
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Accelerating Transactional Memory by Exploiting
Platform Specificity
Wenjia Ruan
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Ruan, Wenjia, "Accelerating Transactional Memory by Exploiting Platform Specificity" (2015). Theses and Dissertations. 2786.
http://preserve.lehigh.edu/etd/2786

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2786?utm_source=preserve.lehigh.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Accelerating Transactional Memory by Exploiting

Platform Specificity

by

Wenjia Ruan

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

August, 2015



Copyright

Wenjia Ruan

ii



Approved and recommended for acceptance as a dissertation in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Wenjia Ruan
Accelerating Transactional Memory by Exploiting Platform Specificity

Date

Prof. Michael Spear, Dissertation Director, Chair
(Must Sign with Blue Ink)

Accepted Date

Committee Members

Prof. Hank Korth

Prof. Gang Tan

Dr. Justin Gottschlich

iii



Acknowledgements

The life of a Ph.D student is not supposed to be easy. My student life has been fun

and challenging, and sometimes even relaxing, but it never has been easy. Without

the invaluable all-around guidance from my respectable, genius and extremely kind

advisor, advice from my committee members, help from lab-mates and friends and

unlimited support from my parents, I never would have been able to finish this dis-

sertation.

I would like to express my deepest and most sincere gratitude to my advisor, Prof.

Michael Spear, for his excellent guidance, caring, patience and complete empathy for

his students. I still remember the first meeting we had, in which I expressed my

interest in joining his group and frankly confessed ignorance of this research area.

He started helping me develop my research with a hundred percent of patience, and

that patience continued ever since. During the past few years, I knew whom I could

turn to when I encountered research bottlenecks. No matter whether they were big

picture confusions or very detailed debugging problems, Prof. Spear always had an

open door for discussions and always provided fruitful insights during each meeting.

He has not only been supportive about research, but has always been understanding

of the ups and downs of his students. He has been generous with vacation time and

encouraged taking time away from his lab for beneficial internships.

iv



I also would like to thank my committee members, Prof. Gang Tan, Prof. Hank

Korth and Dr. Justin Gottschlich, for sharing their precious time and insightful sug-

gestions regarding my Ph.D proposal, general exam and dissertation. Special thanks

go to Behnam Robatmili, Pablo Montesinos and Calin Cascaval from Qualcomm Re-

search, with whom I worked with for an internship. Because of them I experienced

an enlightened and joyful summer collaborating on research, and I will be fortunate

enough to work with them for my first job after my Ph.D program graduation.

Infinite thanks go to my Lehigh lab-mates and friends, especially Yujie Liu, Mengtao

Sun, Le Zhao and Sambhawa Priya. I received a wide spectrum of help from them,

from research problems to personal life. I would not have made it through my pro-

gram to today without our countless discussions together, and I feel blessed to have

had them along on this journey.

Last but not the least, I would like to thank my parents, especially my mother Yunxia

Chen, who always has had faith in me and always has had my back unconditionally.

Much of the work presented in this dissertation was supported in part by the Na-

tional Science Foundation under grants CNS-1016828, CCF-1218530, and CAREER-

1253362. Any opinions, findings, conclusions or recommendations expressed in this

material are my own and those of my coauthors and do not necessarily reflect the

views of the National Science Foundation.

v



Dedicated to my family, who gave me love, help and strength.

vi



Contents

Acknowledgement iv

Dedication vi

List of Tables xi

List of Figures xii

List of Algorithms xiv

Abstract 1

1 Introduction 3

1.1 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Software TM Framework . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Hybrid TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Dissertation Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 The Platform Factor . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Reducing Platform-specific Instrumentation Costs 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.2 Per-Thread Metadata Access Costs . . . . . . . . . . . . . . . . . . . 23

2.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The Cost of Accessing the TM Library . . . . . . . . . . . . . . . . . 27

2.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Architectural Impacts on Algorithm Selection and Optimization . . . 30

2.4.1 Platform Impact on Optimization . . . . . . . . . . . . . . . . 30

2.4.2 Tackling the Cost of Fences . . . . . . . . . . . . . . . . . . . 34

2.4.3 The Impact of Hardware-Assisted STM Libraries . . . . . . . 40

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Boosting Timestamp-based TM by Exploiting Hardware Cycle Coun-

ters 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Hardware and Software Clocks . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Software Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Hardware Cycle Counters . . . . . . . . . . . . . . . . . . . . 48

3.3 Applying rdtscp to STM . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Check-Once Ownership Records . . . . . . . . . . . . . . . . . 52

3.3.3 Check-Twice Ownership Records . . . . . . . . . . . . . . . . 58

3.3.4 Timestamp Extension . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Privatization Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 The Privatization Problem . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Achieving Privatization Safety . . . . . . . . . . . . . . . . . . 62

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Microbenchmark Performance . . . . . . . . . . . . . . . . . . 65

3.5.2 STAMP Performance . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



4 Reducing the Abort Rate by Delaying Read-Modify-Writes 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 An Algorithm for Delaying RMWs . . . . . . . . . . . . . . . . . . . 80

4.2.1 STM Background . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Problem: Aborts on Read-Modify-Write . . . . . . . . . . . . 82

4.2.3 The Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 TxRMW via Live-Out Analysis . . . . . . . . . . . . . . . . . . . 89

4.3.2 TxRMW via Programmer Annotation . . . . . . . . . . . . . . . 90

4.3.3 Optimized Programmer Annotations . . . . . . . . . . . . . . 92

4.4 Impact on Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Systems Evaluated . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2 Microbenchmark Performance . . . . . . . . . . . . . . . . . . 98

4.5.3 STAMP Performance . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.4 Memcached Performance . . . . . . . . . . . . . . . . . . . . . 106

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Exploring Collaborations between Software and Hardware Transac-

tions 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 The Hybrid Cohorts Algorithm . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Key Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



5.4.1 Microbenchmark Performance . . . . . . . . . . . . . . . . . . 132

5.4.2 STAMP Performance . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.3 Memcached Performance . . . . . . . . . . . . . . . . . . . . . 138

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusion and Future Work 141

Bibliography 144

Vita 158

x



List of Tables

2.1 Representative STM algorithms. . . . . . . . . . . . . . . . . . . . . . 32

3.1 Quiescence overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 STM-Related Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Frequency of RMW operations in STAMP benchmarks. . . . . . . . . 102

5.1 Frequency of each type of commit with HyCo on Vacation and Yada . 137

5.2 Frequency of each type of commit with HyCo on Memcached . . . . . 139

xi



List of Figures

1.1 Example of a Hash Table . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Data race of two insertion operations on a Hash Table . . . . . . . . . 5

1.3 Example of compiler instrumentation . . . . . . . . . . . . . . . . . . 8

1.4 A transaction that modifies a highly contended variable. . . . . . . . 15

2.1 The cost of thread-local storage vs. additional function parameters . 25

2.2 The cost of mechanisms for reaching (adaptive) instrumentation . . . 28

2.3 STAMP speedups vs. single-threaded Mutex . . . . . . . . . . . . . . 33

2.4 State Transitions of a Cohort . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Inlined and non-inlined versions of the Mutex algorithm on di↵erent

platforms. Di↵erences between IA32/Linux and IA32/MacOS are neg-

ligible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Microbenchmark results. Hashtable experiments are configured with

256 buckets, 8-bit keys, and a 0% lookup ratio. Red-Black Tree exper-

iments use 20-bit keys and an 80% lookup ratio. . . . . . . . . . . . . 66

3.2 STAMP results on the single-chip system (1/2). . . . . . . . . . . . . 70

3.3 STAMP results on the single-chip system (2/2). . . . . . . . . . . . . 71

3.4 STAMP results on the dual-chip system (1/2). . . . . . . . . . . . . . 74

3.5 STAMP results on the dual-chip system (2/2). . . . . . . . . . . . . . 75

4.1 Example of reordering possibility . . . . . . . . . . . . . . . . . . . . 78

xii



4.2 Basic publication example (reproduced from Figure 1 of Menon et al.

[2008]). The vertical ordering of instructions is meant to imply the

execution order on a sequentially consistent machine. . . . . . . . . . 94

4.3 Publication violation example with delayed RMWs. . . . . . . . . . . 95

4.4 Red-Black Tree experiments augmented with a global vector of coun-

ters to monitor the height at which searches terminate. . . . . . . . . 99

4.5 Red-Black Tree experiments augmented with a global counter to mon-

itor the number of elements in the tree. . . . . . . . . . . . . . . . . . 101

4.6 STAMP results on the STM machine [1/2]. HC and LC refer to high-

and low-contention command-line configurations. . . . . . . . . . . . 103

4.7 STAMP results on the STM machine [2/2]. HC and LC refer to high-

and low-contention command-line configurations. . . . . . . . . . . . 104

4.8 STAMP results on the HTM machine [1/2]. HC and LC refer to high-

and low-contention command-line configurations. . . . . . . . . . . . 106

4.9 STAMP results on the HTM machine [2/2]. HC and LC refer to high-

and low-contention command-line configurations. . . . . . . . . . . . 107

4.10 Memcached performance on a 2-chip, 12-core system. . . . . . . . . . 109

5.1 State transitions for the Hybrid Cohorts (top) and Cohorts (bottom)

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Microbenchmark performance . . . . . . . . . . . . . . . . . . . . . . 133

5.3 STAMP performance(1/2). HC and LC refer to high- and low-contention

command-line configurations. . . . . . . . . . . . . . . . . . . . . . . 135

5.4 STAMP performance (2/2). HC and LC refer to high- and low-contention

command-line configurations. . . . . . . . . . . . . . . . . . . . . . . 136

5.5 HyCO-Turbo with/without STx:HC enabled on STAMPVacation (High

Contention) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 Memcached Performance and Analysis . . . . . . . . . . . . . . . . . 139

xiii



List of Algorithms

1 Algorithm Example: TL2 (an Orec-based, Lazy, Write-back Algorithm) 9

2 Helper Functions for TL2 . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Cohorts Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Cohorts Algorithm continued. . . . . . . . . . . . . . . . . . . . . . . . 37

5 A simple software global clock object . . . . . . . . . . . . . . . . . . . 48

6 STM-related variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Canonical STM algorithm with check-once ownership records . . . . . 53

8 Helper functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Replacement TxCommit code when using rdtscp with check-once orecs 56

10 Replacement TxBegin code when using rdtscp with check-once orecs . 57

11 Canonical STM algorithm with check-twice ownership records . . . . . 59

12 Replacement TxCommit code when using rdtscp with check-twice orecs 59

13 Timestamp extension with a global shared memory clock . . . . . . . . 61

14 Timestamp extension with rdtscp . . . . . . . . . . . . . . . . . . . . 61

15 Privatization safe STM algorithm using check-twice orecs and rdtscp . 63

16 A lazy STM algorithm with support for delayed RMWs. Underlined

code represents additions relative to a traditional lazy STM algorithm. 83

17 Helper Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiv



18 An algorithm for delayed RMWs that assumes the variables involved in

delayed RMWs are annotated. . . . . . . . . . . . . . . . . . . . . . . 91

19 Aggressive optimizations for the common case: if any annotated location

is read or written, delayed RMWs are disabled for the transaction. . . 93

1 Hybrid Cohorts metadata. . . . . . . . . . . . . . . . . . . . . . . . . . 125

20 Begin and end instrumentation for HTx transactions. Parameters to

xabort indicate the line to jump to after canceling a transaction attempt.126

21 Begin instrumentation for STx transactions. . . . . . . . . . . . . . . . 127

22 End instrumentation for STx transactions. . . . . . . . . . . . . . . . . 128

23 Begin and end instrumentation for Serial transactions . . . . . . . . . 129

24 Hybrid Cohorts read and write instrumentation . . . . . . . . . . . . . 130

xv



Abstract

Transactional Memory (TM) is one of the most promising alternatives to lock-based

concurrency, but there still remain obstacles that keep TM from being utilized in the

real world. Performance, in terms of high scalability and low latency, is always one

of the most important keys to general purpose usage. While most of the research in

this area focuses on improving a specific single TM implementation and some default

platform (a certain operating system, compiler and/or processor), little has been

conducted on improving performance more generally, and across platforms.

We found that by utilizing platform specificity, we could gain tremendous perfor-

mance improvement and avoid unnecessary costs due to false assumptions of platform

properties, on not only a single TM implementation, but many. In this dissertation,

we will present our findings in four sections: 1) we discover and quantify hidden costs

from inappropriate compiler instrumentations, and provide suggestions and solutions;

2) we boost a set of mainstream timestamp-based TM implementations with the x86-

specific hardware cycle counter; 3) we explore compiler opportunities to reduce the

transaction abort rate, by reordering read-modify-write operations — the whole tech-

nique can be applied to all TM implementations, and could be more e↵ective with

some help from compilers; and 4) we coordinate the state-of-the-art Intel Haswell

TSX hardware TM with a software TM “Cohorts”, and develop a safe and flexible

Hybrid TM, “HyCo”, to be our final performance boost in this dissertation.

The impact of our research extends beyond Transactional Memory, to broad areas

1



of concurrent programming. Some of our solutions and discussions, such as the syn-

chronization between accesses of the hardware cycle counter and memory loads and

stores, can be utilized to boost concurrent data structures and many timestamp-based

systems and applications. Others, such as discussions of compiler instrumentation

costs and reordering opportunities, provide additional insights to compiler design-

ers. Our findings show that platform specificity must be taken into consideration to

achieve peak performance.
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Chapter 1

Introduction

Over twenty years ago, concurrent programming was a cutting edge area in computer

science. People were excited to finally welcome their first personal computers, with the

CPU frequency of a little over 50Hz, and a single core. Concurrent programming was

therefore seen to be surreal, only applied to scientific or extremely high-performance

computing applications. More importantly, the traditional way to write scalable

concurrent programs with lock-based synchronization was widely considered to be

time consuming and error prone. In 1993, while most people were excited about

the latest sequential video game DOOM or the Microsoft Minesweeper, Herlihy and

Moss [36] came up with the idea of the first hardware Transactional Memory (TM)

to help programmers write high quality concurrent programs.

As of right now, in mid 2015, the mainstream specification for a personal de-

vice, including a variety of mobile devices, would include a CPU of at least two

cores, some with hyper-threading, which means four independent threads could be

exploited to cope with a single task simultaneously. So before we introduce the idea of

Transactional Memory, we will first examine the necessities and pitfalls of concurrent

programming.

An easy introductory example is interactions with a hash table. A hash table,

3



“Hello”              1

“World”            12 “?”                              22

“!”                                5 “PhD”                  25 “grad”                  55

buckets

data      key0
1
2
3
4
5
6
…

Figure 1.1: Example of a Hash Table

shown in Figure 1.1, is a data structure that stores a set of items. Each datum is paired

with a “key”. A hash table uses the “key” and a hash function to calculate an index

into an array of buckets, and find the corresponding datum. The implementation of

hash tables is usually straightforward: the buckets are an array of the heads of linked

lists.

Accessing such a hash table, typically including operations of insert, lookup and

remove of an element, is not di�cult in sequential code. Now consider a situation in

which a large number of insert operations are required at the initializing phase of

an application. With multi-threading available, it would save much time to execute

concurrent inserts, as each insert may touch a di↵erent bucket and therefore not

interfere with others. However, that being said, it is still possible for more than

one insert to have a data race on the same location: two threads may try to insert

elements into the same bucket slot at the same time, and may result in an unpredicted

execution ordering, such as that shown in Figure 1.2. On lines 3 and 4, threads 1 and

2 both read head as pointing to the original head (data “World”). However, thread

1 and 2 are interleaved, and in the end the element1 is lost due to the redirection of

buckets[2] to element2 (line 7) and the latter pointing to the old linked list head

4



Thread 1 | Thread 2

... | ...

1 int key = element1.key; | int key = element2.key;

2 idx = hash(key); // gets 2 | idx = hash(key); // also gets 2

|

3 node* head = buckets[idx]; |

4 | node* head = buckets[idx];

5 buckets[idx] = &element1; |

6 element1.next = head; |

7 | buckets[idx] = &element2;

8 | element2.next = head;

Figure 1.2: Data race of two insertion operations on a Hash Table

(line 8). What makes things worse is that the execution ordering is nondeterministic,

therefore the result is unpredictable. To fix it, we say that there is a data race on

location bucket[2], and from line 3 to 6 of thread 1 (or line 4 to 8 of thread 2) is a

critical section.

A critical section is a piece of code that accesses shared objects that should not

be concurrently accessed by more than one thread of execution without protection of

some synchronization mechanism.

The traditional way to synchronize threads is to use locks to protect critical sec-

tions. There are basically two kinds of lock-based synchronization: coarse-grained

and fine-grained. A coarse-grained lock is a single lock that protects many shared

objects. It is the simplest way to synchronize threads. Usually the entrance of the

critical section requires a lock acquisition, and the exit of the critical section releases

the same lock. But as a result, coarse-grained locking lacks a performance benefit

due to a reduction in concurrency: each thread is mutually exclusive to each other

when they are executing in critical sections. (Note that in the scope of concurrent

programming, the “performance” usually contains two criteria: latency and scalabil-

ity. The former typically refers to single thread overhead, while the latter focuses

on the ability of a system to improve the throughput of a certain workload by in-

5



creasing the thread count.) On the other hand, fine-grained locking can be good for

scalability. The mechanism requires more careful design, which allows multiple locks,

each guarding a single shared object shared object. However, fine-grained locking

is error-prone, introducing deadlock (two or more competing threads are waiting for

each other to finish), livelock (states of threads may keep changing but without for-

ward progress), priority inversion (high priority thread is dependent upon a lock held

by a low priority thread), etc. Keep in mind that it is also very di�cult to debug a

concurrent program that has fine-grained locking, as more locks may provide nested

locking bugs. This also results in di�culty in maintening large-scale applications.

1.1 Transactional Memory

Transactional Memory (TM), proposed by Herlihy and Moss [36], is a concurrency

control mechanism that provides atomic blocks to protect critical sections, in which

a group of load and store instructions appear to execute without interruptions as if a

single instruction. Unlike lock-based mechanisms, programmers writing transactional

code only need to specify what blocks of code should be atomically executed, not how,

and the atomicity will be achieved by the underlying TM implementation. In other

words, an ideal transactional memory implementation should o↵er the ease of use of

coarse-grained locking, and the good performance of fine-grained locking.

Although Herlihy and Moss first introduced TM in a hardware prototype, hard-

ware support for TM did not come to mainstream processors easily. Shavit and

Touitou [74] proposed a software version of TM in 1995. With the absence of hard-

ware support for TM for many years, research on Software Transactional Memory

(STM) has been well developed [21, 35, 25, 22, 71, 91, 62, 80, 84, 2, 21, 62, 89].

Since 2012 however, hardware support for TM has come to mainstream processors

thanks to IBM [41, 90] and Intel [40], which encouraged the development of another

6



set of TM implementations that contain both hardware transactions and software

transactions. They are called Hybrid TM. No matter what the implementation is,

the life cycle for a transaction should start with the beginning of a critical section

(atomic block), and end with either a) a successful commit of all the updates to the

memory (visible to other threads) atomically; or b) an abort to discard all updates

as if the transaction never happened. In a typicial implementation, transactions can

run concurrently if they do not conflict with each other. A conflict happens when

two concurrent transactions access the same memory location with one of them being

a write. The TM system keeps track of the read and written locations (known as

read/write sets) of transactions in order to detect such conflicts, and automatically

enforces an ordering among conflicting transactions. This tracking of the conflicts is

named “conflict detection”, and is one of the major di↵erences between software and

hardware TMs.

Hardware Transactional Memory (HTM) often uses cache coherence protocols to

detect conflicts when a transaction is live. For example, Intel TSX [39] has the

“requestor-wins” policy, in the sense that a cache line is requested if that location

is accessed by a transaction, and once a cache line is required by another hardware

thread, the current transaction which holds it will abort. First-generation hardware

TM systems as a result carry a number of limitations. Most significantly, these imple-

mentations are “best e↵ort” [44], in that they do not guarantee that any transaction

attempt will commit. In addition to conflicts, a transaction attempt may fail if it

accesses more unique locations than the hardware can support, or if there is an in-

terrupt (e.g., a timer interrupt) during its execution. Consequently, a TM runtime

system that wishes to use hardware TM must provide a STM fall-back path. STM

has more complex conflict detection mechanisms, which we will describe briefly in

Section 1.1.1. Hybrid TM is introduced in Section 1.1.2.
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1 t r an s a c t i on a t om i c { TxBegin ( ) ;
2 va l = TxRead (&counter ) ;
3 counter++; ===> va l++;
4 TxWrite (&counter , va l ) ;
5 } TxCommit ( ) ;

Figure 1.3: Example of compiler instrumentation

1.1.1 Software TM Framework

When programmers write transactionalized code, for instance, as shown on the left

side of Figure 1.3, the compiler will translate source code to machine instructions

that achieve atomic behavior via calls to a TM library, as shown on the right side

of Figure 1.3. In this example, each TM function starts with an indicator of “Tx”.

These functions are typically exposed by every STM implementation. Each of them

has its own duty:

• TxBegin() marks the beginning of a transaction, creates a checkpoint and ini-

tializes per-thread metadata to support tracking conflicts on reads and ensuring

atomicity of writes;

• TxRead(<T>* addr) reads a location addr of type T, and ensures the read is

consistent with all prior reads and writes performed by the transaction.

• TxWrite(<T>* addr, <T> val) writes to a location addr with value val and

type T, so that the subsequent reads within the same transaction will see the

update, but other transactions will not (yet) see the update.

• TxCommit() marks the end of a transaction, and makes writes visible to other

transactions if and only if doing so will produce a result indistinguishable from

an execution history in which one transaction runs at a time.

The implementation details for each function of a specific STM algorithm vary in

several aspects, namely: techniques for detecting conflicts, when to announce con-
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Algorithm 1: Algorithm Example: TL2 (an Orec-based, Lazy, Write-back Al-
gorithm)

1

transactions : Tx[] //[Global] Thread metadata: storage
// all the thread local data

timestamp : Integer //[Global] Timestamp: Initially 0
orecs : OwnershipRecord[] //[Global] Orec table: contains locks

// associated with memory locations
start : Integer //[Thread local] Tx starting time
reads/writes : reads[]/writes[] //[Thread local] Read/write set
my lock : Integer //[Thread local] Tx unique ID: MSB is 1

2 TxBegin()
3 start timestamp
4 reads writes locks ;

5 TxCommit()
6 if writes = ; then
7 return

8 AcquireLocks ()
9 end AtomicInc(&timestamp, 1)

10 Validate(end)
11 WriteBack()
12 ReleaseLocks(end)

13 TxRead(addr)
14 if addr 2 writes then

15 return writes[addr]

16 o1  orecs[addr].getValue()
17 v  ⇤addr
18 o2  orecs[addr].getValue()
19 if o1 = o2 and o2 

start and ¬Locked(o2) then
20 reads reads [ {addr}
21 return v

22 else Abort()

23 TxWrite(addr, v)
24 writes writes [ {haddr, vi}

Algorithm 2: Helper Functions for TL2

1 ReleaseLocks(end)
2 foreach addr in locks do

3 orecs[addr].releaseTo(end)

4 WriteBack()
5 foreach haddr, vi in writes do

6 ⇤addr  v

7 Validate(end)
8 if end 6= start+ 1 then

9 foreach addr in reads do

10 v  orecs[addr].getValue()
11 if v � start and v 6= my lock

then

12 Abort ()

13 AcquireLocks()
14 foreach addr in writes do

15 if

¬ orecs[addr].acquireIfLEQ(start)
then

16 Abort ()

17 else locks locks [ {addr}

18 Abort()
19 foreach addr in locks do

20 orecs[addr].releaseToPrevious()

21 restartTransaction()
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flicts, and when the actual updates happen. We now present TL2 [21] in Algorithm 1

and 2 as a reference.

We first introduce the concept of ownership records (orecs). An orec can be

considered as a special lock. It either stores the identity of the lock holder, or the

most recent time at which this orec was unlocked. The implementation for an orec

is straightforward. For instance, for a 64 bit-wide orec, the most significant bit of

the orec is used to indicate whether the remaining 63 bits represent identity of a lock

holder or a timestamp.

For algorithms with orec-based conflict detection, during each transaction, every

location accessed in the memory is mapped to an orec. Usually, in each TxRead

(addr), a transaction T compares the value of orec o of addr with T’s last consistent

time t. If “o is not locked” and “ o  t”, the transaction may continue, because this

means location addr has not been updated since this transaction started. Otherwise,

depending on di↵erent algorithm designs, T can either abort (as shown in Algorithm 1,

line 22), or try to extend t by validating all the orecs that have been read and stored

up until this point (as shown in Algorithm 16, line 14).

At the same time, TL2 shown in Algorithm 1 is a lazy lock acquisition algorithm.

Eager and Lazy algorithms di↵er in the time when transaction attempts to acquire

locks. Eager TM acquires a lock as soon as a TxWrite() is performed; Lazy TM

usually waits until commit time to acquire locks (as in Algorithm 1, line 8). Moreover,

eager and lazy mechanisms typically a↵ect the choice of when to perform updates

to the memory. Eager typically uses write-through, where updates are immediately

performed in TxWrite, and an undo-log is used to save old values in case of rollback;

Lazy must use write-back in the TxCommit with a write-set storing pending writes

(Algorithm 1, line 11). In the latter case, each TxRead() must first check the write-

set to to get the pending value written by the current thread (Algorithm 1, lines

14-15), and then continue with the regular procedure. Note that for eager algorithms,
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immediately updating the memory does not mean the new value is visible to other

transactions, as the lock associated with the location is not released until commit

time.

There is another class of algorithms that use value-based conflict detection [18, 63].

They detect conflicts by checking the current value of addr and comparing it with the

most recent valid value read by transaction T. If the two values are di↵erent, T must

abort. This technique does not require specific locks for each location in memory, thus

acquiring locks for each writing location is omitted, which results in a lighter TxWrite

or TxCommit instrumentation, depending on when the lock acquisition happens. How-

ever, a locking mechanism is still required to synchronize writer transactions (i.e., at

commit phase) as only one writer at a time is permitted to perform write-back.

A third class of algorithms, such as RingSTM [85] and InvalSTM [27], use Bloom

filters to perform intersections between read and write sets to detect conflicts. While

risking false positives, Bloom filters save memory space and have constant time (O(1))

complexity of element insertion and set intersection.

1.1.2 Hybrid TM

The unavoidable logging mechanisms for reads and writes in STM, together with

heavily instrumented conflict detection procedures, are the main sources of latency.

HTM naturally only has marginal overhead in these areas. It is therefore quite clear

that with HTM coming into mainstream processors, exploiting HTM while using STM

as the fall-back strategy (Hybrid TM) is a necessary step towards high performance.

The reasons that pure HTM can not be a general solution are that a) it records

reads/writes in cache so it only allows limited transaction size in terms of locations

that are accessed; and b) it does not guarantee forward progress. For instance, the

“requestor-wins” policy can lead to livelock: competing transactions may abort each

other repeatedly. Hybrid TM solves both problems by trying to execute transactions
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in hardware first, and using a carefully tuned STM implementation as a back-o↵ plan

when the hardware path fails.

The coordination between HTM and STM varies among Hybrid TM implemen-

tations. For instance, HyTM [19] has a software path that adopts orec-based STM,

and a hardware path that monitors associated orecs on every transactional read and

write to detect conflicts. Though parallelism increases between STM and HTM,

the overhead of such checking per HTM read/write is considerable and increases la-

tency. The opposite example is PhTM [45], which typically allows hardware-only or

software-only execution. The extra instrumentation per transaction is constant and

only occurs at the beginning and committing phase. However scalability can be an

issue as the global synchronization mechanism involves a bottleneck. A compromise

between the above two implementation is Hybrid NOrec [17]. The main property of

software NOrec is that each location does not have an associated orec, and the syn-

chronization between transactions uses a small constant amount of global metadata.

This opens a window for lightly instrumented hardware transactions to concurrently

run with software transactions. However Intel Haswell TSX does not support non-

transactional reads, which are required for high performance in Hybrid NOrec. In

the absence of non-transactional reads, each time a software transaction commits, all

in-flight hardware transactions will abort. Invyswell [11] presented a hybrid TM for

Haswell’s TSX. However it uses the lazy subscription technique introduced by Hy-

brid NOrec [17], which means hardware transactions do not check for conflicts with

software transactions until commit time. Lazy subscription may introduce inconsis-

tent states observed by hardware transactions, which can be benign if the transaction

eventually aborts, but can also be dangerous if the unpredicted behavior caused by

inconsistent state leads to an erroneous hardware transaction commit [20].
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1.2 Dissertation Motivation

With hardware support, the performance of language-level atomic blocks is likely to

increase substantially, making them useful for general-purpose programs. Meanwhile,

the diversity of computer architecture is increasing, thus general-purpose programs

or libraries are likely to have cross-platform versions, which should be adaptive and

self-tuning. While most prior research was conducted to improve a single TM im-

plementation, our focus is boosting the performance of TMs in a more general, and

cross-platform way.

1.2.1 The Platform Factor

We first define platform, in the scope of this dissertation, as a combination of operating

system, processor and complier.

Design choices discussed in Section 1.1.1 and Section 1.1.2 a↵ect the performance,

and sadly there is not a single design that works best over all platforms and workloads.

Among popular algorithms, there are solutions for a general workload and platform,

which include TL2 and TinySTM [25], but there are more TM algorithms that are

especially good for certain kinds of workload or platform:

• TML [86] is similar to a sequence lock, but is a read-parallel STM that works

well on read-only dominated workloads. It also can be considered as a single-orec

algorithm, as there is only one lock globally synchronizing transactions. Also

read barriers in TML are light weight, as there is no logging cost: a transaction

T will simply abort in read if it detects a writer transaction commits after T

started. But when writers are frequent, TML does not scale.

• NOrec [18] uses value-based conflict detection, and only allows one writer at a

time to commit. NOrec performs well when writer transactions are infrequent

or transactions are relatively large in terms of locations accessed and running
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time, but poorly otherwise. The single global lock to coordinate writers can

also be a huge problem for scaling.

• TLRW [22] supports visible readers by using readers-writer locks and has no

validation cost. However each read needs to acquire the shared readers-writer

lock in reader mode, which does not require atomic operation, but still needs

a write to a shared cache line. Therefore, transactions may still contend on a

cache line even if they do not conflict with each other.

• WSTM [30] does not use a timestamp to record the global version number, but

instead, each orec has its own individual increasing versions. Thus every TxRead

has to validate the whole read-set without exception. WSTM has quadratic

validation overhead and works well on workloads dominated by frequent and

tiny transactions. Also it is immune to multi-chip coherence overhead due to

the lack of global timestamp.

• PathTM [88] allows a single transaction to have higher priority. That transac-

tion therefore can do in-place updates, and commits faster. This helps improve

the program pattern in which one transaction may become a bottleneck and/or

when thread count is relatively small. Also the original algorithm does not

support changing the prioritized thread, and adding this property deteriorates

performance significantly.

By the brief analysis of each algorithm, we observe that a single design choice could

make a significant di↵erence, and they have nuanced impact on overall performance.

However among past research, much is focused on correctness, semantics, and perfor-

mance of a TM implementation on a single platform. Less is focused on how platform

or di↵erent architectural characteristics would have impact on the performance of TM

implementations. Based on the latter, we have several observations:
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1 t r an s a c t i on {
2 expen s i v e f un c t i on 1 (x ) ;
3 s t a t s++;
4 expen s i v e f un c t i on 2 (y ) ;
5 }

Figure 1.4: A transaction that modifies a highly contended variable.

• The underlying TM implementations commonly make some default assump-

tions applying to all platforms, thus may provide inappropriate instrumentation,

which could worsen the overall performance.

• Platform-specific features could improve performance, but have not yet been

exploited. For example, many TM implementations need a version number

(timestamp) to keep track of in-memory updates. Currently most of the imple-

mentations use a global variable to do that job, while in fact on x86 machines,

the tick counter can be a better candidate.

• Aborting a transaction is expensive. Repeated aborts due to heavy contention

on certain memory locations are especially painful. An example pattern that

could result in repeated aborts, but commonly exists in parallel applications is

shown in Figure 1.4. This a↵ects all platforms, and current contention managers

are not enough to resolve the problem. However, we find that the compiler has

the ability to discover the pattern and makes possible changes to TM instru-

mentation to reduce the abort rate.

• Since real-life HTM has come, and that HTM has much less overhead on log-

ging and conflict detection mechanisms but not enough guarantees for forward

progress and pathology avoidance, developing Hybrid TMs with Software Trans-

actional Memory (STM) as backup strategy is necessary. Current proposals for

Hybrid TM either lack the performance benefits, or are not safe for general pur-
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pose applications. We propose and have implemented a new Hybrid TM based

on Intel TSX and within the GCC TM framework, which is the most accessible

platform to general users.

Note that the first three observations apply to a set of implementations, and may

not even be limited to Transactional Memory. The last one is more platform-and-

area-specific, but represents the current and future of transactional memory.

1.3 Contributions

Recall that there are two criteria to evaluate performance of a STM algorithm: latency

and scalability. The former usually refers to single thread overhead, while the latter

focuses on the ability of a STM to improve the throughput (number of transactions

per unit time) of a certain workload by increasing the thread count.

As discussed previously, research directions on creating faster STM algorithms in

recent years mostly focus on designing for a specific platform or workload. While this

is valid and helpful, especially when we have adaptivity [80], there are system-level

issues that require attention if peak performance is to be achieved. Based on the

previous four observations, our research contributes to these areas that potentially

a↵ect TM (and even the broad area of concurrent programming) performance:

1. Reduce the Cost of Instrumentation:

Accessing Thread Local Storage (TLS): Multi-threaded programs of-

ten require a field for thread-local metadata storage. This field is not shared

with other threads, but may be accessed by the owner thread itself frequently

throughout the entire execution cycle. Accessing TLS is not free and can be

very expensive on certain platforms. This is often overlooked by compilers

and/or programmers when considering sources of overhead. We examine the
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cost of TLS on multiple platforms, and make suggestions to programmers and

compiler designers.

Accessing the TM Library: In TM systems, switching the underlying

TM implementation in the runtime is necessary for performance, supporting

I/O, and guaranteeing progress. There are several ways to access the library,

and not surprisingly, it makes a noticeable di↵erence to choose the appropriate

way to do so on di↵erent platforms. We examine multiple ways of accessing the

TM library on four platforms, present the results and make suggestions.

Cost of Fences: Most TM research focuses on the x86 and SPARC pro-

cessors. However for processors that have relaxed memory consistency, such as

ARM and POWER, instruction ordering in TxRead is much more expensive to

preserve. For instance, in Algorithm 1, a strict ordering in TxRead requires two

memory fences in between line 16 & 17 and line 17 & 18, if running on proces-

sors like ARM, as two independent reads are reorder-able to those processors.

We designed and implemented a new TM algorithm named “Cohorts”, in which

no memory fences are needed during transactional reads and writes.

These issues a↵ect latency, and can also be applied to other cross-platform

systems.

2. Reduce the Cost of Timestamps:

Most timestamp-based algorithms have a bottleneck on the global timestamp

counter. It is accessed frequently and often requires atomic operations. Par-

ticularly on multi-chip machines, the bottleneck can become a dominating fac-

tor that limits scalability. The x86 tick counter has much lower overhead to

read, and it increments itself automatically. It is a natural timestamp. Un-

fortunately replacing a global counter timestamp with the tick counter is not

entirely straightforward, as accessing the tick counter does not have su�cient
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ordering properties. We analyzed the properties of the tick counter and pro-

posed and implemented tick-counter based TM algorithms, which e↵ectively

improved performance. We are also glad to notice that the use of tick counter

is not limited to TM implementations.

3. Shrink the Size of Conflict Window:

In any TM algorithm, a transaction T starts to become vulnerable to conflicts

when it accesses a shared location X. A conflict is materialized when the lo-

cation X is written by another transaction before T finishes. We call this time

span the conflict window of transaction T on location X, which starts from

the time when T accesses X to the time when T commits or aborts. Clearly,

shrinking the sizes of conflict windows decreases the chance of conflicts, and

thus improves scalability. By applying static/dynamic analysis, we can perform

instruction reordering within transactions to downsize the conflict window of

certain heavily contended locations (i.e. by deferring their first access). We ap-

plied this technique to several TM algorithms under the framework of GCC TM,

and the experimental results show that shrinking the size of conflict windows

does reduce the abort rate and therefore improve scalability when the pattern

shown in Figure 1.4 is detected. The technique does not hurt performance

otherwise.

4. Reduce the Cost of Logging:

Most STM implementations keep track of the memory locations accessed by a

transaction in thread-local log data structures, known as the read and write

sets. Logging is often necessary for achieving fine-grained conflict detection

among transactions. Some STM implementations avoid the overhead of logging

by using various forms of mutual exclusion, which leads to less parallelism.

However HTM does not have such logging cost, as the conflict detection is
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achieved via cache coherence protocols. HTM does have much lower latency,

but needs a proper fall back STM to guarantee forward progress without losing

scalability. Current Hybrid TMs either lack a performance benefit due to too

much serialization in the software path, or are not safe because of the hazards

introduced by lazy subscription. We designed and implemented a new Hybrid

TM named “HyCo”, which supports parallelism in the software path and does

not use lazy subscription.

1.4 Organization

In the rest of this dissertation, we discuss our progress in developing systems and

algorithms that improve the performance of transactionalized programs. The rest of

the dissertation is organized as follows:

• In Chapter 2, we explore costs of platform-specific instrumentation, including

the cost of accessing TLS, the cost of accessing a TM library, and the cost

of memory fences. For each of the potential costs, we conduct stress tests on

SPARC, x86 and ARM processors, paired with Solaris, Linux and Android op-

erating systems respectively. We give suggestions and alternative options to

compiler designers and/or programmers to avoid unnecessary costs due to in-

appropriate instrumentation. In addition, to reduce the cost of memory fences,

we propose and implement a new TM algorithm, “Cohorts”, which requires no

memory fences on individual transactional reads.

• In Chapter 3, we explore the use of the x86 cycle counter (tick counter) as the

timestamp for a set of TM implementations. We discuss the properties of the

tick counter, show possible data races that could be introduced by using the

tick counter without necessary memory guards, and present a correct solution.

In the evaluation section of this chapter, we show that tick counter based imple-
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mentations boosted performance noticeably, and introduced negligible overhead

even in the worst circumstances.

• In Chapter 4, we introduce a technique that can be used to reduce the transac-

tion abort rate, by delaying read-modify-write (RMW) operations. With static

analysis, the technique can be implemented under the hood, inside each TM im-

plementation, without requiring e↵ort from programmers. We present several

algorithms with this technique embedded, and suggest feasible optimizations.

We also discuss language level semantics which could be violated by the reorder-

ing of RMWs, and present a solution to restore safety. Performance evaluation

shows improvement on benchmarks that have RMW bottlenecks.

• In Chapter 5, we present a Hybrid TM algorithm, “HyCo”, that uses “Cohorts”

as the fall-back software slow path and Intel Haswell TSX as the fast hardware

transactional path. To the best of our knowledge, HyCo is the the best perform-

ing Hybrid TM that is safe (in respect of opacity), and supports mode switching

(including pure software, pure hardware, half-and-half, and irrevocable transac-

tions) and contention managements. Detailed algorithm descriptions are given

in this chapter and thorough evaluations are presented to demonstrate the per-

formance benefit we gain from exploring collaborations between hardware and

software TM.

• Finally in Chapter 6, we conclude the dissertation and discuss future works.
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Chapter 2

Reducing Platform-specific

Instrumentation Costs

In this chapter, we discuss and quantify platform-specific instrumentation costs and

present solutions to reduce the costs. The original work was published in “On the

Platform Specificity of STM Instrumentation Mechanisms” at 2013 International

Symposium on Code Generation and Optimization.

2.1 Introduction

Hardware support for Transactional Memory has arrived in mainstream processors,

in the form of extensions in the Intel Haswell microarchitecture [39]. As a result,

the performance of language-level atomic blocks is likely to increase substantially,

making them useful for general-purpose programs. An open question, however, is

what form language support for TM will take. To date, the most promising proposal

for unmanaged code is the draft C++ TM specification [4].

Generating code that conforms to the draft C++ TM specification is straight-

forward, and products from Intel, GCC, and Oracle are already available, as is an

extension to LLVM. However, we observe that there are fundamental assumptions
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built into each implementation, which can a↵ect performance and maintainability.

These assumptions are most dangerous for tools such as GCC and LLVM, which

strive to support a diversity of architectures and operating systems. They must bal-

ance maintainability with performance: optimizing both the compiler passes and the

TM library to each architecture maximizes performance, but introduces a manage-

ment nightmare; doing anything less has a measurable performance overhead.

In this chapter, we explore the relationship between the compiler, TM runtime li-

brary, and performance, by assessing the following dimensions: the cost of thread-local

storage (TLS), the manner in which instrumentation is reached, platform preference

for certain algorithms, and the requirements that hardware TM and/or relaxed trans-

actions [75] might place upon the compiler. While we focus primarily on constant

overheads, the findings are significant since these constants are incurred not only on

transaction boundaries, but also on every load or store of shared memory within every

transaction. A single bad choice can cause a 10% slowdown or worse.

In each case, we identify the most e↵ective solution for each of our target platforms:

IA32 CPUs running Linux, SPARC Niagara2 CPUs running Solaris, and Tegra-3

ARM CPUs running Android. As appropriate, we also consider di↵erences between

Linux and Mac OSX. Our results include the following:

1. TLS introduces a significant overhead on all but IA32/Linux; on other plat-

forms the transactional compiler should add manual management of per-thread

metadata.

2. Fine-grained support for mode-switching within the TM library causes a no-

ticeable slowdown on ARM, necessitating less flexible mechanisms.

3. On ARM, small core counts and the high cost of memory fences both favor

a new software TM (STM) algorithm, which we call Cohorts. Cohorts is the

first STM algorithm to require only a constant number of memory fences per

22



transaction.

In Section 2.2, we discuss platform-specific thread-local storage (TLS) costs and

alternatives. Section 2.3 focuses on how instrumentation is reached, and shows that

di↵erent platforms sit at di↵erent points on the flexibility/overhead spectrum. Sec-

tion 2.4 examines how the platform a↵ects the choice of algorithm, and in turn deter-

mines what compiler optimizations and transformations are desirable. This section

also briefly discusses the requirements that hardware TM and/or irrevocable relaxed

transactions place upon the compiler. Section 2.5 summarizes the chapter.

2.2 Per-Thread Metadata Access Costs

STM implementations use per-thread metadata (e.g., “transaction descriptors”) to

store the set of locations read within a transaction and whatever values are needed

to roll back a transaction’s writes if it cannot commit. Descriptors must be accessed

at transaction begin, at commit, and upon every load and store to shared memory.

There are two possibilities for how a transactional library finds threads’ descrip-

tors. The simplest is the approach currently used by the GCC compiler: in every

STM library function, the first operation is to access thread-local storage (TLS).

While there exists a POSIX library for this purpose (pthread getspecific()), most

platforms support a language-level construct for indicating thread-local storage (e.g.,

the thread modifier). The language-based approach is considered safer and more

convenient to program with, since it enforces type checking on TLS variables and uni-

fies the syntax between TLS and normal memory accesses. It is also more amenable

to compiler optimization, and expected to be fast.

The second alternative is for the compiler to explicitly manage descriptors. This

is the approach taken by the Oracle TM compiler. The function that starts transac-

tions (TxBegin()) returns a reference to the thread’s descriptor, and then, on every
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subsequent shared memory access, the descriptor is passed to the TM library as an

additional parameter. Furthermore, when the compiler generates transactional ver-

sions of functions that can be called from a transactional context, it changes their

signatures to add an extra parameter for the descriptor. Managing these new func-

tion signatures invisibly can be a challenge, particularly when dealing with function

pointers that are called transactionally and nontransactionally.

Clearly the TLS option is simpler for the compiler. However, on some platforms

it is expensive, while on others its cost is negligible. To demonstrate the di↵erence,

we modified the open-source RSTM library [80] to allow either convention. We then

used a stress-test microbenchmark, in which all transactions repeatedly execute an

equal mix of insert and remove operations on a red-black tree storing 8-bit values.

There is no work between transactions, and thus the cost of di↵erent mechanisms for

accessing TLS is exaggerated. We call experiments that use TLS on every library call

as “TLS”; “Param” refers to the case where descriptors are managed by compiler-

inserted instrumentation. To minimize the variance in “TLS”, we structured all STM

routines (TxBegin(), TxCommit(), TxRead() and TxWrite()) so that the transaction

descriptor is accessed exactly once per routine.

We evaluate the following platforms. For each, we show the best-performing STM

algorithm: TinySTM [25] for IA32, TL2 [21] on SPARC, and NOrec [18] on ARM.

1. IA32/Linux: 2.6GHz Intel Xeon X5650 with 6 cores/12 threads, 6GB RAM,

Ubuntu Linux 12.04, kernel version 3.2.0-27, GCC 4.7.1.

2. SPARC: 1.165 GHz Sun SPARC Niagara T2000 with 8 cores/64 threads, 32GB

RAM, Solaris 10, GCC 4.7.1.

3. ARM: NVIDIA 1.4GHz Tegra3 with 4 cores, 1GB RAM, Android Linux 4.0.3,

GCC 4.4.1.

4. IA32/MacOS: 2.66GHz Intel Core i7 M620 with 4 cores, 4GB RAM, MacOS
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Figure 2.1: The cost of thread-local storage vs. additional function parameters

10.7.2, GCC 4.2.1.

2.2.1 Results

The results of our stress test appear in Figure 2.1. On the IA32/Linux platform, no

di↵erence is seen between the approaches, while on IA32/MacOS, we see a noticeable

improvement for Param. On the SPARC platform, Param constantly provides about

5% improvement at all thread levels, and on ARM, Param outperforms the default

TLS implementation by up to 15%.

On the MacOS platform, there is no OS-level support for thread, and the STM

library must call the pthread library to access TLS. When the compiler inserts code

to manage descriptors explicitly, all but one pthread call can be eliminated for each

transaction.

The remaining di↵erences stem from the platform-specific TLS ABI. On IA32/Linux,

the thread local data region is at a constant o↵set in the binary. Thus, a TLS access

can be translated to a simple register-to-register move, in which the TLS address is

computed directly from the segment register (%gs). For example, in the following

code the TLS pointer is copied to %eax in only one instruction.
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mov %gs:0xfffffff0,%eax

On SPARC, accessing TLS involves more instructions than on IA32. The initial

assembly code consists of 12 instructions, but during linking several constants are

known, resulting in a three-instruction sequence:

sethi %hi(0), %g1

xor %g1, -4, %g1

ld [ %g7 + %g1 ], %o0

The first two instructions load a 32-bit constant into %g1. The final instruction is

specific to the TLS model on SPARC, and loads the TLS o↵set. Since the Niagara2

pipeline is single-issue in-order, these three instructions are likely to have a higher

relative cost than on IA32. At the same time, passing a parameter on SPARC is

usually cheap, since we organized the library so that %o0 could hold the descriptor

pointer for all function calls within a region of code.

Lastly, on ARM, TLS requires 7 instructions, including a branch to invoke the

system ABI:

ldr r3, [pc, #12]

push {lr}

bl __aeabi_read_tp

ldr r0, [r3, r0]

andeq r0, r0, r4, lsl r0

__aeabi_read_tp:

mvn r0, #61440

sub pc, r0, #31

The combination of a relatively simple pipeline with an extra branch results in notice-

able overhead, especially since the alternative is extremely cheap. In our microbench-

mark, under the Param configuration the compiler essentially reserves one of the 16
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general-purpose registers solely for storing the descriptor. Relative to this negligible

cost, 7 instructions and a branch are significant.

2.3 The Cost of Accessing the TM Library

Under most circumstances, TM libraries are required to provide di↵erent instrumen-

tation for di↵erent individual transactions. Clearly this has been true in the various

adaptive TM systems [62, 45, 80, 67]. However, the requirement is not merely one

needed for switching among algorithms. At least a limited form of adaptivity appears

to be fundamental.

Consider the draft C++ TM specification [4], which includes relaxed transac-

tions [75]. A relaxed transaction is expected to transition between a concurrent

mode and a serial mode if the transaction attempts an operation that cannot be

rolled back.1 While this support may be provided by a branch on every load/s-

tore of shared memory, it nonetheless represents a transition between two modes of

transactional behavior. Hardware TM will almost certainly require some additional

adaptivity support [15, 45], at which point full adaptivity support [67, 92] is at least

worth considering.

There are three common approaches for supporting adaptivity within a TM imple-

mentation. The first, as mentioned above, is to use conditionals (typically a switch

statement) within the library’s transactional read and write functions to globally co-

ordinate all transactions’ behavior [67]. The second is to use per-thread function

pointers, such that each thread can make fine-grained and nuanced decisions about

how to perform its transactional operations [62, 80]. A third option is to use global

function pointers, which coordinate all transactions’ behavior, but do not incur addi-

tional branching overhead in the common case. Of these options, per-thread function

1A simple understanding of relaxed transactions is that they allow the programmer to specify
that the transaction cannot self-abort, so that irrevocable operations [94] can then be permitted.
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Figure 2.2: The cost of mechanisms for reaching (adaptive) instrumentation

pointers have been evaluated on the IA32 platform, and shown to have good perfor-

mance. We are not aware of any other published evaluation of the cost of di↵erent

mechanisms for accessing an STM library.

In Figure 2.2, we contrast the performance of these options by repeating the

red-black tree microbenchmark from Section 2.2. As before, a high incidence of

transactions amplifies the impact of di↵erences in the instrumentation mechanisms.

We compare four manners in which transactional instrumentation can be achieved:

1. Fine: This curve corresponds to a configuration with per-thread function point-

ers [62, 80]. “Fine” a↵ords maximum flexibility, since individual transactions

can vary their behavior without branching. However, it incurs TLS overhead

to locate function pointers.

2. Coarse: This curve represents global function pointers. On architectures with

inexpensive indirect branches, this mechanism should be fast. It also avoids

TLS overhead and prevents branching in the common case where adaptivity is

not occurring.

3. Switch: In this configuration, there is no TLS or indirect call overhead, but every
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read and write must perform a branch to select the right instrumentation. We

used a switch statement to choose among several dozen options, and verified

that the compiler produced a dense branch table. Note that dynamic branch

prediction is expected to succeed in most cases.

4. None: Here, adaptivity is not supported, but overhead should be minimal.

Reaching instrumentation does not require TLS, indirection, or branching. This

curve should serve as a best-case.

Note that each platform is configured optimally with respect to the previous section:

on the Linux/IA32 system, we access metadata via TLS, and otherwise we access it

via an extra parameter passed to each function.

2.3.1 Results

As expected, on IA32/Linux fine-grained instrumentation is optimal. Since indirect

calls and TLS are inexpensive, this mechanism can even outperform the expected

best case of no adaptivity: fine-grained mode switching within a transaction can avoid

enough branches to recover more performance than it costs (e.g., by skipping write-set

lookups when reading in a transaction that has not yet performed a write [80]). On

MacOS, where TLS is expensive, “Coarse” is best: the indirection of function pointers

does not incur a noticeable cost, but the avoidance of TLS overhead is preferred. Note,

however, that an unrealistic “adaptivity-free” implementation (“None”) gives the best

performance.

On SPARC, “Fine” again gives the best performance. In this case, we config-

ured the library to pass the descriptor as a parameter, but the function pointers

themselves are still accessed via TLS. The key di↵erence here is that while TLS is

more expensive than on IA32, the additional registers on SPARC make it easier for

the compiler to cache most of the computation for locating function pointers. Thus
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fine-grained adaptivity does not introduce much overhead. At the same time, the

simple pipeline of the SPARC CPU greatly benefits from the reduction in branches

that follows from fine-grained adaptivity. This is borne out both in comparison to

coarse adaptivity, which has additional branching within each read, and relative to

switch-based adaptivity.

On ARM the best adaptive STM performance comes from the “Switch” mech-

anism. The high overhead relative to an adaptivity-free option confirms the cost

of TLS, which is unavoidable for fine-grained adaptivity. However, the pipeline im-

plementation of ARM makes the switch statement ralatively more e�cient than an

indirect branch.

2.4 Architectural Impacts on Algorithm Selection

and Optimization

Dozens of STM algorithms have been proposed over the last decade, to include those

primarily evaluated on older UltraSPARC CPUs [21, 35], various IA32 platforms [25,

22, 71, 91, 62, 80], IBM POWER [84], and SPARC Niagara [22]. A few algorithms

employ custom OS features [2, 21], and several rely on specific architectural properties

(such as low-overhead memory fences in the TLRW byte-lock mechanism [22], an

atomic-or primitive in the Unified STM algorithm [62], or more generally the fact

that compare-and-swap (CAS) is cheap on modern IA32 chips [80]). Some trade high

latency for fewer bottlenecks and improved scalability. Others are best when the core

count is low.

2.4.1 Platform Impact on Optimization

Many STM algorithms benefit from custom compiler optimizations. While the desire

for a library-based implementation has reduced interest in fully inlined STM algo-
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rithms, such as the original McRT STM [71], still (a) some algorithms with commit-

time locking can exploit relaxed consistency checks in TxRead [84], and (b) algorithms

with in-place update can benefit from compilers that match certain access patterns

(read after read, read after write, write after write, and write after read) to custom

STM library calls [62].

To illustrate the benefit of a wide interface, consider the case of a write after read

in the Unified STM system [62]: If a read of location L dominates a write to L, then

the write lock for L can be acquired during the read (making it a “read for write”)

and the write can be downgraded to a write-after-write. This decreases metadata

logging and lowers overhead.

This optimization o↵ers no value to algorithms that use commit-time locking.

Furthermore, while early locking is profitable on IA32 [62, 22, 32, 25], the picture

may di↵er on other platforms. If eager locking is too costly, then an STM library will

favor a commit-time locking algorithm, and any analysis or optimization for eager

locking will go unused. The opposite is true for the optimizations proposed in [84],

which have low value for early locking STM algorithms.

To assess whether either set of optimizations is universal, Figure 2.3 presents an

evaluation on ARM, SPARC, and IA32 using the STAMP benchmark suite [56]. We

consider the algorithms listed in Table 2.1. In all cases, we use the RSTM imple-

mentations of the STM algorithms to eliminate artificial implement di↵erences (e.g.,

all algorithms use the same code to acquire a lock, or to handle memory manage-

ment). For each benchmark, we present the harmonic mean speedup compared to a

single-threaded execution using the Mutex algorithm. We do not consider the MacOS

platform, since the algorithms we evaluate do not exploit OS-specific features. We

omit two STAMP benchmarks: yada is known to contain bugs, and bayes exhibits

wildly nondeterministic behavior. Speedup was computed from the average of 5 tri-

als. With the exception of TLRW on intruder on SPARC, variance among trials was
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Algorithm Description
Mutex The standard STM baseline: all transactions are protected by a single lock.

There is no concurrency among transactions, but latency is minimal.
TML All transactions are protected by a sequence lock. There is only concurrency

among reader transactions, but latency is low. This algorithm reveals the
overheads of speculation and instrumentation [18].

LSA The TinySTM write-through algorithm. This algorithm acquires locks ea-
gerly, modifies memory locations before commit time, and maintains undo
logs [25]. LSA uses a table of versioned locks (“orecs”) to detect conflicts
among transactions. The valid version number (timestamp) for each trans-
action is extended in each TxRead if read-set validation is passed.

TL2 TL2 uses commit-time locking and redo logs, does not extend timestamps,
and otherwise closely resembles LSA [21].

OrecELA This algorithm expands upon LSA and TL2 to o↵er stronger language-
level semantics (“ELA” semantics in the taxonomy of Menon et al. [55]).
In practical terms, OrecELA is “privatization safe”.

NOrec NOrec does not maintain per-location metadata, but rather tracks conflicts
via values. Writers cannot commit in parallel, but per-access instrumenta-
tion is typically lower than orec-based algorithms [18].

TLRW TLRW uses an array of reader/writer bytelocks. Transactions lock every
location they read, but do not validate reads at commit time [22].

Table 2.1: Representative STM algorithms.

low. Since this lone exception always performed poorly, its higher variance does not

a↵ect our conclusions.

Summary of Results

There are two dimensions on which algorithms can be partitioned. First, the LSA,

TML, and TLRW algorithms are the only ones in which locks are acquired before

commit time. Thus they are the only algorithms that could potentially benefit from

Ni’s optimizations [62]. Second, TML, OrecELA, and NOrec are the only algorithms

that comply with the C++ memory model: TLRW and LSA both allow for a racy pro-

gram to observe out-of-thin-air reads, due to modifications to memory performed by

transactions that might abort [55]. Furthermore, LSA and TL2 are not privatization-

safe, which can result in races that appear to be violations of the ordering between

transactions and nontransactional code. Thus while LSA, TL2, and TLRW can be

used in programs that are proven to not su↵er from these problems, they cannot be
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Figure 2.3: STAMP speedups vs. single-threaded Mutex

considered truly general-purpose algorithms.

On the IA32 platform, we see that most STM algorithms scale well, with LSA

o↵ering the best performance overall, and OrecELA giving the best performance

with stronger semantics (though its advantage over NOrec is largely a consequence
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of NOrec’s poor performance on the frequent small writing transactions of SSCA2).

The same is generally true on SPARC, though TL2 and LSA are much closer.

We did not measure either of the extended interfaces to the TM library discussed

earlier. Ni’s optimizations [62] would o↵er an improvement to LSA, TML and TLRW,

while Spear’s optimizations [84] would benefit NOrec, OrecELA, TML, and TL2.

Since no single algorithm stands out on all platforms, the most practical approach for

a compiler on these platforms is to provide both sets of optimizations. This increases

the burden on library designers, who potentially must o↵er 5 versions of the read

function (regular, after-write, before-write, after-read, and relaxed) and 2 versions of

the write function (regular and after-write) for each primitive data type (char, short,

int, long, float, double).

2.4.2 Tackling the Cost of Fences

On ARM, none of the algorithms from Table 2.1 consistently outperforms Mutex. The

latency of individual transactions is simply too high, in large part due to memory

fences. Specifically, on LSA and TL2, every load of shared memory requires two

fences, to order lock checks that occur before and after the actual load from memory.

On NOrec, TML, and OrecELA, a fence is required after the load, before a check of

a lock or global counter, but not before the load. On all platforms, TLRW requires a

fence on every load and store.

Since ARM is not expected to o↵er an abundance of cores (e.g., more than 8)

within the foreseeable future, we designed a new STM algorithm that reduces memory

fence costs by increasing blocking at the begin and commit points of transactions.

We call the resulting algorithm “Cohorts”, as transactions dynamically form sets that

attempt to commit together. To the best of our knowledge, Cohorts is the first STM

algorithm designed specifically for processors with relaxed memory consistency. It

requires some transactions to block at their start and end points, but eliminates all
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Figure 2.4: State Transitions of a Cohort

but a constant number of fences at transaction boundaries.

Cohorts outperforms all other algorithms on ARM (Figure 2.3c). In additional

experiments, we found that when the incidence of transactions is high (e.g., in data

structure microbenchmarks), the benefit of Cohorts increases, due to its lower latency.

However, Cohorts performance is consistently poor on IA32 and SPARC. From a com-

pilation perspective, Cohorts admits exciting but unique optimization opportunities,

which risk complicating the TM compiler/library interface even further since they are

specific to a single algorithm that only performs well on a single platform.

The Cohorts Algorithm

Cohorts employs a state machine to control which transactions can commit, and

when (Figure 2.4). Initially, there are no transactions running (the OPEN state). As

threads begin transactions, the system remains in this state, and if a transaction is

read-only, it can commit directly from the OPEN state. However, once a writer is

ready to commit, the system transitions to the SEAL state. In e↵ect, the current

group of running transactions has become a cohort, in which no transaction can

commit writes while another is still running, and which no new transactions can join.
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Read-only transactions can continue to commit immediately, but all writers block at

their commit point. Eventually, all threads either are not running transactions, or

are ready to commit writes. At this point, the cohort moves to the COMMIT state,

and transactions validate and commit, one at a time.

Algorithm 3: Cohorts Algorithm

1 constant: START, FINISH

2 Global Variables:

3
tail : Boolean* // initially nil

transactions : Tx[] // array of transactions

4 Per-transaction Variables:

5

spin : Boolean // entry in commit queue
status : Integer // transaction status indicator
turbo : Boolean // go turbo indicator
writes : WriteSet // write set
reads : ReadSet // read set

1 TxBegin()
2 while true do

3 if tail = nil then

4 status START; MemoryBarrier
5 if tail = nil then break

6 status FINISH

7 turbo false; spin true

8 writes reads ;

9 TxRead(addr)
10 if turbo then

11 WriteBack ()
12 return ⇤addr
13 if addr 2 writes then return writes[addr]
14 v  ⇤addr
15 reads reads [ {haddr, vi}
16 return v

17 TxWrite(addr, v)
18 if turbo then

19 WriteBack ()
20 ⇤addr  v

21 else writes writes [ {haddr, vi}

Algorithms 3 and 4 present the Cohorts algorithm. The state machine is imple-
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Algorithm 4: Cohorts Algorithm continued.

22 TxCommit()
// commit a read-only transaction
// or a (notified) turbo transaction
// that has performed write back

23 if writes = ; then
24 status FINISH

25 return

// commit a read-write transaction:
// enqueue and wait

26 pred AtomicSwap(tail,&spin)
27 status FINISH; MemoryBarrier

// notify the last transaction
// to go turbo

28 if TxLeft() = 1 then

29 foreach tx in transactions do

30 tx.turbo true

31 if pred = nil then

// first writer waits until
// everyone reaches commit

32 while TxLeft() 6= 0 do wait

33 else

// otherwise wait until signaled
34 while (⇤pred) do wait

35 if ¬Validate() then
36 FinishCommit()
37 Abort

38 WriteBack()
39 FinishCommit()

40 WriteBack()
// do write back if bu↵er is not empty

41 if writes 6= ; then
42 foreach haddr, vi in writes do

43 ⇤addr  v

44 writes ;

45 Validate()
// value-based validation

46 foreach haddr, vi in reads do

47 if ⇤addr 6= v then

48 return false

49 return true

50 FinishCommit()
51 spin false

52 if tail = &spin then

53 tail nil

54 TxLeft()
// number of tx left in a cohort

55 counter  0
56 foreach tx in transactions do

57 if tx.status = START then

58 counter++

59 return counter

mented by two fields: a per-transaction variable status (START indicates the transac-

tion has entered the cohort but has not yet reached the commit point, and FINISH

indicates the thread is not in a transaction, blocked in TxBegin(), or ready to com-

mit); and a queue (similar to a CLH queue lock [46]) of writer transactions that are

ready to commit. The OPEN state corresponds to the situation when tail is null;

COMMIT corresponds to the situation in which each transaction’s status is FINISH

but tail is not null; and SEAL corresponds to a non-null tail with some transaction’s

status set to START.
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During execution, transactions do not check for conflicts. Writes are bu↵ered,

and reads simply check the bu↵er, then record the values they load from memory in

the case that the bu↵er check fails. As in NOrec [18], commit-time validation does

not check a lock table, but instead compares actual values in memory. This leads to

trivial read (Algorithm 3 lines 13 to 16) and write (line 21) instrumentation and also

obviates memory fences while reading and writing.

At the point of transition from SEAL to COMMIT, any arbitrary contention

management policy [73] can be used to maximize fairness or prevent starvation (note

that livelock is impossible). An appealing alternative, though, is to detect when a

sealed cohort has exactly one transaction whose state is still START. At that point, the

transaction can transition to an irrevocable mode (“turbo mode”), in which it directly

accesses memory, without any metadata accesses. In this manner, the duration during

which FINISH transactions block can be minimized.

Cohorts o↵ers ELA semantics. While a detailed proof is beyond the scope of this

chapter, the argument is straightforward. There are two criteria. First, a transaction

cannot make data private and then use that data outside of transactions while another

(destined-to-abort) transaction has an outstanding reference to that data. Second, a

transaction cannot make data private and then use that data unless it is sure that no

other transaction is still finalizing its writes to the data (e.g., during its commit phase).

In the former case, since writer transaction can commit while another is running, the

problem is avoided. In the latter case, writer transactions do not commit in parallel,

preventing the problem.

Compiler Optimizations

In Figure 2.3, Cohorts exhibits strong performance on all but the KMeans test, and

in that case, Mutex performs well. The problem is quite simple: there is enough

nontransactional work that transactions rarely overlap in time. To handle this case,
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we extended Cohorts to support programmer-supplied hints. The hint indicates that

after a transaction performs some number of loads and stores (ls), it should check

if it is the only transaction. If so, it can seal the cohort early and transition to the

low-overhead mode. Adding a hint of ls = 2 increased Cohorts performance to within

90% of Mutex throughput for KMeans.

A second optimization for Cohorts deals with read-only transactions. Once any

transaction begins, no changes to shared memory are possible until all transactions

are ready to commit. If a compiler can statically detect that a transaction does

not modify shared memory, that transaction does not require any instrumentation:

logging address/value pairs is not required, since read-only transactions never validate

before committing, and write bu↵er lookups are unnecessary since the write bu↵er is

always empty. While STAMP does not have read-only transactions, our discussion of

HTM sheds some insight into the benefit that this optimization provides.

Generality

Although Cohorts outperforms all other algorithms on ARM, Cohorts has poor per-

formance on IA32 and SPARC machines. This comes as no surprise, since Cohorts

introduces serialization to avoid expensive memory fences, but fences are not required

on IA32 and SPARC. In addition, whenever writer transactions are abundant, Co-

horts simply cannot scale to high core counts. As a result, we recommend its use

only for small, single-chip multicore machines with relaxed memory consistency. To-

day this category includes the majority of mobile devices. Whether it remains an

important market or not is uncertain, particularly if these platforms add hardware

TM support.
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2.4.3 The Impact of Hardware-Assisted STM Libraries

Early work on hardware accelerated STM [72, 57, 78] assumed that hardware would

provide new instructions to simplify the instrumentation of a fundamentally software-

based TM library. The limit point for such instrumentation is captured by the Hybrid

or Best E↵ort approach [15, 68, 17, 45], where the hardware supports native execution

of small transactions, and falls back to STM for large transactions or when conflicts

are too common.

A critical question is whether simply upgrading a shared library will su�ce to

reap the benefit of such hardware. The alternative is that these hybrid systems will

require transactional code to be cloned and optimized according to several di↵erent

algorithm-specific strategies. To some degree, this occurs already in the Intel TM

compiler, which produces two versions of code: one that makes calls to the TM library

on every load/store of shared memory, and one for when assumes the transaction is

running in a “Serial Irrevocable” mode [94, 67]. In this mode, loads and stores are not

instrumented. Multiple cloning also occurs in Christie’s TM stack [15] and the Oracle

TM compiler, where the peculiarities of the Rock processor’s speculation mechanism

require the compiler to produce several versions of a transaction, to include one in

which pipeline speculation is constrained via explicit fences.

Recalling our discussion of the current proposal for TM support in C++, the

consequences of this problem can already be seen. Early versions of the GNU C++

compiler did not generate multiple transactional clones of a function. Thus, for

example, a relaxed transaction that required irrevocability still performed a function

call on every load and store. Using the RSTM framework, we now demonstrate the

performance cost of this approach. It follows that any custom hardware designed to

accelerate TM, up to and including Best-E↵ort TM, would su↵er a similar fate if the

compiler did not generate a custom code path for it.

Figure 2.5 presents the performance of the RBTree microbenchmark from Sec-
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tion 2.2, using the Mutex runtime (all transactions are protected a single lock). The

curve marked “NoInline” uses the adaptive RSTM interface, resulting in the read and

write functions depicted below:

1 T TxRead (T ⇤ addr)
2 return ⇤addr;

3 void TxWrite (T ⇤ addr, T val)
4 ⇤addr  val;

Note that in this case, using TLS to access descriptors is optimal: it results in

fewer parameters to the function, and avoids a TLS lookup since the descriptor is

not used by the instrumentation. The “Inline” variant uses a di↵erent clone of the

transaction body, which does not require function calls, but instead performs the load

or store directly.

As can be seen in the figure, the lack of clones makes the code significantly slower.

In analyzing the assembly code, we found that the reason di↵ers on each platform:

1. On IA32, the fact that register eax is both the parameter and return value

of the read function impedes instruction scheduling, especially when multiple

reads are performed in succession. For “Inline”, the operands to successive loads

can be kept in di↵erent registers.

2. On SPARC, function calls are expensive, due to the overhead of register window

maintenance.

3. On ARM, parameters and return values are passed in separate registers, but

there is still an instruction scheduling cost and overhead due to function calls.

To illustrate the impact on instruction scheduling, the read-only search phase of

the RBTree insert function is a while loop that traverses a tree to find a key. On

IA32, it grows from 31 instructions to 46, solely on account of the di↵erences in
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(c) Platform: ARM/Linux, Algorithm: Mutex

Figure 2.5: Inlined and non-inlined versions of the Mutex algorithm on di↵erent platforms.
Di↵erences between IA32/Linux and IA32/MacOS are negligible.

parameter movement, register allocation, and instruction scheduling that arise from

the increased incidence of function calls. A similar penalty should be expected for

any hardware accelerated TM system. Even achieving reasonable performance will

require compiler support, in the form of multiple code clones.

2.5 Summary

In this chapter, we showed that there are significant hidden costs that arise from

how the compiler interacts with a TM library. Di↵erences in OS and CPU a↵ect the

cost of accessing TLS, resulting in some platforms benefiting greatly from the com-

piler manually managing TM metadata by changing function signatures and passing
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references to metadata among functions. Varying costs for both TLS and indirect

branches dictate how e�ciently a library can adapt among its various internal modes

of operation. Furthermore, architectural characteristics can strongly tip the scales in

favor of certain algorithms, such that on each platform, a di↵erent set of algorithm-

specific analyses and optimizations should be employed. Upcoming hardware TM

support is likely to make the situation even more complicated.

These themes are not specific to TM. As parallelism becomes more pervasive,

and as architectural diversity continues to increase, more libraries will become adap-

tive and self-tuning. This, in turn, will increase dependence on TLS and adaptive

instrumentation, which we have shown to have platform-dependent implementation

overheads.

Responsibility for reducing overheads can often be assigned to many parties. Un-

til chip manufacturers reduce the overhead of memory fences, new algorithms like

Cohorts will be needed. Similarly, until OS designers reduce TLS overheads, compil-

ers may need more complex transformations to reduce the frequency of TLS access.

Ultimately, custom per-algorithm instrumentation may necessitate dynamic recom-

pilation in order to minimize latency for complex parallel software that runs on a

diversity of platforms.
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Chapter 3

Boosting Timestamp-based TM by

Exploiting Hardware Cycle

Counters

In this chapter, we utilize the x86 hardware cycle counter to improve performance of

timestamp based TM implementations. The original work was published in “Boosting

Timestamp-based Transactional Memory by Exploiting Hardware Cycle Counters”

at ACM Transactions on Architecture and Code Optimization, Volume 10 Issue 4,

December 2013 Article NO. 40.

3.1 Introduction

Most high-performance STM implementations reduce the common-case overhead of

validation by using timestamps. The technique, which was first employed in the

LSA [65] and TL2 [21] algorithms, is straightforward: every writer transaction incre-

ments a global clock during its commit phase, and writes the resulting value into every

lock that it releases. All transactions read the clock when they begin, and whenever

reading a new location, they check if the corresponding lock stores a clock value that
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is less than this start time; if so, the location can be read without validation. In this

manner, the costly quadratic validation overheads of previous systems [26, 35, 49, 50]

can be avoided. Since 2006, virtually every single-version STM that uses ownership

records has employed a global shared counter [23, 25, 48, 55, 82, 91, 98].

There are two problems with global shared clocks. First, clock-based techniques

for avoiding validation are heuristic. In the worst case, a clock-based STM might still

validate the entire read set on every read, resulting in validation overhead quadratic

in the number of locations accessed by the transaction. Second, the use of a shared

memory counter as the clock can become a scalability bottleneck. Since every writer

transaction must increment the counter during its commit operation, workloads con-

sisting of frequent small writing transactions experience considerable cache invalida-

tion tra�c as the counter moves among processors’ caches.

The open-source release [56] of the TL2 algorithm [21] included heuristics for re-

ducing the overhead of counter increments. The main observation was that timestamp-

based STM does not require a strictly increasing counter; monotonicity su�ces. Thus

if a compare-and-swap (CAS) fails to increment a counter, then the return value of

the CAS can be used in place of a new value. Of course, this technique is itself a

heuristic, and while it lessens the impact of contention over the shared counter, scal-

ability problems can still remain for small, frequent writer transactions. A second

technique pioneered by TL2 was to skip counter increments with some probability,

instead using a value one larger than the current counter value as the commit time.

However, this technique is e↵ective only if successive transactions rarely modify the

same data.

An alternative to shared counters, first proposed by Riegel et al., is to use the

multimedia timer present in some systems in place of a shared memory clock [66].

Riegel’s system used the real-time MMTimer built into Altix machines. This hardware

timer is a read-only device, and thus concurrent accesses by multiple processors do
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not create contention. However, as an o↵-chip hardware component, the MMTimer

operates at a considerably slower frequency than a processor core. Consequently,

Riegel’s STM needed to manually address clock skew and compensate for the clock’s

low frequency.

In this chapter, we explore whether an STM algorithm can be built upon exist-

ing in-core timing hardware, rather than an external (hardware or shared memory)

clock. Modern processors expose a user-mode accessible “tick” counter, which re-

turns the number of processor cycles which have passed since boot time. The details

of these counters vary among instruction set architectures (ISAs) and even micro-

architectures, and we focus on the rdtsc family of instructions in the x86 ISA. As

appropriate, we built STM systems that employed the processor tick count in place

of a shared memory clock. Our primary findings are that (a) there are memory fence

and ordering requirements that must be enforced when using these counters to im-

plement an STM, and (b) the use of hardware clocks to accelerate STM is e↵ective

for STM libraries that do not o↵er privatization safety, but less e↵ective for libraries

that are privatization safe.

The remainder of this chapter is organized as follows. Section 3.2 describes the

behavior of software clocks in STM implementations. It then discusses hardware cycle

counter properties on the x86 and SPARC ISAs, and identifies potential pitfalls when

using these counters in place of a shared memory clock. Section 3.3 extends STM

algorithms so that they can employ the x86 rdtscp instruction in place of software

clocks. Section 3.4 considers techniques for making these rdtscp-based algorithms

privatization safe. Section 3.5 evaluates our algorithms on single and dual-chip x86

systems, and Section 3.6 summarizes.
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3.2 Hardware and Software Clocks

Some manner of global clock object is at the heart of nearly every STM algorithm

proposed during the last decade. The primary role of these clock objects is to reduce

the cost of detecting conflicts among transactions. At a high level, one can assume

that every location is protected by a unique versioned lock. When a writer transaction

W
i

commits, it is assigned a time T
i

from the global clock object. In the process of

committing, W
i

will write T
i

as the new version of each lock protecting a location

that W
i

modified. Every transaction R
k

is assigned a start time S
k

by reading the

clock object before beginning, and the global clock object ensures that at the instant

when a committing transaction receives its commit time T
i

, T
i

is larger than the start

time S
k

of any transaction R
k

that has started but not yet committed.

Given this guarantee, a running transaction R
k

can identify the absence of conflicts

by ensuring that when it reads any location L, the versioned lock protecting L has

a version no larger than S
k

. Should this comparison fail, then it is possible that a

transaction W
i

modified L after R
k

started. STM implementations di↵er in their

behavior at this point, with some conservatively aborting R
k

and others validating

the entire set of locations previously read by R
k

to determine if R
k

’s execution is

equivalent to one that started after W
i

completed.

3.2.1 Software Clocks

Software implementations of a global clock object are deceptively simple. The most

common implementation consists of two methods, as depicted in Algorithm 5.

In this implementation, transactions can read the clock to attain their start time

with a simple access to an atomic integer variable, and can attain a unique com-

mit time by atomically incrementing the integer (e.g., with a lock add instruction

on the x86). Clearly the guarantee mentioned above must hold: at the time when
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Algorithm 5: A simple software global clock object

ts : AtomicInteger // initially 0
1 read()
2 return ts

3 getNext()
4 return 1 + AtomicInc(ts)

a transaction is assigned its commit time T
i

, T
i

is larger than the start time S
k

of

every in-progress transaction. However, this implementation carries implicit memory

ordering guarantees. Specifically, the read operation has acquire semantics, such that

no subsequent memory operation can be ordered before it, and the getNext operation

has full memory fence semantics: it cannot bypass preceding memory operations, and

subsequent memory operations cannot be ordered before it. On modern implementa-

tions of the x86 ISA, these guarantees are relatively inexpensive. On processors with

relaxed memory consistency, memory fence instructions are required to provide the

necessary ordering.

3.2.2 Hardware Cycle Counters

The behavior of hardware cycle counters varies among both ISAs and

micro-architectures, and not all cycle counters are suitable for our needs. To express

the desired behaviors of hardware counters, we use the notation that p is a processor,

and that vp is the value that is returned to p when it reads its cycle counter by

executing instruction tp. Symbol !’ refers to a happens-before ordering.

The first issue is one of local monotonicity. For a strictly increasing clock on

processor p, tp1 ! tp2 , vp1 < vp2 will always hold. For a monotonically increasing

clock, the weaker property that tp1 ! tp2 ) vp1  vp2 will hold.

The second issue is one of global monotonicity. For two processors p and q, we wish

to know abstractly that tp1 ! tq2 , vp1 < vq2. Unfortunately, in the absence of some
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event that establishes a timing relationship, we cannot “compare” the time values

observed on di↵erent processors even if we know instruction tp1 happened before tq2. In

the opposite direction, we cannot deduce the happened before relation by comparing

time. To compensate for this, we consider the following weaker scenario:

Let p read its cycle counter as vp1, then let p write some value to location

M , then let q read from M , then let q read its cycle counter as vq2.

In this setting, we can ask the following:

• Does tp1 ! tq2 , vp1 < vq2 hold if p writes an arbitrary value to M?

• Does tp1 ! tq2 , vp1 < vq2 hold if p writes vp1 to M?

On the Oracle UltraSPARC T2 processor, the tick register can be read to access

the cycle counter. In experimental evaluation we determined that this counter is not

(even locally) monotonically increasing, and thus is not suitable for our needs. More

recent versions of the UltraSPARC micro-architecture also contain an stick register

with stronger properties, which may be suitable. We leave exploration of this newer

feature as future work.

On Intel “Nehalem” and later microarchitectures, the rdtsc instruction is lo-

cally monotonic, and for the most recent models, the instruction is invariant [38,

Volume 3, Chapter 17.13], meaning that the counter increments at a constant rate

regardless of frequency scaling. This behavior, which is “the architectural behavior

moving forward”, provides an unique value on successive reads by a single core. The

microarchitecture also o↵ers an rdtscp instruction, which is considered to be “syn-

chronous” (it has load fence semantics, and does not complete until preceding loads

complete) [38, Volume 2, Chapter 4.2].

We subsequently explored the global monotonicity of the x86 clocks, and found

that the last property held for the rdtscp instruction. That is, when there is a data

dependence between the rdtscp and subsequent store by p, then tp1 ! tq2 , vp1 < vq2.
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Furthermore, the property holds on both single-socket and dual-socket multicore pro-

cessors. The guarantee is provided not only among cores of the same chip, but between

chips. This feat stems from (a) motherboards asserting a RESET signal synchronously

at boot time, which synchronizes all chips’ internal timestamp counters; and (b) each

chip then locking the frequency of its invariant timestamp counter to the external

bus frequency. Note, however, that an individual core can use WRMSR to set a signed

o↵set, which is then added to the return value of rdtsc/rdtscp instructions. Using

WRMSR in this manner can violate the appearance of global monotonicity.

To validate our findings, we spoke with engineers at Intel and AMD. They con-

firmed that:

On modern 64-bit x86 architectures, if one core writes the result of an

rdtscp instruction to memory, and another core reads that value prior to

issuing its own rdtscp instruction, then the second rdtscp will return a

value that is not smaller than the first.

This property is expected to be preserved by future x86 64 processors, but only holds

in the absence of WRMSR instructions. Furthermore, the invariant x86 cycle counter

has a constant frequency independent of the operating frequency of the processor.

This property is critical, since otherwise power management decisions could cause

clock drift among cores or CPUs.

Given that rdtscp is strictly increasing, it is tempting to assume that read and

getNext could both be implemented by simply executing rdtscp. However, it is

important to understand the constraints on how rdtsc and rdtscp may be ordered

within the processor. First, rdtsc may appear to reorder with respect to any memory

operation that precedes or follows it. The rdtscp instruction cannot bypass a pre-

ceding load, but can bypass a preceding store. Furthermore, the rdtscp instruction

can appear to execute after a subsequent load or store. We now turn our attention to

the consequences of this reordering, and propose extensions to STM algorithms that
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Algorithm 6: STM-related variables

Global Variables
transactions : Tx[] // thread metadata
timestamp : Global Clock Object // see Algorithm 5
orecs : OwnershipRecord[] // orec table

Per-transaction Variables
my lock : hInteger, Integeri // h1, thread idi
start : Integer // start time
end : Integer // end time
writes : WriteSet // pending writes by this Tx
reads : ReadSet // locations read by this Tx
locks : LockSet // locks held by this Tx

re-establish the strong ordering guarantees of a software global clock object when

using rdtscp.

3.3 Applying rdtscp to STM

We now consider how the x86 cycle counter can be used to replace a shared memory

global clock in an STM implementation. We focus on existing and well-known algo-

rithms based on ownership records (orecs). The metadata and data types required

for the algorithms discussed in this chapter are presented as Algorithm 6.

3.3.1 Preliminaries

In orec-based STM with timestamps (such as TL2 and TinySTM), orecs either store

the identity of a lock holder, or the most recent time at which the orec was unlocked.

Since rdtscp returns a 64-bit value, we require orecs to be 64 bits wide. We also

require atomic 64-bit loads. We reserve the most significant bit of the orec to indicate

whether the remaining 63 bits represent a lock holder or a timestamp. This change

does not have a significant impact on the risk of timestamp overflow, since a machine

operating at 3GHz could operate for years without overflowing a 63-bit counter.
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For simplicity in our initial discussion, we will consider algorithms with bu↵ered

update/commit-time locking, and we will not consider timestamp extension [25, 91].

Both of these features can be supported without additional overhead. We will also

assume a one-to-one mapping of orecs to locations in memory, as it simplifies the

pseudocode.

3.3.2 Check-Once Ownership Records

We begin with an analysis of STM algorithms based on “check-once” orecs [91].

Though less well known than “check-twice” orecs, these algorithms o↵er lower per-

access overhead and avoid some memory fences on processors with relaxed consistency.

Algorithms 7 and 8 present a simplified framework for STM implementations that

use check-once orecs. The novelty of such algorithms stems from the ordering of

accesses to the global clock relative to updates to shared memory. In the commit op-

eration, a transaction acquires locks, validates, performs writeback, and then accesses

the clock to attain a completion time. It uses this time as it releases its locks.

When a transaction begins, it accesses the clock to attain a starting time. To

read a location, it reads that location, and then checks that the orec is unlocked

and contains a time no newer than the transaction start time. There is no need to

check the orec before reading the location: such a check is e↵ectively subsumed by

Line 2. Suppose that a read-only transaction R begins at time T , and that a writing

transaction W has not yet completed writeback to location L, protected by ownership

record O
L

. There are three possibilities:

• If W has not acquired O
L

, then R can order before W .

• W has acquired but not released O
L

, in which case R’s check of O
L

will cause

it to abort.

• W completes writeback and acquires a timestamp after R starts. Thus the time
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Algorithm 7: Canonical STM algorithm with check-once ownership records

1 TxBegin()
2 start timestamp.read()
3 reads writes locks ;

4 TxRead(addr)
5 if addr 2 writes then return writes[addr]
6 v  ⇤addr
7 o orecs[addr].getValue()
8 if o  start and ¬Locked(o) then
9 reads reads [ {addr}

10 return v

11 else Abort ()

12 TxWrite(addr, v)
13 writes writes [ {haddr, vi}

14 TxCommit()
15 if writes = ; then return
16 AcquireLocks ()
17 Validate(0)
18 WriteBack()
19 end timestamp.getNext()
20 ReleaseLocks(end)

written to O
L

will be after R’s begin time, and R will abort. (Note that this

abort may be avoided with timestamp extension).

Since in all cases, R cannot order after W while observing a value of L from before

W ’s commit, the read is consistent with all prior reads, without a check of the orec

between Lines 5 and 6.

Check-once orec algorithms typically use a shared memory global counter (as in

Algorithm 5). It should be straightforward to replace the read and update of the

global clock with a call to rdtscp. However, in the case of check-once orecs, this

is not safe. Recall that an rdtscp can appear to execute before a preceding store

operation. This creates the possibility of a location appearing to update after its orec

is released, as Lines 18 and 19 can seem to reorder.
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Algorithm 8: Helper functions

1 AcquireLocks()
2 foreach addr in writes do
3 if ¬ orecs[addr].acquireIfLEQ(start) then
4 Abort ()

5 else locks locks [ {addr}

6 ReleaseLocks()
7 foreach addr in locks do
8 orecs[addr].releaseTo(end)

9 WriteBack()
10 foreach haddr, vi in writes do
11 ⇤addr  v

12 Validate()
13 if end 6= start+ 1 then
14 foreach addr in reads do
15 v  orecs[addr].getValue()
16 if v � start and v 6= my lock then Abort ()

17 Abort()
18 foreach addr in locks do
19 orecs[addr].releaseToPrevious()

20 restartTransaction()

Such a reordering is incorrect, as it can lead to a thread observing inconsistent

state. Suppose that transaction A has just completed Line 17 en route to committing

a write that changes location L from value v to value v0, and that transaction B is

about to execute Line 2. The correctness of check-once orecs relies on the following:

• If B reads the timestamp (Line 2) before A increments the timestamp at Tx-

Commit (Line 19), B will abort if it attempts to read L. The abort is required

because the algorithm does not guarantee ordering between A’s writeback (Line

18) and B’s read of L (Line 6), and thus cannot guarantee that B will observe

v0.
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• If B reads the timestamp (Line 2) after A increments the timestamp at Tx-

Commit (Line 19), then either (a) the step that checks the orec in B’s TxRead

(Line 7) happens before A releases the lock (Line 20), in which case O
L

will be

locked and B will conservatively abort, or (b) B will observe v0 when it reads

L. This follows from program order in each thread.

If Line 19 of thread A attains a timestamp before some memory update by thread A

on Line 18 completes, then although it appears that A commits at time t, A’s update

of L from v to v0 does not occur until some time t0 > t. Thus the following order is

possible:

• A increments the timestamp at TxCommit Line 19 (reordered);

• B reads the timestamp at Line 2 in TxBegin;

• A executes Line 18 and Line 20 in TxCommit (reordered);

• B checks orec at Line 7 in TxRead.

In this case, B reads the location (Line 6) before A updates it (Line 18), but since

A gets its timestamp (Line 19) before B starts (Line 2) and A releases its locks (Line

20) before B checks the orec (Line 7), B does not abort. B’s continued execution

with inconsistent state is not merely a violation of opacity [29], because it will not

even be detected by validating B.

The latest IA32/x86 64 specification [38, Volume 2, Chapter 4.2] indicates that

it is possible to prevent an rdtsc instruction from bypassing a preceding load by

either (a) preceding it with an LFENCE instruction, or (b) by using rdtscp instead

of rdtsc. However, the specification does not give any mechanism for preventing

an rdtscp from bypassing a preceding store. In empirical evaluation, we observed

that Line 19 can appear to execute before Line 18, even when using rdtscp (with its

implicit LFENCE). Furthermore, note that an MFENCE instruction is insu�cient in this
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case: since neither rdtscp nor MFENCE reads shared memory, the sequence store,

MFENCE, rdtscp does not guarantee that the rdtscp occurs after the store.

Algorithm 9: Replacement TxCommit code when using rdtscp with check-
once orecs
TxCommit()

...
19 AtomicAdd(end, 0)
20 end rdtscp
21 ReleaseLocks(end)

Our solution, presented in Algorithm 9, is to use an atomic read-modify-write

instruction prior to the rdtscp. The instruction (which we refer to in pseudocode

as AtomicAdd, and which is realized in x86 assembly code as lock add) adds zero to

a thread-local variable, and thus has no logical e↵ect. However, as a lock-prefixed

instruction, it enforces ordering in that its memory e↵ects must happen after the

stores that comprise the call on Line 18. Additionally, since it is a read-modify-write

(RMW) instruction, this increment involves a read, and thus the subsequent rdtscp

on Line 20 must order after it due to the implicit LFENCE of rdtscp. When coupled

with the fact that there is a data dependence between Lines 20 and 21 (the return

value of rdtscp is used as the value written into orecs when they are released), this

instruction sequence ensures that an rdtscp on Line 20 has the correct behavior.1

Let us now consider the use of rdtscp on Line 2. In this case, the implicit

LFENCE ensures that getting a start time does not bypass preceding loads, which

su�ces for the entry to a critical section or transaction. However, it is possible for

the rdtscp to appear to delay. Note that it cannot delay past Line 8, due to a data

dependence. However, suppose that transaction A is updating location L from v to

v0 when transaction B begins. If thread B Line 2 occurs after thread B Line 6, then

a possible ordering is:

1Note that a number of other instructions, including xchg and lock cmpxchg, can be used in
place of lock add.
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• A completes validation at Line 17;

• B dereferences the address at Line 6 in TxRead (reordered);

• A completes writeback and finishes TxCommit;

• B completes its rdtscp at Line 2 (reordered);

• B checks the orec at Line 7 in TxRead.

In this case, B will read v, but since thread A Line 21 (Algorithm 9) precedes thread

B Line 2, thread B will not abort.

Algorithm 10: Replacement TxBegin code when using rdtscp with check-once
orecs
1 TxBegin()
2 start rdtscp
3 AtomicAdd(start, 0)
4 reads writes locks ;

To guarantee that an rdtscp instruction in TxBegin is ordered before the trans-

action body, we again use a lock prefixed instruction to add zero to a thread-local

variable. However, we now must also introduce a data dependence. Our solution,

presented in Algorithm 10, stores the result of rdtscp and then performs a read-

modify-write instruction to add zero to the result. Since there is a data dependence

between the result of the rdtscp and the increment, the rdtscp must order before

the increment. Additionally, since the addition is a lock-prefixed read-modify-write

operation, on x86 processors there is a guarantee that the addition completes before

any subsequent memory operations. The end result is a guarantee that Line 2 cannot

reorder after any of the memory operations within a TxRead, TxWrite, or TxCommit

operation.
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3.3.3 Check-Twice Ownership Records

Listing 11 presents a canonical lazy STM with check-twice orecs. This style of STM

algorithm is representative of TL2 [21], TinySTM [25], and most other orec-based

algorithms. While ordering is required between Lines 6 and 7, and between Lines 7

and 8, which can result in more memory fences than check-once orecs, there is a useful

savings at commit time: often, validation can be avoided. When the timestamp is

implemented as a shared memory counter, a transaction that successfully increments

the counter from the value it observed on Line 2 is assured that no transaction changed

the contents of memory during its execution, and thus validation is unnecessary.

While there is no asymptotic di↵erence in instructions (each of R reads incurs more

overhead during the read operation itself, and then avoids R validation instructions

at commit time), validation operations at commit time are less likely to hit in the

L1 cache, and thus in the absence of memory fences, check-twice orecs with a shared

memory counter can expect a slight performance advantage over check-once orecs,

particularly with timestamp extension [66].

Unfortunately, when rdtscp is used in place of a shared memory counter, this

commit-time validation savings is lost, as it is impossible for the value of the clock

that was observed at Line 18 to be only one greater than the value of the clock

that was observed at Line 2. Thus for STM algorithms with check-twice orecs, we

can expect a slowdown (especially at one thread) if we replace the shared memory

counter with a hardware counter.

The question remains as to whether it is correct to use rdtscp. Observe that there

are two points at which the counter is accessed. The first is at begin time (Line 2),

where the same analysis as with check-once orecs applies: the rdtscp does not occur

“too early”, but it seems possible that the instruction can delay “too late”. As with

check-once orecs, the solution here is to use the code sequence from Algorithm 10.

This sequence ensures that the rdtscp in TxBegin does not delay past any shared
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Algorithm 11: Canonical STM algorithm with check-twice ownership records

1 TxBegin()
2 start timestamp.read()
3 reads writes locks ;

4 TxRead(addr)
5 if addr 2 writes then return writes[addr]
6 o1  orecs[addr].getValue()
7 v  ⇤addr
8 o2  orecs[addr].getValue()
9 if o1 = o2 and o2  start and ¬Locked(o2) then

10 reads reads [ {addr}
11 return v

12 else Abort()

13 TxWrite(addr, v)
14 writes writes [ {haddr, vi}

15 TxCommit()
16 if writes = ; then return
17 AcquireLocks ()
18 end timestamp.getNext()
19 Validate(end)
20 WriteBack()
21 ReleaseLocks(end)

memory operations within the transaction body.

Algorithm 12: Replacement TxCommit code when using rdtscp with check-
twice orecs
TxCommit()

...
18 end rdtscp
19 Validate(end)
20 WriteBack()
21 ReleaseLocks(end)

The second point at which the counter is accessed is at commit time. There

are data dependencies between the read of the counter (Line 18) and the validation

(Line 19) and lock release (Line 21) operations. Thus delay of the instruction is not

possible, and the replacement of a shared memory counter with a hardware counter
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will not a↵ect correctness. Furthermore, since rdtscp has an implicit LFENCE, it

cannot bypass preceding load operations.

We claim that simply substituting the increment of a shared counter with an

rdtscp instruction, as in Algorithm 12, su�ces. Our lone concern is the case where

the rdtscp bypasses a preceding store operation. In this case, we must ensure that

Line 18 executing before Line 17 will not compromise correctness. The key di↵erence

relative to check-once orecs is that with check-twice orecs, Lines 6–8 alone su�ce to

ensure that if thread A Line 18 precedes thread B Line 2, then on an access to L, B

will abort unless thread B Line 6 follows thread A Line 21. That is, B cannot safely

read a location that is locked by A but may have already been updated.

Note that if thread A Line 18 were reordered before thread A Line 17, then when

thread A Line 18 precedes thread B Line 2, B might be able to execute lines 8–10

before thread A Line 17. In this case, B’s read of L will appear to occur before A

commits. However, since B believes it started after A, if B reads L again, or if B

reads some other location written by A after thread A completes Line 21, B will not

detect an inconsistency. Fortunately, this problem is averted since thread A Line 17

is implemented with the atomic cmpxchg instruction. Since the instruction is a read-

modify-write that entails both a load and a store, and since rdtscp has an implicit

LFENCE, thread A Line 18 cannot bypass thread A Line 17 in Algorithm 12.

3.3.4 Timestamp Extension

A common practice in STM algorithms is to “extend” a transaction’s start time to

avoid aborts in the read function (Algorithm 7 line 11 and Algorithm 11 line 12).

The technique is simple [66, 91]: if transaction T is reading location L for the first

time and the orec associated with L (O
L

) is unlocked but newer than T.start, but

no location in T.reads has been locked since T began, then it is safe to add L to T ’s

read set and update T.start to the value in O
L

. Intuitively, all prior loads and stores
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performed by T would have been correct if T did not begin until after O
L

was most

recently unlocked, and thus T can update its start time to achieve the illusion that

it started later than it actually did.

Timestamp extension replaces the call to Abort in TxRead with the sequence in

Algorithm 13.

Algorithm 13: Timestamp extension with a global shared memory clock

1 tmp timestamp.read()
2 Validate(start)
3 start tmp

Given the properties of rdtscp discussed above, it is correct to use rdtscp in

place of a shared memory counter only if ordering can be guaranteed between the

read of the timestamp and the call to Validate(). As before, we use a lock-prefixed

instruction and a data dependence to provide this ordering. The resulting timestamp

extension code appears in Algorithm 14. Note that as in all previous uses of an

additional lock add instruction, our modification of a thread-local variable is likely

to result in little additional latency.

Algorithm 14: Timestamp extension with rdtscp

1 tmp rdtscp
2 AtomicAdd(tmp, 0)
3 Validate(start)
4 start tmp

3.4 Privatization Safety

In languages whose memory model demands static separation [1], such as Haskell,

Scala, and Clojure, the algorithms from Section 3.3 can be used directly. However, the

current draft specification for adding TM to C++ [3] requires implicit privatization
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safety [31, 55, 83, 91] instead of static separation. We now turn our attention to

mechanisms that can make our algorithms from Section 3.3 privatization safe.

3.4.1 The Privatization Problem

In general, privatization safety can be thought of as the need to prevent two prob-

lems [83], related to “doomed transactions” and “delayed cleanup”. First, when a

transaction T
p

commits and makes some datum D private, the STM library must

ensure that subsequent nontransactional accesses by T
p

do not conflict with accesses

performed by transactions that have not yet detected that they must abort on ac-

count of T
p

’s commit. Second, when T
p

commits, the STM library must ensure that

no transaction T
o

that committed or aborted before T
p

has pending cleanup (a redo

or undo log) to D. The danger is that T
p

’s nontransactional access to D could race

with that cleanup.

In general, there are two approaches to privatization safety. The first is for T
p

to

block during its commit phase and wait for all extant transactions to either commit

or abort and clean up. This technique has come to be known as quiescence [55]. The

second approach is to use orthogonal solutions to the two problems. The approach,

known as the Detlefs algorithm [51, 81], assumes a write-back STM. In an STM

with write-back, delayed cleanup can be achieved by serializing the writeback phase

of all committed transactions, and doomed transactions can be detected before they

do harm by requiring them to poll a global count of committed transactions on every

read, and to validate whenever the count changes.

3.4.2 Achieving Privatization Safety

Unfortunately, polling to solve the doomed transaction problem introduces the very

shared memory bottleneck that our use of cycle counters seeks to avoid. Furthermore,

since the cycle counter advances according to physical time, instead of upon writer
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Algorithm 15: Privatization safe STM algorithm using check-twice orecs and
rdtscp

1 TxBegin()
2 start rdtscp
3 AtomicAdd(start, 0)
4 reads writes locks ;

5 TxRead(addr)
6 if addr 2 writes then
7 return writes[addr]

8 while true do
9 o1  orecs[addr].getValue()

10 v  ⇤addr
11 o2  orecs[addr].getValue()
12 if o1 = o2 and o2 

start and ¬Locked(o2) then
13 reads reads [ {addr}
14 return v

15 if Locked(o2) then continue
// extend validity range

16 tmp start
17 start rdtscp
18 AtomicAdd(start, 0)
19 foreach addr in reads do
20 v  orecs[addr].getValue()
21 if v � tmp then Abort ()

22 TxWrite(addr, v)
23 writes writes [ {haddr, vi}

24 TxCommit()
25 if writes = ; then
26 start 1
27 return

28 AcquireLocks ()
29 end rdtscp
30 Validate(end)
31 WriteBack()
32 start 1
33 ReleaseLocks(end)

// Quiescence
34 foreach tx in transactions do
35 while tx.start  end do
36 wait

transaction commits, every poll of the counter would require a validation, since every

read would return a value > start. This would lead to quadratic validation overhead.

Instead, our privatization-safe algorithms employ quiescence.

Algorithm 15 introduces a privatization-safe STM algorithm that uses rdtscp in

place of a global shared clock. This algorithm incorporates timestamp extension and

check-twice orecs. Replacing check-twice orecs with check-once orecs is trivial.

Since this algorithm uses timestamp extension, we can employ a validation fence [83],

rather than the more coarse-grained transaction fence, for privatization safety. To

maximize the e↵ectiveness of this technique, the timestamp extension on Lines 16

to 21 di↵ers slightly from Algorithm 14, so that a concurrent thread that is in the
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process of quiescence can observe a validating thread early. In e↵ect, whenever an in-

flight transaction T
i

(one that has not reached its commit point) begins a validation,

any concurrent committer T
c

can be sure that either T
i

is doomed and will abort, or

that T
i

and T
c

do not conflict, and T
c

need not wait on T
i

.

3.5 Evaluation

In this section we present performance results for several STM algorithms that use

rdtscp in place of a shared counter. For completeness of evaluation, we consider two

categories of algorithms. The first category consists of the most popular algorithms

that are not privatization safe, and their rdtscp-enhanced versions:

• LSA – The write-through version of the LSA algorithm, also known as TinySTM-

WT [25]. This is a check-twice algorithm with extensible timestamps and undo

logs.

• LSA-Tick – LSA, but using rdtscp in place of a global shared counter.

• Patient – A redo log/commit-time locking version of LSA [82], which we aug-

mented to use check-once orecs.

• Patient-Tick – A variant of Patient that uses rdtscp.

• TL2 – TL2 features check-twice orecs, and commit time locking with redo logs,

but does not have extensible timestamps [21]. Our version uses the “GV1” clock

mechanism, which is equivalent to the shared memory counter in LSA.

• TL2-Tick – TL2, extended to use rdtscp in place of a global shared counter.

We also evaluate the following privatization-safe algorithms:

• NOrec – A privatization-safe, redo-log based algorithm that does not use orecs [18].
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• OrecELA – A variant of the Detlefs algorithm [48, 81], which uses check-once

orecs and extensible timestamps.

• OrecELA-Q – A variant of OrecELA that uses check-twice orecs and exten-

sible timestamps, but which relies on quiescence instead of polling to ensure

privatization-safety.

• ELA-Tick-1 – A version of Algorithm 15 using check-once orecs.

• ELA-Tick-2 – A variant of Algorithm 15 using check-twice orecs.

All algorithms were implemented within the RSTM framework [80], in order to

minimize variance due to implementation artifacts. Experiments were performed on

two machines, both based on the 6-core/12-thread Intel Xeon X5650 CPU. The first

machine was a single-chip configuration with 12 hardware threads, the second a two-

chip configuration with 24 hardware threads. The underlying software stack included

Ubuntu Linux 12.04, kernel version 3.2.0-27, and gcc 4.7.1 (–O3 optimizations). All

code was compiled for 64-bit execution, and results are the average of 5 trials. We

evaluated STM algorithms on targeted microbenchmarks from the RSTM suite, and

also measured their performance on the STAMP benchmarks [56]. As in prior work,

we omitted Bayes and Yada from the evaluation: Bayes exhibits nondeterministic

behavior, and the released version of Yada crashes for algorithms that use redo logs.

3.5.1 Microbenchmark Performance

The first claim we evaluate is whether hardware cycle counters can be used to acceler-

ate workloads with frequent small writer transactions. Even in the absence of aborts,

such a workload can fail to scale adequately due to contention among transactions

attempting to update the shared memory counter.

Figures 3.1(a) and 3.1(c) present the performance of our STM algorithms for a

microbenchmark in which all transactions repeatedly access the same hash table.
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Figure 3.1: Microbenchmark results. Hashtable experiments are configured with 256
buckets, 8-bit keys, and a 0% lookup ratio. Red-Black Tree experiments use
20-bit keys and an 80% lookup ratio.

The data structure is configured with 256 buckets and linear chaining. Transactions

attempt to insert and delete 8-bit keys with equal probability. The data structure was

pre-filled with half of the keys in the range, so that 50% of transactions succeed in

their insert/delete attempts; in other words, 50% of the transactions are not read-only.

On the single-chip machine, the algorithms exhibit performance that separates

into four categories. The most scalable algorithms are those that do not have any

bottlenecks in the STM implementation: our rdtscp-based algorithms without pri-

vatization safety. Since the benchmark has virtually no aborts, undo logging has less

overhead than redo logging, and LSA-Tick has the least overhead. This is expected,

since LSA variants use eager locking and in-place update. The slight benefit observed
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by TL2-Tick relative to Patient-Tick is due to the added cost of ordering in Patient-

Tick (recall that Patient-Tick uses check-once orecs, and thus requires an additional

lock-prefixed instruction in the commit operation).

The second group of algorithms are those that are not privatization safe, but

which su↵er from contention on the shared memory counter. Prior to this work,

these would have been the best performing STM algorithms. The third group is the

privatization-safe algorithms that use orecs. Here, we see that at low thread counts,

serialization of writeback provides the best performance, but due to the frequency of

writer transactions, this becomes a bottleneck at high thread counts. Thus at higher

thread counts, the more heavyweight quiescence operation employed by our rdtscp-

based algorithms performs better: for small writer transactions, it is more important

to allow parallel writeback than to avoid the overhead of quiescence. The last category

consists solely of NOrec. NOrec is known to perform poorly for workloads with small,

frequent writer transactions.

On the dual-chip machine, we see roughly the same grouping. However, three

additional trends emerge. First, all algorithms experience a slowdown at two threads,

due to inter-chip communication. The version of the Linux operating system used in

this experiment places threads as far apart as possible, and thus with two threads,

any shared STM metadata must bounce between the caches of the two chips; this

includes the ownership records themselves, which no longer remain local to a single

chip’s cache. The second new trend is that contention for shared counters is higher.

This leads LSA, TL2, and Patient to perform much worse than their rdtscp-based

counterparts. Since transactions are small, the overhead of quiescence remains man-

ageable, since no quiescence operation delays for long, and thus the rdtscp-based

privatization-safe algorithms can perform almost as well as these unsafe algorithms.

Finally, writer serialization on a multi-chip system is particularly costly, resulting

in OrecELA and NOrec both failing to scale. Note that OrecELA-Q scales better
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than OrecELA, since it has lower quiescence overhead and avoids the costly writer

serialization of OrecELA.

On the opposite end of the spectrum, Figures 3.1(b) and 3.1(d) present the perfor-

mance of these algorithms on a red-black tree. 80% of transactions perform lookups,

with the remaining transactions split equally between insert and remove operations.

Again, the data structure is pre-populated with half of the keys in a 20-bit range, so

that half of all attempts to update the data structure succeed. The net e↵ect is that

90% of transactions are read-only. Furthermore, transactions are substantially larger,

consisting of more than two dozen reads on average.

This workload nullifies the benefits of using rdtscp: our “Tick” algorithms require

writers to validate at commit time while their counterparts need not; the cost of

quiescence is higher, since committing writers must wait on long-running transactions

to validate; and shared memory counters are not a significant source of contention in

the first place. On the single-chip machine, we see NOrec perform best at all thread

counts, and rdtscp-based algorithms perform a small constant factor worse than their

non-rdtscp counterparts. The e↵ect is less pronounced on the dual-chip system, since

coherence tra�c on shared counters is severe. As a result, at high thread counts we

see the privatization-safe rdtscp algorithms outperforming OrecELA, OrecELA-Q,

and NOrec.

The performance di↵erences between quiescence and polling/writer serialization

are nuanced. To gain more insight into where quiescence overheads lie, we instru-

mented the microbenchmarks to count cycles spent in the quiescence operation, as

well as cycles in quiescence spent specifically waiting for a thread to validate. Some

results from the single-chip and dual-chip machines appear in Table 3.1, with the

“Total” column depicting the average number of cycles spent in quiescence for each

transaction, and “Waiting” representing the average number of cycles within the qui-

escence operation that were spent waiting for any thread’s start time to change. For
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Table 3.1: Quiescence overhead

Single-chip system

Red-black tree Hash table
Thread count Total Waiting Total Waiting

1 40 0 40 0
2 1403 1244 287 129
4 2618 2293 503 238
6 3294 2886 688 297
8 4123 3474 780 263
10 4955 4174 929 269
12 5554 4670 1063 282

Dual-chip system

Red-black tree Hash table
Thread count Total Waiting Total Waiting

1 36 0 35 0
2 2318 1831 713 323
4 3706 2885 1290 642
6 4216 3265 1642 697
12 5483 4131 2506 811
18 11018 8975 3829 1111
24 18408 15800 7281 4006

the hash table, most of the overhead of quiescence is due to cache misses, not waiting;

this is represented by the near-constant value for “Waiting” and a “Total” cost that

scales roughly linearly with the number of threads: in e↵ect, quiescence is amount-

ing to a single cache miss per thread to read that thread’s start time and conclude

that no further waiting is required. In contrast, the red-black tree workload shows

a significant fraction of quiescence time spent in “Waiting”. This indicates that the

quiescing thread experiences delays waiting for multiple threads to reach their next

validation point. Since conflicts are rare in this workload, this often entailed wait-

ing for other transactions to reach their commit point. The implication is that for

workloads with large transactions and few conflicts, quiescence can be a significant

overhead, comparable to the cost of writer serialization.
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Figure 3.2: STAMP results on the single-chip system (1/2).

3.5.2 STAMP Performance

The variety of behaviors exhibited by the di↵erent STAMP benchmarks provide ad-

ditional insight into the benefits and weaknesses of our rdtscp-based algorithms.

Figures 3.2 and 3.3 present results for the single-chip system; Figures 3.4 and 3.5

present results for the dual-chip system.

Intruder Intruder features transactions of varying lengths, with a mix of read-only

and writing transactions. One characteristic exhibited within each larger transaction

is that the early accesses are more likely to participate in a conflict than later ac-

cesses. In polling-based privatization-safe algorithms, this behavior is immaterial to

privatization overhead, since a committing writer does not wait for in-flight trans-
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Figure 3.3: STAMP results on the single-chip system (2/2).

actions. However, with quiescence, a committing writer must wait. The nature of

orec-based algorithms is such that a transaction will not validate and detect a conflict

unless it reads a location that cannot be added to its read set. Thus quiescence-based

algorithms spend a long time waiting for transactions that ultimately abort, but that

never detect the need to validate. This overhead significantly degrades the perfor-

mance of our privatization-safe rdtscp algorithms. Otherwise, the use of rdtscp has

no noticeable e↵ect on performance for the single- or dual-chip machine.

Genome Genome performance is dominated by a large read-only phase, and trans-

actions in general do not exhibit many conflicts. Consequently, on both the single

and dual-chip systems, all algorithms perform at roughly the same level. The only
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di↵erentiation we see is that privatization-safe algorithms do not scale as well due to

their serialization/blocking at commit time. The more pronounced separation on the

dual-chip system illuminates that OrecELA, with its polling and writer serialization,

performs slightly worse. This is no surprise, since this mechanism causes significant

coherence tra�c.

SSCA2 In many regards, SSCA2’s behavior is modeled by our Hashtable microbench-

mark: all transactions perform writes, and transactions are frequent and small. NOrec

is known to perform poorly, due to serialization at commit time, and on the dual-

chip system, OrecELA performs poorly as well. The only noteworthy result is to see,

again, that on a dual-chip system, the coherence tra�c caused by the shared counter

causes a reduction in performance, and thus the use of rdtscp proves beneficial.

KMeans In KMeans, transaction durations vary, particularly in the high-contention

workload. As a result, the cost of quiescence can occasionally be high, resulting in a

penalty on the single-chip system for our privatization safe, rdtscp-based algorithms.

While this cost is significant on the single-chip system, the characteristics of the dual-

chip system have a mitigating e↵ect. Since quiescence entails less contention and bus

tra�c than writer serialization, NOrec and OrecELA degrade on the dual-chip system,

leaving our rdtscp-based algorithms and OrecELA-Q as the best privatization-safe

algorithms for this workload. A minor additional point is that under high contention,

we see performance anomalies for the write-through algorithms. These variations

are due to contention management; “carefully tuned” backo↵ parameters would have

smoothed the performance of these curves.

Vacation Vacation is dominated by large writer transactions. As with the red-black

tree microbenchmark, the size of these transactions serves as a bu↵er to minimize the

overhead from shared memory bottlenecks. Furthermore, since transactions rarely
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conflict, timestamp extension does not occur often in practice. As a result, for mod-

est to large thread counts it is safe to expect every transaction to validate at commit

time. This eliminates the main advantage of check-twice orecs. We see comparable

performance for all non-privatization-safe algorithms, and only slight separation be-

tween the privatization-safe algorithms. As before, the general trend is that quiescence

is more expensive at lower thread counts, and writer serialization more expensive at

higher thread counts.

Labyrinth The STAMP Labyrinth application contains racy reads, which are safe

in the context of the benchmark. In contrast to the original Lee-TM algorithm [6]

upon which it is based, Labyrinth conflates memory speculation and control flow

speculation: In Labyrinth transactions, a quadratic number of un-instrumented (non-

transactional) reads are performed within a transaction, after which a linear number

of locations are accessed via instrumented reads and writes. These instrumented

accesses consist of checks that ensure no intervening writes since the previous un-

instrumented reads, and then transactional updates to those same locations. The

programmer uses explicit self-abort when the nontransactional reads are shown to be

inconsistent. This benchmark is thus extremely artificial: neither a proper compiler-

based TM, nor a hardware TM, would be able to eliminate instrumentation of the

majority of accesses within a transaction. We opted to restore the Lee-TM form to the

Labyrinth application for our tests. This change decouples control-flow speculation

from transactional speculation on memory accesses, but does not a↵ect correctness.

However, it results in transactions comprising a tiny fraction of overall execution time,

and thus all TM implementations scale equally well.
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Figure 3.4: STAMP results on the dual-chip system (1/2).

3.6 Summary

In this chapter, we explored the role that x86 hardware cycle counters can play

in eliminating bottlenecks and reducing overhead for software transactional memory

algorithms. In the absence of privatization safety, our findings were positive: in work-

loads for which shared memory counters are known to cause scalability bottlenecks,

our “Tick” algorithms outperformed the state of the art, while in other cases our

algorithms performed on par with their non-Tick equivalents. When privatization

safety is required, however, the use of cycle counters prevents the some valuable op-

timizations, such as polling to detect doomed transactions. On a single-chip system,

this generally led to worse performance, though on a dual-chip system the penalty

was mitigated by the ability our algorithms o↵er for committing writer transactions
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Figure 3.5: STAMP results on the dual-chip system (2/2).

in parallel.

There are several questions that this work raises for hardware designers. Chief

among them is the nature of ordering between memory operations and accesses to the

cycle counter. The correctness of our algorithms relied on the introduction of lock-

prefixed operations and data dependencies between accesses to the cycle counter and

subsequent memory operations. Together, these techniques provided the “write before

timestamp access” ordering that our check-once orecs required, as well as the “times-

tamp access before read” ordering that all our algorithms required during transaction

begin. If cycle counters become a more popular mechanism for synchronizing threads,

it may be beneficial to o↵er a stronger variant of the rdtsc instruction, particularly

one that guarantees ordering between the read of the cycle counter and subsequent
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memory operations. Another question relates to generality: Can the ARM, SPARC,

and POWER architectures provide cycle counters with strong enough guarantees to

support our algorithms?

In addition, the strong performance of our non-privatization-safe algorithms leads

to questions about the benefit of implicit privatization safety. Perhaps the absence

of bottlenecks in our algorithm will make strong isolation [76] viable for unmanaged

languages, or at least provide an incentive for new explorations of programming mod-

els with explicit privatization. In this regard, we are particularly excited that the

use of rdtscp in place of accesses to a global shared counter will enable a strongly

isolated system to implement individual loads and stores as mini-transactions that

do not su↵er from scalability bottlenecks.
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Chapter 4

Reducing the Abort Rate by

Delaying Read-Modify-Writes

In this chapter, we present a technique to reduce the transaction abort rate. The

original work was published in “Transactional Read-Modify-Write Without Aborts”

at ACM Transactions on Architecture and Code Optimization, Volume 11 Issue 4,

January 2015 Article NO. 63.

4.1 Introduction

As described in Section 1.1 of Chapter 1, language-level transactions are often de-

scribed as providing atomicity, in the sense that the operations that comprise the

transaction appear to happen “all at once”, as an indivisible operation without any

intervening memory operations from concurrent transactions. While Hardware Trans-

actional Memory is largely able to provide this illusion for small transactions, Software

Transactional Memory typically cannot, due to the high overheads that arise [55, 28].

Instead, STM implementations fall back to semantics based on multiple logical locks,

in which transactions appear to acquire locks covering their read and/or write sets

dynamically during the course of their execution.
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1 t r an s a c t i on {
2 expen s i v e f un c t i on 1 (x ) ;
3 s t a t s++;
4 expen s i v e f un c t i on 2 (y ) ;
5 }

Figure 4.1: A transaction that modifies a highly contended variable. If line 3 could be
delayed until commit time, concurrent invocations of this transaction would
not abort due to accesses to stats.

The unfortunate consequence is that compilers must be conservative when reorder-

ing memory accesses that occur within a transaction. In particular, under the most

popular “Encounter-time Lock Atomicity” (ELA) semantics proposed by Menon et

al. [55], a transaction appears to acquire a lock for each location it reads at the time

each location is first read. In practical implementations of STM [21, 25], writes are

treated as implicit reads, and also appear to acquire locks at the time the location

is first accessed, even though ELA permits writes to appear to delay lock acquisition

until as late as the commit point of the transaction.

While reordering accesses is typically regarded as a low-level compiler issue, with

the ideal order based on register pressure and predicted cache misses, TM presents

a wrinkle: virtually every TM implementation detects conflicts during transaction

execution. In HTM, this is usually achieved by monitoring cache invalidations; in

STM, this is achieved by determining if a transaction’s logical lock acquisition over-

laps with prior lock acquisitions by concurrent, not-yet-committed transactions. For

highly contended (“hot”) locations, the real-time ordering of lock acquisitions can

create unnecessary conflicts, resulting in aborts and wasted work.

To illustrate this point, consider the code in Figure 4.1. In every invocation,

considerable work is done by the first function, after which a statistics counter is

incremented. The increment consists of a shared memory read, local computation, and

a shared memory write. Subsequently, another expensive computation is performed.
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During the second computation, the transaction is vulnerable to aborts on account

of concurrent accesses to the counter.

Suppose two transactions T1 and T2 execute this code in lock-step, but with dif-

ferent values of x and y. It is possible for their only conflict to be on accesses to

stats. If the underlying TM is eager (e.g., best-e↵ort HTM [14, 38, 16] or STM that

acquires locks upon first write access [25, 22, 91]), one transaction will lock stats,

the other will attempt to read stats, and the resulting conflict will cause at least

one transaction to be aborted. If the underlying TM is lazy [57, 21, 18], then both

transactions will continue to their commit point, at which time the conflicting ac-

cesses to stats will be detected and at least one transaction will abort. In both cases,

a significant amount of computation will be devoted to a transaction that does not

complete, resulting in wasted work.

If it were known that stats was never accessed by either function, the increment

could be moved to the end of the transaction, avoiding conflicts in many cases [52].

More aggressively, since the result of the increment is also never used within the

transaction, but the increment still must be performed atomically with the rest of

the transaction, it is even be possible to delay the increment until some point within

the commit operation. Doing so would eliminate all possibility of aborts due to stats

accesses.

The aborts that result from shared counters arise in real code, as demonstrated by

e↵orts to transactionalize memcached [64, 70]. Worse yet, in memcached the relevant

counters are, themselves, incremented in nested function calls that occur only on

some branches. When the prospect of nested transactions is also considered, we must

conclude that manually refactoring code to place hot increment operations at the end

of transactions is not possible.

In this chapter, we propose an algorithm for dynamically reordering increment

and other simple read-modify-write operations within a transaction. Our mechanism
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employs run-time tracking to ensure correctness even when the target of a deferred

operation is read or written by other instructions within the transaction. We present

the algorithm and tracking mechanisms in Section 4.2, and then in Section 4.3 present

candidate implementations, which use annotations or live-out analysis to instrument

operations so they can be delayed. Section 4.4 discusses the surprising consequences

that our algorithm can have on the publication idiom [55] and proposes solutions. We

evaluate our algorithms in Section 4.5, discuss related work in Section 4.6, and then

summarize in Section 4.7.

4.2 An Algorithm for Delaying RMWs

In this section, we briefly revisit STM implementation details. We then present

an algorithm for safely delaying transactional RMWs. For now, our focus is on

correctness in the absence of concerns about language-level semantics. Likewise, we

do not yet discuss how to identify candidate RMW operations.

4.2.1 STM Background

STM implementations typically expose an API with four operations: TxBegin cre-

ates a checkpoint and initializes per-thread metadata to support tracking conflicts

on reads and ensuring serializability of writes; TxRead <T> reads a location of type

T and ensures the read is consistent with all prior reads and writes performed by

the transaction (this property, called opacity [29], provides a basis for asserting the

correctness of STM implementations); TxWrite <T> updates the value of a location

such that subsequent reads within the same transaction will see the update, but other

transactions will not (yet) see the update. TxCommit makes writes visible to other

transactions only if doing so will produce a result indistinguishable from an execution

history in which one transaction runs at a time. Typically, TxCommit ensures that
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all to-be-written locations are locked by the transaction, verifies that no concurrent

transaction updated any location read by the transaction, then finalizes writes and

releases locks.

For simplicity of presentation, we assume throughout this section that transactions

operate only on locations of a single type. We also assume that the language is type

safe, such that for any two operations on locations L1 and L2, both of size S, L1 = L2,

or |L1 � L2| � S. Note that these assumptions do not apply to the C and C++

languages, requiring a more complicated implementation in Section 4.5.

The basic framework for an STM algorithm is presented as Table 4.1 and Algo-

rithms 16–17. If we assume that TxRMW is never called, then the rmws set will be

empty, and the resulting algorithm resembles TL2 [21] or the commit-time-locking

variant of TinySTM [25]. Note that this algorithm delays all writes until commit time,

bu↵ering them in a per-thread log during transaction execution. The correctness of

the algorithm hinges on three properties. First, on Algorithm 16 line 6, every read

first checks if there was a previous write to the same location by the current trans-

action. This check ensures processor consistency: an in-flight transaction observes

every modification that it intends to make to main memory. Second, the TxCommit

function ensures that transactions appear to commit atomically. This property is

provided via the use of versioned locks (ownership records, or orecs) and a global

timestamp. Briefly, locks can only be acquired if their version number is no greater

than the time at which the transaction was last known to be valid, and all reads

are verified after all locks are acquired, to ensure serializability. Third, transactions

discard speculative state and restart whenever they observe inconsistencies. The use

of incremented values of timestamps as the version numbers is the key to providing

this property e�ciently.
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Table 4.1: STM-Related Variables

Global Variables
timestamp Integer timestamp

orecs OwnershipRecord[] orec table, the MSB of each orec is set
to 1 if orec is acquired

Per-transaction Variables
my lock hInteger, Integeri h1, thread idi

start Integer start time
end Integer end time

writes WriteSet pending writes
reads ReadSet locations read
locks LockSet locks held
rmws RMWSet pending RMWs
rdflag Boolean see Algorithm 18

rdaddrs AddressSet see Algorithm 19

4.2.2 Problem: Aborts on Read-Modify-Write

RMW operations on highly contended locations can open a window of vulnerability

that makes transactions likely to abort. To illustrate the problem, we focus on lazy

orec-based STM implementations. In these implementations, a TxWrite operation

logs the location and the new value in a transaction-local write set; these locations

are acquired at the end of the transaction (in TxCommit), and then written back to the

shared memory in order to be visible to other transactions. Since TxWrite operations

are local, they never cause the transaction to abort or violate opacity. In contrast,

TxRead operations must check the orec of the location to ensure that reading the new

location results in a view of memory consistent with all prior reads (i.e., equivalent

to an order in which the transaction ran in isolation). The transaction aborts if such

check indicates a potential inconsistency.

A Read-Modify-Write (RMW) operation takes a function f and a location X as

parameters. It applies function f to the value x stored at location X, and writes back

the new value f(x) to X. We assume the function f is pure. Using the existing TM
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Algorithm 16: A lazy STM algorithm with support for delayed RMWs. Un-
derlined code represents additions relative to a traditional lazy STM algorithm.
1 TxBegin()
2 start timestamp
3 reads, writes, locks, rmws ; // clear read-modify-write set

4 TxRead(addr)
// if there’s a previous RMW on addr, promote it

5 if addr 2 rmws then return Promote(addr)

6 if addr 2 writes then return writes[addr]
7 while true do

8 o1  orecs[addr]
9 v  ⇤addr

10 o2  orecs[addr]
11 if o1 = o2 ^ o2  start then
12 reads reads [ {haddr, o1i}
13 return v

14 else if ¬o2.Locked() then Extend()
15 else Abort()

16 TxWrite(addr, v)
17 if addr 2 rmws then

18 rmws rmws \ {haddr,�i} // forget this RMW, since it will be overwritten

19 TxRead(addr) // but perform a read to preserve consistency

20 writes writes [ {haddr, vi}

21 TxRMW(addr, f)
22 rmws rmws [ {h addr, f i} // on an RMW, log the address and operation

23 TxCommit()
// immediate return for read-only transactions

24 if writes = ; ^ rmws = ; then return

25 AcquireLocks ()
26 end AtomicInc(&timestamp, 1)
27 if start 6= end� 1 then ValidateBoth() // validate both read set and rmws set

28 WriteBack()
29 Replay() // replay RMWs

30 ReleaseLocks(end)

interface, an RMW operation in a transaction is instrumented as follows:

RMW(X, f) :

x <- TxRead(X);

TxWrite(X, f(x));

For a given transaction T , executing an RMW operation on location X makes the

transaction vulnerable to conflicts on X. In most implementations, the transaction
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Algorithm 17: Helper Functions.

1 AcquireLocks()
2 foreach addr in writes do

3 o orecs[addr]
4 if o.Locked()_ o > start then
5 Abort()

6 if ¬CAS(&orecs[addr], o,my lock) then
7 Abort()

8 locks locks [ {addr}
9 foreach m in rmws do

10 m.orec orecs[m.addr]

11 o m.orec
12 if o = my lock then continue

13 if o.Locked() then Abort()

14 if ¬CAS(&orecs[m.addr], o,my lock)

then

15 Abort()

16 locks locks [ {addr}

17 WriteBack()
18 foreach haddr, vi in writes do

19 ⇤addr  v

20 ValidateBoth()
21 foreach haddr, vi in reads do

22 foreach m in rmws do

23 if m.addr = addr^m.orec 6= v

then

24 Abort()

25 o orecs[addr]
26 if o 6= v ^ o 6= my lock then Abort()

27 ValidateRead()
28 foreach haddr, vi in reads do

29 o orecs[addr]
30 if o 6= v ^ o 6= my lock then Abort()

31 Promote(addr)
32 if addr 2 writes then

33 v  writes[addr]

34 else

35 while true do

36 o1  orecs[addr]
37 v  ⇤addr
38 o2  orecs[addr]
39 if o1 = o2 ^ o2  start then
40 reads reads [ {haddr, o1i}
41 break

42 else if ¬o2.Locked() then
43 Extend()

44 else Abort()

45 foreach m in rmws do

46 if addr = m.addr then

47 v  m.f(v)

48 rmws rmws \ {haddr,�i}
49 writes writes [ {haddr, vi}
50 return v

51 ReleaseLocks(end)
52 foreach addr in locks do

53 orecs[addr].releaseTo(end)

54 Replay()
55 foreach m in rmws do

56 ⇤m.addr  m.f(⇤m.addr)

57 Extend()
58 t timestamp; ValidateRead()
59 start t

60 Abort()
61 foreach addr in locks do

62 orecs[addr].releaseToPrevious()

63 rollback

aborts if either (1) X is already acquired when T performs the TxRead, or (2) any

other transaction writes to X and commits before T .

Let us now return to our example in Figure 4.1. Suppose that in an execution

trace, the function calls by concurrent transactions T1 and T2 both observe only

unlocked orecs with versions equal to 0, and that these sets of orecs observed by the

transactions have an empty intersection. We will also assume that the orec related to
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stats has an initial value of 0. Suppose T1 commits after T2 has read stats: it will

lock stats’ orec, update the global timestamp to N , and then updates stats’ orec

version to N , where N is larger than T2’s start time. As a result, T2 must abort. The

abort will occur either when T2 tries to lock stats’ orec within TxCommit, and sees

that N is greater than the time at which it was last valid (either T2’s start time or

the time of its last validation), or else on account of a validation within the Extend

function, which would also observe a “too new” orec value of N .

We say an RMW operation by transaction T is final if the location it modifies

is not subsequently read or written by T . Our key observation is that a final RMW

operation can be reordered to execute at the end of the transaction. Clearly, the

transformation preserves the semantics of the transaction, since by definition, there

is no dependency between the RMW and any following instruction. We achieve this

transformation by replacing an RMW not with the sequence from above, but instead

with a single call to TxRMW that takes the address, a function, and an optional operand

to the function. Trivial uses include the ++ function, which takes no operand, and

the += operator, which takes a scalar operand.

The transformation can improve performance by reducing the contention between

transactions. In contrast to explicitly using a TxRead, executing a delayed RMW on

location L prevents the transaction from being immediately vulnerable to conflicts.

Instead, the transaction begins being vulnerable to conflicts on L at the time the

RMW is performed, during TxCommit.

4.2.3 The Basic Algorithm

Our basic algorithm to support transactional RMW operations is presented in Algo-

rithm 16. When instrumenting source code with transactional constructs, candidate

RMW operations are replaced with calls to TxRMW, which allocates an entry for the

RMW operation and appends it to the RMW log (rmws). The TxRead, TxWrite, and
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TxCommit functions are extended to interact with the log. The design is guided by the

assumption that the number of RMW operations tends to be small, in comparison to

read and write operations. Note that it would be possible to promote a TxRMW to a

TxWrite if it is known that the location was previously read or written, but at the

cost of searching the read and write sets.

On a TxRead to location L, a lookup is performed in rmws (line 5). If delayed RMW

operations on L are found, they are immediately transformed into their corresponding

TxRead and TxWrite operations, via the Promote function. This ensures that the

return value of the TxRead is consistent with an execution in which all delayed RMWs

occurred before the TxRead.

A TxWrite operation on location Lmust check if L was previously modified by any

RMW operations, and removes all such entries from the rmws log. In this manner, we

ensure that the e↵ects of any prior RMWs on L are made obsolete by this TxWrite.

That is, these stale RMWs to L will not be performed at commit time. However, it

is also necessary to preserve the implicit read of L within the RMW. To this end, we

perform a read of L (line 19).

Lastly, to ensure that an RMW performed on L observes prior writes to L by the

transaction, we order Replay after WriteBack in the TxCommit function.

4.2.4 Correctness

For the time being, we focus on correctness in the absence of the publication id-

iom [55]. The algorithms above, and discussion of correctness below, are applicable

to languages that enforce static separation [1], as well as programs that allow for

privatization of shared data. Section 4.4 discusses algorithmic extensions needed for

publication safety.

When implementing delayed RMWs within an STM system, we require the fol-

lowing properties:
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• Opacity: if transaction T1 performs a read of X and then a delayed operation

on X, then T1 must abort if a concurrent transaction modifies X before T1

commits.

• Atomic commit: a delayed operation must not appear to happen either before

or after the remainder of the transaction, but atomically with the rest of the

transaction.

Preserving opacity is relatively simple. Calls to TxRMW do not remove entries

from reads. Thus, if there is a delayed RMW on L, and L was previously read by

the transaction, then during the execution of the transaction, conflicts on L with

other transactions will still be detected when the transaction validates (in the Extend

function). Note that since the RMW itself was delayed, its read cannot participate

in the observation of inconsistencies by transactions until a call to Promote, which

transforms the RMW into a read, or TxCommit, at which point inconsistencies are not

visible to user code.

The second challenge is ensuring atomicity at commit time. There are again two

requirements. First, we must ensure that updates performed via RMWs are atomic

with respect to all other writes performed by the transaction. TxCommit ensures

this via two-phase locking: it first uses AcquireLocks to acquire locks covering all

locations in both the writes and rmws sets. Only when this operation succeeds in

locking all to-be-modified locations will the transaction call WriteBack and Replay

to update memory, and no locks are released until after all updates are performed.

In this manner, all writes, regardless of source, occur in a single critical section that

appears atomic to concurrent transactions.

Second, we must ensure that the RMWs happen only at a time when all reads

performed by the transaction are known to be valid. In the absence of delayed RMWs,

this is achieved in TxCommit by acquiring all locks, then validating. If the validation

succeeds, then all reads were valid at a time when all locks were held. However,
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there is a subtlety here: in lines 2–8 of AcquireLocks, locations are locked only if

their version number is no greater than the transaction start time. This allows a

simplification in ValidateRead (line 30): if the location being validated is owned

by the validating transaction, it is known that the read was valid. Unfortunately,

we cannot place the same constraint on locks acquired for RMW operations, or else

much of the benefit of delayed RMWs would be lost. Instead we add lines 9–16 to

AcquireLocks, so that RMW locations can be locked as long as the lock is currently

unheld, even if the version number is “too new”. We must then guard against the

situation where an RMW was performed to location L after L was read, but there was

an intervening modification to L by another transaction. This ordering is detected by

storing the version at the time an RMW location was locked (AcquireLocks line 10).

Then, during read set validation, we check if a location being validated was locked

for RMW, via ValidateBoth lines 22–24. If so, we verify that the version number

when lock was acquired was no greater than the version of the lock at the time of the

read.

4.3 Implementation

The näıve implementation of TxRMW in Algorithm 16 su↵ers from high asymptotic

complexity: since the rmws log stores an ordered list of delayed RMWs, if there are

M RMW operations and R reads, there can be O(M) overhead on each of R calls to

line 5 of TxRead, and another O(R⇥M) overhead due to lines 22–24 of ValidateBoth.

Furthermore, if there are W calls to TxWrite, there can be up to O(W ⇥M) overhead

to eliminate RMWs to locations that are overwritten (lines 17–19). We now present

mechanisms for decreasing these overheads. We also discuss alternative mechanisms

for guiding the compiler to produce calls to TxRMW.
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4.3.1 TxRMW via Live-Out Analysis

The e↵ort required to delay RMW operations is minimal, but the need to iterate

through delayed RMWs at commit time necessarily leads to a small overhead. It is

thus wise to avoid delaying every RMW operation. A simple heuristic is to delay

an RMW only if the value produced by the operation is not live. Note that liveness

analysis need not be constrained to RMW operations: it could be employed to defer

individual writes. For simplicity, and to avoid delaying writes that are ultimately

re-read (such as during a tree rebalance), we propose that the compiler reserve use

of TxRMW for increment/decrement and compound assignment operators (i.e., ++, --,

+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, and |=) that take as an operand the address

of a non-local variable and produce a value that is not live. Note that this analysis

must be done in an early compiler pass, or these operators may already be lowered

to loads and stores.

As a compiler-based approach is likely to produce a large number of delayed

operations, and hence a large value of M , it is beneficial to reduce the asymptotic

cost of checking when a read and RMW are performed to the same location. To reduce

the cost of line 5, it is possible to maintain a hash table storing all addresses involved

in RMWs by the current transaction, so that each execution of line 5 has constant

overhead. Alternatively, a technique proposed for TL2 [21] can be used, where a

small Bloom filter [9] approximates the locations in rmws, and can be consulted before

performing a lookup.

To reduce overhead at commit time, we recommend a technique pioneered by the

Amino CBB STM algorithm [37]. In this technique, each orec has a second field that

stores the previous version. When a transaction acquires an orec, it stores the old

version number in the second field. At commit time, Amino acquires any unlocked

orec, even if the orec version number is “too new”. Then, during validation, any read

whose orec is locked by the current transaction checks the second field to determine
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if the lock was acquired at a time when the read was consistent. While Amino CBB

STM used this technique to minimize aborts for transactions that wrote to locations

they did not read, we observe that it also eliminates R⇥M overhead at commit time

for our algorithm.

4.3.2 TxRMW via Programmer Annotation

We expect the overhead of maintaining a hash table to be high, and the imprecision

of a Bloom filter to also be high. We are also concerned that a compiler might prove

too aggressive in its application of delayed TxRMW calls. Additionally, a programmer

may have better insight into the frequency with which certain locations are accessed

after an RMW, particularly with profiler feedback, and thus might wish to use TxRMW

for some updates to variables that are subsequently accessed only on an uncommon

code path.

For these cases, we propose an annotation that distinguishes between variables

that can only be read and written and variables that can be read, written, and used

in RMW operations. Only accesses to objects of the latter category incur the extra

overheads associated with delayed RMWs.

Algorithm 18 refines Algorithm 16 to distinguish between accesses to annotated

variables (which call TxRmwRead, TxRmwWrite, and TxRMW) and accesses to non-annotated

variables (which call TxRead and TxWrite). These changes require a rdaddrs log to

store the addresses of annotated variables that are read.

The annotations ensure that only TxRmwRead promotes delayed RMW operations

(line 20-21), and only TxRmwWrite needs to discard pending RMWs (lines 26-28).

These changes reduce two sources of overhead by eliminating lookups for common-case

reads and writes. The third source of overhead in the näıve algorithm relates to RMW

operations that follow reads to the same location, and manifests as extra overhead

during commit-time validation. To avoid this cost, we leverage the expectation that
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Algorithm 18: An algorithm for delayed RMWs that assumes the variables
involved in delayed RMWs are annotated.

1 TxBegin()
2 start timestamp
3 reads, writes, locks ;
4 rmws, rdaddrs ;

5 TxRead(addr)
6 if addr 2 writes then

7 return writes[addr]

8 while true do

9 o1  orecs[addr]
10 v  ⇤addr
11 o2  orecs[addr]
12 if o1 = o2 ^ o2  start then
13 reads reads [ {haddr, o1i}
14 return v

15 else if ¬o2.Locked() then
16 Extend()

17 else Abort()

18 TxRmwRead(addr)
19 rdaddrs rdaddrs [ {addr}
20 if addr 2 rmws then

21 return Promote(addr)

22 return TxRead(addr)

23 TxWrite(addr, v)
24 writes writes [ {haddr, vi}

25 TxRmwWrite(addr, v)
26 if addr 2 rmws then

27 rmws rmws \ {haddr,�i}
28 TxRead(addr)

29 TxWrite(addr, v)

30 TxRMW(addr, f)
31 if addr 2 rdaddrs then

32 v  TxRead(addr)
33 v  f(v)
34 TxWrite(addr, v)

35 else rmws rmws [ {h addr, f i}

36 TxCommit()
37 if writes = rmws = ; then return

38 AcquireLocks ()
39 end AtomicInc(&timestamp, 1)
40 if start 6= end� 1 then

41 ValidateRead()

42 WriteBack()
43 Replay()
44 ReleaseLocks(end)

rdaddrs is small, and perform a lookup in rdaddrs during every TxRMW. When there

is a match, we do not delay the RMW, but instead perform it immediately. As

before, RMWs that follow writes do not require a special case, since Replay follows

WriteBack.

We assume that annotated RMW operations are infrequent, since (a) a high num-

ber of contention hotspots would suggest that the program cannot scale, and (b)

unlike live-out analysis, annotations do not silently convert many operations into

delayed operations. This being the case, overheads should be significantly lower us-

ing annotations. With W writes and R reads of non-annotated variables, and W 0

writes, R0 reads, and M 0 RMWs of annotated variables, we can expect the overhead

of supporting delayed RMWs to drop to O(R0⇥M 0) in TxRmwRead, and O(W 0⇥M 0)

in TxRmwWrite. TxCommit no longer has any overhead due to delayed RMWs, but
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TxRMW incurs O(R0 ⇥M 0) overhead. Note that this last quantity could be avoided

with Amino-style orecs, but not doing so avoids adding additional instructions to

commit-time validation. Since locks are held during this validation, and since both

R0 and M 0 should be small, we expect O(R0 ⇥M 0) overhead to be insignificant in

practice.

4.3.3 Optimized Programmer Annotations

A final optimization appears in Algorithm 19. In this algorithm, we again expect

the programmer to annotate the declaration of highly contended variables for which

delaying RMWs may be profitable. However, we now assume that highly contended

variables are rarely read or written in the same transactions as those that access

annotated variables with RMW operations.

In this implementation, we no longer store a log of all annotated locations that

the transaction has read. Instead, we use a boolean to remember if any annotated

location has been accessed via a read or write operation by the current transaction.

If there is any such read or write, then all delayed RMWs are immediately performed,

and future RMWs by the transaction will not be delayed.

While this approach is extremely aggressive (any TxRmwRead or TxRmwWrite dis-

ables delayed RMWs in the transaction, even when the RMWs and other annotated

accesses are to disjoint sets of locations), it has the least overhead. There is no

commit-time overhead, and there is at most M 0 overhead incurred by all reads and

writes within a transaction.

4.4 Impact on Semantics

Menon et al. [55] proposed several levels of transactional semantics, which require

varying amounts of serialization at the boundaries of transactions, and which place
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Algorithm 19: Aggressive optimizations for the common case: if any annotated
location is read or written, delayed RMWs are disabled for the transaction.

1 TxBegin()
2 start timestamp
3 reads, writes, locks, rmws ;
4 rdflag  false

5 TxRead(addr)
6 if addr 2 writes then

7 return writes[addr]

8 while true do

9 o1  orecs[addr]
10 v  ⇤addr
11 o2  orecs[addr]
12 if o1 = o2 ^ o2  start then
13 reads reads [ {haddr, o1i}
14 return v

15 else if ¬o2.Locked() then
16 Extend()

17 else Abort()

18 TxRmwRead(addr)
19 if ¬ rdflag then

20 rdflag  true

21 for each m in rmws do

22 Promote (m.addr)

23 return TxRead(addr)

24 TxWrite(addr, v)
25 writes writes [ {haddr, vi}

26 TxRmwWrite(addr, v)
27 if ¬ rdflag then

28 rdflag  true

29 for each m in rmws do

30 Promote (m.addr)

31 TxWrite(addr, v)

32 TxRMW(addr, f)
33 if rdflag then

34 v  TxRead(addr)
35 v  f(v)
36 TxWrite(addr, v)

37 else rmws rmws [ {h addr, f i}

38 TxCommit()
39 if writes = rmws = ; then return

40 AcquireLocks ()
41 end AtomicInc(&timestamp, 1)
42 if start 6= end� 1 then

43 ValidateRead()

44 WriteBack()
45 if ¬ rdflag then Replay()
46 ReleaseLocks(end)

varying restrictions on how programmers can transition data between a state in which

they are accessed via transactions, and a state in which they are accessed nontrans-

actionally. At the most basic level, these semantics propose di↵erent levels of support

for the publication idiom: when a thread initializes private data and then uses a

transaction to mark that data as visible to other threads, the underlying STM must

ensure that all threads agree that the initialization happens before the transaction;

otherwise, a thread might see that the data is marked as safe to access, but then

observe the uninitialized data.

The di↵erent levels of semantics di↵er in terms of which racy publication idioms are

allowed in Java programs. However, the two least restrictive levels, “Asymmetric Lock

Atomicity” (ALA) and “Encounter-time Lock Atomicity” (ELA), are both applicable
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Initially: data == 42, ready == false, val == 0
Thread 1: Thread 2:
1 1 transaction {
2 2 tmp = data;
3 data = 1; 3
4 transaction { 4
5 ready = true; 5
6 } 6

7 if (ready)
8 val = tmp;
9 }

Can val == 42?

Figure 4.2: Basic publication example (reproduced from Figure 1 of Menon et al. [2008]).
The vertical ordering of instructions is meant to imply the execution order on
a sequentially consistent machine.

to C++, where racy code is erroneous. In the context of C++, ALA and ELA di↵er

in whether the compiler can reorder reads of a datum that might be concurrently

initialized outside of a transaction.1

The canonical example appears in Figure 4.2, where ALA ensures that the race

accessing data is benign, and does not produce the erroneous output val == 42. Note

that when all transactions are protected by a single global lock, the race is also benign,

as 42 can never be used by Thread 2. Under ELA semantics, neither the programmer

nor the compiler is permitted to transform the code if (ready) val = data; into

the code run by Thread 2.

Now consider an extension in which the “ready” flag is a counter, where zero

indicates that data is not initialized, and any other value is the number of transactions

that have used data in a successful transaction. This code appears in Figure 4.3.

While admittedly contrived, we hope the reader agrees that this code is not unrealistic.

For example, a näıve transactionalization of legacy code that includes auto ptr could

1Note that since Menon’s work focused on the Java language, there were additional constraints
on the TM implementation, which cannot be entirely separated from publication-related issues. For
example, in a racy program, Java forbids out-of-thin-air reads [47], and thus even at the weakest
semantics levels, Java appears to require STM algorithms to use redo logs. In C++, an STM may
use undo logs, since the behavior of racy programs is undefined. Throughout this section, we ignore
Java-specific issues related to undo logs. The algorithms presented herein, if applied to an STM
algorithm with redo logs, would be valid for Java.
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Initially: data == 42, ready == 0, val == 0
Thread 1: Thread 2:
1 1 transaction {
2 2 ready++;
3 3 tmp = data;
4 data = 1; 4
5 transaction { 5
6 ready = 1; 6
7 } 7
8 8 if (ready > 1)
9 9 val = tmp;
10 10 else
11 11 ready--;
12 12 }

Can val == 42?

Figure 4.3: Publication violation example with delayed RMWs.

result in this code.

ALA provides the illusion that all read locks are acquired at transaction begin, but

write locks can be delayed until commit time. ELA, in contrast, gives the appearance

that read locks are acquired immediately before the first read of the corresponding

location within the transaction (write locks are acquired as in ALA).

If the RMW on line 2 is not delayed, the example in Figure 4.3 is correct for

both ELA and ALA, and val will never equal 42. With delayed RMWs, the example

breaks under ELA semantics: the read of ready by Thread 2 will result in a call to

TxPromote, and e↵ectively cause the read and write of ready to occur after Thread

2’s transaction commits, instead of before data is read. Thus an STM implementa-

tion that only provides ELA semantics cannot näıvely delay RMWs without risking

publication violations. Note that this finding extends the work of Menon et al., which

showed that under ELA, dependent reads cannot be reordered above the reads that

establish a control-flow dependency. Here, dynamic reordering of accesses that are

not dependent are similarly unsafe, for both C++ and Java. With ALA or stronger

semantics, delaying the RMW remains safe.

For STM algorithms that use ownership records and provide ELA publication
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safety, such as those presented in Section 4.2, we can resolve this problem so that

delayed RMWs are safe. We extend the rmws data structure to store an additional

field. Then, in TxRMW, we begin by reading the orec that corresponds to the address

parameter, and storing it along with the description of the delayed RMW, in this

extra field.

If the delayed RMW is not performed until Replay, in the TxCommit function, then

the added field is ignored. However, if the RMW is performed earlier, on account of

a call to Promote, then we use the field. In Promote, we replace line 36 with o1  z,

where z is the value stored in the field, and we remove lines 42–43.

These changes restore publication safety by guaranteeing that a delayed RMW can

only be promoted if the promotion is indistinguishable from a TxRead and TxWrite

succeeding at the time the RMW was initially requested. By requiring Promote’s read

(lines 35–44) to fail unless the orec is unlocked and storing the same value as stored

in rmws, the read no longer appears to delay until the time Promote was requested.

Note that the write performed by Promote can still be delayed until commit time.

4.5 Evaluation

In this section, we evaluate the performance of our mechanism for delaying RMW

operations within transactions. We consider microbenchmarks, the STAMP bench-

mark suite [56], and a transactional version of the memcached application [70]. STM

experiments were performed on a dual-chip 2.67GHz Intel Xeon 5650 system with 12

GB of RAM and 12 cores / 24 threads. HTM experiments used a single-chip 3.40GHz

Intel Core i7-4770 with 4 cores / 8 threads. Both machines run Ubuntu Linux 13.04,

kernel 3.8.0-21, and a pre-release 4.9 GCC compiler with –O3 and –m64 flags. Results

are the average of 5 trials, which led to uniformly low variance.
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4.5.1 Systems Evaluated

The default GCC STM implementation uses an eager STM, in which locks are ac-

quired on first write access by a transaction, and updates are performed immediately,

with an undo log for recovering from aborts. A critical feature of this implemen-

tation is that it is correct for arbitrary C code: well-known pitfalls [97] related to

unaligned accesses, unsafe casting, and overlapping accesses to variables of di↵erent

sizes are all handled correctly. We added a new commit-time locking algorithm to

GCC, in order to assess the e↵ect of our delayed RMWs on both eager and lazy STM.

Our implementation stores bu↵ered writes in a tree, incurring O(log(n)) overhead on

each write-set lookup. To the best of our knowledge, our implementation is the only

correct lazy STM for GCC; it also satisfies all of Menon’s requirements for a Java

STM implementation. Throughout this section, experiments using STM algorithms

derived from the default GCC algorithm are labeled “Eager”, and those derived from

our commit-time locking algorithm are labeled “Lazy”. Both algorithms provide ELA

semantics by default.

On machines with Intel TSX support, GCC also o↵ers an “HTM” runtime, which

attempts to run transactions in hardware, and falls back to a single global lock for

transactions that fail to commit. Causes of serialization include contention (multiple

aborts by the same transaction), capacity overflow (accessing more distinct cache lines

than the transactional hardware can monitor), and interrupts/exceptions (to include

TLB misses).

For the Eager and Lazy STM systems, we compare performance against three

implementations of our delayed RMW mechanism. Experiments labeled “näıve” use

Algorithm 16 and do not take advantage of annotations to avoid lookups in the

rmws log on every read and write. Experiments labeled “Annotated” correspond

to the use of Algorithm 18, where we can statically distinguish between reads and

writes to locations that might have delayed RMWs, and those that do not. Finally,
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experiments labeled “Flag” indicate the use of Algorithm 19, which optimizes for the

case where delayed RMWs tend to be to locations that are not otherwise accessed by

the transaction. Unless otherwise noted, experiments do not include the extensions

from Section 4.4.

We also added support for RMW operations to the GCC HTM runtime. For these

tests, we use a variant of the “Annotated” algorithm: Regular reads and writes to

shared memory from within a transaction do not incur function call overhead, but

RMW operations, and reads and writes to annotated variables, are implemented as

function calls into the TM library. The commit function is also slightly more complex,

as it must call Replay.

4.5.2 Microbenchmark Performance

The purpose of our microbenchmarks is to evaluate the performance of delayed RMWs

in a predictable but somewhat irregular workload. Red-black trees are popular in

STM research precisely because they involve complex pointer chasing and transactions

with varying numbers of reads and writes, but still have few conflicts and ought to

scale well. By adding statistics counters to scalable data structure workloads, we can

produce workloads with few conflicts other than at RMW hotspots. The expectation

is that our mechanism should reduce the e↵ect of the hotspots and improve scalability.

We consider two microbenchmarks based on the red-black tree implementation

from the RSTM library [50]. This tree implementation generally o↵ers good scalability

with no internal bottlenecks, but provides only insert, remove, and lookup operations;

there are no methods for iteration or statistics (e.g., tree size). We configured the

tree experiments to perform an equal mix of insert, lookup, and remove operations,

using 20-bit keys, and pre-filled the tree with 219 entries. Charts present the average

of five 5-second trials.

Our first variant of the tree adds a vector of counters. On every lookup (whether
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Figure 4.4: Red-Black Tree experiments augmented with a global vector of counters to
monitor the height at which searches terminate.

a distinct operation or as the first step of an insert or remove), the depth at which

the lookup terminated determines which counter to increment. In this manner, all

searches that terminate at the Nth level of the tree will conflict on the Nth counter.

Each counter is padded to the size of a cache line to prevent false sharing, and the

counters are the only operations that use TxRMW. This introduces a modest amount

of contention, and also results in a workload in which no transaction can take the

read-only fast-path that is common in STM commit functions.

Figure 4.4 presents the throughput for the vector-of-counters tree. The Eager

baseline scales poorly; the Lazy baseline is even worse, due to wasted work performed

by transactions that conflict on a counter, but do not detect the conflict until commit

time. When our mechanism is used to defer RMWs on the counters, throughput

99



increases dramatically, and the performance di↵erence between eager and lazy van-

ishes. As expected, the variations on our mechanism that lower asymptotic overhead

lead to the best performance, but even the näıve implementation o↵ers significant

improvement.

On the HTM system, the benchmark scales poorly even when the RMW hotspots

are removed. While we do observe a benefit for our technique, we caution the reader

against drawing broad conclusions: When the scalability concerns are resolved, the

workload is likely to scale, at which point the curves are likely to change dramatically.

Nonetheless, the microbenchmark’s predictable behavior allowed us to confirm that

our RMW techniques are compatible with HTM, and the added overheads to support

delayed RMWs introduced little latency, while preventing some aborts.

Our second variant of the tree considers adding a size method. We add a counter

to record the number of elements in the set, and modify the counter on every successful

insertion or removal. This test mirrors the implementation of collections in the C++

standard template library (STL): lists, maps, and other collections in the STL all have

counters to ensure that the size operation takes O(1) time. The counter, naturally,

is a source of contention. It is the only field in the data structure that uses TxRMW.

Figure 4.5 presents the throughput of the tree with a global count field. Since

lookup transactions do not access the counter, their presence enables some scalabil-

ity for the baseline algorithm. However, the counter becomes a bottleneck beyond 2

threads, dampening scalability significantly. While some amount of dampened scal-

ability is unavoidable, since the cache lines holding the counter and its associated

ownership record must move between cores, the di↵erence between our algorithms

and the baseline shows that some of the dampened scalability is due to aborts, and

that those aborts can be prevented by delaying RMWs to hot locations.

As in the previous experiment, we see that the benchmark scalability characteris-

tics are very di↵erent for HTM than STM. With 20-bit keys, the average transaction
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Figure 4.5: Red-Black Tree experiments augmented with a global counter to monitor the
number of elements in the tree.

accesses 20 unique locations, and the tree itself contains approximately a half million

objects. Since accesses are random, and the TLB only holds 64 entries, many trans-

actions experience a TLB miss. These misses cause HTM transactions to abort, then

serialize, then retry, resulting in poor scaling on the HTM machine.

4.5.3 STAMP Performance

Next, we ran experiments on the STAMP benchmark suite [56]. Table 5.1 describes

the frequency of RMW operations in STAMP. We discuss RMWs within the bench-

mark code separately from RMWs in libraries used by each data structure. Recall

that our mechanism works best when transactional RMWs are followed by non-RMW

work.

It is clear that the STAMP benchmark suite does not a↵ord many opportunities
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Benchmark Description
Vacation RMWs are only to locations that are also read or writ-

ten; no RMWs can be deferred until commit time. There
are also RMWs within the list object used by the bench-
mark, but they already happen near the end of a large
transaction.

Yada Only one transaction contains RMWs, and it consists
only of RMWs. The benchmark uses an AVL tree, which
contains an RMW on its size field at the end of insertions.
AVL tree insertions happen at the middle or end of trans-
actions. The benchmark uses a heap, which has an RMW
on its size. However, the heap size is always read prior
to the RMW. The benchmark uses a vector, with RMWs
on both the size and capacity fields. As with the heap,
these fields are read before the RMW. RMWs to the list
object’s size field are also observed at the middle or end
of transactions.

Genome One large transaction ends with an RMW. RMWs within
list operations occur only at the end of transactions.

SSCA2 One short transaction begins with an RMW. Other trans-
actions consist solely of RMWs.

KMeans Some large transactions consist solely of RMWs.
Bayes The only RMWs are on the list’s size field. These occur

at the end of transactions.
Intruder The only RMWs are to the list’s size. These RMWs occur

in the middle of the transaction, but the size is always
read after the RMW.

Labyrinth No RMWs.

Table 4.2: Frequency of RMW operations in STAMP benchmarks.

to delay RMW operations. In most cases, there are either no RMW operations, or

RMW operations occur at the end of the transaction. We believe this is a situation

in which STAMP is not representative of real-world code. In particular, the red-

black tree used by STAMP was written by concurrency experts at Sun Microsystems,

and hence does not include a counter. The other data structures (heap, list, AVL

tree), designed elsewhere, do contain counters. If STAMP used the C++ standard

template library, then all collections, to include the much-used red-black tree, would

have counters, and would be more favorable toward our optimizations.
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Figure 4.6: STAMP results on the STM machine [1/2]. HC and LC refer to high- and
low-contention command-line configurations.

Note that STAMP uses a library interface to interact with the TM runtime, rather

than adhering to the Draft C++ TM Specification. To employ our extensions to

GCC, we had to substantially modify the benchmarks, not only to annotate RMW

operations, but also to make STAMP compatible with GCC’s TM implementation. In

particular, we had to remove or replace unsafe function calls and devise alternatives to

the non-transactional reads that STAMP sometimes performs from within an atomic

transaction. Thus these results do not always correspond directly to prior published

work. More details were recently published by Ruan et al. [69].

Figure 4.6 and 4.7 present results for STAMP on the STM system. The “Flag”

and “Annotated” benchmarks perform indistinguishably, so we present only the more

general “Annotated” algorithm. We see a slight improvement for delayed RMWs in
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Figure 4.7: STAMP results on the STM machine [2/2]. HC and LC refer to high- and
low-contention command-line configurations.

most cases, for both Eager and Lazy STM. KMeans is an outlier: its transactions

consist entirely of RMWs, and when contention is low, delayed RMWs can add over-

head without avoiding aborts. This is especially true for a lazy STM, where aborts

are an order of magnitude less frequent to begin with. Results for Bayes are not
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trustworthy, as Bayes exhibits high variability from one run to the next even in the

absence of our mechanism, therefore we do not include it in the charts.

Figure 4.8 and 4.9 repeat these experiments on the HTM machine. As with the

microbenchmark experiments, we see that HTM trends are not always the same as

STM trends. Most noticeably, since our SMT machine has 4 cores and 8 hardware

threads, experiments with more than 4 software threads rarely scale: the e↵ective

write capacity of HTM transactions is halved when the L1 cache is shared. Further-

more, many transactions serialize even at one thread. These serializations can be

due to many factors, including TLB misses (as in Section 4.5.2) and overflowing the

capacity of the cache [95]. Naturally, once transactions serialize, delaying RMWs to

the end of a transaction o↵ers no benefit.

Nonetheless, we observe that the overhead of added instrumentation is not sig-

nificant, and that RMW operations typically o↵er a small improvement. The more

important result is demonstrating that the added instructions and logging of our

mechanism do not significantly a↵ect HTM performance, and even when opportuni-

ties to delay RMWs are rare, we are able to achieve an improvement on first-generation

transactional hardware.

Taken as a whole, we observe that since STAMP transactions do not exhibit the

pattern first described in Figure 4.1, the benefit of delaying RMWs is small. While

we do not incur noticeable overhead for delaying RMWs, the contention hotspots

they are designed to avoid are rare in STAMP, and thus our mechanism cannot

substantially improve STAMP performance. We expect the impact to be greater on

production systems, where software is more likely to use standard libraries and to

employ statistics counters.
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Figure 4.8: STAMP results on the HTM machine [1/2]. HC and LC refer to high- and
low-contention command-line configurations.

4.5.4 Memcached Performance

Lastly, we look at a real-world application that we expect to possess the attributes

lacking from STAMP. We evaluate memcached, following the experiment configura-

tion of Ruan et.al [70]. We use memslap to produce a workload, and run memcached

and memslap on the same machine, so as to limit the e↵ect of the network. The con-

figuration results in a number of operations proportional to the number of threads:

flat curves indicate perfect scaling, higher values represent slowdown. Note that this

configuration results in SMT e↵ects beyond 2 threads on the HTM machine. Conse-

quently, we report only STM results. Performance appears in Figure 4.10. Note, too,

that we only instrumented memcached statistics counters, as opposed to all RMWs

in memcached. This results in a program that matches the pattern from Figure 4.1.
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Figure 4.9: STAMP results on the HTM machine [2/2]. HC and LC refer to high- and
low-contention command-line configurations.

Eager STM Figure 4.10(a) compares the performance of the baseline eager GCC

algorithm to three variants using our di↵erent delayed RMW algorithms. At low

thread counts, we do not observe a significant di↵erence in performance. Starting

at 4 threads, the performance of the näıve algorithm becomes noticeably worse than
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the others. To gain more insight, we instrumented GCC to report abort rates. At 12

threads, the baseline GCC algorithm reached as high as 20 aborts per commit. We

then elided all accesses to statistics counters, to assess the ideal performance (note

that the values of statistics counters rarely a↵ect program behavior in memcached).

When the counters were removed, we observed neither a change in the abort rate,

nor a change in overall running time.

In GCC’s Eager STM, when a transaction encounters a locked ownership record,

it immediately aborts, releases its locks, and restarts. This can rapidly inflate abort

rates: if transaction T
L

locks ownership record O, and transaction T
R

attempts to

read a location protected by O early in its execution, then T
R

can experience dozens

of aborts in a short time interval. More importantly, in memcached many read/write

conflicts appear to manifest early during transaction execution. Since a write to L

by T
L

in GCC’s TM causes all conflicting transactions to convoy behind T
L

(this

is a natural consequence of eager TM and workloads with frequent conflicts), our

delayed RMWs were not playing any beneficial role: the statistics counters were not,

in reality, highly contended, because by the time a transaction reached the point

where it attempted to RMW a counter, it had already locked enough of its write

set to prevent concurrent transactions from being able to reach their instructions for

accessing the counter.

Lazy STM The previous discussion illustrates a surprising consequence of eager

TM: early locking may constrain the speculative execution of transactions, and inter-

fere with scalability. However, doing so can also lead to a livelock-free execution, since

initial progress by a transaction T
L

prevents other transactions from reaching code

that could cause them to acquire locations T
L

will access in the future. Absent these

later acquires, a cyclic dependency cannot be formed, and livelock will not occur.

In a similar manner, the results in Figure 4.10(b) show the consequence of lazi-
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Figure 4.10: Memcached performance on a 2-chip, 12-core system.

ness: performance degrades significantly at high thread counts due to wasted work.

When two transactions have conflicting accesses, both continue executing up until

one commits, at which point the other becomes invalid. Again there is no livelock,

but now the problem is that aborts are too infrequent. Indeed, aborts are an order

of magnitude less common with the lazy algorithm than with the eager algorithm.

However, now speculation is continuing past the point where it could be known that

the speculation will not be profitable.

Since transactions speculate past their first read/write conflict, more transactions

reach their accesses of statistics counters. This, in turn, allows us to observe the

impact of delayed RMW operations. In Figure 4.10(b), even the näıve algorithm

improves performance, and algorithms that use annotations do even better, reaching

more than 20% improvement at 12 threads. Furthermore, the improvement correlates

directly with a decrease in abort rate, which drops from 1.8 aborts per commit without

109



delayed RMWs to 1.5 aborts per commit at 8 threads. Unlike eager, here aborts

typically happen late in the transaction’s execution, and every abort prevented is

e↵ectively another transaction committed.

Publication Safety Up until this point, the implementations we tested did not

include the modifications proposed in Section 4.4, and thus would not be correct

if memcached were to use RMW operations in conjunction with variables used for

publication of previously private data. However, conducting the evaluation in this

manner allows us to measure the best-case performance of delayed RMWs. We now

look at the expected case behavior, where support for ELA publication safety is

added.

While a valid approach would be for the programmer to use annotations, instead

of compiler analysis, to select which RMWs to delay, and then manually verify that

those RMWs do not a↵ect publication safety, we believe this to be too burdensome.

Just as privatization safety requires reasoning about complex object lifecycles, and is

now a default feature of ELA and stronger semantics (and is required in C++), the

appeal of publication safety is that it frees programmers from thinking about which

variables participate in publication.

Figure 4.10(c) repeats the experiments from Figure 4.10(b), but adds additional

bars to show the cost when publication safety is turned on. In memcached, statistics

counters are never used for publication, and in fact are never read by the same

transactions that update them via RMWs. Consequently, modifying the algorithm to

provide safe publication should not a↵ect program behavior. We observe only a slight

increase in execution time, due to the increased logging overhead and its associated

cache pollution. This cost is negligible in almost all cases.
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4.6 Related Work

Contention Management: Contention management (CM) [73, 96, 24, 8, 7] is the

most popular approach to resolving conflicts among transactions. While the mech-

anisms vary greatly, at a fundamental level, CM aims to influence the scheduling

of transactions to prevent conflicts. Simple nonblocking contention managers often

incorporate backo↵, such that when transactions T
A

and T
B

conflict, one will abort,

wait briefly, and restart. Usually this perturbation of the schedule su�ces to pre-

vent the conflict from manifesting again. Blocking approaches may instead explicitly

deschedule one transaction (e.g., T
B

) until the other (T
A

) commits. At the extreme

point, T
B

may be re-scheduled to run on the same processor as T
A

, to ensure that no

conflict occurs and locality is maximized.

While existing CM techniques are su�cient for ensuring forward progress, our

work demonstrates that CM solutions are not necessarily optimal. By explicitly

restarting one transaction, rather than reordering and coordinating conflicting op-

erations, any CM approach should be expected to fail to scale in the face of highly

contended variables. While CM remains important for arbitrating transient conflicts

in a manner that preserves the properties of the underlying TM, we believe our work

shows that CM alone cannot guarantee optimal performance; explicitly reordering

transactional accesses to eliminate conflicts seems necessary.

Conflict Detection: Similarly to CM, some TM implementations can vary their

conflict detection mechanism, such that some transactions use encounter-time lock-

ing, and others use commit-time locking [62]. Some implementations vary the lock-

ing mechanism on a per-variable basis [79], and others change the global choice of

TM implementation based on the presence of high abort rates [67, 45, 92]. Simi-

lar mechanisms have even been proposed for hardware TM [77]. In general, these

approaches aim to prevent pathology: upon repeated aborts due to conflicts, a trans-
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action becomes pessimistic, locking locations eagerly in order to prevent concurrent

transactions from interfering. However, as shown in our microbenchmarks, highly

contended variables will still result in conflicts regardless of the conflict detection

strategy employed by the TM. Thus, as with CM, our recommendation is that these

approaches be viewed as complementary to our work. When transactions experience

pathology, or when false sharing is causing conflicts over ownership records, then

increasing pessimism or changing algorithms can improve performance.

In a related manner, Zyulkyarov et al. [99] developed tools for identifying con-

tention in transactional programs, and then used this information to rewrite code to

decrease contention. We believe that the same analysis could guide the annotation of

variables involved in RMW-based conflicts, as an alternative to ad-hoc programmer

techniques or the live-out analysis described in Section 4.3.

Nesting: Both open and closed nesting [60, 61, 59] can improve performance in the

face of highly contended variables. For example, when a hot counter is incremented

in a closed nested transaction that comprises the tail of a long-running parent, then

conflicts on the counter may require only the nested child transaction to restart.

While limited to the case where the hot counter is incremented at the end of the

transaction, this approach still avoids much of the cost of aborts due to hot variables.

Similarly, if the hot counter was incremented via an open-nested transaction, then

most conflicts on the counter simply would not manifest. With open nesting, the in-

crement would occur immediately, and become visible to concurrent threads. If the

parent transaction subsequently aborted, then some programmer-specified compen-

sating action would undo the increment. While the infrastructure for supporting

delayed operations resembles the infrastructure for registering undo actions, there is

a fundamental di↵erence: our delayed operations do not break atomicity, and thus

can be invisible to the programmer. In contrast, open nesting often requires the
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programmer to employ ad-hoc abstract locking [34] to prevent concurrent transac-

tions from reading an incorrect counter value (e.g., if the counter is used to detect

an empty collection). Additionally, our mechanism supports accesses to the counter

after a delayed RMW, which can be di�cult with open nesting [61, 5].

An aggressive approach to closed nesting that preserves atomicity is to use Ab-

stract Nested Transactions (ANTs) [33]. ANTs are similar to closed nested transac-

tions, except that when they complete, they are not merged into the parent transac-

tion. Should the parent later detect a conflict, then if the conflict is localized to an

access performed within the ANT, the ANT can often be rolled back and re-executed

without requiring the parent transaction to abort. This, of course, succeeds only when

the parent does not read locations modified by its ANTs. Our work can be thought of

as (a) demonstrating the value of ANTs, (b) providing a practical implementation of

small ANTs for unmanaged languages, and (c) introducing the run-time mechanisms

necessary for resolving parent accesses to values modified by its ANTs. Additionally,

our work identifies and resolves questions related to semantics that had not yet been

identified when ANTs were proposed.

Non-Atomic Updates: As a last resort, operations on hot counters could, in

some cases, be performed outside of transactions. For example, the Atomos lan-

guage [13] and the TM proposed by Ni et al. [62, 13] both allow transactions to

register “onCommit” functions whose execution is delayed until after the transaction

commits. These functions do not execute within the context of the transaction, and

their accesses to shared data must be manually synchronized. Depending on the

implementation, they may be able to use transactions themselves. Clearly such an

approach is not appropriate for the general case, where a transaction might read a

hot variable after incrementing it. However, when precise counts are not required by

the application logic, and when these hot variables are not used in other ways by the
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parent transaction, deferring their update until after commit, via simple “onCommit”

routines, may be a viable alternative to the mechanisms proposed in this chapter.

4.7 Summary

In this chapter, we introduced algorithms for delaying read-modify-write (RMW)

operations in software and hardware transactional memory. Our mechanism employs

static identification of candidate RMWs, and then dynamic tracking to ensure that

delaying an RMW to a location that is also read or written by the same transaction

does not a↵ect the correctness of the program. We also showed that for a large

class of STM algorithms, delaying RMWs can break support for the “publication”

pattern, but that a simple and low-overhead extension to our algorithms can restore

publication safety.

While experiments show that our technique can significantly improve performance,

particularly for STM with commit-time locking, delaying RMWs until commit time

does not change the fact that a memory location is being shared between two threads.

Thus while we believe our techniques can help to reduce aborts and improve perfor-

mance, they are not a substitute for redesigning applications to avoid contention in

the first place.
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Chapter 5

Exploring Collaborations between

Software and Hardware

Transactions

In this chapter, we present a new hybrid TM that uses Intel Haswell TSX as hardware

fast path and STM “Cohorts” as software slow path. The original work “Hybrid

Transactional Memory Revisited” was accepted as a regular paper to appear at the

29th International Symposium on Distributed Computing, October 2015.

5.1 Introduction

Despite the e↵orts we put into improving STM performance in the previous chapters,

the dominating latency for most of the scalable STM implementations are logging

and heavily instrumented conflict detection mechanisms, which HTM naturally does

not introduce. The recent addition of hardware TM support to IBM [40, 89] and Intel

[39] processors brings the field of concurrent programming much closer to a state in

which programmers can eschew locks in favor of transactions.

However, first-generation hardware TM systems carry a number of limitations.
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Most significantly, these implementations are “best e↵ort” [44], in that they do not

guarantee that any transaction attempt will commit. In particular, a transaction

attempt may fail if it accesses more unique locations than the hardware can support,

or if there is an interrupt (e.g., a timer interrupt) during its execution. Consequently,

a TM runtime that wishes to use hardware TM must provide a software fall-back

path. This fall-back path also provides a means of circumventing the hard-coded

conflict resolution strategy (“requester wins” [10]) that the hardware enforces, so as

to allow the run-time system to improve the chance that a long-running transaction

does not starve.

Broadly speaking, TM runtime systems that combine the use of hardware TM with

a software fall-back path are called hybrid TM [58]. Existing hybrid TM proposals

can be categorized as follows:

• Low-Scalability Fall-back: Lev’s PhaseTM [45] was among the earliest hybrid

TMs. While it envisioned a variety of di↵erent ways to compose hardware and

software transactions, it required that all transactions used the same technique

at the same time (i.e., all use hardware, or all use a software TM algorithm).

Of the many approaches, the combination of hardware TM with a single-lock

fall-back was perhaps the most straightforward [15], and has subsequently been

improved, e.g., by Calciu et al. [12].

• Scalability Through Non-Transactional Actions: The systems by Dalessandro

et al. [17] and Riegel et al. [68] both assumed that the underlying hardware

TM would allow non-transactional operations within a transactional context

(for reading and writing, respectively).

• Hybrid TM-Specific Hardware: proposals by Minh et al. [57], Shriraman et

al. [78], and Saha et al. [72] assumed that the hardware TM would provide a

wide API so that a hybrid run-time system could use parts of the hardware
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(e.g., tracking cache invalidations of specific lines) to accelerate software TM.

The hardware for these systems is not currently available, nor does it appear in

any product roadmaps.

• Reduced Hardware Capacity: Systems by Kumar et al. [43], Damron et al. [19],

and Riegel et al. [68] required all hardware transactions to access the per-

location metadata used by the software TM fall-back. This approach can

improve the concurrency between hardware and software transactions, but it

e↵ectively halves the capacity of the hardware, and is largely viewed as imprac-

tical.

• Unsafe Hybrid TM: The Invyswell system [11] reduces the safety of hybrid

transactions by sacrificing opacity [29]. The resulting system cannot guarantee

correctness in the face of certain patterns [20], but can scale well on existing

systems.

• Behavior-Specific Hybrid TM: Reduced Hardware NOrec [53] ensures opacity

and is compatible with existing hardware TM. However, its performance relies

upon transactions following a specific pattern, in which there is a large read-

only prefix before the transaction’s first attempted write. While appropriate for

data structures, this may not be a suitable approach for realistic applications.

From an architectural perspective, we believe it unlikely that vendors will extend

future micro-architectures with hybrid TM features or add non-transactional actions.

However, it is likely that future hardware TM may overcome its existing capacity con-

straints (e.g., by expanding the capacity/associativity of private caches, or by moving

conflict tracking structures higher in the cache hierarchy). Thus we believe that the

most important qualities of a hybrid TM are to provide a safe programming model,

to minimize the use of hardware capacity for tracking metadata, and to emphasize

fairness and progress for transactions that fall back to software.
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To provide these properties, we introduce the Hybrid Cohorts (HyCo) algorithm.

Based on the Cohorts algorithm we discussed in Chapter 2, HyCo uses a state machine

to manage the behavior of transactions. By guaranteeing the immutability of memory

during any software transaction’s execution, and employing hardware TM as broadly

as possible, HyCo minimizes instrumentation for all transactions, and eliminates many

of the bottlenecks of the original Cohorts algorithm, without sacrificing safety.

The remainder of this paper is organized as follows. In Section 5.2, we discuss the

overall approach of the Hybrid Cohorts algorithm, with a focus on the state machine

that governs transaction behavior. Section 5.3 presents the pseudocode for one imple-

mentation of the state machine, which aims to limit the impact on transactions that

use hardware TM resources throughout their execution. In Section 5.4, we present

the results of performance experiments. Section 5.5 concludes and discusses some

future research directions.

5.2 The Hybrid Cohorts Algorithm

The foundation of the HyCo algorithm is a state machine that governs when transac-

tions may begin, as well as when and how they commit. This state machine appears

in Figure 5.1(a). For reference, the original Cohorts state machine is provided in

Figure 5.1(b).

In the original Cohorts algorithm, the role of the state machine was to ensure

that memory remained constant whenever a transaction was in-flight (i.e., between

its begin and end points). This entailed blocking writing transactions from commit-

ting whenever a transaction was in-flight, and blocking transactions from beginning

whenever a transaction was committing. The Cohorts algorithm also assumed that

a transaction requiring irrevocability [94, 87] (e.g., in order to perform I/O with

transactional data) could do so by starting directly in the commit state.
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In our new algorithm, we begin by formalizing irrevocability through the addi-

tion of a “serial” state (S). We then split the entry state (Cohorts::Open): instead

of indicating that software transactions may be active, the split state distinguishes

between when at least one software transaction is active (SA), and when no software

transactions are running (NS). The commit pending state (CP) is equivalent to the

Cohorts::Seal state. Finally, the Cohorts::Commit state is split, so that one-at-a-time

slow commit (SC) can be avoided via a HTM-assisted commit phase (HC).

The original Cohorts algorithm also exposed options for how to detect conflicts, to

include the use of ownership records [71, 21] or values [63, 18]. In HyCo, we exclusively

use value-based conflict detection. To use other metadata would necessitate the use of

HTM resources for concurrency control, which would, in turn, reduce the size above

which transactions must run in software mode.

The algorithm a↵ords a number of implementation choices and options. For ex-

ample, the labels marked with an asterisk(⇤) correspond to a variant in which more

hardware-mode transactions (HTx) are allowed. Similarly, there are a variety of

ways to choose the order in which transactions perform their slow commit, depend-

ing on contention management [73] policies. For this discussion, we assume that the

contention manager randomly chooses the order in which transactions attempt to

commit.

5.2.1 Transitions

The initial state of the system is NS, indicating that no software or serial transac-

tions are running. Should a transaction require serial-mode execution, it does so by

transitioning from the NS state to the S state. This transition may entail either (a)

forcibly aborting any in-flight hardware transactions, or (b) setting a flag to prevent

subsequent HTx and STx transactions from beginning, and then waiting for the sys-

tem to be in the NS state with no HTx transactions running. Implementation details
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for achieving this transition appear in Section 5.3.

When a transaction is in serial mode, it is not allowed to abort, and no other

transactions may execute. When the transaction commits, the system transitions

back to the NS state.

In the NS state, there are no STx transactions running. Thus as long as the

system remains in NS state, HTx transactions may execute in their entirety, either

committing or aborting and retrying. However, as soon as an STx begins, the system

transitions from NS to SA. In SA, new hardware and software transactions may

begin. However, hardware transactions may not commit: they must abort or wait if

they reach their commit point while the system is in the SA state. STx transactions

accumulate their reads and writes in thread-private logs, with all writes bu↵ered until

commit time. As in the Cohorts algorithm, a read-only STx (detected by its empty

write log) can commit directly from the SA state, since it does not modify memory.

This may transition the system back to NS, if it results in all remaining transactions

being HTx.

From the SA state, as soon as the first writing STx is ready to commit, the system

transitions to the Commit Pending (CP) state. From this state, additional read-only

STx may commit, writing STx may announce that they are ready to commit, and

HTx may begin or abort. Note that none of these transaction behaviors can a↵ect

the in-flight STx, since these behaviors do not a↵ect shared memory.

When the last STx reaches the CP state, HyCo transitions to the HTM-assisted

Commit state (HC). Any in-flight HTx transactions are permitted to commit imme-

diately; all STx transactions use a hardware transaction to first validate their read

set, and if it has not changed, to replay all writes from the thread-private log. Note

that when an HTx transaction aborts, it can retry immediately, as can a hardware

transaction attempting to commit the STx. However, if the STx validation fails, then

the STx does not retry until the system returns to the NS state.
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If all STx can commit or abort from the HC state, then the system transitions

back to NS, even if HTx transactions are still executing. However, if any STx cannot

commit via HTM (e.g., due to its read and write sets being too large to traverse and

replay in a hardware transaction), then once there are no further STx attempting

to commit in HTM, and no remaining HTx, the system transitions from HC to SC,

where STx transactions commit sequentially. As in the S state, some e↵ort is needed

to block HTx transactions from beginning, or else this transition may be delayed

indefinitely. Once the transition occurs, the remaining STx are guaranteed that

(a) no new transactions can start, and (b) no other transactions are attempting to

commit. Thus the STx can, in turn, validate their read sets and then either abort or

write-back their updates. Once all pending STx have done so, the system returns to

the NS state.

5.2.2 Key Properties

Earlier, we argued that a hybrid TM should ensure safety, limit use of hardware

capacity for tracking metadata, and should enable some sort of fairness and progress

for STx transactions. We briefly discuss each of these points in relation to the HyCo

algorithm below:

Safety: The HyCo algorithm provides opacity [29] for all transactions. In Cohorts,

opacity is achieved by ensuring that all shared memory is immutable whenever a

transaction is in-flight. In HyCo, where there are two flavors of transaction, we

modify this criteria: when a STx is in-flight, no concurrent HTx or STx transaction

may perform an operation that modifies locations that have been, or may be, read

by the in-flight STx. A concurrent STx transaction may progress up to its commit

point, and may create pending changes to memory via the TxWrite function (as in

Algorithm 24). However, it may not transition to the HC or SC state. Thus the
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concurrent STx cannot perform an operation that changes the memory visible to

the in-flight STx. In this case, the property is achieved through the write bu↵ering

performed by STx. Similarly, a concurrent HTx may not transition to the HC state,

where it can complete its transaction. Since HTx writes are bu↵ered by the hardware

until the commit point, the HTx cannot a↵ect the behavior of the concurrent STx.

Now let us turn to an HTx transaction. Dalessandro et al. established that

in a lazy Hybrid TM, an HTx transaction can experience an opacity violation if it

overlaps with a concurrent STx commit [17]. The specific issue they identified is that

a lazy STx might perform a partial write-back concurrent with the HTx, so that the

HTx reads some of the STx’s committed state, but not all of it. More generally, a

su�cient condition is to prevent incomplete STx write-back from being visible to an

HTx execution. In HyCo, this is achieved by (a) forbidding an STx from reaching the

SC state until there are no concurrent HTx, and (b) attempting to commit STx in

the HC state. In the HC state, the STx uses a hardware transaction to both validate

and perform write-back; consequently the STx cannot expose its partial state: the

entire set of updates becomes visible when the hardware transaction commits.

Metadata: As discussed above, HyCo does not use per-location metadata. Instead,

it tracks the values read by a STx, and then validates those values directly. In this

manner, it does not spend precious HTM resources tracking metadata. As we will

show in Section 5.3, the state machine can be implemented in a variety of ways, but

the only global metadata for HyCo is related to the state machine, and it is only

accessed at transaction boundaries. This results in a constant amount of metadata,

and a constant overhead to access that metadata, for HTx.

Fairness and Progress: HyCo supports a variety of approaches to ensuring fair-

ness and progress. A few properties are relatively obvious: any transaction can be

guaranteed to complete if it executes in Serial mode, and every read-only transac-
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tion will complete on its first attempt if it executes in STx mode. Beyond this,

HyCo increases fairness by limiting the conditions in which a transaction cannot

make progress. In particular, we have taken care to allow HTx to begin and commit

when an STx is committing via HTM (HC state). Coupled with the simple existence

of HC state, this limits the situations in which the system serializes. In addition, our

default HyCo implementation exposes two knobs for tuning progress. The first is a

count of the number of HTx aborts before falling back to STx mode. The second

is a count of the number of STx aborts before falling back to Serial mode. When

combined with optional contention management at the beginning of the HC and SC

states, there is ample opportunity to ensure that the most advantageous transactions

are given priority. Additional scheudling decisions can be made when transitioning

out of the CP state (i.e., by allowing a high priority transaction to abort all HTx,

transition directly to SC, and commit first). To the best of our knowledge, HyCo is

the first hybrid TM to o↵er this level of contention management support.

5.3 Implementation

The primary challenge in implementing HyCo is to achieve a low-latency implemen-

tation of the state machine from Figure 5.1(a). The most natural solution is to track

each thread’s state in a thread-private variable. However, doing so results in high

latency in the common case: an HTx must check O(#Threads) locations at begin

time. On the other hand, implementing each state as a counter is also a poor choice,

since certain counters become contention hot-spots.

Our solution, presented in Listing 1, is to split the state machine into three parts.

First, there is a list of Thread objects, through which per-thread states for non-

transactional, Serial, HTM, and STM mode can be discerned. This list is employed

by all transactions. Second, we use an Integer and three Booleans to control when

124



Listing 1: Hybrid Cohorts metadata. Global variables are clustered according
to whether they assist in (a) coordinating all transactions, (b) coordinating HTx
transactions, or (c) coordinating STx transactions.
Thread Variable Type:
tx state : Enum{NO, S, HW, SW} // state of thread’s transaction

// (nontransactional, serial, HTx, STx)
writes : Map<addr,val> // write set if this transaction is in STx mode
reads : Set<addr,val> // read set if this transaction is in STx mode
my order : Integer // commit order of this transaction if it is in

// STx mode and using serial commit (SC)
cp : Checkpoint // checkpoint of thread state, for retrying

// after STx aborts.

Global Variables:
threads : Set<Thread> // A way of reaching each thread’s per-thread vars

started : atomic <Integer> // Count of current active STx transactions
ser kill : atomic <Boolean> // Flag to allow a Serial transaction to force

// immediate HTx aborts
stx kill : atomic <Boolean> // Flag to allow an STx in SC mode to force

//immediate HTx aborts
stx comm : atomic <Boolean> // Indicate that all STx are ready to commit

cpending : atomic <Integer> // Count of STx that are in the CP state
order : atomic <Integer> // Counter for ordering any STx that require SC

// mode to commit
time : atomic <Integer> // Second counter for STx that require

// SC mode to commit
serial : atomic <Boolean> // Token for granting a transaction permission

// to run in Serial mode

HTx can begin, and when they must immediately abort. Finally, three Integers and

one Boolean are used to manage the states of STx and Serial transactions.

HTx Behavior: Algorithms 20- 22 describe how HTx, STx, and Serial transactions

use these variables to safely transition among states. The default state is NS, in which

HTx may begin and commit. Departing from this state requires an STx or Serial

transaction to begin. To keep overheads low for HTx, we subscribe to the ser kill

flag when an HTx begins. After becoming serial, but before accessing shared memory,

a Serial transaction sets this flag to immediately abort all HTx. By optionally using

the threads set first (TxBeginSerial lines 5-6), we can opt to prioritize running HTx
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Algorithm 20: Begin and end instrumentation for HTx transactions. Parame-
ters to xabort indicate the line to jump to after canceling a transaction attempt.

1 function TxBeginHTx()
// Announce active HTx

2 tx state HW
3 xbegin

// Detect Serial and STx-SC transactions
4 if ser kill _ stx kill then
5 xabort(6)

6 return
// Wait until no Serial or STx-SC transactions

7 tx state NO
8 while ser kill _ stx kill do spin

// Note: option to change to STx or Serial would go here
9 goto Line 2

1 function TxCommitHTx()
// Commit if all STx in HC mode or no STx

2 if stx comm _ started = 0 then
3 xend
4 tx state NO
5 return

// Cannot commit: in-flight STx or STx in SC mode
6 xabort(TxBeginHTx :: 6)

over new Serial transactions.

Since HTx can execute concurrently with STx, we do not repeat this behavior

when STx begin. Instead, we must ensure that HTx do not commit when either (a)

STx are between their begin and end, or (b) STx are performing serial commit. The

stx kill flag expresses condition (b). To handle condition (a), we use the started

and cpending counters. When they are equal, every STx transaction has reached its

commit point, and are trying to commit using HTM. In this case, HTx can commit,

since the HTM will mediate conflicts. However, if they di↵er, then the HTx must

abort.
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Algorithm 21: Begin instrumentation for STx transactions.

1 function TxBeginSTx()
2 cp make checkpoint()

// Try to set started while ¬serial and cpending = 0
3 if ¬serial then

// Wait for committing STx, then announce self
4 while cpending > 0 do spin
5 atomic incr(started)

// Double-check that it’s safe to start
6 if cpending > 0 _ serial then
7 atomic decr(started)
8 goto 2

9 tx state SW
// Lazy cleanup of STx-SC flag

10 if stx comm then stx comm false

11 else goto 2

STx Behavior: STx are expected to be less frequent than HTx, and also to be

longer-running. Thus we tolerate some contention over metadata, since it reduces the

number of locations that HTx must check. Specifically, we use the started counter

to track the number of STx that are not yet committed, and cpending to track the

number of STx that have reached their commit point. The order and time counters

are used only for SC commits, to enforce one-at-a-time commit of large STx.

To maximize HTx concurrency with STx, we do not eagerly inform HTx of tran-

sitions between NS, SA, CP, and HC. Instead, we use the stx comm flag, which

indicates that STx have moved to HC state. While two values are needed to manage

the SA-CP-HC transition, this specific pattern avoids aborts for HTx, since started

changes infrequently when stx comm is set.

The additional transition to SC for serialized commit of STx is expected to be

rarest. We employ the same technique as Serial transactions, where a flag (stx kill)

is coupled with a traversal of the threads set (TxCommitStx lines 23-24) to allow HTx

to complete before serial STx.
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Algorithm 22: End instrumentation for STx transactions.
1 function TxCommitSTx()

// Read-only fast path
2 if writes = ; then
3 atomic decr(started)
4 reads ;
5 return

// Wait until all STx ready to commit
6 atomic incr(cpending)
7 while cpending < started do wait

// STx will try to commit via HTM
8 if ¬stx comm then

9 stx comm true;

10 xbegin
11 if reads.validate() then
12 writes.writeback()
13 xend
14 atomic decr(started)
15 atomic decr(cpending)
16 reads writes ;
17 tx state NO
18 return

19 else xabort(36)

// STx couldn’t commit via HTM.
// Use serialized commit

20 my order  atomic incr(order)

// Lead thread waits for HC phase to
// end, others wait their turn

21 if order = 0 then

22 while order < started do spin
// Optional: allow HTx to complete

23 for tx 2 {threads� this thread} do

24 wait until(tx.tx state 6= HW )

// Interrupt remaining HTx
25 stx kill true

26 else

27 while time 6= my order do spin

// Writeback only if validation succeeds
28 if reads.validate() then
29 writes.writeback()

30 else failed true
// Let next STx commit

31 time time+ 1
// Clean up SC metadata

32 old atomic decr(started)
// Extra work for last thread

33 if old = 1 then

34 stx kill false
35 time order  0

36 atomic decr(cpending);
37 tx state NO
38 reads writes ;
39 if failed then cp.restore()
40 else return

// Reachable only on HC validation
// failure

41 atomic decr(started);
42 atomic decr(cpending);
43 reads writes ;
44 tx state NO
45 cp.restore()

A final complication is that, for the sake of fairness, we do not allow new STx to

begin once any STx is ready to commit writes. This necessitates care in TxBeginSTx,

since we must double-check cpending after incrementing started.

Serial Behavior: Serial transactions are expected to be least common, and thus

we are willing to incur overhead whenever one begins. In particular, after acquiring

the serial token, a transaction will wait for all active STx and HTx to complete.
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Algorithm 23: Begin and end instrumentation for Serial transactions

1 function TxBeginSerial()
// Acquire serial lock

2 while ¬bool cas(serial, false, true) do spin
3 tx state S

// Wait for committing STx
4 while started > 0 do spin

// Optional: allow HTx to complete
5 for tx 2 {threads� this thread} do
6 wait until(tx.tx state = NO)

// Interrupt remaining HTx
7 ser kill  true

1 function TxCommitSerial()
// Release lock, re-enable HTx

2 ser kill  false
3 serial  false
4 tx state NO

By setting the serial flag first, it e↵ectively prevents new STx. After allowing HTx

to complete, it sets ser kill to prevent additional HTx, at which point it can begin.

Both flags are cleared when the transaction completes.

Per-Access Instrumentation: For completeness, Algorithm 24 presents the read

and write instrumentation for the HyCo algorithm. As in the original Cohorts algo-

rithm, per-access instrumentation is minimal, entailing neither metadata access nor

memory fences. This is because (a) memory is immutable during STx execution, (b)

Serial transactions execute in the absence of concurrency, and (c) HTx conflicts are

mediated through the HTM, not through metadata.

5.4 Evaluation

In this section, we evaluate the performance of HyCo. We consider microbench-

marks, the STAMP benchmark suite [56, 69] and a transactionalized version of Mem-
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Algorithm 24: Hybrid Cohorts read and write instrumentation

1 function TxRead(addr)
// Serial and HTM fast-path

2 if tx state 2 {S,HW} then
3 return ⇤addr

// Handle read-after-write
4 if addr 2 writes then
5 return writes[addr]

// Read the value, and log it for commit-time validation
6 v  ⇤addr
7 reads reads [ {haddr, vi}
8 return v

1 function TxWrite(addr, val)
// Serial and HTM fast-path

2 if tx state 2 {S,HW} then *addr = val
// Bu↵er the write until commit time

3 else writes writes [ {haddr, vi}

cached [70]. Experiments are conducted on a machine with single-chip 3.40GHz Intel

Core i7-4770 with 4 cores / 8 threads, running Ubuntu Linux 13.04, kernel 3.8.0-21,

and a 4.9 GCC compiler with O3 and m64 flags. Results are the average of 5 trials.

We compare the following TM implementations:

• STM Eager is the default STM implementation provided with GCC (known as

ml wt). It is based on TinySTM’s write-through algorithm [25]: write locks are

acquired eagerly upon first write access to a location, undo logs track changes

made by transactions, in case of an abort, and reads check the version number

of locks. Conflicts are detected via validation, and a global counter is used

to avoid most validation during transaction execution. Writer transactions use

quiescence to achieve privatization safety.

• STM Lazy is a commit-time locking version of STM Eager. Writes are stored

in a redo log, which is implemented as a hash table of 64-byte blocks. Write

locks are acquired at commit time. In all other regards, the implementation is
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the same as STM Eager. The main value of STM lazy in our experiments is in

identifying overheads related to redo logs.

• HTM: a) HTM is the default HTM implementation provided with GCC.

Transactions attempt to run using Intel RTM, and fall back to a serial execu-

tion mode after two consecutive HTM aborts. b) HTM 20 modifies the above

HTM implementation so that fallback to serial mode occurs after 20 attempts.

• HyNOrec: There are two suggestted implementations that do not require non-

transactional reads in the original HyNOrec proposal [17]. We present the P-

counter version (where P equals to the number of threads) in microbenchmarks

and the STAMP suite, as it outforms the 2-location version. In Memcached

however, we report both.

• HyNOrec RH is the most recent Reduced Hardware Hybrid NOrec imple-

mentation adopted from [54]. We did not apply the complier static analysis to

reduce the instrumentation of read-only hardware transactions, for fair compar-

ison with other TM implementations, which could all benefit from such analysis.

Our version of HyCo employs the following optimizations:

• Lightweight Privatization Safety: Since writer transactions either (a) com-

mit via HTM, or (b) commit during the serialized (SC) phase, there is no

need for out-of-band privatization safety. Our HyCo implementation thus skips

GCC’s quiescence mechanism.

• Lightweight Irrevocability: GCC achieves serial execution via adaptivity,

which requires coordination among all transactions via a readers/writer futex.

In contrast, Serial mode is a first-class behavior within HyCo, requiring no

additional overhead on every transaction.
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• Un-instrumented HTM Loads and Stores: GCC creates two code paths

for transactions: one suitable for STM, in which loads and stores of shared

memory are transformed into function calls, and one suitable for HTM, in which

loads and stores are not instrumented. Given the lightweight instrumentation

in Algorithm 24, HyCo is able to use the latter approach for HTx.

We also present HyCo-Turbo, which additionally provides a lightweight software path.

Since it is natural for a STx to be aware of the number of existing software transac-

tions, a STx can change to turbo mode by sealing the cohort early if it a) confirms

that no other STx is running and b) successfully aborts all running HTx. A turbo

mode STx does not require further instrumentation on reads/writes, or validation at

commit time.

We set HyCo thresholds as follows: An HTx transaction will switch to STx mode

after 20 failed attempts to commit. An STx transaction will switch from committing

in HC mode to committing in SC mode after 2 failed attempts. Fall-back to Serial

mode occurs after 5 failed commit-time validations by an STx transaction.

5.4.1 Microbenchmark Performance

We begin our evaluation by looking at microbenchmark performance. We consider

four configurations of a red-black tree test, taken from the RSTM library [50]. Con-

figurations di↵er in terms of the range of keys present in the tree, and the ratio of

lookups to inserts and removes (insert and remove operations are always performed

in equal amounts). In all cases, the tree is pre-populated to 50% full. The charts in

Figure 5.2 present throughput as the average over five trials.

At one thread, HTM and HyCo performance are identical, and uniformly better

than STM. This is expected, since transactions are small enough to complete with-

out exceeding hardware capacity. As we increase the thread count, and contention

increases, we see a significant shift: the rapid fall-back to serial mode hurts HTM,
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(d) Red/black tree microbenchmark with 8-bit
keys and 33% lookup ratio

Microbenchmark NS HTx:HC STx:RO STx:HC STx:SC Serial
20-bit / 33% lookup 1.96M 50.4K 44 37 9 0
20-bit / 80% lookup 2.09M 7.6K 72 8 7 0
8-bit / 33% lookup 5.00M 381K 569 180 70 28
8-bit / 80% lookup 9.32M 25K 1.98K 344 330 14

(e) Frequency of each type of commit for four microbenchmarks with HyCo. Data is taken
from a one-second execution with four threads. The workload was heterogeneous, and values
were reported by a randomly chosen thread.

Figure 5.2: Microbenchmark performance

both because it is too early, and because it limits concurrency. Even HTM 20, our

version of the GCC HTM that retries 20 times before falling back to serial mode,

cannot keep up with HyCo: the opportunity cost of serialization, even after 20 failed

attempts, is simply too high. This is especially true for the highest contention con-

figuration (8-bit keys, 33% lookup), where HTM 20 performance degrades beyond 4

threads.
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The performance of eager and lazy STM was also surprising in this experiment.

As expected, both scale well, and their use of validation a↵ords for fewer aborts than

the “requester wins” conflict resolution strategy [10] of HTM. However, latency is

high: they incur a function call on every load and store, and lazy pays even more

due to accesses to the write log on every load and store (these costs are only incurred

in HyCo’s STx mode). Furthermore, STM scales worse than HyCo. There are two

causes: the overhead of quiescence, and the cost to support irrevocability via mode

switching.

To gain a better understanding of why HyCo scales better than GCC’s HTM,

we measured the frequency of each type of commit for the HyCo execution of the

benchmarks. While the majority of transactions can commit using HTM (NS state),

there are nontrivial instances in which transactions fall back to STx mode. While

STx transactions are rare, the number of HTx transactions that commit concurrently

with STx (i.e., when the STx is in HC mode) is high (indicated by HTx:HC). This

confirms that the opportunity cost of serializing is high: in HTM and HTM 20, every

fallback to STx becomes a fallback to Serial, and all concurrency among HTx:HC,

STx:RO, and STx:HC is lost. This is most unfortunate for read-only STx, which

otherwise are concurrent.1

5.4.2 STAMP Performance

STAMP performance is shown in Figures 5.3 and 5.4. Unlike the microbenchmark

experiments, STAMP performance is shown as total time. The expectation is that

more threads will result in a decreased execution time.

As in previous work [69], we observe that the Labyrinth benchmark shows little

variation among algorithms. This is a consequence of the benchmark being rewritten

1Note that we do not use compiler information to identify read-only transactions; had we used
this information, an optimized STx:RO fastpath would be possible. In the tree workloads, many
read-only transactions are not statically identifiable (e.g., an insert of a key that already exists), and
thus such an optimization would have less value than it might otherwise seem.
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Figure 5.3: STAMP performance(1/2). HC and LC refer to high- and low-contention
command-line configurations.

to match the Draft C++ TM Specification: transactions no longer comprise a signif-

icant portion of execution time. As has become standard practice, we do not report

Bayes performance, since the benchmark exhibits nondeterministic behavior.

Among the remaining 8 benchmark configurations, we see two trends emerge.

First, on workloads with high contention, such as KMeans-HC and Vacation-HC,

HTM performs best at one thread, but its performance degrades as the thread count

increases, due to its reliance on serialization to ensure progress after repeated aborts.

In contrast, HyCo manages to maintain its performance as contention increases, by

falling back to STx. This trend peters out to some degree at 8 threads for Vacation-

HC, due hardware multithreading e↵ects: with four cores and 8 hardware threads,

transaction write capacities are e↵ectively halved at 8 threads. The low-contention
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Figure 5.4: STAMP performance (2/2). HC and LC refer to high- and low-contention
command-line configurations.

variants of KMeans and Vacation show that as contention decreases, HTM is able to

perform on-par with HyCo, but HyCo remains a superior choice overall. The same is

true for SSCA2, where small transactions run bottleneck-free in HyCo and HTM.

Also, the contention management can be used to tune HyCo. Figure 5.5 shows
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Benchmark TC NS HTx:HC STx:RO STx:HC STx:SC STx:Turbo Serial
Vacation(HC) 4 980.9k 858 1 128 792 65.8k 0
Vacation(HC) 8 218.3k 108.6k 763 6.7k 89.1k 100.9k 0

Yada 4 7.1k 18 0 7 19 1.6k 0
Yada 8 182 2.3k 9 687 693 27 2

Benchmark TC STx ready to commit but has to abort STx time spent in TxBegin
Vacation(HC) 4 ⇡ 0% 3.03%
Vacation(HC) 8 ⇡ 0% 33.11%

Yada 4 0.06% 2.20%
Yada 8 6.04% 46.14%

Table 5.1: Since performance degrades on Vacation (HC) and Yada at high thread count
(8), this table presents the frequency of each type of commit, and analysis
of the STx behavior on both high and low thread counts with HyCo-Turbo.
“TC” stands for the thread count. Values were reported by a randomly chosen
thread.

that by enabling STx:HC mode, with two attempts before fallback to STx:SC mode,

30% improvement can be achieved at high thread counts. This degree of tuning is

not available in other Hybrid TM algorithms.

The second trend is shown by Genome, Intruder, and Yada. In these benchmarks,

HyCo incurs higher latency than HTM in order to interact with its write set. Recall

that for STx transactions, HyCo must perform a lookup on
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Figure 5.5: HyCO-Turbo with/with-
out STx:HC enabled on
STAMP Vacation (High
Contention)

each read, and must bu↵er its writes in a

manner compatible with lookup. This neces-

sitates a more complex data structure (hash

of blocks with masks) than the undo log used

by eager STM and the HTM fall-back. Con-

sequently, we see that STM Lazy is a con-

stant factor slower than STM Eager, and

that HyCo similarly incurs high overhead.

The problem is most extreme in Yada, where

the combination of (a) aborting as HTx before falling back to STx; and (b) incurring

write set overhead; results in an insurmountable slowdown at all thread levels. Simi-
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larly, in Genome and Intruder, the frequency of lookups creates a significant overhead.

Moreover, Since performance degrades on Yada and Vacation(HC), to get a further

understanding on the types of HTx commits and STx behavior, we present statistic

analysis in Table 5.1. Time spent on spinning in TxBegin() significantly increases

when thread count is high, which is also one of the factors that hurt the performance.

In e↵ect, these results confirm claims made by Kestor et al. [42]. In their work,

they showed that a proper implementation of lazy STM in GCC incurred higher

constant overhead than previously believed. While we believe our lazy TM imple-

mentations to be more optimal than theirs, the problem remains: the baseline for

lazy STM is worse than eager, especially in unmanaged languages.

On this last point, we conducted experiments with two di↵erent write set imple-

mentations: a hash table and an unbalanced BST. These tests showed that the data

structure itself was not the slowdown. Rather, the cost came from manipulating bit

masks in order to handle the case where a byte is accessed as part of multiple accesses

of varying granularity (e.g., the byte is written, and then the enclosing word is read).

These costs are shared by all of our Hybrid TM implementations.

5.4.3 Memcached Performance

Lastly, we evaluate all TM implementations on memcached. We followed the exper-

iment configuration of Ruan et.al [70]. The configuration results in a number of

operations proportional to the number of threads: flat curves indicate perfect scaling,

higher values represent slowdown. The results are presented in Figure 5.6.

This is the first instance in which HyCo does not match or outperform HyNOrec-

RH, and it performs worse only at the highest thread count (8). HyCo su↵ered from

wasted work caused by “ready to commit but has to abort” software transactions,

as they could not detect conflicts until commit time. Spinning at the TxBegin for

STx also contributed to overhead. To confirm and understand more thoroughly of
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Figure 5.6: Memcached Performance and Analysis

Client Count NS HTx:HC STx:RO STx:HC STx:SC STx:Turbo Serial
2 7.48M 65 0 85 10 4.4k 0
8 5.44M 544.3K 0 195.7k 72.2k 295.9k 0

Client Count STx ready to commit but has to abort ratio STx time spent in TxBegin ratio
2 3.04% 1.55%
8 42.64% 25.97%

Table 5.2: Frequency of each type of commit and analysis of the STx behavior for Mem-
cached on di↵erent client counts with HyCo-Turbo. Values were reported by a
randomly chosen thread.

such behavior, we did extra analysis, shown in Table 5.2. We present data for a

low thread count (client count of 2) and a high thread count (client count of 8).

As contention and conflicts are increased, about 43% of the HyCo STx su↵er from

wasted work undetected until the commit point, and about 26% of the running time

is spent on spinning at the transaction begin. Since this slowdown is also coinciding

with the point at which the machine begins hyperthreading, and hence sacrificing

HTx capacity, the best solution is to exploit HyCo’s support of arbitrary contention

managers. Good candidates include [7] and [96].
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5.5 Summary

In this chapter, we presented the Hybrid Cohorts (HyCo) algorithm. The foundation

of HyCo is a state machine that governs when transactions may begin, and when they

may attempt to commit. This state machine ensures correctness (opacity) by pre-

senting each transaction with the illusion that memory is immutable during program

execution. In HyCo, hardware-mode transactions can run virtually instrumentation-

free, all inter-thread coordination is constrained in the transaction begin and commit

functions, and even software-mode transactions can use hardware TM support to

accelerate their commit operations.

Our evaluation shows that HyCo is competitive with the state of the art. This is

particularly useful since HyCo a↵ords more opportunity for contention management

than prior Hybrid TM systems. As hardware TM continues to mature, and transac-

tion capacities increase, we believe that support for contention management on the

software fallback path will become the most significant distinguishing factor, since

the fast path of all known hybrid TMs is roughly the same.

140



Chapter 6

Conclusion and Future Work

In this dissertation, we first introduced some challenges of concurrent programming

and basic concepts of HTM, STM and Hybrid TM. Then we discussed platform related

techniques to improve TM performance, distributed throughout four chapters: In

Chapter 2, we investigated costs of platform specific instrumentation and provided

suggestions and solutions to reduce these costs. A new TM algorithm “Cohorts”

was presented to eliminate memory fence costs on processors with relaxed memory

consistency. In Chapter 3, we explored a more e�cient timestamp implementation

that achieves local and global monotonicity via the x86 tick counter. We discussed the

possible instruction reordering introduced by accessing cycle counters, and provided

a correct solution to apply cycle counter based timestamp to existing TM algorithms.

In Chapter 4, we introduced a technique to reduce the transaction abort rate by

reordering read-modify-write operations, and therefore improve overall performance.

Several algorithms with such technique embedded were presented, as well as a solution

to restore language level semantics, which could otherwise be violated by read-modify-

write reorderings. In Chapter 5, we presented a new Hybrid TM algorithm “HyCo”

that uses “Cohorts” as the fall-back software slow path and Intel Haswell TSX as the

fast hardware path. HyCo not only performs well, but provides safety, flexible mode
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switching, and an open window for variety of contention management techniques.

These four chapters gradually discussed the research we have conducted on im-

proving the performance of transactional memory by utilizing powerful platform char-

acteristics and avoiding hidden costs that may be introduced by misunderstandings

of platform specificity.

As for future work, there are many directions that are worth further investigation.

First, the sorts of platform-specific problems demonstrated in previous chapters are

not the only such bottlenecks. Some public TM systems have high latency embedded

in their implementations. For example, [70] showed that significant overhead was

introduced by the readers/writer lock implementation in libitm, a supporting library

for TM in the latest versions of GCC. This lock is used to support transaction mode

switching. However, platform should be taken into consideration when designing

such feature. For example, ARM has a smaller thread count in a foreseeable future,

thus there will be a smaller abort rate than on x86/SPARC/POWER, which results

in less frequent mode switching, and fewer readers and writers. A fully functional

readers/writer lock may be too burdensome in this case. Instead, a simple mutual

exclusion lock would su�ce, as long as it takes the cost of atomic operations and TLS

into consideration. For example, the compare and swap operation is relatively much

more expensive on SPARC/ARM than on x86.

Second, timestamps are used in many areas other than transactional memory.

A variety of concurrent data structures use timestamps to track version numbers

as well. Moreover, these data structures may be widely used in many well known

parallel programming models, such as Intel TBB. There are promising opportunities

to improve them via tick counters. But extreme caution in applying tick counter

timestamps is strongly recommended.

Third, an extension of RMW reordering technique from single-location RMWs to

multi-location operations could be beneficial. This e↵ort, which combines elements of
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Abstract Nested Transactions [33] and Safe Futures [93], will likely require extensive

static analysis to predict the reads of the delayed operation, so that any subsequent

read that forces a promotion of the delayed operation can be identified at run time.

Fourth, the HyCo performance leads us to rethink the design of Hybrid TM.

Cohorts was not originally supposed to scale well on x86, as it was designed for

reducing memory fences by sacrificing a certain degree of concurrency. Surprisingly,

despite the complicated state machine, and heavily instrumented STM slow path,

HyCo managed to compete with the most recent Reduced Hardware Hybrid NOrec,

which is currently the fastest hybrid TM. This demonstrates that the essence of a

fast Hybrid TM is probably not the scalability or latency of its software path at

all, but the ability of a STM to stop starvation, to ensure fairness, and to avoid

pathological behaviors which are introduced by HTM. Also the implementation of the

state machine tells us that the traditional counter-only or local-status-only techniques

may not be the solution for a low latency state machine. A good implementation in

concurrent programming is not a trivial work, and must consider platform specificity.

A direct example is that Intel Haswell processor has a hardware adjacent cache line

prefetch mechanism, that automatically fetches an extra 64-byte cache line. When

enabling HTM, this could potentially lead to higher possibility of false sharing, thus

increase the unnecessary HTM aborts. Extra padding for shared variables must be

carefully placed.

We expect these opportunities, and many others, to lead to further improvement

of TM performance. The key enabling factor, introduced by this dissertation, is that

low-level platform issues have a significant impact on high-level decisions about how

to implement a TM system. Platform-aware techniques appear to be essential to

high performance in transactional memory and other tightly coupled shared memory

programming models.
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