40,910 research outputs found

    Active Management of Flap-Edge Trailing Vortices

    Get PDF
    The vortex hazard produced by large airliners and increasingly larger airliners entering service, combined with projected rapid increases in the demand for air transportation, is expected to act as a major impediment to increased air traffic capacity. Significant reduction in the vortex hazard is possible, however, by employing active vortex alleviation techniques that reduce the wake severity by dynamically modifying its vortex characteristics, providing that the techniques do not degrade performance or compromise safety and ride quality. With this as background, a series of experiments were performed, initially at NASA Langley Research Center and subsequently at the Berlin University of Technology in collaboration with the German Aerospace Center. The investigations demonstrated the basic mechanism for managing trailing vortices using retrofitted devices that are decoupled from conventional control surfaces. The basic premise for managing vortices advanced here is rooted in the erstwhile forgotten hypothesis of Albert Betz, as extended and verified ingeniously by Coleman duPont Donaldson and his collaborators. Using these devices, vortices may be perturbed at arbitrarily long wavelengths down to wavelengths less than a typical airliner wingspan and the oscillatory loads on the wings, and hence the vehicle, are small. Significant flexibility in the specific device has been demonstrated using local passive and active separation control as well as local circulation control via Gurney flaps. The method is now in a position to be tested in a wind tunnel with a longer test section on a scaled airliner configuration. Alternatively, the method can be tested directly in a towing tank, on a model aircraft, a light aircraft or a full-scale airliner. The authors believed that this method will have significant appeal from an industry perspective due to its retrofit potential with little to no impact on cruise (devices tucked away in the cove or retracted); low operating power requirements; small lift oscillations when deployed in a time-dependent manner; and significant flexibility with respect to the specific devices selected

    AFTI/F-111 MAW flight control system and redundancy management description

    Get PDF
    The wing on the NASA F-111 transonic aircraft technology (TACT) airplane was modified to provide flexible leading and trailing edge flaps; this modified wing is known as the mission adaptive wing (MAW). A dual digital primary fly-by-wire flight control system was developed with analog backup reversion for redundancy. This report discusses the functions, design, and redundancy management of the flight control system for these flaps

    Control of rotorcraft retreating blade stall using air-jet vortex generators

    Get PDF
    A series of low-speed wind tunnel tests were carried out on an oscillating airfoil fitted with two rows of air-jet vortex generators (AJVGs). The airfoil used had an RAE 9645 section and the two spanwise arrays of AJVGs were located at x/c=0.12 and 0.62. The devices and their distribution were chosen to assess their ability to modify/control dynamic stall; the goal being to enhance the aerodynamic performance of helicopter rotors on the retreating blade side of the disc. The model was pitched about the quarter chord with a reduced frequency (k) of 0.1 in a sinusoidal motion defined by a=15o+10sin_ t. The measured data indicate that, for continuous blowing from the front row of AJVGs with a momentum blowing coefficient (C μ) greater than 0.008, modifications to the stalling process are encouraging. In particular, the pitching moment behavior exhibits delayed stall and there is a marked reduction in the normal force hysteresis

    Simulating Primary Manufacturing Area (PMA) activities of fixed trailing edge panels production

    Get PDF
    Simulation clearly has the potential to play an important role in manufacturing decision-making at many levels. This simulation study is conducted at the local manufacturing plant that manufactures fixed trailing edge panels for the aerospace industry. The model focused on operational activities at the primary manufacturing area of cutting and laminating of aircraft’s composite parts. The model built was used to investigate a variety of issues, for example to determine the impact of a proposed change, without affecting production.The result shows that when production rate was increased by 20% to investigate the current plant capacity, the current resources capacity was unable to tolerate this increment. From the model experimentation, an increase of 60 minutes working time for ply cutter machines and 75 minutes of lay up operators found to be the best design to meet the expected production throughput and increase resources utilisation

    An experimental study of airfoil instability tonal noise with trailing edge serrations

    Get PDF
    This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien-Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback model. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack

    Natural flow wing

    Get PDF
    The invention is a natural flow wing and a method for constructing the same. The method comprises contouring a three-dimensional upper surface and a three-dimensional lower surface of the natural flow wing independently of one another into a prescribed shape. Experimental data and theoretical analysis show that flow and pressure-loading over an upper surface of a wing tend to be conical about an apex of the wing, producing favorable and unfavorable regions of performance based on drag. The method reduces these unfavorable regions by shaping the upper surface such that the maximum thickness near a tip of the natural flow wing moves aft, thereby, contouring the wing to coincide more closely with the conical nature of the flow on the upper surface. Nearly constant compressive loading characterizes the flow field over a lower surface of the conventional wing. Magnitude of these compressive pressures on the lower surface depends on angle of attack and on a streamwise curvature of the lower surface of the wing and not on a cross-sectional spanwise curvature. The method, thereby, shapes the lower surface to create an area as large as possible with negative slopes. Any type of swept wing may be used to obtain the final, shaped geometry of the upper and lower surfaces of the natural flow wing

    An experimental study of interceptors for drag reduction on high-performance sailing yachts

    Get PDF
    Interceptors have been widely used in recent years in fast ferries and small high-speed leisure and commercial craft for ride and trim control, and steering. In the context of high-performance sailing yachts, they first appeared in 2008 on the yacht Ecover 3 which was dismasted while leading the Vendee Globe Challenge race. However, in spite of their popularity in power craft, few studies have been published investigating the impact of interceptors on vessel performance, and apparently none in the case of sailing yachts. In the current study, interceptors are compared with an aerodynamic device known as a Gurney flap. It is shown that interceptors are generally substantially smaller than Gurney flaps. A comprehensive experiment programme is presented exploring the impact of interceptors on the performance of an Open 60 yacht hull. Results show a marked reduction in calm-water resistance over a wide speed range, with benefits of 10–18% in the speed range between 8 and 20 knots, accompanied by reduced sinkage and trim. The gains observed are much larger than those observed in powercraft, and also substantially greater than those achievable through trim changes by moving ballast longitudinally. The benefits appear to be largely sustained in small waves

    Explanation and discovery in aerodynamics

    Get PDF
    The purpose of this paper is to discuss and clarify the explanations commonly cited for the aerodynamic lift generated by a wing, and to then analyse, as a case study of engineering discovery, the aerodynamic revolutions which have taken place within Formula 1 in the past 40 years. The paper begins with an introduction that provides a succinct summary of the mathematics of fluid mechanics

    A Great Escape : resource availability and density-dependence shape population dynamics along trailing range edges

    Get PDF
    This research was funded by the Northeast Climate Adaptation Science Center, which is managed by the USGS National Climate Adaptation Science Center. Additional funding was provided by 1) a CFDA grant (15.678) administered by the USFWS via a Cooperative Agreement Award (no. F16AC00435) to the University of Massachusetts (UMass); 2) a Challenge Cost Share Agreement (no. 14-CS-11092200-019) between the USFS and NHFG; 3) a Dissertation Fieldwork Grant awarded to APKS by the UMass Graduate School, 4) generous support from backers of an Experiment award to APKS and MZ (DOI: 10.18258/10737) and 5) a National Science Foundation grant DEB-1907022 to LSM.Populations along geographical range limits are often exposed to unsuitable climate and low resource availability relative to core populations. As such, there has been a renewed focus on understanding the factors that determine range limits to better predict how species will respond to global change. Using recent theory on range limits and classical understanding of density dependence, we evaluated the influence of resource availability on the snowshoe hare Lepus americanus along its trailing range edge. We estimated variation in population density, habitat use, survival, and parasite loads to test the Great Escape Hypothesis (GEH), i.e. that density dependence determines, in part, a species' persistence along trailing edges. We found that variability in resource availability affected density and population fluctuations and led to trade-offs in survival for snowshoe hare populations in the northeastern USA. Hares living in resource-limited environments had lower and less variable population density, yet higher survival and lower parasitism compared to populations living in resource-rich environments. We suggest that density-dependent dynamics, elicited by resource availability, provide hares a unique survival advantage and partly explain persistence along their trailing edge. We hypothesize that this low-density escape from predation and parasitism occurs for other prey species along trailing edges, but the extent to which it occurs is likely conditional on the quality of matrix habitat. Our work indicates that biotic factors play an important role in shaping species' trailing edges and more detailed examination of non-climatic factors is warranted to better inform conservation and management decisions.Publisher PDFPeer reviewe
    • 

    corecore