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High resolution structural analysis of biological complexes can be carried out 

by single particle electron microscopy where a large number of particle images 

are available. Many approaches to automate the process of selection of particle 

positions from digitized electron micrograph images have been described, but 

so far none has proved as good as manual selection.

This thesis describes a method which I have developed to locate such bio

logical complexes by matching small boxed areas to a set of reference images 

using the radius of gyration, complemented by a series of other simple criteria. 

From the reference images, parameters such as the ratio between the average 

density of the central area and that in its surrounding band, and the density 

sum and variance are calculated. They are compared with corresponding val

ues from a moving square window of densities extracted from the micrograph, 

and the coordinates of successfully matched candidate squares are recorded. 

Since the same particle is detected in a series of overlapping windows, can

didates found to be within close proximity are grouped, and the best-fitting 

one is selected from each cluster. Along with a small stack of boxed reference 

images, a few specified parameter values, such as the particle radius and the 

minimum acceptable distance between particle centres are required to select 

the windows. Micrograph labels and other areas that do not contain appropri

ate specimens are automatically ignored in order to minimize false positives, 

and reduce the computing time.

A computer program SLEUTH written to carry out this method of auto

matic particle detection includes a graphical user interface to assist the user 

in setting up the parameter values. The program has been tested successfully



on a variety of different biological structures, from both negatively stained and 

ice-embedded specimens.
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Chapter 1

Introduction

Solving high resolution structures of biological particles, such as viruses and 

protein-DNA complexes, invariably requires many copies of the structure in 

a complete range of different orientations. Where the complex can be per

suaded to form three-dimensional crystals, X-ray crystallographic methods 

can be used, and the structure may be calculated to atomic resolution. Other 

structures can be studied by electron microscopical techniques; those which 

form two-dimensional sheets or flattened tubes may be calculated by electron 

or two-dimensional diffraction methods or where the sheet forms a helical tube, 

then helical diffraction methods are available.

When particles will not form any kind of repeating pattern, but remain as 

independent structures, single particle structural analysis may be used. This 

method is based on averaging together many images of the structure to min

imise noise artifacts and provide information from many different angles of 

view to build a three-dimensional model.

Particles in a digitized micrograph will be randomly positioned and usually



2 CHAPTER 1. INTRODUCTION

have a distribution of different orientations. Coordinates for each particle cen

tre must be determined prior to extraction of a box of densities for subsequent 

alignment and classification procedures, for which several well-established soft

ware packages are available (Frank et al., 1996; van Heel et ah, 1996; Ludtke, 

Baldwin and Chiu, 1999). Classes of aligned, summed images represent specific 

projections of the three-dimensional structure, which may then be calculated 

by weighted back projection or other methods. The resolution of calculated 

structures from single particle methods is restricted to about 20A for stained 

specimens and currently to about 7A  for ice-embedded specimens (Bottcher, 

Wynne and Crowther, 1997). In principle, even higher resolution should be 

possible for ice-embedded specimens (Henderson, 1995; van Heel et ah, 2000). 

Several factors, including contrast transfer function and temperature factor, 

which reflects contrast loss due to imperfect images, affect resolution; software 

is under development to correct for these factors with the aim of structure de

termination to atomic resolution (Grigorieff, 1998; Glaeser, 1999; Rosenthal 

and Henderson, 2003).

Ultimately, it is the availability of many thousands, perhaps millions of parti

cles which will make possible the calculation of high resolution structures by 

single particle methods. A high resolution analysis requires many projections, 

and many particle images for each projection. Imperfections in the specimens 

and background effects due to various ice artifacts lead to distortions in a cal

culated model. Furthermore, the signal-to-noise ratio is decreased in low-dose 

images, which are necessary to minimize radiation damage. However, it may 

be possible to overcome these problems by averaging together a sufficiently 

large number of particle images for each projection. The manual selection of 

such huge numbers of particles is impractical, and several software packages
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designed to automate this process have already been described. Many, but not 

all of them, use some kind of reference criterion for matching purposes; some 

use a rotated, averaged particle as a template while others simply require the 

particle dimensions. Pre-processing micrograph images to reduce background 

noise is often found to be helpful, and several different techniques have been 

proposed for this purpose. Correlation-based methods dominate the choice 

of algorithms for automatic particle detection; others include edge detection, 

neural networks, intensity (density) comparisons, and texture based methods.

1.1 Reference criteria

Detecting particles automatically without reference images by selecting indi

vidual isolated areas of high density has been described (Lata, Penczek and 

Frank, 1995, Adiga et al., 2004, Singh, Marinescu and Baker, 2004). However, 

biological structures present many different shapes and sizes and it is difficult 

to see how isolated artifacts such as air bubbles would be excluded in the case 

of spherically-symmetric particles, and how weak, but true particle images, 

particularly in the case of low defocus images, would be detected.

The majority of algorithms use some kind of reference. A single rotated, 

averaged particle image used as a reference template restricts the method to 

detecting spherical, or near-spherical images (Frank and Wagenknecht, 1984; 

Thuman-Commike and Chiu, 1995; Plaisier et al., 2004), and some techniques 

are unable to track any other shape (Boier Martin et al., 1997; Kivioja et al., 

2000; Saad, Chiu and Thuman-Commike, 1998). Yu and Bajaj (2004) use 

simple geometric information, such as the radius in the case of a spherically- 

symmetric particle and side lengths for rectangular images; this method would 

be unable to accommodate multiple views of irregularly shaped objects with
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out multiple runs of their software.

Elongated and L-shaped particles are much more difficult to detect as their 

end and side views differ in size and shape from each other. To overcome this 

problem, some algorithms use a set of template images to represent as many of 

the different views as possible. Since the signal-to-noise ratio in single raw par

ticle images has been found to be insufficient to provide workable references, 

several images per view can first be rotationally aligned to each other and 

then averaged together (Roseman, 2004). Projections generated from known 

three-dimensional models have also been used as templates (Rath and Frank, 

2004; Wong, et al., 2004); Huang and Penczek (2004) use a clustering and 

averaging procedure to reduce the number of templates but retain sufficient 

detail. The necessity of pre-determining a proven structure is a serious draw

back and must be taken into account in terms of both user and computing 

time. Before calculating a three-dimensional model, it is likely that several 

thousand particles will have to be manually selected. Furthermore, there is a 

considerable risk that the computed model may be incorrect and hence gener

ate projections unable to match the required raw particles. The user-specified 

polygon described by Kumar et al. (2004) does not require the model calcula

tion, but like all the multiple template methods, it does require many lengthy 

rotations. In an attempt to reduce the considerable computional cost of the 

rotations, Sigworth (2004) derives templates from the two-dimensional eigen- 

images calculated by the principal component analysis step carried out in the 

classification stage of a single particle reconstruction. Eigenimages are also 

used by Ogura and Sato (2004) as recognition filters in the training of their 

neural network.
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Other techniques, including neural network and learning based methods (Mallick, 

Zhu and Kriegman, 2004; Ogura and Sato, 2004) require training sets of true 

and false raw images which consist of a few hundred manually picked boxed 

particle and background areas.

1.2 Image pre-processing

Background noise due to film grain, particle aggregates, differing thicknesses 

of ice or stain and other artifacts frequently affect automatic particle detec

tion, causing false particle selection, and missed true particles. Several pre

processing methods have been described to minimise these effects.

1.2.1 Fourier bandpass filtration

Fourier bandpass filtration (Ogura and Sato, 2001; Wong et al., 2004; Rose- 

man, 2003) can be used to to reduce the effects of such artifacts as shot noise, 

which is caused by the small number of imaging electrons, and uneven illu

mination by eliminating both high and low frequency data. This technique 

first requires the calculation of a Fourier transform of the micrograph image. 

High and low frequency data can then be removed and the resulting array 

back Fourier transformed to provide a de-noised image. This operation has 

some drawbacks. It can be costly in terms of computing time to calculate 

Fourier transforms of large images; the time for computing a Fourier trans

form is proportional to nlog(n), where n is the number of pixels in the image, 

and a scanned image can be as much as 12000 x 12000 pixels or more. Fur

thermore, the specific size constraints required by Fourier transformation will 

almost certainly make it necessary to clip or pad micrograph images to an 

appropriate size, adding to the user intervention stage.
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1.2.2 H istogram  m odification

Histogram stretching can be used to improve image contrast by redistributing 

grey-levels (Boier Martin et al., 1997, Nicholson and Malladi, 2004; Wong et 

al., 2004). Assuming that the data is distributed over a single peak, this is a 

straightforward operation. However, where an image contains carbon from the 

edges of carbon holes (which is necessary for the calculation of defocus values 

for contrast transfer function correction), there would be two or more peaks. 

The presence of labels and unexposed areas of film also cause undesirable 

spikes at the edges of the histogram. Adiga et al. (2004) remove such areas 

by selecting the micrograph area manually.

1.2.3 A nisotropic diffusion

Anisotropic diffusion, in particular the application of the partial differential 

equation known as Beltrami flow, is a technique which aims to smooth the 

background while maintaining particle edges (Nicholson and Malladi, 2004; 

Singh, Marinescu and Baker, 2004; Yu and Bajaj, 2004). The image is first 

normalized and its contrast is then improved by histogram stretching. The 

Beltrami flow equation incorporates an edge indicator function which pro

vides minimum diffusion at the edges and extensive diffusion elsewhere. This 

computationally expensive process is iterated many times. Finally, a further 

rank-levelling step replaces every pixel by the minimum grey-level in its neigh

bourhood to correct for uneven illumination (Figure 1.1).
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Fig. 1.1a) original image and b) after de-noising by Beltrami flow.

Reprinted by kind permission of J. Frank and W. Nicholson (Nicholson and 

Malladi, 2004).

While this operation appears to achieve its objectives quite well, an essen

tial pre-requisite is the manual removal of unwanted areas of film, which is a 

major disadvantage. Furthermore, the process is certainly much too costly in 

terms of computing time to be considered as a realistic de-noising technique 

for my project.

1.2.4 Other filters

The contrast transfer function (CTF) has been used to construct a matched fil

ter (Huang and Penczek, 2004). Each micrograph image is first CTF-corrected, 

then divided by the noise power spectrum, and finally locally normalized using 

a Fast Fourier transform technique which determines local mean and variance 

values within particle-sized windows.

Median filtering is a simple and effective spatial filter for high frequency noise; 

it maintains edges while removing spike-like components. In this operation, 

the grey-level of each pixel is replaced by the median of those from neighbour
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ing pixels. Harauz and Fong-Lochovsky (1989) found a 5 x 5 mask appropriate 

for their particular images. The drawback to this method of filtering is that 

it can be a lengthy process to compute in the case of a large image and this 

would be increased still further in the case of a larger mask which might be 

needed for particles of larger size. Furthermore, it removes only high frequency 

noise and in practice it is also necessary to reduce low frequency components.

Conversely, the pre-whitening filter described by Sigworth (2004) removes only 

low frequency components. In this method of filtering, the circularly averaged 

power spectrum is first computed from blank areas of the micrograph image. 

It is then fitted to an analytical function and applied to the image in Fourier 

space. A critical assumption in this algorithm is that all micrograph areas 

have uniform and identical noise statistics, but in reality large differences can 

be observed even within individual micrograph images.

In practice it is necessary to reduce both high and low frequency noise to 

a minimum.

1.3 Particle detection

1.3.1 Tem plate m atching

Template matching methods involve scoring a match between a reference image 

and the micrograph image to detect the presence of a particle. Computation 

of a cross-correlation between a template image and the micrograph image 

results in a map with peaks indicating the presence of candidate particles :

c(x',y') = ExT,y f{x ,y ){g{x  + x ' , y  + y')) 

where f {x ,y )  is the image and g(x,y ) is the reference.
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The reference is rotationally and translationally aligned relative to the image, 

the two are then multiplied and values of the product are summed. The result 

is plotted at position {x',y'). This calculation is most economically carried 

out in Fourier space where the Fourier transform of the image is multiplied by 

the complex conjugate of the Fourier transform of the reference; the inverse 

Fourier transform is then calculated to obtain the cross-correlation function.

A Gaussian profile equal in size to the particle, convoluted with the micrograph 

image using a standard cross-correlation function, also produces an image with 

peaks (Lata, Penczek and Frank, 1995; Hall and Patwardhan, 2004). However, 

the Gaussian distribution depends upon its standard deviation, which is spec

ified by the half-width of the profile, hence this technique is strictly limited to 

particles of similar size in all directions.

The next stage in template matching is to locate the peaks in the resulting 

correlation map. Difficulties arise in peak detection due to spatial variation 

and noise in the images and despite noise suppression techniques a further 

pruning step is required to remove the many false positives which are invari

ably detected as peaks.

A simple pre-defined threshold is sometimes used to reject weak peaks and 

is combined with the calculation of inter-peak distances which are used to in

dicate the presence of particle aggregates (Frank and Wagenknecht, 1984; Hall 

and Patwardhan, 2004; Nicholson and Malladi, 2004; Thuman-Commike and 

Chiu, 1995; Roseman, 2003). However, the determination of an appropriate 

threshold presents a problem. Hall and Patwardhan (2004) use a set number 

of standard deviations above the mean; alternatively they use features such
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as local mean and variance for matching. Successful matches are pruned by 

distance clustering, leaving the user to select the clusters. Roseman (2003) 

passes the decision to the user to select manually the minimum correlation 

coefficient as the threshold cutoff. Huang and Penczek (2004) calculate a set 

of cross-correlations between the templates to derive a standard profile. For 

each peak position, correlations with each template provide a second profile 

which is matched against the standard profile. Relative entropy is used by Ku

mar et al. (2004) to reject false positives. Where two discrete functions have 

probability functions p^ and then the relative entropy of p with respect to 

q is defined as :

where p& and q^ are the probability distributions of the histograms of the box 

to be tested and the reference box, respectively. The smaller the relative en

tropy, the more closely matched are the two distributions. Rath and Frank 

(2004) compare locally normalized cross-correlation functions of adjacent pixel 

positions, selecting the highest value within an area the size of the template. 

The statistics s and t  are used by Sigworth (2004) to distinguish true from 

false particles. The correlation peak value Sf~ of the kth  peak of the correla

tion image is used in conjuction with the error function value of t which is 

derived from a weighted squared error between particle and reference. Peak 

shape characteristics provide the thresholds used by Volkmann (2004) in a 

real-space correlation technique, which filters peaks by distance constraints 

and an iterative correlation-based outlier screen. Cross-correlation peaks are 

also evaluated by distance constraints along with approximations to the log 

likelihood and log likelihood ratios of areas centred on each peak (Wong et al., 

2004). Likelihood is defined as the product of individual probabilities of the
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data set {xi ,X2 , - xn} '•

L  (®i, x2, xn; a) = J J  P  (®<; a)

where the combined probability would be produced from the value a.

For each pixel in the template image, the log probability of observing the 

corresponding pixel in the image is extracted from tables of logarithms of 

probability density function values of a range of Gaussian distributions.

The wide variety of approaches to peak filtration suggests that no technique 

is entirely satisfactory. The two major disadvantages with template matching 

are sensitivity to noise and processing time. The fast local correlation func

tion described by Roseman (2003) compensates for local variance and improves 

computation time, but calculation of a correlation map is still a lengthy pro

cess, and a manual pruning step is normally required to remove false positives.

1.3.2 Edge detection  m ethods

An advantage of edge detection methods is their insensitivity to shading effects 

because of their local nature of operation, but they are very sensitive to high 

frequency noise. Harauz and Fong-Lochovsky (1989) describe a three-phase 

process of high frequency noise suppression and edge detection, followed by 

component labelling from which rectangular bounding boxes are derived; the 

final phase, which they call high-level symbolic processing, is used to select 

which boxes actually contain suitable particles. Their algorithm is based on 

a linear-median hybrid edge detector which aims to overcome the effects of 

high frequency noise when locating the edges. Connected edge regions are 

extracted by component labelling which gives pixels within a region the same 

label. Maximum and minimum coordinates and size for each region are used 

to construct a rectangular surrounding box parallel to the image edges. The
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size of the resulting object and its distance from others provide the selection 

criteria. As described, the method has been tried on only one type of particle 

(the ribososome) for which a 93% accuracy is claimed. For a large image, 

median filtering is computationally expensive and despite this operation, the 

edge detector remains sensitive to high frequency noise.

Less sensitive to noise is the Canny edge detector used by Zhu et al. (2001) 

to search for filaments in high defocus images whose positions and orienta

tions are then transposed to their closer to focus pairs. The image is first 

smoothed by Gaussian convolution; the image gradients are then found by a 

simple two-dimensional first derivative operator to highlight regions with high 

spatial derivatives. The local derivative is calculated at every pixel position 

to give a map of density gradients with their directions. Gradients within 

a region of constant density will be zero, but the converse is true where the 

density varies, indicating the presence of edges which give rise to ridges in the 

gradient magnitude image. The algorithm then tracks along the top of the 

ridges and sets to zero all pixels that are not actually on the ridge top (non- 

maximal suppression). The gradient array is further reduced by hysteresis 

thresholding, which is used to track along the remaining pixels. In this case, 

where the magnitude is below the lower threshold, the pixel is set to zero; if 

the magnitude is above the higher threshold, it is made an edge. Magnitudes 

between thresholds are set to zero unless there is a path to a pixel with a gra

dient above the higher threshold. Discontinuous edges are organised into line 

segments using the Hough transform : all possible lines are drawn through 

each edge pixel, an accumulator array stores votes for each intersection of 

each line with an edge pixel hence peaks in the array indicate the presence 

of potential lines. Filaments are detected from grouped line segments using
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parallelism and information from training data such as inter-line distances.

The Canny edge detector is also adopted by Yu and Bajaj (2004), who re

move small connected edge components from the detected edge map where 

the number of edge pixels in a local region is below a certain threshold. The 

distance transform of the edge map of the target image is then calculated. 

The distance transform (Figure 1.2A) calculates a grey-level image similar to 

the input image except the grey-level density of points inside the foreground 

regions are modified to show the distance to the nearest boundary from each 

point (Figure 1.2B).

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 D

0 1 1 1 1 1 t 0

0 0 0 0 0 0 0 0

0 0 0 0 D 0 0 0

0 1 1 1 1 1 1 0

0 1 2 2 2 2 1 D

0 1 2 3 3 2 1 0

0 1 2 2 2 2 1 0

0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0

Fig. 1.2A. The distance transform of a simple rectangular shape using the ” chess

board” metric. The Euclidean distance can also be used : DEuclid = \J (® 2 — ®i)2 + (2/2

Fig. 1.2B. Example of a distance transform (left), and corresponding Voronoi 

diagram (right), showing partitioning into convex polygons. (Reprinted by kind 

permission of Z. Yu (Yu and Bajaj, 2004).)
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The average distance value along the template contour in the target im

age provides a measure of goodness-of-fit between target and template at a 

given location. The template is derived from geometric information of the 

required particle e.g. radius of circular particles or side lengths in the case 

of a rectangular image. The Voronoi diagram is computed to estimate ini

tial locations and orientations of rectangular particle views, then centre and 

orientation refinement is carried out by the distance transform (Figure 1.3).

Fig. 1.3. Illustration of edges, distance transform, and Voronoi diagram. A) 

Original map. B) Edge map obtained by Canny edge detector followed by edge 

cleaning. C) Distance transform. D) Voronoi diagram.

Reprinted by kind permission of Z. Yu (Yu and Bajaj, 200j).
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Although edge detection methods are not sensitive to variations in illumi

nation, they are sensitive to the high levels of density variation both inside 

and outside particles. Advantages of this approach include their independence 

of particle shape and orientation, but they do not allow for the exclusion of 

artifacts.

1.3.3 Intensity com parison m ethods

The crosspoint technique described by Boier Martin et al. (1997) is a two- 

step process : marking and clustering. Particle densities are assumed to have 

lower values than background areas. The marking phase works from top to 

bottom of the image density array by comparing densities of pairs of pixels at 

distance r + 1 in the horizontal direction, where r is the particle radius. The 

density difference between the pixels is tested against a threshold, then if the 

difference exceeds that threshold, the lower density is compared with that of 

a pixel at r  +  1 in the vertical direction. If this second difference exceeds the 

threshold, the lower density element is marked as within the particle (Figure 

1.4).

Fig. 1.4. The diagram shows the outcome of the scan procedure in one direction 

to a spherical particle radius r. The light grey boxes are from the particle and the 

dark grey boxes have been marked by the algorithm. The pixels have a significant 

density difference with horizontal and vertical neighbours at distance r + 1. 

Reprinted by kind permission of T. Baker (Boier Martin et al., 1997).
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Improved accuracy is achieved if the transposed image is then scanned again 

from bottom to top. The second step, clustering, determines the connected 

components in the marked binary image. Centres of mass of clusters of marked 

pixels are calculated and the neighbours of each pixel are examined. Clusters 

of inappropriate size are rejected, then two further filtering steps are carried 

out. The first compares average densities within each circular area and its 

surrounding band, and the second applies a morphological ’’thinning” process 

to separate individual but very close particles. The method is sensitive to sev

eral parameter values including the particle radius r, the number of thinning 

passes used to disconnect aggregates and the threshold used in the marking 

phase. A disadvantage to this technique is the necessity of processing a large 

number of micrographs to optimise the parameter values.

Kivioja et al. (2000) compare averaged density values within a circular area 

to that in its surrounding ring, by subtraction, as an initial filtering step. 

Remaining particle positions are then subjected to a comparison of averaged 

densities from each of eight sectors of a circle drawn around them with their 

neighbouring surrounding ring sector and also with their adjacent sectors, 

again by subtraction. A final pruning step applies distance constraints appro

priate to the particle radius to remove particle aggregates.

Although these methods are fast they are limited to the detection of spherically- 

symmetric particles with uniform density in projection.
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1.3.4 N eural network and learning based m ethods

A neural network consists of a set of input nodes, hidden layer nodes and 

output nodes. The feedforward neural network described by Ogura and Sato 

(2001) is based on the multilayer perceptron technique (Figure 1.5).

6
- 0.8

1 xO

- 0.6
.-0.6

xl x2

Fig. 1.5. A simple example of a perceptron. The inputs I ,x0,xl ,x2  are 

weighted by —0.8,0.4, —0.6, —0.6 respectively to the output node. Inputs in the 

particle detection case would probably be arrays of boxed pixel densities arranged 

one-dimensionally, where each pixel density is multiplied by each of the weights.

Each input node passes its value to each hidden layer node (artificial neu

ron) where it is multiplied by a weight associated with that connection. All 

the values input to each hidden layer node are summed and thresholded by 

some function, such as the logistic sigmoid :

1
(1 +  e~x) 

where x  is the input.

The new values are then passed to the next layer and the process repeated 

until the output layer is reached (Figure 1.6).
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Output Layer

Hidden fayer

Fig. 1.6. Input nodes are fed into weighted connections to the hidden layer which 

sends the summed output to the output layer.

The basic principle of the neural network is the iterative modification of the 

weights for a set of training data to produce the required outcome. The weights 

may be set to random values at first. Multi-layer networks can use a variety 

of training techniques, the most popular being back-propagation. In this case 

the output values are compared with the correct answer to compute the value 

of some pre-defined error function; the required output value from the posi

tive training set should approach 1 and conversely should tend to 0 from the 

negative learning set. The error is fed back through the network by one of var

ious techniques and the weights are then adjusted to reduce the error function 

value. The whole process is repeated to convergence. Ogura and Sato (2001) 

use 1600 or 1024 input nodes (depending on the particle size), 81 hidden nodes 

and 1 output node. Input nodes consist of individual pixel densities and the 

hidden layer receives weighted density values added to the weighted image 

average, corrected by a bias factor. The number of neurons depends on the
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particle size. Training was carried out on 1600 images. These were created 

from 200 particle images to produce the positive learning data and 200 noise 

images which constituted the negative data. Each of the particle and the noise 

images was rotated by 90, 180 and 270 degrees to provide the complete train

ing set; more than 20 cycles were required to complete the training. Images 

were subjected to considerable pre-processing before being entered into the 

network and the training operation was extremely time-consuming. However, 

the authors claim a considerable superiority in accuracy in a comparison with 

correlation methods. A later improvement on their neural network method 

uses eigenimages as a recognition filter when setting up weights for the hidden 

layer (Ogura and Sato, 2004); eigenimages are calculated as part of the prin

cipal component analysis step, which is carried out during classification in a 

single particle analysis. When they also decreased the rotation increment of 

the training set to 2 degrees, the time taken to train the network was reduced 

by more than 50% and the pickup accuracy increased from 90% to 98%. Even 

so, the training time is very heavy and the necessity of a pre-determined model 

to produce the eigenimages is a major disadvantage.

The learning based method adopted by Mallick, Zhu and Kriegman (2004) 

is not strictly a neural network, but uses the idea of a training set of true 

and false particle images to select particles from boxed sub-images in scanned 

micrographs. Five different types of rectangular feature (Figure 1.7) are gen

erated.
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■“ I I

Fig. 1.7. Five rectangular features are used in detection and considered over a 

range of scales and at all locations.

Reprinted by kind permission of S. Mallick (Mallick et a i, 200f) .

Features are selected which give the lowest error during the training stage 

and become known as weak classifiers; a linear combination of features pro

vides a strong classifier. All training images are initially given identical weights 

which are increased if the images are classified incorrectly in order to weight 

difficult images more heavily when the next feature is selected. A cascade of 

classifiers (Figure 1.8) is used as a filter where each classifier is composed of a 

few featm

INPUT
— C )

RKJKCf

Fig. 1.8. A two stage cascade of classifiers.

Reprinted by kind permission of S. Mallick (Mallick et a l, 2004)-
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The advantage to this approach is that many sub-images can be rejected at 

an early stage and thus reduce the computation time. The number of features 

in a classifier increases with selection. This method is fast, but only one type 

of particle is reported, the Keyhole Limpet Haemocyanin (KLH) used in the 

” bake-off” at the Multidisciplinary Workshop on Automatic Particle Selection 

for CryoEM (Zhu et al., 2004) and it does require post-processing. This is nec

essary to select a single position from a series of overlapping sub-images which 

represent the same particle. For this they use connected component analysis, 

taking the mean of each component as the particle position. Furthermore, a 

very large training set is required; in the case reported 1200 manually selected 

particle images and 3100 non-particle images were needed.

1.3.5 Texture based and other m ethods

Use of the variance image to detect the presence of particles with the same 

average density as the background was proposed by Van Heel (1982); local 

variances are computed over a small area for each pixel position. Although a 

high variance value indicates the presence of an object, it does not distinguish 

true particles from artifacts or aggregates. Lata, Penczek and Frank (1995) 

convolute with a Gaussian before a peak search is applied. Maxima are deter

mined from areas corresponding to the particle size and are then thresholded. 

Training requires a) user-selected particles, b) noise areas and c) ”junk” from 

which the standard statistical moments variance, skewness, kurtosis and also 

an estimate of the particle area are determined for pixel densities Xij :

N N
Variance =  EE

i=1 j =1 

N N
Skewness = EE (x^j -  x )3 ,

i=1 j =1
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N N
Kurtosis  =  EE -  a;)4 -  3,

i= 1 j = 1

where
iV AT

* = i  j = i

and N 2 is the number of pixels in the box. Note : The coefficient of kurtosis

of the Normal distribution is 3 (Evans, Hastings and Peacock; 1993); the -3 

in the formula corrects the value to zero.

Entropy was also calculated as :

N N

These values are input as feature vectors to a linear maximum-likelihood dis

criminant analysis. The function indicates the presence of true or false parti

cles at the peak positions. The success rate was low, at around 60%, and the 

process also required considerable user intervention.

The binary segmentation algorithm described by Adiga et al. (2004) thresh

olds an image which has first been de-noised by anisotropic diffusion methods. 

Their two-step procedure first amplitude-thresholds the de-noised image then 

carries out connected component labelling. This is followed by thresholding 

the connected components to produce a bi-level map. Further processing in

cludes morphological opening and closing operations to remove very small 

isolated artifacts and holes within particles (Figure 1.9).

Entropy = — EE f i , j l ° 9 2 f i , j i
i= 1 j - 1

where
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Fig. 1.9. (A) Part of the pre-processed micrograph image. (B) After thresholding

and noise removal by morphological filters.

Reprinted by kind permission of R. Glaeser (Adiga et a l, 2004).

Individual particles are distinguished from clusters by testing relative size 

and average density. Remaining clusters are subjected to erosion and dilation 

operations to separate individual particles which are then filtered according 

to their relative size. Clusters which still remain are further segmented by a 

region growing operation over a distance map. To search for missed particles, 

located positions in the original image are patched with background and the 

entire procedure is repeated. At least 80% success is claimed for this method 

which may well be highly specific; only one type of particle (the ribosome) 

was tested. The algorithm relies heavily on thresholds at several stages, which 

require tuning independently.

Plaisier et al. (2004) describe a three-step strategy for selecting particle posi

tions : search, sort and select. The search step offers three different methods. 

The first involves local averaging by computing the pixel density averages in

side a disc and in the surrounding band. This is carried out in Fourier space 

by calculating the convolution of the image with a binary image of a disc
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using the convolution theorem, which is followed by a peak searching step. 

Their second method is template matching by cross-correlation, also followed 

by a peak search step. The third method calculates local variance; this is 

based on the assumption that areas of micrographs which contain particles 

will have a higher local variance than areas of background. The local variance 

is calculated for an area A at point f  by :

i  N i / N \ 2
VarA (f) = — Y ,  I I  M  -  J p  E  W

n = l  \ n = l  /

where N is the number of pixels inside area A and In (r) is the measured den

sity at f n.

The sorting phase ranks the selected particle positions by cross-correlating 

each candidate with the template image and using simple statistical measure

ments. Final selection is a manual step carried out by the user from the set 

of sorted images. This method cannot be said to be fully automatic. Fur

thermore, in the case of the cross-correlation search method, the template is 

generated by a rotationally averaged image which then restricts the method 

to spherical or near-spherical particles.

1.4 Summary and comparison of m ethods

A comprehensive review of currently available methods was reported by Nichol

son and Glaeser (2001), which concluded that the problem of automatic par

ticle detection had not been successfully overcome by any of them. Since 

that time, according to the literature, limited progress appears to have been 

made. In order to assess the available software in a quantitative way, a Mul

tidisciplinary Workshop on Automatic Particle Selection for Cryo Electron 

Microscopy was held at the Scripps Institute in 2003 (Zhu et al., 2004). At 

the workshop, participants were given the opportunity to compare the ac
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curacy of their methods. Twelve groups submitted the results of their own 

algorithms which were tested on a common dataset. The data consisted of 82 

defocus pairs of high magnification micrographs containing the barrel-shaped 

Keyhole Limpet Haemocyanin particles in ice (Figure 1.10).

! # # §
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Fig. 1.10. A micrograph image from the dataset containing side, end and tilted 

views of Keyhole Limpet Haemocyanin particles and Tobacco Mosaic Virus particles.

Rectangular side views only were to be selected from the images. The ” confu

sion matrix” (Figure 1.11) shows the results, which were assessed by comparing 

each of the participants against each of the others and were measured by the 

false negative rate (FNR) and false positive rate (FPR). One participant’s re

sult was taken as the truth set and each of the others in turn was taken as
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the test set. Particles selected in the truth set but not in the test set became 

false negatives; those in the test set but not the truth set were marked as false 

positives. Algorithms which achieved both a low FNR and FPR were therefore 

considered desirable.

Test

Truth Bajaj Bern Mouche(M) Haas(M) Hall Ludtke Mallick Penczek Roseman Sigworth Volkmaim Zhu

Bajaj(1269) 33.9 24.7 31.0 42.2 51.9 28.0 52.9 17.4 37.4 38.5 24.0

11.5 8.3 7.0 24.3 21.0 9.8 25.2 14.0 5.1 9.2 11.4

Bern(948) 11.5 16.2 21.5 36.3 43.1 17.7 48.4 10.3 26.4 29.9 17.1

33.9 23.8 21.0 37.7 30.3 23.1 38.8 30.3 16.7 22.8 28.0

Mouche(1042) 8.3 23.8 11.7 27.4 43.4 14.2 46.8 2.4 23.2 27.4 9.7

24.7 16.2 2.3 22.0 23.7 11.7 30.7 16.6 4.5 12.2 13.7

Haas (944) 7.0 21.0 2.3 26.2 41.1 12.2 44.0 1.5 18.4 22.9 8.8

31.0 21.5 11.7 28.2 28.4 18.4 33.9 23.9 8.4 15.7 21.3

HaU(969) 24.3 37.7 22.0 28.2 52.0 30.1 55.9 19.3 35.3 39.3 25.7

42.2 36.3 27.4 26.2 39.9 33.2 46.6 35.8 25.2 31.7 33.7

Ludtke(775) 21.0 30.3 23.7 28.4 39.9 23.0 48.3 20.3 27.1 32.3 23.5

51.9 43.4 43.4 41.1 52.0 41.2 50.0 49.4 32.7 39.1 45.4

Mallick(10X5) 9.8 23.1 11.7 18.4 33.2 41.2 46.7 7.0 25.8 30.1 14.5

28.0 17.7 14.2 12.2 30.1 23.0 32.5 22.6 10.3 17.9 20.5

Penczek(799) 25.2 38.8 30.7 33.9 46.6 50.0 32.5 23.7 38.4 39.7 30.2

52.9 48.4 46.8 44.0 55.9 48.3 46.7 50.0 41.3 44.0 49.1

Roseman(1219) 14.0 30.3 16.6 23.9 35.8 49.4 22.6 50.0 33.1 34.9 17.5

17.4 10.3 2.4 1.5 19.3 20.3 7.0 23.7 2.7 7.8 7.8

Sigworth(838) 5.1 16.7 4.5 8.4 25.2 32.7 10.3 41.3 2.7 12.3

00SO

37.4 26.4 23.2 18.4 35.3 27.1 25.8 38.4 33.1 14.6 28.1

Volkmanu(861) 9.2 22.8 12.2 15.7 31.7 39.1 17.9 44.0 7.8 14.6 11.5

38.5 29.9 27.4 22.9 39.3 32.3 30.1 39.7 34.9 12.3 30.0

Zhu(1109) 11.4 28.0 13.7 21.3 33.7 45.4 20.5 49.1 7.8 28.1 30.0

24.0 17.1 9.7 8.8 25.7 23.5 14.5 30.2 17.5 6.8 11.5

Median/Mean

FNR 11.4/13.1 28.0/27.9 16.2/16.2 21.5/22.0 43.4/44.5 33.7/34.4 20.5/20.8 48.3/47.9 7.8/10.9 27.1/28.0 30.1/30.7 17.1/1'

FPR 33.9/34.7 21.5/25.3 23.2/21.7 18.4/18.7 27.1/28.9 30.1/33.6 23.1/23.8 33.9/35.4 30.3/29.8 10.3/15.1 15.7/20.6 28.0/21

Standard Deviation.

FNR 7.0 7.1 8.6 8.0 6.0 6.7 7.3 4.1 7.9 7.7 8.0 7.8

FPR 11.3 12.8 14.2 14.4 8.6 11.9 13.0 8.2 12.4 12.7 12.4 13.2
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Fig. 1.11. The two values in each table cell represent false negative rates 

(FNR) and false positive rates (FPR) respectively, as percentages. FNR values are 

positioned in the upper row in the top right diagonal, and in the lower row in the 

bottom left diagonal. Numbers in parentheses represent the total number of particles 

selected by the corresponding participant.

It is interesting to note that the two manually picked particle sets (denoted 

by (M) - Mouche and Haas) differ significantly from each other, which clearly 

shows that different individuals apply different selection criteria. Several of 

the algorithms tested selected end views along with the desired side views 

and so scored higher FPR values demonstrating their inability to distinguish 

between different views. Although this was a useful experiment, it was some

what limited in that only a single view of one type of particle was involved. 

Furthermore, none of the images were negatively stained and labels and un

wanted areas of carbon and unexposed film which are present on film were not 

included; the images were recorded by a CCD device.

Half of the participants used correlation-based template matching methods 

while the remainder were composed of a variety of feature-based techniques 

(Table 1.12); neural networks were not represented in the ”bake-off”.



28 CHAPTER 1. INTRODUCTION

Bajaj Feature based. Edge detection (Canny). Voronoi diagram 
detects rectangles, Distance transform detects circles.

Bern Template matching. Templates : 3D model projections. Peak filtering by 
probabilistic model derived from particle images and noise.

Mouche Manual selection.

Haas Manual selection.

Hall Feature based. Convolution with Gaussian using CCF. 
Distance and peak height constraints, Feature vector matching

Ludtke Template matching. Templates : aligned images, Peak filtering 
manually set threshold.

Mallick Feature based. Training images. Discriminative learning from sub-images.

Penczek Template matching. Templates : 3D model. Noise power spectrum, 
CTF, normalization of image, FT x template FT. Filter CC threshold.

Roseman Template matching. Templates : aligned images. Peak filter 
correlation coefficient.

Sigworth Template matching. Templates : 3D model. Noise whitening,
Peak filter maximum correlation and weighted sum of power spectrum.

Volkmann Feature based. Reduced representation template. Real space 
comparison with image, Distance filter, Outlier screen.

Zhu Feature based. Edge detection (Canny). Edge connection (Hough transform). 
Correlation based template removes false positives.

Table. 1.12. This table briefly indicates the algorithms used by the 12 par

ticipants.

1.5 Aims of the present work

The human eye and brain locate objects in a noisy background astonish

ingly quickly and accurately. Background subtraction, integration, smoothing, 

thresholding, size and shape matching are all essential parts of the recognition 

process and can be used to select particle image positions in a digitized elec

tron micrograph.

By definition, an ideal automatic particle detection procedure should require
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little or no user intervention. However, some initial preparation of reference 

criteria is inevitable but should be kept to a minimum. This work aims to 

design and implement software which will include a graphics tool to allow 

straightforward parameter setting and which will also possess the ability to 

process an unlimited number of micrographs in a completely automatic way.

Since reference free systems such as edge detection methods must inevitably 

be unable to distinguish true particles from artifacts of similar size, the algo

rithm described here uses reference criteria to act as a guide to the detection 

of real particles. The criteria are derived from a small stack of manually se

lected boxed particle images which eliminates the time-consuming process of 

calculating a three-dimensional model to provide template projections.

Enhancement techniques to remove both low and high frequency noise can 

improve the performance of particle detection considerably. To avoid lengthy 

computational techniques (such as anisotropic diffusion) for this process, the 

fast and simple methods of local averaging and high-pass spatial filtering are 

used, and are effective in removing both high and low frequency noise compo

nents. Histogram stretching is a very useful strategy for standardizing image 

density ranges; through this technique the problem of labels, carbon and un

exposed areas of film is taken into account in a totally automatic way. This 

eradicates the laborious step of selecting areas manually from hundreds of mi

crographs.

Since this work aims to be able to detect particles of any shape without us

ing lengthy rotations, it is based on matching the radius of gyration. This 

parameter value is averaged from the set of boxed reference particle images
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and compared with the corresponding value from each box of pixel densities in 

turn in the digitized image. However, the radius of gyration is an insufficient 

match when used in isolation, and is complemented by other simple proper

ties which are based on a filtering approach which minimises the computation 

time. Finally, a clustering technique selects the best of several overlapping 

windows which represent the same particle.

My approach provides a simple and fast method for the automatic selection 

of a wide variety of specimens from electron microcope images.



Chapter 2

Image preparation

The presence of high and low frequency noise is inevitable in digitized im

ages of biological structures both for negatively stained and for ice-embedded 

specimens. For the majority of algorithms, such noise presents serious diffi

culties for automatic particle detection; it is normally necessary to correct for 

uneven illumination and to reduce the shot noise. In the case of micrograph 

images, high frequency noise due to the presence of film grain should also be 

addressed. Furthermore, labels and unexposed areas of film invariably create 

problems and should also be accounted for in a fully automated system.

Noise cleaning methods based on anisotropic diffusion (Boier Martin et al., 

1997; Nicholson and Malladi, 2004; Singh, Marinescu and Baker, 2004; Yu and 

Bajaj, 2004) appear to work quite effectively, but are currently too expensive 

in terms of computing time to be considered as a part of my project. However, 

a variety of other strategies for image enhancement were investigated in order 

to select the most appropriate method for this work (Pratt, 1991; Gonzalez 

and Woods, 1992).

31
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2.1 D ensity inversion

Depending on the algorithm, density inversion is appropriate where the aver

age background density exceeds that of the particles. Ice-embedded specimens 

normally require inversion while negatively stained images do not.

2.2 Image compression

Image compression by local pixel density averaging within a square box is ef

fective in reducing noise while at the same time minimizing processing time 

and memory requirements. However, too large a compression may also ad

versely affect the accuracy of particle selection as important detail may be 

lost. The compression factor used by this algorithm is calculated as a function 

of the user-specified particle radius R. It is determined such that the working 

radius in the compressed image lies in the range 10-15 pixels, which has been 

found to work well for most of the images tested, although this value may be 

overridden by the user.

2.3 Noise filters

2.3.1 Fourier filtration

Fourier bandpass filtration is a well known method of removing both low 

and high frequency components and includes the property that the frequency 

cutoff thresholds can be controlled precisely. In this technique, a forward 

Fourier transform is first calculated from the digitized image. Frequencies 

outside the cutoff thresholds are removed and the modified Fourier array is 

then back-transformed to produce a de-noised image. It is important that the 

cutoff thresholds are smoothed in order to prevent unwanted aliasing effects. 

There are many appropriate functions which can be applied for this purpose;
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a computer program called ’’BANDPASS” was written as part of this project 

to carry out bandpass filtration. The program offers a choice of three different 

cutoff distributions : Gaussian, Cosine bell and Cauchy. It includes parameter 

value tuning to allow various adjustments to the profile shape (Figure 2.1).

Gaussian

1.2 
0.8 
0.4

°0 0.1 0.2 0.3 0.4 0.5

Cosine bell

1.2 
0.8 
0.4 

0
0 0.1 0.2 0.3 0.4 0.5

Cauchy shape=3

1.2 
0.8 
0.4

°0 0.1 0.2 0.3 0.4 0.5

Fig. 2.1 Three distributions used as threshold cutoffs for low and high frequency

data. Horizontal units relate to the box size of the realspace image; vertical units

indicate the multiplication factor used in Fourier space. The top graph shows the

effect of using a Gaussian distribution : ~ e ~ ( ~ . The wider slope of the cosine

bell function displayed in the centre graph gives a smoother cutoff: 0.5 (cos (x) + 1),

where x is the distance along the horizontal axis. The bottom graph demonstrates
/ 2\ _mthe Cauchy function applied to the cutoffs : (1 + (f) ) where x is the distance, 

a a scale factor and m a shape parameter. The value of m can be varied to modify 

the shape of the function by controlling the tail length and is set to 1.0 in this case. 

Increasing the value of m results in a sharper peak.
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Results from the three types of cutoff function are shown in Figure 2.2.
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Fig. 2.2 A) Part of a raw image of Ketopantoate hydroxymethyl transferase 

(KHMT) particles embedded in ice. Bandpass Fourier filtration on this image is 

shown between cutoff thresholds at 0.05 and 0.15 using B) Gaussian cutoffs C) Co

sine Bell D) Cauchy with m = 1 and E) Cauchy with shape parameter m = 5.

While bandpass filtration provides an effective de-noising technique, it has 

major disadvantages : specific size constraints and processing time (see Chap

ter 1). For this project it was abandoned in favour of realspace methods.

2.3.2 R ea lsp ac e  h ig h  freq u e n cy  f i l tra t io n  

M edian filtra tion

Median filters can be used to achieve noise reduction without blurring the 

image, retaining sharp edges effectively. Each pixel density is replaced by the 

median density of pixels in its immediate neighbourhood. Cascading the filter

ing by repeating the method on a treated image improves the noise reduction 

further, as does increasing the number of pixels from which the median is 

calculated. However, the technique is computationally expensive; the number 

of operations grows exponentially with the window size. The median of a five 

element sequence (a, 6, c, d, e) of pixel densities can be expressed as :

M E D  (a , b, c, d, e) =  m ax  ̂ 'min (a , 6, c ) , m in  (a, 6, d ) , m in  (a, b, e ) ,

m in  (a, c, d ) , m in  (a, c, e ) , m in  (a, d, e ) ,
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m in  (b, c, d ) , m in  (b, c, e ) , mm (6, d, e) , mm (c, d, e)

Pseudomedian filtration

The pseudomedian filter (Pratt, 1991) retains some of the properties of the 

median filter and is simpler and faster to compute :

P M  ED  (a, 6, c, d, e) =  max  ̂ m in  (a, b, c ) , m in  (6, c, d ) , mm (c, d, e) ^ +

mm ̂ maa; (a, b, c) , moa: (6, c, d ) , maa; (c, d, e) ^

Maximin/minimax filtration

The maximin and minimax operators (Pratt, 1991) used in the pseudomedian 

filter can be cascaded to provide a further de-noising technique :

M A X IM IN { S l } = marr j [min ( s i , ..., sm)] , [min (s2 ,..., «m+i)] ? ■

[min (sl- m +u —> sm)] |

M IN IM A X { S l}  = m m | [max ( s i , ..., sm)] , [max (S2 , •••, «m+i)] > • ••>

[max (sl- m +1 , •••, sm)] 

where {5zJ is a sequence of pixel densities si, S2 , ..., sl and M  = (L^

Outlier replacement

Outlier replacement is a simple noise cleaning technique in which each pixel 

density is compared to the average of its immediate neighbours.



36 CHAPTER 2. IMAGE PREPARATION

Where the density difference exceeds some threshold, it is replaced by the 

neighbourhood average :

where E  is the threshold and d is the pixel density to be modified.

Spatial averaging

Spatial averaging is fast, simple and very effective in reducing high frequency 

noise. The amount of blurring can be controlled by the window size used to 

calculate the average.

The effects of these methods of real space high frequency noise cleaning on an 

area of a typical image are demonstrated in Figure 2.3. While the compute

intensive median filter has achieved a considerable reduction of high frequency 

noise, the faster pseudomedian filter was far less effective. In the case of this 

particular image, the smoothing effect of the cascaded minimax/maximin op

erator appears to have enhanced the noise more than the particles and it has 

become more difficult to distinguish them from the background. The outlier 

replacement technique goes some way to reduce high frequency noise, but not 

as efficiently as the very simple and effective spatial averaging, which is the 

method which was selected as most suitable for this work, although it always 

benefits from a further step of contrast enhancement which is discussed in a 

later section in this Chapter.

> E  then
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Fig. 2.3 Results of de-noising KHMT particles in ice from a 128 x 128 boxed image. 

A) Raw image. B) Median filtering using a 5 x 5 box. The pseudomedian filter shown 

in C) has had a lesser effect even though the same sized window was applied. D) The 

cascaded minimax/maximin operator. E) Outlier replacement in a 9 x 9 box and F) 

spatial averaging with a box size of 5 x 5.

2.3.3 R ealspace low frequency filtration

Shading effects due to uneven illumination or to varying thicknesses of ice or 

stain were found to cause major difficulties with automatic particle detection. 

They can be removed by excluding low frequency components in Fourier space 

by bandpass filtration. They can also be removed very simply and effectively 

by high pass spatial filtering without the necessity of Fourier transform calcu

lation (Gonzalez and Woods, 1992). A mask is applied to each N  x N  box of 

pixel densities. The mask has positive coefficients near its centre, and negative 

coefficients elsewhere such that their sum is zero (Figure 2.4) :
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particle

particle

particle
- 1

- 11/9 x - 1

- 1- 1 Background with uneven illumination

Fig. 2.4 A simple high pass filter mask is shown on the left. This filter works by 

subtracting local densities from each pixel. As shown in the diagram on the right the 

height of particle density above the uneven background remains fairly constant so the 

uneven background can be flattened by the filter.

This filter is used in the work described here and the results are demonstrated 

in Figure 2.5.

Fig. 2.5 A) Raw image of KHMT particles in ice, B) after low pass spatial averag

ing to reduce high frequency noise and C) followed by high pass spatial averaging to 

eliminate uneven illumination.
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2.4 Contrast modification functions
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In order to enhance the contrast of the image, thereby improving the ability of 

the software to recognise true particles, particularly when their mean density is 

barely greater than that of the background, a contrast modification function is 

applied to the image. The function should stretch the contrast in such a way as 

to increase the highest pixel densities and decrease the lowest. Six appropriate 

such functions were investigated as part of this work and the results illustrated 

in Figure 2.6.
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Fig. 2.6 Each graphical representation at the top corresponds to the image im

mediately below, and demonstrates the results of applying its contrast modification 

function to the smoothed version of the raw image shown in Figure 2.3 ; in all cases 

x is the density of each pixel in the image array.

A) exponential : ex ,

B) square : x2 ,

C) cube : x3 ,
-  /  x — fj. \2

D) Gaussian : ^ e v > , where \i is the mean and a the standard deviation,

E) cosine bell : 0.5 (cos (rr) + 1) , and

F) the standard form of Cauchy : tt b 1̂ -f , where a is the median and b

is the scale parameter where b > 0.
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In practice, little difference between the contrast modification functions was 

observed in terms of the overall particle detection result; the square function 

(B) was selected as being computationally economical and is included in the 

image enhancement part of the program.

2.5 Histogram modification

Histogram modification strategies provide other useful methods of image en

hancement (Nicholson and Malladi, 2004; Wong et. al., 2004). In one such 

technique the histogram is used to exclude those pixel densities which fall at 

the extremities of the range. The remaining densities can then be stretched 

across the range, thus increasing the contrast. In this work, upper and lower 

threshold cutoffs are applied for the density modification step. It is assumed 

that each side of the histogram profile is normally distributed, but with dif

ferent standard deviations. Each side is therefore thresholded independently 

of the other. The cutoff range is defined :

f l  — 771(7/, fJL 171(7 f

where /jl is measured at the histogram maximum (the mode) 

cri is the halfwidth at halfheight of the left hand side of the peak 

ar is the halfwidth at halfheight of the right hand side of the peak 

and m is a user-specified value typically in the range 0.25 - 5. 0

Images with areas of carbon around ice-filled holes can present a particular 

problem when the user wishes to exclude particles from such areas. An im

age of the carbon is necessary for the accurate determination of the contrast
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transfer function, the application of which is itself essential to biological struc

ture determination by electron cryomicroscopy to high resolution. However, it 

remains a problem for particle detection and although it is possible to remove 

these areas of carbon by hand, this project aims to automate this process. 

Such images are specially treated by the program to exclude the carbon by 

using only one side of the peak to set both cutoff thresholds (Figure 2.7). This 

enhances only the contrast of the area to be searched for particles.

"1 I I T u
Density Values Density Values

Fig. 2.7 Examples of image histograms from cryo-micrographs with and with

out areas of thicker carbon, (a) Histogram of an image with no carbon showing a 

single peak only, (b) Histogram of an image with a large area of carbon showing 

two overlapping peaks. This cryo-image has not been inverted, therefore the area of 

ice containing the particles has the higher average value and occupies the right hand 

peak. The right hand side of this peak is sampled for calculating thresholds for both 

sides.

6599659968153928459974^5
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2.6 Label masking

A further difficulty in automatic particle detection is presented by the labels 

written by the microscope along with unexposed areas of the image at the 

edges. A technique was developed for this work which totally excludes such 

undesirable regions of the image from particle detection, thus saving manual 

intervention and processing time by automatically eliminating the possibility 

of selecting particles from these areas.

A histogram of densities is first calculated; particle-containing densities are 

included in the large central peak as shown in Figure 2.7 a). Pixel densities 

found to be at the extremities of the range, either minimum or maximum, are 

assumed to comprise areas to be excluded from particle selection; unexposed 

areas and labels will be close to the maximum extremity, and writing on the 

label is close to, or at, the minimum.

Regions of carbon surrounding ice-filled holes can be detected in the histogram 

adjacent to the particle-containing density, as shown in Figure 2.7 b). Areas 

of carbon can be bypassed when particle searching, by referring to a binary 

mask map. This two-dimensional array, which maps the micrograph image, 

is calculated from the histogram which has been modified by a user-selected 

cutoff value to exclude regions to be ignored. The mask is used to bypass any 

window containing a correspondingly flagged pixel position.

Since it is frequently the case that a few isolated pixels are incorrectly flagged, 

the entire binary array is further processed by the majority black operator 

(Pratt, 1991) to rectify the problem. This procedure is useful for removing 

small spikes (or holes) : pixels in the binary array are set to 1 if four or more
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adjacent neighbours are set to 1. Regions of the image indicated by the binary 

array are ignored by the particle search (Figure 2.8).

V

e
Fig. 2.8 A) Raw image of KHMT particles in ice, which includes part of a la

bel and an area of thick carbon to be excluded from searching on the left. B) The 

binary mask map computed from the inverted raw image. C) Histogram of the in

verted image. The region lying between the red arrows indicates the contribution of 

the carbon to the histogram. This area is ignored by the program which uses the 

user-specified density histogram cutoffs in calculating the binary map. Any window 

containing a corresponding pixel in the mask which is flagged for exclusion will not 

be searched.

^80088



Chapter 3

The Selection Procedure

Moving across the micrograph image pixel by pixel, square windows of den

sities are extracted each in turn. Every window is considered as a potential 

particle, being subjected to a series of tests which match parameter values 

extracted from it to corresponding values pre-determined from a set of user- 

selected reference images. The aim is to distinguish windows containing true 

particles from those which do not. Tests are ranked in such a way as to 

minimise computing time, eliminating failed windows from any further exami

nation as the tests are executed. In practice, the matching procedure results in 

multiple sets of overlapping windows, where each set represents an individual 

particle. A clustering algorithm is used to re-arrange these windows according 

to their proximity to each other. Finally, from each cluster of overlapping win

dows, a scoring procedure is used to select the window in which the particle 

is judged to be centred most accurately.

Since a large part of a digitized image is likely to comprise background and 

other totally unsuitable areas, such as particle aggregates, computing time is 

saved by firstly eliminating these regions. Labels and unexposed areas of the 

image are flagged by a pre-processing step previously described in Chapter

45
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2, and hence are ignored. Furthermore, in a single particle analysis it is 

important that particle images are isolated from neighbouring particles or 

undesirable artifacts, since such encroachments can affect particle integrity; 

particles immediately adjacent to any other material are excluded as the next 

step. Remaining candidate windows should contain only isolated objects of a 

size which approximates that of the desired particle. These windows are then 

subjected to further examination for shape and density distribution.

A simple and convenient measure of density distribution, independent of 

orientation, is provided by the radius of gyration. However, while it gives 

a measure of radial distribution, it does not describe the angular distribu

tion and so this fundamental property is insufficient to provide an adequate 

match for particle detection. In this work, the radius of gyration is therefore 

complemented by other properties which together provide a comprehensive 

set of criteria for matching true particles to the reference images. By using 

a set of increasingly sensitive matched filters, which examine different parti

cle attributes, particle positions are detected both accurately and efficiently. 

The algorithm makes the assumption that the average particle density will be 

greater than that of the background and a circular mask set in the centre of 

each window is used to limit the area of interest by ignoring irrelevant corner 

regions.

3.1 Isolated object of appropriate size

The first two tests aim to exclude windows containing only background or noise 

artifacts and non-isolated particles immediately adjacent to other objects.
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3.1.1 R atio mean and variance test

47

Elimination of totally unsuitable windows, such as areas of background or 

particle aggregates, can be achieved by rejecting those with an inappropriate 

mean density ratio between a circular central area and that of the annular 

band immediately surrounding it. Furthermore, contributions from the con

trast in a true particle cause its density variance to exceed that of background 

regions; density variance from the central area is also compared with that in 

the annular surrounding ring to complement the ratio mean test (Figure 3.1).

Fig. 3.1 Shows a ribosome particle in ice to illustrate the increased mean density 

and variance of the particle inside the inner ring compared to the corresponding val

ues in the surrounding annular band.

The width of the annular ring is controlled by the user, who may wish to 

accept only those particles which are totally isolated and surrounded by a 

large area of background; alternatively they may choose to detect particles 

which almost touch. Both density mean and variance inside a circular mask 

of particle radius R  are determined, along with those lying within the sur
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rounding annular band between the radii R  and Rmax. Rmax = a*R , where 

a is a user-specified variable in the range 1.1 — 1.5. The two ratios are then 

calculated :

RatiOfj, = u d M  

Ratio^  =  cr^/of 

where c is the central circular area of radius R  

b the area in the annular band bounded by R  and Rmax 

fic the central mean, //& the band mean

the central variance, of  the band variance.

Typical ratio mean values for ribosomes such as that shown in Figure 3.1 

range from 3.2 - 5.5; in particular the ribosome in the figure measured 4.3.

3.1.2 Adjacency test

Windows containing particles with density encroaching into the area surround

ing the central area are detected in the following way. A circle radius Rm ax , 

centred on the box centre, is divided into eight equal sectors. The mean 

density of each sector, bounded by radius R, is compared with that in the 

corresponding area in the adjacent surrounding annular band, bounded by R  

and Rmax. If, for any sector, the outer (annular) sector mean is the higher 

value, then it indicates that the particle is too close to a neighbour, and the 

window is therefore rejected (Figure 3.2).
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Fig. 3.2 Particles with neighbours encroaching in one or more sectors of the band 

around the particle image are detected by comparing the mean densities between each 

sector and its corresponding surrounding annular region.

3.2 D ensity distribution

Candidate windows not flagged as background or containing particles adjacent 

to others are examined for appropriate variance, radius of gyration and density 

sum. These values provide some basic information about the density inside 

the central circular area.

3.2.1 D ensity  sum

This very simple measure is calculated for pixel densities lying inside a circle, 

of radius R  appropriate to the particle and centred in the box centre, for 

comparison with the reference value. The set of density values within each 

window is scaled independently between 0 and 255 before calculating their 

sum. This is to allow for the detection of weak particles.

3.2.2 Variance

The density variance within a true particle normally differs significantly from 

that of the background and most noise artifacts. The density variance within
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a circular mask radius R  and centred on the box centre is calculated and 

compared with the reference value :

2 £n = l (*» -  
°  =   --------

where fi is the mean density within the mask, N  is the total number of pixel 

densities within the mask and x n is the pixel density at n.

3.2.3 Radius of Gyration

The radius of gyration is the second moment of inertia and provides a measure 

of the distribution of pixel densities as a function of their distance from the 

centre of a square box of pixels; its value increases with the distance of the 

density from the centre. It is affected by high pixel densities in the box corners 

or anywhere surrounding the particle. This undesirable data may be caused by 

neighbouring particles or background artifacts. To exclude it, window density 

values are radially tapered and scaled (Figure 3.3).

Fig. 3.3 This figure shows an image of a particle of KHMT at various stages of 

processing. The left hand image shows the raw particle. The central box shows the 

image after the noise cleaning operations (see Chapter 2). The right hand box shows 

the effects of the tapering process which removes extraneous material from the box 

edges, and provides a clearly enhanced particle image.
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To prepare the image from which the radius of gyration is measured, pixel 

densities are first constrained to lie between :

/ic ±  3crc

and scaled between 0 and 255. Tapering then takes place from the box centre 

to Rm ax by weighting with an exponential function :

w = 1 — s exp'
j.( R m a x  — R d is t  

V R m a x  )

where Rm ax  is the particle radius extended to include the outer band

Rdist is the distance from the box centre ranging from 0, Rm ax

s is an empirically derived scale factor, set to 0.9

t is an empirically derived taper factor, set to 10

and pixel densities beyond Rmax  are set to 0.
#

The radius of gyration Rgyr is then calculated. The formula for this param

eter demonstrates the necessity for the removal of the unwanted data at the 

extremities of the box, since I  comprises the entire box; Rgyr is required only 

for the central region.

r, , I £ i = l  "lixl R gyr = ]]— -g -* -

where M  is the total density over all pixels 

m{ is the density of pixel i 

Xi is the distance of pixel i from the box centre

and I  is the total number of pixels
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3.3  C ircular and radial d en sity  d istr ib u tion

Some undesirable artifacts such as ice contaminants may not be excluded by 

the previous tests; their size and density can sometimes closely match those of 

true particles and the radius of gyration cannot always be used to distinguish 

between totally different particle shapes (Figure 3.4).

Fig. 3.4a Shows the similarity between ice artifacts (indicated by yellow arrows) 

and neighbouring true ribosome particles (indicated by red arrows).

Fig. 3.4b The radius of gyration Rgyr for three different images demonstrates 

its strengths and weaknesses. Rgyr measures 16.0 for the left hand ring, 14.5 for 

the central disc and 14.5 for the rod. It successfully distinguishes the disc from the 

ring, which have identical maximum radii. However, although their shapes are totally 

different, it cannot distinguish the rod from the disc, which have identical Rgyr values.
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In order to select only true particles from candidates which have survived 

these tests, more sensitive tests examine the density distribution in greater de

tail, using information from equally-spaced concentric rings and from circular 

sectors of pixel densities.

3.3.1 Ring param eter tests

Circularly averaged information about the particle shape is obtained from the 

means and variances of density values extracted from equally spaced concen

tric rings from tapered particle images. This test is particularly successful 

in distinguishing particles with strong features such as a central hole or cleft 

from particles or artifacts which do not (Figure 3.5).

Fig. 3.5 Densities from concentric rings up to particle radius R  and spaced apart 

by a distance of one pixel are sampled from the window images.
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From the set of means and the set of variances calculated from pixel den

sities in the rings, profiles are extracted.

E/=id*. 2 £ / = i (w - 4 )
m = t <*% = --------- H --------

where d\ is the pixel density, i is the ring number

and J  is the number of densities in the ring

These profile values are compared with the corresponding reference profile 

values using the x2 statistic as a measure of goodness-of-fit:

2 _  y"v (Trefi ~  Ti) 2 _  {^refi °i )
i=1 Vi i=1

where re f i  is the reference value for ring i,

and I  is the number of concentric rings

3.3.2 Sector param eter test

While the ring mean and variance tests reveal circularly averaged information 

about the particle shape, the sector test provides additional angular infor

mation from the mean pixel density of circular sectors. This test applies a 

rotation which could consume large amounts of computing time if it were ap

plied to every window extracted from the digitized image. However, as it is 

the final match and applied solely to windows which have passed all the other 

tests, it is confined to the preferred candidates. Within a circle of radius R , 

the image is divided into 16 equal sectors, and the density for each sector is 

averaged (Fig. 3.6).
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Fig. 3.6 Mean density values from each sector are calculated and aligned to the 

reference values. The top graph shows two sample profiles, which are shown angularly 

aligned in the lower graph.

X2 values are then determined between the averaged sector means from the 

candidate window and the aligned reference sector mean profile.

2 =  Y '  (Vtj ~ Hj)2

Xtk  *

where t is the test image and fij is the mean derived from the reference images.

3.4  C lu sterin g

Candidates remaining after the previous tests have been found to require prun

ing to select the final particle from each set of overlapping windows (Figure 

3.7).
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Fig. 3.7 A set of candidate images selected by this algorithm from part of a mi

crograph image of KHMT particles. The program computes a linear array of boxes. 

For display purposes the array is shown here arranged in rows such that the first 

particle in the array is top left and the last is bottom right. There are several sets 

of overlapping windows for each particle which are clearly not grouped contiguously. 

Since in the program the window moves across the digitized image from column to 

column for each row, the windows are ordered first according to their column, then 

row. When there are several different particles in a single row in the image, then only 

portions of a candidate cluster are arranged in contiguous order. For example, in row 

6, images in positions 9-11 are overlapping windows of the same images as those in 

positions 14-16 (and position 1 in row 7).

The overlapping windows are sorted into groups by a clustering technique de

rived from an algorithm devised by Airlie McCoy (private communication). 

This method produces an array containing candidate particle coordinates 

grouped by proximity, with pointers to clusters and positions within each 

specific cluster (Figure 3.8).
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yes
n > ncands.

no

no yesn>l

no i>n-l

yes

no yes
diffsq>radsq

i=0 i=i+l

n=n+l

OUT

n=0
nclusters=0

diffx=candx(n)-candx(i)
diffy=candy(n)-candy(i)

diffsq=diffx*diffx+diffy*diffj

nclusters=nclusters+1 
kclus(n)=nclusters 
nclus(nclusters)=1 
index(nclusters,l)=n

nclusters=nclusters-1
kclus(n)=kclus(i)
nclus(kclus(i))=nclus(kclus(i))+l
iclus=nclus(kclus(i))
jclus=kclus(i)
index(jclus,iclus)=n

F ig .  3 .8  This flowchart demonstrates the indexing of candidate positions into 

groups, n is the candidate number up to ncands, where ncands is the total number 

of candidates; candx and candy are arrays containing the candidate coordinates. 

nclusters is the total number of clusters. The array nclus contains the number of 

entries per cluster, kclus contains the cluster pointer for each entry, and index is a 

two-dimensional array with elements set to the cluster number and the entry number 

in the cluster and points to the candidate number in the candx and candy coordinate 

arrays, radsq is R2 where R is the user-specified particle radius.
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3.5 F inal particle  se lec tion

Clusters are examined for size and any which have a dimension greater than 

the particle diameter are assumed to be particle aggregates and are therefore 

rejected. At this stage the window most likely to contain the best centred 

particle is selected from each cluster. Although matching the centre of gravity 

to the window centre might have been thought to be the method of choice, 

this is not used for the following reason. The ” middle” of a particle is a more 

appropriate centre for a rotational alignment in a single particle analysis than 

the centre of mass. Although these two positions may be identical in the case 

of a spherically-symmetric particle with homogeneous density distribution, 

they can also be apart by a considerable distance in particles of other shapes 

(Figure 3.9).

Fig. 3.9 This figure shows a shape where the centre of mass (A) is located some 

distance away from the particle centre (B).
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The ring mean and variance statistics have been found to give very good 

results when used to select the most suitable window from a cluster, x 2 values 

for the ring means and variances are summed for each window; the minimum 

value in the cluster determines the final choice of window containing the best 

centred particle.

A final pass examines inter-particle distances, rejecting both of any pair which 

fail to meet the user-specified distance criterion.



Chapter 4

Reference Value Preparation

The reference values referred to in Chapter 3 are determined from a stack of 

boxed images which are manually selected using a program such as Ximdisp 

(Crowther, Henderson and Smith, 1996; Smith, 1999). Images in the stack 

should be aligned to the box centre and isolated from all other material. They 

should also be in a box of sufficient size to allow for a surrounding band of 

density. This part of the program runs only once for each set of micrographs, 

as all necessary parameter values are stored in a file for future use.

4.1 Pre-processing

Each image in the stack is pre-processed automatically by density inversion 

and/or compression (where appropriate) followed by de-noising as described 

in Chapter 2 (Figure 4.1).

61
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Fig. 4.1 Shows (left) a stack of raw ribosome reference particles and (right) the 

same stack after inversion, local averaging, contrast enhancement and high-pass spa

tial filtering.

4.2 P artic le  a lignm ent

In order to estimate parameter values correctly, it is crucial that each reference 

particle is centred as accurately as possible; despite careful selection, manually 

determined centres may be one or two pixels out of alignment. Each reference 

image is translated to the centre of its box by the following procedure. Pixel 

densities are first tapered from the box centre to the edge by application of 

an exponential function (described in Chapter 3). The tapered image is then 

binary-thresholded; horizontal and vertical minima and maxima are measured 

from the resulting binary image to give a displacement from the box centre. 

The reference image is shifted by the measured amount and the procedure is 

iterated to convergence.
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4.3 Param eter value determ ination

63

Parameter values extracted from the aligned image are calulated as described 

in Chapter 3 :

1. Mean density ratio and variance ratio between the central circular region 

of particle radius R  and its surrounding annular band.

2. Variance of central region

3. Density sum

4. Radius of gyration.

5. Ring means and variances

6. Sector means.

4.4 Ring parameter reference values

For each reference image a set of mean densities and variances is determined 

from equally-spaced concentric rings. The set of means and variances is aver

aged over N  reference particles for each ring.

as a measure of goodness-of-fit of the ring parameters, and ranges of values of 

the x2 statistic are stored.

where i is the ring number

X2 values for mean and variance are calculated for each reference particle

i=1 Vi

where I  is the number of concentric rings
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4.5 Sector parameter reference determ ination

For each reference image, mean values from 16 circular sectors are calculated 

from a circle radius R , the particle radius (see Chapter 3). The sets of sector 

means for all N  reference particles are angularly aligned to each other, using a 

least-squares fit, and are then averaged together to produce the reference set 

of means fij, where j  =  1,16.

4.6 Outlier rejection

Where a user has set a flag to test the reference particle parameter values for 

consistency, they are compared to each other, outliers are rejected and the 

procedure iterated to convergence to provide a well-matched set of reference 

values. A reference is rejected if its value is more than 3a from the mean fi 

for any one of the following parameters : ratio mean, density mass or radius 

of gyration.

4.7 Determ ination of acceptability ranges

Mean and standard deviation values are calculated for the parameter values 

determined over the reference images. From these standard deviations (calcu

lated for ratio means, ratio variances, density sum, central variances and radii 

of gyration), ranges of acceptability for each test are determined. In the case 

of the ring mean and variance and of the sector mean, minimum and maxi

mum x2 values from the reference images are used as goodness-of-fit criteria 

and stored for use as acceptability ranges.
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calculate mean and 
standard deviation 
for ratio mean, variance 
density sum 
radius of gyration

Fig. 4.2 This flowchart illustrates the interative procedure used for selecting the 

reference parameter values.



Chapter 5

Program  Structure and U se

Primarily, the assumption was made that users of the automatic particle de

tection software SLEUTH would process many micrograph images from the 

same batch with similar background levels. Functionality of the program is 

twofold. It can be run using the visualization capability which provides an 

interactive tool for adjusting parameter values to maximise particle selection 

accuracy. Once the parameter values are selected, they can be stored in a file. 

The program can then be run in command line mode from scripts set to pro

cess all the micrograph images from the same batch, accessing the previously 

written file of parameter values.

Pre-requisites include the particle radius in pixels and a stack of around 100 

boxed reference particle images. These images can be selected using a visu

alization program such as Ximdisp (Crowther, Henderson and Smith, 1996; 

Smith, 1999). The box must be square and of sufficient size to include the an

nular ring and satisfy the averaging requirements; a suggested box size would 

be 2 x D , where D  is the particle diameter in pixels.
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The program itself is further subdivided into two main sections : a) prepa

ration of the references and b) selection of particles from the micrograph image 

(Figure 5.1).

prepare
reference

values

sto re  as 
candidate

all
windows

processed?

pass 
secto r te s t’ 'a tio

pass ring 
param eter 

test?

pass
adjacency

test!

pass radius 
of gyration 

test?

1 r

input micrograph image
ex trac t next com press

window
from image calculate mask map

noise clean

so rt  candidates 
into clusters 
tes t each cluster 
ex trac t best 
candidate for 
each cluster

Fig. 5.1 A flowchart describing the preparation of the references is shown in 

Chapter 4, Figure 4.2. The parameter values determined from the reference images 

and acceptibility ranges for the tests are stored in a file. This enables the reference 

preparation section of the program to be bypassed when batch processing micrograph 

images to select particle positions; all necessary parameter values are read back from 

the file.
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SLEUTH is written in Fortran 77 and has so far been tested under Tru64 

UNIX and RedHat LINUX. It requires around 700MB of memory and will 

process micrograph images up to 67MB.

5.1 Graphical user interface

SLEUTH is interfaced to its display capability through a library of Fortran 

77 and C subroutines called Ximagelib, written by the author. The library 

accesses the X-windows package, and has been in use for several years by other 

applications software (Smith and Singh, 1996; Smith, 1999). SLEUTH is in

voked in interactive mode via a switch (-f) and immediately displays a window 

with menus and dialog boxes which prompt the user to type in new values or, 

in appropriate cases, to accept defaults offered by the program. The following 

values are input for the reference preparation part of the program : 

la) particle radius R  in pixels.

2a) radial scale factor to include annular ring (default 1.25).

3a) Minimum inter-particle distance (default 2 x  (R + 2.0)).

4a) Number of standard deviations for the ratio test (default 1.0).

5a) Density inversion flag (true if average particle density < average back

ground density).

6a) Compression factor (default calculated such that 10 < R  < 15).

7a) Pixel averaging factor for noise cleaning (default 5 x 5  box).

8a) Flag for testing references (true unless wide variety of reference image 

shapes).

9a) Filename of input stack of reference images.

10a) Output filename for storing parameter values.
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The references are then processed and displayed on the screen (Figure 5.2)

sleuth_view v 1.0 18.05.2004 
min, max = 0.0 125.0
Use left and right sliders to set lower and upper thresholds

Centre mouse button moves slider,Click left button in map to quit

*25S o n55M[gi
BHWB

nn gIQl! g
Fig. 5.2 A set of noise cleaned Hepatitis B virus core particle reference images dis

played by SLEUTH. Slider bars can be used to modify the image contrast for viewing. 

The reference particles were selected from a single image and are clearly very close to 

each other. If the same image is searched for particles, the particle proximity would 

have implications for choosing the inter-particle distance setting and for the outcome 

of the adjacency test.

The program then advances to the particle selection stage from a micrograph 

image. If a part of an image is used, which is recommended in the case of 

large images in order to save testing time, unwanted areas of carbon and la-



5.1. GRAPHICAL USER INTERFACE 71

bels (if present) should be included. Information is entered before processing

the image :

lb) image filename.

2b) flag to indicate presence of label and/or carbon.

3b) flag for particle adjacency test (true unless particles elongated).

4b) percentage of total density histogram extremities to be ignored (default 

5%).

5b) percentage of histogram peak height to be cut for contrast modification 

(default 0.5%).

6b) number of standard deviations about the mean for parameter matching 

tests (default 2.5).

7b) output format : MRC, SPIDER, IMAGIC.

8b) output coordinate filename.

At this point the pre-processed map is displayed (Figure 5.3) and it is possible 

to re-set the compression factor and/or the pixel averaging window size.
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s l e u t h v i e w  v  1.0 18 .05 .2004 
m in, m ax  = 0.0 125.0
U s e  le f t a n d  rig h t s l id e rs  to  s e t  lo w e r a n d  u p p e r  th r e s h o ld s

C e n t r e  m o u s e  b u t to n  m o v e s  s lid e r,C lick  le f t b u t to n  in m ap  to  q u it

Fig. 5.3 The pre-processed micrograph image of Hepatitis B virus core parti

cles. The micrograph label appears at the bottom of the picture. Slider bars can 

again be used to modify the contrast for display purposes.
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The binary mask is then displayed (Figure 5.4) and at this point the his

togram parameter values can be modified to mask out unwanted areas
sleuthview  v 1.0 18.05.2004
Examine mask map to see If appropriate areas are masked out 
HISTEDGE sets percentage of density histogram bins to be excluded from 
Increasing HISTEDGE excludes large areas of background 
MISTCUT sets percentage of density histogram peak used for cutoff 
Increasing HISTCUT masks more carbon and background areas__________
Reset HISTEDGE 
Reset HISTCUT 
Continue processing 
Quit

Fig. 5.4a The binary mask for the same image as Figure 5.3. The label and all 

the unexposed areas of film are in white and will be ignored by the program.

Fig. 5.4b The HISTEDGE parameter sets the percentage of the total density 

histogram to be excluded at the edges. Its purpose is to eliminate contributions from 

the label and unexposed areas of film (shown by the vertical red line at the far left 

and the small peak at the far right of the histogram). HISTCUT is the percentage of 

the main histogram density peak height to be selected for contrast modification.
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After setting all these values, the image is processed and each pixel position 

not flagged for exclusion by the binary mask map is considered a potential 

candidate. Comparisons between parameter values from each window and the 

references now take place. Unsuccessful candidates are rejected as each com

parison proceeds. Finally, successful candidate positions selected from each 

cluster can be displayed overlaid on the original micrograph image (Figure
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s leu th_v iew  v 1.0 18.05.2004 
Pixel : 194 236 failed :
*** ratio  te s t  -  in c re a se  RATSDEVS to  include 
Pixel : 175 239 failed :
*** ratio  t e s t  -  in c re a se  RATSDEVS to  inc lude  
Pixel : 151 249 failed :
*** ratio  t e s t  -  in c re a se  RATSDEVS to  inc lude  
Pixel : 136 263 failed :
*** rad iu s  of gyration  t e s t  -  in c re a se  SDEVPAR to  include 
Pixel : 130 282 failed :
*** ring m ea n /v arian ce  te s t  
Pixel : 210 188 failed :
*** ratio  t e s t  -  in c re a se  RATSDEVS to  include 
Pixel : 227 215 failed :
*** ratio  t e s t  -  in c re a se  RATSDEVS to  inc lude  
Pixel : 274 220 failed :
*** to o  c lo se  to  a n o th e r  partic le  -  d e c r e a s e  DISTMIN to  include

Q uit c o o rd in a te  d isplay

80kx2°W2Q0hy^Sjj

Fig. 5.5 Results of the first pass taking the default values clearly show the ne

cessity for tuning the parameter values, as only a subset of acceptable particles has 

been selected (green circles). The parameter values can now be modified to provide 

the most accurate results. At this stage, the user can select a pixel position with the 

cursor; the outcome for the window centred on that pixel is displayed in the dialog 

box, indicating how to adjust the parameter values. The dialog box at the top sug

gests modifications for up to three different parameter values. After modification, the 

whole procedure can be iterated until a satisfactory result is achieved.
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At the same time, a log file is written which provides information about each 

candidate. This file can be examined while the program is being executed 

and acts as a further aid to enable the user to adjust the parameter values to 

obtain the best results (Figure 5.6).

sleu th  view v 1.0 18.05.2004 
Found 551 particle positions
RADFAC controls size of surrounding background ring

-  increase if weak but w ell-separa ted  particles m issed 
DISTMIN s e ts  minimum inter-particle distance

-  increase if particles too close
RATSDEVS controls ratio of particle to background -

-  increase to include more particles 
SDEVPAR controls param eter matching

-  Increase to Include m ore particles

Display image with se lec ted  coordinates
R ese t RADFAC
R eset DISTMIN
R eset RATSDEVS
R ese t SDEVPAR
R e -p ro c e ss  data
Save control file
Quit

Fig. 5.6 Adjustments to the parameter values have caused the program to se

lect most of the separated virus particles successfully while minimising the number 

found in the aggregates. The label and the unexposed areas of the film were com

pletely excluded from the search.

Finally, a menu item can be selected for the program to write a control script 

into a file with all the parameter values set for processing a batch of micrograph 

images in command line mode.
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5.2 Command line interface

SLEUTH runs in command line mode if the -f switch is omitted. It will pro

cess references if required, or read parameter values from the file written by 

a previous run. A typical script which does process references might look like 

this :

# !/b in/csh -x -e 
#
time sleuth.exe < <  eof 
1
12.0 ,0 .0 ,0 .0 ,0.0 
1,0 ,0,1
reference.stack 
reference.params 
film.mrc
1,1 
0.0 ,0 .0 ,0.0 
2
film.coords 
eof

FLAG SET TO PROCESS REFERENCES 
RADIUS, RADFAC, DISTMIN, RATSDEVS 
INVERT, ICOMPRESS, NPIXLOW, ITESTREFS 
INPUT REFERENCE FILE NAME 
OUTPUT PARAMETER FILE NAME 
INPUT IMAGE FILE NAME 
MICTYPE, IADJACENT 
HISTEDGE, HISTCUT, SDEVPAR 
IO U T=l output stack of images, 2 coordinates 
OUTPUT COORDINATE FILE NAME
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A script to process 3 images from data stored in the parameter file might 

look like this :

#!/b in/csh -x -e 
#
time sleuth.exe < <  eof 
2
reference.params
filml.mrc
1,1
0.0,5.0,3.0 
2
filml. coords 
eof 
#
time sleuth.exe < <  eof 
2
reference.params
film2.mrc
1,1
0.0,5.0,3.0 
2
film2. coords 
eof 
#
time sleuth.exe < <  eof 
2
reference.params
film3.mrc
1,1
0.0,5.0,3.0 
2
film3.coords 
eof

FLAG SET TO PROCESS REFERENCES 
OUTPUT PARAMETER FILE NAME 
INPUT IMAGE FILE NAME 
MICTYPE, IADJACENT 
HISTEDGE, HISTCUT, SDEVPAR 
IOUT=2 output coordinate file 
OUTPUT COORDINATE FILE NAME

FLAG SET TO PROCESS REFERENCES 
OUTPUT PARAMETER FILE NAME 
INPUT IMAGE FILE NAME 
MICTYPE, IADJACENT 
HISTEDGE, HISTCUT, SDEVPAR 
IOUT=2 output coordinate file 
OUTPUT COORDINATE FILE NAME

FLAG SET TO PROCESS REFERENCES 
OUTPUT PARAMETER FILE NAME 
INPUT IMAGE FILE NAME 
MICTYPE, IADJACENT 
HISTEDGE, HISTCUT, SDEVPAR 
IOUT=2 output coordinate file 
OUTPUT COORDINATE FILE NAME



Chapter 6

Performance and D iscussion

However sophisticated the algorithm, particle detection software is only as 

good as its results. In practical terms, its performance can be judged by the 

false positive and negative rates coupled with the requirements for user and 

computation time. SLEUTH has been subjected to several different types of 

trial to assess its overall value; tests have been carried out on a variety of 

particle shapes and sizes, on defocus pairs and on a series of micrographs from 

the same batch.

6.1 Results with different particle varieties

Several micrographs containing different particle types were tested with SLEUTH, 

some from ice-embedded and some from negatively stained specimens. Spherically- 

symmetric, decameric and asymmetric particles were tested, some of which 

were very small and noisy, with molecular weights ranging from 0.11 to 4 MD.

The numbers of particles selected ranged from about 100 to several thousand 

per micrograph, resulting in an average of 7% false positives and 9% false neg

atives, although these numbers varied from micrograph to micrograph. These 

percentage figures were calculated in comparison with manually selected par-
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tide positions. False positives included areas of background, damaged or non

isolated particles which were unlikely to be selected, and false negatives were 

particles considered acceptable for analysis which were missed by the program. 

Processing time depended on micrograph size, the compression factor, and the 

particle population density (Table 6.1).

particle
shape

image
size

radius molecular
weight

compr.
factor

number
found

CPU
time

%false
+ves

%false
-ves

asymmetric 5490 x 7080 20 0.11MD 3 3057 270 7 8

decameric 2756 x 3525 10 0.28MD 1 129 725 6 20

decameric 2772 x 3573 22 0.28MD 2 237 320 2 10

spherical 5544 x 7178 26 1.2MD 3 464 406 13 5

asymmetric 1126 x 1406 10 2.5MD 1 717 211 6 5

spherical 785 x 686 9 4MD 1 565 42 7 5

Table 6.1. The results of processing micrograph images of six different speci

mens on a 500MHz ESV5 Alpha. Image size and particle radius are in pixels, 

CPU time in seconds. The specimens used were, starting from the top : phos- 

phoinositide 3-kinase gamma (stain), KHMT (ice), KHMT (stain), Hepatitis 

B virus surface antigen coated ferritin (stain), 70S bacterial ribosomes (ice), 

Hepatitis B virus core particles (ice).

The relatively heavy processing time recorded for the second image in the 

table was due to a sparse population of very small particles in a large image, 

which was precluded from compression by the particle size. Conversely, the 

considerably larger first image in the table had a crowded population of larger 

particles which made this image suitable for compression; 30 times as many 

particles were found in around one third of the processing time compared to 

the second image in the table.
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Extracts from four of these images, overlaid with particle positions selected by 

SLEUTH, are shown in Figure 6.1, all of which had labels which were flagged 

successfully by the binary mask.

Fig. 6.1a Detected particle positions are indicated by green circles (a) Pentameric, 

tetrameric and side views of KHMT decamers in ice with a substantial area of thick 

carbon, (b) KHMT in negative stain.
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Fig. 6.1b (c) Spherically-symmetric hepatitis B virus core virus particles in ice with 

areas of unexposed film in the corners which were successfully flagged for exclusion 

from searching, (d) Asymmetric 70S bacterial ribosomes in ice.
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6.2 Results w ith defocus pairs
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High resolution data is obtained from close to focus images, but such images 

often lack sufficient contrast to make the particles easily visible by eye, so may 

cause problems for the user when selecting the reference images and setting 

up the parameter values with the visualization part of the program. They 

may therefore decide to carry out these procedures with a further from focus, 

higher contrast image, with a view to using the parameter values to select 

particles from a series of close to focus images.

To test the performance of SLEUTH when used in such a way, 100 reference 

particles were selected from three far from focus images, and the software was 

used in its interactive display mode to set the parameter values from one of 

these images, which was one of a defocus pair. The corresponding near to 

focus image of the pair was then subjected to processing using these param

eter values but with a range of values for RATSDEVS and SDEVPAR. The 

two acceptability ranges set by RATSDEVS, which controls the number of 

standard deviations in the ratio test, and SDEVPAR, which sets the number 

of standard deviations for the particle mass and radius of gyration compar

isons, work in tandem and are crucial to the outcome of the program. Too 

low a value of RATSDEVS results in the selection of background and other 

unwanted areas. When RATSDEVS it is correctly set, the very simple but 

powerful ratio test restricts the search to candidates containing an isolated 

area of density of the appropiate size; hence is responsible for the speed of 

the software. The results shown were checked against 83 particles which were 

carefully selected by eye as being of reasonable shape, size and quality; those 

which were misshapen, non-isolated or immediately adjacent to the edge of 

the micrograph image were not used in the test set (Table 6.2).
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Parameter values Near to focus Far from focus
RATSDEVS SDEVPAR N. near F.Neg F.Pos N. far F.Neg F.Pos

0.6 0.6 54 33 4 81 7 5
0.6 0.7 57 30 4 84 5 6
0.6 0.8 59 28 4 86 5 8
0.6 0.9 61 27 5 85 7 9
0.7 0.6 66 23 6 85 5 7
0.7 0.7 67 22 6 87 4 8
0.7 0.8 71 18 6 89 3 9
0.7 0.9 72 17 6 90 4 11
0.8 0.6 72 18 7 85 7 9
0.8 0.7 75 15 7 88 6 11
0.8 0.8 75 15 7 88 6 11
0.8 0.9 77 14 8 91 5 13
0.9 0.6 80 13 10 87 7 11
0.9 0.7 84 10 11 91 6 14
0.9 0.8 85 9 11 90 6 13
0.9 0.9 87 8 12 92 5 14

Table 6.2 shows the total number of positions found by the program with 

the numbers of manually judged false negatives and positives, for both near 

and far images of the defocus pair. The images are of Woodchuck Hepatitis B 

surface antigen coated ferritin particles taken on a Hitachi HF2000 microscope 

equipped with a field emmission gun and Gatan cold stage operated at 200kV. 

The micrographs were taken at a magnification of 60,000 and scanned on a 

Zeiss SCAI scanner with a step size of 7 microns, then compressed by 4 to 

give a pixel resolution of 4.7A . Defocus values were calculated at 2.2 and 4.2 

microns respectively for the near and far images. A compression factor of 3 

was set by the program for the purposes of particle searching. Although the 

particles are more or less spherically-symmetric, which should make them easy 

for the program to detect, the distribution of the iron atoms inside the ferritin
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cages is completely random, which makes matching these particles a difficult 

task for any program. Furthermore, the pixel density of the iron sometimes 

lay at the extremity of the range; this caused a few particles to be missed as 

they were flagged as though they were part of the micrograph label.

A curious outcome of the algorithm is that relaxing the parameter values 

sometimes results in the final selection of fewer acceptable particles. This un

expected effect is due to the initial addition of extra candidates to the list, 

which are then judged by the program as too close to another previously se

lected candidate, in which case both are rejected.

Occasionally, neighbouring particles with apparently acceptable spacings fail 

the distance criterion. This happens when the final positions determined by 

the program do not lie precisely at the particle centre (Figure 6.2).

Fig. 6.2 D is shown as the minimum distance value DISTMIN and d is the distance 

between two particle centres determined by the program; this pair of particles would 

fail the minimum distance test.
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The results were as might be expected; it was harder for the program to find 

all the particles in the closer to focus image from reference values computed 

from a further from focus image. This was mostly due to the reduced con

trast, which caused the ratio test to fail more of the particles, some of which 

were barely discernible from the background. A further consideration is that 

particles from a second exposure in a defocus pair are frequently damaged by 

the first exposure; parameter values extracted from second exposure particles 

may not reflect the particle attributes accurately (Figure 6.3).
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Fig. 6.3 Particle pairs of Hepatitis B surface antigen coated ferritin selected from 

near to and far from focus images show the damaging effects of the first, near to focus 

exposures on the second, far from focus images. Near to focus images are at the top.

A test was carried out to determine whether calculating the reference pa

rameter values directly from the same near to focus image as used in Table 

6.2 would improve the search outcome. The 83 ’’good” particle images used 

for testing the data in the table were boxed from the near to focus image and 

used as references to calculate the parameter values. The best results were 

obtained with a value of RATSDEVS set to 0.5 and SDEVPAR at 0.6; the
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program detected 79 particles (Figure 6.4) of which 6 were false positives; 10 

particles were missed. This represents a false negative rate of 12% and false 

positive rate of 7%, which compared favourably with the results obtained when 

the same image was processed using reference values derived from the further 

from focus image.

Fig. 6.4 Woodchuck Hepatitis B surface antigen coated ferritin particles detected 

by SLEUTH indicated by green circles overlaid on the closer to focus image of the 

defocus pair used to construct Table 6.1. For display purposes, the image has been 

contrast enhanced. It was processed on a 500MHz ESV5 Alpha in 4 minutes CPU.
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It is clear that SLEUTH performs less well on low contrast images, even when 

the reference values are computed from the same image; the success rate falls 

further when reference values calculated from further from focus images are 

applied. Where close to focus images are involved, better results will be ob

tained by using reference values derived from micrograph images with similar 

defocus values. If particles cannot be sufficiently well distinguished by eye 

when selecting references from a low contrast image, a possible strategy might 

be to transfer positions of reference images selected from a further from focus 

image to a typical near to focus image for the determination of the reference 

values.

Possibly the most successful outcome could be achieved by using SLEUTH 

to select particles from far from focus images and then translate their coordi

nates to their closer to focus pairs.

6.3 Results w ith a series of micrographs

With the drive to atomic resolution for single particle methods, hundreds of 

thousands, and possibly millions of particles may be required; the ultimate 

aim of this software is to be able to search any number of micrograph images 

from a single parameter file in a completely automatic way, with an absolute 

minimum of user intervention and computation time. To test the performance 

of SLEUTH on a series of micrographs, reference images were selected from a 

single micrograph, which was also used to set all the parameter values. The 

resulting parameter file was then used on 7 more micrographs of the same par

ticle type but with varying population densities. Numbers of particles selected 

and processing time for each micrograph are displayed in table 6.3.
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Reference Number selected CPU time Defocus in fi
ribo2a 785 517 1.4
ribo2b 793 522 1.9
ribo2c 353 499 2.6
ribo2d 660 517 2.0
ribo3b 783 502 3.5
ribo3c 531 498 2.7
ribo3d 979 487 2.5
ribo3e 1034 516 2.2

Table 6.3 shows results from processing 8 micrographs of 70S bacterial ribo

somes in ice. The numbers of particles selected genuinely reflect the particle 

density; micrographs were processed on a 500MHz ESV5 Alpha and CPU 

times are in seconds.

In all, 4884 particles were detected in 59 minutes CPU time. User time taken 

to select the references and set up the parameter values was around 30 min

utes. At the rate of 500 particles per hour, it would take around 10 hours 

to pick this number of particles manually. However, although they were not 

counted, there were a few false positives and some false negatives (Figure 6.5), 

indicating that some manual pruning would be needed.
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Fig. 6.5 This figure shows a part of the image ribo2b, overlaid with the particle 

positions (shown by green circles) selected by SLEUTH. The references and their 

parameters were selected from another image (ribo2d). Many of the particles not 

selected by the program are members of closely associated pairs and therefore were 

excluded by proximity.
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6.4 Comparison with other m ethods
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6.4.1 The ” Bake-off”

The ” bake-off’ at the Multidisciplinary Workshop on Automatic Particle Se

lection for CryoEM used their two sets of manually picked particles as the 

standards against which all the others were tested. The confusion matrix 

(Figure 1.11) generated as a result of the ” bake-off’ presented the best false 

negative rates (FNR) as 2.4% and 1.5% (Roseman) and the best false positive 

rates (FPR) as 4.5% and 8.4% (Sigworth). However, their corresponding recip

rocal rates were 16.1% and 23.9% (FPR) (Roseman), 23.2% and 18.4% (FNR) 

(Sigworth) respectively. In conclusion, although Roseman’s method missed 

very few particles, a large number of false positives remained, which would 

have to be manually pruned; the converse was true of Sigworth’s algorithm 

which missed a correspondingly large number of particles. This highlighted 

the fact that there was no outstanding single method which outperformed all 

the others. Furthermore, this analysis was restricted to finding only one view 

of a single type of particle : the rectangular side view of Keyhole Limpet 

Haemocyanin.

6.4.2 Tem plate m atching m ethods

It is apparent from the literature that the peak detection phase of the stan

dard template matching cross-correlation method is highly compute-intensive, 

sometimes using hours of computing time to complete this part of the proce

dure. Preparation of the templates should also be taken into consideration, as 

this can also be a time-consuming part of the procedure in terms of both user 

and computing time. Several groups report efforts to improve the computa

tion speed by various strategies (Roseman, 2003; Volkmann, 2004; Wong et 

al., 2004), apparently with mixed success. Performance rates varied; Rath and
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Frank (2004) quote 10% FPR and 15% FNR, Wong et al. report 6% FPR and 

17% FNR. A trade-off between FPR and FNR is a universal problem; Volk- 

mann (2004) reported a very low FPR of 2.1% which was counterbalanced by 

a very high FNR of 41%.

6.4.3 Neural networks

The neural network described by Ogura and Sato (2004) is reported as giving a 

very high success rate of 98% but at a heavy computational cost while training 

the images (many hours). No figures were quoted for missed particle rates; A 

value of 1 hour CPU for processing an image of size 1460 x 4425 was quoted.

6.4.4 Intensity Comparison M ethods

The image rendering process of the crosspoint method (Boier Martin et al., 

1997) has a heavy CPU overhead. This simple procedure has been in use for 

many years in their laboratory, but is restricted to spherically-symmetric par

ticles; they quote a 4-12% FPR and a 5-11% FNR.

A faster method is the circular density comparison procedure reported by 

Kivioja et al. (2000) with a FPR of 2-9%, and FNR of 2-8% taking 28-172 

seconds to process files of size 10-170MB. However, this technique is also lim

ited to spherically-symmetric particles.

6.4.5 Edge D etection  M ethods

The edge detection method described by Zhu et al. (2001), which uses the 

Canny edge detector to search for filaments from defocus pairs, quote FPR 

rates of 16-25% but no figures for FNR or CPU time. Yu and Bajaj (2004), 

who also use the Canny edge detector, quote very fast CPU times but they
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do not include processing time for the highly compute-intensive anisotropic 

filtration step. Furthermore, their method of using the Voronoi diagram and 

the Distance Transform is currently restricted to the rectangular and circular 

views respectively, which were used in the ”bake-off’.

6.4.6 SLEUTH

The rectangular side view Keyhole Limpet Haemocyanin particles, used in the 

’’bake-off’ were very close to each other. SLEUTH detected very few of these 

particles as the majority of them had encroaching, but not always touching, 

neighbours. Some of these particles failed the adjacency test (Figure 6.6).

Fig. 6.6 Part of a micrograph containing rectangular side and circular end views of 

Keyhole Limpet Haemacyanin particles. The particles shown are very close to each 

other, but not actually touching; the parts of the neighbouring particles shown inside 

the yellow circles caused SLEUTH to reject such particles.

Other particles failed the minimum distance criterion. This case occurred 

where the distance between the centres of two particles lying side by side was 

less than the minimum distance, which was set by the long axis (Figure 6.7).
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Fig. 6.7 The minimum inter-particle distance (DISTMIN) is determined from the 

particle diameter 2R and as shown here is greater than the distance D between two 

particles which do not actually touch each other, but would be rejected by SLEUTH.

In principle, particles close to, but not touching their neighbours could be 

used in a single particle analysis. However, the downstream processing of the 

currently available single particle packages (Frank et al., 1996; van Heel et al., 

1996; Ludtke, Baldwin and Chiu, 1999) provides only a circular masking facil

ity. Such a mask is only appropriate for asymmetric particles where they are 

completely isolated; particle alignment can be seriously affected by artifacts 

within the mask.

6.5 C onclusions

As shown in table 6.1, SLEUTH performs very well against all the methods 

currently described in the literature. When the parameter values are opti

mised, the detection rate is at least as good as any of them, with the possible 

exception of the Neural Network algorithm (Ogura and Sato, 2004) for which 

the FNR is unknown. The very fast processing time achieved by SLEUTH 

depends on the population density and the size of the particle relative to the
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micrograph. There is a time overhead for sparse populations, or small parti

cles which do not allow .compression of large images. Despite such considera

tions, it still outstrips all of the other programs in terms of computation time, 

with the exception of the circular density comparison method (Kivioja et al., 

2000), with which it compares equally well. Unlike most of the other software, 

SLEUTH has also been tested successfully on a variety of particle shapes and 

sizes. Reference preparation time is restricted to the selection of 100 typical 

particle images which takes only a few minutes of user time. Setting up the 

parameter values using the program in interactive display mode can take a 

little longer, depending on the size of the micrograph image and the compres

sion factor. Any number of similar micrograph images can be searched from 

a single parameter file, demonstrating the ability of the software to perform 

in batch processing mode. Using the figures from Table 6.1, an average of 1.4 

seconds CPU per particle was achieved; at that rate SLEUTH could select 

one million particles in a total of 16.2 days computer processing time. An 

average of 0.76 seconds CPU time per particle was calculated from Table 6.2 

for ribosomes; a million particles would be selected in 8.8 days total CPU.

6.6 Publication

A paper describing this work was published in the special issue of the Journal 

of Structural Biology resulting from the Multidisciplinary Workshop on Au

tomatic Particle Selection for CryoEMworkshop held in 2003 at the Scripps 

Institute (Short, 2004).
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6.7 Additional software

In addition to SLEUTH, the computer program ” BANDPASS” was written in 

conjunction with this project. It is written in Fortran 77 and is now in routine 

use for Fourier bandpass filtration of MRC image format images as a part of 

single particle processing (see Chapter 2).

6.8 Further work

Future plans include the addition of a facility for SLEUTH to be able to se

lect the boxed reference images. Also to be incorporated into the program 

is the ability to add missed particles manually, using a display of the orig

inal micrograph overlaid with particle positions already found. This would 

be complemented by a pruning capability to allow easy removal of unwanted 

particles either from the micrograph image or from a gallery of boxed images.

Other plans include the installation of a custom mask for asymmetrically- 

shaped specimens with a view to solving the problems illustrated in Figures 

6.6 and 6.7. In principle, the mask could be calculated automatically from 

thresholded pre-aligned reference images. Although the rotations which would 

be needed for this approach would inevitably reduce the computing efficiency 

when particle searching, a large circular mask could first be applied to exclude 

areas which consist solely of background. A beneficial extension to this ap

proach could be to float and box the particles within their custom mask, thus 

also solving the downstream processing problems with circular masks used on 

asymmetrically-shaped particles. This addition to the software might imply 

that only one view could be searched; a further requirement would be to in

clude sets of reference particles, each representing a particular view and with
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its own mask.

With a view to further automation, hence reducing the number of user-specified 

parameters, a training set of non-particles could be added to the sets of ref

erences. The training set would consist of background, damaged and part 

particles, aggregates and noise.

Finally, a novel approach to the particle detection problem might be achieved 

by supplying the reference parameter values to a simple feed-forward, back- 

propagation neural network, such as that adopted by Ogura and Sato (2004). 

It is possible that such a method could produce a mechanism with similar, or 

superior accuracy to theirs, but with much more efficient weight training.
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