31 research outputs found

    Scheduling in Transactional Memory Systems: Models, Algorithms, and Evaluations

    Get PDF
    Transactional memory provides an alternative synchronization mechanism that removes many limitations of traditional lock-based synchronization so that concurrent program writing is easier than lock-based code in modern multicore architectures. The fundamental module in a transactional memory system is the transaction which represents a sequence of read and write operations that are performed atomically to a set of shared resources; transactions may conflict if they access the same shared resources. A transaction scheduling algorithm is used to handle these transaction conflicts and schedule appropriately the transactions. In this dissertation, we study transaction scheduling problem in several systems that differ through the variation of the intra-core communication cost in accessing shared resources. Symmetric communication costs imply tightly-coupled systems, asymmetric communication costs imply large-scale distributed systems, and partially asymmetric communication costs imply non-uniform memory access systems. We made several theoretical contributions providing tight, near-tight, and/or impossibility results on three different performance evaluation metrics: execution time, communication cost, and load, for any transaction scheduling algorithm. We then complement these theoretical results by experimental evaluations, whenever possible, showing their benefits in practical scenarios. To the best of our knowledge, the contributions of this dissertation are either the first of their kind or significant improvements over the best previously known results

    Analysis, classification and comparison of scheduling techniques for software transactional memories

    Get PDF
    Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and weaknesses of the different techniques, as well as the issues that require to be further investigated

    Dynamic Prediction based Scheduling for TM

    Get PDF
    Transactional memory (TM) provides an intuitive and simple way of writing parallel programs. TMs execute parallel programs speculatively and deliver better performance than conventional lock based parallel programs. However, in certain scenarios when an application lacks scope for parallelism, TMs are outperformed by conventional fine-grained locking. TM schedulers, which serialize transactions that face contention, have shown promise in improving performance of TMs in such scenarios. In this thesis, we develop a Dynamic Prediction based Scheduler (DPS) that exploits novel prediction techniques, like temporal locality and locality of access across repeated transactions. DPS predicts the access sets of future transactions based on the access patterns of the past transactions of the individual threads. We also propose a novel heuristic, called serialization affinity, which tends to serialize transactions with a probability proportional to the current amount of contention. Using the information of the currently executing transactions, the current amount of contention, and the predicted access sets, DPS dynamically serializes transactions to minimize conflicts. We implement DPS in two state-of-the-art STMs, SwissTM and TinySTM. Our results show that in scenarios where the number of threads is higher than the number of cores, DPS improves the performance of these STMs by up to 55% and 3000% respectively. On the other hand, the overhead of prediction techniques in DPS causes a performance degradation of just 5-8% in some cases, when the number of threads is less than the number of cores

    Task Scheduling for Highly Concurrent Analytical and Transactional Main-Memory Workloads

    Get PDF
    Task scheduling typically employs a worker thread per hardware context to process a dynamically changing set of tasks. It is an appealing solution to exploit modern multi-core processors, as it eases parallelization and avoids unnecessary context switches and their associated costs. Naively bundling DBMS operations into tasks, however, can result in sub-optimal usage of CPU resources: highly contending transactional workloads involve blocking tasks. Moreover, analytical queries assume they can use all available resources while issuing tasks, resulting in an excessive number of tasks and an unnecessary associated scheduling overhead. In this paper, we show how to overcome these problems and exploit the performance benefits of task scheduling for main-memory DBMS. Firstly, we use application knowledge about blocking tasks to dynamically adapt the number of workers and aid the OS scheduler to saturate CPU resources. In addition, we show that analytical queries should issue a low number of tasks in cases of high concurrency, to avoid excessive synchronization, communication and scheduling costs. To achieve that, we maintain a concurrency hint, reflecting recent CPU availability, that partitionable analytical operations can use as a limit while adjusting their task granularity. We integrate our scheduler into a commercial main-memory column-store, and show that it improves the performance of mixed workloads, by up to 12.5% for analytical queries and 370% for transactional queries

    Accelerating Transactional Memory by Exploiting Platform Specificity

    Get PDF
    Transactional Memory (TM) is one of the most promising alternatives to lock-based concurrency, but there still remain obstacles that keep TM from being utilized in the real world. Performance, in terms of high scalability and low latency, is always one of the most important keys to general purpose usage. While most of the research in this area focuses on improving a specific single TM implementation and some default platform (a certain operating system, compiler and/or processor), little has been conducted on improving performance more generally, and across platforms.We found that by utilizing platform specificity, we could gain tremendous performance improvement and avoid unnecessary costs due to false assumptions of platform properties, on not only a single TM implementation, but many. In this dissertation, we will present our findings in four sections: 1) we discover and quantify hidden costs from inappropriate compiler instrumentations, and provide sug- gestions and solutions; 2) we boost a set of mainstream timestamp-based TM implementations with the x86-specific hardware cycle counter; 3) we explore compiler opportunities to reduce the transaction abort rate, by reordering read-modify-write operations — the whole technique can be applied to all TM implementations, and could be more effective with some help from compilers; and 4) we coordinate the state-of-the-art Intel Haswell TSX hardware TM with a software TM “Cohorts”, and develop a safe and flexible Hybrid TM, “HyCo”, to be our final performance boost in this dissertation.The impact of our research extends beyond Transactional Memory, to broad areas of concurrent programming. Some of our solutions and discussions, such as the synchronization between accesses of the hardware cycle counter and memory loads and stores, can be utilized to boost concurrent data structures and many timestamp-based systems and applications. Others, such as discussions of compiler instrumentation costs and reordering opportunities, provide additional insights to compiler designers. Our findings show that platform specificity must be taken into consideration to achieve peak performance

    Generación de una biblioteca para control de tareas en tiempo real en un sistema operativo didáctico

    Get PDF
    En este trabajo de investigación se estudiaron los métodos de planificación de tiempo real y se buscó generar una biblioteca en busca de aportar soluciones a algunas de las cuestiones la política de planificación de tiempo real. Se dispusieron herramientas teóricas que permitieron conocer si el sistema podrá en todo momento, garantizar la correcta ejecución de todas las tareas críticas. Los planificadores basados en prioridades dinámicas, a pesar de ser capaces de garantizar un mayor número de tareas que los de prioridades estáticas, no disponen de un test de planificabilidad eficiente. Los sistemas de tiempo real están compuestos tanto por tareas periódicas, que suelen asociarse a actividades criticas, como por tareas aperiódicas, sin ninguna urgencia en su ejecución, es deseable que estas se completen lo antes posible sin poner en peligro los plazos de las periódicas. Se han propuesto dos algoritmos para servir tareas aperiódicas basados en el concepto de holgura. El primero de ellos se apoya en una tabla pre calculada para aceptar las peticiones aperiódicas. El segundo, a cambio de reducir la complejidad espacial, tiene mayor coste temporal pues realiza todos los cálculos dinámicamente. Ambos algoritmos ofrecen, a las tareas aperiódicas, el menor tiempo de respuesta posible.Eje: Arquitectura, Redes y Sistemas OperativosRed de Universidades con Carreras en Informática (RedUNCI

    Composable abstractions for synchronization in dynamic threading platforms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 259-269).High-level abstractions for parallel programming simplify the development of efficient parallel applications. In particular, composable abstractions allow programmers to construct a complex parallel application out of multiple components, where each component itself may be designed to exploit parallelism. This dissertation presents the design of three composable abstractions for synchronization in dynamic-threading platforms, based on ideas of task-graph execution, helper locks, and transactional memory. These designs demonstrate provably efficient runtime scheduling for programs with synchronization. For applications that use task-graph synchronization, I demonstrate provably efficient execution of task graphs with arbitrary dependencies as a library in a fork-join platform. Conventional wisdom suggests that a fork-join platform can execute an arbitrary task graph only with special runtime support or by converting the graph into a series-parallel computation which has less parallelism. By implementing Nabbit, a Cilk++ library for arbitrary task-graph execution, I show that one can in fact avoid introducing runtime modifications or additional constraints on parallelism. Nabbit achieves an asymptotically optimal completion-time bound for task graphs with constant degree. For applications that use lock-based synchronization, I introduce helper locks, a new synchronization abstraction that enables programmers to exploit asynchronous task parallelism inside locked critical regions. When a processor fails to acquire a helper lock, it can help complete the parallel critical region protected by the lock instead of simply waiting for the lock to be released. I also present HELPER, a runtime for supporting helper locks, and prove theoretical performance bounds which imply that HELPER achieves linear speedup on programs with a small number of highly parallel critical regions. For applications that use transaction-based synchronization, I present CWSTM, the first design of a transactional memory (TM) system that supports transactions with nested parallelism and nested parallel transactions of unbounded nesting depth. CWSTM demonstrates that one can provide theoretical bounds on the overhead of transaction conflict detection which are independent of nesting depth. I also introduce the concept of ownership-aware TM, the idea of using information about which memory locations a software module owns to provide provable guarantees of safety and correctness for open-nested transactions.by Jim Sukha.Ph.D

    Scaling Up Concurrent Analytical Workloads on Multi-Core Servers

    Get PDF
    Today, an ever-increasing number of researchers, businesses, and data scientists collect and analyze massive amounts of data in database systems. The database system needs to process the resulting highly concurrent analytical workloads by exploiting modern multi-socket multi-core processor systems with non-uniform memory access (NUMA) architectures and increasing memory sizes. Conventional execution engines, however, are not designed for many cores, and neither scale nor perform efficiently on modern multi-core NUMA architectures. Firstly, their query-centric approach, where each query is optimized and evaluated independently, can result in unnecessary contention for hardware resources due to redundant work found across queries in highly concurrent workloads. Secondly, they are unaware of the non-uniform memory access costs and the underlying hardware topology, incurring unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show how these scalability and performance impediments can be solved by exploiting sharing among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data placement strategies in the execution engine. Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and work across concurrent queries at run-time into two categories: reactive sharing, which shares intermediate results across common query sub-plans, and proactive sharing, which builds a global query plan with shared operators to evaluate queries. We integrate the original research prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and show how and when each technique benefits performance. Our most significant finding is that reactive and proactive sharing can be combined to exploit the advantages of both sharing techniques for highly concurrent analytical workloads. Regarding NUMA-awareness, we identify, implement, and compare various combinations of task scheduling and data placement strategies under a diverse set of highly concurrent analytical workloads. We develop a prototype based on a commercial main-memory column-store database system. Our most significant finding is that there is no single strategy for task scheduling and data placement that is best for all workloads. In specific, inter-socket stealing of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data across sockets involves an overhead. For this reason, we implement algorithms that adapt task scheduling and data placement to the workload at run-time. Our experiments show that both sharing and NUMA-awareness can significantly improve the performance and scalability of highly concurrent analytical workloads on modern multi-core servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting faster processing of big data analytical applications, fully exploiting the hardware resources of modern multi-core servers, and for more responsive user experience

    Scheduling and synchronization for multicore concurrency platforms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 217-230).Developing correct and efficient parallel programs is difficult since programmers often have to manage low-level details like scheduling and synchronization explicitly. Recently, however, many hardware vendors have been shifting towards building multicore computers. This trend creates an enormous pressure to create concurrency platforms - platforms that provide an easier interface for parallel programming and enable ordinary programmers to write scalable, portable and efficient parallel programs. This thesis provides some provably-good practical solutions to problems that arise in the implementation of concurrency platforms, particularly in the domain of scheduling and synchronization. The first part of this thesis describes work on scheduling of parallel programs written in dynamic multithreaded languages (such as Cilk, Hood etc.). These languages allow the programmer to express parallelism of their code in a natural manner, while an automatic scheduler in the concurrency platform is responsible for scheduling the program on the underlying parallel hardware. This thesis presents designs to increase the functionality of these concurrency platforms. The second part of the thesis presents work on transactional memory semantics and design. Transactional memory (TM), has been recently proposed as an alternative to locks. TM provides a transactional interface to memory. The programmers can specify their critical sections inside a transaction, and the TM concurrency platform guarantees that the region executes atomically. One of the purported advantages of TM over locks is that transactional code is composable.(cont.) Most of the current TM concurrency platforms do not support full composability, however. This thesis addresses two of the composability problems in existing TM concurrency platforms.by Kunal Agrawal.Ph.D

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included
    corecore