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Integrating Local and Global Error Statistics for Multi-
Scale RBF Network Training: An Assessment on Remote
Sensing Data
Giorgos Mountrakis*, Wei Zhuang

Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of

America

Abstract

Background: This study discusses the theoretical underpinnings of a novel multi-scale radial basis function (MSRBF) neural
network along with its application to classification and regression tasks in remote sensing. The novelty of the proposed
MSRBF network relies on the integration of both local and global error statistics in the node selection process.

Methodology and Principal Findings: The method was tested on a binary classification task, detection of impervious
surfaces using a Landsat satellite image, and a regression problem, simulation of waveform LiDAR data. In the classification
scenario, results indicate that the MSRBF is superior to existing radial basis function and back propagation neural networks
in terms of obtained classification accuracy and training-testing consistency, especially for smaller datasets. The latter is
especially important as reference data acquisition is always an issue in remote sensing applications. In the regression case,
MSRBF provided improved accuracy and consistency when contrasted with a multi kernel RBF network.

Conclusion and Significance: Results highlight the potential of a novel training methodology that is not restricted to a
specific algorithmic type, therefore significantly advancing machine learning algorithms for classification and regression
tasks. The MSRBF is expected to find numerous applications within and outside the remote sensing field.
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Introduction

Remote sensing has been recognized as a highly effective

method for observing environmental changes at multiple tempo-

ral, spatial and spectral resolutions [1]. Data from various sensors

has already been successful in extracting horizontal and vertical

information of land cover and land use [2,3,4]. Numerous

algorithms have either been developed or transitioned from other

disciplines to assist for processing of remotely sensed data. Among

other techniques, neural networks (NN) are frequently used in the

analysis of remote sensing data since they do not require a specific

distribution for the input data [5]. The Radial Basis Function

(RBF) neural network is a type of feed-forward neural network that

has attracted attention in remote sensing applications. For

instance, the K-mean based RBF network was implemented for

land cover classification [5]. It was proven difficult though to

define in advance the number of centers for the K-mean method.

A fuzzy mean method was applied in classifying IKONOS image,

which calculated the RBF centers based on a triangular fuzzy

partition of the input space [6,7]. An orthogonal least square

(OLS) learning algorithm was also used to find the parameters for

the RBF nodes in the hidden layer in soil type classification task

[8]. RBF networks have been compared to back propagation

neural networks and probabilistic neural networks in a land cover

classification problem, and obtained equal or better results

[9,10,11,12,13]. RBF networks also have shown promising ability

to classify multi-temporal imagery and update classification results

using an incremental learning strategy [14,15,16,17,18]. Beyond

classification tasks, the processing of a complex signal can be seen

as a curve-fitting problem [19], leading to regression applications.

For example, RBF networks have also been applied to Radar

signals in order to derive biophysical parameters, such as snowfall,

rainfall and wind speed [20,21,22,23,24,25,26].

Kernel overlapping issue
The successful applicability of RBF networks mainly depends on

two choices: the selection of centers and widths of the kernel

functions, and magnitude assignments for data located within the

overlapping area of the kernel functions [27]. The overlapping

problem may be controlled through the selection of small kernel

widths; however this limits the generalization ability of the

network. Furthermore, RBF networks with large kernel widths

may also lead to generalization errors if the overlapping area is

large [17,27,28]. The novel RBF network proposed in this paper

attempts to find the optimal balance between these two issues

through multi-scale kernel width incorporation.
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An example of the overlapping issue is investigated in Fig. 1.

Assume an artificial dataset created from two Gaussian distribu-

tions, one with a large width and another with a much smaller one;

also, assume the smaller pattern overlaps the larger one while the

larger one is not active within the smaller pattern. The two

patterns are depicted as x’s in Fig. 1. During the training process of

a RBF network, the appropriate parameters (e.g. widths and

center locations) for activation functions (AFs) should be selected

for each node in the hidden layer. If AFs with small widths are

chosen (e.g. widths close to the smaller width pattern), a higher

number than two AFs would be necessary to capture the given

dataset. On the other hand if AFs with large widths are

implemented, the network would absorb the larger pattern but

by doing so the structure of the smaller pattern would significantly

change requiring a much higher number of nodes to capture it.

Solid circles in Fig. 1 depict this issue after the first iteration

chooses a large width AF and the selection of center location is

affected by the smaller pattern on the left. The selection of large

width AFs for this dataset would be typical during the RBF

network training as the training process is guided to absorb the

maximum possible signal from the first iteration.

A number of algorithms have been developed to address the

overlapping problem. Two learning schemes based on incremental

training procedure were investigated in [29]: the first scheme

suggested the addition of a new neuron to the entire structure and

the second scheme examined the adjustment of weights connecting

the hidden and output layers. Expectation-maximization and

maximum likelihood algorithms were applied to split the

overlapping areas into several sub-areas in an incremental

probability RBF neural network so that the new split areas only

contained the training samples with the same class [30]. In

[31,32], in order to decrease the number of nodes in a RBF

networks, data within overlapping zone also involved in estimation

of subsequent RBF function associated with nodes. By minimizing

the responses variance of RBF functions from vectors that belong

to the same class, the weights and parameters of RBF functions in

a network can be updated in order to improve classification where

significant class overlap exists [33]. In the aforementioned

methods, the selection of centers and widths for the AFs was

based on global error statistics, statistics that evaluate performance

over the entire input space (e.g. Mean Square Error). There is a

contradiction though as RBF networks by design are a neural

network type that focuses more on local scale rather than global

scale information since the AFs are bounded in the input space.

The premise of this paper is that both local and global behavior

of a candidate neuron should be considered during the training

process. A novel multi-scale RBF neural network [34] is proposed

to minimize the effect of the overlapping problem. The changes

Figure 1. Activation function overlapping problem.
doi:10.1371/journal.pone.0040093.g001

Figure 2. Conventional RBF architecture.
doi:10.1371/journal.pone.0040093.g002

Figure 3. Blocking implementation example.
doi:10.1371/journal.pone.0040093.g003

Figure 4. MSRBF architecture.
doi:10.1371/journal.pone.0040093.g004

Novel Training for a Multi-Scale RBF Network
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from the traditional training process are discussed and the revised

network architecture is presented. The method is evaluated on a

binary classification task using Landsat imagery and a regression

problem using waveform LiDAR data.

Methods

The RBF network is a popular feed-forward neural network

with applications in numerous fields, including image processing

and analysis. RBF networks have three layers (shown in Fig. 2): an

input layer, a hidden layer, and an output layer.

RBF training involves identification of the activation functions

(AFs) embedded in the nodes of the hidden layer and the selection

of weights connecting the hidden layer to the output layer. The

selection of AFs, also known as kernel functions due to their

localized influence, have been investigated for image classification

purposes [5,16,35,36]. The outputs of the RBF are linear

combinations (shown in equation 1) of the responses from the

kernel functions. The coefficients of the linear model are the

weights linking the hidden layer and the output layer.

f (x)~
Xk

i~1
wi Qi (X )zb ð1Þ

In the equation above, f(X) is the network output; k is the total

number of nodes in the hidden layer; wi are the weights of the

linear model; b-is the bias of the network. A least square solution is

Figure 5. Schematic representation of training procedure.
doi:10.1371/journal.pone.0040093.g005

Figure 6. Node selection balancing local and global error absorption.
doi:10.1371/journal.pone.0040093.g006

Novel Training for a Multi-Scale RBF Network
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usually employed to solve this linear problem (shown in equation

1) by minimizing the squared norm of the residuals [36].

Proposed MSRBF architecture
The underlying motivation behind the proposed MSRBF is to

limit the initial greediness of typical RBF implementations,

especially ones using kernels of multiple widths. As the example

in Fig. 1 demonstrates, during training a global error minimization

takes place in every node identification. There may be cases

though where local signals mask larger scale signals leading to

middle of the road solutions in typical RBF implementations.

The proposed solution is to consider both local and global

behavior in estimating the parameters of AF. Meanwhile, a

blocking mechanism is established for parts of the input space that

are successfully mapped, in essence parts within the receptive field

of an AF where the local error is acceptable by training standards.

The idea is that if successfully mapped areas are blocked from later

node influence then the remaining patterns may be revealed and

therefore captured leading to error minimization and node usage

reduction in the hidden layer.

As Fig. 3 demonstrates if the small scale activation function is

selected first (Gaussian #1) and these points (hollow circles) are

excluded from further node training, then the global pattern will

be revealed and easily captured in a subsequent node (Gaussian

#2). Thus, a blocking layer is inserted between the hidden layer

and the output layer in the conventional RBF network architec-

ture aiming at selective blocking of the input space (Fig. 4).

The nodes in the blocking layer are exclusively associated one to

one with the correspondent nodes in the hidden layer. A binary

index is assigned to the connection to identify whether the

blocking node is activated or not (1 for activated, 0 for inactivated).

The outputs are calculated from the nodes in the blocking layer.

Algorithmic Training Procedure
In order to facilitate further replication of the proposed method

Fig. 5 identifies the major training steps of the proposed MSRBF:

Each candidate activation function (AF) was identified by

parameters for the center, amplitude and widths. In the classifica-

tion case, where a genetic algorithm was employed, random

assignments for these parameters took place considering the

boundaries from the training dataset. For the regression case,

where no training optimization technique was incorporated, centers

and associated amplitudes were selected from locations with large

output values while widths followed an exhaustive search.

After initialization of the parameters, global and local errors

were calculated for each candidate AF. A node selection process

followed balancing these two errors (see next section for details).

After the addition of each node the training process examined

whether a predetermined threshold of global error has been

reached or whether the network had the maximum allowed nodes.

If this was not the last node, the local error was contrasted with a

predetermined error threshold. If it was sufficiently small a

blocking node was added to the network structure associated with

that node. At the last training step a least squares method was

applied to fine tune the weights of each node.

Node selection criteria balancing global and local errors
The major difference between the MSRBF training and typical

RBF training is the incorporation of local error statistics in the

Figure 7. Accuracy comparison among four network types.
doi:10.1371/journal.pone.0040093.g007

Table 1. Two-tailed Student T test between MSRBF and other
algorithms.

Training
size t values

Training
size p values

BP MKRBF SKRBF BP MKRBF SKRBF

100 8.50 21.58 16.63 100 ,0.0001 ,0.0001 ,0.0001

150 12.15 15.32 9.79 150 ,0.0001 ,0.0001 ,0.0001

200 11.74 11.18 9.65 200 ,0.0001 ,0.0001 ,0.0001

250 11.40 13.11 12.70 250 ,0.0001 ,0.0001 ,0.0001

300 7.69 9.40 12.63 300 ,0.0001 ,0.0001 ,0.0001

350 9.45 10.06 11.64 350 ,0.0001 ,0.0001 ,0.0001

400 4.61 5.83 9.26 400 ,0.0001 ,0.0001 ,0.0001

Degree of Freedom is 98 (50*222), a= 0.05.
doi:10.1371/journal.pone.0040093.t001

Novel Training for a Multi-Scale RBF Network
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node selection process. For each candidate activation function (AF)

two evaluation metrics are produced: a Global Error (GE) and a

Local Error (LE). In the case of a classification problem GE can be

expressed as the ratio of the total number of misclassified points in

the dataset to the number of all points in the dataset, while a LE is

calculated as the GE but using exclusively points within the

receptive field of the AF under consideration. In the case of a

regression problem the GE can be based on the mean absolute

error (MAE) of all dataset points, while the LE is the MAE

exclusively from points within the AF receptive field.

A balancing act follows that takes into account both GE and LE.

This is necessary as it expresses how aggressively local fits are

pursued as opposed to global error absorption, especially in early

node selection. The idea is that AFs with good local behavior are

selected first to reveal larger scale signal(s). However, the AFs with

good local behavior should also absorb a reasonable amount of the

Figure 8. Comparison of MAE and SDE metrics for MK and MS RBFs.
doi:10.1371/journal.pone.0040093.g008

Novel Training for a Multi-Scale RBF Network
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global signal to avoid significant increase in nodes. For example,

the AF selection process should avoid fitting a single point of small

magnitude, where the local error indeed will be minimal but

undesirably this node would also have insignificant contribution to

the overall solution.

Procedurally, GE and LE are first computed on all candidate

AFs. At the next step a weighted sum of GE and LE is calculated

for the selection of potential nodes, shown in equation.

Sj ~ wlocal
j �GlobalErrorz wglobal

j zLocalErrorzR ð2Þ

where, R is an additional user-defined condition for the selections

of nodes, such as the number of points located within a Gaussian

function; Sj is the weighted sum of AF candidate j, and wj denotes

the local and global weights with wlocal
j zwglobal

j ~1. The AF with

the lowest weighted sum is selected. The influence of the local

error is expressed through the local weight and it is a function of

the following:

wlocal
j ~f (Winitial ,niter,K) ð3Þ

where Winitial is the initial local weight value (0–1); niteris the

number of current iteration and K is the maximum total number

of nodes allowed in the network (20–40 for classification case and

4–7 for regression case). In future implementations equations (2)

and (3) can be replaced by other functions expressing a different

global and local error tradeoff.

A visual example of AF winner selection is shown in Fig. 6. The

circles represent the global and local errors for each AF candidate

during a single iteration. Compared to the conventional node

selection criterion, which only considers the global error, the

proposed selection criterion also takes into account the local error.

For example, if the conventional selection criterion is employed,

the AF candidate A would be the winning choice among those

candidates, since its global error is the smallest. On the other hand,

the local error selection criterion may choose AF candidate C as

the winning node since it minimizes error within the AF’s

receptive field. In most cases a balancing act would take place

where both local and global errors are reduced, for example

leading to the selection of candidate B.

The relative local and global weights (equation 2) provide an

axes scaling mechanism in the above graphical representation and

express this balancing act. Two additional points can be made

from that graph. First, if a point existed with GE smaller than the

Target Error (horizontal shaded area in the graph) then that would

be automatically selected and iterations would end. Second, if the

selected winner has LE smaller that the Target Error, a blocking

mechanism is initiated since that neighborhood is successfully

mapped and subsequent nodes should not interfere with that. This

blocking mechanism links back to the formulation of matrix B in

equations 5 and 6.

Mathematical Solution
Matrices are typically used to represent responses of each node:

assuming k nodes were used in the network and n was the number

of sample points (i.e. input patterns), the following matrices can be

derived:

Matrix W (n6k). In this matrix, the responses of sample points to

every node in the hidden layer are recorded. The elements in each

row represent the responses of a sample point to all nodes in the

hidden layer; whereas the elements in the column signify all

sample points’ responses to a single node. This matrix is the core of

every RBF network.

W(n|k)~

W1
1 � � � Wk

1

..

.
P

..

.

W1
n � � � Wk

n

2
664

3
775 ð4Þ

Matrix B (n6k). The dimensions of B are the same as W. This

matrix permits or prevents the signal of a specific node to

propagate to the final solution depending on the input pattern

location in the input space and is expressed through the blocking

function identification in the training process. Values of 1 allow

propagation whereas 0 values do not. Each row corresponds to the

blocking of a specific pattern to all nodes. Each column reflects the

result of a specific blocking function to the input set.

B(n|k)~

1

..

.

1

B2
1 � � � Bk

1

..

.
P

..

.

B2
n � � � Bk

n

2
664

3
775 ð5Þ

It is important to clarify the purpose of a blocking function,

which is to ‘‘secure’’ that underlying neighborhood for all

following iterations. A blocking function that is caused by node j

will not have any effect on itself but will interfere with all the

following nodes (j+1,…,k). In other words it will block subsequent

nodes to interfere with that portion of the input space since it has

already been modeled with sufficient accuracy. The first column of

this blocking matrix is populated by 1s as no prior AF has been

selected. The blocking of the chosen functions is such that their

accumulative action is calculated by multiplication:

Bk ( x
I

)~Pn{1
j~1 Bj (~xx) ð6Þ

Matrix H (n6k). Due to the blocking layer insertion, the weights

which link the hidden layer to the output layer now connect the

blocking layer with the output layer. A recalculation of the weights

is needed by the least squares solution. Final responses of the

sample points to all the nodes can be calculated by an element-by-

element product of W (equation 4) and B (equation 5), denoted as

H.

Weights connecting the blocking layer and the output layer can

be calculated by the typical equation (7):

W~(HT H){1HT Y ð7Þ

Table 2. Mean comparison from ANOVA between MKRBF
and MSRBF (All plots).

F test Hypothesis Mean Comparison (a = 0.05)

Nodes 4 5 6 7

MAE_MK?MAE_MS ,0.01 ,0.01 ,0.001 ,0.001

MASDE_MK?MASDE_MS ,0.0001 ,0.0001 ,0.0001 ,0.0001

doi:10.1371/journal.pone.0040093.t002

Novel Training for a Multi-Scale RBF Network

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e40093



Figure 9. Contrasting MK and MS RBF fitting capabilities for biophysical feature extraction.
doi:10.1371/journal.pone.0040093.g009

Novel Training for a Multi-Scale RBF Network
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where W is the weight vectors of all nodes in the hidden layer, and

Y is the output values of the sample points.

To summarize, the MSRBF mathematical solution is similar to

a typical RBF with the distinction of an elegant modification to the

non-linear layer calculation that supports local neighborhood

blocking.

Results

Two general experiments took place using remotely sensed data,

the first assessing the algorithm on a binary classification task using

Landsat data and the second on a regression task using waveform

LiDAR signals.

Impervious classification example using Landsat data
Remote sensing has been extensively applied on monitoring

impervious surfaces, the man-made structures constructed with

impenetrable materials, such as roads, buildings and parking lots.

Unfortunately, the spectral reflectance of impervious and non-

impervious surfaces may often be similar, for example bare soil

may be confused with concrete buildings [37]. Numerous

approaches have been developed for impervious surface monitor-

ing. For example, regression models targeted discovery of certain

relationships between land cover types and sensor data [38,39].

Linear Spectral Mixture Analysis (LSMA) was applied to map the

subpixel land cover in medium resolution imagery [37,40,41],

such as TM, ETM+ and ASTER. Moreover, the implementation

of decision tree for impervious surfaces classification can also be

found in [42,43,44]. As artificial neural networks can handle

nonlinear relationships and make no assumptions for the data

distribution [45], they also performed well in the classification of

the impervious surfaces classification [46,47,48,49,50]. A recent

review on impervious surface detection is available in [51].

However, limited research exists using RBF neural networks for

impervious surface detection.

Landsat Data. A subset of a Landsat 7 Enhanced Thematic

Mapper Plus (ETM+) image acquired on 18 April, 2006 with a

size of 1526150 pixels and spatial resolution of 30 m was selected

for this research. Principle component analysis was applied on the

six bands, including blue, green, red, near IR and two mid IR

bands and the first three components were used in the experiment.

The variance explained in the three components was larger than

99%. A reference dataset depicting binary classes (impervious and

non-impervious surface) was derived from manual interpretation

of aerial digital orthophoto quarter quads imagery with spatial

resolution of 2 m, also acquired in 2006. The reference dataset

from the aerial image was resampled to the same pixel size of

ETM+. If any proportion of a resampled pixel was occupied by

impervious surface, this pixel was assigned to the impervious

surface class. This strict binary threshold process was followed to

increase the difficulty of the classification task and allow

algorithmic assessment under a difficult but typical scenario.

Furthermore, the produced binary classification is not expected to

be a final product; instead it acts as an intermediate filtering for

selective application of subpixel algorithms. Such intermediate

binary filtering products are necessary as past impervious subpixel

analysis has showed significant overestimation of imperviousness,

especially in rural areas [42,52]. Training and testing datasets of

two classes were sampled using a stratified random strategy with

equal number of points for both impervious and non-impervious

classes. The two classes were presented as 1 and -1 outputs

respectively. Furthermore, in order to assess algorithmic perfor-

mance with respect to the size of the training dataset, different

sample sizes were collected.

Landsat Experimental Setup. In order to accelerate

MSRBF training for the classification task a genetic algorithm

was incorporated to assist with activation function (AF) selection.

Furthermore, a criterion was added to avoid overfitting expressed

through the minimum number of points within the receptive field

of an AF. Specifically, a criterion that incorporates the importance

of the number of training points within the blocked neighborhood

is added to the equation (2) when the local error is smaller than the

Target Error (a predefined target error for successful training):

Sj~ wlocal
j �CElocalz wglobal

j �CEglobalze,e~1{
p{pmin

pmax{pmin
CElocalvCEdesired

Sj~ wlocal
j �CElocalz wglobal

j �CEglobal ,CElocalwCEdesired

8<
: ð8Þ

In the classification case, the local behavior is more important,

since the cluster from a local Gaussian may represent a possible

class member. Therefore, high priority needs to be given to local

accuracy. The equation for calculating the local weight is shown

below:

wlocal
j ~1=(1zexp(k{Kmax=m)) ð9Þ

where k is the current number of nodes (i.e. iteration number), Kmax

is the predetermined maximum node number for the MSRBF,

and m is a user-defined parameter that controls the decrease rate

for the local weight. Full details are provided in Text S1. To

evaluate the effectiveness of the MSRBF network, a classification

accuracy comparison between several algorithms was carried out,

namely a Back-Propagation (BP), a single kernel RBF (SKRBF)

and a multi-kernel RBF (MKRBF) neural network. The SKRBF

Figure 10. Contrasting MSRBF and MKRBF training progres-
sion.
doi:10.1371/journal.pone.0040093.g010

Figure 11. Mean and standard deviation on training-testing
accuracy deviations.
doi:10.1371/journal.pone.0040093.g011

ð8Þ

Novel Training for a Multi-Scale RBF Network
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was based on the built-in Matlab code and employed the same

width for all kernel functions. The BP also used Matlab’s built-in

functions with the default Levenberg-Marquardt algorithm. The

MKRBF was custom coded with similar properties as the

proposed MSRBF but with the exception of using local errors in

the node selection process. The BP network allowed evaluation of

benefits of bounded (SKRBF, MKRBF, MSRBF) vs. unbounded

activation functions (BP). The SKRBF allowed the investigation of

kernels with single (SKRBF) vs. multiple width (MKRBF,

MSRBF), while the MKRBF tested specifically the incorporation

of global (MKRBF) and local (MSRBF) error in the node selection

process. Table S1 provides further insight on the training setup for

each method and figure S1 presents the details of the training

using a genetic algorithm.

Landsat Classification Results. Classification accuracy

performance was contrasted between the MSRBF with the three

aforementioned benchmark algorithms. Different training sample

sizes were tested, from 100 to 400 sample points with a 50 point

increment. Each training sample had equal representation from

both impervious and non-impervious classes. For every sample

point size (e.g. 150 points) 50 different training datasets were

randomly created from a much larger pool of samples. For every

dataset in the samples pool, each network type was tested 50 times

(different architectures/parameters) with the settings shown in

Table S1. Performance evaluation took place using a single 600

point testing dataset comprised of randomly selected 300

impervious and 300 non-impervious points. All points used for

testing were excluded from participating in any of the training

datasets. To facilitate direct comparisons all training points were

fed into each algorithm, no portion was excluded for evaluation

during training (i.e. the calibration dataset was not split into

training and testing).

As mentioned, for each of the 50 training datasets per given

training size, 50 different algorithms from every of the four

algorithmic types were trained resulting in an optimal algorithmic

selection based on the highest overall accuracy on the corre-

sponding training dataset. This process created 50 optimal

algorithms for each of the four algorithmic types associated with

a given training sample point size. These 5064 algorithms were

simulated on the testing dataset and the maximum and average

accuracies were reported.

Fig. 7 displays graphically for different training sample point

sizes the maximum (hollow bar) and the average (filled bar) values

of the best testing accuracy for the MSRBF, BP, SKRBF and

MKRBF networks. The MSRBF proposed method outperformed

other methods’ maximum performance by a margin of 1–2%

depending on the benchmark method and the training size. These

improvements were more pronounced when contrasting the

averages for a 2–3% benefit. Considering the difficulty of the

classification task since any pixels with minimal impervious cover

are included in the impervious class, this improvement is

substantial from the application perspective. Furthermore, analysis

provided in Table 1 demonstrates that in every training size

scenario the mean accuracy of MSRBF was significantly larger

than that of the other algorithms. It is also important to note that

higher improvement margins were observed in smaller training

dataset sizes. As training data acquisition is always an issue for

remote sensing applications, the MSRBF method could find

fruitful ground in this field. Furthermore, the standard deviation

(T type overlay in Fig. 7) showed higher consistency for the

MSRBF. The cumulative standard deviation for all training

sample sizes was 1.01% for the MSRBF, 1.13% for the MKRBF,

1.21% for the RBF and 1.28% for the BP networks, respectively.

Of particular interest is the comparison between MSRBF and

MKRBF networks. They are RBF type networks, they both

support activation functions of variable width and they were both

trained with a similar GA-based method. The significant

difference is that the MSRBF incorporates local statistics in the

node evaluation and adds a blocking layer. The reported

assessment indicated that there is a clear benefit associated with

the inclusion of local behavior in node evaluation. Another

conclusion was that for smaller training point sample sizes the

SKRBF slightly outperformed the MKRBF, suggesting that multi-

scale RBF networks should be used with caution when sample sizes

are small. This could also be attributed to the SKRBF’s ability to

select any centers for the AFs, while the MKRBF (and the

MSRBF) was constrained to center AFs exclusively on training

sample point location. The BP networks proved to be a more

consistent competitor than the other two benchmarks (MKRBF,

SKRBF), possibly due to their unbounded AFs.

Regression example using waveform LiDAR data
Light Detection And Ranging (LiDAR) data have significantly

increased monitoring capabilities due to their ability to extract

vertical information [53,54]. Neural networks have been imple-

mented in several LiDAR studies, for example a BP neural

network was constructed to model the tidal terrain using

bathymetric LiDAR [55] and a Kohonen Self-Organizing Map

was applied in classifying rocks from metrics extracted from

airborne LiDAR [56]. The latest LiDAR technology supports a

waveform signal return which captures a significantly higher

vertical detail by substituting the one to five typical returns points

with 200–500 points. Neural network applications in waveform

LiDAR are currently limited. Both single layer and multi-layer

neural networks were reported in simulated coastal LiDAR

waveforms [57,58]. The simulation results were used in classifying

the milt content in the water. It is indicated that the two kinds of

neural network showed similar classification results.

LiDAR Data. In this experiment, data from the Laser

Vegetation Imaging Sensor (LVIS) was used. LVIS is a large

footprint airborne waveform LiDAR system designed by NASA

with more than 400 returns. The footprint size can vary from 1m

to 80 m according to flight height. In this research, the footprint

size is nominally 20 m. The laser pulse generated from the sensor

has a Gaussian shape both temporally and spatially and operated

at a wavelength of 1064 nm [59]. A geolocated waveform of LVIS

records reflected pulse from ground objects at a 0.3m vertical

resolution. LVIS data has been used for extracting vegetation

vertical structure [60,61]. In this experiment, a total of 162

waveforms were studied from date acquired in Central New York.

Field work allowed categorization of these waveforms into five

different successional stages [62,63]: grass, shrub, early stages (3–

10 years) and intermediate stages (10 to more than 40 years, split

further into coniferous and deciduous).

LiDAR Experimental Setup. MSRBF and MKRBF were

tested in this experiment. As the dataset in this experiment was

limited to waveform returns of which amplitudes were larger than

the background noise, a genetic optimization was not applied and

the maximum number of nodes was limited to seven. The

background noise was estimated by the maximum amplitudes of

first 150 waveform returns. Activation function was set to Gaussian

function, which contained 3 parameters (i.e. center, amplitude,

and width). A node candidate database was created based on the

dataset: centers and amplitudes of the candidates were the

locations and amplitudes of the returns; 50 widths were evenly

distributed within a range between 0 and 1/6 of the time length of

the dataset. In MSRBF, no additional condition was set for node

Novel Training for a Multi-Scale RBF Network
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selection (e.g. no limit was imposed on the number of sampled

points within the local receptive field of an AF). Therefore, the

equation for finding the best node only considered balancing

global and local accuracy of the AFs (equation 2, R = 0). In order

to capture sufficient portion of the signal the weight equation was

adapted as following:

wglobal
j (niter)~

winitial{wfinal

N
� (N{niter) ð10Þ

where N is the max number of nodes; niter is the current iteration

number (i.e. node number). Usually, theWinitial is larger than

Wfinal , since a large weight is needed at the start of the

algorithm(small niter values) to address the large variability within

a waveform. The blocking function, where necessary, was set to

Y = 0. The, W- Winitialwas determined by an exhaustive search

using values from 1 to 0 at 0.1 interval for each waveform signal.

Algorithmic evaluation took place using the Mean Absolute

Error (MAE) and the Standard Deviation of Errors (SDE). The

MAE can evaluate the average performance for an algorithm;

however, an algorithm may not perform evenly throughout entire

waveform. To receive a more complete evaluation, the SDE was

included in evaluating the consistency of performance for each

algorithm. Larger SDE in a simulation meant an algorithm

performed unequally in different parts of a waveform; while small

SDE denoted that the performance was evenly distributed. Good

SDE performance is of particular interest to this curve fitting task

because high errors can be interpreted as a result of different

physical representation (e.g. detect undercanopy where it may not

exist).

In order to assess the capability of absorbing variance within a

waveform, simulated results from both MSRBF and MKRBF were

acquired and normalized with respect to the amplitude of the

signal. Thus, the relative MAE and relative SDE were calculated

as follows:

MAErel~
Pn

i~1

(ŷysim(i){yref (i))

yref (i)

� �
� 100=n

SDErel~

Pn
i~1

( y
_

sim(i){yref (i))2

h i1=2

Pn
i~1

((ysim(i))2)

h i1=2
� 100

ð11Þ

where i is one of the point returns forming the waveform; n is the

total number of return points in a waveform, and ŷysim(i) is the

simulated amplitude for each return from MSRBF or MKRBF

and yRef (i)is the reference amplitude for return point i. It is

important that both MAE and SDE values are low as it would be

an indication of a good and consistent fit, respectively.

The purpose of model fitting such waveform LiDAR signals is to

extract meaningful and accurate statistics for further processing

(e.g. tree heights). In order to do so all waveform points are

typically used therefore no cross validation took place. In addition,

no BP neural network was compared because the unbounded AFs

(e.g. sigmoidal functions) can create significant generalization

errors as they do not relate to biophysical parameters as the local

bounded functions do (e.g. a Gaussian function relates to

undercanopy).

LiDAR Regression Results. The comparison results are

shown in the Fig. 8. The left column is the MAE comparison and

the right column displays SDE results. Each of the four rows

corresponds to a different network architecture using 4, 5, 6, or 7

nodes, respectively. Within each of the eight graphs the left side

represents results of all plots with further investigation on

algorithmic performance in plots of variable signal complexity

resulting from different vegetation successional stages. The vertical

structure for grass is the simplest within all stages. On the contrary,

the intermediate forests, both the deciduous forest and coniferous

forest, are more complex since different vertical vegetation layers

may exist within a waveform footprint. The five different

categories shown are Grass (53 footprints), Shrub (25 footprints),

Early Succession (21 footprints), Intermediate Succession Decid-

uous (25 footprints) and Intermediate Succession Coniferous (38

footprints).

Results indicate that the MSRBF outperforms the MKRBF

both in term of minimizing the overall error (MAE) but also in

terms of the smaller variability in the fitting errors (SDE). To

further investigate these improvements a statistical comparison

took place in Table 2, where the improvements were also found

statistically significant.

On the surface these improvements, despite their statistical

significance, may appear small (e.g. decreasing error by 0.5%).

Further analysis was carried out and it is presented in Fig. 9. Three

waveforms are presented with the raw signal and the MKRBF and

MSRBF simulated curves. Despite the relatively close MAE

values, the MSRBF curve is significantly more usable as important

biophysical features are preserved. For example, on the top two

waveforms the ground is correctly identified only by the MSRBF,

while on the bottom waveform the top canopy return is clearly

preserved by the MSRBF but not the MKRBF. This is due to the

incorporation of local error statistics in the activation function

selection process of the MSRBF. On the other hand, the MKRBF

only focused on global error minimization therefore returns with

large amplitudes dominated the evaluation process allowing

returns with small (but biophysically important) amplitudes to be

ignored.

Discussion

The major novelty of the MSRBF neural network, namely the

incorporation of local error in the node selection process, allows

signals at multiple scales to be revealed and successfully captured.

This has led to both statistically significant and application

beneficial results. It is important to note that the MKRBF, the

current multi-scale RBF used as a benchmark, could be seen as an

MSRBF implementation where the local error is not taken under

consideration. Therefore, even in the limited cases where the local

error analysis may lead to reduced accuracy, the all-encompassing

MSRBF framework could dynamically adapt and simply choose to

incorporate only global error assessment in the produced model.

Several works have studied optimization techniques (e.g. [64])

and our method could easily support established efficient training

methods [65,66]. Other multi-scale RBF networks have been

identified but they lack the ability to handle the overlapping AF

issue (see Fig. 1). For example, [67] proposed a hierarchical RBF

that dynamically segments the input space in local regions based

on a grid structure while the proposed MSRBF does not require a

grid and has the ability to combine multiple AFs through an

iterative training process. In other efforts, similar to the proposed

work, a multi-scale RBF network was introduced with kernels of

variable widths [68,69]. However, the presented solution does not

offer a mechanism to handle overlapping signals, expected in

multi-width kernels, in an manner other than adding nodes and

letting a least squares optimization figure out the relative node

contribution at each scale. They are similar to the MKRBF

benchmark model contrasted in this study.

A further investigation took place to look into training

differences between the MSRBF and the MKRBF networks in
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the classification scenario. A typical example expressing classifica-

tion error during training is presented in Fig. 10. Both networks

were trained on the same training dataset (300 points) using the

same maximum number of nodes (26) and the same pool of

candidate AFs. The MKRBF had a 50% classification error (CE)

after the introduction of the first node while the MSRBF begun at

a much higher value (74%). The initial greediness of the MKRBF

continued for the first four nodes; however error absorption

saturated after that. On the contrary, the ‘‘slow and steady’’

MSRBF approach compensated for the slow start with further

gains at later nodes, reaching a significantly lower global error

(10% vs. 22%). Furthermore, the first four nodes had a local CE

below the Target Error therefore a blocking process was initiated

resulting in 32%, 8%, 10% and 9% absorption of the overall

training points for nodes one through four, respectively. A detailed

look at the widths of the first MSRBF and MKRBF nodes

confirmed the initial MKRBF greediness, since the first MKRBF

activation function covered approximately 48% on the entire input

space, while the comparable portion for the MSRBF was close to

12%.

In the tested datasets the MSRBF and MKRBF showed similar

efficiency in the training process. By design the MSRBF goes

through additional calculations as the local error is computed for

every node (an average 10% computational cost in the presented

examples). However, in most cases the MSRBF required a lower

number of nodes to achieve the desired accuracy therefore

balancing out the overall computational time to being comparable

to the MKRBF. Further optimization techniques could be applied

in the future to improve MSRBF’s training speed, such as

calculation of local errors in a subset of the candidate AFs (e.g.

those with sufficient global error absorption).

The generalization ability of the backpropagation neural

network was contrasted with the MSRBF by examining the

difference between training and testing accuracy. For each

training sample point size (100 to 400), the difference between

training and testing accuracy was calculated on the 50 optimal

networks, as previously described. The mean and standard

deviation of this difference is shown in Fig. 11. The MSRBF

superiority may be attributed to the fact that the number of sample

points within the blocked neighborhood was added as a criterion

in the fitness function of the GA algorithm, therefore guiding

MSRBF training towards AFs with larger widths.

Back propagation (BP) neural networks are often the first

algorithmic choice as opposed to radial basis function (RBF)

networks. The major advantage of BP algorithms relates to the fact

that node activation functions do not have to be bounded; this

allows better generalization ability. On the other hand, RBF

networks expect by design bounded activation functions since they

are a kernel-based approach. For example, typical BP activation

functions are sigmoidal functions, while RBF ones are Gaussian

functions. In the presented experiments bounded activation

functions were used for all RBF type networks. However, the

novel architectural design (see Fig. 4) has the ability to ‘‘localize’’

any function through proper selection of the blocking function in

the second layer. Therefore, our network could be seen as a hybrid

between RBF and BP type networks, where typical advantages of

each network type are preserved, for example the control and

transparency of the RBF with the BP large-scale modeling

capabilities. Furthermore, by looking at the network architecture

of Fig. 4 as a broader integration framework, hidden nodes could

be replaced by ancillary models. Different models could be fused

together where successfully mapped neighborhoods are assigned to

a given model through a selective process that blocks interference

from other models. The proposed MSRBF network was discussed

in remote sensing tasks but it can easily generalize to classification

and regression problems outside this field.
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