
Computer Science Department

Dynamic Prediction based
Scheduling for TM

submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Anmol Tomar

supervised by

Prof. Rachid Guerraoui

Distributed Programming Laboratory

EPFL Switzerland

16 January 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147951271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgments

I would like to thank my research advisor, Prof. Rachid Guerraoui, for his constant guid-

ance throughout the course of my thesis. He provided me with ample time and encour-

agement to explore new ideas. I enjoyed his high expectations and the freedom to explore,

which gave me great confidence in my work. I would also thank Aleksandar Dragojevic

for his help in working with STM implementations. His ideas, especially in the email

brainstorming sessions, helped me in maintaining a correct approach in my thesis.

I would then like to thank my family, Ma, Papa, and my little sister, Pinky, whose love

and encouragement is an endless source of my strength, in all my endeavors. I also thank

Amma, and especially Appa for his constant motivation for research during the course

of my studies at EPFL. I would also thank my grandparents, other family members and

family-in-law, along with my beautiful nieces Muskaan and Khushi, and the two little ones,

Milee, and Dev, for their great affection and patience for the 1.5 years, when I have not

been able to visit them.

Last but not the least, I would thank Vasu for his never-ending support and motivation,

in all times.

i



Abstract

Transactional memory (TM) provides an intuitive and simple way of writing parallel pro-

grams. TMs execute parallel programs speculatively and deliver better performance than

conventional lock based parallel programs. However, in certain scenarios when an applica-

tion lacks scope for parallelism, TMs are outperformed by conventional fine-grained locking.

TM schedulers, which serialize transactions that face contention, have shown promise in

improving performance of TMs in such scenarios.

In this thesis, we develop a Dynamic Prediction based Scheduler (DPS) that exploits

novel prediction techniques, like temporal locality and locality of access across repeated

transactions. DPS predicts the access sets of future transactions based on the access pat-

terns of the past transactions of the individual threads. We also propose a novel heuristic,

called serialization affinity, which tends to serialize transactions with a probability pro-

portional to the current amount of contention. Using the information of the currently

executing transactions, the current amount of contention, and the predicted access sets,

DPS dynamically serializes transactions to minimize conflicts. We implement DPS in two

state-of-the-art STMs, SwissTM and TinySTM. Our results show that in scenarios where

the number of threads is higher than the number of cores, DPS improves the performance

of these STMs by up to 55% and 3000% respectively. On the other hand, the overhead of

prediction techniques in DPS causes a performance degradation of just 5-8% in some cases,

when the number of threads is less than the number of cores.

ii



Contents

1 Introduction 1

1.1 Transactional Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Conflict detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Version management . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Access granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Correctness in TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contention Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Motivation for Prediction in TM . . . . . . . . . . . . . . . . . . . . 7

1.3 Dynamic Prediction based Scheduler . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Basic TM Scheduler 12

2.1 Pool Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Analysis of serializing behavior . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Dynamic Prediction based Scheduler 18

3.1 Predicting accesses in a TM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Read set prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



3.2.1 Temporal locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Write set prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 DPS scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Implementation and Results 27

4.1 Evaluation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 STMBench7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 STAMP benchmark suite . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4 DPS Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Integration with SwissTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Analysis of SwissTM results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Throughput results on STMBench7 . . . . . . . . . . . . . . . . . . 31

4.3.2 Performance results on STAMP . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Throughput results on red-black tree microbenchmark . . . . . . . . 36

4.3.4 Number of aborts per commit . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Individual Prediction Throughput Analysis . . . . . . . . . . . . . . . . . . 40

4.5 Integration and Analysis with TinySTM . . . . . . . . . . . . . . . . . . . . 42

4.6 HTM integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Related Work 46

6 Conclusion 49



List of Figures

1.1 Motivating examples for prediction in TM . . . . . . . . . . . . . . . . . . . 8

2.1 Motivating examples for dynamic serialization in a TM . . . . . . . . . . . . 15

2.2 Serializing behavior in Pool-SwissTM . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Accuracy of read prediction of DPS when measured on SwissTM on STM-

Bench7, across the workload types in STMBench7 . . . . . . . . . . . . . . 21

3.2 Accuracy of write prediction of DPS when measured on SwissTM on STM-

Bench7, across the workload types in STMBench7 . . . . . . . . . . . . . . 22

3.3 Schematic of the DPS scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Throughput results for SwissTM on STMBench7 under read-dominated work-

load, with various schedulers. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Throughput results for SwissTM on STMBench7 under read-write workload,

with various schedulers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Throughput results for SwissTM on STMBench7 under write-dominated

workload, with various schedulers. . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Relative speedup (in percentage) of DPS-SwissTM over base SwissTM across

STAMP workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



4.5 Throughput results for SwissTM and DPS-SwissTM on the red-black tree

microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Throughput gain (in percentage) over base SwissTM with individual predic-

tion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Throughput results for TinySTM on STMBench7 under read-dominated

workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Throughput results for TinySTM on STMBench7 under read-write workloads 44

4.9 Throughput results for TinySTM on STMBench7 under write-dominated

workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



Chapter 1

Introduction

The saturation of Moore’s law for uniprocessors has led to the widespread adoption of mul-

tiprocessors. Multiprocessors offer an extensive scope for boosting computing performance,

due to the possibility to issue multiple instructions per cycle, on multiple cores. Thus, mul-

ticores have made parallel programming a dominant paradigm in computing today. In a

parallel program, multiple threads execute concurrently on different cores of a multipro-

cessor machine, and access the underlying shared data. To prevent inconsistencies due to

concurrent multiple thread accesses, shared data is conventionally protected with locking

primitives like, semaphores and mutexes. Lock-based synchronization guarantees mutual

exclusion of shared data, and locking algorithms (both in hardware and software) have been

extensively researched to minimize latency and maximize throughput [MCS91, KBG97].

However, lock-based synchronization has several drawbacks, like problems of guaranteeing

progress: deadlocks, livelocks; and problems arising due to negative influences of CPU

scheduling: lock convoying, priority inversion, starvation. Moreover, while coarse-grained

locking is easier to implement, it sacrifices performance. Fine-grained locking gives better

performance, but complicates implementation. Thus, writing efficient and correct parallel

1



CHAPTER 1. INTRODUCTION 2

programs using locks is a hard task. As concurrency bugs can manifest themselves in rare

scenarios, it is difficult to debug parallel programs.

Researchers have also explored non-blocking synchronization on shared memory mul-

tiprocessors [MS96]. Non-blocking algorithms use hardware provided atomic read-modify-

write operations, and avoid the classical problems of lock-based synchronization. But,

non-blocking algorithms are extremely hard to design and to prove correct, making them

a poor choice for non-expert programmers.

Transactional Memory (TM) is an emerging paradigm for simplifying the task of writing

parallel programs. A TM enables a programmer to think in terms of coarse-grained code

blocks that appear to execute atomically. Thus, TMs remove the burden of correct fine-

grained locking from the programmer.

1.1 Transactional Memories

Inspired by how databases manage concurrency [EGLT76], TM was proposed by Herlihy

and Moss [HM93] as a mechanism for writing efficient concurrent programs. TMs use

lock-based1 or non-blocking synchronization to avoid inconsistencies, and rely on some

level of speculative execution to boost performance of parallel programs. The basic no-

tion of execution in a TM is a transaction, derived from database transactions. A trans-

action is a sequence of memory accesses followed by a commit or an abort. A trans-

action guarantees the three ACI (atomicity, consistency, and isolation) properties. If a

transaction commits, all its operations become visible to other threads. If a transac-

tion aborts, none of the operations take effect, and the transaction restarts its execu-

tion. Transactional memories have been implemented in hardware [HM93, RG01, RG02,
1Note that a TM is designed by an expert, and thus, locks inside TMs are unlikely to cause classical

problems that occur when programmers directly use locks for synchronization



CHAPTER 1. INTRODUCTION 3

HWC+04, MBM+06a, MBM+06b, YBM+07, BGH+08], software [ST95, HLMI03, HF03,

HMJH05, MIS05, MSH+06, SATH+06, DSS06, RFF07, DGK08], and as hardware-software

hybrids [AAK+05, RHL05, DFL+06, KCH+06, SSH+07, MTC+07]. A comprehensive

treatment of transactional memories was done by Larus et al. [LR07].

1.1.1 Conflict detection

A conflict occurs when two transactions access the same data, and at least one of the

transactions writes. Typically TMs run transactions optimistically, making the transac-

tions prone to conflicts with each other. A conflict detection scheme is hence required for

guaranteeing correctness in TMs. These schemes vary among different TMs, in their degree

and nature of speculation. For example, different TMs detect read-write and write-write

conflicts in different ways. Conflict detection schemes have been broadly identified under

two categories - lazy and eager conflict detection. Eager schemes [MBM+06a, RFF07] detect

conflicts early and thus sacrifice sharing among transactions. For example, early detection

of read-write conflicts shall avoid read-write sharing of data between transactions. Lazy

schemes [DSS06, SSH+07], on the contrary, detect conflicts later during the transaction,

allowing sharing but wasting computational effort as some transactions get aborted after

performing a lot of work. For example, a transaction which has read a stale version of an

object needs to restart the whole transaction when it detects that the version is no longer

fresh. There also exist hybrid conflict detection schemes. Specifically, a mixed invalidation

[SMIS06] scheme employs eager write-write conflict detection and lazy read-write conflict

detection. This scheme has shown to perform better [DGK08] than both eager and lazy

conflict detection schemes.



CHAPTER 1. INTRODUCTION 4

1.1.2 Version management

The fact that a transaction running in a TM can possibly abort, necessitates managing

different versions of the data at the same time. TMs use either lazy or eager version

management. In lazy version management [HM93, SSH+07], a thread creates a shadow

(local) copy of all addresses written during a transaction. Upon commit of the transaction,

the thread updates the global copy (in memory). If the transaction aborts, the thread

throws away the local changes made during the transaction. In eager version manage-

ment [MBM+06a], a thread updates the global copy during a write. Upon commit, a

thread has to do nothing, while upon an abort, a thread has to undo the writes made dur-

ing the transaction’s execution. Thus, eager version management makes commits faster,

while lazy version management makes aborts faster.

1.1.3 Access granularity

The access granularity of a transactional memory defines the unit of memory over which

read and write conflicts are detected. Generally, TMs implement either object granularity,

which detects conflicts on objects, or word granularity, which detects conflicts on memory

words. In object granularity [HLMI03], two transactions may conflict even if they access

different members of an object. Word granularity [DSS06] is finer grained than object gran-

ularity, and provides better concurrency and hence, better performance in programs using

data structures like arrays. At the same time, the finer granularity results in larger amount

of required book-keeping which could degrade the performance in some cases. In hardware

TMs, in which conflict detection is done using the cache coherence protocol, conflicts are

often detected on the level of cache blocks. This is referred to as block granularity.



CHAPTER 1. INTRODUCTION 5

1.1.4 Correctness in TM

Different implementations of TMs satisfy different safety and liveness properties. The safety

properties generally expected in TMs are strict serializability [Pap79] and opacity [GK08].

The property, strict serializability, carries from the database community. It states that

any set of committed transactions which are executed by different threads, appear as

if executed in some serial order, such that the order of non-overlapping transactions is

preserved. The stronger property, opacity, is more relevant to TMs. It states that any set

of transactions (committed or aborted) which are executed by different threads, appear as if

executed in some serial order. The motivation behind opacity is to prevent non-committed

transactions from observing inconsistent values, which could in turn result in unexpected

program behavior, like array bound violations or infinite loops.

Moreover, TMs satisfy some liveness properties, which vary from one TM algorithm

to another. The three liveness properties for TMs are obstruction freedom [HLM03], live-

lock freedom [AKH03], and wait freedom [Her91]. Obstruction freedom states that if a

transaction executes in isolation, it eventually commits. Livelock freedom states that some

transaction eventually commits. Wait freedom states that every transaction eventually

commits.

1.1.5 Performance Measures

There are various ways of evaluating the performance of a TM. We briefly mention the

common measures. The throughput of a TM is the number of committed transactions per

unit of time. Another measure of performance, number of aborts per commit is used to

quantify the amount of wasted work done by a TM. To improve performance, we maximize

throughput, while we minimize the number of aborts per commit.

The performance of transactional memories is a critical issue for their adoption into



CHAPTER 1. INTRODUCTION 6

mainstream parallel computing. Research has shown that in high contention scenarios, fine-

grained locking outperforms TMs. Various strategies have been proposed and developed

to boost the performance of TMs in such scenarios. The most common strategy studied in

the TM literature is the notion of a contention manager.

1.2 Contention Managers

When a thread discovers an inconsistent access in a TM, either the thread facing the

inconsistency, or the one that caused the inconsistency has to abort, so that the program

executes correctly. To efficiently make this decision based on the runtime circumstances, a

transactional memory employs a separate module called a contention manager. Extensive

research has been done on various contention management schemes [SS05, GHP05, GHP06].

Here, we list down a few of these schemes.

• Polite. Polite contention manager [SS05] applies an exponential backoff scheme to

resolve contention. Upon a conflict for an address (or object), a thread spins for a

period of time that is exponential in the number of retries. On exceeding a maximum

limit on the retries, the conflicting transaction is unconditionally aborted.

• Karma. This contention manager [SS05] tries to resolve conflicts based on the

amount of work done by the transactions at the time of conflict resolution. The

number of objects opened by a transaction is used as an estimate of the work done by

the transaction. Threads gain cumulative priority values, as they open objects during

a transaction. On commit of a transaction, the priority is reset to zero. On a conflict

between two transactions, their priority values are compared, and the transaction

with a lower priority value gets aborted. A transaction that aborts preserves its

priority that accumulated during its run, so that it has higher chances of success



CHAPTER 1. INTRODUCTION 7

after multiple aborts. Another contention manager, called Polka, is obtained by

combining the Polite and Karma contention managers.

• Greedy. This contention manager [GHP05] works on the basis of timestamps. Each

transaction gets a unique timestamp on its start. The timestamps are generated such

that they increase monotonically over time. A transaction X aborts transaction X ′

on the following two conditions. (i) the timestamp of X is less than timestamp of

X ′, or (ii) X ′ is waiting for another transaction.

• Serializer. The serializer contention manager [DHS08] resolves a conflict by remov-

ing a conflicting transaction from the core where it was running, and scheduling the

removed transaction on the core of the other transaction involved in the conflict. The

serializer contention manager ensures that two transactions never conflict more than

once.

Although contention managers boost the performance of a TM, they play their role

only after inconsistencies have been detected. So contention managers still do not avoid

wasted work done by threads which are doomed to abort. Neither do contention managers

allow threads to speculate conflicts and yield a processor to another non-conflicting thread.

We propose a prediction based approach that predicts conflicts and avoids them be-

fore they actually happen. We give examples where prediction shall help to increase the

performance of a TM.

1.2.1 Motivation for Prediction in TM

In this thesis, we distinguish between overloaded and underloaded TMs. We define a TM

as overloaded if the number of threads in the TM is higher than the number of cores.

Moreover, we define a TM as underloaded if the number of threads in the TM is less than



CHAPTER 1. INTRODUCTION 8

or equal to the number of cores.

Consider the situation of an overloaded TM, as illustrated in Figure 1.1(a). Let the

number of cores be two, with three threads running their transactions, Tx 1, Tx 2, and

Tx 3. Transactions Tx 1 and Tx 2 are running on one core each, leaving no core available

for Tx 3 to run. Tx 2 finds out later during its execution that it conflicts with Tx 1 on the

write of variable x. If the transaction Tx 3 had been scheduled in place of either Tx 1 or

Tx 2, it would not have conflicted with the other running transaction, resulting in a better

TM performance.

A similar situation can be observed in an underloaded system (shown in Figure 1.1(b)).

Transactions Tx 1, Tx 2, Tx 3, and Tx 4 are running on a 4-core machine. Thus, there

are enough cores for running all 4 transactions concurrently. Transaction Tx 1 is writing

to variable y, whereas transaction Tx 2 is writing to variables x and z. Tx 2 later wants

to write to variable y, when it detects its conflict with Tx 1 on y. Also, Tx 3 and Tx 4

cannot run due to their conflicts with Tx 2, as Tx 2 has written to x and z. This situation

could be avoided if Tx 1, Tx 3, and Tx 4 were scheduled to run in parallel, whereas Tx 2

were not scheduled.

��

�� ��

�� ��

Tx 1

Tx 2

Tx 3

wr x

rd x wr x

rd y rd z

(a) Overloaded TM example

��

�� �� ��

��

��

Tx 1

Tx 2

Tx 3

Tx 4

wr y

wr x wr z

waiting for x

waiting for z

waiting for y

(b) Underloaded TM example

Figure 1.1: Motivating examples for prediction in TM

In both these examples, a contention manager would act only after a conflict has oc-



CHAPTER 1. INTRODUCTION 9

curred. Indeed, a scheduling technique which could predict a conflict and avoid it from

occurring shall perform better. This thesis introduces such a scheduling policy, called

the Dynamic Prediction based Scheduler (DPS). DPS is an online scheduling scheme that

learns about the potential conflicts in a TM and acts apriori to prevent those conflicts.

1.3 Dynamic Prediction based Scheduler

We introduce a novel prediction technique, called temporal locality, in TMs. The principle

of temporal locality has been widely studied and applied to different domains of computer

science [Den68, DS72, Smi82, ABCdO96]. Specifically for TMs, the property of temporal

locality states that similar addresses2 are accessed across multiple transactions of a thread.

This implies that addresses which are frequently accessed in the past few transactions of a

thread are more likely to be accessed in future transactions of that thread. We empirically

observe high temporal locality in read accesses of a thread. So, DPS predicts read sets

using temporal locality. DPS maintains the read set of past few committed transactions

of a thread in a set of Bloom filters. Then, DPS checks membership of an address in these

Bloom filters [Blo70], and uses a confidence measure to predict whether the address shall

be read in future transactions. To predict write sets, DPS uses the write set of an aborted

transaction to predict the write set of the next restarting transaction of the thread. Note

that the write set of an aborted transaction may not provide an exact prediction. This is

because the underlying data structure, which the transactions concurrently work on, might

change between the abort and the subsequent restart of a transaction. Moreover, in some

cases transactions could be non-deterministic. But our empirical results on various TM

benchmarks show sufficient accuracy of the write set prediction.
2In this thesis, we use the term address for words in word-based TMs, and for objects in object-based

TMs



CHAPTER 1. INTRODUCTION 10

DPS uses these predicted read and write sets in conjunction with the information of

the currently executing transactions to prevent conflicts. DPS checks whether any address

in the predicted read and write sets of the starting transaction is being written by any

other currently executing transaction. In case an address is being written, the scheduler

serializes the starting transaction. Otherwise, the transaction is allowed to execute, as it

would, without the scheduler. Note that DPS can be integrated with any TM that uses

visible writes, that is, other threads know when a particular thread writes to an address.

To keep DPS competitive in low contention scenarios and in underloaded cases, it is

important that DPS serializes threads only if contention is high. To detect when a thread

faces high contention, DPS maintains a success rate of every thread, and activates the pre-

diction and serialization technique only if the success rate of the thread falls below a certain

threshold. Another interesting heuristic we use in our work is called serialization affinity.

We observe that serializing a transaction with a probability proportional to the contention

in the TM provides better performance. This heuristic is based on the observation that

serializing a transaction is relatively more helpful when a large number of threads access

similar addresses and compete for a small number of cores. This is obvious, as the lack of

proper scheduling causes many conflicts in these cases.

We integrate DPS with two state-of-the-art STMs, SwissTM and TinySTM. The mo-

tivation behind DPS has been to increase the throughput of the state-of-the-art STMs in

overloaded cases, while not degrading the performance of those STMs in underloaded cases.

Our scheme proves successful. For overloaded cases, we obtain throughput gains of up to

50% for SwissTM, and around 3000% for TinySTM3 on different workloads of STMBench7.

On the other hand, the overhead of prediction techniques incurs a performance loss of 5-8%

in underloaded cases, on STMBench7. In a way, DPS approximates an optimal scheduler
3We use SwissTM with preemptive waiting, and TinySTM with busy waiting.



CHAPTER 1. INTRODUCTION 11

by scheduling transactions which do not face any conflict, while postponing the execution

of transactions which are likely to conflict.

Preliminary TM schedulers in the literature rely on coarse measures to activate schedul-

ing. For example, Yoo et al. [YL08] use a measure of contention intensity in their ATS

scheme which is similar to our measure of success rate. However, in ATS, when the con-

tention intensity of a thread increases beyond a threshold, the thread is forced to serialize.

We show examples in Chapter 2 that such coarse serialization inhibits parallelism. We

discuss other TM schedulers [RHP+07, DHS08] in Chapter 5.

1.4 Organization of the thesis

Chapter 2 introduces basic TM schedulers, and the problems associated with them. We

present our variant of a basic TM scheduler, called the Pool scheduler. We also discuss

examples why basic scheduling policies are too coarse. Chapter 3 explains our dynamic

prediction based scheduler. We first describe different prediction strategies of DPS, fol-

lowed by empirical results that show the accuracy of the predictions. Later, we formally

present our DPS scheme. Chapter 4 covers the implementation details and the experi-

mental results. We show how we integrate DPS with SwissTM and TinySTM. We give

results of SwissTM and TinySTM running with our DPS scheme, on different benchmarks:

STMBench7, STAMP, and microbenchmarks. Chapter 5 covers the related work in this

field, and Chapter 6 concludes the thesis.



Chapter 2

A Basic TM Scheduler

Transactional memories are highly performance-oriented, and rely on speculative execution

to boost throughput. Speculative execution often causes conflicts, which a TM resolves

using a contention manager. Although contention managers have been very successful in

boosting TM performance, they have a downside that they act only after a conflict has

been detected. This wastes effort of one of the conflicting transactions, as it needs to be

aborted.

TM schedulers offer a powerful means to boost the performance of TMs. A transactional

memory scheduler is a policy that decides when a particular transaction executes in a TM.

Preliminary TM schedulers [YL08] proposed in the literature defer a transaction from

running, if it has aborted very often in the recent past. Some TM schedulers [DHS08,

ALK+09] reschedule a transaction on the core of the other conflicting transaction in order to

avoid repeated conflicts. TM schedulers have shown performance benefits over contention

managers [YL08, DHS08]. A TM scheduler especially helps in overloaded cases, i.e., when

the number of threads is higher than the number of cores available to the TM. Generally,

the performance of TMs (with or without contention managers) does not scale well in

12



CHAPTER 2. A BASIC TM SCHEDULER 13

overloaded cases. We argue that future practical systems will tend to be overloaded, as

these systems will have additional tasks running on the multiprocessor machine, which

shall use the same cores. Moreover, the granularity of parallelism is not restricted to the

level of transactions, and systems are already being built that exploit parallelism within a

transaction. This concept of intra-transactional parallelism has been formalized as parallel

nesting [AFS08]. If we assume that the number of threads in a TM is upper bounded

by the number of cores, we shall hinder parallel nesting. Thus, to scale TM to practical

systems and allow features like parallel nesting, we need strategies like TM schedulers to

boost performance in overloaded scenarios. We now present a basic TM scheduler, and

discuss the drawbacks of such schedulers.

2.1 Pool Scheduler

We first describe a basic TM scheduler, called the Pool scheduler, which serializes the

transactions of threads facing high contention. The Pool scheduler is similar to the ATS

scheme [YL08] in the literature.

We briefly discuss the algorithm for our Pool scheduler. We define success rate of a

thread as a measure of the ratio of commits of the thread, to its aborts. We measure the

success rate of a thread as the moving average over successive commits and aborts of the

thread. The threads whose success rate is lower than a particular threshold are added to

a pool of waiting threads, which wait for a common mutex. When the mutex is available,

one of the threads grabs the mutex and continues execution. Note that the waiting threads

form a pool of threads, rather than a queue [YL08], which saves the overhead of inserting

a thread at a particular position in the queue. We illustrate the Pool scheduler algorithm

in Algorithm 1.

We present examples to show that it is not always beneficial to serialize threads in the



CHAPTER 2. A BASIC TM SCHEDULER 14

Algorithm 1 Pool Scheduler
Variables: global lock is a lock variable shared between threads. succ threshold and
success are constant integers, succ rate is an integer variable per thread.
On transaction start

if succ rate < succ threshold then
lock global lock

endif
On transaction commit

succ rate := (succ rate + success)/2
if own global lock then

unlock global lock
endif

On transaction abort
succ rate := succ rate/2
if own global lock then

unlock global lock
endif

face of contention. In Figure 2.1(a), both transactions Tx 1 and Tx 3 read variable x and

then continue their executions. Transaction Tx 2 writes to variables x and y, after the

reads of x by Tx 1 and Tx 3, and then Tx 2 commits. Tx 1 and Tx 2 each read y next, and

hence are bound to abort due to an inconsistency in the values read. A coarse serialization

policy would serialize Tx 1 and Tx 3, which are not conflicting, and thus hinder parallelism.

Another example is that of a TM with a contention manager, as shown in Figure 2.1(b).

Transactions Tx 1 and Tx 2 conflict, as they both write to the variable x. The contention

manager decides to abort Tx 2, whereas allows Tx 1 to commit. Similarly, the contention

manager aborts Tx 4 and allows Tx 3 to commit, when they conflict on variable y. A basic

scheduling policy would serialize Tx 2 and Tx 4, though the accesses of Tx 2 and Tx 4 are

completely independent and they could run in parallel, when they restart.

Based on the above examples, we now argue that though the Pool scheduler (or any

basic serializing TM scheduler) serializes a thread only when its success rate falls below

a certain threshold, such a scheduling policy is fairly coarse. Threads may abort due to



CHAPTER 2. A BASIC TM SCHEDULER 15

different reasons, like failure to validate the read set, or failure to lock an object, or due to a

decision of a contention manager. However, the decision to serialize a thread is justified only

in the case when the thread aborts due to a failure to obtain a lock. Failure to validate the

read set occurs due to the commit of another transaction, a scenario which may not repeat

again. Similarly, the decision of a contention manager to abort a thread may be based

on conditions that may not repeat again. The decision of the Pool scheduler to serialize

transactions in these cases may hinder performance. Moreover, we observe that once a

thread gets into the thread pool for serialization, it can only undergo execution via the path

of mutex acquisition. If the cause of the conflict ceases to exist in future, the thread can

very well exploit more parallelism than in the case of serial execution. On the other hand,

a scheme that uses the information of the currently executing transactions to dynamically

serialize transactions, could decide to normally execute the aborting transactions. This

further motivates the need of prediction and dynamic serialization in TMs.

�� ��

��

�
�
�
�

��

��

��

Tx 1

Tx 2

Tx 3

rd x rd y

wr x wr y commit

rd x rd y

(a) Abort due to failure to validate the read set

��

�� ��

��

��

��

�� ����

�� ��

�
�
�
�

��

Tx 1

Tx 2

Tx 3

Tx 4

rd x

rd x

wr x

wr x C.M. abort

commitrd y wr y

rd y wr y C.M. abort

commit

(b) Abort due to contention manager

Figure 2.1: Motivating examples for dynamic serialization in a TM

2.2 Analysis of serializing behavior

Apart from the above examples, we also observe that basic TM schedulers serialize trans-

actions even in low contention scenarios. To understand the performance tradeoff, we



CHAPTER 2. A BASIC TM SCHEDULER 16

 0

 2

 4

 6

 8

 10
N

um
be

r 
of

 th
re

ad
s

Time

(a) Underloaded system (6 threads on 8 cores)

 0

 5

 10

 15

 20

 25

N
um

be
r 

of
 th

re
ad

s

Time

(b) Overloaded system (24 threads on 8 cores)

Figure 2.2: Serializing behavior in Pool-SwissTM

integrated the Pool scheduler in SwissTM1 and analyze the performance on the STM-

Bench7 benchmark. Performance results show that the Pool scheduler-enabled SwissTM

(Pool-SwissTM) outperforms the base SwissTM in highly overloaded cases by up to 80%.

However, the Pool-SwissTM suffers performance loss of up to 25% in underloaded cases,

as compared to base SwissTM. This performance comparison suggests that serialization is

more useful in highly overloaded TMs. In Figure 2.2, we show the serialization behavior

of Pool-SwissTM in underloaded and overloaded cases. In Figure 2.2(a), we show how

the number of threads waiting for serialization varies over time when the Pool-SwissTM

is executed with 6 threads on an 8 core machine. We observe that the number of waiting

threads is mostly between 4 and 6. In this case, the performance of the base SwissTM is

better than the performance of Pool-SwissTM. Hence, we discourage serialization in under-

loaded TMs. In Figure 2.2(b), we show the serialization behavior in Pool-SwissTM when 24

threads are executed on an 8 core machine. We observe that the number of waiting threads

remains very high, from 20 to 24 most of the time. In such highly overloaded cases, the

Pool-SwissTM performs better than the base SwissTM. Thus, we encourage serialization

in such scenarios. This points us to a heuristic called serialization affinity, which states
1SwissTM and STMBench7 are described in Chapter 4. The performance results are shown in Figure 4.1,

4.2, and 4.3.



CHAPTER 2. A BASIC TM SCHEDULER 17

that the probability of serializing a transaction should be proportional to the amount of

contention. We use this heuristic in DPS to get good overall performance.



Chapter 3

Dynamic Prediction based

Scheduler

We develop novel prediction techniques, like temporal locality and locality across repeated

transactions. Using these prediction techniques, we predict access sets of future transac-

tions. We develop a scheduling scheme which uses the predicted access sets, the heuristic

of serialization affinity, and the information of currently executing transactions to dynami-

cally serialize transactions. We show that our scheduling scheme improves the throughput

of existing STMs in highly overloaded cases, while causing minimal losses due to overheads

in underloaded cases.

A clairvoyant TM is one which knows apriori, which addresses a transaction will access.

Developing an optimal scheduler for even a clairvoyant TM is an NP-hard problem. Of

course, TMs are not clairvoyant, as transactions work upon complex data structures, which

change over time. So, we try to perform two approximations: first, we predict accesses of

the transactions of a TM to approximate a clairvoyant TM, and second we try to develop

a scheduling policy that approximates the optimal TM scheduler.

18



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 19

3.1 Predicting accesses in a TM

We observe that a thread does not access a completely random set of addresses across its

transactions. We explore this access behavior of each thread, and approximate clairvoyance

in the TM by predicting the transactional access sets in our scheduler. We categorize the

idea of prediction into read set prediction and write set prediction.

3.2 Read set prediction

We introduce the notion of temporal locality to predict the read sets of future transac-

tions. Temporal locality is well-understood and utilized to boost the performance of the

underlying systems in various domains of computer science, for example, memory hierar-

chies [Den68, DS72, Smi82], and web-caches [ABCdO96].

3.2.1 Temporal locality

Our empirical observations on several TM benchmarks, like STMBench7 and STAMP, show

that multiple consecutive committed transactions of a thread access similar addresses. We

believe that this is a result of the design of data structures. Data structures usually

have a fixed way of traversal, which makes some memory addresses frequently accessed

across transactions. Although data structures change over time due to new additions and

deletions, temporal locality can indeed be observed across a significant window of adjacent

transactions.

We define the predicted read set of a transaction as the set of addresses predicted to

be read by the transaction. This prediction is based on the read accesses of the last few

transactions.

We validate the idea of temporal locality by evaluating the accuracy of our predicted



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 20

read set. Let T be the set of threads. Let Xt be the set of transactions of thread t ∈ T .

For a transaction x ∈ Xt, let predx be the predicted read set and rsx be the actual read

set of x. Then, the prediction accuracy of predx is measured by the formula

∑
t∈T

∑
x∈Xt

|predx ∩ rsx|∑
t∈T

∑
x∈Xt

|predx|

We run our experiments on STMBench7 benchmark with SwissTM. However, the idea

of temporal locality is general, and can be observed in any benchmark with any TM. We

show the results under three workload types1 : read-dominated, read-write, and write-

dominated, in Figure 3.1. We observe that the accuracy of read prediction is fairly high

for read-dominated workloads, and decreases as the workload contains a higher proportion

of writes. This is because, as the number of writes increase, the data structure is more

likely to change across transactions, which decreases the temporal locality. Moreover, we

observe that, in a given workload, the accuracy of the read prediction does not vary as the

number of threads increases.

3.3 Write set prediction

The idea of temporal locality works with significant accuracy for predicting the read sets,

but does not help in predicting the write sets. This is due to the fact that transactions

have large read sets, but small write sets. The chance that a thread writes to the same

addresses across multiple consecutive transactions is low. So, we need a different prediction

strategy for the write set.

We use the fact that when a transaction repeats, its write set mimics the write set of
1SwissTM and STMBench7 are described in Chapter 4. The three workload types for STMBench7

specify the percentage of read-only operations, which is 90% for read-dominated, 60% for read-write, and
10% for write-dominated workloads.



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 21

 0

 20

 40

 60

 80

 100

2 3 4 6 8 10 12 16 20 24

A
cc

ur
ac

y 
of

 r
ea

d 
pr

ed
ic

tio
n 

(in
 p

er
ce

nt
ag

e)

Number of threads

Read-dominated
Read-write

Write-dominated

Figure 3.1: Accuracy of read prediction of DPS when measured on SwissTM on STM-
Bench7, across the workload types in STMBench7

the immediately previous aborted transaction. As the underlying benchmark is unlikely

to undergo drastic changes before the aborting transaction restarts execution, the writes

of the aborting transaction form a good prediction for the write accesses of the restarting

transaction. This property allows us to predict, upon an abort of a transaction, what

addresses will be accessed in the next attempt of the transaction. We investigate this

property in different benchmarks and show the results in Figure 3.2. Our experiments

reveal that the write set prediction is fairly accurate across all workloads and with any

number of threads.

Note that the idea of temporal locality allows read set prediction to work across com-

mitted and aborted transactions. On the other hand, write set prediction works solely

across aborted transactions.



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 22

 0

 20

 40

 60

 80

 100

2 3 4 6 8 10 12 16 20 24

A
cc

ur
ac

y 
of

 w
rit

e 
pr

ed
ic

tio
n 

(in
 p

er
ce

nt
ag

e)

Number of threads

Read-dominated
Read-write

Write-dominated

Figure 3.2: Accuracy of write prediction of DPS when measured on SwissTM on STM-
Bench7, across the workload types in STMBench7

3.4 DPS scheme

DPS uses the above prediction techniques to predict the read and write sets. Using these

predictions with the information of the currently executing transactions and the current

contention, DPS dynamically serializes transactions.

3.4.1 Algorithm

We now present the algorithm for the dynamic prediction based scheduler. The schematic

for DPS is shown in Figure 3.3. Like the Pool scheduler, DPS maintains the success

rate of each thread. The success rate succ rate is a measure of the ratio of the number

of committing to the number of aborting transactions. The success rate of a thread is



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 23

TxCommit TxAbort

Lock
mutex

success rate success rate
High

success rate success rate
Increase Decrease

Predicted set
not free

Predicted set
free

if held
Unlock mutex

TxStart

transaction
Execute Scheduler

common mutex
Wait for

Low

Figure 3.3: Schematic of the DPS scheduler

modified on commit and abort of a transaction. When the success rate of a thread falls

below a certain threshold, the serialization policy of DPS gets activated.

The DPS scheduler uses a set of Bloom filters per thread to represent the thread’s read

set of last few transactions in a conservative manner. Bloom filters allow a fast means to

insert addresses, and to check the membership of an address. When a transaction executes

and reads an address, the scheduler checks the membership of the address in the Bloom

filters corresponding to the past few transactions of the thread. If the address has been

frequently accessed in the past, then the address is added to the predicted read set of the

next transaction by the thread. We use a parameter called locality window, which specifies

the number of previous transactions that are used for prediction. Formally, let T0 be a

transaction that is currently running. Let T−i be the last ith transaction that committed

before T0. Let w be the locality window. Then, the scheduler maintains a set of bloom



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 24

filters {bf1, . . . , bfw} for each thread, where bfi is used to store the read set of transaction

T−i. With each bloom filter bfi, we associate a confidence weight confidencei. During the

execution of a transaction T0 of a thread, we compute the predicted read set pred read set

of T1 as follows. On a read access of an address a by T0, we compute the confidence of a as∑
0<i≤w confidencei.δi, where δi = 1 if a is in bfi, and δi = 0 if a is not in bfi. All addresses

whose confidence exceeds a threshold value are added to the predicted read set of T1.

For the write set prediction, the DPS scheduler uses the write set of an aborting

transaction. Thus, if T0 aborts, then the write set of T0 becomes the predicted write

set pred write set of the next transaction T1 of the thread. If T0 commits, then T1 starts

with an empty predicted write set. Note that the scheduler is active only when the suc-

cess rate has been below a certain threshold. Thus, the fact that the first attempt of a

particular transaction has no predicted write set is not a major concern.

We now describe how the DPS scheduler acts for a thread, when the thread starts a

transaction in the case that the success rate of the thread is less than a certain threshold.

First, the DPS scheduler applies the serialization affinity heuristic. The scheduler first

observes the number of threads wait count waiting for serialization, and decides to use the

prediction scheme with probability proportional to wait count. If the scheduler decides to

forgo the prediction scheme, then the thread starts the transaction normally, as the base

STM would. In case the scheduler decides to use the prediction scheme, the thread first

checks whether some address in the predicted read set or the predicted write set is being

written by any other thread. If there is indeed such an address, then the scheduler decides

to serialize the starting transaction. In such a case, the thread waits to lock the global

mutex global lock before starting the transaction. The modifications to the start procedure

have been shown in Algorithm 2, and the modifications to the read, write, commit, and

abort procedures have been shown in Algorithm 3.



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 25

Algorithm 2 Dynamic Prediction based Scheduling
Variables: global lock is a lock variable shared between threads. succ threshold is a
constant integers, succ rate is an integer variable per thread. read pred and write pred
are addresses, pred read set is the predicted read set per thread, pred write set is the
predicted write set per thread, and wait count is an integer (initially 0).

On transactional start
if succ rate < succ threshold

generate a random number r between 1 and 32
if r < wait count then

for each address read pred in pred read set
if read pred is being written by some other thread then

lock global lock
atomically increment wait count
break

endif
endfor
if not owner of global lock then

for each address write pred in pred write set
if write pred is being written by some other thread then

lock global lock
atomically increment wait count
break

endif
endfor

endif
endif

endif
if last transaction was committed then

remove all addresses from pred read set
endif
remove all addresses from pred write set



CHAPTER 3. DYNAMIC PREDICTION BASED SCHEDULER 26

Algorithm 3 Dynamic Prediction based Scheduling (contd.)
Variables: bfi is the bloom filter of the last ith transaction, locality window is the
size of the set of bloom filters per thread, confidence is an integer (initially 0),
confidence threshold is the threshold confidence value, success is a constant integer, and
addr and last conflict are addresses. (other variables as in Algorithm 2).

On transactional read of addr
if (addr /∈ bf0) then

add addr to bf0
i = 1
while i < locality window do

if (addr ∈ bf0) then
confidence = confidence + ci

endif
endwhile
if confidence ≥ confidence threshold, then

add addr into pred read set
endif

endif
On transactional write of addr

if going to abort because addr being written by some other thread then
last conflict := addr

endif
On transactional commit

succ rate := (succ rate + success)/2
if own global lock then

unlock global lock
atomically decrement wait count

endif
On transactional abort

copy write set of transaction into pred write set
if last conflict is not empty then

add last conflict to pred write set
set last conflict to empty

endif
succ rate := succ rate/2
if own global lock then

unlock global lock
atomically decrement wait count

endif



Chapter 4

Implementation and Results

We implemented our dynamic prediction based scheduling scheme on top of two STMs,

SwissTM and TinySTM. We evaluated the performance of the DPS-enabled SwissTM and

DPS-enabled TinySTM, and compared them to the respective base STMs. DPS consider-

ably improves the performance of these STMs in overloaded scenarios. Moreover, DPS is

a general scheme which can be easily implemented in various TMs.

4.1 Evaluation framework

We chose two STM systems to demonstrate the performance gain obtained with our DPS

scheme. By applying DPS in two systems, we attempt to show that the DPS scheme

indeed improves the throughput of STMs, while it is not tightly coupled to any particular

STM. Although, we have chosen STMs to demonstrate DPS, the scheme can indeed be

implemented in hardware TMs, as we show in Section 4.6.

We performed our experiments on a 4 processor dual-core AMD Opteron 8216 2.4 GHz

with 1024 KB cache, which gives us 8 cores for our experiments. We worked with several

benchmarks to illustrate that coupling a TM with DPS generally boosts performance.

27



CHAPTER 4. IMPLEMENTATION AND RESULTS 28

4.1.1 Microbenchmarks

Microbenchmarks have long been used to test STM performance. The red-black tree is a

popular TM benchmark that provides simple transactional operations like insert, lookup,

and delete on the red-black tree data structure. Although microbenchmarks do not provide

a good representative of real world applications, they do help to analyze the complexity of

the TM. We utilize this simple microbenchmark to prove that our scheme does not exhibit

significant overheads over the conventional STMs.

4.1.2 STMBench7

STMBench7 is an object-based benchmark, which provides complex and realistic workloads

for analyzing STM performance. STMBench7 comprises of a large number of operations

on a shared data structure, and intends to represent complex real world concurrent appli-

cations. The spectrum of operations range from very short operations to very long ones,

and from read-only to update operations. The data structure used by STMBench7 is many

orders of magnitude larger than typical STM benchmarks. Three types of workloads, read-

dominated, read-write, and write-dominated can be modeled in STMBench7. We perform

experiments on all these workload types. STMBench7 allows long traversals to be turned

on or off. We turn off long traversals for our experiments.

4.1.3 STAMP benchmark suite

STAMP benchmark suite has been designed with the objective of representing a variety

of application domains that may benefit from TMs. STAMP consists of eight such appli-

cations from various domains: computational biology, security, engineering, and machine

learning. Different benchmarks are characterized by their transaction length and the size

of access sets. We briefly look at the various benchmarks in the STAMP benchmark suite.



CHAPTER 4. IMPLEMENTATION AND RESULTS 29

Bayes implements an algorithm for Bayesian network learning. This benchmark has a high

amount of contention due to frequently changing sub-graphs, and long transactions with

relatively large read and write sets. Genome is an application for gene sequencing, which

matches numerous DNA segments to construct the original source. The transactions, read

and write sets are all moderate sized. The execution time is predominantly transactional,

with little contention. Intruder is a security application for detecting intrusion in networks.

It matches the packets to a set of known signatures. It has relatively short transactions, but

the contention varies from moderate to high. Kmeans implements the kmeans-algorithm

to cluster a set of objects into a set of partitions.The transactions in Kmeans are small

with small read and write sets. The benchmark has little contention due to less execu-

tion time spent in transactions. Labyrinth implements a variant of Lee’s algorithm, where

the threads route paths in a three dimensional grid between a start and an end point.

It has almost the whole execution as transactional, with long read and write sets for its

transactions, resulting in high levels of contention. SSCA2 is a scientific application for

efficient graph construction, using adjacency arrays and auxiliary arrays. The transactions

in SSCA2 are small, with small read and write sets and little contention. Vacation is an

application from online transaction processing domain that emulates a travel reservation

system. The transactions are of medium length, with moderate read and write sets, and

most of the execution is transactional. Yada is based on Ruppert’s algorithm for Delaunay

mesh refinement. Yada spends most execution time in transactions, which are relatively

longer.

4.1.4 DPS Settings

We experimented with different values of the parameters of DPS. Based on those ex-

periments, we have chosen the success threshold succ threshold as 0.5, the locality win-



CHAPTER 4. IMPLEMENTATION AND RESULTS 30

dow locality window to be 4, c1 to be 3, c2 to be 2, and c3 to be 1. We choose the

confidence threshold to be 3. We have implemented the lock variable global lock using the

pthread mutex variable.

4.2 Integration with SwissTM

SwissTM is a lock based STM algorithm, highly optimized for throughput. SwissTM

has been implemented in C++. Each address in SwissTM has two locks - a read-lock

and a write-lock. A writing transaction acquires the write-lock while writing, to prevent

other transactions from concurrently writing. A writer acquires a read lock at the time of

commit. This essentially provides SwissTM with a hybrid conflict detection scheme, where

read-write conflicts are lazily detected and write-write conflicts are eagerly detected. As

the read-lock is only acquired at commit time, read-write sharing is allowed. The fact that

SwissTM detects read-write conflicts lazily, is believed to be critical to the performance of

SwissTM. Our implementation of the DPS scheme in SwissTM follows the description in

Algorithm 2 and Algorithm 3. During the start of a transaction, for all addresses in the

predicted read set, we check whether the read lock has been acquired, and for all addresses

in the predicted write set, we check whether the write lock has been acquired. Thus, like

the base SwissTM, DPS-enabled SwissTM allows read-write sharing.

4.3 Analysis of SwissTM results

We now provide experimental results of the different scheduler techniques applied to Swis-

sTM, and compare them against the base SwissTM. We set the preemptive waiting flag in

SwissTM to true, as it shows to perform better than busy waiting. We start with a through-

put analysis, and then analyze the number of aborts per commit of different scheduling



CHAPTER 4. IMPLEMENTATION AND RESULTS 31

schemes in SwissTM.

4.3.1 Throughput results on STMBench7

We compare the performance in three different workload types. We compare all scheduler

variants of SwissTM: Pool-SwissTM, ATS-SwissTM, and DPS-SwissTM.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

SwissTM
Pool-SwissTM
DPS-SwissTM
ATS-SwissTM

Figure 4.1: Throughput results for SwissTM on STMBench7 under read-dominated work-
load, with various schedulers.

Read-dominated workloads. In Figure 4.1, we show the throughput results for the read-

dominated workloads of STMBench7. The throughput across all schemes has been averaged

over 20 executions. The results show that base SwissTM and DPS-SwissTM have compa-

rable throughput in underloaded cases, i.e., up to 8 threads, but DPS-SwissTM gradually

outperforms base SwissTM as the system becomes more overloaded. For example, DPS-

SwissTM performs 55% better than base SwissTM when 24 threads are spawned. Pool-

SwissTM outperforms base SwissTM in overloaded cases gaining a maximum throughput

of 80% in 24 threads, but at the same time, Pool-SwissTM suffers a performance penalty



CHAPTER 4. IMPLEMENTATION AND RESULTS 32

of up to 15% compared to the base SwissTM in the underloaded scenario with 8 threads.

ATS-SwissTM does not gain as much as DPS-SwissTM or Pool-SwissTM in overloaded

cases. ATS-SwissTM shows comparable performance to the base SwissTM in underloaded

systems up to 6 threads, but shows a performance degradation between 6 threads and 12

threads, with a maximum throughput loss of around 8% in the case of 8 threads. We note

that in general, serialization helps as a TM becomes overloaded.

 1000

 1500

 2000

 2500

 3000

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

SwissTM
Pool-SwissTM
DPS-SwissTM
ATS-SwissTM

Figure 4.2: Throughput results for SwissTM on STMBench7 under read-write workload,
with various schedulers.

Read-write workloads. Figure 4.2 shows the throughput of SwissTM with different sched-

ulers in read-write workload of STMBench7. Here, DPS-SwissTM achieves a maximum

throughput gain of 20% for 24 threads. For underloaded scenarios, base SwissTM, ATS-

SwissTM, and DPS-SwissTM show comparable performance (within ±5%), while Pool-

SwissTM pays a penalty for its coarse serialization. Although, Pool-SwissTM outperforms

others when the number of threads exceeds 16, the loss in throughput in less loaded scenar-

ios (thread count less than 12) is as high as 25%, and thus unacceptable. ATS-SwissTM and



CHAPTER 4. IMPLEMENTATION AND RESULTS 33

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

SwissTM
Pool-SwissTM
DPS-SwissTM
ATS-SwissTM

Figure 4.3: Throughput results for SwissTM on STMBench7 under write-dominated work-
load, with various schedulers.

DPS-SwissTM perform fairly similar, with DPS-SwissTM gaining performance in highly

overloaded scenarios. We note that this workload brings forward a distinction in the ATS

and Pool schedulers. Although they both serialize threads facing contention, the queueing

up in ATS helps it to outperform Pool in underloaded scenarios.

Write-dominated workloads. For write-dominated workloads, as shown in Figure 4.3, DPS-

SwissTM achieves a maximum gain of 8% over the base SwissTM in the case of 24 threads.

Pool-SwissTM performs poorly in underloaded scenarios (performance loss of 20%), as well

as in overloaded scenarios up to 20 threads. But, it outperforms all other schemes in the

case of 24 threads. The DPS-SwissTM always exhibits throughput gain of around 5-10%

over ATS-SwissTM in overloaded cases. In underloaded cases, DPS-SwissTM and base

SwissTM have comparable performance, while ATS suffers a performance loss in the case

of 4 threads.

To summarize the results for the three workload types on STMBench7, we observe that



CHAPTER 4. IMPLEMENTATION AND RESULTS 34

Pool-SwissTM is the best choice in highly overloaded TMs (24 threads). This is obvious,

as the high contention in such scenarios makes the coarsest scheduling scheme the most

efficient. Pool-SwissTM outperforms ATS-SwissTM as the latter suffers the overhead of

queueing transactions in a particular order. DPS-SwissTM does not serialize in every case

while base SwissTM never serializes a transaction, which make their respective throughput

lower than Pool-SwissTM.

For less overloaded or underloaded cases, DPS-SwissTM consistently performs com-

parable or better than all other schemes. Although Pool-SwissTM is the best for highly

overloaded cases, it suffers performance losses of up to 25% in most of the underloaded

scenarios. On the other hand, DPS-SwissTM suffers a rare penalty of 5-8%, while giving

significant performance gains up to 55% in some scenarios.

4.3.2 Performance results on STAMP

We now present our analysis of DPS-SwissTM on the workloads in the STAMP benchmark

suite. Experimental results are listed in Figure 4.4(a) for underloaded TMs (number of

threads at most 8), and Figure 4.4(b) for overloaded TMs (number of threads more than

8). For the case of 1 thread, DPS-SwissTM and base SwissTM differ by less than 1%

across all workloads, and hence we do not plot these results. These figures show the

relative speed up (in percentage) achieved by DPS-SwissTM over the base SwissTM in

the STAMP benchmarks. A positive relative speed up means that DPS-SwissTM runs

faster, while a negative relative speed up means that the base SwissTM is faster. For all

workloads, we performed 20 executions and averaged them to obtain the results. We get the

best results from DPS-SwissTM in the case of kmeans benchmark. DPS-SwissTM attains

a relative speed up of around 10% in underloaded cases, and up to 15% in overloaded

cases. We attribute this performance gain to the small size of the transactions in kmeans.



CHAPTER 4. IMPLEMENTATION AND RESULTS 35

-10

-5

 0

 5

 10

 15

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada

R
el

at
iv

e 
S

pe
ed

up
 (

in
 p

er
ce

nt
ag

e)
2 threads
4 threads
8 threads

(a) Relative speedup in underloaded scenarios

-10

 0

 10

 20

 30

 40

 50

 60

bayes

genom
e

intruder

km
eans-high

km
eans-low

labyrinth

ssca2

vacation-high

vacation-low

yada

R
el

at
iv

e 
S

pe
ed

up
 (

in
 p

er
ce

nt
ag

e)

16 threads
32 threads
64 threads

(b) Relative speedup in overloaded scenarios

Figure 4.4: Relative speedup (in percentage) of DPS-SwissTM over base SwissTM across
STAMP workloads



CHAPTER 4. IMPLEMENTATION AND RESULTS 36

The DPS policy asks transactions whose access set is locked, to serialize: such a policy

is naturally inclined towards benefiting small transactions more. This is because the idea

of serialization in the cases when the access set is locked, may not be an optimal decision

for long transactions. With long transactions, it may happen that even if a transaction’s

access set is locked when the transaction started, the access set becomes free later by the

time the transaction actually accesses the addresses. At the same time, we note that the

scheduling policy does introduce some overheads in starting a transaction, which tend to

affect smaller transactions more than longer ones. So, if the prediction technique does not

help, the benchmarks with smaller transactions shall suffer more due to overheads. This

is evident from the performance losses of up to 3% in ssca2 benchmark. For most other

benchmarks, we generally face a performance degradation of up to 3% in underloaded

scenarios, and performance improvements in overloaded scenarios.

An interesting case is the intruder benchmark, where DPS-SwissTM gains significantly

(10-15%) in 8 threads and overloaded scenarios. In the intruder benchmark, a high number

of transactions dequeue elements from a single queue. Thus, the serializing nature of DPS

helps DPS-SwissTM to outperform the base SwissTM.

The maximum performance improvement is obtained in the yada benchmark, where we

speed up performance by up to 35% in 32 threads, and 55% in 64 threads. This suggests

that the prediction and the serialization techniques help reduce contention in the yada

benchmark.

4.3.3 Throughput results on red-black tree microbenchmark

Figure 4.5 shows the performance of base SwissTM, DPS-SwissTM, and ATS-SwissTM on

the red-black tree microbenchmark. Although microbenchmarks are not a representative

of the realistic applications, they help evaluate any overheads introduced in our scheme



CHAPTER 4. IMPLEMENTATION AND RESULTS 37

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

10
6  c

om
m

itt
ed

 tx
/s

ec
)

Number of threads

SwissTM
DPS-SwissTM
ATS-SwissTM

(a) 20% update operations

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

10
6  c

om
m

itt
ed

 tx
/s

ec
)

Number of threads

SwissTM
DPS-SwissTM
ATS-SwissTM

(b) 70% update operations

Figure 4.5: Throughput results for SwissTM and DPS-SwissTM on the red-black tree
microbenchmark

due to the time needed for prediction or serialization of transactions. We perform our

experiments on red-black tree benchmark, under 20% and 70% update operations and

integer set range of 16384. The results are similar across the two cases. We observe

that the prediction techniques of DPS-SwissTM incur a performance loss of around 13%

in the case of 1 thread, and this performance loss gradually decreases as the number of

threads increases. For example, with 8 threads, DPS-SwissTM incurs a performance loss

of 4% with 20% update operations (Figure 4.5(a)) and a performance loss of 2% with 70%

update operations (Figure 4.5(b)). On the other hand, ATS-SwissTM exhibits significantly

higher overheads. With 8 threads, ATS-SwissTM performs 20% worse than base SwissTM

when there are 20% update operations.

4.3.4 Number of aborts per commit

Apart from the throughput measurements, we also give the performance results in terms

of number of aborts per commit (APC). APC provides a measure of the wasted work

performed by an STM. A higher value of APC means that the STM aborts very often, and



CHAPTER 4. IMPLEMENTATION AND RESULTS 38

Table 4.1: Throughput and number of aborts per commit (APC) in different variants of
SwissTM on the STMBench7 benchmark. The experiments are performed on an 8-core
machine (4 processor dual-core AMD Opteron 8216 2.4 GHz, with 1024 KB cache)

#threads Base SwissTM Pool-SwissTM DPS-SwissTM ATS-SwissTM

Throughput APC Throughput APC Throughput APC Throughput APC

Read-dominated workloads

1 1037 0.00 1030 0.00 979 0.00 1024 0.00
2 2583 0.34 2471 0.37 2542 0.37 2528 0.34
3 3722 0.87 3784 0.39 3844 0.61 3845 0.43
4 5054 1.16 4774 0.45 4979 0.97 5028 0.60
6 6665 1.80 6169 0.64 6710 1.46 6847 1.00
8 8070 2.21 6838 0.49 8147 2.47 7469 1.08
10 7926 3.16 6906 0.40 7433 1.86 7441 0.99
12 6994 4.72 6891 0.21 7294 1.82 6892 0.67
16 5128 12.76 6902 0.17 6560 2.43 5263 0.68
20 4244 29.52 6993 0.14 6169 1.71 3954 0.86
24 3541 62.62 6472 0.14 5542 1.60 3620 0.90

Read-write workloads

1 444 0.00 430 0.00 458 0.00 471 0.00
2 1141 3.13 1104 2.56 1161 3.22 1131 2.54
3 1573 4.72 1485 2.16 1582 4.78 1533 3.43
4 1884 7.13 1606 1.93 1876 7.01 1926 3.77
6 2287 11.52 1909 1.71 2273 10.47 2301 5.59
8 2643 17.13 2026 0.94 2561 13.96 2535 7.18
10 2553 17.55 2233 0.69 2576 12.86 2362 6.07
12 2585 21.50 2165 0.57 2374 8.71 2475 5.70
16 2402 33.20 2343 0.52 2363 6.30 2290 6.78
20 1995 54.04 2410 0.30 2144 5.96 2080 5.71
24 1811 82.40 2275 0.24 2173 2.66 1962 2.86

Write-dominated workloads

1 248 0.00 242 0.00 241 0.00 239 0.00
2 623 8.76 556 5.96 625 9.07 619 6.02
3 792 13.17 702 5.15 775 13.62 774 8.89
4 941 17.88 783 3.80 943 18.47 884 11.36
6 1084 30.17 866 3.16 1084 26.48 1086 16.80
8 1202 42.95 986 1.73 1228 36.69 1231 18.93
10 1334 40.06 991 1.43 1286 41.96 1222 17.06
12 1228 48.03 1003 1.81 1318 43.58 1219 15.44
16 1216 63.44 1064 1.29 1261 45.49 1192 13.84
20 1149 93.88 1112 0.88 1145 46.29 1137 11.14
24 995 100.45 1143 0.45 1069 35.15 1074 8.33



CHAPTER 4. IMPLEMENTATION AND RESULTS 39

wastes a lot of work. So, according to the APC measure, an STM with a lower value of

APC is better.

We analyze the APC of different variants of SwissTM (base SwissTM, Pool-SwissTM,

DPS-SwissTM, and ATS-SwissTM) on different STMBench7 workloads. We show the re-

sults in Table 4.1. Our results demonstrate how serialization can drastically improve STMs

on the measure of APC. We observe that Pool-SwissTM outperforms all other variants of

SwissTM by a wide margin. Across all workload types, the APC of Pool-SwissTM does

not go above 6, and is around 1 on the average. APC is maximum in write-dominated

workloads, and minimum in read-dominated ones. Interestingly, the APC value of Pool-

SwissTM is maximum in underloaded scenarios, with the number of threads between 2 to

6 (depending on the workload type). This is due to the fact that overloaded systems face

high contention, which forces serialization, which in turn, drastically reduces the number

of aborts. On the contrary, the APC of the base SwissTM increases monotonically with

the number of threads, in each workload type. This is obvious, as increasing the number

of threads increases contention, which increases APC as the base SwissTM does not have a

serialization scheme. The APC for the DPS-SwissTM is close to that of the base SwissTM

for underloaded systems, in each workload type. But, the APC for DPS-SwissTM does

not increase (and sometimes decreases) as the system becomes more overloaded. This is

an interesting observation, which basically manifests the heuristic of serialization affinity.

In underloaded cases, DPS-SwissTM is designed to behave similar to the base SwissTM,

whereas for overloaded cases, DPS-SwissTM behaves like Pool-SwissTM. The APC for

ATS-SwissTM is lower as compared to base SwissTM and DPS-SwissTM, but much higher

than Pool-SwissTM. In general, the ratio of APC for ATS-SwissTM to the APC for Pool-

SwissTM is around 2-3 for underloaded systems, and around 5-10 for overloaded systems.

Comparing the APC for ATS-SwissTM and DPS-SwissTM, we observe that DPS-SwissTM



CHAPTER 4. IMPLEMENTATION AND RESULTS 40

faces a higher APC value due to the fact that DPS-SwissTM is more throughput-oriented

by design.

Based on our analysis of the results on SwissTM, we conclude that, in general, DPS-

SwissTM has higher throughput than all other variants of SwissTM. While it suffers over-

heads of up to 5-8% in rare cases, it often boosts the performance of base SwissTM, in

some cases by up to 55%. So, by the measure of throughput, DPS-SwissTM offers the

best choice. Moreover, the coarsest scheduler, Pool-SwissTM has lowest APC among all

variants of SwissTM, but Pool-SwissTM suffers performance penalty of up to 25% in many

cases. So, if one is ready to sacrifice performance to some extent for the sake of reducing

wasted work, then Pool-SwissTM is the best choice.

4.4 Individual Prediction Throughput Analysis

To quantify the benefits of individual prediction schemes (read set prediction and write set

prediction) in DPS-SwissTM, we switch-off the two predictions one by one and run the ex-

periments to evaluate the throughput gain over base SwissTM. We refer to the DPS scheme

variant which uses write prediction only, as WDPS, and similarly RDPS represents the DPS

scheme variant using read prediction only. The results show that no individual prediction

scheme (read or write) is strictly better than the other, and the DPS scheme tends to

average between the throughput gains achieved by the individual prediction schemes. This

can be thought of as follows. Both schemes have their overheads and performance benefits.

In a given workload type, one scheme may be boosting performance, while the other one

may be causing overheads. The DPS scheme incorporates both schemes and averages out

the performance gain. The results of the experiments under the three workload types of

STMBench7 are listed in Figures 4.6. WDPS-SwissTM seems to boost performance signif-

icantly, by up to 30-60% in highly overloaded cases, while causing performance penalties



CHAPTER 4. IMPLEMENTATION AND RESULTS 41

 0

 10

 20

 30

 40

 50

 60

 70

4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t g

ai
n 

(in
 p

er
ce

nt
ag

e)

Number of threads

 WDPS-SwissTM
 RDPS-SwissTM

 DPS-SwissTM

(a) Read-dominated workload

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t g

ai
n 

(in
 p

er
ce

nt
ag

e)

Number of threads

 WDPS-SwissTM
 RDPS-SwissTM

 DPS-SwissTM

(b) Read-write workload

-10

-5

 0

 5

 10

 15

 20

 25

4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t g

ai
n 

(in
 p

er
ce

nt
ag

e)

Number of threads

 WDPS-SwissTM
 RDPS-SwissTM

 DPS-SwissTM

(c) Write-dominated workload

Figure 4.6: Throughput gain (in percentage) over base SwissTM with individual prediction
strategies



CHAPTER 4. IMPLEMENTATION AND RESULTS 42

of up to 12% in some less overloaded cases with 12 threads. In general, WDPS-SwissTM

improves performance when the number of threads is at least 16. The graphs show that

the write set prediction is crucial for the performance gains of DPS in overloaded TMs

on read-dominated workloads. On the other hand, RDPS-SwissTM gives moderate per-

formance gains in both underloaded and overloaded cases, but never faces a performance

loss beyond 2% across all workloads. It may be interesting to learn the utility of a given

prediction scheme and turn it on or off on the fly.

4.5 Integration and Analysis with TinySTM

TinySTM is a lock-based STM, and has been implemented in C. Every address in TinySTM

has a single lock, which is eagerly acquired by a transaction writing to the address. When

a lock is acquired by a transaction, other transactions busy-wait for the lock. The reads

are invisible in TinySTM. We integrate our DPS scheme in TinySTM version 0.9.5. We

evaluate the benefit of scheduling in TinySTM on STMBench7 benchmark.

As we did for SwissTM, we compare the results on three workload types, read-dominated,

read-write, and write-dominated. We set long traversals off. We measure throughput for

20 executions for base TinySTM and DPS-TinySTM, and average the results.

Read-dominated workloads. In read-dominated workloads, as shown in Figure 4.7, DPS-

TinySTM shows performance comparable to the base TinySTM in underloaded cases

(±5%). As the TM becomes overloaded, DPS-TinySTM outperforms base TinySTM (by

180% in 10 threads, and up to 1900% in 24 threads). The steep fall of the performance

of TinySTM in overloaded systems can be attributed to its eager lock acquisition policy,

where the transactions abort very often due to the high contention caused by the read-write

conflicts. Moreover, due to the busy-waiting policy, a transaction waiting for a lock does

not yield the processor. DPS-TinySTM mitigates this performance loss to some extent by



CHAPTER 4. IMPLEMENTATION AND RESULTS 43

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

TinySTM
DPS-TinySTM

Figure 4.7: Throughput results for TinySTM on STMBench7 under read-dominated work-
loads

dynamically predicting such conflicts and avoiding them using serialization on the fly.

Read-write workloads. Under read-write workloads (Figure 4.8), we observe a trend similar

to that of read-dominated workloads. In underloaded systems (up to 8 threads), DPS-

TinySTM and base TinySTM have comparable performance. DPS-TinySTM performs

within ±6% of the base TinySTM in such cases. As the system becomes overloaded, DPS-

TinySTM maintains its throughput between 1200 and 1500 committed transactions per

second. On the other hand, the throughput of base TinySTM drops sharply, yielding a

small throughput of less than 100 above 12 threads. This results in a high performance

gain of DPS-TinySTM in overloaded cases ( around 400% in 10 threads and 2800% in 24

threads).

Write-dominated workloads. The experiments with the write-dominated workloads (Fig-

ure 4.9) show that DPS-enabled TinySTM performs strictly better than the base STM,

across all thread counts. Below 6 threads, the throughput gain remains within 5%. The



CHAPTER 4. IMPLEMENTATION AND RESULTS 44

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

TinySTM
DPS-TinySTM

Figure 4.8: Throughput results for TinySTM on STMBench7 under read-write workloads

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 6 8 10 12 16 20 24

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

.)

Number of threads

TinySTM
DPS-TinySTM

Figure 4.9: Throughput results for TinySTM on STMBench7 under write-dominated work-
loads



CHAPTER 4. IMPLEMENTATION AND RESULTS 45

gain rises to around 12% in the case of 6 threads. As the thread count increases further,

the throughput gain reaches the value of 3200% in 24 threads.

4.6 HTM integration

The simple design of DPS make DPS a suitable scheduling policy for integration with

hardware TMs. DPS uses the variable, success rate, and the data structures in form of

Bloom filters, and predicted read and write sets. We give an example of how DPS can be

integrated with an HTM. Each processor uses a register to store the current success rate of

the transactions running on the processor. Moreover, each processor uses a set of Bloom

filters to store the access sets of past few transactions. For most HTMs, the predicted read

and write sets can be stored similar to the read and write sets. For example, in LogTM, the

read and write sets are stored in virtual memory. Some HTMs use a mark bit in the cache

to represent read and write sets. For such cases, we can use a small processor buffer to store

the predicted read and write sets. When the success rate is lower than a threshold, the

processor checks, using the underlying conflict detection policy (usually cache coherence)

whether an address in the predicted read or write set is being written by some processor.

In that case, the processor waits until the particular address is free. The processor may get

the notification, when a particular address is free, using the cache coherence mechanism.



Chapter 5

Related Work

Contention managers [SS05, GHP05] have been widely studied and used to boost perfor-

mance of transactional memories in high contention scenarios. However, a TM system

consults a contention manager only after a conflict is detected. This results in wasted work

of at least one of the transactions.

There has been recent work in the direction of scheduling transactions in a TM. Initial

work in this direction has proposed schemes to serialize transactions that face contention

or reschedule a transaction on the core of a conflicting transaction. Yoo and Lee proposed

adaptive transactional scheduling (ATS) [YL08], which detects threads that face high con-

tention, and serializes them in a queue. The authors demonstrate the performance gain

obtained with ATS in RSTM [MSH+06] and LogTM [MBM+06a] for overloaded systems.

Our Pool scheduler works in a similar manner. The Pool scheduler forms a thread pool

rather than a queue, and thus saves overheads of queue insertion. In this thesis we argued

that Pool and ATS are coarse scheduling policies, and showed their performance results.

Transactions may abort due to several factors, and serializing aborted transactions in ev-

ery case may degrade performance. For example, a transaction may abort due to a failed

46



CHAPTER 5. RELATED WORK 47

validation, which occurs when another transaction with a conflicting write set commits.

In this case, the aborting transaction should retry immediately rather than serializing.

Ansari et al. proposed Steal-on-abort [ALK+09], which avoids wasted work by runtime

ordering of transactions on observing conflicts. An aborting transaction (say T ) is stolen

by its conflicting transaction (say T ′). The transaction T is released after T ′ commits. The

authors propose various strategies for the release of stolen transactions. Rossbach et al.

proposed TxLinux [RHP+07] as a variant of the Linux operating system, which provides

HTM functionality in the Linux OS. The OS scheduler in TxLinux is transaction aware,

and makes scheduling decisions such that transactions waste minimal work. All these TM

schedulers use serialization to avoid conflicts, but none of them predicts a conflict before

the conflict actually happens.

Another proposal, CAR-STM [DHS08] maintains a transaction scheduling queue per

core, and introduces a serializing contention management for resolving conflicts by en-

queuing conflicting transactions to the appropriate queue. The serializing contention man-

ager does ensure that two transactions never conflict more than once. Still, as for any

other contention manager, the serializing contention manager is reactive, and does not

help to prevent conflicts. CAR-STM proposes yet another feature, called proactive colli-

sion avoidance, which uses a probabilistic measure of conflict between transactions, and

tries to avoid executing those transactions concurrently, which are more likely to conflict.

However, CAR-STM expects the application to provide the probability measure. This is

generally not possible for an application to determine apriori. For this reason, most of the

evaluation using CAR-STM has not used the proactive collision avoidance feature. Our

prediction based scheduler essentially discovers the probability of conflict on the fly, and

uses this probability to postpone the execution of transactions which are likely to conflict

with currently executing transactions.



CHAPTER 5. RELATED WORK 48

Indeed, prediction in TM has been studied for different purposes. For example, Wali-

ullah and Stenstrom [WS08] use a prediction technique to insert a checkpoint before the

first predicted conflicting access executes. This saves execution time up to the occurrence

of first conflicting access, from the start of the atomic block. As this scheme preserves

wasted work before the checkpoint, it gains performance due to reduced aborts.



Chapter 6

Conclusion

We introduced novel access set prediction techniques for transactional memories. We de-

veloped and used the idea of temporal locality for predicting read accesses of transactions.

We used the write set information of aborted transactions for predicting write accesses of

restarting transactions. We observed that existing serialization based TM schedulers per-

form better when the number of threads is high. Based on this observation, we developed

a heuristic of serialization affinity, which encourages serialization of transactions when the

number of threads is high. Using the prediction techniques and the serialization affin-

ity, we built our dynamic prediction based scheduler (DPS), which dynamically serializes

transactions based on the current contention and the likelihood of conflict with currently

executing transactions.

We illustrate the performance improvement obtained with DPS by integrating DPS

with different STMs, SwissTM and TinySTM. Unlike existing TM schedulers, DPS does

not serialize transactions in every scenario, which allows DPS to perform comparable to

base STMs when the number of threads is low. We motivate that the number of threads

can exceed the number of cores in practical scenarios, due to multiple tasks executing on

49



CHAPTER 6. CONCLUSION 50

a limited number of cores, or to exploit parallel nesting. Our experiments on realistic

benchmarks, like STMBench7, show that DPS boosts the performance in such cases by up

to 55% in SwissTM and up to 3000% in TinySTM. Moreover, we observe that DPS incurs

negligible overheads of prediction and serialization. In cases where contention is low, and

the number of threads is less than the number of cores, DPS-enabled STMs perform 5-8%

worse than the base STMs.

In general, DPS can be integrated with any STM or HTM. The prediction techniques

are a step towards obtaining a clairvoyant TM, where the TM, at the start of a transaction,

knows which addresses shall be accessed by the transaction.

Future work in this direction shall investigate how an OS scheduler can be used to refine

the prediction scheme. One possibility is that the OS informs the TM how many cores

are available to the application. The TM can then further use this information to better

adapt the serialization of transactions. Moreover, our evaluation of individual prediction

schemes (read set prediction and write set prediction) showed that under a given scenario,

one scheme may benefit performance, while the other scheme incurs overheads. We believe

that adapting DPS in a way that it can turn a specific scheme on or off, shall further boost

the performance of DPS-enabled TMs.



Bibliography

[AAK+05] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiser-

son, and Sean Lie. Unbounded transactional memory. In International Sym-

posium on High-Performance Computer Architecture, pages 316–327. IEEE

Computer Society, 2005.

[ABCdO96] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira.

Characterizing reference locality in the www. In DIS ’96: Proceedings of the

fourth international conference on on Parallel and distributed information

systems, pages 92–107. IEEE Computer Society, 1996.

[AFS08] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism

in transactional memory. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 163–174. ACM, 2008.

[AKH03] J. H. Anderson, Y. Kim, and T. Herman. Shared-memory mutual exclusion:

Major research trends since 1986. Distributed Computing, pages 75–110, 2003.

[ALK+09] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis, Chris

Kirkham, and Ian Watson. Steal-on-abort: Improving transactional mem-

ory performance through dynamic transaction reordering. In International

51



BIBLIOGRAPHY 52

Conference on High Performance and Embedded Architectures and Compil-

ers. Springer, January 2009.

[BGH+08] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A.

Wood. Tokentm: Efficient execution of large transactions with hardware

transactional memory. In International Symposium on Computer Architec-

ture. IEEE Computer Society, Jun 2008.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[Den68] Peter J. Denning. The working set model for program behavior. Communi-

cations of the ACM, 11(5):323–333, 1968.

[DFL+06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir,

and Daniel Nussbaum. Hybrid transactional memory. In International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 336–346. ACM, 2006.

[DGK08] A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching transactional mem-

ory. Technical Report LPD-REPORT-2008-013, Ecole Polytechnique Federale

de Lausanne, 2008.

[DHS08] Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm: scheduling-based

collision avoidance and resolution for software transactional memory. In An-

nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-

puting, pages 125–134. ACM, 2008.

[DS72] Peter J. Denning and Stuart C. Schwartz. Properties of the working-set

model. Communications of the ACM, 15(3):191–198, 1972.



BIBLIOGRAPHY 53

[DSS06] David Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In In-

ternational Symposium on DIStributed Computing, pages 194–208. Springer,

2006.

[EGLT76] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The notions of

consistency and predicate locks in a database system. Communications of the

ACM, pages 624–633, 1976.

[GHP05] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic con-

tention management. In International Symposium on DIStributed Computing,

pages 303–323. Springer, 2005.

[GHP06] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Towards a theory

of transactional contention managers. In Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, pages 316–317. ACM,

2006.

[GK08] Rachid Guerraoui and Micha l Kapa lka. On the correctness of transactional

memory. In ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming. ACM, 2008.

[Her91] Maurice Herlihy. Wait-free synchronization. IEEE Transactions on Parallel

and Distributed Systems, pages 124–149, 1991.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight transactions. In

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, pages 388–402. ACM, 2003.



BIBLIOGRAPHY 54

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free syn-

chronization: Double-ended queues as an example. International Conference

on Distributed Computing System, pages 522–529, 2003.

[HLMI03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III.

Software transactional memory for dynamic-sized data structures. In Annual

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

pages 92–101. ACM, 2003.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural

support for lock-free data structures. In International Symposium on Com-

puter Architecture, pages 289–300. IEEE Computer Society, 1993.

[HMJH05] Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy.

Composable memory transactions. In ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pages 48–60. ACM, 2005.

[HWC+04] Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carlstrom,

John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Chris-

tos Kozyrakis, and Kunle Olukotun. Transactional memory coherence and

consistency. In International Symposium on Computer Architecture, pages

102–113. IEEE Computer Society, 2004.

[KBG97] Alain Kägi, Doug Burger, and James R. Goodman. Efficient synchronization:

Let them eat qolb. In International Symposium on Computer Architecture,

pages 170–180, 1997.

[KCH+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and

Anthony Nguyen. Hybrid transactional memory. In ACM SIGPLAN Sym-



BIBLIOGRAPHY 55

posium on Principles and Practice of Parallel Programming, pages 209–220.

ACM, 2006.

[LR07] J. R. Larus and R. Rajwar. Transactional Memory. Synthesis Lectures on

Computer Architecture. Morgan & Claypool, 2007.

[MBM+06a] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and

David A. Wood. Logtm: Log-based transactional memory. In Interna-

tional Symposium on High-Performance Computer Architecture, pages 254–

265. IEEE Computer Society, Feb 2006.

[MBM+06b] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.

Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested

transactional memory in logtm. In International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 359–370.

ACM, New York, NY, USA, Oct 2006.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Transactions on

Computer Systems, 9(1):21–65, 1991.

[MIS05] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive

software transactional memory. In International Symposium on DIStributed

Computing, pages 354–368. Springer, 2005.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In Annual ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages

267–275. ACM, 1996.



BIBLIOGRAPHY 56

[MSH+06] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,

David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the

overhead of software transactional memory. In ACM SIGPLAN Workshop on

Transactional Computing. Jun 2006.

[MTC+07] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,

Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.

An effective hybrid transactional memory system with strong isolation guar-

antees. In International Symposium on Computer Architecture, pages 69–80.

ACM, 2007.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database up-

dates. Journal of the ACM, pages 631–653, 1979.

[RFF07] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional

memory with scalable time bases. In ACM Symposium on Parallelism in

Algorithms and Architectures. ACM, Jun 2007.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling

highly concurrent multithreaded execution. In Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 294–305. ACM/IEEE, 2001.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of

lock-based programs. In International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 5–17. ACM, Oct

2002.



BIBLIOGRAPHY 57

[RHL05] Ravi Rajwar, Maurice Herlihy, and Konrad K. Lai. Virtualizing transactional

memory. In International Symposium on Computer Architecture, pages 494–

505. IEEE Computer Society, 2005.

[RHP+07] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ra-

madan, Bhandari Aditya, and Emmett Witchel. Txlinux: using and managing

hardware transactional memory in an operating system. In ACM Symposium

on Operating System Principles, pages 87–102. ACM, 2007.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and

Benjamin Hertzberg. Mcrt-stm: a high performance software transactional

memory system for a multi-core runtime. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 187–197. ACM, Mar

2006.

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,

1982.

[SMIS06] Michael F. Spear, Virendra J. Marathe, William N. Scherer Iii, and Michael L.

Scott. Conflict detection and validation strategies for software transactional

memory. In International Symposium on DIStributed Computing. Springer,

2006.

[SS05] William N. Scherer and Michael L. Scott. Advanced contention manage-

ment for dynamic software transactional memory. In Annual ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, pages 240–248.

ACM, 2005.



BIBLIOGRAPHY 58

[SSH+07] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra J.

Marathe, Sandhya Dwarkadas, and Michael L. Scott. An integrated hardware-

software approach to flexible transactional memory. In International Sympo-

sium on Computer Architecture, pages 104–115, New York, NY, USA, 2007.

ACM.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Annual ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages

204–213. ACM, 1995.

[ST97] Nir Shavit and Dan Touitou. Software transactional memory. Distributed

Computing, 10(2):99–116, 1997.

[WS08] M. M. Waliullah and Per Stenström. Intermediate checkpointing with conflict-

ing access prediction in transactional memory systems. In IEEE International

Parallel and Distributed Processing Symposium, pages 1–11. IEEE Computer

Society, 2008.

[YBM+07] Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. Moore, Haris Volos,

Mark D. Hill, Michael M. Swift, and David A. Wood. Logtm-se: Decoupling

hardware transactional memory from caches. In International Symposium

on High-Performance Computer Architecture. IEEE Computer Society, Feb

2007.

[YL08] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling

for transactional memory systems. In ACM Symposium on Parallelism in

Algorithms and Architectures, pages 169–178. ACM, 2008.


