1,059 research outputs found

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction

    Get PDF
    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets

    Integrating Local and Global Error Statistics for Multi-Scale RBF Network Training: An Assessment on Remote Sensing Data

    Get PDF
    Background This study discusses the theoretical underpinnings of a novel multi-scale radial basis function (MSRBF) neural network along with its application to classification and regression tasks in remote sensing. The novelty of the proposed MSRBF network relies on the integration of both local and global error statistics in the node selection process. Methodology and Principal Findings The method was tested on a binary classification task, detection of impervious surfaces using a Landsat satellite image, and a regression problem, simulation of waveform LiDAR data. In the classification scenario, results indicate that the MSRBF is superior to existing radial basis function and back propagation neural networks in terms of obtained classification accuracy and training-testing consistency, especially for smaller datasets. The latter is especially important as reference data acquisition is always an issue in remote sensing applications. In the regression case, MSRBF provided improved accuracy and consistency when contrasted with a multi kernel RBF network. Conclusion and Significance Results highlight the potential of a novel training methodology that is not restricted to a specific algorithmic type, therefore significantly advancing machine learning algorithms for classification and regression tasks. The MSRBF is expected to find numerous applications within and outside the remote sensing field

    Fault analysis using state-of-the-art classifiers

    Get PDF
    Fault Analysis is the detection and diagnosis of malfunction in machine operation or process control. Early fault analysis techniques were reserved for high critical plants such as nuclear or chemical industries where abnormal event prevention is given utmost importance. The techniques developed were a result of decades of technical research and models based on extensive characterization of equipment behavior. This requires in-depth knowledge of the system and expert analysis to apply these methods for the application at hand. Since machine learning algorithms depend on past process data for creating a system model, a generic autonomous diagnostic system can be developed which can be used for application in common industrial setups. In this thesis, we look into some of the techniques used for fault detection and diagnosis multi-class and one-class classifiers. First we study Feature Selection techniques and the classifier performance is analyzed against the number of selected features. The aim of feature selection is to reduce the impact of irrelevant variables and to reduce computation burden on the learning algorithm. We introduce the feature selection algorithms as a literature survey. Only few algorithms are implemented to obtain the results. Fault data from a Radio Frequency (RF) generator is used to perform fault detection and diagnosis. Comparison between continuous and discrete fault data is conducted for the Support Vector Machines (SVM) and Radial Basis Function Network (RBF) classifiers. In the second part we look into one-class classification techniques and their application to fault detection. One-class techniques were primarily developed to identify one class of objects from all other possible objects. Since all fault occurrences in a system cannot be simulated or recorded, one-class techniques help in identifying abnormal events. We introduce four one-class classifiers and analyze them using Receiver-Operating Characteristic (ROC) curve. We also develop a feature extraction method for the RF generator data which is used to obtain results for one-class classifiers and Radial Basis Function Network two class classification. To apply these techniques for real-time verification, the RIT Fault Prediction software is built. LabView environment is used to build a basic data management and fault detection using Radial Basis Function Network. This software is stand alone and acts as foundation for future implementations

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    On the development of intelligent medical systems for pre-operative anaesthesia assessment

    Get PDF
    This thesis describes the research and development of a decision support tool for determining a medical patient's suitability for surgical anaesthesia. At present, there is a change in the way that patients are clinically assessedp rior to surgery. The pre-operative assessment, usually conducted by a qualified anaesthetist, is being more frequently performed by nursing grade staff. The pre-operative assessmenet xists to minimise the risk of surgical complications for the patient. Nursing grade staff are often not as experienced as qualified anaesthetists, and thus are not as well suited to the role of performing the pre-operative assessment. This research project used data collected during pre-operative assessments to develop a decision support tool that would assist the nurse (or anaesthetist) in determining whether a patient is suitable for surgical anaesthesia. The three main objectives are: firstly, to research and develop an automated intelligent systems technique for classifying heart and lung sounds and hence identifying cardio-respiratory pathology. Secondly, to research and develop an automated intelligent systems technique for assessing the patient's blood oxygen level and pulse waveform. Finally, to develop a decision support tool that would combine the assessmentsa bove in forming a decision as to whether the patient is suitable for surgical anaesthesia. Clinical data were collected from hospital outpatient departments and recorded alongside the diagnoses made by a qualified anaesthetist. Heart and lung sounds were collected using an electronic stethoscope. Using this data two ensembles of artificial neural networks were trained to classify the different heart and lung sounds into different pathology groups. Classification accuracies up to 99.77% for the heart sounds, and 100% for the lung sounds has been obtained. Oxygen saturation and pulse waveform measurements were recorded using a pulse oximeter. Using this data an artificial neural network was trained to discriminate between normal and abnormal pulse waveforms. A discrimination accuracy of 98% has been obtained from the system. A fuzzy inference system was generated to classify the patient's blood oxygen level as being either an inhibiting or non-inhibiting factor in their suitability for surgical anaesthesia. When tested the system successfully classified 100% of the test dataset. A decision support tool, applying the genetic programming evolutionary technique to a fuzzy classification system was created. The decision support tool combined the results from the heart sound, lung sound and pulse oximetry classifiers in determining whether a patient was suitable for surgical anaesthesia. The evolved fuzzy system attained a classification accuracy of 91.79%. The principal conclusion from this thesis is that intelligent systems, such as artificial neural networks, genetic programming, and fuzzy inference systems, can be successfully applied to the creation of medical decision support tools.EThOS - Electronic Theses Online ServiceMedicdirect.co.uk Ltd.GBUnited Kingdo
    corecore