1,013 research outputs found

    Spatio-temporal traffic anomaly detection for urban networks

    Get PDF
    Urban road networks are often affected by disruptions such as accidents and roadworks, giving rise to congestion and delays, which can, in turn, create a wide range of negative impacts to the economy, environment, safety and security. Accurate detection of the onset of traffic anomalies, specifically Recurrent Congestion (RC) and Nonrecurrent Congestion (NRC) in the traffic networks, is an important ITS function to facilitate proactive intervention measures to reduce the level of severity of congestion. A substantial body of literature is dedicated to models with varying levels of complexity that attempt to identify such anomalies. Given the complexity of the problem, however, very less effort is dedicated to the development of methods that attempt to detect traffic anomalies using spatio-temporal features. Driven both by the recent advances in deep learning techniques and the development of Traffic Incident Management Systems (TIMS), the aim of this research is to develop novel traffic anomaly detection models that can incorporate both spatial and temporal traffic information to detect traffic anomalies at a network level. This thesis first reviews the state of the art in traffic anomaly detection techniques, including the existing methods and emerging machine learning and deep learning methods, before identifying the gaps in the current understanding of traffic anomaly and its detection. One of the problems in terms of adapting the deep learning models to traffic anomaly detection is the translation of time series traffic data from multiple locations to the format necessary for the deep learning model to learn the spatial and temporal features effectively. To address this challenging problem and build a systematic traffic anomaly detection method at a network level, this thesis proposes a methodological framework consisting of (a) the translation layer (which is designed to translate the time series traffic data from multiple locations over the road network into a desired format with spatial and temporal features), (b) detection methods and (c) localisation. This methodological framework is subsequently tested for early RC detection and NRC detection. Three translation layers including connectivity matrix, geographical grid translation and spatial temporal translation are presented and evaluated for both RC and NRC detection. The early RC detection approach is a deep learning based method that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). The NRC detection, on the other hand, involves only the application of the CNN. The performance of the proposed approach is compared against other conventional congestion detection methods, using a comprehensive evaluation framework that includes metrics such as detection rates and false positive rates, and the sensitivity analysis of time windows as well as prediction horizons. The conventional congestion detection methods used for the comparison include Multilayer Perceptron, Random Forest and Gradient Boost Classifier, all of which are commonly used in the literature. Real-world traffic data from the City of Bath are used for the comparative analysis of RC, while traffic data in conjunction with incident data extracted from Central London are used for NRC detection. The results show that while the connectivity matrix may be capable of extracting features of a small network, the increased sparsity in the matrix in a large network reduces its effectiveness in feature learning compared to geographical grid translation. The results also indicate that the proposed deep learning method demonstrates superior detection accuracy compared to alternative methods and that it can detect recurrent congestion as early as one hour ahead with acceptable accuracy. The proposed method is capable of being implemented within a real-world ITS system making use of traffic sensor data, thereby providing a practically useful tool for road network managers to manage traffic proactively. In addition, the results demonstrate that a deep learning-based approach may improve the accuracy of incident detection and locate traffic anomalies precisely, especially in a large urban network. Finally, the framework is further tested for robustness in terms of network topology, sensor faults and missing data. The robustness analysis demonstrates that the proposed traffic anomaly detection approaches are transferable to different sizes of road networks, and that they are robust in the presence of sensor faults and missing data.Open Acces

    Machine Learning Use-Cases in C-ITS Applications

    Get PDF
    In recent years, the development of Cooperative Intelligent Transportation Systems (C-ITS) have witnessed significant growth thus improving the smart transportation concept. The ground of the new C-ITS applications are machine learning algorithms. The goal of this paper is to give a structured and comprehensive overview of machine learning use-cases in the field of C-ITS. It reviews recent novel studies and solutions on CITS applications that are based on machine learning algorithms. These works are organised based on their operational area, including self-inspection level, inter-vehicle level and infrastructure level. The primary objective of this paper is to demonstrate the potential of artificial intelligence in enhancing C-ITS applications

    Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship

    Get PDF
    We describe and validate a novel data-driven approach to the real time detection and classification of traffic anomalies based on the identification of atypical fluctuations in the relationship between density and flow. For aggregated data under stationary conditions, flow and density are related by the fundamental diagram. However, high resolution data obtained from modern sensor networks is generally non-stationary and disaggregated. Such data consequently show significant statistical fluctuations. These fluctuations are best described using a bivariate probability distribution in the density-flow plane. By applying kernel density estimation to high-volume data from the UK National Traffic Information Service (NTIS), we empirically construct these distributions for London's M25 motorway. Curves in the density-flow plane are then constructed, analogous to quantiles of univariate distributions. These curves quantitatively separate atypical fluctuations from typical traffic states. Although the algorithm identifies anomalies in general rather than specific events, we find that fluctuations outside the 95\% probability curve correlate strongly with the spikes in travel time associated with significant congestion events. Moreover, the size of an excursion from the typical region provides a simple, real-time measure of the severity of detected anomalies. We validate the algorithm by benchmarking its ability to identify labelled events in historical NTIS data against some commonly used methods from the literature. Detection rate, time-to-detect and false alarm rate are used as metrics and found to be generally comparable except in situations when the speed distribution is bi-modal. In such situations, the new algorithm achieves a much lower false alarm rate without suffering significant degradation on the other metrics. This method has the additional advantage of being self-calibrating.Comment: 23 pages, 12 figure

    Pavement Performance Evaluation Using Connected Vehicles

    Get PDF
    Roads deteriorate at different rates from weathering and use. Hence, transportation agencies must assess the ride quality of a facility regularly to determine its maintenance needs. Existing models to characterize ride quality produce the International Roughness Index (IRI), the prevailing summary of roughness. Nearly all state agencies use Inertial Profilers to produce the IRI. Such heavily instrumented vehicles require trained personnel for their operation and data interpretation. Resource constraints prevent the scaling of these existing methods beyond 4% of the network. This dissertation developed an alternative method to characterize ride quality that uses regular passenger vehicles. Smartphones or connected vehicles provide the onboard sensor data needed to enable the new technique. The new method provides a single index summary of ride quality for all paved and unpaved roads. The new index is directly proportional to the IRI. A new transform integrates sensor data streams from connected vehicles to produce a linear energy density representation of roughness. The ensemble average of indices from different speed ranges converges to a repeatable characterization of roughness. The currently used IRI is undefined at speeds other than 80 km/h. This constraint mischaracterizes roughness experienced at other speeds. The newly proposed transform integrates the average roughness indices from all speed ranges to produce a speed-independent characterization of ride quality. This property avoids spatial wavelength bias, which is a critical deficiency of the IRI. The new method leverages the emergence of connected vehicles to provide continuous characterizations of ride quality for the entire roadway network. This dissertation derived precision bounds of deterioration forecasting for models that could utilize the new index. The results demonstrated continuous performance improvements with additional vehicle participation. With practical traversal volumes, the achievable precision of forecast is within a few days. This work also quantified capabilities of the new transform to localize roadway anomalies that could pose travel hazards. The methods included derivations of the best sensor settings to achieve the desired performances. Several case studies validated the findings. These new techniques have the potential to save agencies millions of dollars annually by enabling predictive maintenance practices for all roadways, worldwide.Mountain Plains Consortium (MPC

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    Data science applications to connected vehicles: Key barriers to overcome

    Get PDF
    The connected vehicles will generate huge amount of pervasive and real time data, at very high frequencies. This poses new challenges for Data science. How to analyse these data and how to address short-term and long-term storage are some of the key barriers to overcome.JRC.C.6-Economics of Climate Change, Energy and Transpor

    A Survey on Machine Learning-based Misbehavior Detection Systems for 5G and Beyond Vehicular Networks

    Get PDF
    Advances in Vehicle-to-Everything (V2X) technology and onboard sensors have significantly accelerated deploying Connected and Automated Vehicles (CAVs). Integrating V2X with 5G has enabled Ultra-Reliable Low Latency Communications (URLLC) to CAVs. However, while communication performance has been enhanced, security and privacy issues have increased. Attacks have become more aggressive, and attackers have become more strategic. Public Key Infrastructure (PKI) proposed by standardization bodies cannot solely defend against these attacks. Thus, in complementary of that, sophisticated systems should be designed to detect such attacks and attackers. Machine Learning (ML) has recently emerged as a key enabler to secure future roads. Various V2X Misbehavior Detection Systems (MDSs) have adopted this paradigm. However, analyzing these systems is a research gap, and developing effective ML-based MDSs is still an open issue. To this end, this paper comprehensively surveys and classifies ML-based MDSs as well as discusses and analyses them from security and ML perspectives. It also provides some learned lessons and recommendations for guiding the development, validation, and deployment of ML-based MDSs. Finally, this paper highlighted open research and standardization issues with some future directions

    Cybersecurity of Industrial Cyber-Physical Systems: A Review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the "physics" data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the "security by obscurity" principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.Comment: 32 pages, 10 figure
    corecore