
Task Scheduling for Highly Concurrent Analytical
and Transactional Main-Memory Workloads

Iraklis Psaroudakis
École Polytechnique Fédérale

de Lausanne
iraklis.psaroudakis@epfl.ch

Tobias Scheuer
SAP AG

tobias.scheuer@sap.com

Norman May
SAP AG

norman.may@sap.com

Anastasia Ailamaki
École Polytechnique Fédérale

de Lausanne
anastasia.ailamaki@epfl.ch

ABSTRACT
Task scheduling typically employs a worker thread per hard-
ware context to process a dynamically changing set of tasks.
It is an appealing solution to exploit modern multi-core
processors, as it eases parallelization and avoids unneces-
sary context switches and their associated costs. Näıvely
bundling DBMS operations into tasks, however, can result
in sub-optimal usage of CPU resources: highly contending
transactional workloads involve blocking tasks. Moreover,
analytical queries assume they can use all available resources
while issuing tasks, resulting in an excessive number of tasks
and an unnecessary associated scheduling overhead.

In this paper, we show how to overcome these problems
and exploit the performance benefits of task scheduling for
main-memory DBMS. Firstly, we use application knowledge
about blocking tasks to dynamically adapt the number of
workers and aid the OS scheduler to saturate CPU resources.
In addition, we show that analytical queries should issue a
low number of tasks in cases of high concurrency, to avoid
excessive synchronization, communication and scheduling
costs. To achieve that, we maintain a concurrency hint,
reflecting recent CPU availability, that partitionable ana-
lytical operations can use as a limit while adjusting their
task granularity. We integrate our scheduler into a commer-
cial main-memory column-store, and show that it improves
the performance of mixed workloads, by up to 12.5% for
analytical queries and 370% for transactional queries.

1. INTRODUCTION
In the era of big data, the key evaluation criterion for

database management systems (DBMS) is their performance
when evaluating an ever-increasing number of on-line ana-
lytical processing (OLAP) and on-line transactional process-
ing (OLTP) queries. The challenge for DBMS is to lever-

age the increase of the processing power of modern multi-
socket multi-core processors to maximize performance and
efficiently service incoming queries over growing datasets.

Typically, the execution engine of a DBMS uses a single
logical thread for short-lived latency-sensitive transactional
queries. Long-running operations, such as complex transac-
tional queries or analytical queries, may be parallelized us-
ing more logical threads. For highly concurrent workloads,
simply issuing logical threads and leaving scheduling to the
operating system (OS), leads to high creation costs and nu-
merous context switches. The latter are incurred by the OS
time sharing policy that balances the usage of a limited num-
ber of available hardware contexts among a higher number
of threads using time slices [2, 25].

For resource management, including CPU, DBMS typi-
cally employ a query admission control to limit the number
of processed queries. A query admission control, however,
is a mechanism that operates on a per-query level, and can
only indirectly avoid an excessive number of threads. It
does not control resource utilization of queries after they
have been admitted. Task scheduling [2, 6, 10, 13, 21] is
a more appealing solution, as it uses a number of threads
to process all operations for the whole run-time of an ap-
plication. Tasks, which encapsulate operations, are stored
in task pools, and worker threads are employed by the task
scheduler to process the tasks. Task scheduling can be a
complementary solution to query admission control, or even
an alternative if tasks can be prioritized (see Section 4).

Moreover, task scheduling is well-suited for the recent
wave of main-memory DBMS that forfeit disk-based stor-
age in favor of performance. By removing I/O bottlenecks,
main-memory DBMS can focus completely on optimizing
CPU and memory utilization. Task scheduling can prove a
powerful tool for main-memory DBMS, as it can automate
the efficient usage of CPU resources, especially of modern
shared-memory multi-core processors [2, 10, 13, 32], and can
help developers easily parallelize database operations.

Recent popular task scheduling frameworks include the
OpenMP API [3, 10] and Intel Thread Building Blocks (TBB)
[2]. Their main advantage is that developers express parti-
tionable operations, that can be parallelized with a variable
number of tasks, using a high level of abstraction such as
data parallelism. The high level of abstraction helps to au-
tomatically adjust the task granularity of analytical parti-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147997176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tionable operations, such as aggregations or hash-joins. The
high level of abstraction, however, also turns out to be a
disadvantage, as it cannot be used straightforwardly by al-
ready developed applications. Integration into a commercial
DBMS would require a re-write of large portions of code,
which is a process with significant cost and time consider-
ations. Moreover, partitionable operations in commercial
DBMS typically define their task granularity independently,
without the use of a central mechanism for data parallelism.
This is the common case, as optimizing the granularity of a
single DBMS paritionable operation alone involves consider-
able research effort (see [12], for example, for partitioning in
hash-joins). In this paper, we show how to adjust task gran-
ularity in a main-memory DBMS, in a non-intrusive manner,
without the need of a high level of abstraction. We supply
partitionable operations with a hint reflecting recent CPU
availability, that can be used to adjust their task granu-
larity. Our experiments show that when partitionable op-
erations use this concurrency hint, overall performance for
analytical and mixed workloads is significantly improved.

Furthermore, recent task schedulers, e.g. Intel TBB, use a
fixed number of worker threads, equal to the number of hard-
ware contexts. This is a standard technique to avoid over-
commitment of CPU resources. The fixed concurrency level,
however, is only suited for CPU-intensive tasks that rarely
block [2]. We show that tasks in DBMS often block due
to synchronization, especially in heavily contending OLTP
workloads. Thus, the fixed concurrency level can result in
under-utilization of CPU resources in DBMS workloads. In
this paper, we show how the task scheduler can detect the
inactivity periods of tasks and dynamically adapt its con-
currency level. Our scheduler gives control to the OS of
additional workers when needed to saturate CPU resources.

Contributions. We apply task scheduling to a commer-
cial main-memory DBMS. Our experiments show the ben-
efits of using task scheduling for scaling up main-memory
DBMS over modern multi-socket multi-core processors, to
efficiently evaluate highly concurrent analytical and trans-
actional workloads. Our main contributions are:

• We show that a fixed concurrency level for task schedul-
ing is not suitable for a DBMS, as tasks often block,
especially in highly contending OLTP workloads. Our
scheduler adapts its concurrency level, by detecting
blocked tasks, and giving control to the OS of addi-
tional worker threads to saturate CPU resources.

• We show that using a hint reflecting recent CPU avail-
ability helps to adjust the task granularity of parti-
tionable analytical operations. The concurrency hint
improves overall performance significantly in cases of
high concurrency, by reducing costs related to commu-
nication, synchronization and book-keeping.

• We show how we integrate our task scheduler into SAP
HANA [18], a commercial main-memory DBMS. We
show that our task scheduler improves the performance
of highly concurrent analytical workloads (TPC-H [5])
by up to 16%, and of highly concurrent mixed work-
loads by up to 12.5% for analytical queries (TPC-H)
and 370% for transactional queries (TPC-C [4]).

Paper organization. In Section 2, we present related
work. In Section 3, we give an overview of SAP HANA,

a commercial main-memory DBMS, and how we apply our
task scheduler to SAP HANA. Next, we present the general
architecture of our scheduler in Section 4, how we handle
blocking tasks using a flexible concurrency level in Section
5, and how we use concurrency hints to aid task creators of
partitionable operations adapt their task granularity in Sec-
tion 6. In Section 7, we show our experimental evaluation.
Finally, in Section 8, we present our conclusions.

2. RELATED WORK
Task scheduling for parallel programs and parallel systems

is a broad field of research. Early related work focuses on
static scheduling [19, 23], which is typically done at com-
pile time and assumes that basic information about tasks
(such as processing times, dependencies, synchronization,
and communication costs) and the target machine environ-
ment are known in advance. Given perfect information, a
static scheduling algorithm attempts to produce the opti-
mal assignment of tasks to processors, that ideally balances
their loads and minimizes scheduling overheads and mem-
ory referencing delays [20]. Perfect information, however,
is hard to obtain for modern shared-memory multiproces-
sors and modern applications where tasks may be generated
dynamically and at a fast pace. For example, queries in
a DBMS arrive dynamically, and information about them
can only be estimated, often with high relative errors. More
recent related work focuses on dynamic scheduling, which
is done on-the-fly at run-time [23, 35, 38]. Dynamic task
scheduling does not require information about supplied tasks
a priori, has less overhead than static scheduling, and pro-
vides automatic load-balancing and improved portability be-
tween different hardware architectures [27]. Dynamic task
scheduling may also use run-time measurement to re-adapt
scheduling decisions [30, 33, 38] for better data locality [38]
or NUMA (non-uniform memory access) awareness [11, 34].
Our work studies the practical application and evaluation
of dynamic task scheduling for the specific case of a main-
memory DBMS on a single shared-memory multiprocessor
machine. We focus on the minimization of context switches,
handling blocked tasks, and adjusting task granularity for
highly concurrent workloads, and leave optimizations for
data locality and NUMA awareness for future work.

The common design of recent dynamic task schedulers
involves task pools where tasks are submitted dynamically
at run-time, and the scheduler employs a set of threads to
work on the tasks [21]. There are two main categories of
task schedulers [16]: breadth-first schedulers [31] and work-
first schedulers [13] with various work-stealing techniques [6,
28, 32, 34] for load-balancing and improved predictability in
real-time applications [27]. In breadth-first schedulers, when
a task is created, it is placed in the task pools and the par-
ent task continues execution. In work-first schedulers, the
thread of the parent task switches to execute child tasks,
for potentially better data locality [13]. Our scheduler com-
bines both approaches: when a task generates a group of new
tasks, the parent thread takes upon one of the new tasks,
following the work-first approach, while the rest of the tasks
are dispatched to the task pools, following the breadth-first
approach, for load-balancing.

Hoffmann et al [21] provide a survey on different task
pool implementations. Distributed task pools with stealing
achieve best performance, as they minimize synchronization
overheads and stealing amends load-balancing issues. We

2

follow a similar approach for our scheduler. Johnson et al
[22] decouple contention management from scheduling and
load management, to combine the advantages of spin and
blocking locks. Our scheduler is not concerned with how
locks are used, but uses the information about blocked tasks
to dynamically adjust its concurrency level.

In highly concurrent analytical workloads with a large
number of partitionable operations issuing tasks, granularity
of tasks plays an important role in communication, synchro-
nization, and scheduling costs [1, 14, 15, 26, 28]. Our ex-
perimental results corroborate these observations for main-
memory DBMS. While we address workloads with long-
running analytical queries as well as short-running OLTP-
queries, we cannot rely on special implementations to avoid
locking as proposed in [39]. Recent task scheduling frame-
works such as OpenMP [3, 10] and Intel Thread Building
Blocks [2] regulate task granularity by requiring the devel-
oper to express parallelism in a higher-level abstract manner
and use this information. We assume that there is no cen-
tral mechanism for data parallelism, and that partitionable
operations define their task granularity independently. We
use a concurrency hint, reflecting recent CPU availability,
to adjust the task granularity of partitionable operations.

3. OVERVIEW OF SAP HANA
SAP HANA is a commercial main-memory DBMS, that

aims to efficiently support OLTP and OLAP workloads [18].
It supports a multitude of data formats and provides facil-
ities for an extensive spectrum of enterprise applications,
under a flexible and componentized architecture [17].

The DBMS architecture is depicted in Figure 1, (see [18,
36] for an overview). SAP HANA provides four main-memory
storage engines: a column-store, suited for OLAP-dominant
and mixed workloads, a row-store, suited for OLTP-dominant
workloads [37], as well as a graph engine and a text engine
[18]. The transaction manager uses multi-version concur-
rency control (MVCC) [36]. Further components provide
extensions for enterprise applications, and various applica-
tion interfaces such as SQLScript and calculation models.

In this architecture realizing parallelism is the key to good
scalability. For scaling out, SAP HANA supports distributed

Execution
engine

Persistence Layer (Logging, Recovery, Page Management)

Executor

Optimizer and Plan Generator

Calculation engine

Various access interfaces (SQL, SQL Script, etc.)

Network

Dispatcher

Connection and
Session management

Receivers

Metadata
Manager

�

� �

���

Scheduler

(N
EW

)

Column-
store

Row-
store

Graph
engine

Text
engine

Authorization

Transaction
Manager

Figure 1: The general database architecture of SAP
HANA. Our new scheduler integrates the three
main thread pools of SAP HANA.

query execution plans. Scalability on every node is achieved
through multi-threaded algorithms that exploit data paral-
lelism inherent in many database operations. These algo-
rithms are implemented with a special focus on hardware-
conscious design and high scalability on modern multi-core
processors. Furthermore, quick response times for short-
running queries is provided by an efficient session manage-
ment and client interface [24].

Although the architecture of SAP HANA enables the loose
coupling of all components and their selective leverage, the
components are independent as far as execution is concerned.
Some components use their own thread pools, while they
assume they can fully exploit system resources, unaware of
concurrent operations of other components. The three ma-
jor thread pools are the following. (1) The Dispatcher is a
simple task graph scheduler used typically for parallelizing
partitionable analytical operations. (2) The Executor is a
task graph scheduler that processes plans of operations that
can potentially be distributed across machines. Plan nodes
can use the Dispatcher for parallelizing on one machine. (3)
The Receivers are threads that process received network re-
quests. Short-running transactions are typically completely
executed within a Receiver. For more complex transactions,
longer analytical or distributed queries, the Receiver uses
the Executor, which in turn uses the Dispatcher.

The independence of these three thread pools poses sev-
eral problems. Firstly, when all thread pools are active, the
number of logical threads may surpass available hardware
contexts, over-committing CPU resources and resulting in
context switching costs. Secondly, DBMS administrators
can be confused while configuring how many threads each
pool should use. A good configuration is highly dependent
on the workload. Thirdly, developers need to learn three dif-
ferent thread implementations, and battle with parallelizing
their operations across each one of them. We design our new
scheduler to address the aforementioned issues, and better
scale up on a single shared-memory multiprocessor system
by integrating the different thread pools of SAP HANA.

Our scheduler constitutes a new component in the gen-
eral architecture of a DBMS (see Figure 1), and is orthog-
onal to other components such as the Persistency Layer or
the Transaction Manager. It is important to note that our
scheduler does not compromise any transactional correctness
or persistency semantics.

4. SCHEDULER ARCHITECTURE
To support fast scheduling of all heterogeneous general-

purpose tasks, we opt for a dynamic task scheduler that
does not require or process any a priori execution informa-
tion about the tasks, except for potentially a directed acyclic
graph (DAG) defining their correlations and ultimately their
order of execution. The DAG can take any form, with the
only restriction of having a single root node. This does not
prevent the creation of single-node graphs. Each node in the
task graph can contain any piece of code. A node can po-
tentially spawn a new task graph, or issue itself again to the
scheduler. The developer is free to co-ordinate synchroniza-
tion among tasks, since we take care to maintain a flexible
concurrency level (see Section 5). Optionally the developer
can assign a priority for the task graph, which results in a
decreased or increased probability of being chosen for exe-
cution. The developer then dispatches the root node to the

3

Root Node

Non-root
node

Task graph Priorities Task pools Workers

Max

Normal

Low ..
.

Figure 2: The data structures used by the scheduler.

scheduler, and he can wait for execution of the task graph
or continue without waiting.

The scheduler maintains two sets of queues, depicted in
Figure 2. The first set contains one queue per priority and
holds the root nodes of the submitted graphs that have not
yet been initiated for execution. The second set contains
queues that hold the non-root nodes to be executed. The
second set actually constitutes the main distributed task
pools for our scheduler. The task pools can further be sorted
by node depth, in order to favour execution of deep-running
graphs, or by the timestamp of the owning query, in order
to favour execution of earliest queries. For our experiments,
we sort the task pools by node depth, because resource-
intensive queries tend to create deep-running graphs, and
we take care to finish these queries early, in order to free up
the resources such as the memory.We use distributed task
pools to reduce synchronization contention. Currently, we
create as many task pools as the number of sockets. More
task pools can also be created if the number of hardware
contexts in one socket is high and results in synchronization
contention for the task pool. Each worker thread is assigned
to a specific task pool in a round-robin fashion according to
its ordinal identifier. If the worker thread finds its assigned
task pool empty, it starts querying other task pools, in a
round-robin fashion, and steals tasks [21].

When the task pools are empty, a free worker retrieves
a root node from the queues of priorities, with a probabil-
ity that favours prioritized root nodes. This probability is
configurable, in order to prevent starvation of root nodes
with low priorities. We note that in our experiments of Sec-
tion 7, all tasks have the same priority. After executing the
root node, the worker thread continues executing the first
descendant for better data locality, while the rest of the
descendants are dispatched randomly to the task pools for
load-balancing. When the task pools are not empty, a free
worker retrieves his next task from the task pools. When a
non-root node is executed, the worker checks which descen-
dants are ready for execution, takes upon the first of them
and dispatches the rest to the task pools.

Integration. Our simple design allows a fast integration of
all three main thread pools of SAP HANA into our scheduler
(see Section 3). Without having to worry about synchroniza-
tion (see Section 5), we quickly bundle old tasks and generic
blocks of code into tasks for our new scheduler. As is stan-
dard for task schedulers [2], we do not bundle I/O-bound
operations into tasks. These operations are executed by sep-
arate threads that are handled by the underlying OS sched-
uler. Since these threads do not reserve any worker threads
from our scheduler, we can keep the system busy with CPU-
intensive tasks while there are I/O operations. It is easy
to detect I/O-bound operations in main-memory DBMS, as

general query execution is CPU-bound or memory-bound.
Heavy I/O operations, such as savepoints, are only done pe-
riodically and in the background to minimize the disruption
of the general performance of the database [18]. Thus, I/O-
bound operations are traced mainly inside the persistence
or network layer.

The most significant difficulties we encountered were prop-
agating exceptions in the task graph to the creator thread
that may wait for the task graphs associated with a query,
and inheriting thread-local storage of the creator thread to
the workers handling nodes of the task graph. Thread-local
storage in SAP HANA is used to store the transactional
MVCC details of the query, which are used by the Transac-
tion Manager (see Figure 1).

Scheduling policies. The design with the two sets of
queues allows us to provide different scheduling policies. Our
default policy dictates that a free worker thread should re-
trieve its next task from the task pools, if they are not empty,
with a high probability. In our experiments, this probabil-
ity is set to maximum (1.0). Thus, new graphs are initi-
ated after older graphs have completed. This policy favours
throughput over latency, and takes care to finish earlier ini-
tiated graphs that may hold resources, such as memory, be-
fore initiating new graphs. The administrator, however, may
want to be fair to the latencies of all incoming queries, and
thus we provide him with a setting to decrease the aforemen-
tioned probability, so that free worker threads can execute
a root node even if the task pools are not empty. Even
though this policy is more fair for all incoming queries, gen-
eral performance and throughput is hurt, due to increased
contention from many concurrent queries. Our default pol-
icy provides semantics similar to a light-weight admission
control manager for CPU resources. We use the default pol-
icy for our experiments, as it provides best results.

Watchdog thread. To control workers, but also to mon-
itor the state of execution, we reserve an additional watch-
dog thread. The watchdog typically sleeps, but wakes up
periodically to gather information and potentially control
worker threads, similar to the notion of centralized schedul-
ing [20]. We use light-weight mechanisms for monitoring,
based on statistical counters, such as the number of waiting
and executing tasks, how many tasks each worker thread
has executed etc. These counters are updated using atomic
instructions by each worker thread and the watchdog.

5. DYNAMIC ADJUSTMENT OF CONCUR-
RENCY LEVEL

Typical task schedulers employ a number of worker threads
equal to the number of hardware contexts. This level of
concurrency is suitable for task schedulers whose aim is to
handle CPU-intensive tasks that do not block frequently [2].
Our aim, however, is to integrate already-developed general-
purpose code into tasks. We need to handle tasks that can
include heavy usage of synchronization primitives and locks.
A representative example are highly concurrent and con-
tending transactional workloads, such as TPC-C [4]. When
tasks are inactive, our scheduler takes care to overlap inac-
tivity periods with additional worker threads and saturate
CPU resources. Next, we describe the different states of in-
activity that a task can be in, and how our scheduler handles
them, by adapting its concurrency level at run-time.

4

Inactive workers

Blocked
in syscall

Inactive
by user

Waiting
for a task

Active
workers

Watch-
dog

Other
threads

Scheduler

Parked
Threads

Figure 3: The scheduler’s types of worker threads.

Blocked workers. The OS scheduler is the first to know
when a thread blocks after a system call for a synchroniza-
tion primitive. It then cedes the CPU to another thread
waiting for its time slice. If we set a fixed number of worker
threads equal to the number of hardware contexts, blocked
threads will not be overlapped by other threads, as the OS
scheduler does not have knowledge of any other working
threads in our application. This results in under-utilization
of CPU resources, as the OS scheduler could potentially
schedule another worker thread while a worker thread blocks.
Additionally, since we do not know how the developer syn-
chronizes tasks, a fixed concurrency level can lead to poten-
tial deadlocks, if the interdependency edges between nodes
are not correctly used. For example, if a node in a task
graph requires a conditional variable from another node at
the same level of the task graph, the latter node may not be
scheduled in time if the nodes in the level are more than the
available hardware contexts. Deadlocks can also happen if
code synchronizes heavily between different task graphs.

To avoid deadlocks and under-utilization of CPU resources,
we argue that a scheduler handling general-purpose tasks
should not use a fixed concurrency level. Our watchdog pe-
riodically checks for blocked worker threads, and activates
additional worker threads, that get scheduled by the OS
immediately and overlap the inactivity period. Thus, we
co-operate with the OS by voluntarily adjusting the concur-
rency level, and giving control to the OS of additional worker
threads when needed to saturate CPU resources. We exploit
both the advantages of task scheduling and the OS sched-
uler: Task scheduling ensures that the number of working
threads is small enough so that costly context switches are
avoided. By dynamically adjusting the concurrency level, we
exploit the capability of the OS scheduler to quickly cede the
CPU of a blocked thread to a new worker thread.

To detect blocks efficiently, we do not use OS synchroniza-
tion primitives directly. DBMS typically encapsulate these
in user-level platform-independent data structures. For ex-
ample, SAP HANA on Linux uses a user-level semaphore
based on atomic instructions, that calls the futex facilities
of Linux when needed. We leverage these user-level synchro-
nization primitives to know when a worker thread is about
to call a potential system call that could block.

Active concurrency level. We define:

concurrency level = total number of worker threads

The concurrency level is variable. There can be a number of
inactive workers, such as blocked threads, and a number of
active workers. We are mainly interested, however, in keep-
ing the total number of active workers as close as possible to
the number of hardware contexts, in order to saturate CPU

resources. For this reason, we define:

active concurrency level = concurrency level

− inactive workers

When threads resume from inactivity, they are considered
again in the active concurrency level, which can at times be
higher than the number of hardware contexts.

Parked threads. In order to fix a high active concurrency
level, the scheduler gets the chance to pre-empt a worker
when it finishes a task. We cannot pre-empt a worker in the
middle of a generic task, as it can be in a critical section
and the consequences are unpredictable. Instead of ending
the thread, we keep it suspended, in a parked state. The
watchdog is responsible for monitoring if the active concur-
rency level gets low and waking up parked threads. Parked
threads overcome the costs of creating logical threads, which
include the expensive allocation of their stacks.

Other inactive threads. Apart from blocked and parked
threads, we define two additional states of inactivity. Firstly,
there can be tasks that wait for another task graph. This in-
activity state is comparable to OpenMP’s suspend/resume
points (e.g. taskwait) [10], or to TBB’s wait methods (e.g.
wait for all) [2]. Secondly, we give the developer the op-
portunity to explicitly define a region of code as inactive.
This is useful for code regions that are not CPU-intensive,
such as the I/O-bound commit part of a transaction that
needs to write in the redo log on disk. We note that in
our experiments, we do not specify these I/O-bound parts
of a transactional task as inactive. For both these cases of
inactive threads, a new worker thread is activated imme-
diately if allowed by the active concurrency level, instead
of being activated by the watchdog. We note that while a
worker thread is blocked, parked, or waiting for another task
graph, it is also considered inactive by the OS scheduler. A
code region, however, that is defined by the developer as
inactive, pertains only to our scheduler’s accounting for its
active concurrency level, while the OS considers the relevant
worker thread as runnable and schedules it.

All the aforementioned types of workers are shown in Fig-
ure 3. The total number of inactive workers is defined as:

inactive workers = blocked workers

+ inactive by user

+ workers waiting for a task graph

+ parked workers

Avoiding too many active threads. We note that acti-
vating additional worker threads in place of inactive work-
ers may not always be optimal. If the inactivity period of
a worker is short, and the newly activated worker begins
executing a large task, then when the first worker returns
from inactivity, there will be two worker threads active. If
this situation is repeated many times, the active concurrency
level can get much higher than available hardware contexts,
leading to context switching costs from the OS scheduler.

For this reason, it is important to handle inactivity states
carefully. The inactivity states where the developer speci-
fies a code region as inactive, and where a task waits upon
another task, are typically not too short. These inactivity
states lower the active concurrency level, and immediately
activate additional worker threads that increase the active
concurrency level up to the number of available hardware

5

contexts. The duration of the inactivity state of blocked
threads, however, is generally unknown, and can be too
short. Thus, blocked tasks are handled differently: they
only lower the active concurrency level, and do not imme-
diately spawn additional workers. The active concurrency
level is increased only when the watchdog checks it periodi-
cally and attempts to fix it by activating additional worker
threads, or in case another inactive worker thread resumes
activity in the meanwhile and thus increases the active con-
currency level and is allowed to continue working on next
tasks. Thus, too short block periods are typically hidden
between the intervals of the watchdog and of active tasks.
Even in the bad case that the active concurrency level gets
too high, this is quickly fixed when active workers finish
their current tasks and are pre-empted and parked in order
to fix the active concurrency level.

To support our intuition, our experiments with SAP HANA
have an active concurrency level that is most of the time
equal to the number of hardware contexts (see Section 7).
We note that the watchdog interval we use in our experi-
ments is 20ms. We have experimented with larger intervals
as well, but have not noticed significant differences in the
active concurrency level. Nevertheless, in order to avoid
worst-case scenarios, the watchdog can check periodically
if the active concurrency level gets much higher than the
number of hardware contexts.

6. DYNAMIC ADJUSTMENT OF TASK
GRANULARITY

Partitionable operations can be parallelized using a vari-
able number of tasks. Many analytical operations in a DBMS
fall into this category, e.g. aggregations and hashing. If a
column needs to be aggregated, it can be split into several
parts which can be processed in parallel independently. This
is a classic example of data parallelism using a fork-join pro-
gramming structure [9].

For this kind of partitionable operations, a number of
tasks lower than the number of available hardware contexts,
i.e. a coarse granularity of tasks, can under-utilize CPU re-
sources. A higher number of tasks (up to the number of
available hardware contexts) means that the partitionable
operation can potentially use more CPU resources and de-
crease its latency. Using a fine granularity, however, can po-
tentially introduce additional costs for communication, syn-
chronization and scheduling [1, 14, 26]. Thus, a balance is
required for the task granularity.

Task schedulers like Intel TBB [2] can greatly help in case
of partitionable operations. As the developer expresses par-
titionable operations through higher-level algorithmic struc-
tures and data parallelism, the framework employs a central-
ized mechanism for adjusting task granularity.

In commercial DBMS, however, the majority of partition-
able operations do not use a central mechanism for data par-
allelism. This is the common case because optimizing the
granularity of a single DBMS paritionable operation alone
involves considerable research effort (see [12], for example,
for partitioning in hash-joins).

There are typically distinct components for partitionable
operations that handle data parallelism and granularity in-
dependently. In SAP HANA, for example, each partition-
able operation employs heuristics to find the right task gran-
ularity, based on factors such as data size, communication

costs, and the number of hardware contexts of the system.
We should note that the degree of parallelism does not affect
the choice of a query plan of the optimizer in SAP HANA.

In this paper, we are not concerned with how each compo-
nent calculates task granularity, but with how task granular-
ity affects performance when numerous concurrent queries,
possibly with other partitionable operations, are being pro-
cessed. The problem we notice is that partitionable oper-
ations calculate the number of tasks irrespective of other
concurrent tasks. In the worst case, every operation can dis-
patch a number of tasks equal to the number of hardware
contexts. Our experiments show that this practice results in
a myriad of tasks in cases of high concurrency, and increased
book-keeping and scheduling costs. Thus, task creators for
partitionable operations need to adjust their task granular-
ity by taking into consideration other concurrent tasks. To
solve this problem, our scheduler provides information about
the state of execution to partitionable operations that they
can use for the calculation of task granularity.

Concurrency hint. If a partitionable operation issues
more tasks than can be handled by free worker threads at
the moment, there is little to no benefit for parallelism, and
redundant scheduling costs. The intuition is that in cases of
high concurrency, when the system is fully loaded and free
worker threads are scarce, partitionable operations should
opt for a very coarse granularity in order to minimize the
number of tasks to be processed.

Our scheduler can provide task creators with information
about the current availability of computing resources, as it
has knowledge of the active concurrency level of the whole
DBMS. Thus, it can give a hint to task creators about the
maximum number of tasks they should create at the mo-
ment. The watchdog is responsible for calculating the con-
currency hint, which is an exponential moving average of
the free worker threads in the recent past. The free worker
threads and the concurrency hint are defined as:

free worker threads = max{0,number of hardware contexts

− active concurrency level}

concurrency hint = a ∗ free worker threads

+ (1.0− a) ∗ previous concurrency hint

where 0 ≤ a ≤ 1.0

Due to the dynamic nature of our workers, which can
change status often and quickly, an average can give bet-
ter results than an absolute value. For our experiments, we
use an exponential moving average, with equal weight for
the free workers threads of the previous observations and
the currently observed number of free worker threads (i.e.
a = 0.5). The sampling rate is configured at 50ms in our
experiments, which provides reasonable smoothing over the
recent past, and also quickly captures changes in the number
of free worker threads. Due to the fact that the exponential
moving average captures all past observations, we take care
to reset it to the number of hardware contexts when it sur-
passes a predefined threshold. This threshold is set to 90%
of the number of hardware contexts for our experiments.

Splitting. It can happen that a partitionable operation
gets a low hint. If resources are freed up later on, it will
under-utilize CPU resources. To correct this behaviour, we
follow a strategy similar to the data parallelism concept of

6

splitting ranges in Intel TBB or the lazy task creation [28].
Each task needs to check the concurrency hint periodically.
If the hint gets high, the task should decide if it should split
into two more nodes. Those two nodes can recursively split
again. At the moment, we have implemented splitting for
the simple cases of aggregations and calculations. Neverthe-
less, since we are interested in highly-concurrent workloads,
when the system is fully loaded, the absence of splitting for
the rest of partitionable operations does not affect perfor-
mance significantly in our experiments.

7. EXPERIMENTAL EVALUATION
We compare the following variations of SAP HANA:

• Multiple-Pools, which is the original version of SAP
HANA, with the different thread pools showed in Sec-
tion 1. This serves as our baseline.

• Single-Pool-NoSys, which integrates the different thread
pools of Multiple-Pools into tasks for our new scheduler.
This variation assumes workers blocked on synchro-
nization primitives as working, and includes them in
the active concurrency level of the scheduler. Also, this
variation defines the concurrency hint as the number
of hardware contexts, to simulate the old behaviour.

• Single-Pool, which is like Single-Pool-NoSys, but uses a
flexible concurrency level by assuming workers blocked
on synchronization primitives as inactive.

• Single-Hints, which is like Single-Pool, but with the con-
currency hint following the exponential moving aver-
age of free workers in the recent past. Partitionable
analytical operations adjust their task granularity ac-
cording to the concurrency hint. This variation is the
best version of our new scheduler for SAP HANA.

Our server has eight ten-core processors Intel Xeon E7-
8870 at 2.40 GHz, with hyper-threading enabled, and 1 TB
of RAM. Each core has a 32KB L1 cache and a 256KB L2
cache. Each processor has a 30MB L3 cache, shared by all
its cores. The OS is a 64-bit SMP Linux (SuSE), with a
2.6.32 kernel. Unless stated otherwise, every data point in
our graphs is an average of multiple iterations with a stan-
dard deviation less than 10%. Our measurements for con-
text switches and CPU times are gathered from Linux. The
total number of instructions retired are gathered from Intel
Performance Counter Monitor. For all expriments, we warm
up the DBMS first and there are no thinking times. We use
transaction level snapshot isolation with repeatable reads.
We make sure that all queries and clients are admitted, and
we disable query caching because our aim is to evaluate the
execution of the queries and not query caching.

7.1 Analytical workload
We use the TPC-H benchmark [5] with a scaling factor

10, stored in a column-store. We measure performance by
varying the number of concurrent queries, and measuring
the response time of each variation from the moment we
issue the queries until the last query returns successfully.
Queries are instantiated from the 22 TPC-H query templates
in a round-robin fashion, with the same parameters for each
query template for stable results, but without query caching.
We start measuring from 32 concurrent queries, to include

0

25

50

75

100

125

150

32 96160224288352416480544608672736800864928992

R
es

p
o

n
se

 t
im

e
 (

se
c)

Number of concurrent queries

Multiple-Pools

Single-Pool-NoSys

Single-Pool

Single-Hints

 32 128 256 512 1024

Figure 4: Experiment with TPC-H queries.

all query templates, up to 1024. The results are shown in
Figure 4. In Figure 5, we include performance measurements
for the case of 1024 queries. Our scheduler does not affect
cache-related behaviour significantly and cache miss rate in
all variations stays at similar levels.

Single-Pool-NoSys improves performance of Multiple-Pools
by only 3% for high concurrency. The main improvement
comes from reducing lock contention, as shown by the reduc-
tion in system CPU time. The number of context switches
has increased, even though we integrate all thread pools of
Multiple-Pools into a single task scheduler. We attribute
this to the fixed concurrency level. When workers block
on synchronization primitives, the OS does not have knowl-
edge of any additional workers to schedule. It replaces the
time slice of a blocked worker with any non-CPU-intensive
thread, outside the scheduler, with a small time slice. This
is also reflected in the increased idle CPU time.

Single-Pool, which has a flexible concurrency level, over-
comes this problem and improves performance of Multiple-
Pools by 7%. When many worker threads block, the watch-

SF10-1024-specs2

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

J K L M N O P Q R S T U V

0

20

40

60

80

100

120

140

N
u

m
b

er
 o

f
ta

sk
s

(x
1

0
0

0
0

)

(U
n

kn
o

w
n

 f
o

r
M

u
lt

ip
le

-P
o

o
ls

)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Idle Sys User

M
u

lt
ip

le
-P

o
o

ls

Si
n

gl
e-

P
o

o
l

Si
n

gl
e-

P
o

o
l-

N
o

Sy
s

Si
n

gl
e-

H
in

ts

A
ve

ra
ge

 C
P

U
%

0
10
20
30
40
50
60
70
80
90

100

C
o

n
te

xt
 S

w
it

ch
es

 (
x1

0
0

0
0)

M
u

lt
ip

le
-P

o
o

ls

Si
n

gl
e-

P
o

o
l

Si
n

gl
e-

P
o

o
l-

N
o

Sy
s

Si
n

gl
e-

H
in

ts

0

1E+13

2E+13

3E+13

In
st

ru
ct

io
n

s
re

ti
re

d

Multiple-Pools Single-Pool-NoSys
Single-Pool Single-Hints

Page 7

Figure 5: Measurements for the case of 1024 TPC-H
concurrent queries.

7

dog issues more worker threads and gives the chance to the
OS scheduler to schedule CPU-intensive worker threads with
new tasks and full time slices. That is reflected in the de-
creased idle CPU time, and the fewer context switches.

Single-Hints results in the best performance improvement
of Multiple-Pools by 16%. The coarser task granularity leads
to a reduction of the total number of tasks by 86%. We
achieve a significant reduction in unnecessary book-keeping
and scheduling costs, which is reflected in the 16% reduction
of the total number of instructions retired. Furthermore, we
corroborate previous related work that a coarser granularity
results in less costs for synchronization and communication
[1, 14, 26], since system CPU time is further decreased.

We notice the effect of not splitting tasks (see Section
6) for the case of 64 and 128 concurrent queries of Figure
4, where the standard deviation for Single-Hints is up to
30%. In a few iterations, a partitionable operation that got
a low hint was left in the end alone, under-utilizing CPU re-
sources and prolonging response times. We remind that we
have enabled splitting for aggregations and calculations in
SAP HANA, and we plan to enable splitting for more par-
titionable operations. In our experiments with Single-Hints,
however, all partitionable operations use the concurrency
hint as a limit in order to show the effect of hints for high
concurrency when the effect of not splitting is not obvious.

To better understand the effect of the flexible concurrency
level and hints throughout the whole experiment, we show
the timelines for Single-Pool-NoSys and Single-Hints for the
case of 1024 queries in Figure 6. For Single-Pool-NoSys, we
notice the effect of bursts of too many tasks being issued to
the scheduler. The redundant scheduling, communication,

0

1000

2000

3000

4000

5000

6000

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

h
ar

d
w

ar
e

 c
o

n
te

xt
s

Time (sec)

N
u

m
b

e
r o

f w
aitin

g tasks

0

2000

4000

6000

8000

10000

12000

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

h
ar

d
w

ar
e

co
n

te
xt

s

Time (sec)

Non-idle CPU Active workers Blocked Workers

Concurrency hint Waiting tasks

N
u

m
b

e
r o

f w
aitin

g tasks

Figure 6: Timelines for Single-Pool-NoSys (above)
and Single-Hints (below), for the case of 1024 con-
current TPC-H queries.

and book-keeping costs of these bursts of numerous tasks
result in erratic behaviour of the CPU utilization. In con-
trast, the timeline for Single-Hints presents a much smoother
run-time. The majority of the tasks are issued by all queries
in the beginning of the experiment, and they are gradually
scheduled until the end of the experiment. The CPU uti-
lization line is more stable. Additionally, the flexible concur-
rency level results in a few more worker threads that raise
the CPU utilization average in comparison to Single-Pool-
NoSys. Nevertheless, we still note that CPU utilization is
not fully saturated, and we still have idle time.

Thus, we note that the standard scheduling technique of
having an active number of workers equal to the number of
hardware contexts does not fully saturate CPU resources,
since idle CPU time is significant in all variations. A sim-
ilar observation about idle time has been done in a recent
evaluation of modern column-stores [8]. This is attributed
to the fact that DBMS operations are not purely compu-
tationally intensive [7], and the OS can exploit a few more
threads to overlap stalls (e.g. for memory). We plan to in-
vestigate how to dynamically raise the active concurrency
level, to minimize idle CPU time, while not deteriorating
context switching costs and cache miss rate.

7.2 Mixed workload
We measure the performance of the different variations by

running a throughput experiment for 15 minutes for TPC-
H and TPC-C [4] concurrently on disjoint datasets. This
use case can happen if a hot transactional dataset is copied
on the same server for analytics. Our intention is to see
how each workload behaves when they co-exist on the same
server, and how scheduling affects their performance.

For TPC-C, we use a database of 200 warehouses, stored
in a column-store, 200 clients, and measure the total average
successful new-order transactions per minute (tpmC). Our
TPC-C driver is based on a previous project [29]. Before
every experiment, we re-load our initially generated TPC-C
database, in order for all experiments to start with the same
columnar data and have no data in their delta storages [36].

Figure 7: Throughput experiments with a mixed
workload, consisting of TPC-H and TPC-C clients
on disjoint datasets. Each experiment involves a
TPC-H throughput (bar with solid color) and a
TPC-C throughput (bar with pattern).

8

We turn off merge operations for the column-store [36], in
order to avoid unpredictable periods of inactivity due to
the TPC-C tables being merged and locked, and achieve a
stable behaviour for all variations. Due to the absence of
merge operations, we note that the tpmC slowly degrades
in every experiment, but as this behaviour is stable for all
variations, and because each variation starts the experiment
with the same data and conditions, this does not prevent us
from comparing the total average tpmC. For TPC-H, we
use a scaling factor of 10 and vary the number of concurrent
clients, in order to see the effect that long-running analytical
tasks have on the short-lived tasks of TPC-C. Clients issue
queries from the TPC-H Q1-Q22 templates in a global (not
per client) round-robin fashion, as in Section 7.1. We report
the average of TPC-H queries completed per minute. The
results are shown in Figure 7. We note that CPU resources
are completely saturated for the case of 32 and 64 concurrent
TPC-H clients, and that standard deviation for some cases
of very low TPC-C throughput is up to 50%. In Figure 8,
we show measurements for the case of 64 TPC-H clients.

Overall, we observe that increasing the number of concur-
rent TPC-H clients overshadows the TPC-C clients. This is
due to the fact that we do not change the number of TPC-C
clients in this experiment, and overwhelm the database with
an increasing number of resources-intensive TPC-H clients.
Also, TPC-C queries are typically executed in a single task,
while TPC-H queries usually pertain a task graph with mul-
tiple tasks. This results in many more tasks for TPC-H than
TPC-C. This trend serves as motivation to find ways to give
the DBMS administrator the possibility of favouring either
transactional or analytical queries. Note that we cannot do
this simply with the queues of priorities of our scheduler,
since Receivers handle all incoming queries in the same way
and bundle them into tasks for the scheduler.

We observe that Single-Pool-NoSys results in the worst
performance, due to its fixed concurrency level. Idle CPU
time reaches 70%, and redundant context switches occur

64-200-specs2 (2)

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

W X Y Z AA AB AC AD AE AF AG

0

100

200

300

400

500

600

700

To
ta

l n
u

m
b

e
r

o
f

ta
sk

s
(x

1
0

0
0

0
)

(U
n

kn
o

w
n

 f
o

r
M

u
lt

ip
le

-P
o

o
ls

)

0

2E+13

4E+13

6E+13

8E+13

1E+14

1.2E+14

1.4E+14

1.6E+14

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

re
ti

re
d

Multiple-Pools Single-Pool-NoSys
Single-Pool Single-Hints

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Idle Sys User

M
u

lt
ip

le
-P

o
o

ls

Si
n

gl
e-

P
o

o
l

Si
n

gl
e-

P
o

o
l-

N
o

Sy
s

Si
n

gl
e-

H
in

ts
 A
ve

ra
ge

 C
P

U
%

0

200

400

600

800

1000

1200

1400

C
o

n
te

xt
 S

w
it

ch
es

 (
x1

0
0

0
0)

M
u

lt
ip

le
-P

o
o

ls

Si
n

gl
e-

P
o

o
l

Si
n

gl
e

-P
o

o
l-

N
o

Sy
s

Si
n

gl
e-

H
in

ts

Page 9

Figure 8: Measurements for 64 TPC-H clients.

similar to Section 7.1. This is due to the fact that in TPC-C,
many clients contend for modifying common data. A lot of
workers are blocked, and the OS scheduler cannot overlap
them with other tasks. The flexible concurrency level of
Single-Pool corrects this behaviour, processes more tasks,
and can achieve similar or better performance than Multiple-
Pools. This also shows that our light-weight implementation
does not hurt the performance of short-lived transactions. It
also reduces the number of context switches in comparison to
Single-Pool-NoSys, but their number is still higher than that
of Multiple-Pools, as the additional worker threads created
due to inactive tasks are more than the threads of Multiple-
Pools, due to the flexible concurrency level.

The concurrency hint of Single-Hints results in a significant
reduction of the total number of TPC-H tasks, giving room
to TPC-C tasks to be queued up faster in the scheduler. For
64 concurrent TPC-H clients, Single-Hints improves TPC-H
throughput by 12.5% and TPC-C throughput by 370% in
comparison to Multiple-Pools, with approximately the same
number of instructions (since the system is fully loaded for
all variations for the majority of the duration of the experi-
ment). Note that hints alone do not affect TPC-C queries,
as they are executed in a single task.

8. CONCLUSIONS
We show how to efficiently employ task scheduling for

general-purpose tasks, without a central mechanism for data
parallelism, in order to handle both short-lived transactions
and long-running analytical tasks in highly concurrent work-
loads in a main-memory DBMS. Our results are backed up
by an evaluation on a commercial DBMS: SAP HANA.

As transactional tasks can heavily use synchronization
primitives, we show that the concurrency level of the task
scheduler should not be fixed, but be flexible. When worker
threads block, more worker threads should be issued, giving
control to the OS scheduler of additional tasks to saturate
CPU resources. Furthermore, for analytical partitionable
operations, we observe that task granularity significantly af-
fects communication, synchronization, and scheduling costs
in cases of high concurrency. For this reason, our scheduler
gives a hint to the task creators of partitionable operations,
reflecting the level of CPU contention. Using this hint, parti-
tionable operations re-adjust their task granularity, to avoid
excessive communication, synchronization, and scheduling
costs for high concurrency, and avoid under-utilization of
CPU resources in cases of low concurrency.

9. REFERENCES
[1] Intel articles - Granularity and Parallel Performance.

http://software.intel.com/en-us/articles/granularity-

and-parallel-performance.
[2] Intel Thread Building Blocks – Documentation – User

Guide – The Task Scheduler – Task-based
Programming.
http://threadingbuildingblocks.org/documentation.

[3] OpenMP API for Parallel Programming.
http://www.openmp.org/.

[4] TPC-C Benchmark: Standard Specification, v. 5.11.
http://www.tpc.org/tpcc/.

[5] TPC-H Benchmark: Standard Specification, v. 2.14.3.
http://www.tpc.org/tpch/.

[6] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The
data locality of work stealing. In Proc. of the 12th

9

annual ACM Symposium on Parallel Algorithms and
Architectures, pages 1–12, 2000.

[7] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a Modern Processor: Where Does
Time Go? In Proc. of the 25th Int’l Conf. on Very
Large Data Bases, pages 266–277, 1999.

[8] I. Alagiannis, M. Athanassoulis, and A. Ailamaki.
Scaling up analytical queries with column-stores. In
Proc. of the 6th Int’l Workshop on Testing Database
Systems, 2013.

[9] S.-l. Au and S. P. Dandamudi. The Impact of
Program Structure on the Performance of Scheduling
Policies in Multiprocessor Systems. Int’l Journal of
Computers and Their Applications, 3(1):17–30, 1996.

[10] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, E. Su, P. Unnikrishnan, and
G. Zhang. A Proposal for Task Parallelism in
OpenMP. In Proc. of the 3rd Int’l Workshop on
OpenMP: a Practical Programming Model for the
Multi-Core Era, pages 1–12, 2008.

[11] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A case for NUMA-aware contention
management on multicore systems. In Proc. of the
19th Int’l Conf. on Parallel Architectures and
Compilation Techniques, pages 557–558, 2010.

[12] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core cpus. In Proc. of the 2011 ACM SIGMOD
Int’l Conf. on Management of Data, pages 37–48.

[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. In Proc. of the
5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 207–216, 1995.

[14] D.-K. Chen, H.-M. Su, and P.-C. Yew. The impact of
synchronization and granularity on parallel systems.
In Proc. of the 17th annual Int’l Symposium on
Computer Architecture, pages 239–248, 1990.

[15] J. Cieslewicz and K. A. Ross. Data partitioning on
chip multiprocessors. In Proc. of the 4th Int’l
Workshop on Data Management on New Hardware,
pages 25–34, 2008.

[16] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of
OpenMP task scheduling strategies. In Proc. of the
4th Int’l Conf. on OpenMP in a New Era of
Parallelism, pages 100–110, 2008.

[17] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database: data
management for modern business applications.
SIGMOD Rec., 40(4):45–51, Jan. 2012.

[18] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The SAP HANA Database –
An Architecture Overview. IEEE Data Engineering
Bulletin, 35(1):28–33, 2012.

[19] R. L. Graham, E. L. Lawler, J. K. Lenstra, and
A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete Mathematics,
4:287–326, 1979.

[20] B. Hamidzadeh and D. Lilja. Dynamic scheduling
strategies for shared-memory multiprocessors. In Proc.
of the 16th Int’l Conf. on Distributed Computing
Systems, pages 208–215, 1996.

[21] R. Hoffmann, M. Korch, and T. Rauber. Performance
Evaluation of Task Pools Based on Hardware
Synchronization. In Proc. of the 2004 ACM/IEEE
Conf. on Supercomputing, 2004.

[22] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C.
Mowry. Decoupling contention management from
scheduling. In Proc. of the 15th edition of
Architectural Support for Programming Languages and
Operating Systems, pages 117–128, 2010.

[23] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999.

[24] J. Lee, Y. S. Kwon, F. Färber, M. Muehle, C. Lee,
C. Bensberg, J. Y. Lee, A. Lee, and W. Lehner. SAP
HANA distributed in-memory database system:
Transaction, session, and metadata management. In
IEEE 29th Int’l Conf. on Data Engineering, pages
1165–1173, 2013.

[25] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proc. of the 2007 Workshop on
Experimental Computer Science, 2007.

[26] H.-W. Loidl and K. Hammond. On the granularity of
divide-and-conquer parallelism. In Proc. of the 1995
Int’l Conf. on Functional Programming, pages
135–144, 1995.

[27] S. Mattheis, T. Schuele, A. Raabe, T. Henties, and
U. Gleim. Work stealing strategies for parallel stream
processing in soft real-time systems. In Proc. of the
25th Int’l Conf. on Architecture of Computing
Systems, pages 172–183, 2012.

[28] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy
task creation: a technique for increasing the
granularity of parallel programs. In Proc. of the 1990
ACM Conf. on LISP and Functional Programming,
pages 185–197, 1990.

[29] A. Morf. Snapshot Isolation in Distributed
Column-Stores. Master’s thesis, ETH Zurich, 2011.

[30] R. Motwani, S. Phillips, and E. Torng.
Non-clairvoyant scheduling. In Proc. of the 4th annual
ACM-SIAM Symposium on Discrete Algorithms, pages
422–431, 1993.

[31] G. J. Narlikar. Scheduling Threads for Low Space
Requirement and Good Locality. In Proc. of the 11th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 83–95, 1999.

[32] D. Neill and A. Wierman. On the Benefits of Work
Stealing in Shared-Memory Multiprocessors, 2011.
Project Report at Carnegie Mellon University.
http://www.cs.cmu.edu/~acw/15740/paper.pdf.

[33] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Using
Runtime Measured Workload Characteristics in
Parallel Processor Scheduling. In Proc. of the
Workshop on Job Scheduling Strategies for Parallel
Processing, pages 155–174, 1996.

[34] S. L. Olivier, A. K. Porterfield, K. B. Wheeler,
M. Spiegel, and J. F. Prins. OpenMP task scheduling
strategies for multicore NUMA systems. Int’l Journal
of High Performance Computing Applications,
26(2):110–124, 2012.

[35] M. A. Palis, J.-C. Liou, and D. S. L. Wei. Task
clustering and scheduling for distributed memory
parallel architectures. IEEE Transactions on Parallel
and Distributed Systems, 7(1):46–55, 1996.

[36] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhövd. Efficient transaction processing in
sap hana database: the end of a column store myth.
In Proc. of the 2012 ACM SIGMOD Int’l Conf. on
Management of Data, pages 731–742, 2012.

[37] M. Stonebraker and U. Cetintemel. ”One Size Fits
All”: An Idea Whose Time Has Come and Gone. In
Proc. of the 21st Int’l Conf. on Data Engineering,
pages 2–11, 2005.

[38] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova,
and M. Prieto. Survey of scheduling techniques for
addressing shared resources in multicore processors.
ACM Computing Surveys, 45(1):4:1–4:28, 2012.

[39] M. Stonebraker, S. Madden, D. J. Abadi, S.
Harizopoulos, N. Hachem, and P. Helland, The end of
an architectural era: (it’s time for a complete rewrite).
Proc. VLDB, 1150–1160, 2007.

10

