7,111 research outputs found

    A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation

    Full text link
    Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.Comment: Accepted by Journal of Structural Biolog

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    Full text link
    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.Comment: Updated to match the published version. The catalog can be accessed from: http://home.fnal.gov/~jghao/gmbcg_sdss_catalog.htm

    Optimization problems in electron microscopy of single particles

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-006-0078-8Electron Microscopy is a valuable tool for the elucidation of the three-dimensional structure of macromolecular complexes. Knowledge about the macromolecular structure provides important information about its function and how it is carried out. This work addresses the issue of three-dimensional reconstruction of biological macromolecules from electron microscopy images. In particular, it focuses on a methodology known as “single-particles” and makes a thorough review of all those steps that can be expressed as an optimization problem. In spite of important advances in recent years, there are still unresolved challenges in the field that offer an excellent testbed for new and more powerful optimization techniques.We acknowledge partial support from the “Comunidad Autónoma de Madrid” through grants CAM-07B-0032-2002, GR/SAL/0653/2004 and GR/SAL/0342/2004, the “Comisión Interministerial de Ciencia yTecnologia” of Spain through grants BIO2001-1237, BIO2001-4253-E, BIO2001-4339-E, BIO2002- 10855-E, BFU2004-00217/BMC, the Spanish FIS grant (G03/185), the European Union through grants QLK2- 2000-00634, QLRI-2000-31237, QLRT-2000-0136, QLRI-2001-00015, FP6-502828 and the NIH through grant HL70472. Alberto Pascual and Roberto Marabini acknowledge support by the Spanish Ramon y Cajal Program

    Geometric analysis of macromolecule organization within cryo-electron tomograms

    No full text
    Cryo-electron tomography (CET) provides unprecedented views into the native cellular environment at molecular resolution. While subtomogram analysis yields high-resolution native structures of molecular complexes, it also determines the precise positions and orientations of these macromolecules within the cell. Analyzing the geometric relationships between adjacent macromolecules can offer structural insights into molecular interactions and identify supramolecular ensembles. However, computation..

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems
    corecore