
+
 ion bombardment, σ Ai, where A is a 
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proportionality constant (see Section 3.4.1). So we can rewrite the expression in terms of 

current i (in pA). Therefore, we have 

 

 
 

      
     

 
 
 

 

 

    
 

        
     

 
 
 

 

 

    
 

 

        
 
  

    
 

 

 

    
 

          
 
  

    
 

 

 

    
 

This equation gives a reasonable fit to the data, as shown by the solid curve in Figure 

3.15 with the following fitting parameters: 

 

    
 

 

    
              

     

    
    

 

   

   
 

    

                  
     

    
    

 

   

   

Later, we will revisit this model and check its consistency with the electron-bunch 

experiment. 

To verify whether bombardment ions penetrate through top electrode and reach 

nanometallic film, we performed the range calculation for 30 keV Ga
+
 in Pt using SRIM 

software (“the Stopping and Range of Ions in Matter”, http://www.srim.org/). The results 

show the projected range is 6.9 nm with 6.3 nm longitudinal straggling (Figure 3.18) and 

4.9 nm lateral straggling. Therefore, the farthest the ion will go is 13.2 nm, which is 

much less than our top electrode thickness of 40 nm. We can thus safely conclude that 

momentum transfer to the Pt top electrode is complete, hence the force on the device. 

http://www.srim.org/
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Internal dissipation, including atomic rearrangement, does not affect this calculation: 

momentum conservation will ensure that eventually all momentum will be transferred to 

the Pt electrode. 

 

Figure 3.18. Projected Range and Longitudinal Straggling. Ga
+
 (5 keV to 

100 keV) in platinum calculated by SRIM software (“the Stopping and 

Range of Ions in Matter”, http://www.srim.org/). A 30 keV Ga
+
 is fully 

stopped by a 40 nm Pt top electrode, enabling complete momentum transfer. 

 

To further support the above calculation, we refer to Table 1.1 in the book Focused Ion 

Beam Systems: Basics and Applications (Nan Yao, Cambridge University Press 2007), 

which lists the penetration depth of 30 keV Ga
+
 in Fe to be 20 nm. Since Pt has a higher 

density than Fe, the penetration depth in Pt should be much less than 20 nm. This is 

consistent with our calculation shown above. 
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3.5   Lorentz Stress Induced MIT at 10
-13

 s 

Having established the mechanical and electron-occupancy nature of the electron-phonon 

interaction by static and quasi-static perturbation experiments, we next address its 

dynamics by probing the effect of mechanical excitation in a faster time domain. The 

time window to form the negative-U state commences after electron filling of the trap-

site (happening in ~1 fs) and lasts for the duration of a strong electron-phonon interaction 

(about one period of atomic vibration, 0.1-1 ps)
6
. Therefore, if a sub-picosecond force 

can mechanically unravel fepit will unequivocally confirm the operation of the 

mechanism. To provide such force, we designed a sub-picosecond experiment using the 

concept of the Lorentz force (magnetic pressure), which is a self-force acting on any 

circuit loop with a circulating current. 

 

3.5.1   Lorentz Force for a Current Loop 

 

Figure 3.19. Magnetic field       at point P due to a current 

element       (ref.
10

) 

 

According to the Biot-Savart law, an electrical current I flowing around a closed loop 

generates an induced magnetic field at the point P, given by:  
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Here μ is permeability (                  for free space), and r denotes the 

distance from the current source to P (Figure 3.19)
10

. For a circular loop, the expression 

simplifies to:      
 

 
       . The magnetic field in turn interacts with the current loop 

itself and exerts a Lorentz force on the loop, giving              per unit length, where    is 

the unit vector towards the current direction. Therefore, for a circular loop, the self force 

is 

    
 

 
      

As illustrated in Figure 3.20, the self-force is always tensile (radially outwards along   ), 

irrespective of the current direction (clockwise or counterclockwise). This 

electromagnetic field induced mechanical force is actuated by an electrical/magnetic 

signal. Therefore, it can be extremely fast with the same duration of the electromagnetic 

excitation itself. 

 

F F
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Figure 3.20. Lorentz force induced by a current loop. It is always 

tensile (radially outward) regardless of the current direction (cp. left 

and right).  

 

3.5.2   Electron-bunch in Stanford Linear Accelerator Center (SLAC) 

To induce an ultra-fast mechanical force (the Lorentz force) through an electromagnetic 

excitation, a short-pulse current is needed. Traditional circuit methods find it difficult to 

go faster than ~nanosecond because of the LCR delay of the circuit, including its wiring. 

Fortunately, this can be accomplished by use of the 3 km long Stanford linear accelerator 

(linac), which generates an ultra-relativistic electron beam of 20 GeV electrons with 

210
10

 electrons “bunched” into a short packet of 24 μm in the laboratory frame. The 

charged beam, i.e., each electron bunch, travels at the speed of light. Therefore, such 

short bunch length translates into a 80 femtosecond (fs) pulse with a peak current of 

310
4
A. In fact, the manipulation of the characteristics of electron bunches (shape, size, 

length, etc.) has become a science in itself (ref.
11

). 

 

Figure 3.21. (a) Schematic of a single shot of relativistic electron bunch. 

The E and B fields are perpendicular to the beam. (b) Plot of maximum E- 

B E

~0.1-10ps

SLAC 20 GeV e-

(a)
(b)
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and B-field amplitude vs. distance r from the beam center (adapted from 

ref.
12

). 

 

A relativistic beam carrying a large charge resembles an electrical current passing 

through space, it thus induces a large electrical/magnetic field nearby. A simple analogy 

to an infinite long current results in E~cB~1/r distribution, which is exactly the asymptote 

expression for the far field at r→ . The field near the bunch needs explicit consideration 

of the spatial distribution of the electron package (σr~20 μm). This eventually leads to the 

following form
11

: 
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Where Q=Nee is the total charge of the bunch and τ is the bunch duration (~0.1 ps-1 ps). 

This relation is plotted in Figure 3.21b. Both E- and B-fields initially rise up to the edge 

of bunch, then decay as 1/r. At the beam center r=0 where electrons are most 

concentrated, E- and B-fields are zero which is also expected from the symmetry point of 

view. This property will prove critical to differentiating different effects of the electron 

bunch in later sections. 

In the following, we will describe a series of experiments using the following bunch 

durations: 0.1 ps or 1 ps. This time  is the Gaussian sigma time of the electron bunch, 

which corresponds to a FWHM of 2.35 , which may be taken as the time of the half-

cycle field. The corresponding spatial extent of the field is 2.35 c, where c is the speed 
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of light. (The corresponding period is 4.7 , which may be used for estimating the Fourier 

components or wavelength when needed.) Using the above relation, the duration of the 

following experiments are 0.235 ps or 2.35 ps, and the length scales are 71 μm or 710 μm. 

(For convenience, the duration time in this chapter refers to Gaussian sigma time 

instead of FWHM).   

 

3.5.3   Experimental Design 

To harness the fast half-cycle electromagnetic field of the electron bunch and convert it 

into a Lorentz force, we invented the following method which conveniently utilizes the 

MIM structure already provided by RRAM. As shown in Figure 3.22, there is a 

current/circuit loop in our standard metal-insulator-metal (MIM) structure shown in 

Figure 3.22, which may be used to induce a force. When an electron bunch is normally 

incident on the top electrode, a transient current/electrical-field in the circuit loop is 

induced from the transient magnetic field. Meanwhile, the direct electrical field can be 

easily shielded inside the top electrode as long as the electrode thickness exceeds the skin 

depth (~1 nm). This current flow causes a repulsive Lorentz force between the electrodes. 

Therefore, our standard MIM device structure is immediately suitable for ultra-fast 

mechanical test.    
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Figure 3.22. MIM structure drawn with a circuit loop of TE → 

insulator-gap → BE → insulator-gap → TE. 

 

Other considerations are important to optimize the test condition. First, electrons in an e-

bunch are laterally distributed within σr~20 μm, so the device size need to be small 

enough to capture the details of the field distribution inside the bunch; Second, both E- 

and B-fields decay rapidly from 10
10

 V/m to 10
9
 V/m within ~500 μm (Figure 3.21b), so 

individual devices need to be close enough for sufficient sampling of the field within the 

above range; Third, the device size need to be large enough for easy pre- and post- 

electrical characterization (probe-tip contact typically requires >10 μm); Fourth, it will 

become clear that there is a “resonance” effect at play in the field-electrode interaction, 

yielding a peak coupling when the device size is commensurate with the effective 

wavelength of the field. The latter is about the bunch size, i.e., ~30 μm. Therefore, 

devices of about this size are expected to experience the maximum Lorentz force. Based 

on these considerations, the array was designed to consist of 20×20 μm
2
 squares (TE) 
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with 10 μm spacing. Figure 3.23 shows the schematic of fields carried by e-bunch and a 

device array of 20×20 μm
2
 squares. 

In the following, the main observations of the electron bunch experiments are first 

summarized, followed by a systematic parametric study to interrogate the mechanism for 

the observed effect. This is followed by evaluation of radiation and collisional damage of 

electrons and simulation of the field/MIM interactions.  

 

 

Figure 3.23. (a) E- and B-fields from electron bunch. (b) 20×20 

μm
2
 device array. (c) Overlap (a) & (b).  
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3.5.4   Physical Appearance After Electron-bunch Shot 

 

Figure 3.24. SEM image of square shaped device. White features are 

distorted remnant electrodes, between them are gray regions where top 

electrodes are completely torn away. Top electrode thickness: 40 nm Pt. 

Beam condition: 3 nC, 0.1 ps. 

 

200 µm
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Figure 3.25. SEM higher resolution image of device in Figure 3.24. The 

damaged top electrodes show bow-tie shape symmetrically distributed 

around the bunch center. Top electrode thickness: 40 nm Pt. Beam 

condition: 3 nC, 0.1 ps. 

 

B
E



 

146 
 

 

Figure 3.26. SEM higher resolution image of device (tilted by 50 degree) 

in Figure 3.25. Top electrode is partially torn off, showing bow-tie shape 

with two clamped edges that are perpendicular to the radial direction from 

the electron bunch. The torn free edges are along B-field direction. Top 

electrode thickness: 40 nm Pt. Beam condition: 3 nC, 0.1 ps. 

 

After exposed to a single shot of an electron bunch, the device array was severely 

damaged at and around the bombarded site (Figure 3.24) within a radius of 180 m. The 

damage was most severe within the bunch radius (r~σr), showing “scorching” and “trench” 

formation around the edges of the top electrodes. Outside the bunch center, top electrodes 

were also completely torn off within r~200 m. Further away from the bunch center, 

however, the top electrodes remained intact. Interestingly, the transition region, near 

r~200 m, showed directional tearing which has central symmetry around the bunch 

center (Figure 3.25). This transition region carried key information regarding the nature 

of the mechanical forces. A closer look at the device (Figure 3.26) reveals a beautiful 

pattern: the top electrode (40 nm Pt film) was partially peeled off from the underneath 

dielectric film and formed a “bow-tie” shape with two edges (up & down) firmly 
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“clamped” to the dielectric layer while the other two edges (left & right) detached. On the 

clamped edges, a deep trench developed along each edge. Directional top electrode 

tearing and trenching clearly reveals a strongly mechanical nature of the e-bunch effect 

on the MIM structure. Meanwhile, trenching—most likely a result of ionization and 

arcing, provides evidence of electrical field concentrations. 

 

3.5.5   EDX Study of Physical Damage 

To further identify the nature of damage and understand the electrode detachment 

mechanism, a detailed EDX study was performed. The results can be summarized as 

follows:  

1. The “blue” region outside the cells in Figure 3.27 shows the characteristic peaks from 

O (EO, Kα=0.525 keV), Si (ESi, Kα=1.739 keV), and Mo (EMo, Lα=2.293 keV). This signal 

is interpreted as coming from the Si/SiO2/Mo/Si3N4:Pt stack, in which the 

nanometallic film (Si3N4:Pt) is only 10 nm thick, thus not contributing to the signal.  

2. The “red” region in Figure 3.27 on an intact portion of the top (Pt) electrode shows a 

strong Pt peak (EPt, M=2.048 keV) while other peaks are suppressed. This is expected 

because Pt electrode can shield the signal from beneath. The “yellow” region in 

Figure 3.27 shows only O, Si and Mo peaks from the Si/SiO2/Mo/Si3N4:Pt stack, very  

similar to the spectrum obtained in the “blue” region. This indicates that Pt electrode is 

completely torn off. 

3. Next to the “clamped” edge, there is a trench (the “green” region in Figure 3.27) 

which shows only Si and O peaks but no Mo peak (EMo, Lα=2.293 keV). This indicates 
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the Mo bottom electrode was also missing. However, as the distance to the path of the 

e-bunch increases, Mo peak is gradually recovered (the “purple” region in Figure 

3.27), indicating the Mo layer survived if the device is far away from the 

bombardment center, even though some top electrode tearing is still evident. 

4. Near the path of the e-bunch, devices were severely damaged and the Pt top electrode 

was missing. This is evident from all the spectra collected in various regions shown in 

Figure 3.28. The remnant has a layer-like appearance, although the layering is due to 

the Mo bottom electrode, which is initially a continuous film beneath both the cell 

regions and the rim (between cells) region. For example, in the cell region, closer to 

the e-bunch the “blue” spot has no Mo signal, but further away at the “red” spot some 

Mo signal appears. Likewise, in the rim region, there is a varying amount of Mo 

remaining, more at the “purple” spot than the “yellow” spot as indicated by their 

spectra. Interestingly, in the trench region (the “green” region) between the above two 

regions, Mo is completely gone. (The trench here is very wide.) Since this is the same 

edge that would have been clamped had the top electrode remained, this suggests the 

very severe local damage is related to the electrical field which is expected to be 

concentrated here.  
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Figure 3.27. SEM image and EDX analysis at different 

regions outside e-bunch. (Device: Mo/Si3N4:5%Pt/Pt, δ=10 

nm, top electrode: 40 nm Pt. bottom electrode: 20 nm Mo. 

Size: 2020 μm
2
. Beam condition: 3 nC, 0.1 ps). 
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Figure 3.28. SEM image and EDX analysis at different regions 

near e-bunch, which landed on the left in the SEM image. 

(Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, 

bottom electrode: 20 nm Mo. Size: 2020 μm
2
. Beam condition: 

3 nC, 0.1 ps) 

 

3.5.6   Resistance Change After Electron-bunch Shot 

With a repulsive Lorentz force between electrodes, the nanometallic film experienced a 

(normal) tensile stress, which induced resistive switching. Figure 3.29 shows resistance-
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nm) / Pt (100 nm) after one single shot of electron bunch bombardment. Before the 

experiment, all cells were preset to the HRS. In this sample, the top electrode is thicker, 

which proved to be effective for suppressing tearing. This indicates that a thicker Pt film 

has a higher bending rigidity thus more resistance to tearing, which is convenient for 

electrical study. Different electrical states were found in different regions. 1. Very near 

the center, which suffered the highest direct mechanical impact of electrons, there were 

some undamaged, un-switched HRS devices (inside the small white dotted circle.) 2. 

Within r~150 m from the center, all electrodes were torn away, so no electrical testing 

was performed in this region. 3. Between r~150 m and r~400 m, the preset HRS 

devices had mostly transitioned to the LRS. 4. Outside r~400 m, the HRS devices were 

unchanged. Within the switching zone (150 m<r<400 m), electron-bunch induced 

switching was non-transient and non-damaging: all the switched devices—even those 

bow-tie ones—could be electrically switched back and forth.  

 

LRS

HRS

200 μm
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Figure 3.29. Optical image of circular (20 m) devices with thicker (100 

nm) TE preset to HRS. Red and blue colors were added to the cells to 

indicate different states after experiment, blue: HRS; red: LRS. Yellow 

cells near the center have lost top electrodes. Drawn circles going outward 

indicate four zones of different device states, starting from (no damage & 

HRS)→ (top electrode torn away)→ LRS→ HRS. (Device: 

Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, bottom electrode: 

20 nm Mo. Size: d=20 μm. Beam condition: 3 nC, 0.1 ps) 

 

3.5.7   A Parametric Study 

3.5.7.1   MIM vs. MI structure: “circuit loop” 

We first verify that the MIM structure, which allows a transient current to form, is 

essential for stress generation. This was checked by removing the bottom electrode and 

replacing the highly doped conducting Si substrate with a lightly doped insulating Si 

substrate. A much smaller damage profile was observed (Figure 3.30): r~200 μm for the 

MIM structure and r~100 μm for the latter, MI structure. Apparently, without a bottom 

electrode to provide a sufficient current, the Lorentz force becomes much weaker for 

tearing. However, since even an insulator would behave like a conductor in fast transients 

when the impedance Z~1/jωC is low, an insulator “counter electrode” does conduct to a 

certain degree, thus creating some tearing at very high field (near the center). 
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Figure 3.30. Decreased damage when image charge is suppressed. 

Damage patterns in samples made on (Left) highly doped Si 

(conducting) substrate, with a bottom electrode, and (Right) lightly 

doped Si (insulating) substrate, without a bottom electrode. The latter 

sample has little image charge and shows much less tearing of top 

electrode. (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm 

Pt. Size: 2020 μm
2
. Beam condition: 3 nC, 0.1 ps) 

 

3.5.7.2   Charge dependence 

 

Highly doped Si sub

200 μm 200 μm

Lightly doped Si sub

Low charge 1010 e

200 μm200 μm
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Figure 3.31. Two identical array exposed under 20 GeV electron 

bunch. One used 10
10

 electrons (left), the other used 210
10 

electrons 

(right). (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, 

bottom electrode: 20 nm Mo. Size: 2020 μm
2
. Beam condition: 0.1 

ps) 

 

The incident E and B fields scale with Q/r at large r (Q = total electron charge of the 

electron-bunch, r = radial distance from the bunch) and the same relation holds for the 

induced fields since the Maxwell equations are linear. Therefore, any field effect is Q 

dependent. This was verified in Figure 3.31, where the size of the damage zone is highly 

dependent on the charge (rdamage~100 μm for the low charge case (10
10

 electrons) vs. 

rdamage~200 μm for the high charge case (210
10

 electrons)). Since the damage contour 

may be described as:  

  ., const
r

Q
fBEf 










 

it follows that Q/r is constant at the same degree of damage/effect (e.g., the border of the 

damage zone.) Therefore, the radius of the damage zone should be proportional to the 

charge Q, which is consistent with the above observation.  

 

3.5.7.3   Pulse duration dependence 

Since the electromagnetic field, especially the B field, arises from the current of the 

electron bunch, vary the duration of the pulse has the same effect as varying the current. 

Figure 3.32 shows two identical samples each bombarded by one shot of a 20 GeV 

electron bunch of the same total charge (10
10

 electrons) but different pulse durations (the 
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short pulse: 0.1 ps vs. the long pulse: 1 ps). The shorter pulse caused damage as before, 

while the longer one did not. Because identical collision/ energy-transfer/ momentum-

transfer was created by the electrons in these two experiments, they clearly demonstrated 

that the damage was caused by the E- or B-field rather than the direct energy/momentum 

transfer. It is the time/transient/rise-time effect, namely the one associated with the 

induced magnetic field that arises from the Faraday law, that is the cause of the 

phenomena probed in our study. This magnetic field transient is harnessed by our MIM 

cell, which serves as a patch antenna (see below). 

 

Figure 3.32. Two identical samples exposed to 20 GeV electron bunch. 

One used 0.1 ps short pulse (left). The other used 1 ps long pulse (right). 

(In these two samples, the damage region is smaller than previous cases 

because charge carried by electron bunch is 10
10

 electrons, half of the 

standard case.) (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 

nm Pt, bottom electrode: 20 nm Mo. Size: 2020 μm
2
.) 

 

200 µm 200 µm

Short pulse 0.1 ps Long pulse 1 ps

E-bunch center
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3.5.7.4   Electrode shape dependence 

To examine whether damage was related to sharp corners, which may be associated with 

field concentrations, we compared square and circular cells of comparable area/size. As 

shown in Figure 3.33, square shaped top electrodes form standard “bow-ties” near the 

edge of damage region, while circular shaped ones also form distorted “bow-ties”. The 

detailed shape suggests that tearing in both cases initiates from the center of the 

“longitudinal” edge, defined as the one pointing towards the center of the e-bunch, but is 

clamped on the “transverse” edges, defined as the one perpendicular to the longitudinal 

edge. Since circular cells have shorter transverse edges, there is less resistance to tearing 

in circular cells appears and the “bow-tie” shape is less prominent for them. 

 

 

Figure 3.33. (a) Square vs. (b) circular cells exposed to 

identical electron bunch (20 GeV, 0.1 ps duration, 10
10

 

Circle

200 µmSquare

(a)

(b)
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electrons). SEM image on the right is taken by tilting the 

stage by 52
o
. (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top 

electrode: 40 nm Pt, bottom electrode: 20 nm Mo. Size: 

2020 μm
2
.) 

 

3.5.7.5   Electrode aspect-ratio dependence 

To further investigate the effect of cell shape, we compared rectangular patterns of 

various aspect ratios. The damage zones are shown in Figure 3.34 for the ratios of 1:1, 

1:2, 1:4 and 1:8. The 1:1 sample exhibits a circular shaped damage zone, while the 1:2 

sample shows an elliptical zone. As the aspect ratio increases to 1:4 and 1:8, the damage 

zones become kidney-shaped, as if resembling the E-field distribution of a “dipole”: 

damage is locally minimized along the short edges but maximized along the long edges. 

The asymmetry in Figure 3.34 again excludes the possibility of direct impact–identical in 

all cases–to be the main cause of the damage. It is consistent with a magnetic flux 

mechanism augmented by the clamping force as illustrated in the right panel of Figure 

3.35. (The clamping force is exerted on the edges where there is a current discontinuity.) 

Regarding the magnetic flux, the field incident on a long edge has a larger flux Φ=Bδllong 

than the field incident a short edge Φ=Bδlshort, thus generating a stronger emf in the 

former case. Since the circuit impedance is dominated by that of the dielectric gap, which 

is the same for both cases, there is a larger current (along the long side) when the 

magnetic field is incident on a long edge, thus a larger Lorentz force in this case. 

Referring to Figure 3.35 for the high aspect ratio case, in which A and B are about the 

same distance from the center C, the SEM image shows the top Pt electrode of a 
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rectangular device deformed into a “bow-tie” aligned in the “long” direction, when the 

long direction is more or less along the radial direction from the center. This is most 

evident around A. In contrast, the device around B suffered little damage apparently 

because along their boundaries, most length of the edges is clamped (along the long 

edges) and very little magnetic flux passes (through the short edge cross-section). This 

compares the devices around A, along their boundaries only a small length of the edges is 

clamped (at the short edges) and a more substantial magnetic flux passes (through the 

long edge “circuit loop”), thus exhibiting more tearing.  

 

Figure 3.34. Damage pattern for various aspect ratio (1:1, 1:2, 1:4, 1:8). 

(Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, bottom 

electrode: 20 nm Mo. Beam condition: 3 nC, 0.1 ps) 

1:1 1:2

1:4 1:8
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Figure 3.35. Damage pattern varying with aspect ratios of devices. (left) 

High aspect ratio (1:8) devices. C: center; A and B about same distance 

from C. (right) Schematic of field distribution, clamping forces, and 

tearing (Lorentz) forces, their magnitude indicated by the length of the 

red arrows. Top electrode thickness: 40 nm. (Device: Mo/Si3N4:5%Pt/Pt, 

δ=10 nm, top electrode: 40 nm Pt, bottom electrode: 20 nm Mo. Beam 

condition: 3 nC, 0.1 ps) 

 

3.5.7.6   Electrode thickness dependence 

Magnetic-flux-induced Lorentz force depends on the area of the “circuit loop” but not the 

top electrode thickness t. Therefore, a weak thickness dependence is expected for induced 

switching. This is indeed verified in Figure 3.36 for samples of different top electrode 

thickness from 15 nm to 100 nm, in which the radius of switching is similar, r~350 μm,.  
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Figure 3.36. Top electrode thickness t has no effect on switching zone (indicated 

in red), but the size of the damage zone in which top electrode was torn off is 

differet. (a) t=15 nm, with larger damage zone, and (b) t=100 nm, with smaller 

damage zone. (c) Radius of switching zone vs. thickness (Beam condition: 210
10

 

electrons, 0.1 ps). (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, 

bottom electrode: 20 nm Mo.) 

 

Although resistance switching is the same, there is less degree of the physical damage 

when the top electrode is thicker. This is shown by the size of the inner zone in which all 

top electrodes are torn off: this zone is smaller in Figure 3.36 when the top electrode is 

thicker. It is further verified by Figure 3.37: the t=10 nm sample shows a damage zone 

r~500 μm, but the t=100 nm sample exhibits little damage. Therefore, the electrode 

thickness has a strong influence on the resistance to mechanical tearing but not on 

switching. The resistance to tearing is easy to understand: the bending rigidity of a metal 

electrode follows a t
3
 dependence, so a thicker top electrode can better resist tearing 

given the same Lorentz force. It is also clear that switching is caused by the Lorentz force, 

which is thickness independent, and not by tearing, which is strongly thickness dependent. 
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Figure 3.37. Top electrode (TE) thickness (t=10 nm, 20 nm, 40 

nm, 110 nm) has a strong effect on damage zone. Damage zone 

shrinks for a thicker TE. (Beam condition: 10
10

 electrons, 0.1 ps). 

(Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm, top electrode: 40 nm Pt, 

bottom electrode: 20 nm Mo) 

 

3.5.7.7   Electrode size dependence 

The size of the top electrode should have no effect on the direct E- or B-field traveling 

with the electron bunch. However, a size effect is expected for the induced field. A larger 

electrode size allows a larger magnetic flux Φ=Blδ (l: electrode length, δ: gap size) and 

therefore a larger Faraday emf or current  Φ/t ~ l. Since the dominant impedance due 

to the dielectric gap remains the same, a larger Lorentz force is expected. This size effect 

10 nm 20 nm

40 nm 110 nm
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was observed in Figure 3.38 using devices of different sizes fabricated on the same 

sample: the extent of top-electrode tearing initially increased with the size but later 

saturated, confirming the importance of induced field in its pivotal role in causing 

mechanical damage. The saturation may be related to a “resonance” effect. The electron 

bunch of a 0.1 ps Gaussian (sigma) time τ has a FWHM of 2.35 sigma or 2.35τ, which is 

the corresponding half period, so the equivalent “period” of the half-cycle bunch is 4.7τ 

or 0.47 ps. This half-cycle “oscillation” has a Fourier spectrum containing all components 

from DC to AC at a high-frequency cut-off corresponding to the wavelength of the bunch 

length of 140 m (half of the wavelength is equivalent to “physical” bunch length 70 m). 

Therefore, the induced field may initially increases linearly with the electrode size, but a 

maximum is reached when the electrode size is about 1/2 of the wavelength, after that 

there is no further increase.  
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Figure 3.38. Decreased damage when the electrode size is smaller. Damage 

patterns in sample with same shaped devices of different sizes. Beam center is 

located at the center of the damage pattern. A-D indicates critical radial distance 

from beam center where damage first becomes detectable. Inset: critical radius (r) 

vs. size of top electrode. Electrode size: A: 10 μm; B: 20 μm; C: 30 μm; D: 60 μm. 

Electrode thickness: 40 nm. (Device: Mo/Si3N4:5%Pt/Pt, δ=10 nm) 

 

3.5.7.8   Dielectric thickness dependence 

Dielectric thickness dependence was also checked. Identical devices (except the thickness 

of nanometallic film, 10 nm vs. 80 nm) were fabricated and exposed to identical electron 

bunch. As shown in Figure 3.39, the sizes of damage region exhibit very weak 

dependence on dielectric thickness (10 nm sample shows slightly larger affected region 

than 80 nm sample but such difference is far from 1:8 difference). This provides direct 
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evidence that the gap impedance is the dominating impedance: magnetic flux Φ=Blδ 

(thus emf) increases with thickness δ. On the other hand, gap impedance Zδ. Therefore, 

induced current Iemf/Z is expected for a weak dielectric thickness dependence. 

 

Figure 3.39. (a) Thin dielectric (10 nm) vs. thick dielectric (80 nm) 

exposed to identical electron bunch (20 GeV, 0.1 ps duration, 10
10

 

electrons). (Device: Mo/Si3N4:5%Pt/Pt, top electrode: 40 nm Pt, 

bottom electrode: 20 nm Mo.) 

 

Thin Gap Thick Gap
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3.5.7.9   Beam angle dependence 

 

Figure 3.40. (a) Memory array after exposure to 45
o
 incident electron 

bunch. Red dot indicates the position of beam center. (b) Resistance 

(preset to HRS) vs. distance from beam center along 0
o
 and 45

o
 

directions in (a). (c) Resistance (preset to LRS) vs. distance from beam 

center along 0
o
 direction in (a). (Beam condition: 20 GeV, 0.1 ps 

duration, 210
10

 electrons, 45
o
 incidence). (Device: Mo/Si3N4:5%Pt/Pt, 

δ=10 nm, top electrode: 40 nm Pt, bottom electrode: 20 nm Mo.) 

 

If the incident electron bunch takes on an inclined angle, asymmetry is introduced to the 

problem. Figure 3.40a shows an optical image of a memory array after exposure to a 45
o
 

incident electron bunch, in which the damage and switching regions were both distorted 
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to an elliptical shape. For the preset HRS cells, the switching distance extends to ~565 

μm along 0
o
 but to ~398 μm along 45

o
 (Figure 3.40b). A simple analysis of the direct 

field is provided below, referring to Figure 3.41. For a sample lying on the x-y plane 

receiving an electron beam traveling in the (x, -z) direction, the in-plane E// component is 

larger in the (0, ±y) region than in the (±x, 0) region, while the in-plane B// component has 

the opposite strength distribution. Meanwhile, the field components normal to the plane 

have the opposite distributions to the above trends. Comparing the field-strength 

distributions in Figure 3.41 with the observed damage pattern in Figure 3.40, it becomes 

clear that the damage pattern is consistent with the pattern of in-plane magnetic field B//. 

This is in support of our proposed mechanism which relies on the magnetic flux that 

enters the gap between the top and bottom electrodes.  
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Figure 3.41. (a) E-field associated with a 45
o
 incident electron beam. (b) 

E-field components on x-y plane. (c) B-field associated with a 45
o
 

incident electron beam. (b) B-field components on x-y plane. 

 

A quick derivation of angle dependence 
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Figure 3.42. Schematic of spherical coordinate system. 

 

If we set up a regular spherical coordinate system (r, θ, φ) as shown in Figure 3.42, the 

distance between the beam line and any given point (rcosθ, rsinθ, 0) on the plane can be 

easily obtained as: 

 222 sinsincos  rR  

Therefore, electrical field and magnetic field can be written as:  
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Where CE=cCB and EB. To further project E and B onto z axis ( component) and x-y 

plane (// component), we firstly derived (unit) directional vector as:  




222 sinsincos

coscossin


e , 





222

242

//

sinsincos

sincoscos




e  




222 sinsincos

sinsin


b , 




222

//

sinsincos

cos


b  

Therefore, we can eventually obtain the general form of E and B components: 
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3.5.8   Momentum and Energy Transfer of Electron-bunch 

3.5.8.1   Direct impact from momentum transfer 

A high energy electron bunch has a very small (collision, energy/momentum transfer) 

cross section because the time available for momentum transfer is very short. Typically, a 

20 GeV electron only loses 10-100 eV (see later calculation of collisional energy loss) as 

it passes through a 10 nm sample, which implies the direct damage of electron bunch in 

our experiment is rather miniscule. Quantitatively, the energy of a relativistic electron is  

  pcpccmE  22

0 )(
 

The momentum loss of the electron is thus: 

c

E
p




 

For a bunch of a size of A=40 μm40 μm, with a pulse duration of t=100 fs and a bunch 

charge of N=2110
10

, the direct (compressive) stress is 

Act

EN

At

pN 





 

giving   0.67 MPa (for E=10 eV) or   6.7 MPa (for E=10 eV). These values are 

far below the critical stress estimated in previous sections. This explains why Figure 3.29, 

as well as Figure 3.30, Figure 3.31, Figure 3.32 & Figure 3.36 and other micrographs 
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not shown here, always contains several undamaged cells at the very center of the 

collision. These cells, preset in the HRS, were still in the HRS and apparently not 

disturbed by the electron bunch at all. Yet cells slightly outside the center, up to a radius 

of ~180 μm in the same figure, were irreparably damaged with their top electrodes all 

gone. Since the collision impact/energy-transfer of the 20 GeV electrons is the most 

severe at the collision center, this observation is a clear indication that it cannot be the 

cause of the phenomena probed in our study. The lack of damage is consistent with the 

field distribution: from a symmetry perspective, there is no induced field in the beam 

center. 

In the following, we will consider the energy dissipation in the sample of electron bunch. 

The loss mechanisms are first summarized, followed by more detailed evaluation of 

radiation energy profile and deposited energy density. 

  

3.5.8.2   Energy loss mechanisms  

An electron bunch generates radiation through both deceleration and fluorescence of 

charged particles as the bunch collides with atoms (and their electrons). Low energy 

radiation also arises through excitation of phonons by the electron bunch. We thus 

examine whether electron irradiation can cause memory change. It is known that 

energetic photons and charged particles can generate damage on computer memories. For 

example, α-particles (in the MeV range) emitted by radioactive decay of uranium or even 

cosmic rays can create enough electron-hole pairs near a storage node to cause a random 
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soft error
13-14

. However, the following calculation suggests such possibility can be 

excluded in our experiments involving relativistic electrons. 

As a high speed electron hits the sample, their energy loss is quantified by the stopping 

power, defined as the energy loss (through both collisions and radiation, of all causes) per 

unit path length traveled: 

dxdEES /)(   

There are three components in the stopping power
15

: 

Collision stopping power: This is the energy loss due to Coulomb collisions that result 

in the ionization and excitation of the target and secondary atoms. For heavily charged 

particles, collision stopping power is often called electronic stopping power. 

Radiative stopping power: This is the energy loss due to collisions with atoms and 

atomic electrons in which bremsstrahlung quanta are emitted from the decelerating 

incident charged particle. It is important only for electrons. 

Nuclear stopping power: This is the energy loss due to the energy transfer to recoiling 

atoms in elastic collisions. It is most important when the mass ratio is close to one.  

Total stopping power: While for protons and helium ions, the collision and nuclear 

stopping powers are important, for electrons, we only need to consider collision and 

radiative stopping power. From NIST data
16

 (Figure 3.43), we can see that the total 

stopping power is dominated by collision stopping for low energy (<1 MeV) electrons 

but by radiative stopping power for high energy (>1 MeV) electrons.  
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Figure 3.43. Stopping power of electrons up to 1 GeV; from NIST website
16

. 

 

3.5.8.3 Radiation energy loss of 20 GeV electron 

Although radiative energy loss is several orders larger than collisional energy loss, it is of 

little interest for us. The reason lies in the relativistic effect of ultrahigh energy electrons. 

The importance of the relativistic effect may be estimated using the ratio
22 /1/1 cv , 

which is the ratio of electron energy to that of a rest mass (0.51 MeV). For a 20 GeV 

electron, 
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with γ=40000>>1, meaning that the relativistic effects will dominate. (Since the total 

energy loss during the electron bunch experiment is only 10-100 eV, as shown later in the 

collisional-energy-loss calculation, almost identical γ≈40000 is maintained through the 

entire journey. For a relativistic electron, the radiation (gamma rays and x-rays) emitted 

by a decelerating electron is strongly forward-focusing along the beam direction. 

Therefore, as soon as the electron leaves the mixture film, there is no more radiation 

directed to the film. Since the energy loss in the course of passing through the top 

electrode and the film (50-60 nm in total) is very small due to the small thickness, and the 

total backward radiation when the electron is passing through the much thicker silicon 

substrate is also small due to forward focusing, the total radiation damage received by the 

mixture film is negligible for a 20 GeV electron.  

The above holds along the path of the election; along the lateral dimension away from the 

electron path, it is even smaller. Specifically, the radiation field of an electron traveling at 

a speed v but decelerating at a rate a along the same direction can be expressed as 
17

: 
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The angular distribution of power is thus: 
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Under the relativistic limit γ>>1, one can treat ε=1/γ
2
 as infinitesimal and perform the 

Taylor expansion. Therefore, the maximum power intensity occurs at: 
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8
1cos


 m , or 




2

1
m  

For γ=40000, it gives θm≈1.2510
-5

 rad. In short, almost all radiation energies are 

confined within a narrow range along the beam direction, as illustrated in the polar plot of 

energy distribution in Figure 3.44 and in the θ plot in Figure 3.45. (Note that radiation 

energies are mostly concentrated near 10
-5

 rad and rapidly decay by 12 orders of 

magnitude at 10
-3 

rad.) Therefore, we may safely conclude that radiative energy loss has 

little effect on our devices, especially those that are more than one σr (20-30 μm) away 

from the beam center. Indeed, even near the center of beam which should experience the 

largest radiation, we always found several devices survived without any physical damage 

or change in the resistance state. (This was shown in Figure 3.29, Figure 3.30, Figure 

3.31, Figure 3.32 & Figure 3.36.) This is the most direct experimental proof that 

radiation induced effect is unimportant in our experiments: it has no significant effect on 

the mechanical deformation or the resistance state change.  

 

Figure 3.44. Schematics of radiation power distribution for the case of 

linear deceleration (a//v). 
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Figure 3.45. Angle dependence of radiation power for γ=40000. 

 

3.5.8.4   Collisional energy loss and deposited energy density 

We now calculate the collisional energy loss and thus deposited energy into the MIM 

structure. From Figure 3.43, we can estimate such energy by extrapolating collision 

stopping power to 20 GeV. As shown in Table 3.1, the total collisional energy loss per 

electron is of the order of 200 eV, the majority of that occurring in the Pt top electrode. 

For an electron bunch (of 210
10

 charge) with a diameter of 30 μm passing through a 80 

nm thick Mo/Si3N4:Pt/Pt stack, the total deposited energy density is 11.3 kJ/cm
3
. If we 

further assume all the lost kinetic energies are locally converted to heat within the same 

30 μm lateral diameter, we can estimate the temperature rise in each layer as ΔTPt=5712K, 

ΔTSiN=4989K, ΔTMo=3303K using the following heat capacity
18

: cPt=25.86 Jmol
-1K-1

, 

cSiN=0.17 Jg-1K-1
, and cMo=24.06 Jmol

-1K-1
. This means that the collision energy loss 

should induce local melting or even evaporating, provided heat is not dissipated away by 

radiation or conduction heat transfer. However, given the fact that the devices at the beam 
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center survived (Figure 3.29, Figure 3.30, Figure 3.31, Figure 3.32 & Figure 3.36), and 

the fact that the sample with thick Pt electrodes (Figure 3.37) does not show any damage 

even within the beam diameter, we must conclude that only a small portion of the 

collision energy loss is actually used for local heating, so small that no 

melting/evaporating occurs. One explanation for not observing the heating effect 

predicted by the collisional energy deposition might be that this collisional loss gets 

dissipated to the Si substrate. This is because knocked-off electrons and X-rays of 

hundreds of eV can travel tens of nanometers to deposit their energy in the Si, thus 

lowering the energy density in Pt and in the nanometallic film. (The Si substrate itself has 

little collisional loss, at most enough to give a temperature rise of ~200K). Another 

explanation is that the collisional loss is overestimated by the collisional stopping power 

formula in the NIST data base, which is valid for thick substrates. For thin substrates the 

Landau distribution
41

 for statistical fluctuations of energy loss needs to be used. The 

collisional loss is indeed smaller, though only by a factor of 2 or so. Yet another 

explanation for the lower value is that the K shell of electrons is not excited, as hinted in 

ref.
42

. This reference is for heavy particles where the energy loss is by collision mainly. 

(We could consider the formulas for muon and adjust the mass, although in this form the 

method is only approximate.) Lastly, a collection of the formulas and brief descriptions 

of energy loss may be found in PDG booklet
43

 (starting at page 243). It also has figures 

for photon radiation length vs energy. A longer review is available in ref.
44

. (The other 

possibility is that the extrapolation of the NIST data base to high energy electron is 

incorrect.)  
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Away from the beam path, the heat received is small even if the collisional energy loss is 

as high as calculated above. Assuming the local heat is dissipated radially in all directions 

in the thin sample, we can estimate the energy density when the radius of the heated 

material is increased from that of the beam (beam radius=15 μm) to r=150 μm. The 

energy density, which scales as ~1/r
2
, is then reduced by 2 orders of magnitude, so at 

most increasing the temperature by ~50 K. This increase is rather minimum and not 

expected to induce any mechanical nor electronic effect on the device.  

 

 d (cm) 

Collision stopping 

power at 20 GeV 

(MeVcm2/g) 

Energy loss per electron, ∆E 
Total deposited 

energy, Etot 

eV J J 

Pt (TE) 4×10-6 1.7 150 2.4×10-17 4.5×10-7 

Si3N4:Pt  1×10-6 2 6.3 1×10-18 1.9×10-8 

Mo (BE) 3×10-6 1.91 59 9.4×10-18 1.8×10-7 

Total   215.3 3.4×10-17 6.4×10-7 

Table 3.1. Collision energy loss for stacks of Mo/Si3N4:Pt/Pt 

assuming 3 nC charge was used. 

 

Combining all the information above, we can safely conclude that neither radiation 

energy loss nor collision energy loss can cause the physical and electrical change of 

devices observed in our experiments.  
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3.5.9   Stress and Field Analysis 

3.5.9.1   Stress analysis 

  

Figure 3.46. (a) Top panel: top Pt electrode of square device deformed 

into “bow-tie”; Bottom: incoming magnetic field B and induced current 

j, electric field E, and charge in schematic device with top electrode 

(TE) and bottom electrode (BE) separated by an insulator gap. (b) 

Stress states in three regions with fracture in top electrode. 

 

Having excluded direct impact and radiation/collision energy transfer from further 

consideration, we find the electromagnetic field associated with an electron bunch to be 

the only possible mechanism that may account for the phenomena described above. Here 

we first give a qualitative analysis of the field and stress in the MIM structure, to be 

followed by a more detailed analysis of the field in the next subsection. Since the E-field 

is largely screened by the top electrode but the B-field is not, the main effect on the 

device is exerted by a transient magnetic field that crosses the “circuit loop” of TE → 

film-gap → BE → film-gap → TE (Figure 3.46a, bottom panel). For this configuration, 

an induced current (j) in the top electrode (TE) is accentuated at the longitudinal edges 
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(L), and it has an opposite image current in the bottom electrode (BE). This circuit loop 

activates a 0.1 ps (sigma) Lorentz-force repulsion (i.e., a magnetic pressure) to push the 

two electrodes apart. However, because the loop is not continuous, the current 

discontinuity at the transverse edges (T) in the top electrode produces a set of opposite 

charges at T, matched by another set of opposite image charges in the bottom 

electrode/substrate (Figure 3.46a, bottom panel). Thus the overall magnetic pressure is 

countered by the image-charge attractions at T. As the pressure forces the top electrode to 

tear, along the electrode-film interface, starting at the places where the Lorentz force is 

strongest (around L, especially at its center), the clamping forces counteract to turn the 

partially torn top electrode into an elegant platinum “bow-tie”. 

Several other stresses also exist in the device stack, as shown in Figure 3.46b: (a) an in-

plane tension (especially at the crack-tip) in the TE, caused by the clamping forces that 

constrains the TE from being repelled, (b) a normal tension in the insulator (or mixture 

layer) along the L side (associated with the tendency of TE bulging up), and (c) normal 

compression in the insulator along the T side (a reaction to clamping) and (d) normal 

compression (L side) and tension (T side) beneath the BE. For switching, the stress (b) 

and stress (c) are relevant. Their importance is supported by the parametric studies 

described above. The following analysis will provide a more quantitative description of 

the origin of the induced fields in the MIM device, from which the Lorentz force and 

stresses originate. 
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3.5.9.2   Current and voltage simulation: “patch antenna” 

 

Figure 3.47. A schematic of conventional patch antenna structure (adapted from ref.
19

). 

 

The MIM structure in the RRAM array finds its physical correspondence in a radio 

frequency (RF) circuit, called patch antenna, Figure 3.47. It consists of a flat rectangular 

/ circular / elliptical “patch” of metal (with a certain feed-in transmission line), placed 

over a sheet of grounding metal, and the two are typically separated by a dielectric 

material. The discontinuities at each truncated edge allow such structure to generate 

particular radiation characteristics, governed by the Maxwell equation. This analogy 

allows us to use the well developed patch antenna theory to understand how current and 

voltage are distributed inside the MIM structure by a THz electromagnetic wave 

excitation.  

 



 

181 
 

 

Figure 3.48. (a) Microstrip structure illuminated by a linearly polarized 

plane wave and associated coordination setup. The y axis is along the 

direction of the strip. (b) Side view of microstrip structure (adapted 

from ref.
20

). 

 

Reference
20

 provides a detailed mathematical description of the patch antenna effect. A 

generalized structure, with a microstrip line of a length l and width w, embedded at z=-h, 

is illuminated by a linearly polarized uniform plane wave Ei, Hi, as shown in Figure 3.48. 

The ground plane and the metal strip are assumed to be a perfect conductor, and the 

dielectric having a dielectric constant (εr) is assumed lossless. By integrating the Maxwell 

equations along the z direction, a canonical set of voltage and current distributions can be 

derived as: 

vI
v

Z
j

dy
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where efff cv /  is the phase velocity, effw ZZ /0 is the characteristic impedance 

( CL / ) and εeff is an effective dielectric constant taking account of the fringing field 

near capacitor edges. The excitation terms v(y) and i(y) can be explicitly expressed as: 
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Reference
20

 provided a nice but lengthy analytical solution for voltage V(y) and current 

I(y) distribution. Here we will only use their numerical results which cover several  

configurations that can be further extended to other dimensions using scaling arguments. 

This is first shown for the case of a dielectric (εr=10, corresponding to εeff=6.66) of a 

thickness of 1.57 mm, a characteristic impedance of 50 Ω, metal lines of a width w=1.3 

mm and length l=15 cm, and an incident uniform plane wave with an electric field 

intensity of 1 V/m and a frequency of 3 GHz (λ=0.1 m), at normal incidence.  
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Figure 3.49. (a) Voltage magnitude (solid line) and phase (dotted line) 

and (b) current magnitude (solid line) and phase (dashed line) induced 

along the microstrip line (εr=10, w=1.3 mm, h=0) with an incidence 

angle θ=0 and incidence field E0=1 V/m at f=3 GHz (adapted from 

ref.
20

). 

 

The simulation results are shown in Figure 3.49. It gives V(y) & I(y) 
20

 with a peak 

voltage of ~1.25 mV and peak current of ~0.05 mA. At two opposite edges, voltage 

amplitudes are identical but the phases differ by 180
o
, which confirms that opposite 

charges accumulate at opposing edges. The number of nodes is expected from the general 

resonance criterion: m×λ/2 eff =l, which leads to the node number m8 consistent with 

the simulation results. In contrast, the current amplitudes fall to the minimum near the 

two edges, which is required by the boundary condition at the metal-insulator interface. 

 

3.5.9.3   Estimate of fields and stresses in the MIM structure 

To apply these results to our experiment, we first note that our half cycle (with a 

Gaussian width σt=0.1 ps, giving a FWHM of 0.235 ps, or an equivalent full cycle period 

(a) (b)
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of 0.47 ps) pulse corresponds to ~2.1 THz ((1/2.35σt)/2) wave or a λ=141 μm wave. Since 

Maxwell’s equation is linear, identical excitation terms v(y) and i(y) obtain if we simply 

scale all lengths by a factor of λ(0.1 m)/ λ(141 μm) =709 to keep factors like Kz1d 

unchanged in the above equation. Therefore, a stripline with a dielectric constant of 10, a 

dielectric gap δ=2.21 μm, a width 1.83 μm, and a length 212 μm will also develop a 

voltage of 1.76 μV at the ends in a field of 1 V/m at 2.1 THz. In the case of an electrical 

field E~3×10
9
 V/m, which is representative of the field around an electron bunch, the 

voltage at the edges will be 1.76×3×10
9
 μV=5.28 kV across a 2.21 μm gap, or 24 V 

across a 10 nm gap. Such a high voltage, even a transient one, may cause dielectric 

breakdown or ionization, thus creating “trenches” at the two opposing edges.  

In our simulations we assumed a more realistic excitation with a Gaussian pulse profile of 

a linearly polarized plane wave at normal incidence to the sample plane. Figure 3.50 

shows a snapshot (after 2 ps) of the field dynamics, which confirmed the electrical field 

near the two counter edges are maximum but in opposite directions. According to the 

Maxwell equation (the Gauss law), the surface charge density q is directly related to the 

normal field, q=2εE. Therefore, we can immediately conclude that charges are 

accumulated on the two transverse edges, which confirms our earlier qualitative 

speculation in Figure 3.46a. The simulation was done with an excitation plane wave field 

of 1 V/m, so scaling it linearly to 3×10
9
 V/m will yield 3×10

8
 V/m at the edges for this 

time snapshot (corresponding to 6 V across a 20 nm gap). The current distribution on the 

top and bottom electrodes have opposite signs indicating the magnetic field is contained 

between the electrodes. The current distribution is consistent with the “bow-tie” shape of 
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top electrodes in the affected zone, which serves as strong evidence supporting the crucial 

role played by the induced E-B fields and their interactions. 

 

 

Figure 3.50. Simulation of (a) field Ez and (b) current Jx.  

 

A quantitative estimation of the magnitude of the stress can be conveniently done using 

the concept of magnetic pressure PB=B
2
/20, which is an equivalent energy density 

associated with a magnetic field
21

, exerting a Lorentz force on the electrodes containing it. 

Since the field inside the patch is similar in magnitude to the external incident field, we 

obtain PB, max=B
2
/20=1.4 GPa (Bmax≈60 T, see Figure 3.21b) near the bunch center and 

PB=B
2
/20=40 MPa (B≈10 T, see Figure 3.21b) near the edge of the HRS/LRS-switching 

region. This range, 40 MPa~1 GPa, is not unreasonable, comparable to our earlier 

estimates: PCIP=300 MPa, PCAFM=1~100 MPa, PFIB=40 MPa. In particular, the stress 

threshold of 40 MPa at the edge of the switching zone is comparable to the corresponding 

stress estimate of CAFM and FIB experiments, since in all three cases a uniaxial stress is 

involved.  
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3.5.9.4   Statistics of resistance & stress distribution 

 

Figure 3.51. Devices (TE thickness: 40 nm) preset to HRS switched to 

LRS if located within ~450 m from hit-spot; devices preset to LRS 

remained in LRS at all distance. Devices within 200 m lost the top 

electrodes completely and were not tested. 

 

Figure 3.51 shows the resistance distribution for a device array consisting of Mo (20 nm) 

/ Si3N4:Pt (10 nm) / Pt (40 nm). With a thinner TE (40 nm), the damage region is larger 

than the previous case (TE torn away for r<250 m) due to a lower bending rigidity. 

However, switching (HRS→LRS) occurs from r~400 m to r~500 m, similar to the 

case of Figure 3.29. A quantitative analysis can be made following the same method as 

in Section 3.4.2, with the additional consideration of field dependence. As shown in 

Section 3.4.2, the B-field follows an r
−1

 dependence, so the induced Lorentz force has an 

r
−2

 dependence. Hence, stress has the same r dependence, namely σ=A’/r
2
, where A’ is a 
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proportionality constant). So we can rewrite the expression of resistances in terms of 

radius r as: 

 

 
 

      
        

  
 

 

 

    
 

        
        

  
 

 

 

    
 

 

        
  
 

      
 

 

 

    
 

          
  
 

      
 

 

 

    
 

The pre-factor C and the shape factor n should be the same as those found in Section 0, 

since the switching condition (being dependent on stress) and statistics are the same. The 

best fitting shown as the solid curve in Figure 3.51 has the following form with an 

identical n=3.5 as in the FIB experiment but a slightly larger C=1.2 compared to C=0.71 

in the FIB ion experiment. This verifies our model is self-consistent. 

 

    
 

 

    
              

     

     
 
 

    

 

   

   
 

     

                  
     

     
 
 

    

 

   

   

We note that the data of the electron bunch experiment appear to undergo a more abrupt 

transition than those collected in the Ga
+
 ion bombardment experiment (Figure 3.51 vs. 

Figure 3.15). Such difference might arise for the following reasons. (i) The electron 

bunch experiment follows an r
−2

 dependence compared to the linear I dependence. 

Therefore, the transition in the R-r plot appears more abrupt than in the R-I plot. (ii) In 

the electron bunch experiment, the resistance data are bimodal, segregated to the two 

binary states, HRS and LRS, even though the transition window extends over 150 m: 

approximately 34% of the devices in the transition zones are in the HRS, vs. 66% in the 
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LRS. This “binary” feature may have contributed to the impression that the transition is 

more abrupt. The binary feature may be caused by the subsidiary oscillation of the 

induced field: the initial induced field may have left some devices at an intermediate 

resistance, which may continue to shake down to the lower-resistance states when 

perturbed by the subsequent oscillations (of decreasing amplitudes) of the induced 

electromagnetic fields in the samples. As a result, the binary feature of the resistance 

transition in the electron bunch experiment becomes manifest. 

 

3.6   Discussion 

The above four experiments at different time domains leave little doubt that electron-

phonon interaction is actively involved in nanometallic MIT, and the transition is 

fundamentally different from all other stimuli-driven reversible MIT in the literature
22-28

. 

A mechanistic picture of memory switching that emerges may be depicted as follows. 

During voltage-controlled MIT, electron filling occurs at a threshold forward bias V* 

when itinerant electrons are energetic enough to enter a prospective negative-U trapping 

site, which then undergoes energy-lowering local bond distortion. This is the LRS→HRS 

transition. Under a reverse threshold bias, the distorted bond is inelastically restored to 

the original configuration by the electric force, thereby removing fep stabilization, 

prompting electron de-trapping. This is the HRS→LRS transition. What we witnessed in 

the electron-bunch experiment was the unraveling of the negative-U state: the distorted 

bond was mechanically restored—hence fepremoved—in about 0.1 ps, thereby 

converting the electron state from a stable negative-U state to an unstable positive-U state, 
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which necessitated immediate (in ~1 fs) electron release and the HRS→LRS transition. 

Unlike the electron-phonon interaction in the global Hamiltonian of conventional MIT
29-

32
, in amorphous films the interaction is localized to the vicinity of trapped-electrons and 

their surrounding over/under-bonded bonds, which correspond to a local environment 

that is non-compact and soft
9
. These sites are especially susceptible to the applied 

force/stress/strain, allowing pivotal, localized electron-phonon interaction to turn on/off 

to effect both voltage and force-triggered MIT. In the past, non-electrically induced 

electronic transitions were seen in phase-change chalcogenide (Ge-Sb-Te) memory
33-35

, 

by photo-induced transition
36

 or dislocation jamming-triggered non-melting crystalline-

to-amorphous transition
37

. Compared to these electronic transitions mediated by a bulk 

structural transition, nanometallic MIT involves only the local electronic/structural state 

and not the bulk structural state. Therefore, it is far more robust and can be triggered by 

an atomic-scale lever of localized electron-phonon interaction. In particular, since the 

sub-picosecond on/off of electron-phonon interactions controls nanometallic MIT, the 

switching voltage V* should be independent of switching time down to ~1 ps. This was 

directly confirmed in our electrical testing from 1 s to 20 ns as shown in Chapter II.  

The idea of electron trap through the electron-phonon coupling and negative-U center is 

similar to the mechanism of polarons. Indeed, when Anderson first proposed the 

negative-U concept, he already recognized its close connection to bipolarons
38

. However, 

there is an important distinction between switchable nanometallic material and polaronic 

material. Polaron arises from electron-phonon interaction, which is a generic term in the 

global Hamiltonian: it becomes important when the coupling is strong. Naturally, this 
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occurs in a structure that is globally susceptible to polarization. Unlike some of 

Anderson’s materials which include elemental amorphous chalcogenides (e.g., S and Se) 

that are highly polarizable, the unique and remarkable feature of our switchable 

nanometallic materials is that, globally, they are not very susceptible to polarization at 

all—their dielectric constant (εr~10) is actually quite low
 
(Chapter IV). However, being 

amorphous these materials do contain bonding/structure variations, which provide locally 

soft spots that are highly polarizable, especially when doped electrons are localized 

thereon. This contributes an “impurity” term to the local Hamiltonian, instead of a 

generic term to the global Hamiltonian. In practice, to find switchable nanometallicity 

with negative-U centers or local polarons, one need not search the sub-universe of highly 

polarizable materials. Instead, one can simply introduce defects to relatively non-polar 

materials, or make amorphous forms of relatively non-polar materials, then dope them 

with electrons/holes to bond with some of the locally polarizable sites. This explains why 

the switchable nanometallicity phenomenon is so ubiquitously found in so many 

materials, which seem to share little commonality.  

Our findings on electron-phonon interaction and its manifestation in nanometallic 

memory also shed light on resolving the long-standing dilemma in electronic memory as 

we discussed in Chapter II: electron-trapping memory that is easily programmable (at 

low voltage and fast speed) cannot retain memory for a long time. Indeed, almost all 

memory structures encounter such dilemma, and it is usually engineered around by 

designing a separate high-temperature (transient) route for the program/erase step—

thermally assisted switching in magnetic memory
39

, melting in phase-change memory
36

, 
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hot-filament formation in resistance memory
40

, and hot-carrier injection in flash 

memory
3
—albeit always at the cost of excess power consumption or damage. Electron-

phonon interaction, which works as an atomic-scale lever that can be externally triggered 

to readjust the local barrier height, offers a fundamentally elegant solution—in principle, 

such interaction can be embedded into any electronic memory structure. It already 

enables purely electronic nanometallic memory with wide-ranging sizes, compositions 

and random nanostructures. Harnessing such sub-picosecond atomic levers may further 

enable nanoscale electron storage and gating to usher in new nanodevices with 

unconventional functionalities. 

 

3.7   Conclusions 

(1) HRS is an energetically metastable state, while LRS is the more stable state. A one-

way HRS→LRS conversion can be triggered by a purely mechanical stress, which 

destabilizes trapped electrons in the HRS. 

(2) An isotropic compressive stress ~300 MPa as provided by a CIP can induce one-way 

HRS→LRS transition in 1 s to hours. 

(3) A uniaxial compressive stress ~1-100 MPa as provided by an AFM tip can induce 

one-way HRS→LRS transition in ~1 s.  

(4) A uniaxial compressive stress ~20 MPa as provided by an FIB can induce one-way 

HRS→LRS transition in ~1 s.  

(5) An electromagnetic-field-induced tensile stress as provided by an electron bunch can 

induce one-way HRS→LRS transition in ~0.1 ps. 
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(6) Strong electron-phonon interactions (negative-U), operating at a time scale of 0.1-1 

ps, exist in nanometallic devices. They stabilize the metastable state (HRS) and 

resolve the voltage-time dilemma in nanometallic RRAM. Properly engineered, they 

may also benefit other electronic designs. 
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Chapter IV. AC Response of Nanometallic RRAM 

 

4.1   Introduction 

Practical electronic devices are preferably operated at high frequency to achieve high 

throughput. One of the potential limiting factors for high speed devices is the capacitive 

and inductive components in the circuit. These components become increasingly 

important at higher frequencies. For example, charging and discharging of a capacitor 

require a certain time τc; likewise, current build up in an inductor also need a certain time 

τL. If the system clock cycle time τ approaches or even falls below τc or τL, severe signal 

distortion and delay will occur, which may lead to malfunction.  Capacitors also consume 

power, ~CV
2
f, which becomes significant at high frequencies. For these reasons, data of 

the AC response are needed for predicting the ultimate speed and power of electronic 

devices. 

Understanding and engineering the AC response is critical for modern computer and 

communication electronics. In VLSI design, by analyzing the causes of the AC response 

of MOSFET (Cox, Cjunction, etc.) and interconnect parasitics, circuit designers have found 

it possible to achieve high speed, without significant delay, by scaling down the 

integrated circuit. Scaling analysis also revealed that the delay issue is less important than 

the power issue, which becomes the “show-stopper”. This led to the development of 

multi-core CPU in recent years, which consumes less power than single-core CPU of a 

higher frequency. Another example is in the RFIC world, where “simple” LCR elements 
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are used to artificially engineer the input and output impedance for the best use of signal 

and power. 

Impedance spectroscopy (IS) offers a powerful tool to explore electrical properties of 

materials. By superposing an AC oscillation signal of various frequencies on a DC signal, 

one can extract resistance, inductance, and capacitance values of the corresponding 

elements of a circuit. In many cases, with the aid of physical modeling, circuit elements 

can be individually attributed to a physical or chemical process such as conduction, 

dielectric relaxation, diffusion or even chemical reactions. This, for example, can 

differentiate device characteristics from parasitic contributors such as testing lines, 

electrodes, boundaries and interfaces. Impedance spectroscopy has been employed to 

characterize RRAM made of Pr0.7Ca0.3MnO3
1
, NiO

2-3
, TiO2

3-5
 and HfOx

6
. These RRAM 

all rely upon ionic transport, mostly in highly localized filaments which change from 

highly conductive ones to insulating ones depending on electric loading. These different 

RRAM states have been found to exhibit essentially identical capacitive behavior. This 

chapter describes an impedance spectroscopy study of nanometallic RRAM materials and 

their devices. The result reveals some important features not seen in filamentary RRAM; 

such features are presumably related to the creation/elimination of additional charge 

storage sites and conducting pathways, and as such they help provide a better 

understanding of the two families of RRAM. Lastly, the findings of impedance 

spectroscopy will be used to supplement the understanding from DC responses 

(“resistance” only) to provide input to establish an equivalent circuit model (Chapter VII) 

for our device.   
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4.2   Theory of Impedance Spectroscopy 

4.2.1   Impedance Spectroscopy 

Impedance spectroscopy (IS) refers to the impedance data in the frequency domain, 

although actual measurements are typically carried out in the time domain and the data 

are next Fourier transformed to the frequency domain
7
. (The transform is typically 

carried out by the measurement instrument itself.) In general, each circuit (or circuit 

element) has a generalized “impedance”, which is a complex number. The impedance of 

standard linear circuit elements is known: for a resistive element, it is Z=R; an inductive 

element Z=jωL; and a capacitive element Z =1/jωC. The impedance of a more 

complicated circuit with multiple linear elements can then be obtained by simple algebra 

using the above. The fact that different circuit elements have distinctly different 

frequency responses makes it easy to interpret the experimental data sometimes: the 

influences of different elements are well segregated into different frequency regimes.  

Several equivalent representations of impedance spectroscopy have been developed. In 

1920s and 1930s, C. W. Carter introduced the circle diagram
8
 and P. H. Smith introduced 

the Smith-Chart impedance diagram
9
. These methods were followed by the Cole-Cole 

plot in 1941: a plot of Z’’ or ε’’ on the y (imaginary) axis vs. Z’ or ε’ on the x (real) axis. 

The Cole-Cole plot offers a straightforward two-dimensional representation of the 

conduction properties but the frequency information is made implicit. Another approach 

is the Bode diagram, which plots |Z| (modulus) and ϕ (phase) vs. frequency f. 

(Alternatively, one can plot Z’ and Z’’ vs. f). This can also be represented using a  three-
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dimensional plot, introduced by J. R. Macdonald in 1981, which provides complete 

information including the Cole-Cole plot and the Z’(f) and Z’’(f) plots in the same 

diagram
10

. 

The simplest physical model to employ to interpret the impedance spectroscopy is from 

original Debye model, which describes the frequency-dependent dielectric response in 

terms of a single time constant τ: 






i


 


1

0  

In circuit terms, the model can be realized using a linear capacitor ε∞Cc in parallel with a 

serial combination of a linear resistor R (causing dissipative effects) and another linear 

capacitor C=(ε0-ε∞)Cc, in which R and C are related to each other by RC=. Its Cole-Cole 

plot features a half circle, shown in Figure 4.1a with the arrow indicating the direction of 

increasing frequency
7
. For a conducting system, Debye response is typically abstracted as 

a resistor (R0) in series with a parallel RC (Figure 4.1b inset). This leads to circuit 

impedance: 
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This is a perfect semicircle, with a radius R, center at (R/2+R0, 0). Figure 4.1b shows a 3-

D representation of such Debye system. 

 

Figure 4.1. (a) Complex-plane plot of the complex dielectric constant for 

Debye frequency response. (b) 3-D perspective plot of R0-R//C circuit. 

(adapted from ref.
7
). 

 

In practice, two complementary methods can be used to interrogate the circuit structure of 

an RRAM using impedance spectroscopy. The first method (Figure 4.2a) presumes an 

equivalent circuit, such as a serial R-C, and directly returns the values of “resistance” and 

“capacitance” by fitting the data with the equivalent circuit model. This method provides 

a fast measurement of R and C. For example, it is suitable for the case of an ideal 

capacitor C or a capacitor that is in parallel with a large resistor R//. The method is useful 

because most RRAM can be thought of as a capacitor with a serially connected resistance 

R0 due to the electrode resistance, spreading resistance, and/or load resistance. Using the 

above method, one can find the serial resistance R0 and the parallel resistance R//, 

following  CRjRRZ  1/0 . At large frequency (ω>>RC), the impedance of the 

(a) (b)

C

R
R0
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capacitor becomes extremely small (Z =1/jωC), which “shorts” the resistor R, so the total 

impedance can be approximated as: 

Cj
RZ



1
0  , at ω>>RC 

which is like a serial R0-C circuit. We can conveniently use this method to investigate 

capacitance information. However, since it approximates C= -1/ωZ’’, it underestimates 

the actual capacitance somewhat ( ''
//0 CRRZ 

<
''
0 CRZ  ).  

The second method (Figure 4.2b) is a more rigorous analysis, which treats the circuit as 

a “black box”. The measured impedance data (Z’ and Z’’) in the frequency domain are fit 

with various equivalent circuits of increasing complexity until a satisfactory fit is 

obtained. This method is limited by the capability of the instrument to measure current. In 

particular, if the impedance is too high, then this method is not applicable because the 

current is too low to provide any useful data over a large range of frequency.  In the case 

of HP 4192 A used in this thesis study, the instrument resolution requires |Z| < 2 MΩ. 

That is, the input impedance of the instrument sets the upper limit of the circuit 

impedance.  
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Figure 4.2. Two analyzing methods used in my work. (a) Presumed R-C 

serial circuit model at a fixed frequency. (b) Full impedance analysis 

over frequency domain.

 

4.2.2   Constant Phase Element (CPE) 

A linear capacitance should be frequency independent reflecting the fact that the ability 

of the dielectric material (in the capacitor) to store electrical charges, by polarization, is 

not dependent on the speed the charge is provided or extracted. However, in some cases, 

this assumption is not valid. In a simple parallel RC circuit, such nonlinearity or 

frequency dispersion leads to a Cole-Cole plot of a “depressed semicircle”, see Figure 

4.3, which is a semicircle with a center some distance below the real axis. The depressed 

semicircle has been attributed to a number of physical causes, which share the common 

origin that certain material/system properties are not homogeneous. Specifically, surface 

(e.g., electrode) roughness
11

, inhomogenous composition and thickness
12

, non-uniform 

current distribution
13

 and distribution of reaction rates
14

 can all contribute to the above 

nonlinear behavior. 

The type of nonlinear capacitor associated with a depressed semicircle in the Cole-Cole 

plot can be mathematically represented using the following equivalent impedance 
15

: 

  Q
Z

n

CPE

j 
1



 

Here, n is an ideality factor (n≤1, with n=1 being ideal), Q has the numerical value of the 

admittance at ω=1 rad/s, and the subscript CPE stands for constant phase element, which 
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is the name given to such capacitor. By replacing an ideal capacitance with a CPE, the 

impedance of a parallel R-CPE (Figure 4.3) can be written as: 

  Q
RZ

n
j

1
 

1


 

It can be further reduced into the Cole-Cole form as: 
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by eliminating the frequency dependence between the real part and the imaginary part. 

The above result corresponds to a new capacitive circle with a shifted center at (
2

R
,

2
cot

2


n

R
 ) and a radius  2/sin2/ nR . Because of rotational symmetry, we may have 

two equivalent views of the new circle. 1. The circle in a normal Cole-Cole plot for a 

linear RC circuit is rotated by (1-n)90
o
 (as shown in Figure 4.3). 2. The circle is 

translated along +Z’’ axis by 
2

cot
2


n

R
 (a “depressed circle”). If a serial resistor R0 is 

further added, the depressed semicircle is further shifted along +Z’ by R0: 
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By fitting the experimental data using the above formula, one can obtain R and n. The 

“real” capacitance can then be taken as:  
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Figure 4.3. (left) Circuit representation of a parallel R-CPE. (right) Cole-

Cole plot of depressed semicircle of a parallel R-CPE (adapted from ref. 
15

).

 

Note that the quality of fit is typically better when the capacitor is nearly ideal, i.e., n is 

close to unity.  

Another way to describe a non-ideal capacitance is to generalize C into a complex 

number which is itself frequency-dependent: C(f)=C’(f)-jC’’(f). This representation has a 

transparent physical meaning: it corresponds to the real part and the imaginary part of the 

dielectric response, which is known to be frequency dependent. In particular, C’’(f) is 

attributed to dielectric damping, due to leakage current or internal dissipation, e.g., 

caused by conduction. The frequency dependence of dielectric “constant” and dielectric 

damping is also known as dielectric relaxation, often modeled by a set of oscillators of 

different characteristic frequencies, thus each dominating in a different frequency regime
4
. 

Since the CPE impedance can be represented as a complex capacitance, the two 

descriptions are mathematically equivalent. This correspondence is summarized in Table 

4.1. 

 

CPE (n, Q)

R
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 CPE  General Capacitance 
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Table 4.1. CPE method and general capacitance method. 

 

4.3   Experimental Procedure and Setup 

 

Figure 4.4. (a) Schematic of experiment setup and sample connections. 

(b) Flow chart of computer automation program (written by LabView).

 

Our room temperature impedance measurements used a HP 4192A impedance analyzer. 

Samples were placed on a probe station (Signatone S1160) and a voltage was applied 

between the top and the bottom electrodes. (Current flowing from the top electrode to the 
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bottom electrode is considered positively biased, similar to the DC configuration in 

earlier chapters.) Temperature spectra were investigated in a Lakeshore cryogenic probe 

station. The system provided a heating/cooling stage from 77 K to 400 K in a 10
-7

 Torr 

level vacuum. Cooling was provided by purging the sample stage with liquid nitrogen 

(LN) while heating was provided by a resistance heater (Figure 4.4a & Figure 4.5c). 

Built-in probe tips are available for small device measurement but wire-bonded 

connections (Figure 4.4a, Figure 4.5a & b) are more mechanically reliable. Testing 

protocol in Figure 4.4b includes a customized LabView program developed for 

controlling/ monitoring temperature and performing impedance analysis.  
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Figure 4.5. (a) Optical image of wire-bonded sample. (b) Reconfigured 

probe tip with connected gold wire (2 mils). (c) Entire test bench. 
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4.4   Results 

4.4.1   Resistance State Dependence 

 

Figure 4.6. (a) R-V switching curve. (b) Cole-Cole plot for 

HRS and LRS at 0 V DC bias. (Device: 90%Si3N4:10% Pt, 

δ=10 nm, d=1100 μm).

 

Data are first presented to illustrate the general information obtainable from impedance 

spectroscopy and standard model fitting. Figure 4.6a is a typical bipolar switching curve 

of a device following the voltage sweep sequence: 0 V, to 1.4 V, to -1.2 V, and to 0 V, 

where a positive voltage indicates current flowing from the top to the bottom electrode. 

Impedance (Z) spectroscopy of this device at 0 V under a 100 mV AC excitation (10 Hz 

to 5 MHz) are represented in the Cole-Cole plots (Nyquist plots) in Figure 4.6b (for the 

HRS) and its inset (for the LRS). For both states, the plots mainly consist of two semi-

circles. The low frequency data of the HRS lie on a larger semi-circle with a diameter 

~42 kΩ, having a “peak” at the resonance frequency fmax~330 Hz, while the LRS data fall 

on a much smaller semi-circle with a diameter ~1100 Ω and a resonance frequency 
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fmax~17 kHz. Since the imaginary part of impedance Zim is negative, these semi-circles 

are representative of a capacitive parallel RC element. At the high frequency limit of our 

tests, the data of the HRS and LRS converge to a common capacitive semi-circle (Figure 

4.6b inset), which eventually crosses over to an inductive behavior (Zim>0) at very high 

frequencies (>1 MHz). This convergence at high frequency suggests that there is a 

common resistive element (with unchanged resistance between the two states) in series 

with the two distinct capacitive RC elements, one for each state.  

Guided by the common practice of impedance spectroscopy, we use the following 

equivalent circuit (Figure 4.7) to extract the component characteristics from the 

impedance data:  

Z = jωL + R0 + R1//C1 + R2//C2 =
    2

2

2

1

1

1
0

11 Qj

R

Qj

R
RLj

nn








   

Here, the jωL + R0 terms are responsible for the behavior at the high frequency limit, 

arising from the inductance of the testing circuit (line) and other non-capacitive parasitic 

resistive components serially connected to the memory cell, which include the geometric 

spreading resistance of the planar bottom electrode and any load/line resistance. (The 

parasitic inductance of the testing circuit is probably from the probe-station line made of 

a “twisted” metal line with an inductance L~3 µH.) The term R1//C1 = 
  

          
 is used 

to describe the high frequency semi-circle that is also common to the LRS and the HRS; 

it may arise from the electrodes, electrode/film interfaces and other serial elements. (Our 

model in Chapter II suggests that the nanometallic film is divided into two parts, the part 

closer to the lower work function electrode is always conducting—thus unaffected by 
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switching, while the other part closer to the higher work function electrode undergoes 

resistance switching.) Here, a non-ideality factor n1 and a constant phase element Q1 have 

been introduced to account for the possible time constant (RC) distribution so that the 

capacitance follows          
       . A similar fourth term R2//C2 = 

  

          
 is 

used to describe the low frequency semi-circle, which is apparently closely related to the 

switchable serial part of the nanometallic film. It again is described by a non-ideality 

factor n2 and a constant phase element Q2 to allow the capacitance to vary as    

      
       . (It contains a parallel capacitor since, after all, the MIM device, 

physically, may be regarded as a capacitor to the first order approximation.) This model 

gives good fitting to the data as shown by the solid fitting curves in Figure 4.6b. Here, 

the parameters used are: R1=86 Ω，C1=3.8 nF, R2,HRS= 42.6 kΩ, R2,LRS=1047 Ω, 

C2,HRS=11.3 nF, C2,LRS=9.3 nF, n1=1, n2,HRS=0.95 and n2,LRS=0.97.  

In the above, the near unity values of n2 indicate that the capacitor in the switchable part 

of the film is apparently a linear capacitor, which changes its capacitance depending on 

the resistance state. This indicates that the nanometallic capacitors of both states are 

uniform with a narrow time constant distribution around τ=1/fmax, as in an ideal capacitor 

with n=1, and that both the HRS and the LRS can be considered as a set of parallel, linear 

RC circuits. The 20% difference between the HRS and LRS capacitance at zero bias is 

rather large and is well beyond the uncertainty of the data and fitting (typically <5%). 
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Figure 4.7. Equivalent circuit. 

 

4.4.2   Area and Thickness Dependence 
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Figure 4.8. Scaling behavior of capacitance following C~A, where A is 

cell area. (a) HRS and (b) LRS capacitance linearly increases with cell 

area. Resonance frequency as a function of device area for (c) HRS and 

(d) LRS. (nanometallic film: Si3N4:6%Cr, δ=10 nm). 

 

Having established the validity of the parallel RC circuit, we next investigated the area 

and thickness dependence to verify that the capacitance is indeed made of a uniform 

linear dielectric. Size dependence was studied in Si3N4:6%Cr cells with a diameter 

ranging from 20 μm to 1100 μm. As shown in Figure 4.8a & b, both the HRS and LRS 

capacitances scale linearly with the device area: CA. This confirms that the device is 

made of a uniform dielectric, at the length scale of the order of the cell dimension. Since 

resistance (HRS) is inversely proportional to A, we conclude that the RC product should 

remain identical (~ρε) for devices of different size. This immediately implies a size-

independent resonance frequency (fmax,HRS or ωmax,HRS), verified in Figure 4.8c. On the 

other hand, resistance (LRS) is weakly dependent on A, thus resonance frequency 

(fmax,LRS or ωmax,LRS) is inversely proportional to device area.  

HRS thickness dependence was investigated in a set of devices made of Mo/Si3N4:Cr/Pt 

with various Cr content and with various thicknesses but a fixed lateral size (diameter: 

200 µm). Because of the limited bandwidth of the instrument, R-C measurements (Figure 

4.2a) at a fixed frequency of 100 kHz were used to extract the capacitance value of the 

HRS assuming it is a parallel RC circuit. (We ignored the line/spreading/BE resistance, 

which is relatively insignificant for the HRS.) As shown in Figure 4.9, capacitances of 

various compositions follow a linear scaling law      , indicating that the capacitance 
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is a uniform linear dielectric (C=εrε0A/δ  1/δ) over the length scale of a few nm, and is 

not one in series with another (interface) capacitance. However, because the HRS 

resistance is exponentially dependent on thickness (δ) but capacitance is merely linearly 

dependent on δ, the RC product and the resonance frequency (fmax=1/2πRC) is 

exponentially thickness dependent (Figure 4.10).  

LRS thickness dependence was also investigated in a set of devices made of 

Mo/Si3N4:4%Pt/Pt with various thicknesses but a fixed lateral size (512 µm). Identical 

(negative) voltage procedure (0V -2V 0V) was used to obtain LRS in order to 

provide a fair comparison and Cole-Cole plots were used to extract R and C, respectively. 

As shown in Figure 4.11a, LRS capacitances also follow a linear scaling law      , 

indicating that the capacitance is a uniform linear dielectric (C=εrε0A/δ  1/δ). However, 

because LRS resistance is load/compliance controlled, R only shows a weak thickness 

dependence (Figure 4.11b). The resonance frequency (fmax=1/2πRC=δ/2πRεrε0A) is 

linearly dependent on thickness (Figure 4.11c). 
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Figure 4.9. HRS capacitance (C) vs. reciprocal thickness (1/δ) for various 

metal concentration. (a) SiN4/3, (b) 96% SiN4/3:4%Cr, (c) 94% SiN4/3:6%Cr, 

(d) 92% SiN4/3:8%Cr, (e) 88% SiN4/3:12%Cr, (f) 84% SiN4/3:16%Cr, (g) 75% 

SiN4/3:25%Cr, (b) 67% SiN4/3:33%Cr. (d=200 µm)
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Figure 4.10. HRS resonance frequency as a function of 

thickness (nanometallic film: Si3N4:12%Cr).
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Figure 4.11. Thickness dependence of LRS impedance. The LRS are 

obtained by using identical (negative) voltage procedure: 0V -2V 

0V. (a) LRS capacitance (C) vs. reciprocal thickness (1/δ). (b) LRS 

resistance (R) thickness (δ). (c) LRS resonance frequency (fmax) vs. 

thickness (δ). (Nanometallic film: Si3N4:4%Pt, device size: 512×512 µm
2
)

 

4.4.3   Composition Dependence 

 

Figure 4.12. Relative dielectric constant    of (a) (1-f)Si3N4:fCr films vs. 

Cr composition. Data are from capacitance values C=orA/ (o is the 

permittivity of vacuum) collected in Figure 4.9; (b) (1-f)Si3N4:fPt films 

vs. Pt composition. 

 

Supported by the above area and thickness dependence, which is consistent with the 

behavior of a uniform linear dielectric capacitor, we will from now on extract the relative 

dielectric constant from the capacitance data using the relation C=εrε0A/δ. These values 

are already listed in Figure 4.9 for the HRS of various Cr concentrations in Si3N4. Figure 

4.12a summarizes computed relative dielectric constants r of Si3N4:Cr films in the HRS 

(same data as in Figure 4.9). As f increases, r initially rises linearly, then abruptly 
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increases at a certain critical f (~10%) beyond which r apparently saturates. We also 

computed the relative dielectric constant of the LRS capacitance for the sample described 

in the last section, made of 90% Si3N4:10% Pt. Assuming the capacitance value of HRS 

and LRS differs by ~20%, the relative dielectric constant of the LRS is ~5.6 for this low-

metal-concentration device and ~12 for a high- metal-concentration device. Very 

similarly behaving data are shown in Figure 4.12b for Si3N4:Pt films in their HRS states, 

again showing a sudden rise, at f~15%. Both figures share the same r value of 6.5 at f=0, 

which is reasonably close to the data in the literature
16-17

: r=7.1 for a 97% dense -Si3N4 

ceramic
16

, and r=7.0 for a PEPVD amorphous film of unknown density
17

. (Our film most 

likely contains some porosity, which decreases the relative dielectric constant.) Therefore, 

without metal dopant, the amorphous Si3N4 film in our RRAM has a similar dielectric 

property of a dense amorphous Si3N4 film.  

 

4.4.4   Voltage/Field Dependence 
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Figure 4.13. (a) Capacitance vs. bias voltage for HRS and LRS. (b) 

Converted dielectric constant vs. bias voltage using nominal geometry 

(nanometallic film: Si3N4:12%Cr, δ=10 nm, d=512 μm)

 

Figure 4.13 shows the voltage dependence of capacitance and calculated apparent 

dielectric constant (using nominal geometry) in a Mo/Si3N4:Cr/Pt nanometallic RRAM. 

The HRS dielectric constant exhibits a weak but obvious voltage dependence: it displays 

a maximum at 0 V, and monotonically and symmetrically decreases as the DC bias 

increases in either polarity. In contrast, the LRS dielectric constant is voltage independent. 

A similar voltage dependence was also obtained for Mo/Si3N4:Al/Pt, Mo/Si3N4:Cr/Pt, 

Mo/Si3N4:Ta/Pt, Mo/SiO2:Pt/Pt, Mo/SiOxNy:Pt/Pt, Mo/Al2O3:Pt/Pt as shown in 

Appendix.  

 

4.4.5   Temperature Dependence 

The Cole-Cole plot of zero-bias HRS and LRS impedance of a Mo/Si3N4:10%Pt/Pt 

device determined at various temperature are shown in Figure 4.14a & b. Similar to the 

room temperature result, all complex impedance shows a capacitive behaviors with two 

well-distinguished R//C elements corresponding to two separate arcs in two different 

frequency regions. Again, the high frequency arc is independent of the resistance state; 

moreover, it seems to be independent of temperature. Therefore, it most likely 

corresponds to some unchanged element arising from the electrodes, electrode/film 

interfaces or a serial part of the nanometallic film that is not affected by resistance 

switching or temperature (see 0). As before, the low frequency arcs obviously correspond 
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to the switchable nanometallic film since they are state (HRS & LRS) dependent. 

Moreover, they are temperature dependent. By repeating the same fitting procedure for 

all curves, we obtained the capacitance (Figure 4.14c), resistance (Figure 4.14d) and 

associated ideality factor n (Figure 4.14c inset) of the HRS and LRS at different 

temperatures. The capacitance results in terms of relative dielectric constant are presented 

in Figure 4.14c inset.  

 

Figure 4.14. Impedance data at 0 V DC bias (device size: d=1100 µm). (a) 

Cole-Cole plot of HRS under various temperatures. (b) Cole-Cole plot of 

HRS (same as (a)) and LRS under various temperature. (c) Calculated 

capacitance (low frequency arc) after fitting data in (b). Inset: converted 

relative dielectric constant εr vs. T. (d) Calculated resistance (low 
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frequency arc) after fitting data in (b). Inset: ideality factor n vs. T. 

(fPt=10%) 

 

Impedance data under a nonzero bias were also collected at various temperatures, as 

shown in Figure 4.15. Again, by repeating the same fitting procedure, we calculated the 

device capacitance (Figure 4.15a) and resistance (Figure 4.15b) at each voltage bias and 

temperature. The capacitance of the HRS again shows a voltage dependence similar to 

the one seen in Figure 4.13 at room temperature, but the nonlinearity is much smaller at 

lower temperature. In contrast, although the resistance also decreases with voltage (i.e., it 

is non-Ohmic) as usual, the non-linearity is much stronger at lower temperature. The 

resonance frequency, which is related to the reciprocal product 1/2πRC, is also 

temperature dependent (Figure 4.15c).  

 

Figure 4.15. Impedance data under various temperatures at nonzero DC bias 

(device size: 200×200 μm
2
). (a) Calculated C-V dependence from Cole-Cole 

plot under various temperatures. (b) Calculated R-V dependence from Cole-

Cole plot under various temperatures. (c) Resonance frequency fmax under 

various temperatures (nanometallic film: Si3N4:12%Cr).
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From the complete impedance data in Figure 4.14b, we found frequency f=100 kHz is 

especially useful for our measurements: it is high enough for the low frequency R1//C1 arc 

(thus dominated by C1) but low enough for the high frequency R2//C2 arc (thus dominated 

by R2). Therefore, at f=100 kHz the equivalent circuit can be approximated as (R0+ R2)-

C1, which is a serial R-C that allows the use of Method 1 (see Section 4.2.1) for a quick 

estimation of C1. Figure 4.16 shows the temperature dependent capacitance (dielectric 

constant) for different device sizes determined at f=100 kHz. After renormalizing 

capacitances by their nominal geometry, all sizes exhibit identical εr(T) behavior (Figure 

4.16b), which confirms that the nanometallic device is dielectrically uniform. It also 

demonstrates that at 100 kHz the dielectric constant increases with temperature.  

 

Figure 4.16. (a) Capacitance vs. temperature measured by method 1(see 

0) assuming R-C circuit. (b) Dielectric constant vs. temperature by 

converting (a) with nominal geometry of devices. 

 

Dielectric properties measured at 100 kHz for other nanometallic films of different metal 

compositions are illustrated by a set of dispersion curves ε’(T) and tan δ (T) in Figure 

4.17. At low fmetal (fCr=1%, 5%, 10%), the dielectric constant is weakly dependent on 

0 100 200 300 400
0

50

100

150

 200 m

 145 m

 122 m

 97 m

C
 

p
F


T (K)

0 100 200 300 400
0

5

10

15

20
 200 m

 145 m

 122 m

 97 m

 r
 

T (K)

(a) (b)



 

222 
 

temperature (with a slightly positive slope). At high fmetal (fCr=16%, 30%), it exhibits a 

much stronger temperature dependence: it initially increases with temperature (similar to 

the one shown in Figure 4.14c), then reaches a maximum around 400 K, beyond which 

there is a tendency for it to decrease. At ~400 K, the dielectric constant of these high fmetal 

films is several times of that of the low-temperature data and the low fmetal films. 

A limited study was also made on the frequency dependence of dielectric response. As 

shown in Figure 4.18 for fCr=16% sample, both the dielectric constant and its 

temperature dependence decreases with frequency, being rather flat giving r~10 at 1 

MHz. This strongly suggests that (electron) conduction plays a central role in the 

dielectric response. This is also evident from the tan which rapidly increases at less than 

10 kHz, indicating that only data at higher than 10 kHz reflect capacitative behavior. 
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Figure 4.17. Dielectric constant (εr’) and tangent loss (tan δ) measured at 

f=100 kHz for (a) fCr=1%, (b) fCr=5%, (c) fCr=10%, (d) fCr=16%, (e) fCr=30%. 

(f) A summary of dielectric constant in (a)-(e).
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Figure 4.18. (a) Dielectric constant (ε’) and (b) tangent loss (tan δ) measured 

for fCr=16% sample at various frequencies. 

 

4.4.6   A Comparison with Filamentary HfO2 RRAM  

 

Figure 4.19. (a) Electroforming process and subsequent I-V switching 

curve of Pt/HfO2/Ti filamentary RRAM. (b) Cole-Cole plot of HRS 

under various bias. (c) Cole-Cole plot of LRS. (d) Fitted capacitances of 
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different states as a function of voltage. (e) Fitted resistances of different 

states as a function of voltage. (f) Capacitance vs. resistance. 

 

Conventional filamentary RRAMs such as NiO (ref.
2
), TiO2 (ref.

4
) and HfOx (ref.

6
) 

feature the same capacitance for different resistance states and under different DC voltage 

bias. This is the case found in our RRAM as described above. In order to exclude the 

possibility that our different findings might stem from any instrument/method-related 

artifact, we also fabricated and characterized Pt (BE) /HfO2/ Ti (TE) RRAM, which is a 

valence change memory (VCM) type of filamentary RRAM. (Here, the 10 nm HfO2 layer 

was deposited by atomic layer deposition (ALD) at 150 
o
C.) Virgin devices were found to 

be in a very high resistance state (>1 GΩ), which required a standard electroforming 

process (the black curve in Figure 4.19a) to form conducting filament(s). After 

electroforming, the device operated as a bipolar RRAM with a much higher current value 

(the red curve in Figure 4.19a). As shown in Figure 4.19b & c, all states exhibit a 

capacitive behavior, with the HRS having low frequency arcs that are voltage dependent. 

The capacitance and resistance values shown in Figure 4.19d, e & f are independent of 

the resistance state and the voltage bias (Figure 4.19d & f), in agreement with the 

literature
6
. Therefore, the different behavior of nanometallic RRAM shown in Figure 

4.13 & Figure 4.25 is not an artifact.  
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4.5   Discussion 

4.5.1   Origin of Nanometallic Dielectric Behavior 

In this section, we will discuss possible mechanisms for nanometallic dielectric behavior 

and conclude that it arises from a combination of factors due to changes of 

morphology/shape, effective geometry and metallicity. 

 

Figure 4.20. Fitting results for Figure 4.12 using effective medium theory for 

(a) Si3N4:Cr and (b) Si3N4:Pt nanometallic films. Curves (1-4) are predictions 

of Maxwell-Garnett effective medium theory using following parameters: (1) 

spherical particles (S=1/3) with   =30; (2) spherical particles with   =   

(metallic); (3) needle-like particles (S=0) with   =30; (4) needle-like particle 

(S=0) with   =65 (Si3N4:Cr) or   =40 (Si3N4:Pt). Curve (1) fits the data of 

f<0.1. Data jump at f~0.1 requires transition from Curve (1) to Curve (4). 

 

The effective dielectric constant of a two-phase composite containing second-phase 

particles embedded in a dielectric matrix is described by the Maxwell-Garnett equation 

for effective medium
18-19
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In the above, εi is the relative dielectric constant of the matrix, c is that of the second 

phase, r is that of the composite, and S is a shape factor (also called the Lorentz factor) 

which is reasonably bounded between S=1/3 (for spheres) and S=0 (for cylinders or 

needles aligned along the applied field). In general, for second-phase particles that have a 

higher dielectric constant than that of the matrix, the smaller the shape factor, the stronger 

their effect on enhancing r. 

Using the above equation and assuming S=1/3 at low f, we found the best-fit c is 30 for 

our data of both Si3N4:Cr and Si3N4:Pt (curve 1 in Figure 4.20); metallic spheres (c=∞) 

are ruled out because they lead to a slope (curve 2) twice that of the data plot. On the 

other hand, the large abrupt rise in r observed at f~0.1 cannot be accounted for by a 

shape change or a property change alone. The most extreme shape change from S=1/3 to 

S=0 while keeping c =30 would predict a jump from curve 1 to curve 3 giving a rise at 

f=0.1 that is much smaller than observed; the most extreme property change from c=30 

to c=∞ while keeping S=1/3 would predict a jump from curve 1 to curve 2 that is equally 

inadequate to explain the observation. Only a simultaneous change in shape and property 

(for example, from c =30 and S=1/3, curve 1, to c=65 and S=0, curve 4 in Figure 4.20a) 

can account for the sharp r rise at f~0.1. This implies that there are at least two 

apparently coupled f-triggered morphological and insulator/metal transitions happening to 

the metal-rich clusters. In the literature, a similarly coupled morphological (also 

involving size) and property transition (also implicating insulator/metal transition) was 
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observed for supported catalyst of Au nanoparticles
20-21

. This postulation is indeed 

supported by the nanostructures of high f nanometallic films shown in Figure 4.21: 

metallic clusters partially form needle-like entities of a high aspect ratio. Note, however, 

that when the metal composition is rich, it is not possible to have all the metal atoms 

behaving like being included in metallic particles. This is because even the most 

conservative estimate of spherical metallic particles (curve) would give an overestimate 

of the dielectric constant at fCr and fPt >0.3.  

 

 

Figure 4.21. TEM image of (a) SiN4/3:25%Cr and (b) SiN4/3:27%Pt films 

showing high aspect ratio metal “needles” (enclosed yellow regions). 

Scale bar: 5 nm.

 

The above results are consistent with our picture of atomically dispersed deposition of 

metal atoms in the insulating dielectric during ambient-temperature sputtering. Since a 

single metal atom cannot be metallic (in the sense that its electron wave function is still 

localized to itself instead of being an extended Bloch wave function as seen in metallic 

(a)

2 nm2 nm

5(b)

SiN+27%PtSiN+25%Cr
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crystals), metal-lean nanometallic films with atomically dispersed metal atoms are not 

expected to show metallicity either. In fact, even in films of large metal compositions in 

which chance encounters of metal atoms may have resulted in many metal-atom clusters 

that do have metallicity, some atomically dispersed, hence nonmetallic metal atoms must 

still exist. Our fitting results are consistent with this picture. 

On the other hand, since nanometallic films contain thermodynamically immiscible 

constituents (an oxide/nitride insulator and a metal), clustering is inevitable and metal-

rich clusters will form to some extent, by diffusion or by chance encounter. During 

ambient temperature sputter-deposition, diffusion is limited to the surface (diffusion time 

being the interval for sputter-growing one monolayer, about 2-10 seconds in our 

experiments) and it probably reaches to the nearest-neighbor sites or thereabout at most. 

Therefore, a multi-atom metal cluster cannot form unless f is rich enough to statistically 

place metal atoms one or two atomic distances away from each other. Under this 

circumstance, the growth mechanism—by chance encounter aided by very nearest 

neighbor diffusion—does not allow metal clusters to achieve compact packing. So the 

morphology of clusters is likely to be ramified. In particular, when two small clusters are 

joined by a newly arrived atom that forms an inter-cluster “bridge,” the joined cluster is 

likely to remain in a “dumb-bell” configuration almost indefinitely. It is interesting to 

note that such occurrence—the joining of two clusters— instantly gives rise to a new 

cluster of twice the size and aspect ratio. This mechanism provides a plausible 

explanation why, at a critical f (10% in Figure 4.20) when cluster-joining become 

statistically frequent events, a simultaneous size and morphology transition can occur to 
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account for the sharp r rise. Later, as f further increases, more sputtered metal atoms will 

arrive, by chance, to join the clusters, so “belly-filling” of the dumbbell begins making 

the linked clusters appearing more rounded in their overall shape. This has the effect of 

decreasing the aspect ratio and increasing S (from 0 for needle in curve 4, to 1/3 for 

sphere in curve 2, in Figure 4.20). Such an evolution can explain the apparent saturation 

of r at high f in Figure 4.12a (Figure 4.20) or even a slight decrease of r at the highest f 

shown in Figure 4.12b. It is also consistent with the microstructure evolution observed 

in Figure 4.22 for Si3N4:Pt films. 

The discussion above focuses on static dielectric response of nanometallic films of 

various metal contents. We will return to these films in a later section to consider the 

temperature and frequency effect which influence the dynamic dielectric response.  
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Figure 4.22. Dielectric constants in Figure 4.12b and their 

corresponding nanostructures. Scale bar: 5 nm. Si3N4:Pt films (2-6 is 

reproduced courtesy of Dr. Jongho Lee).

 

4.5.2   Conductivity and Capacitance 

 

Figure 4.23. Microscopic picture of HRS and LRS for charge storage. 

 

The capacitance difference CHRS>CLRS is not seen in filamentary RRAM such as NiO 

(ref.
2
), TiO2 (ref.

4
) and HfOx (ref.

6
). In the literature, this is rationalized by the fact of the 

very low (volume and area) fraction occupied by the filaments (~1 nm filament per ~1 

µm device, giving an area ratio of 10
-6

), making filament’s contribution to the overall 

capacitance negligible despite its pivotal role in resistance transition. If we adopt the 

same argument to account for the 20% lower capacitance of the LRS relative to the HRS, 

we would expect the LRS in the nanometallic memory to have a conducting cross section 

of about 20% more than that of the HRS, as schematically illustrated in Figure 4.23. This 
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percentage is huge compared to the filamentary structure. The picture is supported by the 

study of the capacitance of the intermediate resistance states (IRS). (See Chapter VII on 

how IRS is programmed.) As shown in Figure 4.25, the capacitance and resistance of the 

IRS, HRS, and LRS are “correlated”: a lower C correlates to a lower R. This clearly 

demonstrates that as more non-capacitive conducting paths are formed, the effective 

capacitance is reduced along with the overall resistance. To build a quantitative model, 

we employ the circuit model in Chapter VII again and envision the device as a parallel 

connection of a high-resistance cross section (rH and cH per area, area fraction=1-F) and a 

low-resistance cross section (rL and cL per area, area fraction=F). As shown in Figure 

4.24 inset, given a resistance state: 
 

 
 

   

  
 

 

  
, the corresponding capacitance can be 

written as:              . Therefore, the following capacitance-resistance 

relation is obtained: 

0/ CRAC  or 
'
0/' CRAr   

where   
     
 

  
 

 

  

 and    
           

 

  
 

 

  

. The red line in Figure 4.24 shows the fitting 

results using the above equation, which seems to be in reasonable agreement with the 

experimental data.  

One might expect that nanometallicity can reduce the effective thickness, thus affecting 

the capacitance and apparent dielectric constant. This is because, even in the HRS, short 

range conducting paths may extend inside the nanometallic film within an electron 

diffusion distance ~, allowing free electrons to be stored within this layer inside the film. 

However, if this is the case, one would expect the LRS to have a much thinner effective 
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thickness, thus a much higher capacitance, which is contrary to our experimental 

observation. Therefore, we can rule out the effect of nanometallicity on the effective 

dielectric thickness of the RRAM capacitor.  

 

 

Figure 4.24. State dependence of capacitance. C(nF)=11.3-1883/R(Ω). 

 

4.5.3   C-V Dependence 

The polarity-symmetric C-V curve immediately rules out the contribution of the 

interfacial (Schottky) barrier. This is because the capacitance of the Schottky barrier 

depends on a space-charge layer, which can be asymmetrically modulated by an external 

electrical field following   
 

      
 (Vbi: built-in potential)

22
.  

Regarding the C-V dependence (C decreases at a larger V), there are two possible 

explanations: 

(i) Intrinsic non-linear field dependence. In ferroelectric and highly polar paraelectric 
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oxides (e.g., BaTiO3, SrTiO3, and their solid solutions), polarization becomes 

incrementally harder under a larger electrical field (~10 MV/m). Such field 

dependence can be approximated by
23

: 

2)(

)(
),(

ETa

Tb
ETr




 

where a(T) and b(T) are temperature–dependent coefficients. In our experiment, the 

DC bias is on the order of ~0.1 V corresponding to a field of ~10 MV/m. Therefore, 

this could be a viable mechanism. However, if such effect were to dominate, we 

should expect a similar field (voltage) dependence for the capacitance of the LRS, 

which is absent (Figure 4.13). Therefore, this explanation can be ruled out. 

(ii) “Volatile” conducting paths. Following the same reasoning used to rationalize the 

state dependence in Section 4.5.2, one may argue that the decrease of capacitance 

could stem from the increasing number of conducting paths in nanometallic films. 

These conducting paths shrink the effective area of charge storage and therefore lead 

to a smaller capacitance. Using the capacitance of 2.4 nF at 0 V and 2.1 nF at 1 V, 

we can estimate that the voltage-induced conducting paths may take up ~13% of the 

total effective area of the dielectric in the RRAM capacitor in Figure 4.13. Again, 

this percentage is huge compared to the percentage of filaments. It is worth noting 

that conducting paths here are different from the ones described earlier for the LRS, 

in the sense of volatility, “volatile” here but “non-volatile” in Section 4.5.2. The 

origin of the voltage dependence of conductivity path will be discussed in the chapter 

on transport properties. For example, at room temperature, the voltage dependence of 
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conductivity paths is caused by field-dominated variable range hopping.  

Regardless of whether the conducting paths are volatile or not, from the viewpoint of the 

parallel circuit model, one should expect a similar correlation between the effective area 

and the fraction of conducting paths F. This seems to be confirmed in Figure 4.25: 

capacitance and resistance are strongly correlated to each other and all data points lie on 

the same curve irrespective to the nature of resistances change—whether it originates 

from the different resistance states (HRS, IRS, or LRS), or from a DC voltage bias. Such 

correlation is seen in both Si3N4:Pt and Si3N4:Cr systems. A similar C-R dependence is 

also observed in the SiO2:Pt system (Figure 4.25b), which is even stronger. This is not 

unexpected: the conducting path effect should be more pronounced when the metal atoms 

are embedded in a background of a lower dielectric constant (r, SiO2=3.9 < r, Si3N4=7). In 

addition, the SiO2 film is nanoporous, thus the conducting paths that are localized near 

the nanoporous region are also expected to have a stronger effect.  
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Figure 4.25. Capacitance vs. resistance for all states (acquired by either IRS 

at 0 V or HRS at various bias) in (a) Si3N4:Pt (d=512 μm, δ=10 nm), (b) 

SiO2:Pt (d=200 μm, δ=20 nm) and (c) Si3N4:Cr (d=122 μm, δ=10 nm) 

nanometallic devices. 
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4.5.4   Temperature Effect 

 

Figure 4.26. Capacitance vs. resistance for various states (re-plotted 

from Figure 4.15) under different temperatures for a Si3N4:12%Cr 

nanometallic film. 

 

Figure 4.27. Capacitance vs. resistance for various states for a 

Si3N4:16%Cr nanometallic film. 
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By applying the same procedure, we replot the C-V dependence of Figure 4.15 into the 

C-R dependence at various temperatures in Figure 4.26. For each temperature, the 

capacitance increases with R, which is the same correlation found above between the 

capacitance and the effective dielectric cross section in the RRAM capacitor. However, 

the positive C-R correlation should not be taken too far. At zero bias, as the temperature 

increases, resistance decreases for the HRS but the capacitance increases (Figure 4.16, or 

Figure 4.15 at 0 V.) Likewise, at zero bias, as the metal concentration increases, 

resistance decreases for the HRS but the capacitance increases (Figure 4.12)  Therefore, 

higher temperature and higher metal content can both increase the capacitance despite the 

fact that they also decreases the resistance hence the dielectric cross section. If we use 

voltage bias to tune resistance, and compare capacitance in Figure 4.26 at the same 

resistance, its increase with temperature is obvious: it becomes more pronounced at 

higher resistance. The same holds for other compositions, see Figure 4.27. Regarding the 

combined effect of composition, the capacitance increase with temperature is gradual in 

films of low metal concentrations (which is more resistive) but much steeper at higher 

metal concentrations (which is more conductive). Therefore, there appear to be an 

additive effect of these two factors: higher temperature and higher metal composition, in 

combination, cause the most increase in capacitance. This suggests that the two effects 

may have the same or similar origin.  

It is known that dielectric constant can be affected by the response of both induced 

dipoles and permanent dipoles. Dielectric constant due to permanent dipoles typically 

shows two types of temperature responses. If electric dipoles are free to rotate, then 
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thermodynamics dictates that the dielectric constant increases with decreasing 

temperature. This may result in the Curie law in which the dielectric constant diverges at 

0 K, or in the Curie-Weiss law in which the peak dielectric constant occurs at the Curie 

temperature due to an internal field arising from dipole-dipole interactions. In contrast, if 

dipoles are not free to rotate, i.e., they are frozen, then they make no contribution to the 

dielectric constant. The latter situation typically changes at higher temperature when 

dipole rotation becomes easier, then some contribution to the dielectric constant is made 

and the dielectric constant gradually increases. This is often seen in amorphous materials 

such as polymers. Similar dielectric response also widely exist in compound 

semiconductors which lack inversion symmetry, including GaAs
24

, CdTe
24

, ZnSe
24

, 

CdS
25

, ZnO
25

,GaP
26

 and InP
27

, where a universal linear expression ε(T)= ε(0)(1+λT) are 

employed for data fitting (λ>0, λ~10
-4

 K
-1

). It is generally believed that electron-phonon 

and phonon-phonon interaction contributing to such behavior
26

.  

In our amorphous dielectric films, dipoles due to various defects possibly exist. They 

may originate from covalently-bonded cation-anion pairs, electrochemically controlled 

metal (inclusion)-insulator (matrix) interfaces and compositional/structural disorders. 

Their rotation is likely to be very difficult at lower temperatures considering the 

refractory nature of Si3N4 and SiO2. The broad but gradual rise with temperature is likely 

due to the contributions from these “hard” defects, which gradually become free to rotate. 

This seems to be responsible for the dielectric response in nanometallic films of low 

metal concentrations.  
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When the metal concentration exceeds a critical value, however, the temperature 

dependence increases rapidly. Adopting the Curie-Weiss law and use )/(1 TTC cr 

to analyze our data, we can see from Figure 4.28 that the data of fPt=16% and fPt=30% 

nanometallic films follow the Curie-Weiss law, with a critical temperature ~500 K and a 

similar Curie-Weiss constant. Films with leaner metal composition do not show such 

behavior. Since the Curie-Weiss behavior, which emerges at high metal composition, 

does cause a large increase of dielectric response, it now becomes clear that temperature-

caused increase of capacitance is correlated to metal-composition-caused increase of 

capacitance.  

 

Figure 4.28. Curie-Weiss plot for (a) fPt=16% and (b) 

fPt=30% nanometallic films.  

 

Earlier, we found that the deposited metal atoms acquire metallicity above a critical 

concentration of ~10%. Therefore, the apparently abrupt emergence of the Curie-Weiss 

behavior is probably related to the emergence of metallic nanoparticles. This may be 

understood as follow. Metallic nanoparticles have a large dipole, moreover, the dipole 
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can reorient without a configurational change (i.e., a physical rotation of the nanoparticle) 

by redistribution of conducting electrons. Thus, these are strong and soft dipoles unlike 

the weak and hard atomic defects in amorphous Si3N4 or SiO2 films. Meanwhile, because 

of their high concentration at high metal contents, dipole-dipole interaction between 

metallic nanoparticles is relatively strong so that an internal field also arises along with 

metallicity. As a result, there is an apparent Curie-Weiss law that describes the dielectric 

behavior of these films containing metal nanoparticles, which explain both the 

temperature dependence and the compositional dependence. Lastly, redistribution of 

conducting electrons in metallic nanoparticles is obviously a conduction process, which 

explains the strong frequency dependence and large tan shown in Figure 4.18 for fCr=16% 

data, especially below 10 kHz.  

To more quantitatively examine the compositional effect, we need to compare the Curie-

Weiss coefficient C as a function of composition. Note that the dielectric constant of the 

“dielectric” of the RRAM is probably underestimated at high metal concentrations 

because of the large portion of the conducting paths. Using the room temperature 

resistance as a reference, we see that the resistance of the 0 V resistance decreases by a 

factor of ~30 from fPt=16% to fPt=30%. Taking this into account, we believe that the fPt 

=30% dielectric response is probably stronger by the same factor than that of the fPt=16% 

composition, even if the nominal Curie constant C is essentially the same for both in 

Figure 4.28. 

We finally note that the fitting factor n describing the temperature response of the 

dielectric constant in Figure 4.14 is closer to 1 at lower temperature; it reduces to <0.95 
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at room temperature. In an ideal Debye dielectric, n=1 corresponding to a single 

relaxation time (τ=RC=ρε); a larger deviation from this ideal situation implies a wider τ-

dispersion, which is apparently the case at a higher temperature. Although this is 

illustrated in Figure 4.14 for one composition only, it is likely to be the case in films of 

other metal compositions. This may be interpreted in at least two ways. (i) At higher 

temperatures, more modes of dipole rotations become feasible, leading to an increase of 

relaxation mechanisms and dispersion. (ii) Lattice vibration (phonon) introduces 

electrical randomness through electron-phonon and phonon-phonon scattering, creating 

local inhomogeneity and thus time constant spreading ∆τ~∆ρε+ρ∆ε.  

 

4.6   Conclusions 

(1) Nanometallic devices can be described by an equivalent circuit composed of R0-

R1//C1-R2//C2, where R0 and R1//C1 stem from spreading/line resistance, bottom 

electrode and interface, whereas R2//C2 is attributed to the nanometallic film itself. 

The value of R2 can change by orders of magnitude because of resistance switching 

and non-Ohmic behavior. 

(2) The capacitance of a nanometallic RRAM follows the standard scaling law: CA/δ 

for both the HRS and LRS, indicating that it is essentially made of a linear dielectric 

that is spatially uniform over the length scale of the capacitor (such as the thickness 

of a few nm).  

(3) The effective dielectric constant slowly increases with fmetal at fmetal<10%, but abrupt 

increases at fmetal~10% and then saturates afterwards. This variation results from a 
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combination of changes of morphology, shape/geometry and metallicity of metal 

atoms and their clusters. 

(4) Both HRS and LRS capacitance are symmetric with respect to voltage. The HRS 

capacitance decreases with voltage, whereas the LRS capacitance is insensitive to 

voltage. Meanwhile CHRS>CLRS by up to ~20%. A strong correlation between C and R 

was also found. These results suggest that the nominal capacitance depends on the 

effective cross sectional area of the non-conducting dielectric, which is significantly 

reduced in the LRS and by a DC voltage bias, as pictured by the parallel circuit model. 

(5) The capacitance of filamentary RRAMs is the same for the HRS and the LRS, and it 

shows no voltage dependence and has no C-R correlation. This suggests that, unlike 

nanometallic RRAM, the cross sectional area of the insulating dielectric remains the 

same in filamentary RRAM at all states and voltages.  

(6) Dielectric constant increases with temperature between 77 K and ~400 K. At high 

metal compositions, the rise is especially steep allowing the dielectric constant to 

increase significantly, with a peak at T>400 K. The latter behavior is consistent with 

the Curie-Weiss law with a Curie temperature ~500 K. This is suggested to arise from 

dipole-dipole interactions between dipoles associated with metallic nanoparticles. 

This behavior, however, disappears at high frequency (e.g., 1 MHz) indicating that 

electron redistribution in metallic nanoparticles can be suppressed.  
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Chapter V. Transport in Nanometallilc Memory
 

5.1   Introduction 

Almost all the studies in the RRAM literature were performed at room temperature. 

As a result, the information is limited, and such limitation has especially affected the 

interpretation of the conduction mechanism. Most insulators exhibit a non-linear I-V 

curve, which can sometimes be simplified to an exponential form: I~exp(V/V0). At a 

constant temperature or a very narrow temperature range near the room temperature, it 

can be quantitatively fitted by various models based on Poole-Frenkel emission
1-2

, 

Schottky emission
3-4

, space charge limited conduction
5-7

, or trap assisted tunneling
8
, 

which have all been proposed for RRAM, sometimes for the same material (e.g., HfO2). 

Likewise, most literature claims a metallic LRS based on its linear I-V behavior, which is 

not convincing since many conduction mechanisms do yield a linear I-V behavior at 

small voltage. In principle, temperature dependence of conductivity can help distinguish 

different mechanisms and perhaps establish a unique conduction mechanism, and still 

more information can be supplied by magnetic field dependence. Such a study is 

undertaken here from 2 K to 300 K at a magnetic field up to 9 T to interrogate the 

conduction mechanism of nanometallic RRAM. 

The study is of particular interest to nanometallic resistive switching devices. As 

discussed in Chapter II, at room temperature ultra-thin nanometallic films do not follow 

Ohm’s law in thickness scaling and instead exhibit an exponential dependence that can be 

attributed to electron localization. However, to truly manifest the localization behavior of 

electron’s wave function in random material, a low temperature study is mandatory since 
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at room temperature thermally activated hopping is expected to overwhelm tunneling, 

thus obscuring the genuine localization feature. In addition, nanometallic RRAM is 

believed to rely on electronic switching and not ion or atom migration. This implies that 

switching requires little thermal assistance and can occur at all temperatures, including 

low temperature when the thermal energy (~kBT) is considerably less than eVswitching, i.e., 

the switching voltage should be independent of temperature. Magnetic study is also 

relevant in view of the random nature of nanometallic material and the predominance of 

electron tunneling because the interference of electron wave function can be easily 

altered by a magnetic field.  

In the next sections, a brief summary of conduction mechanisms will be presented 

first, followed by the presentation of data and their quantitative fitting as a function of 

temperature and voltage using a set of self-consistent microscopic model parameters for 

elastic and inelastic tunneling. A variety of states of the nanometallic devices, including 

different resistance, thickness, and metal content, will be investigated to provide a 

comprehensive picture of the energy landscape for electron conduction in these devices. 

 

5.2   Mechanisms for Electron Conduction: A Brief Summary 

5.2.1   Conduction in Metals 

The simplest model of electron conduction is the Drude model, which explains the Ohm 

law as a constitutive equation: current density is proportional to the applied field, J=σE. 

Electrons are thought to diffuse via random walk, in each walk (called mean free path) 

which last a time τ (called mean free time, which is the time between collisions), the 
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electron movement is monotonically accelerated by the electric force provided by the 

electric field. The conductivity σ, or its reciprocal, resistivity, is expressed by
9-10

 

m

ne 


2

 , or 



2ne

m
  

where e and m are the charge and mass of electron, n is the density of electrons. Although 

τ in classical physics is associated with the mean free time between adjacent collisions, it 

can also be associated with electron relaxation/decoherence time in quantum mechanics, 

so that the diffusion model is also adopted in mesoscopic theory of electron conduction. 

Generally, the temperature dependence of metal in this model can be divided into four 

regions
9-10

: 

(1) At high temperature (T>D, the Debye temperature), electrons experience scattering 

from lattice vibration with a scattering probability (P~1/τ) proportional to the average 

squared atomic displacement, which is proportional to kT ( TkxP B 2
). This 

leads to a linear law: (T)~1/τ~T. 

(2) Below the Debye temperature, the number of phonons available is proportional to 

(T/D)
3
, each contributing a scattering cross section proportional to (Qu)

2
 (where Q 

is the momentum transfer during electron-phonon collision/scattering), which is 

proportional to kT, and the fraction of electrons participating in the N-process 

electron-phonon collision (without changing the Brillouin zone) is from a section of 

the size kT/Ef on the Fermi surface. Thus, the overall temperature dependence is 

T
5
/D

3
 due to electron-phonon interaction.  

(3) Electron-electron scattering contributes to a resistivity that follows a square-law 
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(T)~1/τ~T
2
. This T

2
 dependence dominates over the Debye law at low temperature in 

systems where electrons form a Fermi liquid. 

(4) At 0 K, impurity and defect scattering results in a finite resistivity instead of zero 

resistivity as in a perfect metal.  

 

5.2.2   Conduction in Insulators 

Electrons are localized in insulators. To move to other sites, a certain energy barrier 

needs to be overcome either by tunneling or hopping, the latter being inelastic tunneling 

substantially assisted by phonons (i.e., thermal energy). The nature of the barrier depends 

on the type of defects or dopants present. Figure 5.1 lists some possibilities for an 

electron that attempts to travel from a cathode, through an insulator film to an anode
11

. 

The possibility that provides the largest electron transition rate is the dominant 

conduction mechanism. 

  

Figure 5.1. Schematic of some possible electron conduction paths through a 

MIM stack. (1) Schottky emission (SE). (2) Fowler-Nordheim tunneling 
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tunneling (FNT). (3) Direct tunneling (DT). If the oxide has substantial 

number of traps, trap-assisted tunneling contributes to additional conduction, 

including the following steps: (4) tunneling from cathode to traps; (5) emission 

from trap to conduction band (Poole-Frenkel emission); (6) F-N-like tunneling 

from trap to conduction band; (7) trap to trap hopping or tunneling; (8) 

tunneling from traps to anode. Adapted from ref. 
11

. 

 

5.2.2.1   Schottky emission (SE) or thermionic emission (TE) 

Under a field assistance electrons from one electrode may be thermally activated and 

injected into the conduction band of the insulator, surmounting the barrier. Due to 

imaging force between the electrode and the electron, the barrier is lowered and the 

process is made slightly easier. The SE/TE conduction follows a linear relation between 

ln(J/T
2
) and 1/T (Ref. 

12
), which can be analytically expressed by 

 












 


Tk

eEe
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B
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In which the field dependence is non-linear because of image charge consideration. One 

distinguishing feature of this mechanism is an asymmetry when two electrodes with 

different work functions are involved, giving different barriers.  

 

5.2.2.2   Frenkel-Poole emission (FPE)  

Electrons from one electrode may first enter a trap inside the insulator, where it sees a 

lower barrier because of field-shearing. The trap electron then undergoes field-assisted 

thermal emission into the conduction band and travel to the other electrode in a similar 
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manner as SE/TE. When overall barrier lowering due to field shearing and image charge 

is considered, the following expression is obtained: 

 












 


Tk
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EJ
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exp

 

Mathematically, FPE turns out to have the same voltage dependence as SE, except for a 

larger amount barrier lowering
13

. 

 

5.2.2.3   Space Charge Limited Conduction (SCLC) 

Space charge refers to the electric charges which may be treated not as distinct point-like 

entities but as a charge continuum distributed over a region of space
14

. In a capacitor-type 

device which contains a trap-free insulator gap, the total space charge in the insulator is 

given by Q=CV=εAV/δ, accumulated over a time of the order of t=δ/μE= δ
2
/μV (μ is 

electron mobility, μE with E=V/ is electron velocity). This leads to the following simple 

estimate for the current which follows a square V dependence: 

2

3
V

A

t

Q
I




  

Since the mobility may have a strong temperature dependence, space charge limited 

conduction also varies with temperature in an Arrhenius manner ~exp(-A/kBT). 

Furthermore, this mechanism is very sensitive to the presence of traps inside the insulator. 

If the insulator only contains shallow traps close to the conduction band, the square V law 

is still valid but is modified with an additional constant prefactor accounting for the 

“trapped electrons” fraction. A more realistic circumstance is to have traps that are 
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distributed in energy, and to allow the external voltage to elevate the Fermi level and thus 

effectively modulate the electron density. Consequently, for the case of uniformly 

distributed traps, SCLC becomes an exponential form: 

 V
C

enV
I c 




exp0

2

0
















  

where ne0 is the initial (thermally-equilibrated)) equilibrium concentration of free carriers. 

Another commonly used SCLC form assumes the trap density follows the Boltzmann 

distribution, nt~exp(-E/kBTc) (E is measured from the bottom of the conduction band, Tc 

is a characteristic temperature indicating how rapidly the trap distributions varies), which 

leads to a stronger voltage dependence for T<Tc: 

1)/( 


TTcVI  

For T>Tc, this expression reduces to the same square-V law as for shallow traps (square 

law). A good reference for SCLC is in ref.
15

.   

 

5.2.2.4   Tunneling 

Tunneling refers to a process by which an electron wave function maintaining a definite 

phase and energy moves through a barrier that has a barrier height higher than the energy 

of the wave function. Tunneling probability is determined by the ratio of the wave 

function amplitude of the final state to that of the initial sites. Simmons derived a 

generalized formula for electron tunnelling between similar electrodes separated by an 

arbitrary, spatially varying tunnel barrier b(r) (Ref.
16

). For a trapezoidal barrier and 
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when the applied bias is less than the barrier height, the Simmons formula reduces to an 

analytical form: 
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Here A is the junction area, d is the barrier width, m* is the effective mass of electron, b 

is the barrier height and e is electron charge. Several simpler forms have also been 

proposed in the literature based on simplified models that carry more straightforward 

physical meaning. 

A. Direct tunneling (DT): DT occurs in a very thin insulator through which an electron 

can elastically tunnel without losing any energy
17

. For a rectangle barrier, DT leads to: 
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VI
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exp

 

This is exactly the low field limit (V→0) of Simmons’ formula for the same rectangular 

barrier. Thus, it applies at very low field only. An important feature in this limit is the 

linear I-V relation, i.e., there is a finite conductance at zero field. 

 

Figure 5.2. Direct tunneling (DT) and Fowler-Nordheim tunneling (FNT). 

 

B. Fowler-Nordheim tunneling (FNT, field emission): In the presence of a high 

0 V

DT
FNT
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electrical field, a rectangular energy barrier may be so severely sheared to reduce to a 

triangular barrier. In this scenario, electrons see a “thinner” barrier and thus tunneling 

becomes much easier. This is the FNT situation, which leads to
18

:  
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It can be represented as a simple relation between ln(I/V
2
) and 1/V. 

C. Trap assisted tunneling (TAT): In a way somewhat similar to PFE, tunneling 

becomes much easier when a thick insulator contains traps. These traps serve as staging 

stations for electrons, which now see a reduced barrier width between stations (traps).  

 

Figure 5.3. Trap assisted tunneling (TAT). Adapted from ref.
19

. 

 

Cheng et al.
19

 proposed a method to calculate TFT by assuming a simple Fowler-

Nordheim-type potential profile (Figure 5.3). In this picture, an electron from one 

electrode first tunnels to an intermediate state (a trap) with a rate T1, it next tunnels to the 

conduction band of the insulator (which is responsible for the initially rectangular barrier) 
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with a rate T2, thus reaching the other electrode therefrom. The two rates can be 

expressed as T1=CNt(1-f)P1 and T2=CNtfP2, where C is a constant, Nt is the trapping site 

concentration, f is the fraction of the trap states that is occupied, and P1 and P2 are 

tunneling probability of these two steps (calculated using the WKB approximation for 

tunneling assuming a triangular potential): 
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By imposing detailed balance of the trap state occupancy, f can be expressed in terms of 

P1 and P2, and the overall tunneling current can be expressed as: 
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which is linearly dependent on the trap concentration. Unfortunately, even for this 

oversimplified case, an analytical form is difficult to obtain. Thus, this relation is difficult 

to use. However, the above result has a simple interpretation: if the two regions between 

the trap and the two electrodes can be considered as two separate insulators with two 

resistances, then the total resistance between the electrodes is the sum of the two separate 

resistances. 

D. Fluctuation induced tunneling (FIT): FIT describes elastic tunneling across weak 

barriers between metallic patches separated by a nano-gap, facilitated by the Johnson 

fluctuation of the gap voltage. Since the fluctuation increases with temperature and the 

tunneling probability is non-linear and asymmetric with respect to voltage (i.e., 

P(V+V)+P(V-V)>2P(V)), net tunneling rate gradually increases with temperature 
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despite the fact that the process is entirely elastic (Figure 5.4). Since the voltage 

fluctuation across the nano-gap capacitor is ±(kBT/C)
1/2

, which can be significant when C 

is small
20

, this is a nano effect not seen in macroscopic capacitors. 

 

Figure 5.4. (a) Tunneling through the entire insulator. (b) 

Tunneling through small gaps. Adapted from ref.
21

.  

 

An analytical form of FIT is expressed by
20-21
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Here, A and w are the area and width of the gap, respectively, Φb is the potential barrier 

height, εr is the dielectric permittivity of the insulator, and e and m* are the electron 

charge and mass, respectively. As temperature varies, the expression reduces to two 

asymptotes: G0exp(-T1/T0) in the low temperature limit, and G0 in the high temperature 

limit. In transport literature, there is also an empirical formula for voltage dependence of 

FIT, expressed by 
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where G0,T is the temperature-dependent small-voltage conductance, V0 is a voltage scale 

factor and hv is the ratio of conductance at low and high voltages. Since the form is 

empirical, the fitting parameters carry little physical meaning. 

 

5.2.2.5   Inelastic Tunneling (Hopping) 

Hopping is an incoherent, thermally activated process in which an electron loses all its 

phase information as it moves from one site to another. In detail, the electron still 

advance by extending its wave function, but it also interacts with phonon so that its 

energy and momentum are no longer constant. Since there is no coherence between the 

amplitudes for finding an electron at different sites, hopping is akin to diffusive transport 

in which there is no explicit need for prescribing a wave function to carry the information 

of amplitude and phase: energy information alone will suffice. 

Variable range hopping (VRH): VRH was originally developed for doped/ disordered 

semiconductors. Electrons are localized in these systems. In addition, statistically, the 

probability of an electron to find its nearest available electron states to have an identical 

energy is very low. Therefore, elastic tunneling is highly improbable. Since electrons 

may gain enough thermal energy kBT, they can also inelastically tunnel if they can find 

some nearby states that have an energy within kBT of themselves. The probability of 

finding such states is much higher at a higher temperature and with the electrons reaching 

out to probe a larger zone, although as they do so their own wave function decays so the 

tunneling probability also diminishes. The overall probability, which provides the 

conductance, can be expressed by 
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where  is the localization length of the wave function, r is the hopping distance and ΔE 

is the energy difference between the initial and final states. Mott
22

 pointed out the energy 

difference ΔE available is related to the density of states, Nu, since the probability of 

finding a state of such energy within all the states in a space of a linear dimension r 

should be about unity, thus ΔE~1/Nur
d
, where d is the dimension of the system. By 

maximizing the probability, Mott obtained the following relation (Mott’s law)
23

: 
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which provides a constant conductance in the low field limit (F→0, where F is the 

electric field). In particular, the 3D VRH model predicts lnG is linearly proportional to T
-

1/4
 and: 
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In this picture, the most probably range r is temperature dependent: it is much longer at 

low temperature than at high temperature, and most of the time it is longer than the 

distance between the nearest neighbor states, hence the name of variable range hopping. 

In the high field limit, reached when the electric work ~erF is larger than the site energy 

difference E, hopping becomes much easier and exponentially dependent on the 

electrical field F: 
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Here, the field constant is, for 3D conduction,

 

40

1

16

81


ueN

F 

 

This is essentially an athermal hopping (AH) process where conduction is weakly 

dependent on temperature. The transition field between the “low field” regime and the 

“high field” regime can be estimated as Fc ≈ kBT / eζ (ref. 
24

).  

Coulomb-gap hopping (CG-VRH): Another type of VRH was proposed by Efros and 

Shklovkii, who considered the Coulomb interaction between localized electrons. They 

found such interaction inevitably opens a “soft” gap in the density of states near the 

Fermi level. This gap of density of states obviously affects the statistics of available 

states for variable range hopping, leading to
25
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which is formally the same as the temperature dependence in conventional VRH in 1D. 

In the above, TES is given by: 
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where ε is a macroscopic dielectric constant and β is a numerical constant of the order of 

unity (β =2.8 for 3D)
26
. The Coulomb gap width Δ is related to the unperturbed density of 

states Nuo: 
2/3
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3 /uNe . Therefore, if kBT>> Δ, the Coulomb gap is thermally 
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smeared so the conduction mechanism crosses over from ES VRH to Mott VRH. In 3D, 

the ES-Mott crossover temperature is
27

 

MEScross TTT /16 2

 

  

5.3   Experimental Setup 

Two experimental stations were employed to interrogate temperature related 

electrical properties. One was a cryogenic probe station (Lakeshore), which has the 

advantage of accommodating the device size (smallest d~25 µm) and providing better 

statistics (probing many cells on the same chip). It also has a lower parasitic impedance 

for AC signal detection. The other was a Physical Property Measurement System (PPMS, 

Quantum Design), which requires permanent wiring connections thus limiting the device 

size and number and causing a higher parasitic impedance. However, it provides a wider 

temperature range (2 K-350 K) with a much better temperature control and the possibility 

of additional property (e.g. magnetic, optical, etc.) measurements. It also exerts little 

mechanical contact stress/wear during testing and temperature excursions, which is 

always a problem with a cryogenic probe station due to the temperature drift. (In addition 

to the possibility of damaging the cells, mechanical stress can cause switching, see 

Chapter III.) Devices of the Mo/Si3N4:Pt/Pt type fabricated using methods described in 

previous chapters were used. Data collected in both stations are comparable. Briefly, the 

probe station was used for initial studies and to ascertain the size dependence and sample 

statistics. Further testing was performed in the PPMS to determine properties below 77K 

and the magnetic effects.  
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5.3.1   Cryogenic Probe Stations 

The Lakeshore cryogenic probe station provides 10
-7

 Torr level vacuum and is equipped 

with a heating/cooling stage, allowing temperature control from 77K to 400 K. This was 

implemented by purging the sample stage with liquid nitrogen (LN) while electrically 

heating the stage simultaneously (Figure 5.5). The testing setup is outlined in Figure 

5.5a & c, and a customized LabView program was developed to automatically control/ 

monitor temperature and collect data. (This is the same setup previously used for 

impedance study, in Chapter IV.)   

 

Figure 5.5. (a) Schematic of experimental setup using Lakeshore 

Cryogenic Probe Station. (b) Sample configuration and probe tips 

inside vacuum chamber. Inset: Probe tip. (c) Complete experimental 

setup. 
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5.3.2   Physical Property Measurement System (PPMS) 

The PPMS was equipped with an Ever-Cool helium cooling system and a heater for 

temperature control. It also supplies a magnetic field (-9 T to 9 T) in the vertical direction, 

which in most cases is perpendicular to the film of our devices (Figure 5.6). Samples 

(1×1 cm
2
) were mounted on a special chip holder with a heat conducting vacuum grease 

(Figure 5.6b). Silver paint was used to bond Gold wires (d=2 mil) to device electrodes 

and to connect to the pins on the sample holder.  

 

 

Figure 5.6. (a) Physical Property Measurement System (PPMS). 

(b) Sample and sample holder. (c, d, e) PPMS probe configuration. 

(c-e) are adapted from PPMS operational manual (Quantum 

Design, Inc.). 
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5.4   Results  

5.4.1   Resistance Switching at Various Temperatures 

Resistance switching characteristics were first investigated. The results are illustrated for 

two samples measured in the two systems, demonstrating very similar trends. As shown 

in Figure 5.7a & c, switching voltages show a weak or no temperature dependence from 

2 K to 300 K; at high temperature (>300 K) the reset (off→on) voltage Vreset appears to 

increase slightly. The insulator-like HRS resistance is more non-linear (non-Ohmic) at 

lower temperatures (but Ohmic at small voltage, see Figure 5.7e). The small-voltage 

resistance (near 0 V) increases by  ~5 orders of magnitude as the temperature decreases 

from 380K to 77 K, while the high-voltage resistance (e.g., at 2 V) only changes by ~1 

order of magnitude (Figure 5.7a) over the same temperature range. However, at very low 

temperatures, there is no further increase of the resistance (overlapped 2K & 20K curves 

in Figure 5.7c). In contrast, the LRS shows little temperature dependence, its set 

(on→off) voltage (Vset) again depends on the maximum negative voltage used in the 

previous scan (Figure 5.7a vs. c) as described in Chapter VII. Furthermore, R-V (I-V) 

curves are symmetric at all temperatures for both resistance states.  
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Figure 5.7. (a) Switching R-V characteristics from 77 K to 380 K, 

measured by cryogenic probe station (Sample: Mo/Si3N4:5%Pt (10 nm)/Pt, 

diameter d=342 µm). (b) Switching voltages in (a). (c) Switching R-V 

characteristics from 2 K to 300 K, measured by PPMS (Hard-wired sample: 
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Mo/Si3N4:10%Pt (9 nm)/Pt, diameter d=512 µm). (d) Switching voltages in 

(c). (e) HRS R-V curve under log-log scale showing an Ohmic region as 

V0. 

 

The size dependence was determined using the cryogenic probe station. At a low voltage 

(0.2 V), the HRS resistance follows Ohm’s law giving a set of parallel Resistance-Area 

(R~1/A) curves at different temperatures (Figure 5.8a), suggesting uniform resistivity 

independent of sample size. The Ohm law is demonstrated in Figure 5.8b by plotting the 

product of resistances and area (R×A). Therefore, any suitable cell size within the range 

of 100-512 m may be used to determine the temperature effect. All the data shown in 

the next section were collected using cells of 512 m. 

 

Figure 5.8. (a) HRS (read at 0.2 V) vs. device area A. (b) 

Renormalized resistance (R×A product) vs. temperature (T). 

(Sample: Mo/Si3N4:5%Pt (10 nm)/Pt) 
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5.4.2   No Magnetic Effect on Resistance Switching 

Resistance switching characteristics under a 9 T magnetic field was examined at 2 K. As 

shown in Figure 5.9, there is no apparent magnetic effect on the switching curves, which 

are plotted in both linear form and semi-logarithmic form. Essentially identical switching 

voltages and resistance values are shown in these curves regardless of magnetic fields. 

This excludes any possible magnetic effect, which has been reported for nano-clusters of 

nominally non-magnetic element such as Pt
28

. 

 

Figure 5.9. (a) Switching I-V characteristics under magnetic 

field (9 T vs. 0 T) at 2 K. (b) R-V characteristics for (a). 
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and cooling cycles; they generally coincided showing little hysteresis. These results are 

plotted as resistance (R)-temperature (T) curve, where the resistance is simply defined as 

R=V/I. To refer to these states, we designate the HRS as the state of the highest resistance 

RHRS, which is also the HRS state obtained in usual resistance switching from the LRS 

with a typical voltage sweeping window (±4 V). Intermediate resistance states (IRS) have 

RIRS<RHRS but their resistance must show a negative R-T slope (the insulator type) to be 

designated as such. The LRS is a metallic state exhibiting a positive R-T slope (the metal 

type), which will be described in the next subsection. Figure 5.10 shows temperature 

plots of RHRS and several RIRS in a Mo/ Si3N4:4%Pt (10 nm)/ Pt device. All curves can be 

separated into three regions:  

(1) A flat R-T curve at 2 K to ~50K, to be referred to as the low temperature behavior (the 

resistance in this limit may be used to characterize the state);  

(2) A gradually decreasing R-T curve at ~100K, to be referred to as the intermediate 

temperature behavior;  

(3) A rapidly decreasing R-T curve at >200K, to be referred to as the high temperature 

behavior.  

It is clear from Figure 5.10 that the intermediate and high temperature R-T dependence 

becomes progressively weaker as the HRS changes to various IRS of a lower resistance. 

(Note that Figure 5.10d-g are linear plots, not semi-logarithm plots as in Figure 5.10a-c.) 

At the same time, the upper temperature limit of the low temperature regime 

progressively decreases in the progression from the HRS to IRS of decreasing resistance. 
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This strongly suggests that thermally activated processes are more likely to proceed in an 

IRS of a lower resistance.  

 

Figure 5.10. Resistance (R)-temperature (T) for various resistance 

states: (a) HRS; (b) RIRS~50 MΩ; (c) RIRS~2 MΩ; (d) RIRS~300 kΩ; 

(e) RIRS~9 kΩ; (f) RIRS~2 kΩ; (g) RIRS~1.2 kΩ. R values here are 

“saturated” resistance at 2 K. Nanometallic film: Si3N4: Pt, fPt=4%, 

δ=10 nm. 
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We studied several of them (with a low-temperature resistance from 80 Ω to 600 Ω) at a 

small voltage (0.05 V).  Similar to the HRS and IRS data, the resistance saturates at low 

temperature; it then rises slightly (by a few percent) starting at the intermediate 

temperature. Since the LRS resistance (~ a few hundred Ω) is comparable to the bottom 

electrode resistance (serial load), the load resistance need to be subtracted from the 

measured resistance to allow a more accurate analysis. 

 

Figure 5.11. Resistance (R)-temperature (T) for various LRS: 

(a) R~600 Ω; (b) R~400 Ω; (c) R~300 Ω; (d) R~200 Ω; (e) 

R~110 Ω; (f) R~80 Ω. R values here are “saturated” resistance 

at 2 K. Nanometallic film: Si3N4: Pt, fPt=4%, δ=10 nm. 
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the load resistance and parasitic capacitance of the circuit, it is not possible to ascertain 

the same “state” is attained in samples of different thickness. On the other hand, from our 

past experience (Chapter II & VII), there is reasonable certainty that the HRS is unique, 

and can be reliably reached after a normal switching cycle after the LRS-to-HRS 

transition if a typical voltage sweeping window (±4 V) is used. Therefore, the data below 

pertains to the HRS only. As shown in Figure 5.12, the room temperature resistance 

already exhibits a strong (exponential) thickness dependence: R300K increases by ~2 

orders of magnitude as the film thickness increases by merely two-fold, from 7 nm to 14 

nm. The already strong exponential dependence becomes even stronger at lower 

temperatures: R2K increases by ~4 orders of magnitude for the same two-fold thickness 

increase. Three temperature regions described in Section 5.4.3.1 can again be identified. 

Interestingly, the limiting temperature of these regimes seems to be independent of 

thickness. 
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Figure 5.12. HRS transport characteristics for δ=7 nm, 9 nm, 10 

nm, 14 nm (incomplete data) and 17 nm Mo/Si3N4:10%Pt/Pt 

devices. Reading voltage: 0.05 V. Data collection for 17 nm sample 

was stopped at 150 K because of instrument limit (low current). 
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with the metal concentration. This strongly suggest that thermally activated process may 

become operational at a lower temperature in Pt-rich samples, in a similar manner as in 

IRS of a lower resistance value. Moreover, even at a very high metal concentration of 39% 

Pt, when the nanometallic films have already approached/reached its metal percolation 

limit (typically ~40% metal), the R-T curve, while quite flat, is still of the insulator type. 

Therefore, all of the samples in this figure are indeed in the HRS. 

 

Figure 5.13. HRS transport characteristics for fPt=4%, 19%, 27%, 39% 

devices (Mo/Si3N4:Pt (10 nm)/Pt). Reading voltage: 0.05 V. Inset: 

fPt=4% data with explicit error bar. 
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5.5   Model Fitting: LRS 

5.5.1   General Behavior and Empirical Fitting 

As shown in Figure 5.11, all LRS show metallic behavior with a positive R-T slope. 

However, based on the discussion in Chapter II and VII, the underlying bottom 

electrode resistance significantly contributes to the apparent resistance. Therefore, it must 

be subtracted before further analysis of the LRS data. 

We first use a polynomial to mathematically fit the bottom electrode R-T characteristics. 

The device resistance at the most negative bias, which has the lowest resistance, e.g., 

Figure 5.11f, is taken as the bottom electrode resistance. We next subtract this resistance 

from all the LRS data in Figure 5.11a-e, and one of the results is replotted in Figure 

5.14a. The remaining (corrected) resistance still shows a positive R-T slope, indicating 

the residual resistance after removing the contribution of the bottom electrode is still 

metallic. The data can be fit by an empirical formula: 

2

0, )( BTATTempiricalLRS  

 
(similar empirical formula can also be found in ref 

29
) as shown in Figure 5.14b. 

Applying the same procedure, we can correct all the LRS data in Figure 5.11 and replot 

them in Figure 5.14c. Remarkably, all such curves scale similarly: they collapse to the 

same curve after normalization with respect to the residual resistance at 0 K. Likewise, 

we have corrected the LRS data for devices of other thickness and presented the 

normalized data in Figure 5.14d. Again, the normalized data collapse into one curve. 

Therefore, there is apparently no fundamental difference in different LRS, differing in 
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either residual resistance (at 0K) or film thickness. This allows us to use one 

representative curve to interrogate the LRS transport below. 

 

 

Figure 5.14. (a) LRS in Figure 5.11a. Inset: LRS (using -10V reset 

voltage) in Figure 5.11f and a polynomial fitting (black curve). (b) R-

T relation after data subtraction in (a) and an empirical fitting using 

(T)= 0+ AT + BT
2
. (c) Renormalized R-T data for various LRS and 

empirical fitting. (Lowest LRS is not shown because of high noise to 

signal ratio) (d) Renormalized R-T data for various thickness and 

empirical fitting. 
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5.5.2   Electron-phonon and Electron-electron Scattering 

The LRS resistance can be fit with the following formula, a+b(T-T0)+cT
2
, in which a is 

the most significant term at all temperature and cT
2
 is noticeable only in the low 

temperature range. (In the above, we obviously cannot distinguish a and bT0 at low 

temperature, although at high temperatures when there is an apparent bilinear behavior it 

is possible to determine T0 and b independently.) According to the conduction theory of 

electrons in metals (see introduction part), the high temperature resistivity originates from 

electron-phonon scattering, leading to a linear law. Such linear law is verified in Figure 

5.15a in the temperature range of 100 K-300K: 

)102.96+(1511)1()( 4

0300100, TTRTR KKLRS



  
 

The temperature coefficient α is about one order of magnitude smaller than that of a 

typical good metal (e.g. αCu=6.8×10
-3

 K
-1

, αAl=3.9×10
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 K
-1
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30
, but is similar to that of some metal alloys (e.g. αNi-Cr=4.0×10
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 K
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)

30
, where a larger disorder exists. 
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Figure 5.15. (a) Linear-law fitting: R(T)= R0(1+αT) in temperature range of 

100 K-300 K. (b) Parabolic-law fitting: R(T)= R0’(1+βT
2
) in temperature 

range of 20 K-100 K. (c) Remaining resistance below 20 K (red curve is a 

trend line only). 

 

The linear law breaks down at low temperature, where a curvature is clearly seen in the 
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with the parabolic term arising from the electron-electron interaction/scattering. This 

parabolic form is typically observed in strongly correlated materials
29,31-33

, in which 

strong electron-electron interaction exists. Based on our discussion in Chapter II & VII, 

different LRS correspond to different de-trapping states, in which trapped electrons still 

exist but do not fully block free-electron passage. Therefore, electron-electron 

interaction/scattering is expected. The temperature coefficient β above is similar to or 

smaller than the ones shown in the literature (e.g., βNi-Nanowire=2.8×10
-6

 K
-2

 (ref.
33

), 

βLaCeCuO4=7.1×10
-5

 K
-2 

(ref.
32

), βW=5.1×10
-5

 K
-2 

(ref.
31

)), indicating a weaker electron-

electron interaction than in standard strongly correlated systems. 

At less than 20 K, resistance saturates or even slightly increases (Figure 5.15c). The 

nonzero resistance at 0 K in metals usually implies impurities/defects serving as 

scattering centers. In our case, scattering may arise from two origins: one is from 

structural disorder inherent in the amorphous film or induced by metal-atom doping, the 

other is from charge disorder of trapped charges. Structural disorder is expected to remain 

unchanged for different states while charge disorder is expected to vary with states. 

Based on the experimental observation that residual resistance at 0 K is highly dependent 

on the resistance states, we can infer that charge disorder is the dominant origin of 

scattering. 
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5.6   Model Fitting: HRS 

5.6.1   Preliminary Considerations  

5.6.1.1   HRS energy barrier 

 

Figure 5.16. (a) Simplified picture of charge distribution. Red region 

represents uniform distributed trap (negative) charge, compensated 

by positive charge on electrodes (blue). (b) Parabolic Coulombic 

potential barrier induced by charge distribution in (a). 

 

HRS is a metastable state, in which negatively charged electrons are trapped. One might 

hope to model the trapped charge effect on the energy landscape by assuming a uniform 

distribution of such charge. This will establish a long range field in the device, but not 

outside the device, because of the screening effect (compensating charges) of the 

electrodes. The solution of the electrostatic problem is standard: for a uniform charge 

density (z)=, it has a parabolic potential 
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with the maximum being 
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8

2

max,

e
b    

at the center of the film. For an estimate, a 10 nm thick film with a dielectric constant 

ε=10ε0 and a charge density of ρ=4.4×10
25

/m
3
 (i.e., 1 electron per 3 nm×3 nm×3 nm cube) 

will have a 1 eV maximum at the center.  

While the above solution is applicable to an insulating film, our cells all manifest various 

degrees of electron conduction even at 2 K. Therefore, the long-range field provided by 

the parabolic potential cannot be sustained: it will be compensated by electron 

redistribution which, over time, will completely wipe out the field. 

A more realistic picture of the energy landscape in our film is obtained by considering the 

short range potential of the trapped charge. For two (negative e) point charges located at 

(x, y)=(d/2, 0), there is a saddle point at (0, 0). The computed Coulomb potential profile 

is shown in Figure 5.17, in which the maximum along (0, y) at (0, 0) is the saddle point 

and the energy profile along (0, y) is  

  22

2

min

2/

1

2
),0(

yd

e
y





  

The saddle pont defines the “effective barrier height” (Figure 5.17) for electrons passing 

between x=d/2. In our picture, these electrons are in the channel, and in the HRS they 

need to overcome the above barrier to communicate from channel to channel, eventually 

from one electrode to another electrode, thus providing current. This barrier reaches 1 eV 

when the two charges are separated by 6 nm. Note that the barrier profile is smooth and 

does not have the square-wall shape commonly assumed in tunneling models. This may 
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have implications on the transport properties as a smooth barrier always provides a 

stronger voltage dependence for tunneling current than a square-wall shaped barrier.  

 

Figure 5.17. Point charge model: energy potential before and after two 

symmetric charges are trapped. Inset: minimum energy profile along y 

axis assuming two charges are d=4 nm, 6 nm, 8 nm apart. 

 

5.6.1.2   Overview of fitting strategy 

In the following, we will systematically model-fit the HRS transport data using various 

transport models. Since qualitatively the same temperature dependence is seen in samples 

of various composition and thickness, in the HRS and various IRS, the procedure will be 

repeated to obtain pertinent microscopic parameters that govern electron transport in 

various devices. Below we describe the overall strategy.  

(i) Low temperature: We believe elastic tunneling is the dominant transport mechanism 

here. There are three microscopic model parameters: the barrier height, the barrier 

width, and the area fraction of the device that participates in transport. Our picture is 
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that the barrier is the patch between neighboring but disconnected channels, and it 

must be overcome by tunneling with the assistance of an applied field. Since in its 

simplest form the R-V curve has at least three characteristic features, R(0), R′(0), and 

the high-voltage/field dependence, it is mathematically possible to solve the problem. 

(ii) High temperature: We believe thermally assisted (inelastic) and field assisted 

tunneling is the dominant mechanism. We will rely on variable range hopping, taking 

into consideration of field assistance, to model-fit the data. Again, there are three 

microscopic model parameters: the density of states, the extent of the wave function 

(a localization length), and the area fraction of the device that participates in 

transport. As in low temperature, it is possible to determine these three parameters 

mathematically using the data at V=0 and at high fields. 

(iii) Intermediate temperature: It turns out that the data of the intermediate temperature 

cannot be satisfactorily explained by the superposition of the low-temperature 

transport and high-temperature transport. Therefore, another transport mechanism is 

needed to explain the relatively gradual temperature dependence of resistance. We 

will choose the fluctuation-induced tunneling mechanism, which describes elastic 

tunneling albeit with the consideration of the Johnson noise, which is temperature 

dependent and can cause fluctuation in the barrier height. Again, we will determine 

the three microscopic parameters, two for the model, the third one for the area 

fraction of the device.  
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Lastly, we will present a simple mathematical formula that turns out to provide good 

numerical fitting to all the data. The physical meaning of this formula, however, is less 

certain, which will be discussed in Appendix. 

  

5.6.2   The Low Temperature Region: Direct Tunneling and Fowler-Nordheim 

Tunneling 

Resistance saturation at low temperature is a strong indication of a purely tunneling 

process. We will extract its physical parameters by assuming the simplest energy barrier 

profile with a rectangular shape. Generally speaking, direct tunneling (DT) occurs at low 

voltage bias when the entire width of the barrier affects the decay of electron wave 

function. As voltage or electrical field increases, barrier shearing gradually happens and 

gives rise to a higher tunneling current. When the voltage reaches the barrier height, a 

rectangular barrier is severely sheared into a triangle shape, which triggers the Fowler-

Nordheim Tunneling (FNT).  

The probability T(E) that an electron can penetrate, in the x direction, a potential barrier 

of height Φb(x) is given by the Wigner-Kramers-Brillouin (WKB) approximation
34

:   
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where E=mvx
2
/2 is the energy component of the incident electron in the x direction. 

Under a bias V, the net flow of electrons J is determined by the difference of forward and 

backward electron flow: 
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where f(E) is the Fermi-Dirac distribution function. 

Over a rectangular barrier (Φb(x)= Φb), direct tunneling under a small bias (DT, V→0) 

and the Fowler-Nordham tunneling (FNT) at large V have the following analytical forms 

of current density: 
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Here, m* is electron effective mass (m*=0.5m0 is assumed), d is tunneling distance, Φb is 

barrier height and A (less than A*, the area of the top electrode) is effective tunneling area. 

It is worth noting that tunneling is not necessarily a one-step process across the entire 

film, i.e., the tunneling distance is uncertain and need to be determined by data fitting. If 

the same set of tunneling barriers (i.e., if d, Φb and A are unique) controls the DT and 

FNT, then we can obtain these barrier parameters using the following procedure: 

(1) Fitting the large-voltage current in the ln(IFNT/V
2
) vs. 1/V plot, to obtain 

2/3

bd  from 

the slope (EQ1) and A/Φbd
2
 from the intercept (EQ2). 

(2) Fitting the low-voltage current in the IDT vs. V plot, to obtain another equation for (d, 

Φb, A) from the slope (EQ3).  

EQ1 & EQ2: 
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Therefore, the three barrier parameters can be uniquely determined by the three equations 

(EQ1 & 2 & 3). As shown in Figure 5.18a-e, devices with different thickness all follow 

FNT in the high voltage limit. Their slopes of ln(IFNT/V
2
) vs. 1/V uniquely determine 

2/3

bd  listed in Table 5.1. Since both tunneling distance and barrier height positively 

contributes to the tunneling resistance, we can define: 

“Barrier hardness”= 
2/3

bd  

to characterize how difficult the tunneling process is. A thicker film is found to have a 

higher 
2/3

bd (Table 5.1) and more difficult to tunnel.  

 

Figure 5.18. (a)-(e) FNT plot for various film thickness, from 

standard I-V curves at 2 K.  
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A/Φbd
2
 (1/eV)

 
2798 5400 7807 716 351 

Table 5.1. Barrier hardness 3

bd  for samples with various thickness, 

extracted from slope of FNT plot. 

 

Next, data in the small voltage limit are considered in Figure 5.19, where low bias I-V 

curves are fitted with a parabolic law (I=A1V+A2V
2
) from which the linear DT term (A1V) 

can be unambiguously extracted. After applying the aforementioned fitting procedure and 

incorporating the FNT fit, barrier parameters obtained are listed in Table 5.2. It is found 

that the barrier area is indeed very small (~100×100 nm
2
 out of device area 500×500 

µm
2
). This “localized” nature suggests the tunneling current is dominated by the regions 

with the weakest barrier. These weakest barriers are not lumped elements (unlike a single 

filament or a few of them); they are uniformly distributed throughout the film cross 

section because the HRS has a strong size dependence ~1/A*, meaning A is proportional 

to A*. Indeed, 100×100 nm
2
 is relatively large and unlikely to come from one filament 

(~a few atoms wide) or a few of them. The barrier width d obtained in Table 5.2 is 

sensible in that it is smaller than the sample thickness and is within the reachable range of 

tunneling (~1 nm). The barrier height Φb ~ 1 eV seems reasonable for a Coulombic 

potential: a trapped electron at a distance of 1.4 nm away can elevate the electrostatic 

energy by 1 eV. (Screening effects are not considered here, which might lower the 

Coulombic potential).  

In Table 5.2, there is a general trend of increasing barrier height and width with 

increasing thickness. This suggests that, statistically, a thicker film has a higher 

probability to encounter a harder barrier. Such statistical fluctuation is expected to 



 

286 
 

become stronger as the film thickness δ is close to the tunneling distance d, which may 

explain why the barrier height increases by almost two-fold when the thickness increases 

from 7 nm to 9 nm. The change of these barrier parameters (more precisely, “barrier 

hardness”=
2/3

bd ) is partly responsible for the “exponential thickness dependence” that 

we observed extensively in nanometallic films (Chapter II).  

 

Figure 5.19. (a)-(d) Small voltage data fitted with parabolic 

law: I=A1V+A2V
2
 from which linear DT term (A1V) can be 

extracted. Sample with δ=17 nm is too resistive for low-bias I-

V to be measured. The hysteresis in (d) is due to low signal-to-

noise signal ratio at the pA current level. 
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Thickness  δ=7 nm δ=9 nm δ=10 nm δ=14 nm 

3

bd  (nmeV
3/2

) 1.22 2.51 2.58 3.67 

a (nm) 109 176 252 70 

d (nm) 2.68 2.33 3.09 2.23 

b (eV) 0.59 1.05 0.89 1.39 

Table 5.2. Calculated barrier parameter (A=a
2
, d, Φb) 

by assuming identical barrier for DT and FNT. 
.
 

 

By applying a similar procedure to other nanometallic films, we can obtain their physical 

parameters, listed in Table 5.3. In metal-rich films, barrier hardness 
2/3

bd  becomes 

smaller, which is primarily due to the lower barrier height b that decreases from 0.89 eV 

to 0.25 eV as the Pt concentration changes from 4% to 27%. Such barrier lowering effect 

might arise from different distribution of trapped electrons in different nanometallic film. 

For a higher fPt film, trapped electrons tend to be more sparsely distributed near the 

conduction paths thus leading to a lower barrier (saddle point). Interestingly, the 

tunneling distance d appears to slightly increase with metal concentration, negatively 

contributing to the conduction. This suggests that, at high Pt concentrations, the majority 

of Pt atoms is already in Pt nanoparticles thus belonging to the channel, and the channel-

to-channel separation may actually increase because of Pt-clustering, resulting in an 

increase of the tunneling distance. Alternatively, tunneling distance may scale with the 

separation between trapped electrons, whose concentration decreases at a higher fPt 

according to the b-fPt dependence, again leading to a decrease of d at higher fPt. Since 

direct tunneling is more sensitive to the barrier width (~exp(d)) than the barrier height 
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(~exp(
b )), the increase of tunneling distance has a more pronounced effect on DT 

than the increase of barrier height. This is in contrast to the case of FNT, which is more 

strongly affected by the decrease of “barrier hardness”. This contrast results in a 

crossover: R(high fPt)> R(low fPt) at low bias where DT dominates but R(high fPt)< R(low 

fPt) at high bias where FNT dominates, which explains the “voltage crossover” illustrated 

in Figure 5.20. The same observation, that R(high fPt)> R(low fPt) at low bias where DT 

dominates, is also the origin of the temperature crossover shown in Figure 5.13, since as 

will be shown in the next section, the high temperature transport is dominated by VRH 

which gives R(high fPt)< R(low fPt).  

 

Thickness  fPt =4 at.%  fPt =19 at.% fPt =27 at.% 

3

bd  (nmeV
3/2

) 2.58 1.72 0.828 

a (nm) 252 760 575 

d (nm) 3.09 5.40 6.75 

b (eV) 0.89 0.47 0.25 

Table 5.3. Calculated barrier parameter (A=a
2
, d, Φb), 

faced by both DT and FNT, for various metal 

composition fPt.  
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Figure 5.20. I-V curves for various metal composition films at 2K. 

Current is higher at a larger V but lower at smaller V for the sample 

with a higher fPt. 

 

To estimate the effective barrier height for various (intermediate) resistance states, a 

simplified formula for direct tunneling  /*22exp bemdAR   is used. Since there 

is no microscopic structure change for various resistance states in the same device, we 

first assume barrier height Φb is the only variable causing different resistances while 

keeping d, the “channel-to-channel” distance, constant. (If d is related to the separation 

between trapped electrons, then both d and Φb might change in principle. However, high 

voltage IRS cannot be measured because switching will occur ~1 V. This makes it 

difficult to uniquely determine d and Φb. Therefore, we let d remain constant, for 

simplicity). As shown in Table 5.4, a lower resistance state (defined by the “flat” 

resistance at 2 K) has a lower energy barrier. In our picture, this may be explained by a 
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weaker Coulombic repulsion potential because of a larger spacing between (fewer) trap 

electrons.   

 

RS (R2K)  600MΩ 55MΩ 2MΩ 300kΩ 8.7kΩ 2.5kΩ 

Φb (eV) 0.89 0.70 0.47 0.36 0.20 0.15 

Table 5.4. Tunneling barrier for various resistance states by 

assuming Φb,600MΩ =0.89 eV for δ=10 nm sample. The 

tunneling distance d =3.09 nm and area A=252252 nm
2
 are 

fixed. 

 

An Alternative Interpretation 

There is an alternative way to interpret the tunneling data if we allow the possibility that 

DT and FNT shown in different voltage/field regimes are governed by two different sets 

of barrier. This extra degree of freedom makes it impossible to determine the barrier 

parameters (dDT, Φb,DT, ADT, dFNT, Φb,FNT, AFNT) using the above procedure, so we will 

need other assumptions to make the problem tractable.  

One possibility is to assume that the tunneling distance for FNT is the apparent film 

thickness (d=δ). Then the calculated FNT barrier height is on the order of Φb,FNT~0.4 eV, 

and the effective area (~a few hundred nanometers) is not much different from the  

previous case (Table 5.5). The DT contribution is assumed to come from the entire 

device area and tunneling is through trap-assisted tunneling (TAT, a simplified n-step 

serial DT model is assumed: RTAT=nRDT) in which the tunneling barrier height is the 

energy offset between the Fermi-level of Pt and the conduction band of the Si3N4 

dielectric (3.5 eV). This gives a calculated DT tunneling distance (i.e., the trap distance) 
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of dDT~3 nm. Thus deduced parameters do not seem unreasonable, so this alternative 

interpretation cannot be excluded. 

 

Thickness  δ=7 nm δ=9 nm δ=10 nm δ=14 nm 

3

bd  (nmeV
3/2

) 1.22 2.51 2.58 3.67 

dFNT (nm) 7 9 10 14 

Φb,FNT (eV) 0.32 0.43 0.41 0.41 

aFNT (nm) 207 434 550 239 

aDT (µm) 512 512 512 512 

Φb,DT (eV) 3.5 3.5 3.5 3.5 

dDT (nm) 2.43 2.5 2.75 2.97 

Table 5.5. Calculated barrier parameter (A=a
2
, d, Φb) 

by assuming, in DT, ADT=device area, and in FNT, 

dFNT=δ. Φb,DT is barrier between Pt Fermi-level to Si3N4 

conduction band (DT is TAT). Yellow shaded regions 

are assumed values. 
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5.6.3   The High Temperature Region: Variable Range Hopping (VRH) 

 

Figure 5.21. Small voltage I-V characteristics at room temperature 300 K. 

 

As suggested by the small-voltage transport data in Figure 5.10a, a thermally activated 

process is involved in the high temperature region (~200 K to 300 K), over which there is 

a rapid change (by several orders of magnitude) of resistance. Up to 0.05 V, the I-V curve 

obeys Ohm’s law, shown as a linear relation in Figure 5.21. As will be shown below, 

such data can be well explained by the variable range hopping (VRH) model, which is 

widely observed in disordered systems
35

:  
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Here d is the dimensionality of the system, and T0 is a scaling parameter. VRH describes 

inelastic tunneling (with additional energy benefit ~ kBT) of localized electrons between a 

series of distributed localized electronic states near the Fermi level. These distributed 
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states are expected in an amorphous structure, where disorders may be further enhanced 

by metal doping. After renormalizing the data in Figure 5.12 taking into consideration of 

device geometry (using Ohm’s law), we obtain resistivity which follows a straight line in 

the ln(σ)-T
-1/4

 plot for the high temperature part (Figure 5.22a), consistent with 3-D 

variable range hopping. The extracted slope T0=151
4
 K may be related to physical 

quantities through the following relation: 

30

124


uB Nk

T   

where kB is the Boltzmann constant, Nu is the density of states (DOS) at the Fermi level 

and ζ is the localization radius of states near the Fermi level. In principle, the two 

parameters Nu and ζ cannot be uniquely determined from one equation, the one shown 

above. This problem can be solved by further considering the high field limit, as 

suggested by J. J. van Hapert
23

. 

 

Figure 5.22. (a) Conductivity (log σ) vs. T
-1/4

 with a linear region at 

high temperature. (b) Current (log I) vs. V
-1/4

 with a linear region at 

high voltage/field. Nanometallic film: Si3N4: Pt, fPt=4%, δ=10 nm. 
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Under the high-field limit where electrical work exceeds the site energy 

difference, variable range hopping becomes much easier and exponentially 

dependent on the electrical field F: 
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Therefore, combining the low-field and the high-field data, we can unambiguously 

determine Nu and ζ. As shown in Figure 5.22b, the high-field I-V can be fitted by the 

field-dominant VRH equation with a slope V0=21.9
4
 V (thus F0=2.2×10

11
 V/cm). These 

T0 and F0 are close to data reported in the literature: T0=4.2×10
8
 K, F0=5.1×10

11
 V/cm

23
 

for amorphous SiOx (ref. 
23

); and T0=10
7
-10

9
 K, F0=10

10
 V/cm for SrTiO3 (ref.

36-37
). Also, 

T0 is compatible with my colleagues’ data, T0=1.5×10
7
 K in a perovskite nanometallic 

film
38

 and T0=4.0×10
8
 K in a SiO2:Pt nanometallic film

39
. From T0 and F0, we calculate 

Nu=2.57×10
18

 cm
-3

eV
-1 
and ζ=0.41 nm. The obtained ζ is smaller than the sample 

thickness (δ=10 nm), confirming that the HRS is a “localized” state. The above 

parameters are compared with the reported VRH values in oxides (Nu=10
19

~10
20

 cm
-3

eV
-1

 

and ζ=0.07~0.7 nm in amorphous SiOx (ref.
23

), Nu=10
15

~10
18

 cm
-3

eV
-1

 and ζ=2 nm in 

SrTiO3 (ref.
37

)) and in a quantum-dot system (Nu=10
18

~10
20

 cm
-3

eV
-1

, ζ=0.7~1.1 nm in 

CdSe (ref.
26

)).  

To further validate the VRH mechanism, we performed the following consistency check:  
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(1) The optimized hopping distance r0 should be longer than the localization length ζ to 

guarantee the validity of the VRH model (otherwise it will be nearest neighbor 

hopping). This is confirmed by 
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at 300 K. 

(2) The low-field condition for VRH requires:  
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which is equivalent to V<0.05 V for a 10 nm nanometallic film. This is satisfied by 

our voltage bias of 0.05V in Figure 5.22a.  

(3) The high-field condition for VRH requires:  

mV
e

Tk
F B /103

2

7
  

which is equivalent to V>0.3 V for a 10 nm nanometallic film. This is satisfied by our 

voltage bias (1 V~3 V) in Figure 5.22b. 

Therefore, VRH is a reasonable process that may account for high temperature transport 

in the HRS. 

 

Thickness  δ=7 nm δ=9 nm δ=10 nm δ=17 nm 

T0
1/4

 (K
1/4

) 112 144 151 180 

V0
1/4

 (K
1/4

) 15.4 19.2 21.9 28.1 

Nu (10
18

 cm
-3

eV
-1

) 13.0 1.55 2.57 0.55 
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ζ (nm) 0.353 0.513 0.406 0.530 

r0 (nm) @ 300 K 3.6 6.6 5.5 8.6 

Table 5.6. Values of density of states Nu, localization length 

ζ and optimized hopping distance r0 (300 K) for various 

thickness (fPt=4%).  
 

By applying the same procedure to other nanometallic films of different thickness, we 

can obtain physical parameters as shown in Table 5.6. The localization length ζ is almost 

unchanged for all samples. This is expected since at the same metal concentration, 

electron localization should be within a similar range independent of thickness. However, 

the calculated density of states Nu seems higher in thinner films. Such dependence 

becomes reasonable if we consider the rate-limiting transport process to occur at some 

critical patches. As all the critical patches are connected in series, the apparent resistance 

is mainly determined by the “most difficult” VRH patch. Statistically, a thicker film has a 

higher probability of involving a “more difficult” VRH patch, corresponding to a lower 

effective DOS in the patch. This statistical behavior is reminiscent of the higher tunneling 

barrier in thicker films seen in low-temperature tunneling. (See the previous subsection.) 

In addition, surface states near the electrodes may also contribute to the higher DOS in 

thinner films. 

The Nu and ζ calculated for films of other metal concentrations are shown in Table 5.7. 

We find ζ increases with Pt concentration, which is reasonable because Pt atoms can 

extend the extent of electron’s wave-functions thus delocalizing the electron. For the Pt-

lean sample (fPt =4 at.%), ζ is comparable to the size of a SiN4 tetrahedron (0.4 nm), 
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meaning at this composition the material is essentially an insulator. From such value, ζ 

then rapidly increases with the Pt content, reaching ζ=6.67 nm at fPt =27 at.%, which is 

close to the sample thickness. This provides a direct confirmation of our material design: 

the localization length can be extended by simply doping an insulator with metal atoms. 

(At this composition, the film is still an insulator with a negative temperature dependence 

of resistance since ζ is still less than δ (10 nm).) On the other hand, Table 5.7 also shows 

that Nu decreases, rather significantly, with high metal concentration. This suggests that 

at higher Pt concentrations, an increasing fraction of the metal atoms actually belongs to 

the Pt nanocrystals not participating in VRH, and only an increasingly smaller number of 

isolated Pt atoms remains and provides localized electron states involved in VRH. This is 

reminiscent of the increasing tunneling distance seen at higher Pt concentrations in the 

low-temperature region (see the previous subsection.) The trend is not contradictory to 

the increased ζ: as the localization length increases, the channel regions expand and fewer 

isolated states are left for VRH to hop between. Because of these changes, the optimized 

hopping distance increases with increasing fPt. Nevertheless, the decreasing T0 and F0 

give rise to faster VRH with Pt doping. 

 

Composition  fPt =4 at.%  fPt =19 at.% fPt =27 at.% 

T0
1/4

 (K
1/4

) 151 157 112 

V0
1/4

 (K
1/4

) 21.9 16.0 16.8 

Nu (cm
-3

eV
-1

) 2.57×10
18

 3.04×10
16

 2.87×10
15

 

ζ (nm) 0.406 1.69 6.67 

r0 (nm) @ 300 K 5.5 24 61 



 

298 
 

Table 5.7. Values of density of states Nu localization length ζ and 

optimized hopping distance r0 (300 K) for various concentration fPt 

(δ=10 nm). 

 

For other resistance states (IRS) in Figure 5.10, the associated density of state Nu can 

also be derived. Since these IRS are from the same sample, we expect the localization 

lengths to be independent of the state (a large voltage will switch the IRS so high field 

data cannot be obtained experimentally). By fixing ζ=0.406 nm from the HRS data, the 

calculated Nu are shown in Table 5.8. The DOS decreases rapidly as the resistance 

increases, indicating the effect of trapped charge is to remove electron states from the 

vicinity of the Fermi level, thus making them unaccessible by hopping. (Another 

equivalent interpretation is that the energy range of the electron state distribution is 

expanded by the addition of the Coulombic energy due to the trapped charge. As a result, 

the effective density of state decreases. However, this interpretation is quantitatively 

tenuous since Nu in Table 5.8 varies by many orders of magnitude, while the energy 

range is at most expected to vary by a few times, between 0.1 eV and 10 eV.) Note that 

the DOS values for 8.7 kΩ and 2.5 kΩ are probably unreasonable (too large for a typical 

VRH). In such case, nearest neighbor hopping (NNH) takes over VRH, as there are 

always nearest-neighbor states available for each conduction electron to hop into. Indeed, 

in Table 5.8, we find the calculated optimized hopping distance to fall below the size of a 

SiN4 tetrahedron, confirming that VRH is not needed and NHH must take over in the 8.7 

kΩ and 2.5 kΩ states. An Arrhenius plot (R vs. 1/T) is given in Figure 5.23 for a 2.5 kΩ 

state.  
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RS (R2K)  600MΩ 55MΩ 2MΩ 300kΩ 8.7kΩ 2.5kΩ 

T0
1/4

 (K
1/4

) 151 129 27.7 19.7 6.12 1.03 

Nu (cm
-3

eV
-1

) 2.610
18

 4.710
18

 2.210
21

 8.710
21

 1.010
24

 1.210
27

 

ζ (nm)* 0.406 0.406 0.406 0.406 0.406 0.406 

r0 (nm)@300K 5.5 4.7 1.0 0.72 0.22 0.037 

Table 5.8. Values of density of states Nu and optimized hopping 

distance r0 (300 K) for various resistance states (HRS and IRS), 

listed by their resistance R2K at 2K. (fPt=4%, δ=10 nm). 

*Localization length ζ is fixed at ζ=0.406 nm according to the 

HRS (R2K=600MΩ) data. 

 

Figure 5.23. Fitting high temperature R-T curve on Arrhenius 

plot for 2.5 kΩ state. R=2221 Ω exp(1.21 meV/kBT). 
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5.6.4   Intermediate Temperature: Fluctuation Induced Tunneling (FIT) 

 

Figure 5.24. Fitting G-T curve (V=0.05 V) using only two 

parallel mechanism.  

 

While the data in the high temperature region and the low temperature region can be well 

understood in terms of tunneling (DT and FNT) and VRH, we found their superposition 

cannot account for the conductance data in the intermediate region. An example is shown 

in Figure 5.24, where the fitted conductance is several times smaller than the 

experimental conductance. Specifically, since the low temperature conductance G1 is 

constant, while the high temperature VRH conductance is G2~exp(-AT
-1/4

), their sum 

G1+G2 would appear as a sharp transition in Figure 5.24, which is at variance with the 

rather smooth variation of the data.  
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Figure 5.25. (a) Schematic of critical tunneling junction 

involved in FIT and its circuit simplification. (b)-(d) 

Experimental data and fitted curves in the entire temperature 

range. fPt=4%.  

 

Adding fluctuation induced tunneling (FIT) to the transport mechanisms provides a 

reasonable explanation of the smooth transition between the athermal tunneling region 

and the thermally activated hopping region. For a single parabolic barrier, temperature 

dependent conductance of FIT can be expressed by
20-21

: 
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In the above, kBT1 is approximately the energy of the tunneling barrier, i.e., the energy 

required for an electron to cross the gap between the conductive patches, when expressed 

in terms of the equivalent thermal energy. Therefore, above T1, thermal fluctuation is 

more significant than FIT. The critical junction in the above patch is described by two 

geometrical parameters A’ and w, which are the area and the width of the gap, 

respectively. More specifically, Φb is the potential barrier height of the gap and εr is the 

dielectric permittivity of the material. As usual, e and m* are the electron charge and 

mass, respectively. 

As shown in Figure 5.25b-d, with the aid of FIT, conductance can be satisfactorily fitted 

over the entire temperature range (2 K-300 K). The fitting parameters of FIT for the 

above data and other data at different film thickness are summarized in Table 5.9: T1 is 

on the order of 10
3 
K-10

4 
K and T0 is on the order of 10

2 
K-10

3 
K. By further assuming a 

gap area A’=0.5×0.5 nm
2
, a potential barrier height Φb (~1 eV), a gap w of ~a few nm can 

be obtained. The above barrier height is reasonable for a saddle point barrier arising from 

the Coulombic potential of trapped charge (see discussion in Section 5.6.1.1). The gap 

size w is also reasonable because it is larger than the localization length (0.4 nm, see 

Section 5.6.3), but smaller than the film thickness.  

 

Thickness  δ=7 nm δ=9 nm δ=10 nm δ=14 nm 

T0 (K) 443 558 267 196 

T1 (K) 5585 8899 4654 6837 
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Φb (eV) 0.8 1.1 0.9 1.4 

w (nm) 1.7 1.9 2.3 3.7 

Table 5.9. FIT fitting parameters and calculated barrier height 

and width (Junction area A’=0.5×0.5 nm
2

 is assumed). 

 

In the above, the observation that the gap size w (and perhaps, the barrier height) 

increases with thickness can again be rationalized by invoking a statistical argument. 

Because the rate limiting transport process is determined by the “worst junction”, we 

expect a thicker film to more likely contain a “more difficult” tunneling junction. 

 

5.6.5   An Empirical Fit 

As discussed above, transport physics in different temperature regimes are different and 

different mathematical forms are needed for their description. Yet I found a single 

empirical formula R(T)=R0exp[-(T/T0)
n
] can surprisingly fit the conduction data over the 

entire temperature range. This empirical form is physically motivated by the general 

observation of three temperature regions of the resistance. At the low temperature limit, it 

gives R(T→0)=R0, in agreement to the temperature-independent tunneling process. At the 

intermediate temperature (T~T0), the resistance decreases but at a much slower rate than 

in the high-temperature region (T>T0) if an exponent n>1 is chosen. Here, the empirical 

T0 corresponds to the characteristic temperature dividing the low-temperature region and 

the high-temperature region. In general, both T0 and n may depend on the voltage, 

resistance (state), thickness, and composition. 
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Figure 5.26. Data fitting (black curves) using empirical 

formula R(T)=R0exp[-(T/T0)
n
] for devices of (a) different states, 

(b) different voltages, (c) different thickness and (d) different 

metal concentration. 
 

The above formula allows excellent fitting for the experimental data on the log-log scale 

as shown in Figure 5.26. Fitting parameters summarized in Figure 5.27 follow 

systematic trends for the resistance states, voltage, thickness, and composition, which in 

turn allows easy interpretation: a lower To represents a more prominent role of thermal 

activation, a larger n represents a stronger temperature dependence at higher temperatures.  
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For example, for the Resistance State dependence (Figure 5.27a): T0 increases with 

resistance, and n decreases with resistance. Other dependences are self-explanatory in 

Figure 5.27b-d.  

 

 

Figure 5.27. Fitting parameters T0 and n in Figure 5.26 for 

different (a) resistance states, (b) voltages, (c) thickness and (d) 

metal concentration. 

 

5.7   Discussion 

5.7.1   Conduction Map  

Our fitting results clearly indicate that different conduction mechanisms dominate in 

different temperature and field domains. We can group them into two broad types, which 
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may be considered as two parallel conduction paths: a tunneling path with no (or weak, if 

considering FIT) temperature dependence, and a thermally activated path with a very 

strong temperature dependence (exp(-1/T
n
) type. (The latter is sometimes called the 

stretched exponential type, which reduces to the Arrhenius type if n=1.) Their combined 

conductance is Gtunnel+Ghop; in terms of resistance, it is 1/(1/Rtunnel+1/Rhop), as 

schematically shown in Figure 5.28. The schematic may be interpreted as a 2×2 matrix, 

with the two rows corresponding to the two conducting paths/channels, and the two 

columns corresponding to the two LRS and HRS (including various IRS) states. For the 

LRS (column), where there is no trap charge or insufficient trapped charge to block the 

conducting channels, the hopping path is inactive at all temperatures since electrons can 

tunnel through the entire film along the conducting channel with a transmission 

probability T=1 (barrier-less). In this case, conduction is Ohmic throughout the entire 

voltage range, and the temperature dependence of conduction may be attributed to 

scattering, between electrons at low temperatures and between electrons and phonons at 

high temperatures. For the HRS (and various IRS) column, the Coulombic repulsion from 

trapped charge modifies the energy landscape and the conduction mechanisms in the two 

paths (rows). (i) In the tunneling path, energy barriers of the order of ~1 eV are created, 

which breaks down the conducting channels into separate patches between them 

tunneling is required with a transmission probability T<1. This row (path) dominates at 

low temperature. (ii) In the hopping path, the energy levels of electron states are 

dispersed due to random Coulombic potential; in particular, it removes DOS from the 
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Fermi level in a way that is similar to the Coulomb gap. This row (path) dominates at 

high temperature.  

 

Figure 5.28. Two (parallel) channel conduction model. 

 

Crossover between different paths in the HRS and various IRS can be quantified by 

finding the conditions when Gtunnel=Ghop. This procedure can be further refined if 

individual tunneling (DT, FNT, and FIT) and hopping (low-field VRH, high-field VRH, 

and NNH (or Coulomb gap hopping if appropriate)) mechanisms are distinguished as Gi. 

Then the conditions (boundaries) between mechanisms are computed from Gi=Gj for the 

most dominant mechanisms, i and j, as appropriate. For a given film thickness, 

composition, and resistance (trapped charge density) states, the condition can be 

delineated in terms of voltage and temperature, as in Figure 5.29, which depicts a 

mechanism map showing various regions where a single mechanism dominates. (Here, 

the FIT mechanism is omitted since we have no information of its voltage dependence.) 

In addition to illustrating different regions for one set of film thickness, composition and 
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resistance (trapped charge density) state, Figure 5.29 also presents a set of iso-

conductance contours, calculated from the combined conductance, to indicate the 

systematic variation of conductance as a function of temperature and voltage. In addition, 

arrows at the domain boundaries in Figure 5.29 indicate the direction of the boundary 

shift when the film thickness, composition or trapped charge (which increases the 

resistance) increases.  

 

Figure 5.29. HRS transport mechanism at different temperature 

and voltage domains. Arrows indicate the direction of boundary 

shift when film thickness, metal concentration, or resistance 

increases. (Nanometallic film: fPt=4%, δ=10 nm). 
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A comprehensive view of the conduction mechanisms is made transparent by such map. 

In the low temperature region, tunneling dominates, by DT at low voltage and FNT at 

high voltage. In the high temperature region, VRH dominates, again separated into the 

low-field mechanism and the high-field mechanism. For a thicker film, tunneling 

becomes more difficult, thus the tunneling-hopping boundary in Figure 5.29 moves to 

lower temperature. Meanwhile, the DT-FNT boundary also moves to a higher field 

because the tunneling height tends to increase with the film thickness. For metal-richer 

film, there is a larger tunneling distance d but so is the localization length ζ. This 

suppresses tunneling (due to a larger d) but facilitates hopping process (due to a larger ζ), 

thus the tunneling/hopping boundary moves towards a low temperature. Meanwhile, the 

lower tunneling barrier height in the metal-rich film favors FNT over DT, therefore the 

DT-FNT boundary move towards a lower field. For a lower resistance IRS, tunneling 

barrier is lower and thus DT-FNT boundary move towards a lower field (Although this 

may not be observed in experiment because resistance switching will not allow detecting 

stable FNT behavior). Meanwhile, density of states rapidly increases which facilitate 

VRH dominating at a lower temperature. 

 

5.7.2   Other Mechanisms 

In RRAM and the broader thin film literature, other putative conduction mechanisms are 

often reported for various systems based on the data at or near the room temperature. 

They include Frenkel-Poole emission, Schottky emission, space charge limited 
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conduction, and trap assisted tunneling. In the following, these possible mechanisms are 

examine to see if they are appropriate for our materials and devices. 

Frenkel-Poole Emission 

As described in the Introduction of this Chapter, Frenkel-Poole emission describes 

electron emission from localized traps to the conduction band in the 

insulator/semiconductor film, which has a mathematical form: 

 












 


Tk

eEe
EJ

B

ib /
exp

 

Figure 5.30 shows the fitting results for Frenkel-Poole emission, having a good fit in the 

intermediate regime (0.2 V~2 V). An activation energy of ~0.3 eV and a dielectric 

constant of ~22 can be extracted. However, this dielectric constant is too large, given the 

typical static dielectric constant of Pt-poor Si3N4:Pt is close to ε0,SiN~7 (Chapter IV). 

(The dielectric constant involved in the FP process is the high frequency dielectric 

constant, which is lower: at λ~500 nm, it is 4 (ref.
40

).) Therefore, this mechanism does 

not seem to apply at least in the metal-poor nanometallic films. However, FPE may still 

be possible in nanometallic films with a higher f where a higher dielectric constant is 

feasible. 
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Figure 5.30. Frenkel-Poole emission model fitting of the 

experimental results: (a) Arrhenius plot I vs. 1/T to extract the 

activation energy Et. Inset: Extrapolating Et to zero bias. The trap 

energy (~0.3 eV) is obtained from the intersection at V=0. (b) ln(I/V) 

vs. sqrt(V). Dielectric constant (~22) is extracted from the slope. Inset: 

another sample showing similar results.  

 

Schottky Emission 

Schottky emission describes electron emission from the electrode to the conduction band 

of the insulator/semiconductor film. By fitting our conduction data with: 
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ib 4/
exp2  

we obtain the Schottky emission barrier Φb~0.2 eV and the dielectric constant ~2.9.  

Since pure Si3N4 already has a dielectric constant ~7 (static) or ~4 (high frequency), this 

extracted dielectric constant is somewhat low. More importantly, Schottky emission 

typically implies an asymmetric I-V transport behavior when two dissimilar electrodes 
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with different work functions are used. The absence of asymmetry in our transport data 

thus excludes the possibility of Schottky emission. 

 

Space Charge Limited Conduction 

 

Figure 5.31. I-V on a log-log plot at 300 K. Slope=1 and slope=4.9 

are found for low field and high field limit. 

 

Space charge limited conduction mechanism features itself by parabolic law (I~V
2
) at 

high field. However, experimental data shows a much stronger voltage dependence 

(I~V
4.9

) in Figure 5.31, which immediately excludes the possibility of space charge 

limited conduction. (There is a transition region of “slope 2” between “slope 1” (low field) 

and “slope 4.9” (high field), but the range is too limited.) 

 

Trap Assisted Tunneling 

0.01 0.1 1
10

-10

10
-8

10
-6

10
-4

10
-2

I 



V (V)

Slope=1

Slope=4.9



 

313 
 

Since tunneling is a coherent transport process with very weak temperature dependence, 

the activation energy ~0.3 eV (see discussion in Frenkel-Poole emission) at high 

temperature immediately exclude such possibility. However, it is the dominating 

conduction at low temperature. 

 

Other VRH-like Hopping Models 

The possibility of other hopping models, including 1D Mott VRH, Efros-Shklovskii VRH 

and Nearest Neighbor Hopping, are discussed in Appendix. 

 

5.8   Conclusions 

(1) Nanometallic resistive switching occurs over a broad range of temperature (2 K to 

300 K) and magnetic field (-9 T to 9 T) with the same switching voltages. This 

strongly suggests an electronic switching mechanism.  

(2) The LRS is a metallic state, although showing considerable impurity scattering near 0 

K. Scattering from 20 K to ~100 K is dominated by electron-electron interaction 

judging from the T
2
 law for resistance, and above ~100 K by electron-phonon 

interaction judging from the linear temperature dependence of resistance. 

(3) The HRS is an insulating state. From 2 K to ~100 K, tunneling dominates conduction 

evolving from direct tunneling to FN tunneling as the voltage increases. Tunneling 

becomes easier for a thinner film, a higher metal composition film and a less resistive 

film. 

(4) Above ~200 K, VRH is the dominant conduction mechanism in the HRS. It is 
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facilitated Electron localization length increases With increasing metal contents, VRH 

is facilitated by increasing electron localization length, albeit somewhat counteracted 

by a decreasing density of states. 

(5) At intermediate temperature, from ~100 K to ~200 K, FIT contributes significantly to 

conduction and is primarily responsible for the temperature dependence.   

(6) The IRS are also insulators and share the same conduction mechanisms as the HRS. 

The LRS may also have different resistance states without losing the main metallic 

character.  

(7) The tunneling barrier height, the tunneling distance, and the density of states for VRH 

all show a systematic variation with film thickness. This suggests that the overall 

resistance is controlled by the most difficult barrier or hopping patch, which becomes 

statistically more difficult in thicker films.  

(8) While the tunneling/hopping height tends to decrease with the metal content, the 

tunneling distance and density of states also tend to decrease. This suggests that 

concentration of isolated metal atoms, which are most pivotal for tunneling/hopping, 

are fewer in metal-richer films.  

(9) The trapped charge provides Coulombic repulsion forming barriers to electron 

tunneling/hopping. The magnitude of the barrier is of the order of 1 eV, which may 

be accounted for by a single trapped electron at 1.4 nm away, or by two separate 

trapped electrons at 6 nm apart.   
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Chapter VI. Environmental Effect 
1 

 

Dielectric thin films in nanodevices may absorb moisture leading to physical changes and 

property/performance degradation, such as altered data storage and readout in resistance-

random-access-memory (RRAM). Here we demonstrate using a nanometallic memory 

that such degradation proceeds via nanoporosity, which facilitates water wetting in 

otherwise non-wetting dielectrics. Electric degradation only occurs when the device is in 

the charge-storage state, which provides a nanoscale dielectrophoretic force directing 

H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged 

hydroxyl formation. They also cause an offset in the current-voltage curve indicating the 

presence of an internal field due to electrode oxidation. While these processes are 

dramatically enhanced by an external DC or AC field and electron-donating electrodes, 

they can be completely prevented by eliminating nanoporosity, depositing a barrier layer 

or using an oxidation resistant electrode. These findings provide insight for understanding 

high performance memory and field-assisted degradation of nanodevices.  

 

6.1   Introduction 

Thin films of dielectrics and their hybrids, including ones containing metals, are 

widely used in electronic and optical nanodevices. Dielectric degradation under ambient 

conditions has long been recognized as a reliability issue, and it becomes especially 

important in nanodevices because of nanodimensions. Thin films deposited by physical 

vapor deposition methods such as sputtering typically are nanoporous with densities 
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lower than theoretical
2-5

; nanoporosity can absorb moisture in the ambient air. This may 

have a profound influence on the device properties. For example, water with a refractive 

index 3.1n  can introduce optical mismatch hence scattering in the film. They can also 

cause chemical reactions (e.g., forming hydroxides that affect permittivity) or change 

physical dimensions (e.g., swelling that roughens surfaces)
6
. Entrapped moisture can 

lower the electric resistance of insulating films, even causing electric shorts
7
. It can also 

create charge trapping sites thus affecting device performance
8-9

. Moreover, moisture 

penetration may extend to the buried layers (e.g., bottom electrodes and substrates) 

leading to more extended degradation beyond films. 

Among dielectric nanodevices, of special recent technological interest are ones that 

exhibit resistive switching properties, thus having the potential of becoming a new class 

of nonvolatile resistance random access memory (RRAM) materials
10

. Most of these 

devices switch by forming (soft-breakdown) conducting nanofilaments, undergoing redox 

reactions, or both
11-17

. Naturally, redox reactions are often moisture sensitive
18-20

.
 

But 

nanoscale transport may also be environment sensitive, since gas absorption may affect 

the energetic of ion migration, and oxygen activity may affect defect populations that in 

turn affect n/p-type conduction in nanodevices
21-22

. Indeed, for a Pt/SiO2/Cu RRAM, 

Tsuruoka et al. reported residual water to affect both redox-reaction thermodynamics and 

ion-migration kinetics
19

. No such study has been reported for charge-trapping RRAM, 

however. More broadly speaking, among the very large number of RRAM papers 

published in recent years, only very few reports on this subject
19,23-27

. This is not entirely 

surprising: many RRAM suffer from large variability in their resistance and switching 
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voltage characteristics
28-30

, which can easily mask the time-dependent effects of 

environment.  

In this respect, our nanometallic RRAM based on nanometallic films may provide an 

excellent platform for studying the moisture effect
31

. As described already in previous 

chapters, these films (5-30 nm thick) are atomic mixtures of random insulators (SiO2 or 

Si3N4) and metals (Pt, Cr, etc.), with wavefunctions of itinerant electrons reaching the full 

thickness of the films
31-34

. In the as-fabricated form, these films are conductors. 

Subsequently, under a voltage trigger, Coulomb barriers arise from trapped charge which 

blocks the wavefunctions, so the film switches from the conducting state (the low-

resistance state, LRS, being the “on state”) to a high-resistance (insulating) state (HRS, 

being the “off state”). This switching process is reversible, and it occurs by an electronic 

(charge trapping/detrapping) mechanism without forming any filament or Schottky 

barrier. Our previous work on nanometallic RRAM (made of SiO2:Pt with a top coat of 

~4 nm Al2O3) demonstrated outstanding uniformity of switching characteristics 

(resistances of HRS and LRS, and on-switching and off-switching voltages)
32-34

. In this 

work, we have systematically investigated the performance of several nanometallic 

RRAM under various environmental conditions to shed light on the possible degradation 

mechanisms. In this setting, static and dynamic electric testing is used both to tune 

degradation kinetics and to probe degradation mechanisms. Solutions to mitigate 

moisture-induced degradation in these nanodevices have also been demonstrated. 

Electrical characteristics related to the movement of moisture-introduced ionic species 
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and electrode oxidation are also measured to contrast with those of “dry” films in which 

only electron movement is possible. 

 

6.2   Experimental Methods 

Device fabrication: All devices were fabricated on SiO2/Si substrates (Figure 6.1a). 

Substrates were cleaned by acetone and isopropyl-alcohol followed by heating at 150 °C 

in vacuum for 30 min in a sputter chamber (vacuum level: 3×10
-7

 Torr). After cooling 

down to room temperature, a bottom Mo electrode was deposited by DC sputtering 

before a nanometallic film was deposited by RF magnetron co-sputtering using targets of 

a metal (Pt or Cr) and an insulator (SiO2 or Si3N4). (DC Power: 300 W; RF Power: 200 

W for insulator SiO2 or Si3N4; 10 W- 30 W for Pt or Cr; no vacuum break between these 

steps.) Next, top Pt electrodes were RF sputter-deposited (RF Power: 30 W) and 

patterned (having a circular area of various sizes) lithographically or by a shadow mask. 

On some devices, a capping layer of 4 nm-thick Al2O3 was deposited after device 

fabrication, by atomic layer deposition (ALD) under the following condition, precursor: 

trimethylaluminum; oxidant: H2O; wafer temperature: 150 °C. For a comparative study, 

another set of samples used in a previous research
31-32

, with the same SiO2:Pt 

composition and Pt top electrode but SrRuO3 (SRO) bottom electrode deposited by pulse 

laser deposition, was also investigated.  

Characterization: For density determination, nanometallic films on MgO substrates 

were studied by Rutherford Backscattered Spectrometry (RBS, NEC Minitandem Ion 

Accelerator), and the composition and density distributions were obtained using the 
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simulation software (SIMNRA). Density was also confirmed using X-ray-reflectometry 

(Bruker D8 Discover) using films on Si wafers. DC electric measurements were 

conducted using a semiconductor parameter analyzer (SPA, Keithley 237), while AC 

impedance spectroscopy was studied using an impedance analyzer (Gamry G750). For 

these studies, samples were placed on a probe station (Signatone S1160) and a voltage 

was applied between the top and the bottom electrodes. (Current flowing from the top 

electrode to the bottom electrode is considered positively biased.) A homemade electric 

hotplate was used to heat the sample with the temperature monitored by a thermocouple 

nearby. For IR spectroscopy, nanometallic films were deposited on IR-transparent KBr 

substrates, and measured using a Nicolet Nexus 470 FTIR spectrometer. Static contact 

angles of water were measured on various films/materials, without patterned top 

electrodes, by a rame-hart goniometer (Model 200) using 2.0 μL droplets and averaged 

over several locations. Unless otherwise noted, characterization was conducted in air at 

room temperature. 

 

6.3   Results  

6.3.1   Physical Appearance 

In the as-fabricated device (Figure 6.1a), films of ~20 nm thick 80% SiO2: 20% Pt film 

on Mo (bottom electrode) /SiO2/Si (substrate) had a light tan appearance when 

photographed under natural light, with the Pt top-electrode areas appearing white (Figure 

6.1b). After kept at room ambient conditions for 1 year, the appearance changed to that of 

Figure 6.1c showing dark green films with ring-like features around cells. The evolution 
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of appearance was accelerated by placing the device in a chamber of saturated humidity: 

the green appearance emerged followed by a violet one after a few hours. This also 

occurred to films already exposed to air for 1 year: moisture in the chamber of saturated 

humidity produced the appearance shown in Figure 6.1d. Such violet color is consistent 

with the color of MoO2 (ref.
35

) which like many other non-stoichiometric MoOx 

compounds is a conductor (x<3)
35-36

. In contrast, devices made of Si3N4:Pt showed no 

change in appearance when left at room ambient conditions: in Figure 6.1e is a one-year-

old device which looks just like a new one. The SiO2:Pt device can also become immune 

to changes if protected by a ~4 nm Al2O3 capping layer, as shown in Figure 6.1f) after 1-

year storage. Likewise, when SrRuO3 was used as the bottom electrode, the SiO2:Pt 

device too became immune to change during storage over several years (figure not 

shown.) During electric testing, the (uncapped) SiO2:Pt device exhibits additional 

changes in appearance. Figure 6.1g shows the outer edge of a tested cell (lower left) 

turning dark after one voltage-sweep cycle (0 V to 5 to 0 V to 5 V to 0 V); meanwhile 

nearby untested cells were unaffected. Such darkening typically occurred during the 

positive voltage sweep. In addition, these changes sometimes varied from device to 

device and from cell to cell. For example, some cells experienced “bubble formation” 

during testing (Figure 6.1h); these cells could not be switched anymore. Interestingly, 

these “bubbles” seemed to remain indefinitely: there is no change in appearance after 

many weeks (Figure 6.2). This is as if the water bubbles are so strongly attracted on the 

device that evaporation is completely suppressed. If a cell survived the test without 

change in appearance, during storage it could still change if left in the HRS, which 
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contains trapped charge. One example is shown in Figure 6.1i in which the HRS cells are 

surrounded by a dark ring whereas the LRS cells are not. In contrast, SiO2:Pt films with 

the same Pt top electrodes but with SrRuO3 bottom electrodes showed no changes during 

testing (see ref.
31-32

).  

 

 

Figure 6.1. (a) Schematic of nanometallic RRAM device. Active layer (SiO2:Pt, 

Si3N4:Pt or Si3N4:Cr) sandwiched between top electrode Pt and bottom electrode 

Mo. Light microscopy image of (b) as-fabricated 80% SiO2: 20% Pt device; (c) 

device (b) after 1 yr in ambient air; (d) device (c) after 3 hr in saturated humidity; 

(e) 95% Si3N4:5%Pt device after 1 yr in ambient air; (f) Al2O3-capped 80% SiO2: 

20% Pt device after 1 yr in ambient air (Scale bar: 250 μm); (g) voltage tested 

(h)

(c) in sat. humidity(d) Si3N4:Pt, 1 Yr(e)

SiO2:Pt, as-fab(b) SiO2:Pt, 1 Yr(c)

Capped SiO2:Pt, 1 Yr(f)

Si Substrate  

V

Pt

SiO2:Pt

Mo

(a)

(g)
LR LR

HRHR

(i)
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cell (lower left) in 80% SiO2: 20% Pt device showing a dark ring at the cell edge; 

(h) voltage tested cell (center) in 80% SiO2: 20% Pt device showing bubbles on 

top electrode; and (i) 80% SiO2: 20% Pt device in different resistance states; dark 

rings around HRS (lower two, marked) but not LRS (upper two, marked) cells. 

 

 

Figure 6.2. Voltage tested cell stored in ambient air after 1 week, 2 weeks, 

3 weeks, 4 weeks and 6 weeks showing negligible evaporation of 

“bubbles”. Scale bar: 100 μm. 

 

6.3.2   Density 

According to transmission electron microscopy
31

, all the films studied here are 

amorphous showing no evidence of porosity (low-electron density regions). However, 

density data of SiO2:Pt films measured by both RBS and X-ray reflectometry, which are 

consistent with each other as shown in Figure 6.3, are less than the theoretical ones 

suggesting nanoporosity. Without incorporating any Pt, sputtered SiO2 films have a 

density ~2.16 g/cm
3
, which is 82% of the theoretical silica density of 2.64 g/cm

3
 (ref.

37
). 

1 Wk 2 Wk 3 Wk

4 Wk 6 Wk
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This confirms similar reports of low-density for sputtered SiO2 films
38

. Hybrid SiO2:Pt 

films also have a lower density than the theoretical one, taken as  

2
)1( SiOPtPtPtlTheoretica ff    

where f is the atomic fraction of metal, and theoretical densities of pure substances 

(
3/64.2

2
cmgSiO   for silica and 3/46.21 cmgPt   for Pt metal) are used. The relative 

densities of all the Pt-containing films in Figure 6.3 (the same data as in Figure 6.1h) are 

around 0.5, indicating a highly porous structure, which was also reported for other oxide-

metal hybrids
39

. On the other hand, sputtered Si3N4 films had a density of 3.48 g/cm
3
, 

close to that of fully dense Si3N4 ceramic in the literature
40

. The density of 93% Si3N4: 

7%Cr films, to be used for device study later in this work, had a density of 3.62 g/cm
3
, 

which is only 3% lower than lTheoretica  (
3/44.3

43
cmgNSi  , 3/19.7 cmgCr  ). This 

means Si3N4: Cr films are almost free of pores. Other evidence of different nanoporosity 

in different films came from atomic force microscopy (Figure 6.4). Comparing area (10 

× 5 μm
2
) scans of surface topography, SiO2:Pt film exhibits much larger roughness (1.8 

nm rms, consistent with the data in the literature
31

) than Si3N4: Cr film (0.29 nm rms).  
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Figure 6.3. Density of SiO2:Pt film at various Pt concentration (same data as in 

Figure 6.1h). Data from RBS (red) and XRR (blue). Line: theoretical density 

2
)1( SiOPtPtPt ff   ( 3/46.21 cmgPt  , 3/64.2

2
cmgSiO  ). 
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Figure 6.4. (Top) Topography of (a) 80%SiO2:20%Pt and (b) 93%Si3N4:7%Cr 

film. (Bottom) Line scan profiles at several randomly selected locations. 

(Range of displayed height: 10 nm). 

 

6.3.3   IR Spectroscopy 

Transmission FTIR spectra of ~100 nm films deposited on KBr substrates are shown in 

Figure 6.5. (These films were left at room ambient conditions for a few days after 

removal from the sputtering chamber.) The spectra of 80% SiO2:20% Pt from 400 cm
-1

 to 

4,000 cm
-1

 contain peaks listed in Table 6.1, in which the three lowest-wavenumber ones 

are Si-O-Si vibration modes while the rest are all environment (H2O, CO2) related
41-42

.
 

Similarly, in the 95% Si3N4: 5% Pt spectra two characteristic Si-N-Si peaks are identified 

at lower wavenumbers, while all the higher wavenumber peaks are probably environment 

related. (Very similar data were obtained for 93% Si3N4: 7% Cr, confirming that the 

peaks are due to Si-N-Si and environmental species, and not affected by atomically 
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dispersed metals.) Relative to the strongest characteristic peak (1,057 cm
-1

 for Si-O-Si 

stretching and 870 cm
-1

 for Si-N-Si stretching), most of the environment-related peaks 

are more prominent in the SiO2:Pt film, suggesting more H2O absorption.  

 

Location (cm
-1

) Assignment 

463 Si-O-Si rocking 

795 Si-O-Si bending 

1,057 Si-O-Si stretching 

1,632 bending of free H2O and/or H2O H-bonded to silanol 

2,341 CO2 vapor 

3,225 free/H-bonded H2O 

3,450 stretching of H2O bound to silica network 

3,600 OH stretching of H-bonded silanol groups 

Table 6.1. IR absorption bands of 80% SiO2:20% Pt. 

 

 

Figure 6.5. IR spectroscopy of 80% SiO2: 20% Pt and 95% Si3N4: 5% Pt 

film from 400 cm
-1

 to 4,000 cm
-1

. Strongest Si-N and Si-O stretching bands 

are labeled. See other band assignments in Table 6.1. 
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6.3.4   Wetting 

On sputtered 80% SiO2:20% Pt nanometallic films (~200 nm, without the top electrode) 

water wetting is remarkably complete (wetting angle <3
o
) as shown in Figure 6.6a: as 

soon as the water droplet touched the film, it immediately spread out. This is surprising 

since SiO2 is not known to be wetting. Indeed, a presumably dense thermal oxide SiO2 

(~200 nm, formed by oxidation of a Si wafer) had a contact angle ~50° (Figure 6.6b), 

which is consistent with the reported data for silica in the literature
43

. Such huge 

difference in the wetting behavior between sputtered SiO2:Pt films and dense SiO2 films 

is known to occur: a highly porous surface of a hydrophobic substance can become super-

hydrophilic.
44

 Since no visible porosity was found in our films according to microscopy, 

it must be nanoporosity that causes both lower density and apparent wetting. Similarly, 

we compared the wetting angles of our sputtered 95% Si3N4: 5% Pt film (47
o
 in Figure 

6.6c) and a dense hot-pressed SiAlON (in which Al and O partially substitute Si and N in 

the Si3N4 network) ceramic (60° in Figure 6.6d)
45

. observing a similar, though less 

drastic, increase in wettability in the film, presumably also due to nanoporosity. In 

contrast, when 80% SiO2:20% Pt is capped with a Al2O3 ALD film (~4 nm), it shows a 

wetting angle (52°, Figure 6.6e) close to that of a dense sintered alumina ceramic (50°, 

Figure 6.6f), suggesting that the ALD Al2O3 film is rather dense. Lastly, 93% Si3N4: 7% 

Cr films have the same wetting property (~49° as Si3N4: Pt films. These results are 

summarized in Table 6.2. 
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Figure 6.6. Wetting by static sessile water drop on (a) sputtered 80% SiO2:20% 

Pt film; (b) thermally oxidized SiO2 film; (c) sputtered 95% Si3N4:5% Pt film; 

(d) hot pressed Si3N4 ceramic; (e) ALD Al2O3-capped 80% SiO2:20% Pt film; 

and (f) sintered Al2O3 ceramic. Calculated wetting angles listed in Table 6.2. 

 

Sample Wetting Angle 
Sputtered SiO2:Pt <3o 

Thermal SiO2 50o 

Sputtered Si3N4:Pt 47o 

Hot pressed Si3N4 60o 

Al2O3 Capped SiO2:Pt 52o 

Sintered Al2O3 50o 

Table 6.2. Wetting angles of various films and ceramics. 

 

6.3.5   Electric Characterization of 80% SiO2:20%Pt Films 

As-fabricated devices were all in a conducting state with an initial resistance R between 

10
2
 and 10

3 
Ω. A typical current (I)-voltage (V) and R-V cycle is shown in Figure 6.7a 

Thermal SiO2

Sputtered 
SiO2:Pt (b)(a)

Sputtered 
Si3N4:Pt Hot pressed Si3N4

(d)(c)

(e)
Al2O3 Capped 

SiO2:Pt (f) Sintered Al2O3
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having the following characteristics. When a forward bias voltage is applied, the current 

suddenly drops at a certain voltage (~4 V), which transitions the cell to the HRS (the “off” 

state in RRAM). The cell is “non-volatile” and “bipolar” in that the HRS is maintained at 

0 V and that a reverse bias is required to switch it back to the LRS (the “on” state) 

through a series of current increases indicating a multi-step process. This is in agreement 

with our previous findings
31-34

: when Pt is used as top electrode and Mo or SrRuO3 as 

bottom electrode, the switching direction is counterclockwise in the R-V hysteresis, 

changing from LRS to HRS at a positive bias and vice versa at a negative bias. 

 

Figure 6.7. (a) Current (I)-voltage (V) and resistance (R)-voltage (V) 

characteristic of 80% SiO2:20% Pt nanometallic device. (b) Resistance 

retention (read at 0.2 V) in ambient air for HRS (blue) and LRS (red); HRS 

rolls-off at around 10
6
 s. (c) Cell held in HRS and switched 3 times 

(switching R-V curves shown) during first 15 days; failure after 20 days. (d) 

Exponential increase of HRS resistance during consecutive 60 switching 

cycles (0 V→5 V→6 V→- t~1s). Inset: R-V 
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curves of 1
st
 and 50

th
 cycle, respectively. (e) Degradation factor n0 vs. pulse 

duration Δt. Negative slope ~1 indicates degradation depends on total time 

under electric loading. (f) Switching voltages (Voff and Von) remain constant 

during consecutive switching cycles. 

 

Devices made of SiO2:Pt with Mo bottom electrode and without capping is not stable at 

the room ambient conditions in the sense that its resistance (especially HRS) changes 

with time and external voltage. Figure 6.7b shows the results of a retention test for a 

device at the HRS (kept at room ambient conditions with a relative humidity 10%-15%.) 

In this experiment, several fresh cells were first switched to the HRS with RHRS~81 k. 

The resistance of one cell (named cell A) was periodically monitored using a small 

voltage (0.2 V), while other cells (cells B, C, etc.) were used as surrogates for evaluating 

switchability. (We assume cell A and its surrogates behave similarly as long as they are 

not disturbed by a voltage sweep cycle required for the switchability test.) After 6×10
5
s 

(~7 days), the cell A resistance had gradually increased to 116 k but the device 

remained switchable (according to the test on surrogate cells B, C, etc.). After that the 

cell A resistance dropped rapidly indicating a “loss of memory”. Eventually, failure 

occurred in the sense that the cell could no longer be switched to the LRS (again, 

according to the switchability test on another virgin surrogate cell D) after 2×10
6
s (~23 

days). It should be noted that the resistance change only occurred when the cell was kept 

in the HRS; a cell kept in the LRS showed no change in resistance when held at room 

ambient conditions (see the lower branch data in Figure 6.7b).  
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As mentioned already, during the above retention test the cell A was not disturbed by the 

voltage sweep cycle; the switchability was established through testing the surrogates. If 

instead the same cell is periodically disturbed and tested for switchability, then its RHRS 

increase is much faster, and the failure comes sooner. Figure 6.7c shows such a cell 

having an initial RHRS~51 k at 0.2 V, which increased to 1.2 MΩ after 15 days during 

which it was switched merely 3 times. When checked on day 20, the cell already lost its 

memory and was not able to switch to the HRS after on-switching. This indicates that 

repeated switching, even just a few times, can cause much more degradation if the cell is 

held in the HRS. To further investigate the effect of repeated switching, we conducted the 

voltage-sweep cycle without interruption in the so-called fatigue or endurance test. As 

shown by the R-V curves in the inset of Figure 6.7d, the HRS of the 1
st
 cycle differs 

significantly from that of the 50
th

 cycle. (The switching voltages are relatively constant: 

off-switching at 4 V and on-switching at 1 V, as is the LRS remaining at 420 Ω). The 

RHRS increased (Figure 6.7d) exponentially with the number of cycle n: 

 00 /exp nnRRHRS   with 270 n , meaning doubling RHRS every 19 cycles. To 

investigate whether the HRS degradation is dependent on the voltage-sweep period t, 

we repeated the fatigue test at other t and analyzed the results in terms of no used in the 

exponential “law.” As shown in Figure 6.7e, a faster pulse yielded a larger no, and vice 

versa. However, since the initial slope of log no versus log t is close to 1, meaning no 

t ~ constant, the HRS degradation (at least during fast switching) is dependent on the 

total time (nt) only, following  00 /exp ttRRHRS   with to ~ 10
4
 s. This result may be 
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regarded as representative of “dynamic” degradation caused by both an internal field (due 

to the trapped charge in the HRS) and an external field (due to the voltage sweep). 

Compared to “static” degradation in Figure 6.7b (to ~ 1.8×10
6
 s) caused by only an 

internal field without an external field, dynamic degradation is much faster. Lastly, in 

contrast to the exponential rise of RHRS (Figure 6.7d), switching voltages (Voff and Von) 

remained unchanged during sweeping cycles (Figure 6.7f). This is unlike the case of 

Tsuruoka et al in which large variations in switching voltage with environment were 

found for the Cu/SiO2/Pt and Cu/Ta2O5/Pt cells
19

. 

 

6.3.6   Temperature Dependence of R, 
'

r and tanδ 

The DC resistance and lower-frequency dielectric spectra of the HRS of a SiO2:Pt film 

shown in Figure 6.8 all display a pronounced temperature dependence. As-fabricated 

devices in this study had a RHRS~200 k, which degraded to ~1 M after three months. 

This change is reversible: as shown in Figure 6.8a, it decreased to 35 k at just above 

100°C. RHRS continued to gradually decrease when the cell was heated above 100
o
C, 

reaching ~20 k at 175°C. After cooling, it recovered the as-fabricated resistance. The 

above behavior suggests a two-stage process: the first stage (the low temperature part) is 

related to the loss of water, the second stage (the high temperature part) reflects the 

negative dR/dT property (i.e., increased conductivity) common to all insulators. Relative 

dielectric constant (the real part, 
'

r , Figure 6.8b) also appears to undergo a large 

decrease above 100
o
C as water evaporates, especially at low frequency. The much 

stronger frequency dependence below 100
o
C signals a contribution of a polar species, 
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presumably H2O or OH, that undergoes relatively slow dielectric relaxations compared to 

intrinsic ionic and electronic contributions.  The influence of water is too implicated in 

Figure 6.8c by the large tan, which can arise from both dielectric loss and conductivity 

loss. At low temperature and high frequency (100 kHz), it already reaches 0.5 even 

though the DC resistance is still high (>1 MFigure 6.8a); most likely, the dominant 

contribution here comes from dielectric relaxation of water. Remarkably, as the 

temperature increases, tan continues to increase at least up to 100
o
C despite the expected 

evaporative loss of water which should reduce tan. This suggests that the thermally 

activated dielectric relaxation of H2O molecule is much more temperature sensitive than 

water evaporation. (A drop in tanreflecting the water loss eventually occurs at ~100
o
C 

in the spectra of 10 and 100 kHz in Figure 6.8c). Lastly, above 120
o
C, tan increases 

again at all frequencies in coincidence with the decreased DC resistance, which is 

consistent with our earlier suggestion of the negative dR/dT property (i.e., increasing 

conductivity) common to all insulators. The “intrinsic” background dielectric constant 

may be taken as    
  ~10 seen in the high-frequency, high-temperature limit, which is 

considerably higher than that of porous SiO2 (3.8 for fused SiO2) because of the metal 

content.  In the literature, other water-containing SiO2 films are also known to have a 

higher dielectric constant than pristine silica; this is generally attributed to the easily 

polarizable OH groups (such as Si-OH) that populate the films
46

.  
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Figure 6.8. Temperature dependence of (a) HRS DC resistance, (b) real part 

of dielectric constant 
'

r  and (c) tangent loss (tanδ) of 80% SiO2:20% Pt 

device during heating; before test, device was in ambient air for 3 months. 

Red triangle in (a): data of as-fabricated device, which coincide with the 

extrapolation of resistance data above 100
o
C. 

 

6.3.7   Robust Devices 

Robust electric characteristics were observed using 93% Si3N4: 7% Cr films, 95% Si3N4: 

5% Pt films, Al2O3-capped 80% SiO2: 20% Pt films, and 80% SiO2: 20% Pt films with 

SrRuO3 bottom electrodes. Retention data in Figure 6.9a of a 93% Si3N4:7% Cr cell 

show that HRS degradation is largely avoided. (If the data are extrapolated to 10 years, 

they can easily fulfill the requirement for data storage of a good memory.) Supporting 

evidence also came from R-V loops shown in Figure 6.9b: the 50
th

 loop is 

indistinguishable from the 1
st
 loop. Indeed, even after 1 year the R-V curve hardly 

changed despite the fact that the cell had been periodically tested as shown in Figure 6.9c. 

Likewise, a capped SiO2:Pt device showed the same robust behavior: no HRS change in 

retention (Figure 6.9d), and no change in the R-V loops in either cycle tests (Figure 6.9e) 

or during storage (Figure 6.9f). (The Al2O3 capping layer was deposited over the film 
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and the top electrode. Before electric testing, the capping layer was poked by the probe 

tip under a small voltage to establish electric contact to the top electrode.) Similar data 

for 95% Si3N4: 5% Pt with Mo bottom electrode and for SiO2:Pt with SrRuO3 bottom 

electrode showing no degradation are provided in Figure 6.10 and Figure 6.11.  

 

Figure 6.9. Robust devices made of 93% Si3N4: 7% Cr showing (a) resistance 

retention with extrapolated HRS and LRS resistance to 10 yr; (b) R-V curves 

of 1
st
 and 50

th
 cycles over consecutive 50 cycles, and (c) R-V curves taken over 

365 days, with almost identical curves in (b) and (c). Likewise, robust devices 

made of Al2O3-capped 80% SiO2: 20% Pt showing (d) resistance retention 

over 10
5
 s; (e) R-V curves of 1

st
 and 50

th
 cycles over consecutive 50 cycles, 

and (f) R-V curves taken over 180 days, with almost identical curves in (d) and 

(e). 
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Figure 6.10. Device properties of 95% Si3N4: 5%Pt device in ambient air (Mo 

bottom electrode). (a) Retention test with 0.2V read voltage for HRS and LRS. 

No variation or degradation was found for 10
5
s. (b) Consecutive 88 cycles, 

showing almost identical R-V curves without any variation/degradation. 

 

 

Figure 6.11. Device properties of 80% SiO2: 20%Pt device (SrRuO3 bottom 

electrode) in ambient air. (a) Retention test with 0.2 V read voltage for HRS 

and LRS. No variation or degradation was found for 10
5 

s. (b) 1st and 30th 

cycles, showing almost identical R-V curves without any 

variation/degradation. 
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6.4   Discussion 

It is obvious that (a) moisture is connected to the film and device degradation, (b) the 

severity is influenced by the intrinsic physicochemical nature of the film and/or 

nanoporosity, (c) the moisture effect can be “blocked” by having a dense capping layer, 

(d) electric fields, both internal and external, accelerate degradation, and (e) bottom 

electrode, being Mo or SrRuO3, has a decisive influence on the degradation effect. In the 

above, (a)-(c) are strongly correlated to wetting: all three non-degrading devices 

described in Figure 6.9 have relatively high wetting angles on the films, whereas rapidly 

degrading SiO2:Pt films are nearly completely wetting. The measured “intrinsic” water 

wetting angles e of dense dielectrics studied here are only slightly different, increasing 

from 50° to 60° in the order of SiO2, Al2O3 and Si3N4. Intrinsic wetting properties reflect 

the physical chemistry of the materials pair (water and dielectric) in contact
47-48

. In our 

case, ionic characters of both Si-O and Al-O bonds make SiO2 and Al2O3 relatively 

hydrophilic; meanwhile, Si-O bonds very likely are also present on the surface of Si3N4 

making it too similarly hydrophilic. This suggests that intrinsic physicochemical nature is 

similar for all the films in the present study, thus it is not a differentiating factor for 

degradation.  

On the other hand, the relatively small difference in e can be overwhelmed by the 

influence of surface roughness, caused by nanoporosity, which varies greatly between 

films.  Such roughness factor may be related to the bulk porosity assuming spherical 

pores of a radius a. According to quantitative stereography, on any random cross-section 

the surface fraction of intersected pores equals the volume fraction of pores, P. Therefore, 
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1-P fraction of the surface is flat, while P fraction of the surface has depressions made of 

exposed pores. The average surface area of an exposed pore can be found by the 

following consideration. Divide a sphere randomly into two parts; the two parts may 

differ in size but their total surface areas always add up to 24 a . Thus their average 

surface area is 22 a . The average cross section of the exposed pore can be found by the 

following consideration. Take a sphere and slice it into 2a slices of identical thickness 1. 

Since their total volume is 23/4 a  the average area of each slice is 23/2 a . Therefore, 

the roughness factor, which is total surface area divided by the projected area, is  

PaaPPr 21
3

2
/2)1( 22 








   

We consequently conclude that porosity (volume fraction P) increases the effective 

contact area by a (roughness) factor r = 1+2P>1. Furthermore, according to the Wenzel 

equation  

e

w

r r  coscos   

r>1 leads to a smaller wetting angle 
w

r  on a porous rough surface than that on a dense 

smooth surface. For SiO2:Pt films with P=0.5, we estimate r = 2, which predicts complete 

wetting. Nearly complete wetting was indeed observed in Figure 6.6a. For other films, 

nanoporosity is too small to significantly affect wetting, which is also in agreement with 

our observations in Figure 6.6(b-f). Therefore, we may conclude that in our study, it is 

nanoporosity that is the direct cause for degradation. Moreover, since some nanoporosity 

always exists even in non-degrading films, we believe it is interconnected nanoporosity 

which penetrates deep inside the films that causes degradation. In addition, films with a 
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small P probably do not have such penetrating nanoporosity, hence not suffering from 

moisture-induced degradation. This scenario is also consistent with the outcome of 

surface capping: once the surface is capped by a dense film, moisture penetration 

apparently stops.   

We next examine the possible mechanisms via which moisture aided by an internal or 

external electric field can cause RHRS to increase when the bottom electrode is Mo, but 

not when the bottom electrode is SrRuO3. Note that this occurs without any significant 

change in RLRS and switching voltages. The latter observation rules out any effect on the 

interface, since any rise in the interface resistance must be reflected in a corresponding 

rise in the switching voltage, as the actual voltage across the film to trigger switching 

must become less due to voltage sharing by the interface resistance
32

. This leaves 

distributed degradation throughout the film the more likely cause for the RHRS increase. 

We propose this occurs in two steps: (1) H2O attraction to the film interior via 

dielectrophoresis
49

, and (2) H2O- mediated Mo oxidation and silicic acid formation, 

creating negative charge centers (OH)
−
. Concerning step (1), in dielectrophoresis, an 

object (such as H2O molecule) that has a higher dielectric constant than the surrounding 

experiences a force in the direction of increasing field (absolute) magnitude. If there is 

only an internal field Eint, the force is proportional to the gradient of Eint
2
, so H2O should 

migrate toward the centers of this field, which are located inside the film at trapped 

charges (electrons) at the so-called negative-U centers
33

. (In nanometallic memory, filling 

these negative-U centers by trapped charge is responsible for the LRS-to-HRS transition. 

Conversely, emptying these centers by detrapping is responsible for the HRS-to-LRS 
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transition.) When a uniform AC/DC external field Eext is added, the net force is 

proportional to the gradient of E
2
=(Eint+Eext)

2
, i.e, the gradient of Eint

2
 + 2EintEext.

49
 So it 

always enhances dielectrophoresis along some direction of Eint, pointing to the center of 

Eint: the trapped charge. Therefore, an external field merely amplifies the 

dielectrophoretic force and accelerates moisture-caused degradation without otherwise 

altering the direction. 

Concerning step (2), we envision a H2O-mediated redox reaction resulting in electron 

transfer from Mo to SiO2 in the following reaction: Mo+SiO2+2H2O=Mo
+
+[Si(OH)4]


.
 
 

Here, Mo oxidation with attendant SiO2 reduction is aided by hydroxyl formation. 

Moreover, we believe it is further aided by either a mechanical stress due to hydrolysis 

strain, or Eint+Eext, both of which deform the SiO2 network thus facilitating Si-O-Si bond 

rupture 
50-51 

followed by hydroxyl formation. (Obviously, Eext accelerates this reaction. 

Also, the stress/strain/field gradient is generally larger at the rim of the cell, which may 

be the reason for the dark-ring appearance in Figure 6.1i.) Indeed, the negative-U center 

itself is often a site of strained bond, which relaxes upon capturing an electron via 

electron-phonon interaction. The net result of step (1) and (2) is an additional trapped 

electron at the center of Eint, which is already the location of a previously trapped electron 

as mentioned above. The combined Eint of these two trapped electrons increases the 

Coulomb barrier that impedes the movement of free electrons, hence a higher RHRS. Note 

that the “half-cell reactions” (using the term in electrochemistry) in the above overall 

redox reaction generally do not occur at the same site: the Mo/Mo
+
 reaction occurs at the 

electrode whereas the SiO2-H2O/[Si(OH)4]

 reaction occurs at the strained Si-O-Si site or 
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negative-U center. The overall reaction involves both half-cell reactions and electron 

transport between the two sites, which are separated at a distance no more than the film 

thickness ~ 10 nm.  
 
  

The above two-step mechanism is consistent with the observation that a positive voltage 

polarity causes cell darkening (Fig. 1g), since it corresponds to a negative voltage on Mo 

bottom electrode, which favors electron donation by Mo. The mechanism is also 

consistent with the observation of no degradation with SrRuO3 as the bottom electrode. 

This is because Ru
4+

 having the low-spin 4d
4
 electron configuration is relatively stable

52-

53
; therefore, even though H2O may still enter the SiO2:Pt film, there is no redox reaction 

without electron donation from SrRuO3. 

Further insight may be gained from scrutinizing the evolution of RHRS and switching 

voltages in light of the above picture. To begin with, we note that increase of RHRS with 

time was also observed in amorphous chalcogenide phase-change memory due to 

structural relaxation
54

. Characteristically, such relaxation decelerates with time and 

asymptotically approaches saturation. This is in contrast with the behavior of Figure 6.7b, 

which shows acceleration in the log-log plot with no evidence of saturation before a 

relative sudden drop leading to failure. According to our mechanism, the RHRS increases 

because of water-facilitated increase in trapped charge and possibly trap sites (negative 

U-centers). However, water is also known to cause loss of insulating properties of 

dielectrics, even creating electric shorts
7
. Such water-induced electric degradation is 

expected to worsen as the internal electric field increases. In our picture, a higher RHRS 

corresponds to a state of higher internal field, so degradation of the SiO2 matrix can 
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explain the eventual loss of RHRS after an initial increase. (Another possibility is increased 

leakage of trapped electrons through tunneling or Frenkel-Poole hopping, which is aided 

by the increasing density of trapped charge and facilitated by the matrix degradation. 

Such leakage does not occur in the absence of water infiltration—see Figure 6.9d and the 

retention data elsewhere
32

.) After failure, the HRS cell may not be switchable anymore if 

trapped electrons are stabilized by the water-altered environment, where local bonding 

could have changed dramatically. (This process can again be aided by the internal 

electric/mechanical field). So the cell becomes “stuck at the HRS.” Alternatively, a failed 

cell may be returned to the LRS, then becomes “stuck at the LRS” because the dielectric 

matrix is too leaky to withstand the switching voltage, making it impossible to switch. 

(The HRS-to-LRS transition requires very little current, so it could precede the above 

event.) These failure modes have both been described in the previous section.  Lastly, the 

fact that switching voltages in Figure 6.7f are not changed (until the cell fails) despite the 

progression of RHRS implies that the additional trapped charge/trapping sites created by 

water-induced reactions still largely fall into the same energy-level distribution as for the 

original population. This is because switching in nanometallic RRAM is voltage-

controlled depending on the actual voltage in the film and independent of film thickness, 

area and temperature
31-34

. For trapped charge/trapping sites of the same energy level, the 

critical voltage for detrapping/trapping is the same. 

In filament-conducting RRAM, moisture was also shown to cause degradation by altering 

the redox state of the filament-forming species (e.g., Cu/Cu
+
): the additional 

electrochemical driving force in the Pt/H2O/Cu/Cu
+
 “cell” lowers the threshold voltage 
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for filament formation and dissolution, hence the switching voltages
19

. This mechanism is 

not applicable to our study, which witnessed no change in switching voltages when 

altering environment or temperature. Indeed, the present study supports our claim that 

nanometallic RRAM is a charge-trapping-controlled switching system
31-34

, unrelated to 

redox-controlled switching mechanisms and/or filamentary mechanisms that operate in 

many RRAM
10-16

. On the other hand, moisture-related reliability issues no doubt can 

arise in other dielectrics which serve as the active layer in most filamentary RRAM: by 

affecting breakdown, changing carrier concentration and altering defect 

thermodynamics
18-22

, and moisture-induced charge trapping occurring at resistance-

critical junctions of broken filaments could cause a drift of RHRS. However, since charge 

trapping is not considered important in filamentary RRAM, to the extent that the 

switching layer indeed has no stored charge, the lack of any internal field could imply 

less severe moisture-induced problems than observed in our study.   

One consequence of moisture-enabled (Mo) electrode oxidation is the redox current and 

internal field associated with the reaction. This reaction requires anion flow toward the 

bottom electrode, meaning an electric current toward the top electrode in the absence of 

an external voltage. As a result, the zero-current condition is obtained only when (a) 

oxidation is complete and the device (an electrochemical cell) reaches an equilibrium 

state, or (b) a positive voltage is applied to the top electrode to compensate for the 

negative “oxidation” current. Because of the slow ion mobility and oxidation kinetics at 

ambient temperature, equilibrium is difficult to attain and non-zero ion currents and 

internal fields do rise during testing. (In this respect, it is worth noting that the voltage 
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sweeping rate used for RRAM characterization/operating is many orders of magnitude 

faster than typically employed in electrochemical cells such as batteries and electrolysis 

cells.) This non-zero voltage offset is a common feature in the so-called “redox” RRAMs 

(see Figure 6.12a), and has been named the “nanobattery effect” in the literature (ref.
55

).  

 

Figure 6.12. (a) Non-zero crossing near 0 V for I-V curve in ref.
55

 (voltage 

polarity is different from ours). (b)-(d) Three uncapped SiO2:Pt samples 

(“moisturized”) showing large voltage-offset near 0 V. 

 

We indeed observed such voltage offset in testing the HRS in “moist” (uncapped) SiO2:Pt 

devices. As shown in Figure 6.12b-d (also reported in ref.
56

), typical non-zero voltage 

offsets are a few hundred mV, which is a rather large compared to the one reported in the 

literature (tens of mV). The sign of the voltage offset is consistent with Mo oxidation, 
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and is opposite to that in Figure 6.12a due to the opposite polarity convention used in 

ref.
55

   In contrast, in “capped” or “dense” films, such offset was not observed as shown 

in Figure 6.13.  Using the voltage offset (Voffset) as a measure of the internal field, we 

find it monotonically increasing with the number of cycles in the uncapped device 

(Figure 6.14). This is in sharp contrast with the capped sample where Voffset~0 V 

irrespective of switching cycles. The increasing voltage offset indicates that the “active” 

electrode area increases with cycling, since the electrochemical potential should be the 

same but a larger area facilitates a larger “oxidation” current which demands a larger 

positive voltage offset to provide a larger compensation current. These results are all 

consistent with the moisture attack. Furthermore, if a vanishing Voffset is considered as 

evidence of the absence of redox reaction, then the nanometallic device is indeed an 

intrinsically electronic device without ionic contribution. Therefore, Voffset can serve as an 

important metric to differentiate ionic and electronic devices. 

 

Figure 6.13. I-V curve near 0 V for (a) capped SiO2:Pt device 

and (b) dense Si3N4:Cr device. 
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Figure 6.14. Voffset (V-axis intercept) increases with the number 

of cycles in uncapped device, but is absent in capped device. 

 

Finally, we return to the observation of nanoporosity formation in these films. As 

commonly reported in the literature
5,19,38-39

, sputtered dielectric films deposited on 

unheated substrate are nanoporous because of sluggish surface diffusion. This situation is 

exacerbated by co-sputtering of metal species, which may have faster kinetics but are 

insoluble in dielectrics. Such metal atoms are likely located on the surface of nano-pores, 

like metal catalyst situated on a nanoporous support. As a result, the probability of metal 

clustering increases with P. Since nanometallicity arises from delocalized electrons 

placed in an environment of random potential
32-33,57

, metal clustering compared to atomic 

dispersion is actually detrimental to nanometallicity because it increases the spacing 

between electron providers (atomically dispersed metal atoms or metal clusters.) This is 
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consistent with our experience. As the amount of nanoporosity increases, the required 

metal content for resistance switching increases (See Figure 6.15). In this respect, the 

most “efficient” nanometallic films having the lowest metal-content requirement should 

also be the most moisture resistant—they have the lowest nanoporosity. 

 

Figure 6.15. Schematic relationship between film density and (blue) 

optimal metal concentration fmetal, and (red) film thickness δ, for RRAM 

device. As relative density increases, metallic clusters are avoided, 

allowing more metal atom dispersion thus reducing the required metal 

content and film thickness. 
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coloration and increases in dielectric constant and RHRS, but not RLRS. However, 

unlike filamentary RRAM, switching voltages remain unchanged in these devices. 

2. Moisture penetrates via nanoporosity in the films, which can become almost 

completely water wetting due to nanoporosity-caused surface roughening. 

3. Internal electric fields attract H2O molecules via dielectrophoresis, and motivate 

redox reaction causing Mo oxidation and SiO2 reduction, which traps electrons at Si-

OH, providing increasingly stronger Coulomb repulsion, thus a higher RHRS. This 

process is greatly enhanced by an external field. 

4. With lower nanoporosity or a dense capping layer, wetting, de-coloration and device 

degradation can be avoided, rendering robust switching and memory retention 

readily feasible in nanometallic RRAM. The same can also be achieved by replacing 

Mo with an oxidation-resistant electrode such as SrRuO3. 

5. Non-zero transient ion current and voltage offset at zero current exist in moist 

nanometallic device, indicative of an electrochemical potential caused by the on-

going oxidation of the metal electrode. Such offset is completely eliminated in 

capped devices or dense devices. 
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Chapter VII. Circuit Model 

 

7.1   Introduction 

As discussed in Chapter I, resistive switching is a universal phenomenon covering 

myriad of simple and advanced materials. Depending on specific material properties (e.g., 

morphology, carrier diffusivity/mobility, temperature, etc.), RRAMs may have very 

different switching mechanisms. However, their macroscopic characteristics (e.g., I-V 

and R-V switching curves) are remarkably similar regardless of switching mechanisms. 

For example, in a bipolar switching RRAM, the following features are commonly 

observed. (i) The HRS goes through one or a few gradual steps (indicating intermediate 

states) of decreasing resistance after an on-switching voltage Von is applied. (ii) The LRS 

can be controlled by current compliance or the maximum stress voltage, namely 

RLRS=RLRS(Ic, Vmax). (iii) OFF switching proceeds at an off-switching voltage Voff,  which 

varies as a function of historic current compliance or maximum stress voltage, i.e., Voff = 

Voff (Ic, Vmax). (iv) Both HRS and LRS can present multiple sub-states (intermediate 

states). These common characteristics suggest the possibility of a phenomenological 

description of all the RRAMs using a set of phenomenological circuit parameters. Such 

description could provide the critical link between the device-level picture (for “material 

engineer”) and the architecture/system-level picture (for “electrical engineer”). In this 

chapter, I will introduce a simple circuit model which is in remarkable agreement with 

experiment data. The model can take either a discrete or continuum form. An earlier 

version of this model and its experimental justification have been published elsewhere
1
.  



 

358 
 

 

7.2   The Discrete Model 
1
 

The model is intended to capture the following features of a typical RRAM: a sharp 

transition or a multi-step transition for off-switching, and a gradual transition (with 

typically only one or two or sharp steps) for on-switching. It attributes the “steps” to 

intermediate states realized by different resistance states in a circuit. The model takes 

voltage as the control parameter. Simulations will be used to verify the model by 

comparing the simulation results with the experimental data. In the following, the basic 

assumptions are stated. 

 

7.2.1   Assumptions 

Assumption 1: The device is composed of N resistors in a parallel connection. Each 

resistor can take two resistance values, which define two states: Rlrs and Rhrs. Here we let 

Rlrs be a constant while treating Rhrs as voltage dependent, taking a form of 

 00 /exp VVRRhrs  . 

Assumption 2: Any lrs (low resistance state) resistor under a positive bias  mVV  will 

switch to an hrs state, i.e., off-switching. Conversely, any hrs (high resistance state) 

resistor under a negative bias ||  mVV will switch to an lrs state, i.e., on-switching. For 

simplicity, we let 
mmm VVV   || , but allow certain distribution. such as a logarithmic 

normalized distribution, to govern Vm, i.e.,  2,~ LNVm
. 
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Assumption 3: The device also contains a voltage-independent load resistor Rload in a 

serial connection with the parallel network. It may originate from the electrode, interfaces, 

connecting wires or other parasitic elements in the device circuit. 

 

7.2.2   Simulation Methods 

In Figure 7.1, lrs resistors are in green, and hrs resistors are in red. If all the resistors are 

lrs resistors, then the device is least resistive. If they are all hrs resistor, then the device is 

most resistive. The former may be termed the LRS itself, and the latter may be termed the 

HRS itself. Intermediate resistance states (IRS) are ones that contain n lrs states and N-n 

hrs states. The resistance of the device is 

BE

HRSLRS

R
RnNRn

R 



/)(/

1

 

 

 

Figure 7.1. Parallel circuit representation of (a) low resistance state (LRS), 

(b) intermediate resistance state (IRS) and (c) high resistance state (HRS). 

Each resistor (conducting path) has two states, conducting (green, linear) or 

blocking state (red, non-linear) 

 

Let the voltage on the entire circuit be Vtotal, and the voltage on individual hrs and lrs 

resistor be Vsample. Clearly, Vsample<Vtotal. Starting with the LRS, as the positive applied 

…… ……n

BE

LRS All conducting 

…… ……n

BE

IRS Partial conducting

…… ……n

BE

HRS All blocking

(a) (b) (c)
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voltage reaches the minimum value required for switching one lrs resistor, such resistor 

will switch to an hrs resistor (green to red in Figure 7.1). As a result, Rsample increases, 

and Vsample increases. Such increased Vsample may satisfy the switching voltage for one or 

more resistors, causing them to switch and Rsample and Vsample to further increase. This sets 

up a positive feedback process which may lead to avalanche switching. On the opposite 

side, starting from the HRS, if the negative applied voltage reaches the minimal value 

required for switching an hrs resistor, such resistor will switch to a lrs resistance. Thus, 

Rsample decreases, and Vsample decreases. Any further switching must wait for Vtotal to 

increase so much that Vsample exceeds the required switching voltage of another hrs 

resistor. This negative feedback process leads to a stepwise on-switching. 

The simulation is done in Wolfram Mathematica 7.0. 

Pseudo Code (off-switching): 

Construct(N resistors);  

Vm[i] = LogNormalDistribution(<Vm>, σ
2);  

Initialize R[i] = RHRS or RLRS; 

For (V = 0, V →Vmax→0) 

     {Calculate Rsample; 

    Calculate Vsample; 

    Iteration: 

      If (Vsample ≥ Vm[i]) then R[i] = RHRS; 

      Update Rsample; 

      Update Vsample; 

      } 

 

7.2.3   Simulation Results 

The parameters used in simulation are shown in Figure 7.2. We used 100 resistors with 

various Vm distributed around 1.16 V, ranging from 0.8 V to 1.5 V. The initial state is 
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assumed as 100% RLRS, i.e., an LRS. The voltage sweep cycle chosen is 0 V→+8 V→-6 

V→0 V. 

 

Figure 7.2. Generated Vm distribution and simulation parameters 

 

The simulated R-V curve is shown in Figure 7.3. Remarkably, it captures all the key 

features of switching dynamics. The LRS holds until ~+6 V, followed by a sudden jump 

to the HRS with all 100 lrs resistors switched to hrs resistors. After that, the resistance 

follows a highly nonlinear curve up and down the voltage, but there is no further 

switching. The off-switching voltage ~+6 V is expected because in this simulation, 

Rsample=100 Ω and Rload=500 Ω, so at Vtotal =6 V, Vsample=1 V, which is what is required to 

trigger off-switching. On the side of negative Vtotal, a sharp drop occurs at ~-1 V, after 

that the sample undergoes a gradual reset process. A more negative Vtotal allows more hrs 

resistors to switch to lrs resistors, but at -6 V only 77% of the hrs resistors have switched. 

Thus, it corresponds to an intermediate resistance state (IRS), whose resistance is 

maintained as the voltage returns to 0 V.   
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Figure 7.3. Simulated DC sweeping cycle. 

 

7.2.3.1   True sample voltage (Vsample) 

Voltage partitioning due to Rload generally leads to Vsample deviating from Vtotal, especially 

for the LRS. Figure 7.4 explicitly shows the true voltage on the sample during off-

switching. Before off-switching, Vsample is linearly proportional to the total voltage V with 

a slope 100 /600 =1/6 (Figure 7.4a). Such linear relation holds until the switching 

condition V~<Vm> is met, then followed by a sharp jump to 6 V on a straight line with a 

slope 1. In this case, voltage sharing by Rload is negligible as the device is turned off, 

making Rload<<RHRS. On the other hand, during on-switching (Figure 7.4b), negligible 

Rload initially leads to a slope 1 straight line until the first hrs resistor reaching its on-

switching voltage Vm[i]. Then the negative feedback holds the sample voltage around 

<Vm> with small fluctuations. However, the Rload-mediated negative feedback also makes 
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it difficult to reach LRS (100% lrs) again, unless an infinitely large negative bias is 

applied. For an estimation of sample resistance, we assume Vsample=<Vm>, then 

BE

m

m
sample R

VV

V
R






 

with an asymptote ~1/V. 

 

Figure 7.4. True voltage on sample during (a) off- and (b) on-switching. 

 

7.2.3.2   On-switching to IRS 

The simulation satisfactorily captures stepwise on-switching characteristics. On the R-V 

plot, a set of intermediate states (IRS) are presented and actual values depend on the 

percentage of hrs and lrs resistors, which can be physically controlled by a negative 

voltage (Figure 7.5a). Simulated R-V curves (Figure 7.5b) follow such behavior: a 

higher negative bias leads to a lower final resistance (a higher ratio of n/N), which is 

verified in Figure 7.5c 
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Figure 7.5. R-V characteristics of (a) experimental and (b) 

simulated on-switching process. (c) Switching percentage vs. 

negative bias. 

 

7.2.3.3   Off-switching from IRS 

The resultant IRS with certain conducting path percentage forms a new initial state for 

subsequent cycles. A more resistive IRS, with a lower lrs percentage, allows a higher 

amount of voltage partitioning, thus easier switching. This is verified by both experiment 
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(Figure 7.6a) and simulation (Figure 7.6b). Here, the positive feedback ensures a 

complete and sharp switching all the time (IRS→100% HRS).  

 

Figure 7.6. R-V characteristics of (a) experimental and (b) 

simulated off-switching process.  

 

7.2.3.4   Intermediate HRS 

The state variable in the parallel circuit model is the percentage (n/N). Although in most 

cases, the apparent HRS has nearly n=0, other n>0 states can be accessed by weakening 

the positive feedback (e.g., lowering the Rsample/Rload ratio). A more resistive IRS has a 

more gradual Vsample increase during switching and hence, off-switching tends to follow 

the intrinsic Vm distribution rather than an avalanche behavior. In such case an apparent 

HRS with n>0 can be easily captured by voltage control during gradual switching. Such 

idea is verified both in experiment (Figure 7.7a) and simulation (Figure 7.7b). These 

intermediate states can be used for building multi-level cells, which will be elaborated in 

a later section. 

0 2 4 6

10
3

10
4

10
5

R
 (



V (V)

Experiment

0 2 4 6

10
3

10
4

10
5  -1V~8V

 -2V~8V

 -3V~8V

 -4V~8V

 -5V~8V

 -6V~8V

R
 (



V (V)

Simulation

(a) (b)



 

366 
 

 

Figure 7.7. R-V characteristics of (a) experimental and (b) simulated 

off-switching process for capturing intermediate HRS. 

 

7.2.3.5   Distribution of switching voltages (Vm) 

The form of the total resistance  

I

V
RRRR m

BEsampleBE   

suggests a plot of R against 1/I may reveal the characteristics of RBE and Vm. The plot 

yields a straight line if Vm is a constant or a narrowly distributed variable around a 

characteristic value. Meanwhile, the intercept is RBE. From the on-switching data plotted 

in Figure 7.8, we obtain RBE=407 . 
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Figure 7.8. (a) Experimental R-V curve. (b) R vs. 1/I plot, the 

extrapolated intercept gives RBE=407 . 

 

Knowing RBE, we can back-calculate Vm using Vm=(R-RBE)×I. The obtained Vm 

distribution is shown in Figure 7.9. The distribution (1.160.19) V is quite close to 1 V, 

which is the basis of our assumption in the previous simulations. 
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Figure 7.9. Calculated Vm distribution. 

 

7.2.3.6   Effect of N 

To investigate the effect of discretness, Rhrs and Rlrs are set so that constant Rhrs/N and 

Rlrs/N are maintained for different N. (This maintains the same device resistance in the 

HRS and LRS state.) Assuming the same form of a lognormal distribution (1.160.13V), 

we generated Vm distributions for different N as shown in Figure 7.10. (All distribution 

here are assumed, not derived from experimental data). Using these distributions, the 

simulated R-V curves become smoother as N increases (Figure 7.11). Specifically, the R-

V of the N=10 case shows a set of sharp jumps and flat IRS in Figure 7.11a, but the 

N=10000 case resembles a completely continuous process in Figure 7.11d. This behavior 

is easy to understand if we realize that the first resistance discontinuity is roughly of the 

order of Rlrs, which may approach Rhrs/N (i.e., the resistance of the HRS) if N is 

sufficiently large. Therefore, if sharp discontinuities are indeed observed experimentally, 
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an optimized N can be used to simulate it. In this respect, N=100 shows the best 

agreement (Figure 7.11b) with the experimentally observed R-V ; thus it will be used for 

subsequent simulation. It is worthwhile to note that “discreteness” could also stem from 

the voltage step ∆V used in simulation or experiment, simply because a large ∆V might 

“group” a large number of resistors and yield collective switching. 

 

Figure 7.10. Identical Vm distribution generated for simulation 

using (a) N=10, (b) N=100, (c) N=1000, (d) N=10000. 
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Figure 7.11. Simulated R-V curves for (a) N=10, (b) N=100, (c) 

N=1000, (d) N=10000. 
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Here, Rhrs is obtained by fitting the HRS resistance with an exponential-polynomial 

function, which is purely empirical without any physical meaning ascribed to it. 

 

Figure 7.12. Fitted vs. experimental R-V curves for Mo/SiO2:Pt/Pt RRAM. 

 

7.3   A Continuum Model 
2-3

 

Treating the RRAM device as a serial connection of a cell resistance Rc and a load 

resistance Rl in Figure 7.13a, we let Rc be a parallel connection of a low-resistance cross 

section (rL per area, area fraction=F) and a high-resistance cross section (rH per area, area 

fraction=1-F), see Figure 7.13b. In this picture, F is the state variable varying between 0 

(the most resistive state) and 1 (the most conducting state). Specifically, on-switching 

corresponds to the transition from the F=0 state to the F=1 state, off-switching 

corresponds to the transition from the F=1 state to the F=0 state, and intermediate states 

corresponds to intermediate F values between 0 and 1. On-switching is Rl dependent: the 
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larger the Rl, the smaller the current in the cell, thus the smaller the F of the intermediate 

state, and the higher the Rc. In general,  

l

HL

R

rFAAFr

R 






)1(

11

1

                     

 

where A is the sample area. F and rH have hidden voltage dependence, i.e., F=F(V) and 

rH= rH(V).  

  

Figure 7.13. Equivalent circuits of (a) RRAM device consisting of 

cell resistor Rc and load resistor Rl,. (b) cell resistor consisting of 

high-resistance cross section (rH per area, area fraction F) and low 

resistance cross section (rL per area, area fraction 1-F). 
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for Vm>0. For simplicity, the distribution at Vm<0 part is assumed to be the symmetric 

counterpart of the above distribution. The distribution and its derivative are shown in 

Figure 7.14, which also delineates two voltages at which switching is concentrated.  

 

Figure 7.14. (a) Distribution function F(Vm) and (b) its derivative dF/dVm. 

with μ=0.05 (<Vm>=1.05V) and =0.15. 

 

7.3.2   Simulation of R-V Curves  

Mo/Si3N4:Cr/Pt nanometallic RRAM is simulated by this model with the following 

parameters: 
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Figure 7.15. (a) Experimental vs. (b) simulated R-V curves for 

Mo/Si3N4:Cr/Pt RRAM. The percentage denotes the fraction F. 

 

Simulated curves shown in Figure 7.15b satisfactorily reproduce the experimental data in 

Figure 7.15a. The simulation also identified the fraction (F) for each low-resistance 

plateau, which ranges from 15% to 96% as the negative bias increases from -2V to -12V. 

 

7.3.3   Area Dependence 

Area dependence was investigated using the continuous model (Figure 7.16, parameters 

given in caption). The results are summarized as follows. 

1) Voff vs. A: Off-switching voltages are initially around the intrinsic Vm. At this stage, 

for small area the voltage sharing effect is weak since RLRS~rL/A>Rl. Above a critical 

area where RLRS~rL/A~Rl, voltage sharing becomes significant such that the apparent 

off-switching voltage increases.  

2) Fon vs. A: The on-state fraction Fon in a small device can reach Fon~1. However, as the 
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happening and only Fon<<1 can be achieved during on-switching. 

3) Roff vs. A: Roff is inversely proportional to A, which obeys Ohm’s law as it must.  

4) Ron vs. A: Ron is inversely proportional to A for small A when RLRS~rL/A>>Rl. 

However, as the voltage sharing effect becomes more prominent for larger A, the area 

dependence of LRS is masked by Rl. This is further confirmed in a loading effect 

study in Figure 7.17. In fact, as the rL/Rl ratio increases (e.g. vary rL while fix Rl), the 

onset of area-dependent Ron is shifted to a larger A. This provides a theoretical 

explanation for the apparent size-independent on-state resistance in most experiments. 

 

    

Figure 7.16. Area dependence of (a) off-switching voltage Voff, (b) fraction of 

LRS Fon, (c) HRS, (d) LRS. In the simulation, initial states are set as F=0 (HRS), 
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voltage scans are identically performed as 0V→-2V→+5V→0V. rL=5000Ω, 

Rl=300 Ω. )5||00059.04||019.03||25.02||56.1||45.574.14exp( VVVVVrH  .  

 

 

 

Figure 7.17. Ron vs. A for different load, (a) rL=5Ω, (b) rL=50Ω, (c) 

rL=500Ω, (d) rL=5000Ω, (d) rL=50000Ω. Other simulation parameters are 

identical to ones shown in Figure 7.16 caption. 

 

Motivated by the observation of intermediate states and the load resistance effect above, 

studies of practical RRAM devices motivated will be conducted in the next few chapters. 

The results will be interpreted in terms of the circuit model. These devices serve to 

further verify the model. In addition, they provide additional functionalities that go 

beyond standard RRAMs. 
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7.4   Conclusions 

1. RRAM can be treated as an external load in series with a parallel network of 

adjustable resistors, the latter representing the film that undergoes resistance 

switching. Discrete and continuum modeling based on the above equivalent circuit 

can satisfactorily simulate experimentally measured I-V and R-V characteristics. This 

model is applicable to all RRAMs and may easily be integrated into SPICE 

simulation software.  

2. Voltage-sharing between the load and the parallel network introduces asymmetry for 

on- and off- switching, exerting negative and positive feedback on switching 

dynamics. Using voltage/current compliance techniques, it is possible to control the 

voltage across the active film and access a rich population of intermediate states of 

intermediate resistance.  
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Chapter VIII. Multilevel Switching 
1 

 

8.1   Introduction 

RRAM that exhibit more than 2 resistance states may provide multi-bit storage
2-8

, in an 

analogous way to the multi-level cell (MLC) flash memory. In principle, if each single 

cell can display 2
N
 distinguished states, then for the same storage capacity the required 

die area will scale with 1/N. Stated differently, for the same die area, each 2
N
-state layer 

of a 2D memory has the same storage capacity of N 2-state layers of a 3D memory. 

Obviously, this will greatly increase the storage density and/or reduce the integration 

complexity.  

In the literature, multilevel states of RRAM are usually revealed by imposing a current 

compliance
3-4

 or through voltage programming
2,7

. The fact that these approaches seem to 

be applicable to all types of RRAM, irrespective of their underlying switching/conduction 

mechanisms, suggests a common understanding and control may be possible. However, 

no such understanding has been provided to-date. Moreover, despite the relatively 

common observation of multilevel states, there has been no report of two-way switching 

between all the 2
N
 states, which will be required in order for them to function properly as 

reprogrammable memory. Here we will demonstrate two-way switching for the N=2 case 

(4 multiple states: 00, 01, 10, 11) using a protocol guided by the circuit model developed 

in Chapter VII.  
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8.2   Experimental Methods 

We demonstrate these ideas using nanometallic RRAM, which is based on a hybrid 

amorphous structure with a distributed electronic energy profiles, thus naturally allowing 

multiple states
7-10

. Such RRAM exhibits several outstanding properties including 

excellent uniformity with small variations in switching voltages and resistance values, 

thus possibly providing highly reproducible multilevel states
10

. Although nanometallic 

RRAM can be implemented using a large variety of insulator:metal pairing (Chapter II), 

here we focus on Si3N4:Cr films (10 nm thick) with a Mo bottom electrode and a Pt top 

electrode (Figure 8.1a, left inset). The fabrication methods are identical to the ones 

introduced in Chapter II.  

 

 

Figure 8.1. (a) Characteristic I-V curve of nanometallic bipolar RRAM: 

On switching progresses in multiple steps, off switching displays one step. 

Left inset: schematic of device. Right inset: R-V curve. (b) Equivalent 

circuit of RRAM device. Cell resistor consists of high-resistance cross 
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section (rH per area, area fraction 1-F) and low-resistance cross section (rL 

per area, area fraction F). (c) Schematic F(Vc) and dF/dVc depicting on-

switching and off-switching. 

 

8.3   Results and Discussion 

As-fabricated RRAM devices exhibit bipolar switching behavior as shown in the I-V 

curve in Figure 8.1a obtained using the following voltage sweep sequence: 0 V, to 3 V, 

to -2 V, and to 0 V. Here a positive bias means current flowing from top to bottom as 

usual. Initially conducting, the device shows a linear I-V curve corresponding to a flat 

resistance in the R-V curve (Figure 8.1a, right inset). With an increasingly positive 

voltage, the device is sharply “turned off” at ~2 V. Next, it stays at an insulating, high-

resistance state (HRS) which exhibits a nonlinear I-V and R-V behavior. Under a negative 

voltage, the HRS passes through several intermediate states before eventually returning to 

the initial low-resistance state (LRS). From the shape of the I-V and R-V curves, it is 

obvious that there is easy access to the intermediate states from the HRS but not from the 

LRS. Similar problems (with similar I-V and R-V curves) often exist for other types of 

RRAM according to the literature
11-13

. 

As described in our previous model, I-V/R-V curves of the above kind can be very 

satisfactorily and quantitatively modeled by treating the device as a series connection of a 

load resistance Rl and a cell resistance Rc, Figure 8.1b. Here, Rl is the sum of all the non-

film resistances in the device (electrodes, interface, line and compliance resistance), 

whereas Rc is the resistance of the film, which has a low-resistance cross section (area 

fraction=F, with a constant resistance= rL per area) and a high-resistance cross section 
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(area fraction=1-F, with a non-linear resistance= rH per area). As shown in Figure 8.1c, 

on-switching corresponds to the transition from the initial F=0 state to various larger F 

(intermediate) states at increasing |Vc|, around a characteristic |Vc-*|. During such 

transition, the cell resistance Rc decreases, which causes |Vc| on the cell to decrease and 

the voltage on Rl to increase. Therefore, to compensate for the drop in |Vc|, the partially 

switched device will need more external (negative) voltage before continuation of on-

switching. This negative feedback during on-switching ensures a gradual I-V/R-V curve 

with many (indeed, infinite) intermediate states. Conversely, off-switching corresponds to 

the transition from the initial F=1 state to a lower-F state when Vc rises past a 

characteristic Vc+*. But since any decrease in F leads to an increase in Rc, hence a higher 

Vc, there is a positive feedback: it results in a self-propelling transition to HRS, a 

transition that is completed as soon as it is started. 

Because asymmetric feedback, which is rooted in Rl, is the reason why intermediate 

states are not accessible during off-switching, tuning the Rc/Rl ratio should provide a 

means to adjust feedback to allow access. Figure 8.2a shows simulated R-V curves for a 

cell with a log-normally distributed dF/dVc (Vc+* ~ 1.05 V at F=0.5, Vc+*= 0.23 V at 

F=0.1 and 0.9, respectively.) When simulation is run with an applied voltage increasing 

at  0.1 V increment, for a device starting at 0 V with a very low resistance (small Rc/Rl) 

corresponding to a large initial F, the off-switching is sharp and completed in one voltage 

increment (see F=0.9 and 0.5 in Figure 8.2a). This is the case of large positive feedback: 

during the one-step transition, the voltage spent on the film rises from ~Vc+* to ~V, the 

latter well exceeding Vc+*+Vc+*, even though the applied voltage V merely increases by 
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0.1 V. After the transition, the final state already has F=0 (HRS). On the other hand, if 

the device starts from a higher resistance (a smaller initial F, a larger Rc/Rl), then the 

required off-switching voltage is lower (see F=0.2 and 0.05 in Figure 8.2a) because the 

cell now shares a higher fraction of the applied voltage. Meanwhile, intermediate states 

begin to appear on the switching curve. This corresponds to the case of limited feedback: 

even though Vc also rises from ~Vc+* to approach V in one voltage increment, it has not 

exceeded Vc+*+Vc+*, thus not triggered avalanche switching. 

 

Figure 8.2. Simulated R-V curves for off-switching using parallel circuit 

model in Figure 8.1b. (a) R-V curves starting from different LRS, showing 

one step switching (F=0.9 and 0.5) and multi-step switching (F=0.2 and 0.05). 

(b) R-V curves for off-switching from one resistance state (F=0.05) to four 

other resistance states (F=1%, 0.07%, 0.005%, 0%) by using different off-

switching voltage. Simulation parameters:    
          (at F=0.5), 

    
           (+ at F=0.1, − at F=0.9), Rl(Ω)=300, rL(Ω)=250, rH(Ω) = 

                                                       

                 , where V is voltage in volt. 
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The simulation also predicted the “unloading” R-V/I-V curves of the intermediate states, 

Figure 8.2b. For a device with an initial F=0.05, three intermediate states of F=1%, 0.07% 

and 0.005% are obtained after three successive V increments. Decreasing the applied 

voltage afterwards causes “unloading” of Vc, so these F values for the intermediate states 

remain unchanged. However, because rH is non-linear, the “unloading” R-V curve is also 

non-linear, the more so the smaller F (Figure 8.2b). At V=0, these intermediate states 

have distinctly different resistance values well separated from each other and from HRS 

(F=0) and the nominal LRS (F=0.05). If these memory states can be realized in practice, 

they should be rather easy to distinguish and to read. 
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Figure 8.3. (a). Schematic R-V curves of two-way switching in 2-bit 

memory between any two resistance states from 0 to 3 (resistance at 

0 V in red). Inset: Pulse trains of switching voltage. (b) Experimental 
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R-V curves verifying (a). Memory cells constructed using 

nanometallic Mo/Si3N4:Cr/Pt film. 

 

For these states we next illustrate a scheme for two-way switching. Here we use a 2-bit 

(N=2) memory, having four states that are ranked as 0-3 by their increasing resistance. 

(Note that this is different from the standard notation of calling the LRS the “1” state.) 

The schematic switching R-V curves and triggering voltage-pulse trains are shown in 

Figure 8.3. Most (9 out of 12) switches are straightforward requiring only a one-step 

pulse. However, to access intermediate states (state 1 and 2) from the LRS (state 0), a 

multi-step pulse with a small negative voltage step is required to raise the cell resistance 

to limit off-switching avalanche. This is the case of 0→2 and 0→1, in which a detour via 

state 3 is made before applying the negative voltage step. For 3→2 switching, a two-step 

pulse is illustrated in Figure 8.3a, but a one-step pulse for direct transition is also feasible 

if the device is under a compliance control that prevents 3→1 transition. The above 

scheme has been experimentally verified in nanometallic RRAM, its data provided in 

Figure 8.3b. 

Next, we employ voltage pulses (single pulse width: 100 ns) to implement the above 

scheme at a realistic write/rewrite speed. The blue curve in Figure 8.4a shows that the 

initial state 0 holds its resistance until Vpulse>1.8 V, then transitions to state 3. On the 

other hand, if the device starts from state 1, a 1 V pulse will transition it to state 2 (shown 

as the green curve), while a 2 V pulse will switch it to state 3. On a negative pulse, the 

state 3 can be reset back to either state 1 (with a -1 V pulse) or state 0 (with a -2 V pulse). 
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These transitions are the essential ones that ensure the success implementation of the 

scheme in Figure 8.3, but other switches had all been verified using one-step or multi-

step pulses. These states were stable: they maintained their resistance values without roll 

off during retention tests lasting over 10
5
 s. As shown in Figure 8.4b, states 0, 1, and 3 

can all hold constant resistance. State 2 does show some resistance scatter, which may 

indicate exchanges between similar intermediate resistance states when subject to small 

perturbations. However, the scatter is small and will not affect distinguishing state 2 from 

neighboring state 1 and 3. 

 

Figure 8.4. (a) Resistance-pulse-voltage traces (pulse width = 100 ns) 

used to define four resistance states 0-3. After each voltage pulse, 

resistance is read at 0.2 V. (b) Resistance retention test (read at 0.2V) 

for four states, each maintaining starting resistance over tested 10
5
 s 

without roll-off. 

 

The two-bit memory above should not suffer from long RC time or slow switching speed. 

Concerning the RC time, we refer to Figure 8.1b and envision a cell capacitance Cc in 
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parallel to Rc. It is then trivial to show that the RC time of the device is      
  

     
 , 

which is bounded by      and essentially independent of the bit resistance. Typical 

values measured for our RRAM are Rl~1 k and Cc~100 pF for a 100 100 μm
2
 cell, 

which gives RlCc~10
-7

 s. Since Rl in our device is mainly due to spreading resistance and 

is relatively area-independent but the capacitance scales linearly with the area, the 

projected RlCc is ~10
-13

 s for a 100 100 nm
2
 cell, which is more than satisfactory.  Using 

the state-of-the-art CMOS technology, for which the typical sheet resistance for metal 

conductor layers is 0.05 Ω/sq, we also estimate for a 10 Gbit storage unit (10
5 10

5
) a line 

resistance of the order of 0.05 Ω/sq  10
5
 sq or 5 kΩ, which is 5  the value for Rl above. 

Thus, the delay time (5  longer) is still extremely short for a 100 100 nm
2
 cell. In 

addition, since nanometallic films can easily exhibit intermediate states with 

Rintermediate>>Rl, Rl of the above type would not affect the readability/detectability of 

intermediate states.  

Concerning the switching time, we refer to Figure 8.3a to compute an average for a 2-bit 

memory array, assuming all 4 states are equally populated and all 12 transitions are 

equally executed. Since 9 transitions need 1-step pulses, 2 transition need 2-step pulses 

and 1 transition (0→2) needs a 3-step pulse, the average switching time of this 2-bit-4-

state memory is 1.33 time that of a 1-bit-2-state memory. Therefore, the tradeoff between 

a higher storage density (2 ) and a slower writing speed seems favorable. 

We now return to the constitutive basis of multistate memory. Referring to Figure 8.1c, 

we see that multiple state transition is the result of the gradual inter-conversion curve 

(F(Vc)) between rH and rL elements. In nanometallic memory, the rL state is the metallic 
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state of a random conductor, and the rH state is the insulating state in which charge-filled 

negative-U centers have blocked electron passage in their vicinity. Trapping and 

detrapping are thus responsible for the rL↔rH conversion, which is voltage-driven 

governed by the energy landscape in the random material. Since the landscape in such 

material is inherently diverse, by nature this conversion must be energetically dispersive 

and can be triggered by a range of voltages as schematically illustrated in Figure 8.1c. 

However, although a multitude of intermediate states naturally exist, they may be masked 

by voltage overload because of the positive feedback induced by the load resistance Rl. 

This can lead to a cell-voltage overshoot above the critical voltage Vc+* and even 

beyond the energy dispersion (Vc+*), which then creates a switching avalanche 

bypassing all intermediate states. The condition for this to occur can be obtained from the 

following simple analysis. (i) Because of voltage sharing, off-switching cannot be 

initiated until   
     

  
   

 . (ii) Once initiated, with a positive feedback, the entire 

applied voltage is soon spent essentially on the cell, giving Vc~V. (iii) If Vc>Vc+*+Vc+*, 

then overshoot will occur: transition will complete as soon as it is initiated. Combining (i-

iii), we obtain Rl/Rc>Vc+*/Vc+* as the criterion for switching avalanche. In Figure 8.2, 

which uses Rl=300 Ω and Vc+*/Vc+*=0.22, the condition separating sharp and 

continuous switching should be Rc= 1363 Ω. Indeed, continuous switching in Figure 8.2a 

begins with F=0.2, corresponding to Rc=1250 Ω.  

Our circuit model can be easily used to explain the switching I-V/R-V behavior of other 

RRAM irrespective of the underlying switching mechanisms. Multilevel states in other 

RRAM have been reported, and are typically accessed by voltage programming or 
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current compliance. Although it may seem reasonable to attempt more storage bits by 

expanding the resistance range (e.g., lowering the LRS by using a larger on-switching 

voltage) or increasing the current compliance through a larger Rl, the above analysis 

points to the shortcomings of these approaches: a large Rl/Rc is inherently unstable for 

off-switching, and a large Rl will increase the RC time. On the other hand, RRAM with a 

negligible Rl has some advantage: for example, in Figure 8.3 state 0 can directly switch 

to state 2 if no positive feedback is provided. Systems with a highly dispersive dF/dVc, 

i.e., a large Vc+*/Vc+*, are obviously desirable from this perspective. 

Lastly, we address two practical issues in implementing the current scheme. The first 

issue/concern for multilevel RRAMs is about their large R contrast, which could cover 

several orders of magnitude making it difficult to differentiate different states without 

using a complicated sensing circuit. Such concern is particularly valid for conventional 

(filamentary or/and ionic) multilevel RRAM, in which it is very difficult to tune the 

resistance values by fine-tuning the device composition and/or configuration. However, 

this is not the case in nanometallic RRAM. Indeed, a competitive advantage of 

nanometallic RRAM over conventional RRAM is its ability to tune the resistance values 

through either thickness (HR resistance increasing with thickness following an 

exponential dependence) or metal concentration (HR resistance decreasing with 

concentration spanning several orders of magnitude)
8-10

. Therefore, it is entirely feasible 

to adjust the HR resistance to “squeeze” all the resistance states into a certain range so 

that they are all readable by the standard sensing circuit. The other concern is the 

complexity demanded on the drive circuit to generate the multi-impulse pulse trains in 
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Figure 8.3. However, the complexity level of our pulse trains is fundamentally the same 

as that used in writing multilevel NAND memory. Moreover, since only one drive circuit 

is needed for each memory array, the complexity will not increase with storage size and 

therefore not significantly affect the space/cost saving consideration for using multi-bit 

cells. 

 

8.4   Conclusions 

We have demonstrated and analyzed a stable 2-bit-4-state nanometallic memory which 

can be read, written and rewritten using voltage pulses. Even with only 2 bits, such 

storage memory already enjoys an advantage (2 ) in space/area saving at a modest 

increase (1.33 ) of average programming time. These results are applicable to other 

RRAM systems, and further advances in developing multi-bit memory may accelerate the 

adoption of highly integrated RRAM in future generations of digital memory. 
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Chapter IX. Dynamic-Load-Enabled Ultra-low Power 

Multiple-State RRAM Devices
1 

 

9.1   Introduction 

Power consumption is a key issue for electron devices including resistive random access 

memory (RRAM), which has attributes of high density, fast write/read speed, fatigue 

endurance and long retention
2
. In a RRAM, on-switching (also called set-switching) 

consumes relatively little power because the current is limited by the relatively high (off) 

resistance. So the power consumption is dictated by off-switching (also called reset-

switching) which has a relatively low (on) resistance. Off-switching power should be 

proportional to the area of the resistance cell if the voltage/current density required to 

trigger switching is independent of the area. Indeed, literature data of off-switching 

power of some 20 RRAMs shown in Figure 9.1 (also see Table 9.1 for details) support 

such a “scaling law”: they vary from the mW range for micrometer-sized devices to the 

μW range for nanometer-sized devices
3-23

. Recognizing such a trend, our goal here is to 

systematically seek scalable strategies to further lower the power for RRAM off-

switching. Our power data and the scaling prediction are summarized in Table 9.1. 

 

Off-switching power Materials (size) 

>10 mW 
TiO2 (300 μm)

3, Sr2TiO4 (~100 μm)
4, polymer:Au5, 

NiO (120 μm)6, Al2O3 (80 μm)7, LSMO (800 μm)8 

1-10 mW 
SiO2:Pt (80 μm)9, Fe:STO10, CoSiOx (8 μm)11, CuxO 

(300 μm)12, PCMO (200 μm)13, V:SrZrO3 (220 

μm)14, Nb:SrTiO3 (100μm)15, ZnO (50 μm)16 

100-1000 μW ZrO2 (6 μm)17, HfOx (<60μm)18, Ge2Sb2Te5
19 

10-100 μW 
TaOx (30 nm)20, LSMO (AFM Tip)21, TiO2 (50 

nm)22, a-Si (50 nm)23 
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Table 9.1. Off-switching power consumption in reported ReRAM 

systems (Off-switching power is defined as product of I and V at the 

onset of off-switching.) 

 

Figure 9.1. Scaling behavior of off-switching power consumption in 

literature (triangles) and in this work (filled circles) using asymmetric load 

for devices of two thickness, 10 nm (blue) and 17 nm (red). Extrapolation 

(dash line) gives 12 nW and 500 pW for 100×100 nm
2
 device and 10×10 nm

2
 

device, respectively (10 nm thick), and 1.5 nW and 60 pW for their 17 nm 

counterparts. See Table 9.1 for details of literature data. All power data are 

calculated from onoffoff RVP /2 , where Voff is off-switching voltage and Ron is 

off-switching resistance at Voff. 

 

We begin by treating a RRAM device as a serial connection of a cell resistance Rc and a 

load resistance Rl, see Figure 9.2a. The latter may come from word/bit lines, electrodes 

and interfaces. Depending on the configuration Rl may or may not be inversely 

proportional to the cell size or area. (For example, the spreading resistance of a very thin 
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bottom-electrode substrate is logarithmically dependent on the reciprocal cell size.) We 

next designate the critical cell-switching voltage Vc* as a characteristic of cell material. 

The intrinsic switching power is thus ccc RVP /2**  per cell. However, since the device-

switching voltage V* equals (1+)Vc*, where cl RR / , the device-switching power P 

must exceed Pc*. Indeed, 
*)1( cPP  .  

 

Figure 9.2. Equivalent circuits of (a) RRAM device consisting of cell resistor 

Rc and load resistor Rl,. (b) cell resistor consisting of low-resistance cross 

section (rL per area, area fraction F) and high resistance cross section (rH per 

area, area fraction 1-F), (c) dynamic load consisting of parallel diode Rd and 

external resistor Rex. Inset of (b): schematic F(Vc) and dF/dVc depicting on-

switching and off-switching.    

 

The above consideration suggests that power minimization requires maximizing Rc and 

minimizing Rl. However, Rc and Rl are interrelated in many RRAM that contains multiple 

intermediate states: if a larger Rl is used during on-switching, it provides a current 

compliance often causing switching to an intermediate state of a higher (intermediate) Rc 

than would otherwise. (Compliance control by the source meter is widely used for this 

purpose.
24

) The interplay between Rl and Rc for multi-state RRAM can be understood by 

Rl Rc

Device
(a)

Device

(c)
Rex

Rd

(b)

rL

rH

, F

, 1-F
Rl

F(Vc)

dF/dVc
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Off
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Off

Vc+
*Vc-

* 0
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viewing the cell as a parallel connection of a low-resistance cross section (rL per area, 

area fraction=F) and a high-resistance cross section (rH per area, area fraction=1-F), see 

Figure 9.2b. In this picture, F is a state variable that characterizes the cell: it lies between 

0 (the most resistive state) and 1 (the most conducting state). As schematically shown in 

the inset of Figure 9.2b, on-switching corresponds to the transition from the F=0 state to 

the F=1 state, and off-switching the transition from the F=1 state to the F=0 state. 

However, various intermediate F states can also result during on-switching because the 

transition path is Rl dependent: the larger the Rl, the smaller the current in the cell, thus 

the smaller the F of the intermediate state, and the higher the Rc. We believe that this Rl-F 

relationship can be exploited in many RRAM to lower P further by including an 

asymmetric dynamic load: the load is large during on-switching to minimize F hence 

maximize Rc, but small during off-switching to minimize . In the following, we 

demonstrate this design using a new nitride-based nanometallic RRAM made of 

amorphous Si3N4 with atomically dispersed Cr. 

 

9.2   Experimental Methods 

Fabrication procedure are identical to the ones used in Chapter II. Electric tests were 

conducted using the following convention: a positive polarity is defined by having 

electric current flowing from the top electrode to the bottom electrode. Testing cycles 

follow a pre-described loop starting from 0 V to a negative voltage limit, to a positive 

voltage limit, to the negative voltage limit again, and back to 0 V. To determine the state 

without the test cycle, the resistance was read at 0.2 V.  
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The R-V hysteresis under a constant Rl was calculated using the parallel circuit model 

which gives ArFrFR HLc )/)1(/(1 
. Since the resistance ratio is cl RR / = 

lHL ARrFrF )/)1(/(  , we can immediately obtain V=Vc(1+Δ) for any point on the F(Vc) 

transformation curve in Figure 9.2b inset. (Clearly, ARl emerges as the control parameter 

for the switching behavior.)  Specifically, we start at an initial point (the initial state of 

the cell) on one branch of the F(Vc) curve, we then follow the curve and continuously 

record F and compute Rc, Δ and V until the limit for V (specified by the range of the 

voltage cycle) is reached. We then reverse the direction and follow the other branch of 

the F(Vc) curve until the other limit for V is reached before reversing again. During off-

switching at larger ARl under a positive Vc, it is possible to encounter a region of negative 

slope, dV/dVc<0, which implies a jump in Vc without changing V. This corresponds to an 

abrupt drop in F, hence a first order transition in the resistance state. 

 

9.4   Results  

9.4.1   Bipolar Switching Involving Intermediate States 

As-fabricated devices (without forming) were nearly Ohmic-conducting. Under a voltage 

sweep, they exhibited bipolar switching behavior as shown in the I-V curve in Figure 

9.3a obtained using the following voltage sweep: 0 V, to 12 V, to 10 V, to 12 V, and to 

0 V. The initial sweep from 0 V to 12 V does not result in any sharp transition. Positive-

voltage off-switching occurs at 8 V consuming ~250 mW, after that a non-Ohmic high 

resistance state (HRS), corresponding to F=0, is reached. The HRS returns to the low 
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resistance at 1 V, consuming ~30 W during on-switching. In the above, power to 

operate the device was equated to the product of the applied voltage and current at the 

onset of switching. (This convention will be used throughout our work.) As shown in the 

inset of Figure 9.3a, from 12 V to 8 V the resistance (Rc+Rl) is flat, which will be 

referred to as plateau resistance to indicate no transition. This plateau-resistance state is 

actually one of the intermediate states with F <1. Note that the off-switching voltage in 

Figure 9.3a is relatively high signifying a relatively large . This is caused by the very 

small Rc and large F, which was made possible according to Figure 9.3c by using a very 

large negative voltage limit (12 V) during the negative sweep. Such high and low Rc 

in turn raise P. 
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Figure 9.3 (a) Characteristic I-V curve of nanometallic bipolar RRAM: on-

switching under negative voltage, off-switching under positive voltage. On-

switching progresses in multiple steps, suggesting possibility of multi-bit 

memory. Cell size: 100×100 μm
2
. Upper left inset: schematic of device: Lower 

right inset: R-V curve. (b) Off-switching power vs. negative voltage limit, −Vmax, 

showing ~60× power reduction as −Vmax decreases from 12 V to 2 V. Inset: I-V 

curve for Vmax=−2 V. (c) R-V curves for various negative voltagelimits from −12 

V to −2 V. Plateau resistance increases as negative voltagelimitreduces, causing 

off-switching voltage to decrease. (d) Simulated R-V curves under different –Vmax 

using parallel circuit model in Figure 9.2b. Percentage in the bracket shows 
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different F at plateau resistance. Simulation parameters: Vc*(V)=±(1.2±0.2), 

Rl(Ω)=330, rL/A(Ω)=90, 

)||00059.0||019.0||25.0||56.1||45.574.14exp()(A/ 5432

H VVVVVr 

, where V is voltage in volt. 

 

The plateau resistance can be substantially increased without altering Rl. As shown in 

Figure 9.3c, a progressively smaller voltage for the negative sweep leaves a 

progressively higher plateau resistance, corresponding to a progressively smaller F value 

for the intermediate state. As the range of the sweep voltage decreases from 12 V to 2 

V, the plateau resistance increases from 300 Ω to 1 kΩ. Correspondingly, the off-

switching voltage decreases from 8 V to 2 V. Meanwhile, the power decreases (Figure 

9.3b) from 250 mW to 4 mW. The I-V curve for the 4 mW case is shown in Figure 9.3b 

inset to illustrate the ~ 10× reduction in current compared to Figure 9.3a. This behavior 

can be understood in terms of the parallel circuit model (Figure 9.2b). As shown in 

Figure 9.3d, all the R-V curves can be satisfactorily reproduced by numerical calculation 

using the model taking Rl~300  and Vc*~ ±1 V. This also allows us to identify the F 

value for each plateau resistance, which ranges from 0.96 to 0.15 as marked in Figure 

9.3d.  

 

9.4.2   Asymmetric Load 

We next demonstrate that the plateau resistance can be increased and the off-switching 

power drastically reduced by introducing a dynamic load that has an asymmetric response 

to voltage. This was achieved using a diode in parallel with another external load Rex, as 
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schematically shown in Figure 9.2c. Under a positive bias which includes off-switching, 

the diode is in the forward direction (Rd~0) allowing Rex to be short-circuited. So the net 

load is nearly Rl, still equal to 300 . Under a negative bias which includes on-switching, 

the diode is in the reverse direction and is almost open-circuited. Thus the net load is the 

sum of 300  and Rex. In reality, under a positive bias, a typical diode also introduces a 

positive voltage drift due to its threshold voltage Vth. (Vth can be as low as 0.2 V in a 

Schottky diode, but is 0.6 V in the silicon diode used in the experiment described here.) 

In addition, the diode in the reverse direction has a characteristic resistance Rd which is 

100 M in our experiment. As shown in Figure 9.4a for a 100×100 μm
2
 device, such a 

diode results in a switching curve with ~10× reduction in the on-switching current and 

~10× increase in plateau resistance (Figure 9.4a inset). Under a positive bias, current 

increase starts near Vth~0.6 V and off-switching occurs at V*~1.4V, corresponding to a 

maximum in current and a minimum in resistance (being Rc+300 ). For this (on) 

resistance and V*, the off-switching P is 0.25 mW.  

We systematically examined whether off-switching P can be further reduced by varying 

Rex. With Rex increasing from 10  to 100 k, Figure 9.4b (the 100 μm curve) shows P 

to decrease from 2.5 mW to ~110 μW for the same 100×100 μm
2
 device. The decrease 

essentially begins when Rex is comparable to Rl, which was again 300  in this 

experiment. Beyond this point the asymmetric load starts to cause the plateau resistance 

and the on-resistance (Rc+Rl) to increase (the 100 μm branch in Figure 9.4c) by arresting 

the intermediate state at a progressively higher Rc. Meanwhile, the off-switching voltage 

V* also decreases (Figure 9.4c) signifying transition initiating at the low-voltage tail of 
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the Vc* distribution (Figure 9.2b inset), resulting in an abrupt off-transition to some 

intermediate F state. (Later, full transition to the F=0 state occurs during the remainder of 

the positive voltage sweep, but such subsequent transition consumes much less power 

because of the much higher Rc.) Eventually, P reaches a lower limit when Rex becomes 

comparable to the resistance of the HRS; any further increase of Rex will postpone on-

switching to an impractically large (negative) voltage, again because V* is much larger 

than Vc* when  is too high. This limits the minimum P for a 100×100 μm
2 

device to 

~110 μW. For all the Rex, a large on-off ratio of resistance (read at 0.2 V) exceeding 10× 

is maintained as shown in Figure 9.4b inset. 



 

403 
 

 

Figure 9.4 (a) I-V curves for RRAM device with and without asymmetric load, 

which reduces current and off-switching voltage. Inset: corresponding R-V 

curves. Cell size: 100×100 μm
2
. Off-switching (b) power Poff and (c) voltage 

Voff* and on-resistance Ron vs. Rex for three cells of different sizes, showing 

systematic size-dependent Poff and Voff decreases and Ron increases. Inset of (b): 

Roff/Ron vs Rex for cells of different sizes.  (d) Scaling behavior of Ron and Voff*. 

See Figure 9.1 for scaling behavior of Poff. 

 

9.4.3   Scalability 

The above approach is scalable. This is illustrated in Figure 9.4b-c for two other cells 

~25× larger/smaller in cell area. Here, we used the same diode but extended the range of 
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Rex. They depict a systematic shift of off-switching P (Figure 9.4b), V* and on-resistance 

(Figure 9.4c) with cell size: in the smaller cells the significant reduction in P and V*, 

along with the significant increase of on-resistance, starts at a higher Rex because the cell 

resistance of smaller cells is higher. Since the same trend is obeyed for all cell areas, we 

may assign the limiting P, V* and plateau resistance values as the ones obtained at the 

highest Rex before on-switching becomes impractical. These assigned values follow an 

apparent scaling “law” in Figure 9.4d for V* and plateau resistance and in Figure 9.1 for 

P. (Data of two additional cells of intermediate areas have also been included in these 

plots.) Although the data on the scaling plot Figure 9.1 are somewhat scattered because 

only a few Rex were used, we have tentatively extrapolated the scaling line to smaller area. 

For a 100×100 nm
2
 device, which is readily manufacturable today, the projected off-

switching power is 12 nW. For a 10×10 nm
2
 device, the projected power is 500 pW. 

While the validity of the above projection is not known until future experimental 

verification, we can nevertheless examine the basis for the projection to identify any 

potential causes for its breakdown. Our power data in Figure 9.1 apparently follow a cell 

area (A) scaling behavior of A
0.7

. Since the off-switching voltage is only very weakly 

dependent on A, most of the above scaling may be attributed to on-resistance. As 

mentioned above, the maximum Rex usable is determined by the resistance of HRS. This, 

in turn, determines Rc and on-resistance (the relation between Rc, Rex and HRS is non-

linear because of the non-linearity in the Vc* distribution in Figure 9.2b.) In the 

insulating state, HRS should scale with A
-1

 (ref.
9
). So the slightly weaker area dependence 

of power and plateau resistance is understandable in terms of mostly HRS and partly the 
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interplay between the diode, Rex, and the F-transition curve (Figure 9.2b inset). It also 

follows that whether such scaling behavior can continue at small cell areas depends on 

whether (a) HRS continues to scale with A
-1

 and (b) there is a large spectrum of 

intermediate states of wide ranging resistance between HRS and Rc+Rl to interact with 

the dynamic load. Data for A
-1

 scaling of HRS are presented in previous chapters, which 

seem quite robust. In the following, we examine (b) with the aid of modeling. 

To clarify (b), we simulated the R-V hysteresis under a constant Rl for A spanning over 4 

orders of magnitude using the model in Figure 9.2b. As shown in Figure 9.5, as the area 

decreases, the R-V curves develop an expanding gap (to about 7 orders of magnitude) 

between the plateau resistance and the HRS resistance, the latter indeed scales with A
-1

. 

Meanwhile, off-switching continues to occur between 1 V and 2 V even though the 

transition is no longer abrupt at small ARl. (The abrupt transition is due to the negative 

slope dV/dVc, which becomes positive definite at small ARl.) While the detailed outcome 

of the simulated results (e.g., the F value of the plateau state) obviously depends on the 

parameter used, such as Rl which we assumed to be area-independent, these findings do 

suggest that item (b) should not be a concern, thus lending support to our scaling 

hypothesis under a dynamic load. Moreover, since the plateau resistance does increase at 

smaller A, meaning that Rc>Rl in such case, for a sufficiently small A there will be less 

need for compliance control rendered by Rex. As a result, Ron should increase less rapidly 

at small A than indicated by Figure 9.4d. 
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Figure 9.5. Simulated R-V curves for different cell area A using parallel circuit 

model in Figure 9.2(b). Percentage in the bracket shows F at plateau resistance. 

Simulation parameters: Vc*(V)=±(1.35±0.15), Rl()=300, rL () =500,  

)||00059.0||019.0||25.0||56.1||45.565.21exp()( 5432
H VVVVVr  , V is voltage.  

 

9.4.4   Increasing the Dynamic Range Using Nanometallic Feature 

Although the approach of employing an asymmetric dynamic load to reduce P was 

demonstrated above using a nanometallic RRAM, it is applicable to other bipolar RRAM 

that satisfies two requirements: (i) intermediate states are accessible using compliance 

control, and (ii) switching is triggered by a critical cell voltage independent of cell area. 

Nevertheless, nanometallic RRAM does have two important advantages. First, since it 

switches by a purely electronic mechanism, fast switching speed should be possible (<50 

ns as already measured in our laboratory, much faster also likely), assuring a very small 

energy for switching per bit. Second, reflecting the elastic tunneling nature of itinerant 
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electrons in random materials, the HRS of nanometallic thin films follows a unique 

exponential dependence on thickness, Rc~exp(/HR), where  is the thickness and HR 

(of the order of a few nm) is the localization length in the HRS
9
. (HR essentially defines 

the spatial extent of electron’s wave-function, which decays exponentially in a random 

material.) Meanwhile, Vc* is thickness independent in the nanometallic regime
9,25

.
 
These 

unique attributes allow additional freedom to increase Rc and decrease P by many orders 

of magnitude by using thicker films to take advantage of their higher HRS (see Figure 

9.6a). This is demonstrated by the data (red) in Figure 9.1, which were collected for a set 

of thicker (17 nm) film devices following the same procedure described above. The on-

resistance for each of the 17 nm device in Figure 9.1 is shown in Figure 9.6b along with 

the Rex it contains and the Voff* it exhibits. Comparing these data with those of similar 

cell areas in Figure 9.4d, it is clear that Voff* is maintained at the same value but the on-

resistance is raised in the 17 nm film devices.  
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Figure 9.6. (a) R-V curves of 100×100 μm
2 

cells of 10 nm and 17 nm 

thickness. (b) On-resistance Ron and off-switching voltage Voff* for the 17 nm 

film cells of various areas at their minimum Poff configuration (optimal Rex). 

 

9.5   Discussion 

In the RRAM literature, diodes have been introduced to the unipolar devices to lower the 

leakage current at zero bias, thus lowering power dissipation. However, during switching 

the diode is “on” so it does not necessarily lead to a reduction of switching current or 

switching power. This is apparent from Figure 9.4b: P decreases only when an 

appropriately large Rex is also present. For bipolar RRAM, selectors having very large 

resistance below a bipolar threshold voltage have been introduced to eliminate the so-

called “sneak-path” problem.
26-27

 Once again, they can lower the leakage current at zero 

bias, but not the switching current since switching occurs when the selector resistance is 

low. Unlike these modifications, our asymmetric dynamic load can reduce not only the 

leakage current but also switching power. Moreover, unlike the selector used to eliminate 
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sneak paths, our asymmetric dynamic load need not be integrated into the device stack at 

each cell. Indeed, only one such load is required for each write/read test-circuit module 

that has access to an array of N×N device stacks. Therefore, the approach can be 

implemented without additional increase in fabrication complexity. 

Nanometallic memory switches by an electronic mechanism, so the switching speed is 

ultimately limited by the RC delay time in the circuit. To compute the delay time, the 

pertinent capacitance is that of the memory cell, which scales with A and is ~100 pF for a 

100×100 μm
2
 cell in our experiment. The pertinent resistance is that of the total load, 

including Rl and the asymmetric external load. During off-switching, the diode is in the 

forward direction and contributes to little load. Likewise, during reading, the diode is not 

needed and the total load is again small. Therefore, the longest delay time is the one 

encountered during on-switching when the total load is ~Rex. Since Rex is bounded by 

HRS but has a weaker area dependence, say of A
-1+s

, where s~1/3, we expect 

RHRSC>RexC~A
s
. For a 100×100 μm

2
 cell, RHRS=100 k at on-switching, giving an RC 

product of 10 μs if we use an asymmetric load. For a 100×100 nm
2
 cell, the on-switching 

time should be 100× smaller, reaching 100 ns. At even smaller A, we expect Rc to rise 

which lessens the need for Rex to increase (see discussion on Figure 9.5), so the RexC 

should also rise less rapidly. Moreover, the exponential dependence on thickness can be 

utilized to further increase Rc without increasing Rex, thus limiting the RC delay to a 

reasonable value.  

Our work has demonstrated that an ultra-low power solution for multiple-state 

nanometallic RRAM devices can be devised using two strategies. First, an asymmetric 
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dynamic load involving a diode and a linear resistance can be used. This approach is 

applicable to other RRAM, and the scaling results presented here have likely set the 

lower limit of power consumption for most devices. Second, by increasing the film 

thickness by merely a few nm, the HRS resistance of nanometalic RRAM can be 

dramatically increased to broaden the dynamic range of the asymmetric load, thereby 

further lowering the power consumption by several orders of magnitude. Both strategies 

are scalable: power consumption using a 17 nm film is Pon=460 nW and Poff=30 μW for a 

100×100 μm
2
 device, and is projected to be Pon < 460 fW and Poff < 1.5 nW for a 

100×100 nm
2
 device. For a 10×10 nm

2
 device with thickness/composition optimized 

nanometallic film, we believe 1 pW Poff is ultimately feasible. To realize the anticipated 

low power, however, an improved ability for current readout will be required, since 

ultimately it is the product of current readout and V*off (~1 V for the best RRAM devices 

today) that sets the power limit. Such advances may accelerate the adoption of RRAM 

technology. 
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Chapter X. High Tunability of Resistance States Based on an 

Electroforming-free Nanometallic Complementary RRAM
 

 

10.1   Introduction 

Resistive random access memory (RRAM) is promising for future digital memory 

because of its superior properties of nano-second speed, >10 year retention, and >10
7
 

cycle endurance, along with good scalability (<100 nm)
1
. Typical RRAMs present at least 

two distinguished states, in which information is stored and electrical stimulus can be 

employed to trigger inter-state conversion. One of the difficulties for RRAM engineering 

lies in its low resistance state (LRS), which is often less controllable. In most RRAMs, 

the LRS is typically a linear resistor with resistance R<100 Ω and such resistance is 

weakly dependent on device dimensions. One issue associated with such low resistance is 

power (V
2
/RLRS) consumed when using a voltage V during read/write operation. This 

becomes more problematic as the memory array scales down, which implies a higher 

power density. In addition, parasitic resistance (e.g., resistance of interconnection line) 

could easily overwhelm LRS and thus cause read/write inaccuracy.  

In the RRAM literature, there are reports of increasing the LRS resistance through either 

a voltage control
2-3

 or a current compliance control
4-5

 of filamentary growth. However, 

the increase is small and not statistically reliable because an accurate control of filament 

growth is difficult. On the other hand, the LRS resistance should not be too high either 

since a smaller RHRS/RLRS leads to a smaller read margin. In fact, there is an optimal RLRS 
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value, dictated by compromising parasitic resistance and the RHRS/RLRS ratio, which 

varies with the array size
6
. A simple method for LRS tuning is needed to achieve such 

optimal LRS. 

In Chapter II, we showed the HRS resistance of nanometallic RRAM is highly tunable 

by adjusting film thickness (R~exp(δ/ζ)) or metal concentration. In the Chapter, I will 

demonstrate how such tunable HRS may achieve a highly controllable low-power RRAM 

with a high RHRS/RLRS ratio when used in a complementary structure. (The 

complementary structure has two anti-serially connected RRAMs with different 

thickness.) In such configuration, the HRS of one of the constituent RRAMs serves as the 

LRS of the combined devices, while keeping its bipolar switching characteristics. A 

schematic of the device is shown in Figure 10.1a.  

 

10.2   Device Fabrication 

To fabricate a complementary RRAM, we first coated a Si/SiO2 substrate with a Pt 

electrode by RF sputtering. Second, square shaped holes with various sizes were 

photolithographically patterned by removing the photoresist. Afterwards, five layers in 

the following sequence, Pt/Si3N4:Pt/Mo/Si3N4:Pt/Pt, were consecutively sputter-deposited 

using different target materials (Pt, Si3N4 or Mo) without breaking vacuum. In the above, 

the thickness of the two Si3N4:Pt layers are different, being 5.4 nm and 10 nm. Finally, a 

conventional lift-off procedure was applied to form the final square shaped devices 

(Figure 10.1b). To confirm the multi-layer structure, we employed Focus Ion Beam (FEI 

Strata DB235) to cut a cross section from top electrode to substrate. As shown in Figure 
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10.1c, five distinct layers (Pt/Si3N4:Pt/Mo/Si3N4:Pt/Pt) can be readily seen from their 

different brightness, which is mainly determined by the atomic weight (ZPt>ZMo>ZSi).  

 

Figure 10.1. (a) Schematic of complementary RRAM device. (b) SEM top 

view of fabricated device. (c) SEM cross section view of fabricated device cut 

by FIB. (d) Initial R-V curve for negative and positive polarity. (e) I-V & R-V 

switching curve. 

 

10.3   Results and Discussion 

The as-fabricated complementary device shows a fairly low initial resistance state (~20 

Ω), without forming. Such state exhibits a linear I-V or constant R-V behavior up to a 

critical voltage (~1 V, Figure 10.1d), indicating a metallic state, which is further 

verified by the positive dR/dT slope in Figure 10.2 (the metallic nature was extensively 
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studied in Chapter V). In a serial connection, this characteristic is possible only if both 

constituent RRAM devices (top Pt/Si3N4:Pt/Mo (δ1=5.4 nm) and bottom Mo/Si3N4:Pt/Pt 

(δ2=10 nm)) are both metallic in their as fabricated state and each has a resistance on the 

order of 10 Ω.  

Next, at ~1 V with either a positive or a negative polarity the device switches to the HRS 

(Figure 10.1d), which has a non-Ohmic behavior with decreasing resistance with 

increasing voltage. However, because of different thickness of the active layers in the two 

constituents RRAMs, meaning that they have very different resistance due to the 

exponential thickness dependence of resistance of a nanometallic film, the resistance 

value of the HRS is polarity dependent: when a negative polarity is used (0 V→-4 V→0 

V), the transition ends at ~2 MΩ, which will be referred to as HRhigh hereafter, compared 

to ~30 kΩ when a positive polarity is used (0 V→+4 V→0 V), which will be referred to 

as HRlow hereafter. The negative cycle turns the bottom constituent RRAM to the HRS, 

while maintaining the top constituent RRAM at the LRS. In contrast, the positive cycle 

turns the top constituent RRAM to the HRS while maintaining the bottom constituent 

RRAM at the LRS. The above result is understandable within the framework of 

nanometallic RRAM, which is bipolar with the switching polarity determined by the 

relative work functions of the electrodes. The as-fabricated active layers are thin enough 

(δ~10 nm) to allow electrons to freely tunnel through, i.e., they are at the LRS with δ<ζ. 

When a critical voltage (~1 V) applied, overcoming the energy barrier for electron 

trapping, it triggers the transition to the HRS state in one of the two constituent RRAMs. 

(It is the one that experiences a current flowing from the Pt electrode to the Mo electrode.)  
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After the initial cycle which sets one of the constituent RRAMs into the HRS, the 

complementary structure exhibits regular switching cycles as shown in Figure 10.1e. It is 

convenient to view the entire switching process as two standard R-V curves with head-to-

head polarity. If the device starts from 2 MΩ (corresponding to LRS/HRS from top to 

down or HRhigh) and is electrically stressed with a voltage cycle 0 V→+4 V→0 V→-4 

V→0 V, it follows a nonlinear R-V curve until +1 V, then abruptly switches to a low 

resistance state (corresponding to LRS/LRS). Further positive voltage leads to another 

resistance transition around +2 V (corresponding to HRS/LRS or HRlow). As the voltage 

returns to 0 V, resistance reaches 10 kΩ. Similarly, at the negative voltage side, the 

device transitions to the low resistance state (corresponding to LRS/LRS) at -1 V and it 

further transitions to the initial high resistance state (corresponding to LRS/HRS or 

HRhigh) near +2 V. It is obvious that if we treat the entire complementary structure as one 

device, and use the HRhigh as the HRS and HRlow as the LRS, we have indeed created a 

new bipolar RRAM with a much more resistive LRS. 
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Figure 10.2. Temperature dependence of initial resistance state 

revealing its metallic nature. 

 

Since both HRhigh and HRlow contain one constituent RRAM at the HRS, and the 

resistance value of the HRS of a nanometallic material can be easily tuned by adjusting 

the film thickness (R~exp(δ/ζ)), we are able to tune the HRlow, hence the resistance of the 

LRS in a complementary device. We demonstrate this by changing the top device 

thickness δ1 from 2 nm to 12 nm, while fixing the bottom device thickness δ2 at 10 nm. A 

series of R-V curves in Figure 10.3 shows the HRlow value changes by several orders of 

magnitude as the top RRAM thickness varies. With a top RRAM thickness δ1=2 nm, 

HRlow is 70 Ω, way below HRhigh. It increases and approaches HRhigh as δ1 increases. 

Eventually, as the top RRAM thickness (δ1=12 nm) exceeds that of the bottom RRAM, 

the HRlow value exceeds the HRhigh value. Then the situation is reversed and the two 

states exchange roles. As illustrated in Figure 10.4, the HRlow-δ1 dependence follows the 

scaling law for nanometallic film, i.e. R~exp(δ/ζ). Meanwhile, the ratio of HRhigh/ HRlow 

spans over 5 orders of magnitude (from 10
4
 to 10

-1
) as the bottom device thickness 

changes from 2 nm to 12 nm. Therefore, the exponential R-δ relation has provided a wide 

range of possible LRS resistance in a complementary RRAM, allowing arbitrary HRS 

and LRS combinations. 



 

420 
 

 

Figure 10.3. R-V curve of complementary device shown in 

Figure 10.1a. Thickness of RRAM2 δ2 was fixed at 10 nm and 

thickness of RRAM1 δ1 varied from 2 nm to 12 nm. 

 

Figure 10.4. Summary of HR vs. δ1 information in Figure 10.3. 
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In Chapter II, we showed that switching at 1 s is possible for nanometallic RRAM. Our 

previous work
7
 also demonstrated 100 ns switching. The complementary device can 

switch at about the same speed, as shown in Figure 10.5a. It depicts transient V-t 

behaviors of a complementary RRAM under 1 μs voltage pulsing. The device was pre-set 

to the LRS/HRS state (HRhigh) before pulsing. Under +3.6 V, the device undergoes the 

LRS/HRS-to-HRS/LRS (HRhigh-to-HRlow) transition, which involves an abrupt (current) 

peak which subsequently decays to ~3.4 mA within 50 ns. Such peak is indicative of an 

RC-circuit charging/de-charging behavior, with the steady state reached by the 

exponential decay corresponding to a static resistance of ~1 kΩ. This value is consistent 

with the DC resistance value of HRlow state at +3.6 V in Figure 10.1e. Afterwards, under 

a negative -3.6 V pulse, the resistance states switches to the LRS/HRS (HRhigh) state, 

which completely suppresses the current, giving I  0 mA. Again, an RC circuit 

charging/de-charging behavior (τRC<50 ns) provides a negative peak near the edge of the 

voltage pulse.  

To confirm such peaks and their associated decays originate from the circuit itself, we 

performed a quantitative SPICE simulation, assuming instant switching of the film at the 

pulse edges but the overall device performance is dictated by the RC device response to 

such abrupt switching. The simulation (Figure 10.6) agrees well with the experimental 

data and thus verifies our argument. Regarding the real switching time, we can only 

conclude from the simulation that the switching is completed well within the RC delay 

time, i.e., τswitch<<τRC<50 ns. This applies to both transitions, HRhigh→HRlow and 

HRlow→HRhigh. The device can continue to switch many times between the HRhigh and 
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the HRlow without suffering degradation, as illustrated in the endurance data in Figure 

10.5b. 

 

Figure 10.5. (a) Dynamic V-t and I-t during switching. (b) 

Endurance test of device with complementary structure. 

 

 

Figure 10.6. SPICE simulation of transient current during 

switching. The table is the parameters used for simulation. 
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Nanometallic complementary RRAM also exhibits multi-bit capability. Figure 10.7 

shows that if voltage is withdrawn at some intermediate values (6 states are used for 

demonstration), six different resistance states are obtained. Each state is non-volatile and 

quite stable, with no roll-off over 10
4
 s (Figure 10.7b). Their resistance windows are 

wide enough for low-error-rate reading. Theoretically, if we treat the complementary 

device as a collection of two constituent RRAMs, each with N distinguishable states, then 

such complementary structure potentially has 2N states for data storage. Manipulation of 

inter-state conversion can be implemented based on a two-way switching method, as we 

will explore in Chapter VIII. 

 

Figure 10.7. (a) R-V curve labeled with intermediate 

resistance states. (b) Retention test for each state. 
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device. However, complementary structure already has a built-in compliance since the 

constituent RRAM of the opposite polarity will be turned off before the current becomes 

too high.  

Meanwhile, the switching voltage and switching windows (corresponds to intermediate 

state LRS/LRS) depend on the intrinsic off→on and on→off voltage. For example, in 

Figure 10.1e, LRS/HRS→LRS/LRS and HRS/LRS→LRS/LRS transitions occurs at ±1 

V, close to the off→on voltage of a stand-alone nanometallic RRAM (~±1 V). The 

switching voltage for LRS/LRS→LRS/HRS or LRS/LRS→HRS/LRS needs to consider 

the voltage sharing between the two LRS RRAMs. Therefore, a higher external voltage is 

required for switching. In our case, the off→on voltage of a stand-alone RRAM is ~1 V, 

and the apparent voltage is >1 V. Moreover, if a line or load resistance R0 is considered, 

then its voltage sharing effect also need to be considered in determining the switching 

windows. The apparent off-switching (LRS/LRS→HRS/LRS) voltage now becomes 

 
        

    
     , which increases with the load R0. 

The equivalent circuit of a complementary device includes a line resistance R0 in series 

with R1//C1 and R2//C2. To simplify the problem, we ignore the RRAM resistance (letting 

them be infinite) and consider only a R0, C1 and C2, which overestimates the RC delay. 

With this approximation, the delay is R0×C1C2/(C1+C2). As we showed in Chapter IV, C 

is on the order of 100 pF for a 100×100 μm
2
 cell, which linearly scales with size. Thus, 

for a 100×100 nm
2
 cell and a 50 kΩ line resistance, the RC delay is less than 5 ps. (In the 

above, we refer to the CMOS technology in which the typical sheet resistance is 0.05 
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Ω/sq for the metal conductor layer. For a 1 Tbit storage unit (10
6
×10

6
), a line resistance 

of the order of 0.05 Ω/sq × 10
6
 sq or 50 kΩ is thus estimated.) 

 

Merits of Complementary Nanometallic RRAM 

Complementary nanometallic RRAM have several advantages. First, Complementary 

RRAM structures may be easier to fabricate because they contain the same materials as 

stand-alone RRAM, and their constituent layers can be consecutively deposited without 

breaking the vacuum. Second, using nanometallic RRAM, the exponential thickness 

dependence (R~exp(δ/ζ)) provides the possibility of tuning all the characteristics of the 

complementary device including resistance and power. This may be further supplemented 

by using the metal composition as another tuning parameter since, unlike the case of 

filamentary RRAM, the resistance of a nanometallic RRAM can be varied by several 

orders of magnitude by varying the composition. Both adds the flexibility to the selection 

of the current sensing circuit and lowers the power consumption during reading, which is 

controlled by HRlow. Third, nanometallic supplementary RRAM may achieve a larger 

memory array size. This is because the memory array size/density can be effectively 

increased by taking advantage of the high LRS (HRlow) and its non-linearity, which 

implies a high interconnect line electrode resistance, which in turn requires an even 

higher LRS (HRlow) to avoid reading error—this can be easily achieved in nanometallic 

RRAM by adjusting the thickness or composition, making it easier to achieve the optimal 

RLRS. Fourth, nanometallic RRAM can more readily be designed to satisfy the following 

requirements: RLRS should be high enough to mitigate the sneak path leakage and to sense 
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the voltage to switch, but low enough to guarantee a large RH/RL ratio or a good reading 

contrast. Lastly, nanometallic complementary RRAM has a highly non-linear LRS, which 

is beneficial for solving the sneak path problem. In summary, nanometallic 

complementary RRAM may be a promising memory for practical applications.  
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Appendix I. Fabrication and Characterization 

 

I.1  Thin Film Deposition 

Thin film deposition technology has been extensively investigated in the past few 

decades, prompted by the demanding VLSI technology. A variety of chemical vapor 

deposition (CVD) and physical vapor deposition (PVD) methods have been developed in 

industry to meet specific “quality” criterions, such as composition, morphology, 

uniformity, contamination levels, defect density, mechanical and electrical properties.   

Furthermore, the shrinking dimension of feature size and increasing numbers of stacking 

layers eventually pose stringent demands of “conformal coverage” for thin film 

deposition. Generally speaking, CVD, relying on chemical reactions between the 

introduced reactant gases and substrate surface, provides a better film quality, step 

coverage and more accurate stoichiometric control than PVD, in which physical methods 

are employed to produce the constituent atoms. CVD has historically been used in IC 

industry primarily for silicon and dielectric deposition. However, PVD offers much 

versatile choices (almost all materials can be deposited by PVD methods), and hence, it 

has been used extensively for metal and alloy deposition
1
. 

 

I.1.1  Chemical Vapor Deposition (CVD) 

For CVD, reactant gases are introduced into deposition chamber, in which chemical 

reactions take place, and consequently form the desired film on the surface of the 

substrate. Such reactant gases can be either single gas which will decompose under 

certain condition to supply the necessary components for the film, or multiple gases 

which will interact to form the film. Sometimes desired reactants are not available in gas 

phase and in such case, liquid source might be used. Due to its chemical reaction feature, 

CVD is generally considered as an isotropic deposition.  

CVD can result in various forms, including single crystalline, polycrystalline, amorphous 

and epitaxial, depending on detailed reaction condition (gas, temperature, pressure, etc.) 

and substrate type. Major CVD includes:  
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1) Atmospheric pressure CVD (APCVD): CVD at atmospheric pressure ~760 Torr. 

2) Low pressure CVD (LPCVD): CVD at sub-atmospheric pressure ~1 Torr. 

3) Ultrahigh vacuum CVD (UHVCVD): CVD at <~10
-8

 Torr. 

4) Atomic layer CVD (ALCVD or ALD): precursors react with substrate surface on at a 

time in a sequential, self-limiting and repeating manner. ALD provides a very 

accurate control of film density, chemical stoichiometry, thickness and homogeneity, 

and thus has large area capability, excellent reproducibility and conformality. The 

major limitation is its slowness, typically ~one monolayer per cycle. An improved 

version is plasma-enhanced ALD (PEALD). 

5) Plasma-enhanced CVD (PECVD): Highly ionized plasma supplies extra energy to the 

reactant gases and thus typically requires much lower temperature. Combining 

PECVD with bias sputtering leads to a new version: high-density plasma CVD 

(HDPCVD), featuring itself with very good fillings of narrow gaps. 

 

I.1.2  Physical Vapor Deposition (PVD) 

PVD techniques are generally more flexible than CVD methods. In PVD, individual 

atoms or molecules or clusters, are produced by either evaporation of a solid source 

(thermal/e-beam evaporator), or by bombardment of energetic gaseous ions with a solid 

target in plasma (sputter). These atoms or molecules or clusters then travel through a 

vacuum or low pressure gas, impinge on the substrate, and condense on the sample 

surface to form a new layer. During such physical process, chemical reaction can also 

occur (e.g. reactive sputtering) by properly introducing secondary reactive gas. Since 

deposition occurs in a low pressure system, it is believed very few target atoms colliding 

with working gas and thus PVD is typically a highly directional or anisotropic approach. 

As a result, PVD arises several critical issues such as poor thickness uniformity, step 

coverage, and shadowing effect. 

Evaporator 

In evaporator, the source material is heated by heater (e.g., tungsten filament heated up 

by electrical current) or a high electron beam (controlled by magnetic field) in a high 
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vacuum chamber. As temperature reaches its melting point, materials start to melt, then 

evaporate towards all directions isotropically and condense on sample surface. In 

microelectronics, e-beam evaporation is more popular, which can achieve higher 

temperature so that a broader range of materials can be evaporated. In addition, e-beam 

evaporation typically results in purer films than thermal evaporation, in which 

contamination was often found because sodium and potassium were used in the 

production of the tungsten filament. On the other hand, e-beam systems produce high 

energy X-ray, which can create trap charges in gate oxides, and thus require extra post-

annealing step. 

Sputter 

Sputter deposition usually requires looser vacuum conditions than evaporation (sputter: 

1-100 mTorr vs. evaporation: <10
-5

 Torr). In addition, it is capable of large area coating 

and covering almost every kind of condensed material. For such reasons, sputter 

deposition was the preferred method in semiconductor technology. It is also the main 

deposition tool for my material development. 

 

Figure 1. Schematic diagram of (a) DC (b) RF powered sputter 

deposition system. An extra matching network is required to 

match the impedance for RF sputter1. 

 

A basic configuration of sputter system is shown in Figure 1. A cathode mounted with 

depositing source (target) provides a high voltage bias (either DC or RF) with respect to 

grounded sample stage. Such voltage supplies sufficiently high energy to working gas 

(a) (b)
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(e.g. argon), and ionize Ar atoms making a conducting medium (plasma) between target 

and sample. Then under such high bias, the energetic positive ions (Ar
+
) in the plasma are 

accelerated to negatively biased cathode, strike the target and dislodge, or sputter, the 

target atoms. These atoms then freely travel through the plasma (or collide/react with 

reactant gas) and impinge on the surface of the wafer. DC sputter is commonly used for 

conducting material deposition (e.g. metal). However, DC cathode cannot effectively 

neutralize charge if target is an insulator, and hence arises difficulties to sustain. To avoid 

such charging issue, RF sputter deposition is typically employed for non-conducting 

materials (e.g. dielectric). 

Sputter is a non-linear kinetic process, which qualitatively obeys the following rules: 

1) The higher the supplied power, the higher deposition rate, but larger surface 

roughness. 

2) The higher working pressure, the more atoms sputtered from target materials, also the 

more chances these atoms scattered by working gas.  

3) The closer distance from target to substrate, the faster the deposition rate. 

4) RF ignition is easier than DC ignition and thus suitable for slower rate deposition. 

5) Negative substrate bias helps planarized films as well as a better filling and higher 

density
1-2

. 

 

I.2  Thin Film Device Fabrication/Lithography 

Lithography technology is the cornerstone for modern IC industry, which allows 

submicron functional features accurately “printed” on chips. Mainstream of 

manufacturing ICs are currently replying on photolithography, which is also the main 

tool for device patterning in this thesis. The concept is simple and straightforward. A 

light sensitive polymer, namely photoresist, is spun onto sample surface first and then 

selectively exposed by shining light through a mask which contains sophisticated pattern 

information. Finally, the photoresist is developed which completes pattern transfer from 

mask to sample. Such fabricated pattern essentially forms a new mask, which can be used 

for later deposition, ion implantation and etching. Since the feature size is restricted by 
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wavelength of light source (typically 100 nm~1000 nm), conventional photolithography 

has difficulties for submicron patterns. One way to solve such problem is adopting 

immersion technique, allowing light passing through liquid with higher refractive index 

(n>1virtually shortens the wavelength). The other solution is replacing illumination light 

with shorter wavelength source, such as extreme ultra-violet (EUV), X-ray or electron 

beam. Among these nano-size techniques, electron beam lithography (EBL) is my major 

tool for developing nano-device. EBL is a maskless method, which can theoretically 

achieve ~10 nm accuracy without diffraction limit. However, the critical downside of 

EBL is extremely low throughput, because of sequential point-by-point exposure. Also, 

charging effect from electron poses a requirement of conducting substrate/resist, as 

backscattering or secondary electrons may lead to unwanted exposure / pattern in resist. 

A comparison of photolithography and e-beam lithography is summarized in Table 1. 

Alternative lithography techniques include scanning beam lithography, nanoimprinting, 

colloidal/polymer assembly, holographic lithography, two-photon lithography, etc. 

 

 Photolithography E-beam Lithography 

Size Micron-scale Nano-scale 

Speed Parallel process (fast) Serial process (slow) 

Mask Photomask required Mask-less 

Efficiency High throughput Low throughput 

Issue contact / proximity effect 
Backscattering/secondary electrons, 

charging effect 

Table 1. Photolithography vs. E-beam lithography. 

 

I.3  Thin Film Device Characterization 

Thin film characterization in this thesis mainly focuses on materials characterization and 

electrical/optical characterization. As a brief summary, morphology and structure 

information are acquired by combination of microscope (optical, electron, scanning probe) 

and X-ray techniques; chemical composition and bonding information are obtained by 

analyzing various spectroscopies. Electrical characterizations are mainly done on probe 

stations for micron-device, or a customized conducting AFM (CAFM) for nano-device. 
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Temperature related measurement is performed in a Physical Property Measurement 

System (PPMS) with electrical and magnetic capability. Electrical automation is realized 

through NI LabView or Agilent VEE Pro programming, which connects various 

instruments of interest to central computer. Table 2 summarizes characterization 

techniques used in my work. Detailed characterization methods will be introduced in 

subsequent chapters. 

 

Tool/Instrument Purpose 
Materials Characterization 

Optical Microscope Morphology 

SEM (FEI Quanta FEG ESEM) Morphology, spectroscopy, electron flux 

TEM (JEOL 2010F TEM/STEM) Morphology, spectroscopy  

AFM (Asylum MFP-3D) Morphology, thickness, CAFM, uniaxial stress 

XRD (Rigaku Miniflex) Crystallization, material identification 

XRR (Bruker D8 Discover) Density, thickness, roughness 

EDX (FEI Quanta FEG ESEM, JEOL 2010F 

TEM/STEM) 
Composition, material identification 

EELS (JEOL 2010F TEM/STEM) 
Composition, material identification, Electronic 

structures  

FTIR (Nicolet Nexus 470 spectrometer) Ionic bonding 

RBS (NEC Minitandem Ion Accelerator) Composition, material identification 

UV-Vis (Varian Cary 5000 spectrometer) Optical properties 

Goniometer (Rame-hart model 200) Wetting properties 

Electrical Characterization 

Probe Station (Signatone S1160, Lakeshore) 
Electrical measurement testbench (vacuum and low 

temperature test for Lakeshore) 

PPMS (Quantum Design) Electrical/magnetic properties (2K-350K)  

Source Meter (Keithley 237, 2400) 2pt/4pt I-V (R-V), FET transistor   

Function/pulse generator (Agilent 81104A) Endurance, transient properties, V-t properties  

Oscilloscope (HP Infinium 54825A) Transient properties 

Impedance analyzer (HP4192A, Gamry 

G750) 
AC impedance analysis 

Programming/Simulation 

NI LabView, Agilent VEE Pro Electronic automation 

Mathematica, Matlab Circuit simulation 

LTSpice Circuit simulation (pulse related) 

Comsol 4.3 Electromagnetic simulation 

Table 2. Summary of characterization tools/instrument used in 

this thesis and their purposes. 
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Appendix II. Electrode Dependence and Endurances for 

Nanometallic RRAM 

 

 

Figure 1. Various electrode combinations for nanometallic RRAMs 

(Bottom electrode / nanometallic films / top electrode). 
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Figure 2. DC endurance data for various nanometallic RRAMs 
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Appendix III. Dynamics of Pulse Switching 

 

Digital oscilloscope provides the most straightforward method to monitor switching 

dynamics. Here we employed two schemes:  

1. Pump probe method. An excitation pulse (pump) was sent into device, followed by 

a small probing voltage. Current levels associated with probing signals reflect the 

resultant resistance states. This is similar to the method used in Chapter II, but with 

a further improvement that probing signal can be controlled closer to original 

excitation pulses. This method cannot provide in-situ switching information, but is a 

convenient approach to check switchability, especially useful as circuit LCR response 

severely suppressed real switching signals. 

2. Lead time dynamic method. A trapezoidal voltage pulse with certain lead time was 

sent into device and switching dynamics was directly monitored by oscilloscope. The 

change of resistance states are typically associated with abrupt variations of current, 

thus switching voltage can be easily derived from current discontinuity points. This 

method provides in-situ switching information, but becomes ineffective as circuit 

LCR response severely suppressed real switching signals. 

 

Figure 1. Testing circuit. 
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Testing circuit is shown in Figure 1. The pulses were provided by a pulse generator 

(Agilent 81104A). A multi-channel digital oscilloscope (HP Infinium 54520) was used to 

monitor voltage (V1) and current (I=V2/50 Ω). Standard 50 Ω resistors were used for 

impedance matching. 

 

 Pump Probe Method. 

ONOFF switching 
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Figure 2. ONOFF switching dynamics using pump probe method. 

Blue curves are excitation pulses (V1), red curves are currents 

(I=V2/50 Ω). A successful ONOFF switching is identified as a low 

current level (HRS) in probing signals.  
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Figure 3. A summary of ONOFF switching voltages vs. pulse widths 

using pump probe method. 
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Figure 4. OFFON switching dynamics using pump probe method. 
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(I=V2/50 Ω). A successful OFFON switching is identified as a 

high current level (LRS) in probing signals.  

 

 

Figure 5. A summary of OFFON switching voltages vs. pulse widths 

using pump probe method. 
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Figure 6. Definitions of pulse parameters. 
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Figure 7. ONOFF switching dynamics using lead time dynamic 

method. Blue curves are excitation pulses (V1), red curves are 

currents (I=V2/50 Ω). ONOFF switching occurs at a critical 

voltage, reflected as a discontinuity point on current curves.  
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Figure 8. A summary of ONOFF switching voltages vs. pulse widths 

using lead time dynamic method. 
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Figure 9. OFFON switching dynamics using lead time dynamic 

method. Blue curves are excitation pulses (V1), red curves are 

currents (I=V2/50 Ω). OFFON switching occurs at a critical 

voltage, reflected as a discontinuity point on current curves.  
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Figure 10. A summary of OFFON switching voltages vs. pulse widths 

using lead time dynamic method.  
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Appendix IV. Four Point Measurement 

 

Random access memory based on resistive switching materials have attracted 

considerable interests for future memory, as they stem from easily fabricated structure 

and exhibit outstanding memory properties such as fast speed (~ns), long retention (>10 

years) and high scalability (~10 nm). Resistive switching exists in a large material 

community, including binary oxide (e.g. NiO, TiO2, Al2O3, ZrO2, HfO2), colossal 

magnetoresistance materials (e.g. Pr0.3Ca0.7MnO3, La1-xSrxMnO3), doped perovskites (e.g. 

SrZrO3, SrTiO3 doped with Cr, V, or Mo), polymer materials with embedded metallic 

nanoparticles / nanowires and ionic conductors (e.g. Ag-Ge-S). These materials typically 

require two metallic electrodes on both sides to provide good contacts or redox source. 

Such electrodes and associated interfaces in fact serve as series load resistors (Rload) and 

therefore contribute certain resistance to the intrinsic cell. This is especially an important 

issue for low resistance state (LRS) that can show a resistance <10: apparent RLRS can 

be completely suppressed if RLRS<<Rload. In this case, care should be taken to separate 

intrinsic cell resistance and parasitic resistance. However, few works have been done on 

this significant topic. In this work, I will introduce a universal four point measurement 

method to separate different resistance components, which eventually assists us obtain 

more accurate understanding of resistive switching phenomenon.  

The tested device within this work is based on the simplest but most widely used 

fabrication structure and sequence: planar bottom electrode covered with planar active 

layer, followed by top electrode patterning using shadow mask or photolithography. 

Specifically, a Mo film (10 nm thick) was first deposited to cover the entire fused silica 

substrate by DC sputtering. Such insulating substrate was chosen to avoid current bypass 

paths along a conducting substrate like Si or Si/SiO2. Next hybrid Si3N4:Cr film (10 nm 

thick) was fabricated by co-sputtering Si3N4 and Cr using separate Si3N4 and Cr targets in 

a magnetron RF sputtering system at room temperature. A top Pt electrode (40 nm thick) 

was then deposited using RF sputtering through a shadow mask. Entire device schematic 

is illustrated in Figure 1a. 
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Test was performed by scratching one side of film with a diamond pen and then 

filling such scratching area with conducting silver paste. To create a four point 

configuration, the other side of sample was also treated similarly. Equivalent test 

configuration is shown in Figure 1b, where current source connects top electrode and 

one scratching area while voltage sense connects top electrode and the different 

scratching area. Electrical current flows through only one side of sample (123) but 

not the other because of high input impedance of voltage meter (2 and 4 are equal 

potential). Therefore, voltage sense meter can exclude voltage partition within bottom 

electrode, allowing us to separate voltage contribution from RTE (top electrode), Rcell, Rint 

(interface) and RBE. Based on this idea, LabView program of four point measurement was 

developed (see Appendix XIII). An equivalent circuit can be simplified as Figure 1c. 

Source meter provides voltage Vs and current Is, giving a total two-point resistance 

R2pt=Vs/Is. The sensing loop detects a lower voltage V4pt (between “1” and “2” in Figure 

1b & c) and 4-point resistance is thus calculated as V4pt/Is. Bottom electrode resistance 

RBE is calculated as RBE= R2pt – R4pt.  

 

 

Figure 1. (a) Schematic of device configuration. (b) Schematic of 

four point measurement setup and current flow. (c) Equivalent circuit. 

(d) Experimental results R2pt & R4pt vs. V during switching. 
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The testing results are shown in Figure 1d. For HRS, R4pt and R2pt show negligible 

difference, which is easy to understand because RBE<<RHRS. On a sharp contrast, LRS 

shows a significant difference between R4pt and R2pt, indicating RBE~RHRS (RBE~200 Ω 

and RLRS~100 Ω in Figure 1d). Therefore, a higher apparent switching voltage is 

required to compensate RBE effect (V2pt, switching> V4pt, switching). These results immediately 

provide solid evidences for nontrivial voltage partition that we assumed in circuit model 

(Chapter VII). 

 

Figure 2. (a) Vset (off-switching voltage) vs. Vreset (maximum negative 

voltage used for on-switching). (b) R vs. Vreset. (c) Calculated RBE= R2pt – 

R4pt (d) 1/V4pt vs. 1/R4pt during off-switching, where intrinsic switching 

voltage Vm*~1 V can be extracted. 
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Switching voltage dependence was also explored. As shown in Figure 2a, as 

maximum negative voltage increases (Vreset), off switching voltage (Vset) also increases 

for both 4-point and 2-point cases. This implies other than RBE, there exists an intrinsic 

constant resistance which is not switchable (otherwise, 4-point Vset should be a constant 

according to our model in Chapter VII). Such non-switchable element can originate 

from interface (Rint in Figure 1c) or impurity resistance in nanometallic film. Resistance 

decreases as Vreset increases (Figure 2b), revealing a higher negative bias can trigger 

more parallel conducting paths and reduce the film resistance. By using RBE= R2pt – R4pt, 

bottom electrode resistance can be obtained (Figure 2c), which shows almost a constant 

value ~200 Ω irrespective of operation voltages. Since this 4-point measurement cannot 

completely exclude the constant resistance, the following methods were developed to 

extract the real switching voltage. 

pt

pt

pt
I

V
R

4

4

4  , 
0

*

4

0

0

4
R

VV

R

V
I

mpt

pt


  

where V0 and R0 are constant remainder resistance in film and *

mV  is the real voltage for 

switching. We can then rewrite it as: 

ptmmpt RV

R

VV 4

*

0

*

4

111
  

, indicating a linear relation between 1/V4pt and 1/R4pt in which R0 and *

mV  can be uniquely 

determined from slope and intercept. Applying this technique to experimental data, 

Vm*=0.99 V and R0=544 Ω can be obtained (Figure 2d). These values are highly 

consistent with our circuit model in Chapter VII, revealing an intrinsic V*~1 V is 

required for switching. 

Impedance analysis was used to confirm this 4-point method. As shown in Figure 3b, 

two semi-circles are visible revealing two R-C elements. The one at low frequency has 

various diameters for different states, corresponding to switchable elements with variable 

resistances. The one at high frequency exhibits a constant diameter (thus constant R-C) 

irrespective of states, corresponding to constant remainder resistance (R0~544 Ω). The 
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intercept represents the spreading/line/BE resistance, which is about ~167Ω. These values 

quantitative agree with the above DC 4-point measurement results. 

 

Figure 3. (a) Equivalent circuit from impedance analysis. (b) Cole-Cole 

plot revealing two semi-circles (one is with constant diameter 

(resistance) at high frequency part irrespective of states and voltages) 

and a constant intercept. 

 

Figure 4. (a) Vset (off-switching voltage) vs. Vreset (maximum negative 

voltage used for on-switching) for various sizes, showing no size effect. 

(b) R4pt vs. j (current density = I/A) for various sizes. All the values are 

defined at off-switching event (Vset). 
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increases with Vreset, and the quantitative relation is identical for all sizes. This reveals 

switching voltage is irrelevant to device lateral size and thus device switching properties 

are uniform. Furthermore, we define current density as j=I/A (A is device area) and use 

this parameter to investigate size effect of LRS. Differently from most works in the 

RRAM literature which generally believe a fair comparison is drawn under “same 

voltage”, we believe the fair comparison should be better performed under “same current 

density”.  Under this spirit, resistance can be rewritten as: 

A

V

j
R

I

V
RR mm

pt

*

0

*

04

1
  

Figure 4b shows the plot of R4pt vs. j, where a higher current density naturally 

corresponds to a lower resistance for all sizes. This is equivalent to the fact that a lower 

LRS needs more current (voltage) to be switched off. For a constant current density, a 

larger device size has a lower resistance, following R~1/A Ohm’s law scaling. 
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Appendix V. Additional Impedance Data for Nanometallic Films 

 

 

 Mo/Si3N4:Cr/Pt Nanometallic Device 

 

Figure 1. Mo/Si3N4:Cr/Pt device (fCr=4%, d=200 μm, δ=10 nm) 

 

Figure 2. Mo/Si3N4:Cr/Pt device (fCr=4%, d=97 μm, δ=10 nm) 

 

 Mo/Si3N4:Pt/Pt Nanometallic Device 

-1 0 1

300.0p

350.0p

400.0p

V (V)

C
(F

)

10k

100k

1M

d =200m

 R
(

)

Mo/SiN:Cr/Pt 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.7

0.8

0.9

1.0

n

V (V)

d =200m

Mo/SiN:Cr/Pt 

-1 0 1 2

60.0p

70.0p

80.0p

V (V)

C
(F

)

10k

100k

1M
d =97 m

 R
(

)

Mo/SiN:Cr/Pt 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.7

0.8

0.9

1.0

n

V (V)

d =97 m

Mo/SiN:Cr/Pt 



 

453 
 

 

Figure 3. Mo/Si3N4:Pt/Pt device (fPt=5%, d=97 μm, δ=10 nm) 

 

 Mo/Si3N4:Al/Pt Nanometallic Device 

 

Figure 4. Mo/Si3N4:Al/Pt device (d=200 μm, δ=10 nm) 
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Figure 5. Mo/Si3N4:Ta/Pt device (d=200 μm, δ=10 nm) 
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Figure 6. Ta/Si3N4:Ta/Pt device (d=200 μm, δ=10 nm) 

 

 Mo/SiO2:Pt/Pt Nanometallic Device 

 

Figure 7. Mo/SiO2:Pt/Pt device (fPt=20%, d=97 μm, δ=20 nm) 
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Figure 8. Mo/Al2O3:Pt/Pt device (d=97 μm, δ=10 nm)  
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Appendix VI. Optical Data 

 

To extend the interrogation of nanometallic film to higher frequency domains, we 

measured IR, visible and UV spectra of our films (30 nm thick) from 10
13

 Hz to 10
15

 Hz. 

At these frequencies, the “capacitative” element in the equivalent circuit dominates, 

allowing these experiments to again probe the metal-rich clusters through their influence 

on the effective dielectric functions, which are now complex, -dependent. As shown in 

Figure 1a, the IR spectra mostly reflect various vibrational modes of Si3N4 with little 

information concerning the clusters. In the UV-Vis range (Figure 1b), however, we see 

evidence of metallic clusters in a broad peak at 470 nm in the Si3N4:Cr films of higher f, 

which may be reasonably assigned to the plasmon resonance of metallic Cr. (Plasmon 

resonance is a light-induced cooperative oscillation of conduction electrons in a metallic 

particle. For Cr, Ep~2.5 eV or 496 nm
[1]

.) This peak appears to be washed out below 

f=0.25, leaving nearly identical reflectance as that of Si3N4 (f=0). Note that the 

reflectance of Si3N4 is not flat in this region because of interfering reflections from the 

substrate (fused silica, which has a lower refractive index). The interference peak should 

lie at about 200 nm, which is difficult to avoid except in films (below 15 nm) too thin to 

give measurable signals. Therefore, a comparison with model calculations is needed to 

better understand these data. 
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Figure 1. (a) IR transmission spectrum of Si3N4: 0.25Cr on KBr substrate. Two 

low frequency characteristic peaks corresponding to Si-N vibration mode comes 

from Si3N4 host; C-O and O-H peaks come from background absorption. (b) UV 

reflectance vs. wavelength of (1-f)Si3N4:fCr films for various f. 

 

As before, we employed Maxwell-Garnett’s effective media theory
[2]

 to calculate the 

dielectric functions and reflectance assuming a Si3N4 matrix with metallic Cr particles. 

(We used metallic dielectric functions from the reference library in TFCompanion 

software. The model prediction is an underestimate since no consideration is given to the 

particle size, which leads to underestimates of interparticle interactions and local field 

contributions at the particle/matrix interface.)
[3]

 In agreement with our data, the 

calculation found a broad maximum at ~500 nm that does not emerge until f>0.2 (See 

Figure 2a). However, it also revealed a significant increase in the reflectance even at 

f<0.2, suggesting that the lack of such increase in our data is caused by the lack of 

metallicity of Cr-rich clusters in our films at f<0.2. To quantify this, we plot the 

integrated difference reflectance (the difference between f>0 and f=0 spectra) from 300 

nm to 800 nm in Figure 2b. The calculated spectra portray a difference reflectance that 

linearly increases with f, in contrast to our data which display little increase until after 

f=0.25. (We also tried several other wavelength ranges for integration, which all showed 

the same trends as above.)  

 

400 600 800

20

40

60
 SiN

 SiN+2%-Cr

 SiN+5%-Cr

 SiN+10%-Cr

 SiN+20%-Cr

 SiN+30%-Cr

 SiN+50%-Cr

 Cr

R
e

fl
e

c
ta

n
c

e
 (

%
)

 (nm)

0 20 40 60 80 100

Simulation

In
te

g
ra

te
d

 A
re

a
 

f
Cr

 (at. %)

Experiment

(a)

(b)



 

457 
 

Figure 2. (a) Simulated reflection vs. wavelength for (1-f)Si3N4:fCr films of 

various Cr concentration. (b) Integrated difference reflectance (area between f>0 

reflectance and f=0 reflectance from 300 nm to 800 nm) vs. f. Up to f= 0.25, 

measured difference reflectance is much smaller than simulated one (based on 

Maxwell-Garnett effective medium theory assuming metallic Cr particles) 

indicating absence of optically metallic inclusions at low f. 

 

A parallel study of SiO2:Pt films made previously
[4] 

was also similarly analyzed and 

again revealed the same difference in the calculated vs. measured difference reflectance 

below f=0.25 (Figure 3). (No interference occurred in SiO2:Pt films because the fused-

silica substrate and SiO2 have essentially the same refractive index, making it easy to 

discern the plasmon peak in the calculated spectra (Figure 3a), which is lacking in the 

measured spectra until after f=0.3 (Figure 3c)). Therefore, both studies indicate that 

optical metallicity of metal-rich clusters does not emerge until f~0.25.  
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Figure 3. (a) Simulated reflection vs. wavelength for (1-f)SiO2:fPt films of 

various Pt concentration. (b) Integrated area between f and f=0 curves in (a), from 

300 nm to 800 nm (c) Experimental data of (1-f)SiO2:fPt reflection.[4] (d) 

Integrated area between f and f=0 curves in (c), from 300 nm to 800 nm. 
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Appendix VII. Additional Materials Characterization 

 

 Low energy electron energy loss spectroscopy 

 

Figure 1. Low energy EELS data for pure Si3N4 film with various thickness 

(δ=13 nm, δ=128 nm, δ=296 nm). A thin film (δ=13 nm) only has first harmonic 

Plasmon resonance peak at 24 eV, corresponding to valence electron excitation 

of Si3N4. A thick film (δ=296 nm) has multiple peaks, corresponding to higher 

harmonic Plasmon resonance peak at 24N eV (N=integer).  
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Figure 2. Low energy EELS data for nanometallic Si3N4:Pt film (δ≈10 nm) with 

various fPt (labeled as sputtering power). All Plasmon peaks are located at ~24 eV. 

Low energy EELS is thus not a good method to detect free electron (plasmon) 

information in Si3N4:Pt film. 

 

 

 

 

0 30 60

Pt

80 mA

70 mA

60 mA

50 mA

40mA

30mA

In
te

n
s

it
y

Energy Loss (eV)

SiN



 

462 
 

 TEM of SiO2:Pt films 

 

Figure 3. TEM for various SiO2:Pt films. 
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 FIB Cutting for TEM (Lamella Preparation) 
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Figure 4. FIB cutting procedure for cross sectional TEM (Lamella preparation). 
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Figure 5. E-beam view and I-beam view during Lamella preparation. 

 

Figure 6. Final cross sectional TEM 
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Appendix VIII. E-bunch images 

Induce current at TE edges 

 

 

Figure 1. SEM images of top electrode morphology (at the edge near crack 

region) under different magnifications. There is a clear evidence that Pt grain 

grows near the edge (along E-field direction of ebunch), which implies a large 

current concentrated near the electrode edge. Red circles are the spots magnified 

in the next figures. 
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Figure 2. SEM images of top electrode morphology along the edge. (a) 

Overview of Pt TE. (b)-(f) Sequential images along edge indicated by red arrow 

in (a). Pt grain growth reaches a maximum near the center (b), implying current 

is maximum near the center.  

 

 

Figure 3. Simulated current distribution on top electrode. A linearly polarized 

excitation along x direction was used. 
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Appendix IX. Derivation of Variable Range Hopping (VRH) 

Xiang Yang, I-Wei Chen 

 Conductivity in the absence of electrical field 

Conductivity is proportional to the probability of tunneling between sites separated 

by a distance r: 

 kTErP /2exp    

This formula is based on the fact that in disordered system, wave functions are 

localized on a single site, the probability of the jump, either by phonon-assisted transition 

over the barrier or tunneling through the barrier, is proportional to the overlap of the 

wave function on the two neighboring sites, which falls off exponentially as  rexp , 

where r is the hopping distance and  is a decay constant (1/~localization length ). 

This formula is quite meaningful: usually sites with identical energy (ΔE=0) are spatially 

far apart, therefore tunneling probability coming from elastic transport is quite small; on 

the other hand, electrons can sacrifice a small energy ΔE but reach more abundant states 

within smaller r, thus keep a larger probability. Therefore, such probability can be 

maximized by finding the optimized energy ΔEmax. 

Assume a density of state (DOS) as N(E), then the number of states within sphere of 

hopping distance is: EENr )(3/4 3 . Then let it be constant, we obtain the relation 

between r and ΔE, given same available conduction states, as: 

  3/1
)( EEN

C
r


  

Then make partial derivative on probability to obtain the optimized ΔE: 

0




E

P
, or 

 
0

/2exp






E

kTEr
 

We can find: 

4/3

3/1max
)(3

2















EN

CkT
E



  

Plug it back to original form, we can find the maximum probability as: 
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 Conductivity under electrical field 

Consider a general case in which tunneling probability in forward and backward 

directions are: 








 


kT

eFrE
rP


2exp

   

















 
 

kT

eFr
P

kT

eFrE
rP




2
exp2exp

   

This relation will be valid as electrical field F is small, i.e.  

EeFr 

 
Under high field circumstance, the jumping probability reduced to: 

 rP 2exp 

   
0P

   
Before optimization of tunneling probability, we still have: 

.)(3/4 3 constEENr 

 
To simplify the derivation, we define the following dimensionless energy, distance, 

and field as: 

kT

E
E




~
, rR 2

~
 , 

kT

eF
F





2

~
  

 
Therefore, we can rewrite the above equation as: 

 RFERP
~~~~

exp 

   
 RFPP

~~
2exp   , if ERF

~~~
  

Or high field condition: 

 RP
~

exp 

   
0P , if ERF

~~~
  

With the constraint relation:  
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T
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EkTN
constRE 

)(

6
.

~~
3

3





 

To optimize the forward tunneling probability, let 0
~

/ln   RP , given the constraint 

differential equation:   0/
~~ 3  RRE , we have a clean relation: 

 RE
~

3

1~
 , if 0

~
F (low field limit) 

  RFE
~~

1
3

1~
 , if 4/1

~
0  F

 

(moderate field) 

 RFE
~~~

 , if 4/1
~
F

 

(high field) 

By solving these relation with constraint condition for E
~

  and R
~

, we can 

obtain the following: 
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A
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(high field) 

Then plug these relation back to original probability equation, we can obtain: 
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Next, let’s consider the conductivity. Current density can be written as: 

     PPkTrEeNj )(

  
Therefore conventional conductivity is simply: 

     PP
F

kTrEeN

F
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)(
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1. For zero field limit ( 0
~
F ), noticing that   1/1   xe x  
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2. For moderate field ( 4/1
~

0  F ), results becomes complicated but still completely 

analytical: 
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3. For high field ( 4/1
~
F ), we can obtain a weakly temperature dependent conductivity 

as: 
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Appendix X. Justification of the Semi-empirical Parametric Model 

 

 

Here, we provide a quantitative argument on the proposed semi-empirical model for HRS 

in Chapter V:  



























n

T

T
RTR

0

0 exp)(  

Intuitively, transport in an insulator can be visualized as a process that electron passes 

through a “barrier”. Here the “barrier” might be a physical energy barrier or merely a 

synonym of a terminology describing how an electron experiences resistance in the 

presence of external stimuli (E-field, kBT, etc.). Generally speaking, “barrier” affects the 

transport in an exponential manner. Therefore, we have 

 m

bCI exp~  

At an elevated temperature, electron transport inside insulator is assisted by kBT and we 

incorporate such effect into an equivalent “barrier lowering” term, namely 

n

bb AT 0  

The coefficient A should be very small because in reality, “barrier” modification should 

be tiny (AT 
n →0). Therefore, we obtain the following empirical form: 

  mn

b ATCI exp~  

Keeping the leading term (AT 
n →0), we can get: 
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As one physical example, such barrier lowering effect could stem from thermal motion 

induced barrier oscillation. Mathematically, the product of barrier factor 
m

bC  can be 

approximated with a first-order Taylor expansion around atom equilibrium positions: 
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A Boltzmann distribution of the vibration probability density can be used, 
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We can then translate macroscopic current is I(T)~exp[-Cb(T)] to average current of 

microscopic current:  
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The integral can be solved as 
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After integral is carried out in all three dimensions, the final value of the current is 
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leading to a n=1 law  ATT  exp)( 0 .  
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Appendix XI. Other VRH-like Hopping Models 

 

In this part, we discuss some possible crossovers between (other) different hopping 

models, which may possibly exist in Chapter V.  

1D Mott Variable Range Hopping 

We have shown that the 3D Mott-VRH can describe the high temperature conduction 

data very well. However, we found the 1D Mott-VRH seems to work equally well. The 

1D VRH is described by the following equations, one under zero bias and the other under 

a large bias, respectively: 














T

T
I D1exp , where 

uB

D
Nk

T
1

1   














F

F
I D1exp , where 

21

1

u

D
eN

F   

Using a similar fitting procedure as described previously for the 3D Mott-VRH, we can 

obtain the DOS and the localization length for the 1D Mott-VRH, which are summarized 

in Table 1, Table 2 & Table 3. 

 

Thickness  δ=7 nm δ=9 nm δ=10 nm δ=17 nm 

T0
1/2

 (K
1/2

) 229 290 294 358 

V0
1/2

 (V
1/2

) 8.1 11.4 13.5 16.2 

Nu,1D (10
6 
cm

-1
eV

-1
) 4.6 2.8 3.2 1.2 

ζ1D (nm) 0.48 0.49 0.41 0.71 

Table 1. Values of localization length ζ for various thickness 

(fPt=4%) from 1D Mott-VRH. 
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Composition  fPt =4 at.%  fPt =19 at.% fPt =27 at.% 

T0
1/2

 (K
1/2

) 294 303 199 

V0
1/2

 (V
1/2

) 13.5 8.43 3.4 

Nu,1D (10
6 
cm

-1
eV

-1
) 3.2 1.1 0.97 

ζ1D (nm) 0.41 1.11 3.03 

Table 2. Values of density of states Nu localization length ζ and 

optimized hopping distance r0 for various concentration fPt (δ=10 

nm) from 1D Mott-VRH. 

 

RS (R2K)  600MΩ 55MΩ 2MΩ 300kΩ 8.7kΩ 2.5kΩ 

T0
1/2

 (K
1/2

) 294 277 56 39 14 2.1 

Nu, 1D (cm
-1

eV
-1

) 3.210
6
 3.710

6
 9.110

7
 1.910

8
 1.510

9
 6.610

10
 

ζ1D (nm)* 0.41 0.41 0.41 0.41 0.41 0.41 

Table 3. Values of density of states Nu for various resistance state 

(RS) at 2 K. (fPt=4%, δ=10 nm) from 1D Mott-VRH. *Localization 

length ζ is fixed at ζ1D=0.41 nm from previous case. 

 

Comparing these calculated density of states and the localization length with those for the 

3D Mott-VRH (Table 5.6, Table 5.7 & Table 5.8), we can arrive at the common 

conclusions that apply to both mechanisms: (i) The DOS decreases with the thickness but 

ζ remians at ~0.4 nm. (ii) For a higher fmetal film, the DOS decreases but the ζ increases. 

(iii) The DOS increases rapidly as the resistance states decreases. Therefore, all the 

interpretations in Section 5.6.3 (Chapter V) can be restated if the 1D Mott-VRH is used 

for data fitting, confirming that the physics of hopping remains unchanged. 
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Efros-Shklovskii Variable Range Hopping (ES-VRH)  

Coulombic interaction generated by trapped electrons could in principle open a soft gap 

in the DOS, therefore the possibility of ES-VRH exist. ES-VRH follows: 

 TTG ES /exp  , where TES is given by  BES keT /8.2 2 . The crossover 

temperature of ES-VRH to Mott-VRH can be written as: Tcross=16TES
2
/TM and Coulomb 

gap can be estimated as
2/3

0

3 /uNe (Nu0 is the unperturbed DOS). For a typical 

nanometallic film (fPt=4%, δ=10 nm), we can estimate the crossover temperature as 

Tcross=230 K (TES=294
2
 K, TM=151

4
 K). This means Mott-VRH dominates above 230 K. 

If we further assume the calculated DOS is unperturbed, an equivalent Coulomb gap of 

Δ=0.12 eV can be estimated. As metal doping increases, a stronger Columbic interaction 

involves and thus we expect such Tcross might move to a higher temperature. This means 

Mott-VRH might be suppressed by ES-VRH for a high fPt film in our temperature range 

(200 K-300 K). Nevertheless, the fitting results for localization lengths of Mott-VRH and 

ES-VRH are quantitatively consistent within the same order of magnitude, as shown in 

Table 4. 

 

Composition  fPt =4 at.%  fPt =19 at.% fPt =27 at.% 

TES
1/2

 (K
1/2

) 294 303 199 

ζES (nm) 0.679 0.639 1.48 

ζMott (nm) 0.406 1.69 6.67 

Table 4. Values of localization length ζ for various concentration fPt 

(δ=10 nm) from ES-VRH. ζMott is from Table 5.7. 
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Nearest Neighbor Hopping (NNH)  

If the DOS is large enough to provide nearest hopping states, NNH could dominate. This 

may possibly happen for intermediate resistance states, which have a higher Nu. We can 

estimate the onset of NNH by comparing the optimized hopping distance with the 

smallest possible hopping distance (in SiN4, it is the tetrahedron size, a=0.4 nm):  

a
TkN

r
Bu













4/1

0
2

3

4

3




 

For our standard nanometallic film (fPt=4%, δ=10 nm) with ζ=0.41 nm, NNH starts to 

appear for Nu=10
23

 eV
-1

cm
-3

 at T>300K. However, for a typical HRS, Nu (HRS) 

=2.610
18

 eV
-1

cm
-3

, NNH (requiring T>10
7
 K) is unlikely to occur. NNH is also 

unimportant in the metal-rich films, since as the metal doping increases, Nu decreases 

rapidly, making NNH even harder to achieve. Therefore, NNH can be ignored except for 

a very low resistance IRS. 
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Appendix XII. Magnetoresistance (MR) Data 

Xiang Yang, Jay Kikkawa, I-Wei Chen 

Magnetoresistance (MR) measurement was performed for various resistance states (HRS, 

IRS, LRS, etc.) in PPMS under T=2 K, with magnetic field ranging from -9 T to 9 T. MR 

effect is typically very small (<1% change for resistance at 0 T and 9 T). As shown in 

Figure 1, HRS follows no definite MR laws (sometimes positive parabolic MR (Figure 

1b&c&f), sometimes negative parabolic MR (Figure 1d), sometimes very flat MR 

(Figure 1a&e)). Finer multi-level states can be easily found (Figure 1c&d) under MR 

testing when signal to noise ratio is high. On the other hand, LRS (Figure 1g&h) always 

shows a positive MR following linear law (ΔR=α|B|). 

 

Figure 1. MR data for standard nanometallic device (Mo/Si3N4:4%Pt/Pt, 

d=512 μm, δ=10 nm). The test was performed at 2K under 0.05V DC bias. 
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Positive linear law was also shown in Figure 2 with more LR states. Since parasitic 

resistance also could contribute significantly to MR signal, a differential method was 

used: 

Rfilm=Rtotal-Rlowest LR 

where Rfilm is real resistance of nanometallic film,  Rtotal is experimentally measured 

resistance and Rlowest LR is the lowest LRS under very high negative reset voltage 

(assuming only parasitic resistance was left under such extreme, Figure 2h).   

 

Figure 2. (a)-(h) A set of MR curve for IRS or LRS, showing positive linear 

law. (i) Lowest LRS (BE) fitted by 214Ω(1+6.410-8|B|), B is in unit of Oe.  

 

After calibration of raw data with differential method, real film MR data are shown in 

Figure 3.  Positive linear law R(B)=R(B=0)(1+α|B|) is still valid and MR coefficient 

α~10
-8

/Oe. 
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Figure 3. (a)-(g) MR data after subtraction of BE contribution, following 

R(B)=R(B=0)(1+α|B|). (h) MR coefficient α. 
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Appendix XIII. LabView Program: Four Point Measurement 
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Block Diagram 
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Appendix XIV. LabView Program: Transistor Testing (Ids-Vg) 
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Block Diagram 
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Appendix XV. LabView Program: Transistor Testing (Ids-Vds) 
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Block Diagram 
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Appendix XVI. LabView Program: Temperature 

Controlled Impedance 
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Block Diagram 
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