slides

Resistance switching devices based on amorphous insulator-metal thin films

Abstract

Nanometallic devices based on amorphous insulator-metal thin films are developed to provide a novel non-volatile resistance-switching random-access memory (RRAM). In these devices, data recording is controlled by a bipolar voltage, which tunes electron localization length, thus resistivity, through electron trapping/detrapping. The low-resistance state is a metallic state while the high-resistance state is an insulating state, as established by conductivity studies from 2K to 300K. The material is exemplified by a Si3N4 thin film with randomly dispersed Pt or Cr. It has been extended to other materials, spanning a large library of oxide and nitride insulator films, dispersed with transition and main-group metal atoms. Nanometallic RRAMs have superior properties that set them apart from other RRAMs. The critical switching voltage is independent of the film thickness/device area/temperature/switching speed. Trapped electrons are relaxed by electron-phonon interaction, adding stability which enables long-term memory retention. As electron-phonon interaction is mechanically altered, trapped electron can be destabilized, and sub-picosecond switching has been demonstrated using an electromagnetically generated stress pulse. AC impedance spectroscopy confirms the resistance state is spatially uniform, providing a capacitance that linearly scales with area and inversely scales with thickness. The spatial uniformity is also manifested in outstanding uniformity of switching properties. Device degradation, due to moisture, electrode oxidation and dielectrophoresis, is minimal when dense thin films are used or when a hermetic seal is provided. The potential for low power operation, multi-bit storage and complementary stacking have been demonstrated in various RRAM configurations.Comment: 523 pages, 215 figures, 10 chapter

    Similar works