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ABSTRACT

Video Modeling via Implicit Motion Representations

Yunfei Zheng

Video modeling refers to the development of analytical representations for explaining

the intensity distribution in video signals. Based on the analytical representation, we

can develop algorithms for accomplishing particular video-related tasks. Therefore

video modeling provides us a foundation to bridge video data and related-tasks. Al-

though there are many video models proposed in the past decades, the rise of new

applications calls for more efficient and accurate video modeling approaches.

Most existing video modeling approaches are based on explicit motion represen-

tations, where motion information is explicitly expressed by correspondence-based

representations(i.e., motion velocity or displacement). Although it is conceptually

simple, the limitations of those representations and the suboptimum of motion esti-

mation techniques can degrade such video modeling approaches, especially for han-

dling complex motion or non-ideal observation video data. In this thesis, we propose

to investigate video modeling without explicit motion representation. Motion infor-

mation is implicitly embedded into the spatio-temporal dependency among pixels or

patches instead of being explicitly described by motion vectors.

Firstly, we propose a parametric model based on a spatio-temporal adaptive local-

ized learning (STALL). We formulate video modeling as a linear regression problem,

in which motion information is embedded within the regression coefficients. The co-

efficients are adaptively learned within a local space-time window based on LMMSE

criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme,

we can enhance the modeling capability of STALL on more general videos. Under

the framework of STALL, we can develop video processing algorithms for a variety



of applications by adjusting model parameters(i.e., the size and topology of model

support and training window). We apply STALL on three video processing problems.

The simulation results show that motion information can be efficiently exploited by

our implicit motion representation and the resampling and fusion do help to enhance

the modeling capability of STALL.

Secondly, we propose a nonparametric video modeling approach, which is not de-

pendent on explicit motion estimation. Assuming the video sequence is composed of

many overlapping space-time patches, we propose to embed motion-related informa-

tion into the relationships among video patches and develop a generic sparsity-based

prior for typical video sequences. First, we extend block matching to more general

kNN-based patch clustering, which provides an implicit and distributed represen-

tation for motion information. We propose to enforce the sparsity constraint on a

higher-dimensional data array signal, which is generated by packing the patches in

the similar patch set. Then we solve the inference problem by updating the kNN ar-

ray and the wanted signal iteratively. Finally, we present a Bayesian fusion approach

to fuse multiple-hypothesis inferences. Simulation results in video error concealment,

denoising, and deartifacting are reported to demonstrate its modeling capability.

Finally, we summarize the proposed two video modeling approaches. We also

point out the perspectives of implicit motion representations in applications ranging

from low to high level problems.
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Chapter 1

Introduction

Video modeling is to build analytical models for explaining the intensity distribution

in video signals. Based on the models, we can develop algorithms for accomplishing

particular video-related tasks, in which the information offered by video can be pro-

cessed, analyzed, and exploited. Unlike an image where only spatial information is

recorded, a video captures a dynamic evolution of a scene, in which motion is often

included. As we have known, motion plays crucial roles in video related applications

which range from low level to high level vision tasks1. Efficiently and reliably exploit-

ing motion information is therefore pursued by most video modeling approaches.

A task of video modeling is to find a suitable motion representation so as to ex-

ploit motion information efficiently. A large amount of video modeling approaches

employ the correspondence-based motion representations, which is motivated by the

physical representation of motion. Specifically, the motion of a point is represented

1The low level vision tasks include all tasks that directly process, exploit or deal with local
pixel intensity, color, orientation, and scale. For example, denoising, interpolation, and low level
compression belongs to this category. At the other extreme end, the high level vision tasks include
the tasks to understand or analyze the content or objects inside an image or video, e.g. recognition,
scene interpretation or understanding. The tasks lie between these two ends belong to mid-level
vision tasks, which, for example, include segmentation, edge detection, and etc.[1]
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by its velocity or displacement vector, which points to its correspondence in another

frame[2]. The velocity or displacement field can be estimated by certain motion esti-

mation(ME) techniques in order to serve for video modeling. Although this explicit

representation is consistent with the format in physics, it is not always the most ef-

ficient or accurate way to describe motion recorded by the digitized source. In a lot

of cases, the correspondence-based representations can even be the source of difficul-

ties for exploiting motion information[3]. Furthermore, the ME which supports the

representation is still an open problem. Thus video models with such explicit motion

representations can probably achieve a suboptimal solution in many cases.

Fortunately, when serving for some applications in which the motion vector field

is not a necessary output, such explicit representation and the corresponding ME

tend to be unnecessary and can be avoided. This observation motivates the other

class of video approaches which do not depend on explicit motion representations.

In these video models, although motion is not explicitly described by a velocity or

displacement vector, it can also be implicitly exploited by embedding into spatio-

temporal dependency in pixels or patches. Such video models circumvent the error-

prone correspondence-based representations and the suboptimal motion estimation.

Therefore they exhibit potentials to handle more general video signals especially in

low level vision tasks.

In this chapter, we will give a brief overview of the two classes of video modeling

approaches in which motion is differently represented. Then we present a sketchy

description of our contributions in developing video models with implicit motion

representations.

2



1.1 Video Modeling by Explicit Motion Represen-

tations

Explicit motion representation aims at describing the motion in video by velocity

or displacement vector field. The estimation of motion field is often assumed to be

the essential step of video modeling with explicit motion representations. With the

motion field, motion information is then exploited for various applications. In order

to discuss the limitation of the explicit motion representation, it is necessary to know

how motion field can be estimated by the ME techniques.

Most motion estimation techniques are derived from the following brightness con-

stancy constraint,

I(x, y, t) = I(x + δx, y + δy, t + δt) (1.1)

where I is the intensity value of a scene point in a frame; x,y and t are the spatial and

temporal coordinates in a video sequence; (δx, δy) are spatial location change of the

point caused by either camera or object motion, δt is the time interval between two

frames taken at time t and t + δt. Eq.(1.1) shows the intensity value of a scene point

in the imaging plane keeps constant in different time slots even though its location

changes. A lot of motion estimation methods are generated from the constancy

constraint in Eq.(1.1). We can classify them into differential-based and matching-

based techniques.

One example of differential based ME techniques is the known Lucas-Kanade

method[4]. It tries to calculate the motion between two image frames which are taken

at time t and t + δt at each pixel position. Assuming motion are small between two

consecutive frames, Eq.(1.1) can be easily transformed into an optical flow equation

(OFE) by taking the first order Taylor expansion:

It + ∇I · [Vx Vy] = 0 (1.2)

3



where It = ∂I
∂t

, ∇I = [ ∂I
∂x

∂I
∂y

], Vx = ∂x
∂t

and Vy = ∂y
∂t

are the velocities along two spatial

directions. In this method, motion is explicitly represented by the velocity vectors

[Vx Vy]. Since there are two unknown variables but just one equation, it is an ill-posed

problem2 to solve Vx and Vy directly by Eq.(1.2). Fortunately, we observed that the

motion field is generally locally smooth, that is, surrounding pixels of (x, y, t) have

similar motion characteristics. We can incorporate the motion smoothness constraint

into Eq.(1.2) to make the problem well-posed. Then the problem is reduced to a

Least Square problem to estimate [Vx Vy]. By solving the velocities of all pixels in a

video frame, we can obtain a so called ”optical flow” field. Fig.1.1 shows an example

of the optical flow estimated by this method.

The above Lucas-Kanade method works well on texture and edge corners. But

it produces large estimation error in the following cases. When motion is relatively

large which makes the small motion assumption invalid, Taylor expansion does not

hold, which invalidates Eq.(1.2). In this case, we can introduce the multiscale idea to

hierarchically apply Lucas-Kanade method to solve this problem[5]. In another case

where the surrounding pixels have different motions (e.g., moving object boundary),

the spatial motion smoothness constraint does not hold. This case motivates the

regularization based methods, in which a global constraint of smoothness is introduced

to solve such problem[6]. In even worse case, the brightness constancy constraint is

not satisfied. For example, the illumination happens to change frame to frame. In

such case, the differential-based method cannot estimate the optical flow correctly.

We can opt to matching-based motion estimation methods.

One example of matching based ME techniques is based on feature tracking. In

these approaches, deterministic parametric motion models are usually chosen, such

2The mathematical term well-posed problem is defined by Hadamard as a problem where there
exists a unique solution and the solution of which dependes continuously on the data in some
reasonable topology. Problmes that are not well-posed in the sense of Hadamard are termed ill-
posed.

4



Figure 1.1: Above: two consecutive video frames of mobile, bottom: estimated optical
flow between the two frames
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as affine or perspective[2]. Then suitable matched feature points in different frames

(usually two frames) are selected to establish a well-posed solution for parameter

estimations. Due to the deterministic model and the limited number of feature points,

these kind of approaches are usually able to obtain either a sparse motion field or an

estimation of global motions. Thus they are widely used to estimate global camera

motion [7] or image registrations[8]. The limitations of these approaches come from

two sources. The first is their parametric model. Due to the complexities of natural

motion, the deterministic imaging models are far from enough or correct. The second

is that it is highly dependent on feature selection and tracking techniques. Although

much work on this problem has been done in the computer vision community[9],[10],

feature selection and tracking are still an open problems, which limits the performance

of these matching based ME techniques.

Figure 1.2: Block Matching Algorithm

Another typical matching based technique is the widely used block matching based

method[11],[12],[13],[14]. Although rooting from the same brightness constancy con-

straint in Eq.(1.1), block matching based method solves the problem in a nonlocal

way. As shown in Fig.1.2, this kind of method is to nonlocally find a matching of one

block in reference frame(s) instead of solving the local differential equations. The rel-

ative location of the matched block in the reference frame is taken as motion vector.

6



The matching criteria is defined by a similarity measures, which can be a function

of sum of squared error(SSE), sum of absolute difference(SAD), or some correlation

based distance. Using different similarity measure, block matching method can han-

dle the case where the brightness constraint does not hold due to the non-uniform

illumination[15]. By introducing nonlocal information, block matching method can

get better accuracy for large motion estimation even though it could incur higher

complexity by increasing the searching range. Since the operation unit is a pixel

block, motion smoothness constraint is implicitly included in this technique. In the

case that the motions in the block have different characteristics, subdivision or seg-

mentation can be introduced to split the block firstly, then the matching is done for

each subblock independently[16],[17].

Recently, a new motion estimation technique appeared, which can be regarded

as the combination of optical flow based and matching based approach. They call

it particle video, since the video motion is represented using a set of particles[18].

Each particle is an image point sample with a long duration trajectory and other

properties. The number and location of particles are optimized by measuring point-

based matching along the particle trajectory and distortion between the particles. In

[18], five steps (i.e., propagation, linking, optimization, pruning, and addition) are

defined to keep refining the distributions of particles in a video sequence. Unlike

the traditional optical flow representations that usually consider only two frames,

particle video enforce long-range correspondence cosnsistency which is useful for many

applications, like restoration, segmentations. Comparing to other matching based

approaches, particle video can achieve a relatively dense motion field since the particle

can be a pixel unit and can be non-uniformly distributed over video frames.

Although video modeling by explicit motion representation is conceptually simple,

it has some limitations coming from the motion representation and corresponding

motion estimation techniques. We summarize them as follows:

7



First, due to the limited sampling rate of video capture devices in space and time,

the brightness constancy constraint that most of the explicit models originate from is

only approximately valid in the discrete domain. For example, the brightness along

a motion trajectory can be roughly regarded as constant in a relative smooth area

with slow motion. However, in a texture region with fast motion, it’s another story

because of the impact of spatial and temporal aliasing. Once the brightness constancy

constraint is not accurate, the correspondence is hard or not able to be found, which

contributes to the motion estimation inaccuracy.

Second, motion estimation with explicit representation could become very difficult

and inaccurate when motion becomes rather complicated. As we have known, most

explicit motion representations suffer a lot from the two notorious problems, occlu-

sion and aperture problem[2]. In occlusion problem, the object can be blocked or

unblocked by others in future frames, which makes the correspondence hard to find.

Aperture problem goes to the other end where a block or point can find more than

one correspondence in other frames, which could be caused by the intensity homo-

geneity or structure similarity. Besides these problems, the natural motion includes

more complex patterns: when zooming happens, we even cannot give an accurate

definition of the correspondence; given a deformable motion(e.g. smoke and water’s

motion), the correspondence point can disappear forever in other time slots(frames).

All these examples imply that the explicit correspondence based motion represen-

tation is far from complete to describe the characteristics of natural motion, which

causes the inaccuracy of the video models based on it.

Moreover, the applicability of ME into incomplete or noisy observation data is still

questionable. In most of the video models with explicit motion representation, the ob-

servation is assumed to be complete and noise free. However, such assumption could

be invalid in many real cases. In inpainting [19] or error concealment[20] problem, we

just have the video data with block or pattern loss; in video denoising[21], the obser-

8



vation data are the corrupted version of the original one; in video superresolution[22],

we only have low resolution video frames. In these applications, ME becomes very

challenging and tends to be suboptimal or even incorrect. The video modeling ap-

proaches based on them are therefore not reliable.

New video models are expected to appear based on a deeper understanding of

video signals. Recently, a new class of video modeling approaches have sprouted.

These approaches avoid the correspondence based motion representation and opt to

represent motion implicitly. Comparing to an explicit model, such implicit model

enjoys many advantages especially in low-level vision applications, which we will

elaborate in the following sections.

1.2 Video Modeling by Implicit Motion Represen-

tations

In the physical world, it is reasonable to describe the motion of a point by displace-

ment or velocity. However, in digital world, correspondence based description of

motion is questionable. The correspondence based motion representations usually

assign probability one to a single motion vector. This hard-assigned motion vector

is often not optimal due to the imperfectness of video source. For example, the cor-

respondence of a point can disappear through frames because the limited sampling

rate in space and time3. In this case, we may not find the corresponding point in

other frames but we can still observe motion. And the existance of occlusion and

aperture problems in video source makes such representations not effecient. More-

over, the noisy observation can degrade the performance of ME techniques. However,

3Although it long-range constraint is enforced in particle video[18], to build the particle field, we
still need enough sampling rate to maintain the continuity of motion trajectories.
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we find in some low-level vision applications that the motion field is not the neces-

sary output, we do not have to explicitly represent the motion and take the motion

estimation as necessities for exploiting motion information. In some literatures[23],

authors even argue the explicit motion estimation may harm the restorations tasks.

They agree that motion can be exploited in some implicit ways. In the past decades,

some video modeling approaches with implicit motion representations are proposed.

With promising performance, these approaches generally have higher flexibilities in

many applications when compared to the conventional explicit methods.

The spatio-temporal autoregressive(STAR) model is a kind of implicit video mod-

eling approaches[24]. This model expresses each pixel as a linear combination of

surrounding pixels lagged in space and time. With the neighborhood size and topol-

ogy defined, the model parameters (combination coefficients) can be globally learned

from the given image sequence. Although it is not explicitly represented or esti-

mated as motion vector, motion information is embedded into the model parameters,

which can be used for temporal texture synthesis or recognition tasks. A similar

model, dynamic textures, was proposed in[25]. In this work, the spatial correlation is

incorporated without imposing causal restrictions, which led to catch more complex

motions, especially when the STAR model is ineffective, such as rotation, acceleration

and some non-translational motions.

In [26], motion is represented by object tunnels, which is a volume carved out by

each moving object in the video domain. The motion modeling and segementation

problems can be formulated by a 3D volume competition problem. Then level-set

methodology is applied to solve the problem. This approach naturally embeds object’s

temporal smoothness through 3D curvature and consider jointly space and time over

multiple frames.

Other implicit video modeling approaches are mostly patch-based. A patch of a

video sequence is a data unit with a non-zero size and a topological structure over
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space and time. A 2D image block that is widely used in image and video coding[17]

is a special example of a patch with the temporal dimension equals to one and spatial

topology is a rectangle. Video epitome[27] is an example of implicit video modeling

approaches. The epitome of a video is a spatially and/or temporally compact rep-

resentation of the video. It retains the video’s essential textural, shape, and motion

information. Video epitome is introduced as a patch-based probability model that is

learned by compiling together a large number of examples of pathes from an input

video. Under a probabilistic generative model, any other video patches can be consid-

ered to have come from the video epitome, since it includes the essential content of a

video. In [27], video epitome was applied to solve low-level vision problems, like video

inpainting, denoising, and super-resolution, and showed promising performance.

In [28], [29], and [23], a nonlocal means approach is proposed for image and video

restorations. In these approaches, motion estimation is circumvented in restoration

tasks. The temporal redundancy is exploited by nonlocal patch matching. In the

work, the patch searching can have multiple outputs, which is unlike the traditional

block matching with singling out one most similar block. Thus the aperture problem

is even exploited as an advantage to get more correspondences for restoration tasks,

since more hypotheses are usually preferred in restoration problems. Another space-

time patch-based method for image sequence restoration is proposed in [30]. In this

work, there is no explicit motion estimation, but motion information is implicitly

exploited by adapting the topology of space-time neighborhood based on the local

analysis of the bias-variance trade-off. The authors suggests their approach can also

work together with motion compensation to cope with very large displacements due

to camera motion.

In [31], the image denoising method reported in their prior work K-SVD [32] is

extended to video denoising. Their work relies on sparse and redundant represen-

tations of small patches in the video sequence. The explicit motion representation
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and estimation are avoided. Motion information is implicitly embeded in the patch

dictionary that is trained from current and neighboring frames. The work VBM3D

proposed in [33] is also a patch-based sparsity restoration approach. Unlike the basis

pursuit approach in [31], VBM3D adapt signal to a set of fixed basis by generating

a higher dimensional signals with block clustering in space and time. The sparsity

constraint is enforced to the generated high dimensional signal by thresholding trans-

form coefficients. In this work, motion estimation is still not involved. But motion

information is exploited by space-time block clustering.

As we can see from the above review about various implicit motion representa-

tions, the motion-related information is not exploited by the format of motion vectors.

It can be embedded into the model parameters other than motion vectors, geometric

characteristics of video data, relationships among pixels or patches, and etc. In many

applications, these implicit models enjoy their flexibilities and effficiencies, especially

in restoration problems. However, they still have limitations. Either STAR or dy-

namic textures model is based on the stationarity assumption of a video source. The

model parameters are invariant over space and time. So such global learned parame-

ters cannot efficiently describe the motion information in natural video signals, which

is generally non-stationary. This limits the applications of these models. The ob-

ject tunnels concept is noval but it still depends on explicit motion model (e.g., affine

model in [26]) to finally estimate motion information given the segmentation surfaces,

which can limit the capabilities as we address. And the segmentation of object tunnel

is still problem when the observation is noisy. Although the patch-based implicit

models have received increasing attention, they are limited to denoising application

alone(except video epitome) and lack theoretically convincing interpretation about

their effectiveness.

Although these approaches have their potentials and limitations at the emerging

peroid of implicit motion model, these pioneering works do open our minds to explore
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more accurate and efficient motion representation approaches. In our work, we advo-

cate the implicit motion representations and target to pursue more video processing

models based on them.

1.3 Contributions

In this thesis, we continue to explore new video modeling methods with implicit mo-

tion representations. Specifically, we proposed a Least Squares (LS) based parametric

model and a patch-based nonparametric model. Both models cast away the corre-

spondence based motion representations. Motion-related temporal dependency can

be embeded into either filter coefficients or relationships among video patches.

In the first model, we formulate video modeling as a LS based auto regression

problem. Through a local spatio-temporal training, local motion information can be

carried by the regression parameters implicitly. Without explicit motion representa-

tions, the model can be exploited to support a variety of low level vision tasks. When

compared to the existing learning-based STAR model[24], our STALL model can be

viewed as a localized version that updates the model parameters on a pixel-by-pixel

basis. Such localization allows our model to handle a wider range of motion than

STAR and achieve higher computational efficiency. When compared to explicit mod-

els, STALL is often preferred in the scenario where a dense and subpixel motion field

is not affordable(e.g., in video coding) or feasible(e.g.,in video denoising).

Inspired by the works in[34] and[35], we propose patch-based video model. This

patch-based model does not depend on the explicit motion representations, but ex-

ploits the motion related dependency through a patch clustering and a generic spar-

sity model. Specifically, we propose to extend the block matching (neareset neighbor

search) into patch clustering (k-neareset neighbors search) and apply an adaptive

sparsity constraint to each patch cluster. Under a variational Bayesian framework,
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we treat both patch clustering result and unobervable data as latent variables and

solve the inference problem via an iterative algorithm. Repeating the process to

all patches in the video sequence, we can obtain a distributed representation of the

video due to the overlap of patches. Then a sparsity based Bayesian fusion scheme is

introduced to fuse the multiple hypotheses for the final inference.

In the following chapters of the thesis, the theories of the above implicit video

modeling methods will be introduced. We also demonstrate their capabilities and

performances in a variety of low level applications. The remaining of the thesis is

organized as follows:

In chapter 2, we propose the theory of STALL model by building up the duality

between the edge contour in 2D image and the motion trajectory in 3D video sequence.

Then we investigate the relationship between the model parameters and the video

source. Based on the relationship, we introduce a new concept of spatio-temporal

resampling together with an empirical Bayesian fusion approach to facilitate the task

of video modeling.

In chapter 3, we apply the STALL model on several low-level vision problems -

namely video error concealment/inpainting, video denoising, and video super-resolution.

As we can see, STALL model provide a class of unified solutions to attack these prob-

lems by adjusting the model parameters for different applications.

In chapter 4, we cover the theory of our patch-based implicit model. We first

extend the block matching (nearest neighor search) into patch clustering (k nearest

neighbor search). Then we illustrate how to establish the adaptive sparsity constraint

for exploiting the information in each patch cluster. We will introduce how to solve

the inference problem via an iterative algorithm under a Bayesian framework with

the patch clustering result and sparsity constraint.

In chapter 5, we will apply the patch-based model to three video processing prob-

lems, video error concealment, denoising, and compression artifacts removal. We will
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demonstrate its processing performance by comparing with both parametric model

and other nonparametric model.

Chapter 6 provides concluding remarks on our proposed models. We also discuss

the perspectives of implicit motion representations in applications ranging from low

to high level vision problems.
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Chapter 2

Video Modeling via

Spatio-Temporal Adaptive

Localized Learning

2.1 Introduction

In this chapter, we propose a parametric video modeling method which is not based on

explicit motion representations. Motivated by the duality between a 2D edge contour

and a 3D motion trajectory, we formulate the video modeling problem as a Least-

Square based adaptive filtering problem. The filter coefficients (model parameters)

can be estimated in a pixel by pixel fashion through a spatio-temporal adaptive

localized learning (STALL). The adaptation can be achieved by the localized learning,

which makes the model more flexible than the explicit models.

Similar models as our STALL model are the STAR and dynamic textures model

proposed in [24] and [25] respectively. However, both STAR model and dynamic tex-

tures model attempt to capture the motion characteristics by certain global learnings,

which are based on the stationarity assumption of the video source. Unfortunately,
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this assumption is inaccurate or even invalid for most natural video signals. When the

motion becomes complicated, these models try to capture more details by increasing

the number of model parameters. This incurs higher computational cost. Although

introducing more model parameters can make the model more accurate, it is still

in expedient, which does not solve the problem from the root, i.e. the inaccurate

stationary assumption and the global learning. Unlike the global learning by STAR

and dynamic textures model, STALL catches motion information through a localized

space-time adaptive learning. Due to the localization characteristics, the number of

model parameters can be reduced to less than ten, which is easy to implement and

provide chances to develop fast algorithms. In our STALL model, we just assume the

motion is stationary within a very small local region. The model parameters can be

updated in a pixel by pixel fashion, which provides a way to adaptively model the

non-stationary video signals.

The rest of this chapter will be organized as follows: in section 2.2, we introduce

the duality between 2D image contour and 3D motion trajectory in video, by which

we work out our STALL model in section 2.3. In section 2.3 we analyze the impact of

motion type to the settings of model parameters. Based on the analysis, in section 2.4

we introduce a spatio-temporal resampling and a empirical Bayesian fusion technique

for STALL to facilitate the video modeling task. In section 2.5, we conclude the

parametric model and provide the orientation of future research.

2.2 Duality between 2D image contour and 3D

motion trajectory

The duality between edge contours in still image and motion trajectories in video

can be best understood in the continuous space. Loosely speaking, edge contours are

planar curves characterizing the boundary of an object in an imaging plane; motion
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trajectories are 3D curves showing the projected positions of the same physical point

of an object onto image plane along the temporal axis. Radiometric modeling of

imaging process tells us that the irradiance E of a point in the imaging plane (intensity

value before digitization) is proportional to the radiance L of an area in an object

[36]. If we assume the object surface is approximately Lambertian (ignore specular

effects), it can be shown that the surface radiance of any point in the object is jointly

determined by the surface characteristics (i.e., geometry and material characteristics)

and incident radiance. So the variation of intensity field could caused by change of

either surface characteristics or incident radiance, which can form edge contours in

the image plane.

Generally an isotropic distribution of the surface characteristics and incident ra-

diance will form a smooth area in the image plane, while an anisotropic distribution

will shape edges or textures. We can observe that the intensity field will vary dramat-

ically in the orientation crossing an edge while it will keep constant along the edge,

which is the so-called geometric constraint. Similarly, in video scenario, if the rela-

tive geometric relationship between incident radiance and scene is unchanged (e.g.,

slow and smooth motion), the irradiance E of the same physical point would remain

constant along the temporal axis. Such observation gives rise to another type of ge-

ometric constraint - i.e., iso-intensity constraint along the smooth motion trajectory,

which is shown by a synthetic example in Fig.2.1. We can find that the iso-intensity

constraint along the motion trajectory is the same as brightness constancy constraint

introduced in Chapter 1.1.

Although it is generally difficult to display the iso-intensity profile in 3D, visual-

ization becomes easier when motion is constrained to horizontal camera panning. If

we denote a video sequence by I(x, y, t). As shown in Fig.2.2, we can cut along a

fixed vertical index y = y0 and obtain a spatio-temporal slice I(x, y0, t). The flow-like

patterns in such slice convey the information of motion trajectory and we can easily
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Figure 2.1: Duality between edge contour and motion trajectory

check the validity of motion-related iso-intensity constraint.

Figure 2.2: Iso-intensity constraint along motion trajectory can be seen more clearly
by analyzing spatio-temporal slices.

The above duality provides us a way to model a video signal by exploiting the

motion trajectory iso-intensity constraint as the approach to model an image signal by

the edge geometric constraint. We will derive and explain our model in the following

sections.

In the discrete space, we acknowledge that spatial and temporal aliasing do have

different impact on motion-related geometric constraints. In this work, we assume

19



Figure 2.3: Motion trajectory and point displacement

that the spatial and temporal sampling rate are high enough to ensure that motion-

related geometric constraint is approximately satisfied. Here we need to notice that

such assumption is also implicitly required by most of the explicit motion models,

in which the extraction of accurate motion information is always dependent on the

enough sampling rate both in space and time. Even in other implicit video models, the

severe aliasing does impact the modeling capability, though it is not stated explicitly.

2.3 Video Modeling via STALL

2.3.1 From Explicit to Implicit Motion Representation

Suppose {s(x, y, t)} is the video in a continuous space where (x, y) and t are the

spatial and temporal coordinates respectively. As shown in Fig.2.3, explicit ME is

based on the formulation of following correspondence problem:

s(x, y, t) = s(x − Δx, y − Δy, t − Δt) (2.1)

where (Δx, Δy) is the displacement vector of the considered point from t − Δt to t

(current timing). Using 1st-order Taylor expansion, we can get

Δx
∂s

∂x
+ Δx

∂s

∂y
+ Δt

∂s

∂t
= 0 (2.2)
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If we divide both sides of Eq. (2.2) by Δt and let Δt → 0, the classical optical flow

equation follows:

∂s

∂t
=

∂s

∂x
�vx +

∂s

∂y
�vy (2.3)

where �vx and �vy are the velocities of a point in x and y directions respectively. How-

ever, since our interest is not to estimate displacement (Δx,Δy) or velocity vector

(�vx,�vy) at (x, y), we opt to expand the Eq. (2.2) by incorporating the estimation of

spatial gradients. For example, finite difference scheme [37] gives1

∂s

∂x
=

s(x + h, y) − s(x − h, y)

2h
∂s

∂y
=

s(x, y + h) − s(x, y − h)

2h
(2.4)

∂s

∂t
=

s(x, y, t) − s(x, y, t − h)

h

where h is the spatial sampling grid increment. Substituting Eq. (2.4) into Eq.

(2.2), we obtain

s(x, y, t) = s(x, y, t − h) +
Δx

2Δt
s(x − h, y, t) − Δx

2Δt
s(x + h, y, t)

+
Δy

2Δt
s(x, y − h, t) − Δy

2Δt
s(x, y + h, t) (2.5)

Eq.(2.5) can be viewed as the convolution of s with a five-point kernel. The

topology of the kernel is shown in Fig.2.4. More generally, if Taylor expansion with

higher-order derivatives is used, finite difference approximation will produce the con-

volution of s with a linear kernel with a larger support

s(x, y, t) =

∫
(x′,y′,t′)∈Nc(x,y,t)

a(x′, y′, t′)s(x′ − x, y′ − y, t′ − t)dx′dy′dt′. (2.6)

1note that such approximation is not unique
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Figure 2.4: Five-point kernel topology

where kernel a(x′, y′, t′) includes all coefficents of the terms on the right side of Eq.

(2.5). Note that all terms related to displacement (motion) Δx, Δy are all assimilated

into the linear kernel.

When compared with Eq. (2.1), we argue that Eq. (2.6) has the following advan-

tages: 1) it better fits the discrete approximation - linear convolution simply becomes

linear filter. Although there is no additional interpolation kernel involved, we can

obtain sub-pel accuracy motion information adaptively. 2) it improves the robust-

ness to observation noise because of the increased support size (due to higher-order

expansion).

In the discrete space, we use s(r, c, t) to denote video signals, where r ∈ [1, R]

and c ∈ [1, C] are two spatial coordinates (row and column index respectively) and

t ∈ [1, T ] is the temporal one. For the simplicity of notation, we denote the position

of current pixel by �n0 = (r, c, t) and its surrounding neighbors within the support of
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filtering kernel �a by �ni (i = 1, 2, ..., N). Then Eq. (2.6) becomes

s(�n) =

N∑
i=1

ais(�ni). (2.7)

which is closely related to the spatio-temporal autoregressive (STAR) model proposed

in [24]. However, unlike STAR in which model parameters are trained globally from

the given sequence, we propose to update the set of AR coefficients �a = [a1 a2 ... aN ]

within a local space-time training window on a pixel-by-pixel basis.

We denote the training window centered at �n by M(Ts, Tt) = [r−Ts, r+Ts]× [c−

Ts, c + Ts] × [t − Tt, t + Tt] (M ′ = (2Ts + 1)2(2Tt + 1) is the total number of training

sample candidates). Our training samples are selected from these candidates based

on the availability of the pixels within the training window. Assume there are M

samples selected and organized into a vector �y. The N neighbors in N (�ni) for each

sample selected can be packed into a 1 × N row vector Xi. An M × N data matrix

D can be generated as

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

XM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The derivation of locally optimal AR coefficients �a follows the standard Least-Square

formulation

�a = argmin
�a

||�yM×1 − DM×N�aN×1||2 (2.8)

Once the number of training data M is larger than the number of neighbors N , it

has closed-form solution, which is given by

�a = (DT D)−1(DT�y) (2.9)
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where DT D, DT�y are empirical estimation of local covariances. Such result can be

viewed as the extension of traditional 2D Kalman filtering [38] into 3D. Motion in-

formation, as we have shown in our derivation, is implicitly embedded into the filter

coefficients �a.

Our implicit motion model is particularly appealing to low-level vision tasks such

as video interpolation, filtering, and prediction for the following three reasons. First,

since implicit model is only based on the smoothness constraint of motion trajec-

tories, it has improved capability on handling complex video material than explicit

motion models. When the accuracy of ME becomes questionable (e.g., due to block

approximation, ill-posed nature, non-ideal observation, suboptimal motion represen-

tation), ME-based techniques produce poor performance. By contrast, the proposed

implicit motion model can handle most typical video material containing slow and

smooth motion including camera panning, rotation and zoom 2. Second, the filtering

perspective in STALL allows us to adaptively achieve the tradeoff between spatial

and temporal dependency. Such tradeoff is important to model the video source with

occlusion and nonrigid motion. In the extreme case of either little temporal depen-

dency or little spatial dependency, we will see the model can automatically switch

to exploit the information from the other side by spatio-temporal learning. More-

over, the sub-pel accuracy motion estimation is often obtained by spatial invariant

interpolation in most explicit motion estimation techniques[39][40]. However, STALL

implicitly includes the spatial and temporal adaptive interpolation to achieve higher

modeling accuracy.

2Fast and rapid motion is handled by incorporating the space-time resampling and Baysian fusion
technique into STALL, which will be introduced in section 2.4
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2.3.2 Model Parameter Setting to Capture Motion

A. Localized learning for adaptation

The main difference between STALL and STAR[24] lies in its localization. STALL

model can update the model parameters in a pixel by pixel fashion by a localized

learning instead of a global learning adopted by STAR. The reasons that we prefer

this localized approach are mainly from the nonstationarity of video signals. We

perform the following conceptual test to verify the necessity of this localized learning.

Define the topology of filter support as shown in Fig.2.4. We look the training

window paramaters Ts and Tt as two variables. So the size of training window varys

with Ts and Tt over space and time, as shown in Fig.2.5. The goal of this test is

to predict current pixel (i.e., pixel in red in Fig.2.4 and Fig.2.5). We are going to

watch the variations of prediction performance (PSNR) with the change of model

parameters Ts and Tt.

frame k−1 frame kframe k−Tt

... ...
2Ts+1

2T
s+

1

Tt

Training Window

Current Pixel

frame k−2

Figure 2.5: Topology of training window parameters

Fig.2.6 shows the PSNR evolution with the variations of training window param-

eters. We can see the performance acheives the maximum only in a relative local

range. When the training window becomes larger in space and time, more pixels will

be incorporated into training. However, due to the nonstationarity of video signals,

more and more outliers could also be included, which could degrade the performance.
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Figure 2.6: PSNR evolution with variations of training window parameters Ts and
Tt. Left: salesman-qcif, right: garden-qcif

In general, the optimal training window is dependent on many factors, such as

video content (i.e., motions and scene contents) and video resolution. Roughly speak-

ing, we can choose relative larger training window for the video with slow motion and

smooth scene than that with fast (or complicated) motion and textural scene. We also

observe the optimal training window size will become large with increasing the video

resolution. For example, both plots in Fig.2.7 are tested on coastguard sequence, but

in different resolutions. The PSNR peak moves towards the relative larger training

window size in higher resolution video (i.e., cif). It is reasonable since there are more

capturing sensors involved in imaging. So we can find more pixels with the same

motion characteristics for a better training result.

B. Topology Adaptation to motion

As shown in section 2.3.1, the parameters of STALL model are the filter support

N (�n) and the training window M(Ts, Tt). Filter support and training window can

incorporate both spatial and temporal pixels. The size and topology of them can

be changed over space and time in order to make STALL model capture different

motions, which provides a foundation to build up a class of unified algorithms for

different applications. In usual case, we fixed the size of the filter support and training
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Figure 2.7: PSNR evolution with variations of training window parameters Ts and Tt

in different resolution. Left: coastguard-qcif(176 × 144), right: coastguard-cif(352 ×
288)

window throughout the whole sequence for computational simplicity, though it is not

necessitated. In the following, we will introduce how to make STALL model to fit

different motion characteristics through adjusting the shape of the filter support and

training window.

In a lot of video sequences, especially in some high definition(HD) video, the

dominant motion is relatively slow.3 When the dominant motion in the video sequence

is relatively slow, we can just use a straight filter support and training window, like

the left in Figure 2.8 throughout the whole sequence, since the slow motion trajectory

is relatively straight and will not step out these area in a local region. However, when

the motion in a video sequence becomes fast, the motion trajectory could change

dramatically so that the straight filter support and training window cannot cover it

in the local region. In this case, we need to adjust the setting by skew the filter

support and training window along the orientation of motion trajectory, which is

illustrated in the right of Figure 2.8.

However, in a general video sequence, there could be both slow and fast motion

3Although the motion itself can be large, it could be relatively slow in consecutive frames because
of high temporal sampling rate (frame rate). The temporal sampling rate is about 24 to 30 frames
per second(fps) for standard definition(SD) video, 60 fps for HD video.
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frame k−1 frame k frame k+1

Trajectory
Motion

frame k−1 frame k frame k+1

Motion
Trajectory

Figure 2.8: Model parameters (filter support and training window setting for captur-
ing different motion characteristics: left is for relatively slow motion, right is for fast
motion.)

Figure 2.9: Layered representation of a video frame

components existing at the same time (frame), which could be caused by the differ-

ence of scene depth or velocities of the objects in it. In this case, we would like to

request the parameter setting can adaptively fit the requirement of the local motion

characteristics. This adaptation need the prior information of motion, such as high

level motion segmentation results. If we can obtain a layered representation of a video

by some motion segmentation approaches[41], as shown in Figure 2.9, we can easily

realize the adaptiveness by using the right model parameter settings for each layer.
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However, such prior motion information is usually based on the video modeling

result which is what we are pursuing now. To escape from this dilemma, we introduce

a resampling and a Bayesian fusion technique to facilitate STALL model to solve this

problem, which dramatically enhances the modeling capacity of STALL model. We

will elaborate these techniques in section 2.4.

2.4 Video Modeling by Spatio-Temporal Resam-

pling and Bayesian Fusion

2.4.1 Distributed representation of a video

As mentioned in section 2.3.2, the effectiveness of STALL largely depends on the

choice of model support N and training window M. When both N and M are

fixed, STALL can only handle the class of video containing single motion velocity

that fits the parameters setting. Although adaptive selection of N and M by layered

representation [42] is conceptually appealing, practically implementing such idea faces

the obstacle of layer decomposition or motion segmentation especially in view of the

uncertainty with the suboptimal segmentation results.

An alternative solution to achieve spatio-temporal adaptation is to realize the

fundamental tradeoff between space and time. Specifically motion is a relative con-

cept. The perception of motion arises from the spatial displacement of the same

physical point with respect to the camera. Therefore, a moving object might appear

still if the camera is moving in parallel to the object at the same speed. Such ob-

servation motivates us to introduce a class of spatio-temporal resampling techniques

for video modeling. By analogy to resampling in statistics[43], we propose to obtain

spatio-temporally resampled signal by ”reversibly” transforming the original video

into another perceptually meaningful one. For example, temporally reversing a video
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sequence is a valid resampling operation (reversed signal is physically infeasible but

perceptually convincing); while spatially or temporally shuffling a sequence usually

destroys the motion continuity and therefore is not a valid resampling candidate for

capturing motion characteristics.

In this work, we consider the class of effective resampling via spatio-temporally

warping as shown in Figure 2.10. Specifically, the nth frame is shifted by [(n −

1)vcx, (n − 1)vcy],(vcx, vcy are integers). Note that such warping is readily reversible

since no interpolation is involved [44]. The impact of warping can be intuitively

understood by referring to Figure 2.10 - when the warping direction matches the

motion orientation of interest, a slant trajectory could be transformed into a straight

one (therefore better fit the STALL model with the fixed and straight setting of N

and M). The warped video can be looked as captured by a virtual camera which

records the same scene but with a different camera speed �vc = (vcx, vcy). Note that

the above resampling strategy does not affect the motion continuity and therefore the

warped video is still perceptually meaningful (ignoring boundary artifacts).

Figure 2.10: An example of spatio-temporal resampling: vertical axis denotes y di-
rection (vcx = 0)
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Given a set of camera speeds Vc = {�vci}m
i=1, resampling produces a redundant or

distributed representation for a video signal. To manage the computational complex-

ity, we make some assumption about high-level knowledge about video such as camera

motion type (e.g., panning vs. zooming), which is often available from video segmen-

tation or can be estimated from some global models like phase-correlation[2]. Such

high-level information is useful to select resampling parameters, i.e. virtual camera

speed set. For instance, we can set vcy = 0 to each element �vci in the virtual camera

speed set for the video sequence with only horizontal camera panning. Figure 2.11

shows the temporal slices of original and resampled video for garden (up) and mobile

(down) sequence. It can be clearly seen that the fast panning tree in garden sequence

moves slower and slower as the warping parameter vcx increases. The general virtual

camera speed with (both vcx and vcy are not equal to zero) is used for mobile sequence,

in which the motion change can also been observed.

Such observation with the relativity of motion provides an effective distributed

modeling approach, which can dramatically enhance the modeling capability of STALL

model. It suggests an alternative approach of achieving adaptation by soft fusion in-

stead of hard decision as in layer-based motion segmentation. Note that even when

a fixed training window is used, spatio-temporal adaptation can be achieved by re-

sampling because the training samples vary from one resampled video to another.

Apparently, we might choose the optimal training window (in some virtual camera)

for a pixel, which assigns a deterministic label to each pixel (the layer index). Such

strategy can be shown equivalent to a maximum likelihood (ML) approach of making

hard decisions for every pixel. Next, we will show how to softly combine the regression

results from distributed virtual cameras under a Bayesian framework.
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Figure 2.11: Example of spatio-temporal resampling applied to garden sequence con-
taining horizaontal camera panning (up) and mobile sequence containing camera
zooming

2.4.2 Bayesian Fusion of Linear Regression Results

The spatio-temporal resampling can provide us a distributed representation of the

observed video sequence as shown in Fig.2.12. We denote the resample set by

S = (S1, S2, ..., SK). For each resample Si, we can apply STALL on it to obtain a

hypothesis for current pixel, which provides us a way to highly redundantly describe

the video signal.

We use (X1, X2, ..., XK) to denote the linear regression result by applying STALL

to K resampled sequences respectively, denote the true intensity value of current pixel

by X and the estimate of X by X̂ (to simplify the notation, we drop 3D coordinated

�n from now on). We consider the Baysian Least-Square estimation given by the
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Figure 2.12: Distributed representation of a video provided by resampling

conditional expectation, i.e.,

E[X̂|X] =

K∑
k=1

αkXk (2.10)

where the linear weighting coefficients αk = P (Xk|X) denote the posterior probability

of inferring X from the k−th resampled sequence Sk by Xk = E[X̂|X, k]. By Bayesian

rule, the weighting coefficients can be calculated by

αk = P (k|X) =
P (X|k)P (k)∑K
i=1 P (X|i)P (i)

(2.11)

where P (k) is the prior probability and P (X|k) is the likelihood function of observing

X in the k-th resampled sequence. Using STALL[45], we can empirically model

P (X|k) by the regression error e′ through Eq.(2.12) for the k-th regression result Xk.

e′(�n0) = X(�n0) −
N∑

i=1

aiX(�ni) (2.12)

Since the original data is what we are modeling, Eq.(2.12) is not available to us. But

we can exploit the training error which happens at the regression period to estimate
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the real error e′ as

e(�n0) = ||�y − D�a||2 (2.13)

Assuming a Gaussian probability function4, we have

P (X|k) = P (ek) ∝ exp(
−e2

k

2σ2
) (2.14)

where ek is the regression error of k-th virtual camera by Eq.(2.13) and σ2 is a constant

determined by heuristics (similar to those used in bilateral filtering [46]). So Eq.2.11

can be simplified as

αk = P (k|X) =
exp(

−e2
k

2σ2 )∑K
i=1 exp(

−e2
i

2σ2 )
(2.15)

It is easy to see that smaller regression errors lead to larger conditional probabilities

in the fusion model Eq.(2.11), which matches our intuition that αk should reflect the

confidence about the modeling result of k−th resampled sequence. Intuitively, as

long as the virtual cameras speed set is sufficiently large, any segment of a smooth

motion trajectory is likely to be warped to the straight position (aligned with the

straight training window) in some resampled sequence. Upon the alignment, local-

ized regression by STALL will produce smallest errors and therefore make the largest

contribution during Bayesian fusion. When compared with hard-decision based layer

representation, our distributed model systematically pools together the inferring re-

sults from the resampled sequences and avoids the penalty of the uncertainty with

any suboptimal labeling process.

Our modeling procedure is shown in Fig.2.13. Firstly we resample the video signal

by a set of virtual cameras which have different speeds. After getting the distributed

representation of the processing video, we apply STALL to each resample to obtain

4The function here is not unique. Actually we can choose other functions to modeling P (X |k)
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Figure 2.13: Modeling procedure by resampling and fusion

a modeling hypothesis and a weight which comes from the training error. Finally we

fuse all modeling hypotheses by the weights to get the final modeling result.

2.5 Conclusion

In this chapter, motivated by the observation of duality between edge contours in

images and motion trajectories in video sequences, we proposed STALL, a paramet-

ric video model with an implicit motion representation. By formulating the video

modeling problem as a linear regression problem, STALL model exploits the motion

information through an adaptive space-time localized learning. Such space-time lo-

calization and adaptation provide STALL powerful modeling capability for handling

more general video sources.

More importantly, STALL model possesses flexibilities to capture different mo-

tion characteristics by setting different model parameters, i.e. model support and
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training window. To further enhance the modeling capability of STALL to model the

video sequences with mixing or complex motions, a distributed modeling technique by

spatio-temporal resampling is introduced based on the relativity of motion. Instead

of using hard-decision based adaptation scheme to select the best regression result

of a certain resampled sequence, we use a Bayesian based soft fusion technique to

combine all available regression results, which avoid the penalty of the uncertainty

with any suboptimal labeling process.

The importance of STALL model lies not only in the above mentioned flexibilities,

but also in the fact that it provides us a unified model for different of applications.

So under this framework, we can apply the same model for different applications.

The only thing we are required to do is to provide appropriate model parameter

settings to fit the requirements of the corresponding applications. In next chapter,

we will apply STALL model to different low-level applications to show the promising

modeling capability of STALL.
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Chapter 3

Applications of STALL

3.1 Introduction

As mentioned in the previous chapter, STALL model provides us a flexible video

modeling approach, in which motion is implicitly represented without explicit motion

estimation. It gives us a foundation to build a class of unified algorithms for low-

level vision problems. Thus we can apply the same model to various applications by

providing different model parameter settings (e.g., the causality or topology of model

support and training window)[45]. As the examples shown in Fig.3.1, in interpolation

problem, we use non-causal model support and training window; in interpolation

problem, we generate the support and training window based on the low resolution

data; in prediction problem, we just change them to causal ones without changing

the backbone of the algorithm.

In this chapter, we consider three applications of STALL model: video error

concealment[47], video interpolation and video denoising, which cover two low-level

vision problems: filtering and interpolation. All of these problems have non-ideal

observations, either incomplete (in error concealment[20] and supper-resolution[48]

problems) or corrupted (in denoising problem[49]).
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Figure 3.1: Examples of model parameters settings for filter-
ing(Top),interpolation(Middle), and prediction(Bottom)

Under the conventional framework, those problems are attacked by explicitly es-

timating the motion information, which is then exploited to resolve the intensity

uncertainty. However, they cannot always get accurate motion estimation based on

these non-ideal observations, which therefore makes the solutions suboptimal.

In this chapter, we will see how the proposed STALL model lead to a class of uni-

fied solution algorithms that only differ in the consideration of model parameters in

different applications. The performance of derived algorithms will be demonstrated

for test sequences with various motion types including camera panning, zooming and

nonrigid object motion. Then we will show the modeling capability enhancement
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induced by incorporating the spatio-temporal resampling and Bayesian fusion tech-

niques.

3.2 Video Error Concealment

Video error concealment or also known as video inpainting by computer vision com-

munity is a missing data problem. The missing data which might be caused by

package loss or damage when transmitting a video over an error prone channel[20],

or by deliberate removal by human[50]. The goal of error concealment is to unify the

missing data with the surrounding available ones by exploiting spatial and temporal

redundancies.

Some video error concealment approaches require the side information from encod-

ing procedure. The common side information could be motion vectors, block modes,

and/or some other overhead for rubustness[20]. However, when trasmitting over an

error prone channel, all these side information could also be lost or corrupted. Al-

though some approaches are developed to recover these side information, especially

the motion field firstly[51] and then use them to resolve the intensity uncertainties, the

final error concealment performance is highly dependent on the effectiveness of this

side information recovery process. Some other approaches switch to spatio-temporal

extrapolation[52] or texture synthesis techniques[53] when motion information is lost.

However, most of these approaches can often get good perceptual quality but not

objective performance. In this section, we apply our STALL to attack the error con-

cealment problem. We design the error concealment process as a post-processing

procedure. Thus the additional side information is not required. STALL model can

conviniently use the available data for recovery.

There are mainly two issues to be addressed when applying STALL model into

error concealment: scanning order (i.e., which missing pixel gets repaired first?) and
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parameter settings (i.e., model support and training window). In this section, we

only consider the recovery of damaged blocks assuming video is transmitted through

a block-based coding system such as MPEG and H.264[17]. The damaged blocks

can be isolated or consecutive (we also consider the entire frame loss). However, the

proposed technique should be easily generalized to work for repairing a region with

arbitrary shape in the spatio-temporal space.

The selection of scanning order has been extensively studied in the scenario of

image inpainting[54],[55]. Edges or structures are often given higher priority than

smooth regions to be recovered first due to their perceptual importance. As we move

to video inpainting, we need to take care of the existence of temporal neighbors in

both directions (past and future), which suggests a variety of scanning orders - e.g.,

unidirectional vs. bidirectional. Since bidirectional interpolation suffers from the

increased complexity of implementation due to the interference of missing pixels in

training, we choose for each pixel the direction with larger number of training data in

that side to get the recovery, because the larger number of training data has higher

probability to provide more robust information for recovering.

The key issue in determining model support is causality - given the selected scan-

ning order in space and time, we can only access causal neighbors during the recovery.

One example of recovery based on thirteen causal neighbors (four spatial + nine tem-

poral) is shown in Figure 3.1(bottom). After choosing the neighbor N = {�ni}N
i=1 for

a pixel located at �n0 = (r, c, t), spatio-temporal training set includes all valid pixels

within the cube [r − Ts, r + Ts]× [c− Ts, c + Ts]× [t− Tt, t− 1] (assuming temporally

forward direction). Ts and Tt are spatial and temporal extension of the training win-

dow. A pixel is declared to be valid if its N neighbors defined by N are all available

either from observation or from previous recovery. With the assumption that dam-

aged blocks are dispersed across space and time, a training window should be also

across space and time with the size (the total number of valid samples - M) larger
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than N . Only under rare occasions (e.g., flat regions), the covariance matrix DT D in

Eq.(2.9) might be ill-conditioned and we need to switch back to ad-hoc interpolation

such as local average of the neighbors.

In this section, we are going to compare the error concealment results by our

STALL model with the edge-directed image error concealment approach to show how

effective our STALL model exploit the temporal redundancy. Then we are also going

to compare results of STALL with and without incorporating spatio-temporal resam-

pling and Bayesian fusion techniques to show the modeling capability enhancement

by these two techniques. Our test sequences include a variety of motion character-

istics which is classified into three categories: 1) object moving (e.g., container and

foreman); 2) camera zoom (e.g.,mobile and tennis); and 3) camera panning (garden

and coastguard). Except for tennis in which the 24th-33rd frames (where camera

zoom starts) are used, we ran our test with first ten frames in all sequences.

Three types of error concealment scenarios are simulated for recovering the dam-

aged sequence: 1) isolated 8 × 8 × 1 block loss; 2) spatial consecutive block loss

(rectangular stripes with the height of 8 pixels). For the first two cases, we report

the comparison between two concealment techniques: spatial interpolation[56] and

spatio-temporal interpolation (this work). It can be observed from Table 3.1 that

exploiting temporal redundancy significantly boosts the PSNR performance of con-

cealment techniques. Gain for slow motion sequences (e.g., container and mobile) is

larger than that for fast motion sequences (e.g., garden and coastguard). Figure 3.2

and 3.3 includes the examples of simulated frames sequences with block loss along

with recovered frames by different concealment techniques. Visual quality improve-

ments are obvious around the pole region in container and texture region in mobile.

We show in Table 3.2 that the modeling capability of STALL model is improved

by introducing the spatio-temporal resampling and Baysian fusion schemes, that is,
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Sequence 8 × 8 isolated consecutive
S+T S S+T S

coastguard 30.79 22.65 31.36 27.75
container 37.48 22.28 37.14 20.62
garden 20.17 16.75 19.13 16.48
mobile 26.27 15.55 25.93 14.44
tennis 29.63 21.35 26.91 20.40
foreman 35.79 29.36 29.99 25.00

Table 3.1: PSNR(dB) performance comparisons of space only(S) and
space+time(S+T) error concealment

Figure 3.2: Original frame of container (up-left); damaged frame of (up-right); re-
covered frame by S only (bottom-left); recovered frame by S+T (bottom-right)

it can handle a wider range of video signals with more general motion characteristics,

such as slow, fast, panning, zoom, and even mixed motions. We use the same model

parameters (model support and training window) as the above. The experiment

sequence is SIF-garden and CIF-bus since each of them includes both slow and fast

motions. It assumes the block loss at the same spatial location occurs for three
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Figure 3.3: Original frame of mobile (up-left); damaged frame of (up-right); recovered
frame by S only (bottom-left); recovered frame by S+T (bottom-right)

Sequence Without With
resample & fusion resample & fusion

garden 25.93 31.87
bus 28.34 34.20
mobile 27.77 31.64
tennis 32.54 34.45

Table 3.2: PSNR(dB) performance comparisons of with and without resampling and
fusion in error concealment

consecutive frames, which is particularly challenging for fast motion video because

the lost content varies from frame to frame due to the fast motion. For camera

panning sequences, we use a horizontal virtual camera speed set in which vy = 0;

for camera zoom sequences, we use a general virtual camera speed set. The PSNR

comparison is shown in Table 3.2 while the visual comparison is provided in Fig.3.4.

We can observe the dramatic PSNR and visual quality gains brought by the new

introduced schemes.

43



Figure 3.4: Comparison of error concealment results. Top-left: original frame; top-
right: damaged frame(note that the previous and next frames are also damaged at
the same locations); bottom-left: concealed frame without resampling and fusion
schemes(PSNR= 25.46dB); bottom-right: concealed frame with resampling and fu-
sion schemes(PSNR= 30.51dB)

3.3 Video Denoising

In this section, we assume the observed video frames are corrupted by a small per-

centage of random-valued impulses uniformly distributed between [0,255]. In such a

denoising problem, explicit ME becomes difficult since the noisy observation inval-

idates the noise-free assumption which is depended on by most motion estimation

approaches. However, by STALL model, we can attack this problem by easily ex-

ploiting clean and filtered pixels while shunning the contaminated ones.

Two steps including noise detection and filtering are often involved to remove

impulse noise. The problem of impulse noise detection has been widely studied for still

images (e.g.[21]). In our experiments, we assume the availability of noisy detection

result, i.e. the correct locations of noisy pixels, since our emphasis is on comparing

different filtering strategies in the second step.
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In filtering step, we compare the performance of STALL-based filtering with 3D

median filtering since median filtering is known to be an effective tool for removing

impulse noise[49]. In median filtering, noisy pixel can be replaced by the median of a

local spatio-temporal window(e.g. 3 × 3 × 3 space-time window in our simulations);

while in STALL-based filtering, noisy pixel is sequentially replaced by the estimate

from the STALL model with suitable model parameter settings. Specifically, we give

each noisy pixel a filtering priority which is proportional to the number of available

(clean or filtered) pixels around it (e.g. within a 5 × 5 × 3 local window in our

simulations). Then STALL filter works sequentially from high priority pixel to low

priority one, by which the available information is expected to be fully used. To each

noisy pixel, all of the available pixels around it within the 3 × 3 × 3 local window

shape are its neighbor (N ≤ 26). With this neighborhood definition, we define that

a pixel is good if and only if it and its neighbors do not include unavailable (noisy)

pixels. Then the training set consists of all good pixels within the 5 × 5 × 3 window

(M ≤ 74). In the case when the size of training set is smaller than the neighbor size,

i.e. there is no enough pixels for training, we then fall back on the median filtering

result.

As shown in Fig.3.5, we can observe that in the light noisy cases(noise percentage

is lower than 30% ), the filtering performance of STALL model is much better than

3D median filter. With increasing the noise level, more noisy pixels will be filtered

by 3D median filter at the begining of denoising because there are few good pixel

that can be used to establish the training by STALL. More and more pixels can be

filtered by STALL when enough pixels become good. But these recovered pixels carry

errors which can be propogated during localized training. So the final performance of

STALl will be degraded and converges to that of 3D median filter as shown in Fig.3.5.

Figs.3.6 and 3.7 include denoising results of two sequences (coastguard and tennis)

containing camera panning and zoom respectively. STALL-based denoising technique
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Figure 3.5: Denoising performance vs impulse noise percentage: Top Left - foreman,
Top Right - container, Bottom Left - silent, Bottom Right - table

achieves around 2.57dB and 1.93dB better PSNR performance than 3D median filter

for coastguard and tennis respectively. Note that PSNR improvement for tennis

sequence mainly comes from the background since fast-moving objects (ping-pong

ball and arm) are outside the reach of STALL model with fixed filter support and

training window, which can be cured by incorporating the resampling and fusion

techniques.

The following experimental results show the denoising performance of STALL can

be dramatically improved by incorporating spatio-temporal resampling and Bayesian

fusion especially for video sequences containing complex or mixed motions. Four test

sequences as in video error concealment are used in our experiments: two containing

fast camera panning (SIF-garden and CIF-bus) and two containing camera zoom

(SIF-tennis and CIF-mobile). For camera panning sequences, we use a horizontal
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Figure 3.6: Video Denoising result for coastguard sequence with neighbor size at
most 3 × 3 × 3 and training set size at most 5 × 5 × 3: Top-Left: original frame;
Top-Right: noisy frame(10% impulse noise); Bottom-Left: median filtering result
(PSNR=38.51dB); Bottom-Right: STALL filtering result (PSNR=41.08dB).

virtual camera speed set where vy = 0; for camera zoom sequences, we use a general

virtual camera speed set. Both of them include nine virtual camera speeds. Table 3.3

includes the PSNR performance comparison for impulse noise removal without and

with resampling and Bayesian fusion. We observed dramatic improvement (> 2dB)

brought by the proposed resampling and fusion scheme. Figure 3.8 contains the

subjective quality comparison of the denoising results for the bus sequence.

3.4 Video Super-Resolution

Video superresolution (SR) addresses the problem of enhancing the spatial resolution

of video by exploiting the tradeoff between space and time. Since the sampling
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Figure 3.7: Video Denoising result for tennis sequence with neighbor size at most 3×
3×3 and training set size at most 5×5×5: Top-Left: original frame; Top-Right: noisy
frame(10% impulse noise); Bottom-Left: median filtering result (PSNR=34.62dB);
Bottom-Right: STALL filtering result (PSNR=36.54dB).

10% Impulse noise
Sequence Without With

resample & fusion resample & fusion

garden 32.14 35.54
bus 33.19 36.55
mobile 33.52 37.13
tennis 37.90 39.93

Table 3.3: PSNR(dB) performance comparison between STALL-based impulse noise
removal algorithm

lattices induced by the motion along the temporal axis are likely to cover fractional

locations, it is convenient to obtain a high-resolution (HR) frame by fusing the data in

multiple low-resolution (LR) frames. When compared with optics-based approaches,

SR represents a low-cost computational alternative towards HR imaging and has

attracted increasingly more attention in recent years.

In this problem, we often assume the observation model that the low resolu-

48



Figure 3.8: Comparison of Video impulse noise removal results. Top-left: original
frame; Top-right: noisy frame (10% impulse noise); Bottom-left:removal result of
STALL without resampling and fusion (PSNR= 31.54dB); Bottom-right:removal re-
sult of STALL with resampling and fusion (PSNR= 35.01dB)

tion(LR) frame is a filtered and downsampled version of a high resolution(HR) frame,

as shown in Fig.3.9. Based on the observation model, there are three steps involved

in a lot of SR techniques: registration, interpolation, and restoration, as shown in

Fig.3.10[22]. The performance of most existing approaches SR heavily rely on ad-

vanced motion estimation (ME) techniques for registration[57], [58], [59] for inferring

the subpixel displacement among LR frames. Unfortunately, the accuracy of exist-

ing subpixel ME techniques is still limited especially when the motion contained in

LR frames is more complex than parametric geometric transformation (e.g., planar

homography [60]). Even under simplified assumption with camera motion (e.g., pan-

ning only), global planar homography is insufficient for characterizing the relationship

among LR frames unless the scene is constrained to a planar object. Moreover, formu-
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Registration Interpolation
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Figure 3.10: Three typical steps in super-resolution problem

lating SR as an inverse problem is at the mercy of observation models whose validity

becomes difficult to justify as motion gets complex. How to achieve good perfor-

mance under generic motion appears to be a major challenge to SR based on our own

assessment.

We note that ME is not an indispensable step towards SR. In this section, we

apply our STALL model to SR problem, in which no explicit ME involves. Based

on the assumption that video is acquired by a stable camera 1, we can exploit the

1We note that various video stabilization techniques exist in the literature, e.g., [?], [?]
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duality of edge contour and motion trajectory to extend the 2D edge orientation scale

invariance to 3D motion trajectory orientation resolution invariance. Thus we can

generalize the correspondence of LR and HR covariances observed in [61] from 2D to

3D. Our experimental results will show that our approach achieves not only better

visual quality but also higher PSNR performance.

3.4.1 Motion trajectory orientation resolution invariance

The main obstacle with applying STALL model into SR scenario is the missing data

problem. How is it possible to obtain HR covariance matrix to drive the spatio-

temporal interpolation with only LR data available? The 2D version of such problem

was considered in [61] for edge adaptive interpolation of still images. The duality

introduced in section 2.2 serves a good foundation for extending the ideas presented

in [61] into 3D scenario. In 2D images, the resolution obstacle is overcome by the

resolution (scale) invariance of edge orientation; in 3D video, we observe that the

orientation of motion trajectory has a similar scale invariance property. Next, we

will elaborate on how such scale invariance leads to a new class of spatio-temporal

interpolation techniques.

To facilitate the illustration, we opt to briefly review the edge-adaptive spatial

interpolation in 2D first. The key motivation behind the work [61] is that when the

target of modeling is constrained to a class of regular edges, scale invariance prop-

erty of edge orientation facilitates the solution to classical Wiener filtering (MMSE

estimation) problem at HR suffering from the missing data. An estimation prob-

lem at HR can be translated to a dual problem at LR which can be easily solved.

An alternative interpretation is that HR covariance estimates are replaced by their

LR covariance counterparts as shown in Fig.3.11a. In view of the duality between

edge contour and motion trajectory, it is natural to consider a 3D extension of such

covariance correspondence.
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a) b)

Figure 3.11: Correspondence between LR and HR covariances in a) 2D (from top to
bottom: step 1 and step 2) and b) 3D (from left to right: step 1 and step 2): the
corresponding pair is denoted by the same color (HR - solid lines, LR - dashed lines).

In spatio-temporal interpolation, the treatment of temporal neighbors should not

be separated from that of spatial neighbors. This is because of the interaction between

spatial and temporal sampling. As spatial sampling distance doubles, we need to

proportionally increase the temporal sampling distance to achieve the scale invariance

of motion trajectory orientation (refer to Fig.3.11b). Such adjustment is important

to ensure the consistency of spatial and temporal neighbors in STALL model (if we

drop the time attribute, the only difference between temporal and spatial neighbors is

the location of sampling lattice). We note that the adjustment of temporal sampling

distance does not affect the selection of training samples of D but only the support

of �a.

3.4.2 Super-Resolution Algorithm

Now, we are ready to present the adaptive spatio-temporal interpolation algorithm.

Similar to the algorithm presented in [61], resolution enhancement of video is decom-

posed into two steps: we first interpolate the pixels along the diagonal direction (i.e.,
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r, c are both even numbers) and then interpolate the pixels of the quincunx lattice

(r+c is odd) based on the other quincunx lattice (r+c is even). The duality between

2D and 3D scenarios can be clearly seen from Fig. 3.11b. To save space, we only

plot the temporal neighbors along one direction. In our implementation, the order of

interpolation N is 12, which includes the four nearest spatial neighbors in previous,

current and next frames respectively.

When compared to existing ME-based approaches, our spatio-temporal adaptive

interpolation based on STALL model has several advantages. First, our assumption

about motion type is relaxed. Smoothness constraint along motion trajectory is valid

for a wide range of camera motions and object motions. By contrast, the accuracy

of ME has been a major limiting factor in the performance of ME-based registration

and interpolation especially when complex motion is involved.

Another salient feature of the STALL-based interpolation is its capability of

achieving the tradeoff between spatial and temporal dependency. Due to the com-

plexity of motion in generic video material, the dominance of spatial or temporal

dependency varies dynamically. For instance, in the case of rigid textures undergoing

translational motion, temporal dependency dominates spatial one; while it goes the

other way around in the presence of nonrigid textures with deformable motion. More

frequently, both spatial and temporal dependency contribute to resolve the intensity

uncertainty and it is difficult to achieve a good tradeoff between them under the

traditional ME-based framework. By contrast, our STALL model trains the spatio-

temporal interpolation coefficients locally, which facilitates the exploitation of such

tradeoff.

To illustrate such feature of STALL model, we provide some examples of lo-

cally trained interpolation coefficients �a under three different conditions: temporal-

dominant, spatial-dominant and jointly-impacting in Fig. 3.4. The first seven frames

of each sequence are used in the training and the 4th frame is assumed to be current.
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Table 3.4: Interpolation based on STALL model achieves the tradeoff between spatial
and temporal dependency (coefficients in the table correspond to the marked position
in the frame and the four coefficients with largest magnitude are highlighted in bold
for each sequence).

The first sequence forest contains the translational motion of rigid texture in which

temporal dependency is stronger than spatial one. It clearly shows the dominance

of temporal neighbors over spatial neighbors after LS training. The second sequence

coastguard contains deformable motion of flowing water, for which we observe the

dominance shifts to spatial neighbors instead. For the translating edge in the third

sequence mobile, both temporal and spatial dependency is useful and we observe a

nearly uniform distribution of weights along the direction of edge contour and motion

trajectory.

3.4.3 Experimental Results in Super resolution

In following experiments, the STALL model order N of spatio-temporal adaptive

interpolation is chosen to be 12 (four surrounding neighbors in the previous, current

and next frame respectively); the size of training window is set to be 147 (a 7× 7× 3

cube). Such fixed interpolation support and training window is for the simplicity of

implementation and sufficient for most video sequences with slow motion. To handle

smooth areas which often give rise to ill-conditioned covariance matrix, we check the
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Figure 3.12: PSNR comparison among bilinear (’+’), cubic spline (’o’) and this work
(’*’) for foreman (left) and mobile(right) sequences.

condition number of DT D and use the local average as the interpolated value when

DT D is ill-conditioned. The implementations of two steps described in this section

are similar as we can see from Fig.3.11. For color sequences, the luminance and

chrominance channels are independently interpolated. In Fig.3.12, 3.13, and 3.14 we

compare the performance of our spatio-temporal adaptive interpolation scheme with

the space only (bilinear, cubic-spline, and edge-directed interpolation[61]) for showing

the improvements due to temporal information. We also compare our results with

current state of the art work[48] in Fig.3.14. Note here we add a simple restoration

step after the STALL-based interpolation for fair comparison. This step includes a

LS-based blurring kernel estimation with considering phase and a deburring step. It

can be observed that ours achieve the best performance for forest sequence which

does not contain severe spatial aliasing.

3.5 Conclusion

In this chapter, we applied our STALL model into three applications, i.e., error con-

cealment, denoising, and super-resolution. All of the algorithms in these applications

are located in the same framework, which is constructed by the STALL-based im-
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plicit video model. We showed that the only difference between these algorithms is

the model parameter settings. During the demonstrations, the flexibility and capabil-

ity of STALL model are exhibited. We also showned the performance enhancement

by incorporating the space-time resampling and Bayesian fusion techniques in inter-

polation and filtering problems.

Compared to the algorithms based on explicit motion models for the same ap-

plications, our STALL model shows the following advantages: first, STALL model

achieves good tradeoff between spatial and temporal information through localized

learning, which is important for handling more complex motion cases, like occlusion

and texture; second, STALL model implicitly embeds the spatio-temporal adaptive

interpolation by LS training, which is favorable for many applications like super-

resolution[22] and video coding[40]; moreover, STALL model can easily handle the

non-ideal observation data problems by circumventing the noisy or missing data in

localized learning. All of these advantages contribute the performance of STALL

model for handling low-level vision problems in video processing.

56



Figure 3.13: Reconstructed HR images and zoomed portions by spatial-only interpo-
lation (left) and spatio-temporal interpolation (right). Top: mobile; Bottom: forest
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Chapter 4

Video Modeling via Patch-based

Sparse Representation

4.1 Introduction

The performance of parametric models is highly dependent on the matching between

the observation data and the model[62]. Although parametric models can provide

us an approach for accurately understanding video signals, their limitations are also

well-known. Parametric models always assume the observation data are drawn from

an underlying distribution, such as Gaussian. The modeling error will occur when

the observation data are either out of the assumption or noisy. The localized adaptive

strategies (like STALL) can alleviate the problem to some extent but at the price of

rapidly increasing complexity. In video modeling, due to the complexity of natural

motion1, sometimes, the task is extremely difficult to assume an underlying distri-

bution or distribution form of the observation data. And we also often suffer from

1Although the motions in physics are well defined, they have not been well defined when projecting
to the imaging plane to form a video signal.

59



the noisy or incomplete observation data, which make the problem harder to solve by

parametric models.

Fortunately, data-driven nonparametric modeling approaches can provide us some

ways to circumvent the dilemma. Nonparametric models differ from parametric ones

in that the model is not dependent on any underlying distribution or distribution

form but is instead determined from observed data. As nonparametric models often

make fewer assumptions, their applicability is much wider than the corresponding

parametric methods. Also due to the reliance on fewer assumptions, non-parametric

models are more robust to noisy observation data. The typical non-parametric mod-

els are k-nearest neighbor(kNN) and kernel regression technique, which are widely

used in image and video processing[63] and computer vision problems[64]. In video

modeling, some nonparametric models, such as [27],[65], appeared recently and ex-

hibited promising performance in handling low-level vision problems. In this chapter,

we propose another nonparametric video modeling approach, which does not depend

on any underlying distribution assumption of the observation data.

The proposed nonparametric video modeling approach is neither dependent on ex-

plicit motion representations. In STALL model, the motion information is embeded

into the relationships among local neighboring pixels. Unlike STALL, here we embed

the motion-related information into the relationships among video patches[66]. We

define a patch as a connected pixel set which can cover both space and time within

a video signal, which is a 3D extension of a 2D block. We consider the 3D patches

as the atoms of video representation. The patch space is then established by defining

the distance measurement between patches. We assume a video sequence is composed

of overlapping space-time patches. Based on these definitions, we extend the nearest

neigbhor search (e.g. block matching) to k nearest neighbor search (i.e. patch clus-

tering), through which motion related information is represented in an implicit and

distributed fashion.
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In our approach, we apply a generic sparsity-based prior for typical video se-

quences. The sparsity constraint of a video patch cluster is exploited by increasing

the dimensionality. Such counter-intuitive strategy is the consequence of patch clus-

tering that makes the signal representations adapt to fixed bases instead of basis

pursuit[67](find bases to adapt fixed signal representations). We propose a weighted

average strategy of fusing diverse inference results under patch-based video models.

Most existing works on patch-based image/video processing[27][68] simply take the

uniform average of overlapped regions as the final outcome. We show this is a special

case of general weighted averaging that could handle arbitrary set of hypotheses in

redundant representations. In our fusion strategy, we will show how to exploit the

location and sparsity information to estimate weighting coefficients.

When applying the above model to the problems involving non-ideal observations,

we enter a dilemma where on one hand, it is hard to obtain an accurate patch clus-

tering result because of the non-ideal observations (e.g. noisy or incomplete data); on

the other hand, we have to resolve the uncertainty through patch clustering. In our

approach, we propose to treat both of them as latent variables and solve the Bayesian

inferenence problem via an iterative algorithms.

The rest of this chapter is organized as follows: in section 4.2, we extend block

matching which is widely used in explicit motion representations into patch clustering

and highlight the benefits of such generalization. Then in section 4.3, we extend the

block-based motion compensation into a sparsity-based constraint in the patch space.

We also show in section 4.4 the patch clustering and the sparsity-based constraint

jointly specify a generic prior for video to support Bayesian inference. Finally in

section 4.5, we propose the algorithms for iteratively solving the inference problem in

restoration applications. Section 4.6 summarizes the patch-based sparsity model.
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4.2 Patch Clustering

A patch is a connected pixel set which can cover both space and time within a

video signal. If the time dimension is restricted to one and the spatial topology is

rectangular, a patch is a 2D block that is widely used in motion compensated video

processing. In our approach, we keep the spatial rectangular restriction for a patch but

allow the time dimension be larger than one. Thus a patch is a 3D cube which is the

atom of our video representation, as shown in Fig.4.1. Actually, the spatial rectagular

restriction of a patch can also be released which makes the arbitrary spatial shaped

patches. Although the arbitrary shape can help us to get sparser representations of the

signal which we will introduce in the following sections, to define suitable spatial shape

of a patch need additional image information as priors, which is usually not available

or hard to obtain in a lot of tasks. So in our approach, we keep this rectangular

restriction. We assume the dimension of a patch as N = (2Tr+1)×(2Tc+1)×(2Tt+1),

where Tr, Tc, Tt are the patch size parameters in row, column, and time repectively.

With boundary extension and maximum overlapping, we can obtain M =
∏3

i=1 Ni

patches (N1, N2, N3 are the dimension of the video) and store them into a collection

P which we call patch database.

With the patch definition, we assume a patch as a symbol in a patch space with

dimension of N . The patch space is defined under a certain distance measurement.

Since the goal of our patch clustering is to exploit the repetitive spatio-temporal

patterns within a video signal, a suitable distance measurement is important. The

distance measurement is not unique. It can be defined in spatial domain like the

common-used sum of squared error (SSE) or sum of absolution difference (SAD) of

color information between two cubes. Or it can be defined in transform domain to

better capture the periodic patterns for textures. Furthermore, it can be defined by

some function which combines the measurement in both spatial and transform do-

main. Although it is also an interesting work to mining features, it is not the main
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work in our model. So for simplicity, we choose spatial domain approach to mea-

sure the patch distance by taking the spatial and temporal continuities into account,

because human vision system (HVS) is also sensitive to motion.

So we define a new distance measure with taking motion into account. We denote

a 3D space-time patch by Pi with size N , the subscript i represents the index in the

whole patch database P that consists of all overlapping space-time patches of the

video sequence. Secondly, we use the normalized L2-norm of the difference of two

mean removed patches as the criteria to calculate the patch distance:

d(Pi, Pj) =
||(Pi − P̄i) − (Pj − P̄j)||2√

N
; (4.1)

where d(Pi, Pj) is the distance between patch Pi and Pj, P̄i and P̄j are the mean

of them respectively. The mean value subtraction allows for improved matching of

patches with similar structure but different mean values since HVS is shown more

sensitive to changes. Fig.4.2 illustrates an example(in 1D) that very different variation
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behaviors can lead to the same SSE score[50]. The function f(t) has a noticeable

change. Yet, its SSE score relative to a similar looking function g1(t) is the same as

the SSE score of f(t) with a flat function g2(t):
∫

(f−g1)
2dt =

∫
(f−g2)

2dt. However,

perceptually, f(t) and g1(t) are more similar, as they both encode a change.

3

f(t) g1(t) g2(t)

t tt

1

2

3

1

2

3

1

2

Figure 4.2: Example of change sensitivity

With the definitions of patch and patch distance, we can extend the block match-

ing into patch clustering. Instead of searching for the best motion vector (nearest

neighbor search in patch space), we look for k nearest neighbors (kNN) of a given

patch P0. The searching window can be the whole patch database P. However,

for simplicity, we search for them within a relative local window W = [−Kr, Kr] ×

[−Kc, Kc]×[−Kt, Kt], where Kr, Kc, Kt are the ranges of searching window extending

over row, column and time respectively. If kNN search within the searching window

W can successfully obtain k nearest neighbors, we can get a similar patch set S(P0)

with k patches for each given patch P0. If kNN search is performed for each patch in

patch database P, we can have an array T sized N1 × N2 × N3 × k, which we call

”kNN array”. Based on the patch distance definition, we define the following similar

patch set of a patch P0:

S(P0) = {Pi ∈ P|d(Pi, P0) < τmatch} (4.2)

In order to avoid obvious mismatch being included into the similar patch set S(P0)

due to non-ideal observations, we set a threshold τmatch in Eq.(4.2) to pick out the

erroeous patches during clustering. Usually the size of the similar patch set defined by

Eq.(4.2) can be very large because of the highly redundant characteristics of a video.
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Although the more similar patches (i.e. larger k value), the more information can

be exploited to achieve better modeling performance once we set suitable threshold

τmatch. However, we need to pay for it by the incurring computational cost. In our

work, we fix the maximumn value of k, which is about 30 and usually enough for our

test video.

Although the extension from 2D block to 3D patch increase the dimensionalty

of the patch space, 3D patches can achieve better match than 2D blocks because of

the increased matching features. We can show this by the following simulations. If

we fix the similar patch set size to 30, we perform the clustering based on 2D block

and 3D patches and calculate the average matching error for several sequences. As

shown in Fig.4.3, we found 3D patch clustering is always more accurate than 2D block

clustering in these sequences. Another advantage of the extension from 2D patch to

3D patch is the increased overlapping possiblities. Since the overlapping will provide

addtional hypotheses for current pixel which is really helpful for restoration tasks,

we prefer more overlapping on a pixel. As shown in Fig.4.4, if we use 2D patch,

the overlapped patches are only from spatial matches (i.e., the temporal matched

patches cannot overlap at current pixel). But if 3D patch is used, spatial and temporal

matched patches will be possible to contribute addtional hypotheses for current pixel.

Furthermore, 3D patch clustering takes the temporal constraint into consideration,

which can arguably better characterize the motion-related temporal dependency than

2D block.

Another extension in our work is to extend the conventional block matching into

the patch clustering. The conventional block matching assigns a probability of one to

the established correspondence; by contrast, kNN-based patch clustering provides a

distributed representation of motion information, which in turn will enjoy the benefits

brought by such multiple hypotheses[3]. Another advantage of considering kNN is to

facilitate the exploitation of sparsity constraint by sparsifying transforms as we discuss
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Figure 4.3: Accuracy evaluation of 2D and 3D patches: Top Left - foreman, Top
Right - coastguard, Bottom Left - garden, Bottom Right - tennis

in the next section.

4.3 Sparsity Representation

The extension from the nearest neighbor search based block matching to kNN-based

patch clustering provides us a distributed way to represent motion information. The

similar patch set S(P0) usually includes both local and nonlocal information. But the

problem is how to make use of these information to facilitate our modeling. When

kNN of a given patch is available, it is natural to consider the linear combination as

an improved higher-order approximation:

P̂0 =

k∑
i=0

wiPi (4.3)
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Figure 4.4: The overlapping possiblilty comparison between 2D and 3D

where Pi is a patch within the similar patch set S(P0), the weighting coefficients

{wi} can be solved by standard Least-Square(LS) method. Such linear expansion

strategy is at the fundation of locally linear embedding(LLE)[69] and also related to

our STALL model in previous chapters.

However, since the atom in this model is patch not pixel, a patch Pi could include

corrupted or incomplete data, which is hard to avoid like that in our STALL model.

Once the outliers or noisy data contaminate the training data, the standard LS ap-

proach could lead to an unreliable result. One remedy is to formulate a total least

square(TLS) as pursued in [70]. Inspired by the recent advance in patch-based image

restoration(e.g., BM3D[71] and [72],[73]), we propose an alternative transform-based

approach of obtaining a sparsity constraint in the patch space. Specifically, the k

patches in the similar patch set are sorted firstly based on the clustering distortion

in Eq.(4.1) in order to maximize the sparisty. Then we pack the k patches into a four

dimensional data array D = [P0, P1, P2, . . . , Pk−1]. We denote the fourth dimension of

D by s, which implicitly stores the motion-related information - i.e., the entries in the

kNN array T store the spatio-temporal locations of similar patches. Because array D
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contains the patches with high similarity, it shows high correlation along the fourth di-

mension. That means it can be decorrelated by standard bases(e.g., FFT,DCT,DST,

and wavelet transforms) to obtain a sparse representation. We define the following

four dimensional transform:

DT = T D =
2Tc+1∑
x=0

2Tr+1∑
y=0

2Tt+1∑
t=0

K−1∑
k=0

D(x, y, t, k)φ(x, y, t, k) (4.4)

where (x, y, t, k) is the coordinates of a pixel in a similar patch set D. The tranform T

can be aribitrary four dimensional transform that can sparsely decompose the signal

D. But based on our experience, the choice of the transform is not very critical for the

whole modeling procedure. It is because that the patch clustering makes the fourth

dimension almost stationary, which is very easy to acquire a sparse signal even using

simple standard basis, like Fourier basis.

At the first sight, such sparsification of data arrays is counter-intuitive because

the dimensionality and the number of pixels apparently increased. However, the

majority of transform coefficients in transformed signal DT will be small due to patch

clustering, thus we still can achieve sparsification. When compared with the previous

works on either pre-fixed transform or adaptive bases[72],[74] such dimensionality

increase strategy can be viewed as a hybrid approach - we still use pre-fixed bases

but achieve adaptation by transforming signal representations with the aid of patch

clustering result T. In other words, instead of adapting bases to the signal in a space

with same dimension, we adapt the signal to bases by representing it in a higher

dimensional space where basis pursuit is not needed any more.

With the sparse representation in transform domain, the sparsity constraint can be

applied by coring operators[75] (e.g., Wiener filtering[76], soft/hard thresholding[77],[73])

to restore a collection of clustered patches, as shown in Fig.4.5. The generic infor-

mation of a similar patch set is extracted and the disturbing noise can be removed
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through coring operation.
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Figure 4.5: Enforcing sparsity constraint in patch level

4.4 Bayesian Inference with Sparsity-Based Priors

In this section, we are going to solve inference problem in pixel level. So we use

x,y to denote a pixel in idealistic (i.e., clean and complete) and realistic (e.g., noisy

or incomplete) observation respectively. Many restoration tasks can be posed as

Bayesian estimation problems and it is desirable to pursue a maximumn posterior

(MAP) solutions. In our model, we exploit the patch clustering to manage video

patches adaptively. The clustering index T can be updated based on the signal. By

treating both x and T as two latent variables, we can approximately solve the MAP

estimation problem by iteratively update the estimate of x and T. In the following,
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we will first assume T known and derive the Bayesian Least Square estimation E(x|y)

and then present a iterative approach to deal with unknown T.

If the ground truth of T is known, the restoration problem is reduced to obtain

Bayesian Least Square estimation of x given y, which is E(x|y). Since the patches in

our model can overlap with each other, one pixel can be included into multiple patches,

each patch can be further included into multiple similar patch sets, as shown in

Fig.4.62. After enforcing sparsity constraint for each of these similar patch sets, each

set will provide at least one processed version of the pixel, which we call a hypothesis

of the pixel. In the literature(e.g.,[68], [70]), the ad-hoc uniform averaging strategy is

often adopted to fusing the multiple hypotheses. In our work, we present a weighting

average approach under the Bayesian framework.

kk−1k−2k−3 k+3k+2k+1

Figure 4.6: Source of multiple hypotheses of a pixel

We note that multiple hypotheses arise at two levels in our patch-based video

model: 1) in the pixel level, any pixel x can be covered by more than one patches,

say {Pz}Z
z=0; 2) in the patch level, any patch Pz can be associated with multiple data

arrays, say {Dz′}Z′
z′=0. The posterior distribution p(x|y) can be formulated as

p(x|y) =
Z∑

z=0

p(x, Pz|y) =
Z∑

z=0

p(x|Pz)p(Pz|y), (4.5)

2For simplicity of illustrating the patch overlapping, we assume the patch in the left plot is 2D,
the data array D is 3D. 3D patch case can be easily extended.
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since y is the nonideal version of x, y ∈ Pz. Based on Bayesian rule, the probablity

p(Pz|y) is given by

p(Pz|y) =
p(y|Px)∑Z

w=0 p(y|Pw)
, (4.6)

where p(y|Pz) is the likehood function. Since we have no further prior information of

difference patches, we adopt uniform prior p(Pz) in Eq.(4.6).

Similarly, in patch level, the probability p(x|Pz) can be given as

p(x|Pz) =

Z′∑
z′=0

p(x, Dz′ |Pz) =

Z′∑
z′=0

p(x|Dz′)p(Dz′|Pz), (4.7)

where p(Dz′|Pz) is given by

p(Dz′|Pz) =
p(Pz|Dz′)

Z′∑
w′=0

p(Pz|Dw′)

, (4.8)

where p(Pz|Dz′) is the likelihood function and a uniform prior of p(Dz′) is adopted

as in pixel level.

Substituting Eq.(4.7) into Eq.(4.5), we can have the following simplified result

p(x|y) =
∑

i

aip(x|Di), (4.9)

where subscript i stands for the i − th hypothesis (it is the compounding result of

pixel level and patch level diversities) and weighting coefficient is

ai = p(Pz|y)p(Dz′|Pz). (4.10)

Multiplying both sides of Eq.(4.9) by x and taking the integration, we have

E[x|y] =
∑

i

aiE[x|Di], (4.11)

71



which relates the Bayesian Least Square estimate at the pixel level to that at the

patch level.

The estimate of the weighting coefficient {ai} is very important to the fusion

of multiple hypothese. In Eq.(4.10), we observe that the contributions to ai come

from pixel(p(Pz|y)) and patch(p(Dz′ |Pz)) level. In our work, denoting the location

of pixel x in the video by (r, c, t), the posterior probablity p(Pz|y) is modeled by a

function of the pixel’s relative location (δr, δc, δt) within a patch, say f(δr, δc, δt).

For example, we can set larger probabilities to the pixels in the center of a patch

than those around the patch boundaries(e.g., using Gaussian or Bessel function); or

we can just use uniform value over the pixels within a patch. In our simulations, we

use uniform function to model p(Pz|y) for simplicity. In patch level, the posterior

probability p(Dz′ |Pz) is modeled by a function of the sparseness of an array Dz′, say

g(sp(Dz′)), where sp(Dz′) means the sparseness of Dz′. Since we observe that the

sparser a data array is, the more influence it should have on the final outcome. For

example, we can approximate p(Dz′|Pz) by 1
Nnz

, where Nnz denotes the number of

significant coefficients in T Dz′. Therefore, the weighting coefficients in Eq.(4.10) and

Eq.(4.11) are given by

ai(r, c, t) = f(δr, δc, δt)g(sp(Dz′)), (4.12)

Where we leave the function f(δr, δc, δt) and g(sp(Dz′)) generic here, though we use

g(sp(Dz′)) = 1
Nnz

, and uniform f(δr, δc, δt) in our simulations.

The above derivation assumes a known T, which is not feasible in restoration

problem due to the non-ideal observations. Therefore, we have to treat it as another

variable just like x. Motivated by recent advances on variational Bayesian methods
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(e.g., [78]), we can formulate the following dual MAP estimation problems

T̂ = argmax
T

∑
x

p(T, x|y)

x̂ = argmax
x

∑
T

p(x,T|y) (4.13)

which can be solved by an iterative algorithm by keeping updating T and x. Specif-

ically, we first conditionally search kNN at iteration n + 1 based on the result at

iteration n to get T̂
(n+1)

. Based on T̂
(n+1)

, we can calculate x̂(n+1) = E[x|y] by

the procedure illustrated in Fig.4.5 and Eq.(4.11). Because the x̂(n+1) is likely better

than x̂(n) and T̂
(n+1)

is also likely more accurate than T̂
(n)

, we can hope the algorithm

converge to the final inference x∗. As can be seen from our experimental results, the

iterative algorithm does converge.

4.5 Model Structure

We have already introduced all the components in our nonparametric model in previ-

ous sections. In this section, we will connect all the components and show the mod-

eling flow. Then we are going to present the algorithm structure that is depended by

the applications in next chapter.

As shown in Fig.4.7, we first perform kNN-based patch clustering for each pro-

cessing patch to get the kNN array T. Then for each patch cluster, as shown in

Fig.4.5, we generate a 4D data array D by packing all similar patches and enforce the

sparsity constraint on D by forward transforming, coring, and inverse transforming.

Then we unpack the processed patches from data array D̂(processed one) and send

them back to the original locations. After all patch cluster being processed, combine

the multiple hypotheses to get the final inference by weighting averaging.

Although the details of algorithm are highly application dependent, we still pre-

73



y

x(n+1)

x(0)

T(n)

Bayesian Fusion

Enforce sparsity
constraint

kNN
patch clustering

Initializing

Packing

Sorting 6

4

3

2

Inv. Transform

Coring

Transform

87653 421

1
0

0 1 2 43 5 6 7 8

Unpacking

0

8

7

5

Figure 4.7: Patch-based sparsity video modeling

senst the algorithm structure in Algorithm 1 to help understanding the basic proce-

dure of solving x and T iteratively. The detailed algorithms and implementations for

each application will be elaborated in the next chapter.

4.6 Conclusion

In this chapter, we propose a nonparametric video modeling approach, which is not

dependent on explicit motion estimation. Assuming the video sequence is composed

of a lot of overlapping space-time patches, we propose to embed motion-related infor-

mation into the relationship among video patches and develop a generic sparsity-based

prior for typical video sequences. First, we extend block matching to more general

kNN-based patch cluster, which provide an implicit and distributed representation

for motion information. We propose to enforce the sparsity constraint on a higher-

dimensional data array signal, which is generated by packing the patches in the similar
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Algorithm 1 Nonlocal Patch-based Video Modeling

• Initialization: set x̂(0) = y and perform kNN search for patches to obtain T̂
(0)

;

• Outer Loop: for n = 1, 2, ...

– Inner Loop: for all processing patches

∗ Generate data array D based on T̂
(n−1)

;

∗ Forward transform, coring, and inverse transform.

∗ Unpack the recovered data array D̂; Put the patches in it to their
original locations;

– Combine multiple-hypotheis inference by weighting averaging to get x(n)

• Update the estimation of T̂
(n)

: update kNN array based on x(n)

patch set. Then, we present a Bayesian fusion approach to fuse multiple-hypothesis

inferences by updating the kNN array T and the wanted signal x iteratively.

We note that the sparisty-based prior in our approach has two silent features.

First, it transforms patch-based video representations into a higher-dimensional space

to eliminate the need of basis pursuit. Second, the kNN array T is dynamically

varying according to the signal, which make possible the iterative inference algorithm.

This nonparametric modeling approach is another implicit video modeling tech-

nique, in which the motion information is exploited by the space-time patch definition

and the patch clustering. So it enjoys many advantages of the implicity, especially in

handling non-ideal observation problems, like incomplete or noisy data. Moreover, it

is a data-driven model, in which the model structure can implicitly and adaptively

fit the input data. This avoids the mismatch between data and model, which is an

inherent issue for parametric modeling approaches. In next chapter, we will apply this

model into some restoration applications to show its good subjective and objective

performances.
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Chapter 5

Applications of Patch-based

Sparsity model

5.1 Introduction

In this chapter, we apply the nonlocal patch-based sparsity model to several low level

vision problems including error concealment/inpainting, denoising, and deartifacting.

Many works in these applications have been done based on implicit nonparametric

models, in which motion continuity is often maintained by spatio-temporal patch def-

inition and space-time sampling instead of explicit motion estimation. For example,

Wexier et.al.[50] presented a video completion method extending to space-time the

pioneering image synthesis work in [79]. In their work, they filled in the missing

regions by sampling spatio-temporal patches from other portions of the input video

based on local structures and formulated the completion problem as a global opti-

mization problem with a well-defined objective function. Cheung et.al.[27] exploited

the ”epitome” models that learns a mapping from the input video into a smaller

volume-epitome which are then used for various tasks including video inpainting and

video super resolution.
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In this chapter, we will show our patch-based sparsity constraint provides a uni-

fied prior for various restoration tasks. The main difference lies in the derivation

of E[x|D]. Even if our emphasis here is the versatility rather than optimization of

patch-based processing algorithms for a specific task, we can see they have achieved

highly competitive performance in these applications, which strongly supports the

effectiveness of patch-based video models.

The rest of this chapter is organized as follows: in section 5.2, we focus on error

concealment task. We first introduce the algorithm details, and then compare the

performance to STALL. In 5.3, we apply this model to video denoising problem. We

study on two noise type: impulse noise and gaussian noise, and compare our results

with STALL and video epitome model. In 5.4, we introduce how to use our model

to removing compression artifacts. In section 5.5, we summarize our model based on

the applications.

5.2 Video Error Concealment

In this section, we are trying to attack video error concealment (i.e., video inpainting)

by our patch-based sparsity model that proposed in previous chapter. The main

algorithm structure is introduced in section 4.5. The compoment that need to be

addressed here is the procedure to estimate E[x|D], i.e., to get the estimation D̂. In

this application, we enforce the sparsity constraint by a recursive thresholding strategy

similar to the one used by overcomplete DCT-based concealment of still images in [73].

Specifically, we can successively approximate E[x|D] by hard thresholding transform

coefficients DT with a decreasing model of threshold τ .

The threshold τ is chosen based on two observations. First, the closer the patches

are in the patch space, the sparser the data array D including the patches shows. So

in this case, we will use small threshold, since there is small probablity to include
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corrupted or missing pixels. We use the variance along the fourth dimension1 to

evaluate the similarity between patches in a data array. Denote the average variance

along the fourth dimension of D by Vp,

Vp = mean(var(D, 4)), (5.1)

where var(D, 4) means to calculate the 4-th dimensional variance of each pixel loca-

tion in a patch; mean(.) is to the averaging operation of a 3D array. Second, with

increasing the iteration times, the inpainting result will be better and better. So the

threshold should become smaller and smaller to prevent oversmoothing. Thus, we

present the following model for the hard thresholding parameter τ .

τ(iter, Vp) = c

√
Vp

iter
, (5.2)

where iter means the iteration times; c is a constant which is empirically fixed to 0.1.

We denote the inpainting domain by ΩI , in which the data are missed. We simply

replace all pixels in Ωc
I by their original values, since undamaged pixels could be mod-

ified after enforcing the sparsity constraint. The complete video inpainting algorithm

is summerized in Algorithm 2

In our experiments, the patch size is 11 × 11 × 3, similar patch searching region

centering with the current patch with size 51 × 51 × 7. The maximum number(k)

of patches in the similar patch set is 30. τmatch in Eq.(4.2) is set to 5. We tested

coastguard, mobile, tennis, and carphone sequences, which includes deformable motion

+ panning, structure + zoom, texture + zoom, and jittering respectively. Except for

the tennis sequence in which we use 11 − 40-th frames, we use 1 − 30-th frames. It

1The fourth dimension is the dimension s, along which we pack the similar patches. If the patch
is 2D block, it should be the third dimension.
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Algorithm 2 Video Inpainting by Nonlocal Patch-based Video Modeling

• Initialization: choose an appropriate x̂(0) and perform kNN search on inpainting

domain ΩI for patches to obtain T̂
(0)

;

• Outer Loop: for n = 1, 2, ...

– Middle Loop: for iter = 1, 2, ...

∗ Inner Loop: for all processing patches

· Generate data array D(iter) based on T̂
(n−1)

;

· Estimate Vp by Eq.(5.1) and calculate τ by Eq.(5.2)

· Forward transform

· Thresholding D
(iter)
T by τ

· inverse transform.

· Unpack the recovered data array D̂; Put the patches in it to their
original locations;

∗ Combine multiple-hypotheis inference by weighting averaging to get
x̂(n)

∗ Replace the pixels in Ωc
I by original pixels

• Update the estimation of T̂
(n)

: update kNN array based on x̂(n)

assumes the block loss with size 8×8×3 at the same spatial location occurs for three

consecutive frames in the middle of the 30 frames sequence. Although we can start

with any initial estimate of the missing block, we still use the STALL model result

(without resampling and fusion) as the initial estimate to reduce the iterations in the

algorithm.

Table 5.1 shows the PSNR performance comparison between this nonparametric

model with STALL model without resampling and fusion. In average, this nonpara-

metric model improves the PSNR by over 2dB. Fig.5.1 and 5.2 shows the perceptual

comparisons of two sequences. Note that even in the carphone sequence that includes

jittering which is very challenge for STALL model without fusion and resampling, our

nonparametric model can provide good estimates.

Compared to other video error concealment algorithm, ours has the following ad-
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Sequence PSNR(dB)
STALL This Model

coastguard 25.18 29.00
mobile 21.21 22.50
tennis 24.45 29.62
carphone 29.24 32.67

Table 5.1: PSNR(dB) performance comparison between STALL and Patch-based
sparsity model

Figure 5.1: Comparison of error concealment results(tennis sif ). Top-left: original
frame; top-right: damaged frame(note that the previous and next frames are also
damaged at the same locations); bottom-left: concealed frame by STALL without
resampling and fusion schemes; bottom-right: concealed frame by nonparametric
model

vantages: first, we exploit the motion information in an implicit way, which avoid

the suboptimum brought by the motion representation and estimation. The motion

information is implicitly represented by the kNN array which can be adaptively re-

fined. Second, we recover the missing data in a parallel way. Most of the video error

concealment techniques recover the missing data in a sequential way, which cause the

notorious error propagation problem once the missing block or area become large[54]

[80] [47]. By contrast, our technique has potential to get away from this issue and
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Figure 5.2: Comparison of error concealment results (carphone cif ). Top-left: original
frame; top-right: damaged frame(note that the previous and next frames are also
damaged at the same locations); bottom-left: concealed frame by STALL without
resampling and fusion schemes; bottom-right: concealed frame by nonparametric
model

can produce artifact-free results.

5.3 Video Denoising

In this section, we apply the patch-based sparsity model to video denoising problem.

We consider two kinds of noise: impulse noise and white Gaussian noise, since they

are typical noises in denoising problems.
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5.3.1 Impulse Noise Removal

In this problem, we assume a video is corrupted by [0, 255] uniform distributed im-

pulse. The observation model is as follows,

Y =

⎧⎪⎨
⎪⎩

X w.p. p X : clean pixel

W w.p. (1 − p) W : impulse noise U [0, 255]

where p shows the noise level(i.e., the percentage of noisy pixels). Similar with the

STALL application in impulse noise removal, we also assume the availability of noisy

detection result, i.e. the correct locations of noisy pixels. So the problem changes to

the error concealment problem with the concealment domain ΩI uniformly distributed

over the video sequence (i.e., the noisy pixel locations).

So we use the same algorithm and parameter settings for inpainting in section 5.2.

We tested four QCIF (176 × 144) sequences, which are coastguard, garden, foreman,

and tennis. In impulse noise removal case, the noise level is 10%, 20%, 30%, 50%, In

this application, we choose to use the output of median filter as the initial estimate.

Fig.5.3 shows the PSNR evolution of the filtered sequences during the processing.

It verifies that our algorithm do converge. We can see the staircase corners marked

with arrow is a new round of the outer loop in Algorithm 2 (i.e., at this point, T will

be updated by latest x̂); From Fig.5.3, we can see the iterative algorithm does work

to improve the restoration performance.

Table 3.3 reports the PSNR of the impulse noise removal results on the four

video sequences. Fig.5.4 and 5.5 show the perceptual results by median filter and

our nonparametric model. We can see our model outperforms the median filter in

objective and subjective quality.
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Figure 5.3: PSNR evolution curve in impulse noise removal application,foreman qcif,
50% impulse noise uniformly distributed in [0, 255]

Impulse Noise Level
sequences 10% 20% 30% 50%

Median Ours Median Ours Median Ours Median Ours

coastguard 26.12 34.80 24.59 32.46 23.03 30.86 19.37 29.14
garden 26.80 28.00 24.90 26.78 22.02 25.23 17.28 23.68
foreman 19.92 34.88 19.39 32.43 18.45 31.80 16.22 29.30
tennis 25.76 36.57 24.84 34.19 23.79 33.93 20.78 32.92

Table 5.2: PSNR(dB) performance of Patch-based sparsity model in impulse noise
removal

5.3.2 Guassian Noise Removal

We assume the original sequence is corrupted by an additive white Gaussian noise

with standard deviation σW . So we have the following observation model:

y = x + W, (5.3)

where x and y are the original and noisy pixels respectively; W is a white Gaussian

noise with standard deviation σW .
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Figure 5.4: Comparison of impulse noise removal results (foreman qcif ). Top-left:
original frame; top-right: 50% impulse noise corrupted frame; bottom-left: restored
frame by median filter with window 3 × 3; bottom-right: restored frame by our
nonparametric model

The main algorithm structure was introduced in section 4.5. In this problem,

we will introduce how to estimate E[x|D]. There are two popular coring strategies

for enforcing sparsity constraint to obtain E[x|D]: thresholding and filtering. In the

former case, E[x|D] is simply obtained by hard thresholding the transform coefficients

DT [77]; in the latter case, MMSE estimation is given by the classical Wiener filtering

formula[75] under the assumption that noise variance is given.

Since Wiener filtering requires the knowledge about the variance of clean signal.

In our work, we propose to iteratively estimate the signal variance in the following

fashion. The iterative Wiener filtering operates in transform domain by

D
(iter+1)
T (r, c, t) =

(σ
(iter)
x (r, c, t))2

(σ
(iter)
x (r, c, t))2 + σ2

w

D0
T (r, c, t), (5.4)
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Figure 5.5: Comparison of impulse noise removal results (tennis qcif ). Top-left:
original frame; top-right: 50% impulse noise corrupted frame; bottom-left: restored
frame by median filter with window 3 × 3; bottom-right: restored frame by our
nonparametric model

where σ
(iter)
x (r, c, t)2 = max[0, (D

(iter)
T )2 − σ2

w] is the maximum-likelihood estimation

of signal variance. We summerize the denoising algorithm in Algorithm 3

In this application, we use patch size 11×11×3, searching region 51×51×7, the

matching threshold τmatch = 5. We tested four QCIF sequences, which are coastguard,

garden, foreman, and tennis. The standard deviation σW = 25. In this application,

we choose to use the noisy sequence as the initial estimate.

sequences σw epitome[27] Ours

coastguard 25 25.7212 30.4867
garden 25 19.3833 25.6774
foreman 25 25.4452 32.6508
tennis 25 27.5898 31.6768

Table 5.3: PSNR(dB) performance of Patch-based sparsity model in denoising appli-
cation
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Algorithm 3 Video Denoising by Nonlocal Patch-based Video Modeling

• Initialization: set x̂(0) = y and perform kNN search to obtain T̂
(0)

;

• Outer Loop: for n = 1, 2, ...

– Middle Loop: for iter = 1, 2, ...

∗ Inner Loop: for all processing patches

· Generate data array D(iter) based on T̂
(n−1)

;

· Forward transform

· Estimate (σ
(iter)
x (r, c, t))2 = max[0, (D

(iter)
T )2 − σ2

w]

· Filtering by Eq.(5.4)

· Inverse transform

· Unpack the recovered data array D̂(iter); Put the patches in it to
their original locations

∗ Combine multiple-hypotheis inferences by weighting averaging to get
x̂(n)

• Update the estimation of T̂
(n)

: update kNN array based on x̂(n)

Fig.5.6 and 5.7 show the restoration results by video epitome and our nonpara-

metric model. It is obvious that our result outperforms that of video epitome with

sharp edges in space and well-maintained motion continuity in time.

5.4 DeArtifacting

Many video compression strategies employ block-based transforms(e.g., DCTs) and

motion compensation among their compression tools. Coarse quantization of trans-

form coefficients, and the use of different reference locations or different reference

pictures by neighboring blocks in motion compensated prediction can give rise to

visual artifacts such as distortion around edges, textures or block discontinuities.

Fig.5.4 shows some video frames which are compressed with H.264/AVC enocoder

without deblocking filter. We can easily find the artifacts around edges, textures,

and the high motion areas.

86



Figure 5.6: Comparison of Gaussian noise removal results (coastguard qcif ). Top-
left: original frame; top-right: noisy frame corrupted by additive Gaussian noise with
σW = 25; bottom-left: restored frame by epitome; bottom-right: restored frame by
our nonparametric model

In the H.264/AVC video compression standard[81], an in-loop deblocking filter[82]

has been adopted to attenuate artifacts arising along block boundaries. Specifically,

it applys low pass filtering at both vertical and horizontal block boundaries. The

filtering strength and support length is adaptive to the encoding mode(e.g.,intra or

inter coded block), the boundary locations(e.g., macroblock boundary or 4x4 block

boundary), and the source of predictions(i.e., whether the predictions come from

the same reference frame or not). It really improves both subjective and objective

video quality by removing blocky artifacts. However, blocky artifacts are not the

only ones present in compressed video. Coarse quantization is also responsible for

other artifacts such as ringing, edge distortion or texture corruption. Since the low

pass filtering operation assumes a smooth image model, it is not suited for removing
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Figure 5.7: Comparison of Gaussian noise removal results (garden qcif ). Top-left:
original frame; top-right: noisy frame corrupted by additive Gaussian noise with
σW = 25; bottom-left: restored frame by epitome; bottom-right: restored frame by
our nonparametric model

image singularities such as edges and textures. Recently some advances have achieved

in removing the compressed aritifacts by incorporating in-loop or out-loop filters.

Sparsity-based non-linear in-loop filters have been proposed in the literatures[83] and

[84]. In [85], Wiener filter-based post filters which are trained at encoder based on

local spatial variances are sent to decoder as overhead to facilitate the deartifacting.

Although all the above approaches improve both subjective and objective video

quality, all evaluation measures are based on single frame quality (i.e., PSNR or

visual quality of a single frame). The motion consistency has not been addressed in

these works, since the filtering operations are performed within a single frame. In

this section, we apply our patch-based sparsity model to deartifacting problem. The

generalization of patch definition to 3D and the space-time patch clustering provide us
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Figure 5.8: Examples of video coding artifacts: Top-Original frame, Bottom-
Compressed frame without deblocking or deartfacting.

an implicit way to handle the motion consistency. We design our approach as a post-

processing filter, which takes the deblocked video as input. We will use the slightly

modified algorithm with Algorithm 3 in section 5.3.2 for deartifacting. In Gaussian

denoising algorithm, we assume the noise power σw is given. In this deartifacting

problem, we don’t know the exact noise power. However, since we have original video

at encoder, we can estimate σw by using the blocky and original videos and send the

estimate to decoder as an overhead. Comparing to the work in [85] which needs to

send a set of filter coefficients as overhead, our work cut the amount of overhead to

one parameter σw, which is more preferred especially in low bit rate applications. We

summerize the algorithm in Algorithm 4

In this application, we use patch size 11 × 11 × 3, searching region 41 × 41 × 3,
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Algorithm 4 Video DeArtifacting by Nonlocal Patch-based Video Modeling

• Get σw: Estimate σw if at encoder; Parse σw from bitstream if at decoder;

• Initialization: set x̂(0) = y and perform kNN search to obtain T̂
(0)

;

• Outer Loop: for n = 1, 2, ...

– Middle Loop: for iter = 1, 2, ...

∗ Inner Loop: for all processing patches

· Generate data array D(iter) based on T̂
(n−1)

;

· Forward transform

· Estimate (σ
(iter)
x (r, c, t))2 = max[0, (D

(iter)
T )2 − σ2

w]

· Filtering by Eq.(5.4)

· Inverse transform

· Unpack the recovered data array D̂; Put the patches in it to their
original locations

∗ Combine multiple-hypotheis inference by weighting averaging to get
x̂(n)

• Update the estimation of T̂
(n)

: update kNN array based on x̂(n)

the matching threshold τmatch = 5, maximum number of patches in a similar patch

set is set 30. Table 5.4 shows the simulation results of the patch-based sparsity

model in deartifacting. All the testing sequences are compressed as intra pictures by

H.264/AVC reference software JSVM[86] with quantization parameter QP = 37 (i.e.,

in low bit rate range), which corresponds to the most coarse quantization step defined

in VCEG standardized test range for intra pictures. We can observe from Table 5.4,

even in such large quantization step case, our approach can acheive up to 0.7dB

PSNR gain. Fig.5.9 to Fig.5.11 show the visual quality comparisons between our

approach and H.264/AVC adaptive deblocking filter. Our approach can also improve

the subjective quality obviously.
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Figure 5.9: Visual quality comparison between H.264/AVC deblocking and patch-
based sparsity model - foreman-qcif : Original frame(top-left), Artifacting frame(top-
right),H.264/AVC deblocked frame(bottom-left),patch-based sparsity model filtered
frame(bottom-right)

5.5 Conclusion

In this chapter, we apply our nonlocal patch-based sparsity model to three video pro-

cessing tasks: error concealment(/inpainting), denoising, and deartifacting. All these

applications include either incomplete or corrupted information, which is challenging

for the models with explicit motion respresentations. In our model, motion is not ex-

plicitly represented by motion vectors but implicitly embedded into the relationships

among patches, which represents motion in a distributed fashion.

We observed the effectiveness of this model by comparing with parametric and

other nonparametric models. More importantly, we have shown in this chapter that
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Figure 5.10: Visual quality comparison between H.264/AVC deblocking and patch-
based sparsity model - silent-qcif : Original frame(top-left), Artifacting frame(top-
right),H.264/AVC deblocked frame(bottom-left),patch-based sparsity model filtered
frame(bottom-right)

our patch-based sparsity constraint provides us a unified prior for various restoration

tasks. For all these applications, they share the similar model structure shown in

section 4.5. The application dependent part lies in the derivation of E[x|D]. We de-

signed different approaches to estimate E[x|D] based on the applications. Specifically,

in error concealment, we use hard thresholding to enforce the sparsity constraint. The

threshold model is designed as a function of the patch-dimension variance and itera-

tion times. In denoising, we adopt Wiener filtering as the coring strategy and present

an iterative method to estimate signal variance. The similar algorithm for denoising

can be easily revised for deartifacting by estimating the noise variance. Although our
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Figure 5.11: Visual quality comparison between H.264/AVC deblocking and patch-
based sparsity model - paris-cif : Original frame(top-left), Artifacting frame(top-
right),H.264/AVC deblocked frame(bottom-left),patch-based sparsity model filtered
frame(bottom-right)

emphasis in this chapter is the versatility rather than optimization of patch-based

processing algorithm for a specific task, we can see our model still achieved highly

competitive preformance in all these applciations.
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Table 5.4: PSNR improvement by patch-based sparsity model over H.264/AVC in
deartifacting

Sequences Resolution QP H.264/AVC Our PSNR
Deblocking Filter Filter Improvement

22 41.8 42.5 0.7
container 176 × 144 27 38.0 38.7 0.7

32 34.5 35.1 0.6
37 31.0 31.7 0.7
22 41.7 42.2 0.5

foreman 176 × 144 27 38.0 38.6 0.6
32 34.6 35.3 0.7
37 31.5 32.2 0.7
22 41.3 42.5 1.2

silent 176 × 144 27 37.2 38.2 1
32 33.5 34.3 0.8
37 30.6 31.2 0.6
22 42.0 42.3 0.3

foreman 352 × 288 27 38.6 38.9 0.3
32 35.5 35.9 0.4
37 32.7 33.3 0.6
22 41.1 41.3 0.2

mobile 352 × 288 27 36.5 36.8 0.3
32 32.1 32.4 0.3
37 28.1 28.5 0.4
22 41.6 42.3 0.7

paris 352 × 288 27 37.5 38.1 0.6
32 33.5 34.1 0.6
37 30.0 30.5 0.5
22 41.2 41.6 0.4

tempete 352 × 288 27 36.9 37.4 0.5
32 32.7 33.3 0.6
37 29.1 29.7 0.6
22 42.7 43.0 0.3

night 1280 × 720 27 39.1 39.5 0.4
32 35.6 36.1 0.5
37 31.7 32.2 0.5
22 43.3 43.4 0.1

crew 1280 × 720 27 40.4 40.5 0.1
32 38.0 38.1 0.1
37 35.2 35.4 0.2
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Chapter 6

Conclusions and Perspectives

The existence of motion in video source gives a video potentials to include more infor-

mation than a still image. The high sensitivity of human eyes to motion drives video

enter more and more fields in our life today. Although we already have systematic

knowledge about motion in physical domain, we have little understanding about it in

the digitized world. So how to exploit motion information to facilitate the tasks in

the increasing video applications is still an open problem in video related research.

The goal of this thesis is to study on mathematical models to represent and exploit

motion information for practical applications.

6.1 Conclusions

In this thesis, we first analyzed the limitations of the popular motion representations

and propose to represent motion from another perspective. We pointed out in Chapter

1 that video modeling by explicit motion representations is not always suitable for

many applications because of the suboptimum of motion estimation and the non-ideal

observation data. In this thesis, we advocate the implicit motion representations by

proposing two video approaches in which motion information is embeded into the
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relationships among either pixels or patches. Such distributed motion representations

are likely to more closely match the mechanism employed by human vision[3].

The first model is a local parametric model, which achieves adaptation by a learn-

ing within a spatio-temporal training window. Such localized learning helps to achieve

the balance between space and time, which is critical to exploit the motion informa-

tion. The second model is a patch-based approach. It exploits a generic sparsity-based

prior by a kNN based patch clustering and a dimensionality increasing strategy. Such

approaches adapt signal representations to fixed bases instead of basis pursuit ap-

proaches. In both models, multiple hypotheses fusion strategies are developed to

resolve the model uncertainties, which are proved to be useful for more general video

signals. The experimental results in low level vision tasks have clearly indicated the

versatilities, flexibilities, and competence of these implicit motion models.

6.2 Future Work on the Proposed Models

Although the favorable flavors of such implicit models have been tasted, many future

works is possibly required in order to make the proposed models popular in practical

applications:

• The performance of STALL model is largely dependent on the fidelity of training

data set. As we have known, the localized learning is sensitive to the outlier

and noise. First, we need to avoid outliers involving into the training. It is

generally not a simple problem due to the complexity of video signals. Second,

for noisy training data, we can consider to incorporate total least square (TLS)

techniques to take the noise into acount.

• In STALL model, the relationship between the model order and the topology

of training data set is critical but not investigated in detail. With increasing

the model’s order, we hope it will be more accurate to describe the motion.
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However, to make the problem stable, we need to include more training data,

which may require to extend the training data set in either space or time. As

we have shown in chapter 2.3.2, extension of training data set can drop the

performance because of the nonstationarity of video signals. So to find the

optimal model order and the optimal traning set are also a possible research

orientation in both theory and practice.

• In the patch-based sparsity model, 2D blocks are generalized into 3D patches.

Although we have many intuitions and some reseasonable simulation results

to show the benefits brought by 3D patches, the theoretic evidence and ex-

plaination are not addressed. It introduces the question, what is the best patch

topology given a video sequence? In our work, we just use rectangular patches.

But it is just a complexity oriented not a performance oriented choice. So this

problem could be another possible research orientation in the future.

• Some critical parameters in the patch-based sparsity model should be investi-

gated deeper. For example, the kNN patch clustering parameter k, which says

how diverse the motion is represented. In our work, we fixed it empirically,

which is far from optimal. Since the sparsity of data array D is determined by

the simiarity of all patches in the similar patch set, it is desirable to adaptively

choose the value of k.

• The complexity of the patch-based sparsity model is prohibitive for industrial

applications. The high complexity of this model mainly comes from the kNN-

based 3D patch clustering and the forward and backward transform. In our

works, we simplify the transform to Fourier transform and adopt FFT in our

implementations. But for kNN search, fast algorithms can be exploited to

acheive better trade-off between performance and complexity.
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6.3 Perspectives on Implicit Motion Representa-

tions

As we said at Chapter 1, we advocate the implicit motion representations because of

their flexibilities and effeciencies to exploit motion information in digital video source.

We proposed two models and applied them into several low-level vision problems, such

as denoising, inpainting, and interpolation. However, the applications of implicit mo-

tion representations are much wider than these. Actually we believe many problems

ranging from low to high level vision problems can benefit from such implicit motion

representations.

In low-level vision problems, some implicit motion representations have been ap-

plied to video compression[87] and [88]. Due to the implicit characteristics, we have no

motion vectors that have to be transmitted to decoder as overhead under the explicit

motion representation based framework. Motion information is exploited through

implicitly utlizing the correlations between neighoring pixels over space and time. To

extend the implicit motion representations to video compression, the most challenge

is to build a suitable compression framework for them, since most current compression

frameworks (like H.264 and MPEG4) are designed based on explicit motion respre-

sentations. Similiarly, video texture synthesis can also benefit from implicit motion

representations as we use them into video inpainting problems.

In middle-level vision problems, we have seen the object tunnel concept was applied

in object segmentation and occlusion detection. Actually our STALL model can also

have potentials to be applied into motion segmentation if we can cluster the pixels

based on analysis of model parameters’ characteristics. Although we do not include

our very preliminary results in this field, they still show the potentials of our STALL

models.

In the other end, high-level vision problems, the implicit motion representations
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have also shown its possiblilities. For example, geometric pattern of spato-temporal

slice (STS) is analyzed for detecting scene or shot change in [89]. Their work shows

again the explicit motion estimation can also be avoided once the final output is

not motion vector or field. But this time, the evidence is from high level vision

problem. Their work is dependent on the observations: the discontinuity of color and

texture represents the occurence of a new event; the orientation of texture depicts

camera or object motions. No motion estimation is involved, but motion information

is implicitly exploited by texture analysis in STS.

Another possible perspective of the implicit motion representations is in multi-

view video modeling[90]. Multi-view video is often simultaneously captured by mul-

tiple video cameras in different viewpoints of the scene. Multi-view video can be

applied to create realistic 3D depth impression of the observed scene[91]. In this

application, one more dimension - view dimension, is introduced. We can also regard

the relationship between different views is a kind of motion that caused by the differ-

ence of imaging device’s position and pose. Like the motion along temporal axis, we

argue the motion along the view axis can also benefit from implicit representations,

i.e., the redundancy between different views can also be exploited by impolicit motion

representations.
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