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ABSTRACT 

Roads deteriorate at different rates from weathering and use.  Hence, transportation 

agencies must assess the ride quality of a facility regularly to determine its maintenance needs.  

Existing models to characterize ride quality produce the International Roughness Index (IRI), the 

prevailing summary of roughness.  Nearly all state agencies use Inertial Profilers to produce the 

IRI.  Such heavily instrumented vehicles require trained personnel for their operation and data 

interpretation.  Resource constraints prevent the scaling of these existing methods beyond 4% of 

the network.  This dissertation developed an alternative method to characterize ride quality that 

uses regular passenger vehicles.  Smartphones or connected vehicles provide the onboard sensor 

data needed to enable the new technique. 

The new method provides a single index summary of ride quality for all paved and 

unpaved roads.  The new index is directly proportional to the IRI.  A new transform integrates 

sensor data streams from connected vehicles to produce a linear energy density representation of 

roughness.  The ensemble average of indices from different speed ranges converges to a 

repeatable characterization of roughness.  The currently used IRI is undefined at speeds other 

than 80 km/h.  This constraint mischaracterizes roughness experienced at other speeds.  The 

newly proposed transform integrates the average roughness indices from all speed ranges to 

produce a speed-independent characterization of ride quality.  This property avoids spatial 

wavelength bias, which is a critical deficiency of the IRI. 

The new method leverages the emergence of connected vehicles to provide continuous 

characterizations of ride quality for the entire roadway network.  This dissertation derived 

precision bounds of deterioration forecasting for models that could utilize the new index.  The 

results demonstrated continuous performance improvements with additional vehicle 
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participation.  With practical traversal volumes, the achievable precision of forecast is within a 

few days.  This work also quantified capabilities of the new transform to localize roadway 

anomalies that could pose travel hazards.  The methods included derivations of the best sensor 

settings to achieve the desired performances.  Several case studies validated the findings.  These 

new techniques have the potential to save agencies millions of dollars annually by enabling 

predictive maintenance practices for all roadways, worldwide. 
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CHAPTER 1.  INTRODUCTION 

The United States relies on the performance of more than four million miles of roadways 

to sustain its economic prosperity and to support the well-being of its growing population.  

However, transportation agencies rate less than half of those roadways as being in good 

condition (USDOT 2014).  Researchers have determined that road roughness significantly 

increases the average annual cost of operating a vehicle (TRIP 2013).  Agencies collectively lack 

the resources needed to scale existing methods of ride quality characterizations beyond the 

National Highway System (NHS), which accounts for less than 4% of the roadway network 

(HPMS 2012).  The present methods of pavement performance evaluations include visual 

inspections that tend to disrupt traffic flows.  This research develops an approach that enables 

regular vehicles to assess the roughness of any facility by providing continuous measures of ride 

quality.  The new methods and models leverage the ubiquity of smartphones and the emergence 

of connected vehicles to provide unimpeded monitoring of the entire roadway network that 

includes both paved and unpaved roads. 

The significance of this research is its broad impact to the economic prosperity of nations 

worldwide.  The next section introduces a macro model to explain the interdependencies between 

the two distinct concepts of economic well-being and regular pavement performance evaluations.  

The challenges identified highlight the benefits of attaining the research objectives.  The scope 

and methods of this research include model synthesis, simulations, and theoretical validation 

using data from several case studies.  This chapter provides the context and motivation for the 

research, lists the research objectives, introduces the methods employed, summarizes the 

research contributions, and describes the organization of the dissertation. 
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1.1.  Context and Motivation 

Besides environmental factors, heavy vehicles contribute considerably to roadway 

deterioration.  Many jurisdictions currently restrict the maximum gross weight of vehicles 

because they have long recognized that heavy vehicles such as trucks accelerate pavement 

deterioration (Khosla 1985).  Trucks nevertheless play a critical role in the economic prosperity 

of a nation.  They provide short-haul transport and connect intermodal shipments from long-haul 

modes such as air, rail, pipelines, and waterways to their final destinations.  Trucks have 

consistently hauled between 60% to 70% of the U.S. freight tonnage moved by all modes (BTS 

2013).   

 

Figure 1.  Infrastructure performance linked to economic growth 

As illustrated in Figure 1 without a corresponding increase in good lane miles, continued 

economic growth and economies of scale will lead to greater pavement load density from trucks.  

Consequently, deterioration rates will accelerate.  Trucks are becoming heavier because carriers 

strive to spread their fixed costs across a greater number of units shipped per vehicle to gain 

economies of scale.  Analysts predict that the weight of shipments carried by trucks will increase 

by 1.3% per year from 2010 to 2040 (USDOT 2014).   
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Traffic density has already reached chronic congestion levels because the number of road 

miles has not kept up with travel demand.  From 1990 to 2011, road miles increased only 5% 

while the number of vehicle miles traveled has increased by more than 35% (FHWA 2013).  

Truck miles grew at an even faster rate, increasing by nearly 50% during the same period.  

Hence, agencies expect road conditions to worsen unless governments manage to close the 

approximately $86 billion annual shortfall needed to maintain the present performance levels 

(USDOT 2014).  Transportation agencies rely on regular characterizations of ride quality to 

forecast needed resources.  Increasing the frequency of roughness assessments becomes 

necessary when the pace of roadway deterioration accelerates (Haider, Chatti, et al. 2011).  

Surveys found that infrequent assessments of roughness underestimates repair costs at the 

network level (Haider and Dwaikat 2011). 

Federal laws require that state agencies provide roughness measures for portions of the 

NHS and other critical roadway arterials (HPMS 2012).  However, agencies cannot afford to 

meet those minimum requirements more than once annually because resource constraints limit 

the cost-effective scaling of existing methods to characterize ride quality.  Consequently, 

important vulnerabilities such as frost heaves that appear and disappear between monitoring 

cycles often go undetected.  Anomalies such as potholes tend to increase travel times because 

drivers slow down to avoid them.  The identification of anomalies is critical for assessing the 

load-bearing capacity of any road and to estimate its remaining service life (FHWA 2010).  More 

frequent monitoring will reduce user vulnerability to anomalies that could lead to property 

damages, injuries, fatalities, and chronic congestion from speed reductions. 

The ability to assess frequently the performance of all roads will improve network-wide 

deterioration forecasts and enable the optimal timing of preservation activities and investments.  
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Pavement preservation strategies are most effective when applied while the pavement is still in 

good condition (AASHTO 2009).  The timing of road surface maintenance is critical because 

action taken too soon could waste valuable resources, whereas action too late could result in a 

six- to ten-fold increase in the cost for improvements (Galehouse, Moulthrop and Hicks 2003).  

An effective preservation program has the potential to double the life of a pavement, which 

would consequently result in savings of more than three times the cost of reconstruction.  As the 

macro model in Figure 4 suggests, asset management optimization will eventually boost the 

number of lane miles in good condition and simultaneously reduce the cost of maintenance.  

Consequently, smoother pavements will further promote economic growth.  Sustaining the 

complex cycle of growth requires agencies to allocate resources at the optimum times to 

maintain or enhance network capacity.  The ability to enhance network capacity through 

optimized maintenance practices will lead to a reduction in pavement load density. 

1.2.  Research Objectives 

The main goal of this research is to develop a method of ride quality characterization that 

is compatible with the probe data from emerging connected vehicle standards.  Hence, all 

jurisdictions will be able to afford and use the new method to monitor continually the 

performance of their entire network.  This new ability will provide agencies with actionable and 

timely information to minimize risks and to enable the optimal scheduling of roadway 

preservation activities and investments.  To achieve the goal, this dissertation will develop a 

statistical model of sensor data integration to produce a measure of roughness for both paved and 

unpaved roads.  An anticipated feature of the statistical method is continual performance 

improvements as more vehicles participate to upload their sensor data. 
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The ubiquity of smartphones has lured researchers worldwide to seek ways of utilizing 

their embedded inertial sensors and Global Position System (GPS) receivers to produce 

repeatable and reliable indices of roughness.  The existing approaches reported require device 

calibration with individual vehicles to account for differences in travel speed and suspension 

responses.  The calibration approach is impractical to scale and manage with increasing volumes 

of connected vehicles.  A statistical method that converges as data volume increases will obviate 

the need for calibration.  Hence, this research will develop a method to integrate the data from 

multiple heterogeneous sensors aboard vehicles to characterize ride quality by producing a 

single-index summary of road roughness.  A further goal is to determine a computationally 

simple method of combining the ride quality indices from many vehicles to produce an objective 

and consistent quantification of roughness for any length of road segment.  The following is an 

outline of the research objectives: 

1. Develop a model to characterize ride quality by transforming the heterogeneous sensor 

data from connected vehicles 

2. Develop a method to combine the ride quality characterizations from a large volume of 

vehicles to produce a single index summary of roughness for any length of road segment 

3. Develop the method of sensor data integration and compression to be computationally 

simple so that implementations will be practical and suitable for real-time applications 

4. Evaluate the performance of the sensor data integration and compression models with 

practically achievable data volume 

5. Relate the new roughness index to the prevailing index, which is the International 

Roughness Index (IRI) 
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6. Identify an approach to extend investments in the IRI datasets by relating them to the new 

roughness index 

7. Identify properties and behaviors of the new models relative to those of the IRI 

8. Identify the best setting for the inertial sensor sample rate 

9. Identify the best setting for the GPS receiver update rate 

10. Determine the impact of sensor and vehicle parameter variations on the precision and 

accuracy of forecasting pavement deterioration 

11. Determine how variations in sensor characteristics and vehicle suspension parameters 

would affect the precision and accuracy of anomaly localization 

Implementing these objectives will require the development of software to simulate the behavior 

of the models under a variety of circumstances, and to process the data from each case study.  

The appendix contains a description of the main algorithms. 

1.3.  Scope and Method of Research 

Agencies evaluate pavement performance using a wide variety of tools that range from 

recording visual inspections on paper to the use of sophisticated instrumentation aboard probe 

vehicles.  Visual inspection practices use a variety of standard procedures and ratings, such as 

the Present Serviceability Rating (PSR) to “judge the ability of a pavement to serve the traffic it 

is meant to serve,” but such subjective methods are inconsistent (Al-Omari and Darter 1994).  

Unlike visual inspections, probe vehicles produce objective and consistent data.  This 

dissertation will focus on objective methods of estimating road roughness through ride quality 

characterizations. 

The method will involve developing a base model for the sensor data integration – the 

Road Impact Factor (RIF) transform.  That is, a mathematical transformation of the time, inertial, 
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and geospatial position from each vehicle will produce a single-index summary of roughness for 

any segment of road.  The RIF-transform isolates the factor in roughness generation to 

unevenness of the road surface.  Related work that is outside of this research scope will 

incorporate other factors that produce roughness, such as variations in the longitudinal and lateral 

motions, to characterize the condition of railroad tracks and equipment.  The average RIF-index 

from all roadway vehicle traversals, within some predetermined interval of time, will be the 

summary of roughness for a road segment of a given length. 

The next chapter will summarize the history of instrumented vehicles and the state-of-

the-art.  This background will highlight the progression of studies conducted and issues resolved 

to result in the prevalence of the IRI.  The chapters following will provide a detailed derivation 

and assessment of the IRI to highlight its benefits and to uncover the underlying principles for 

limitations reported.  The introduction of a parameterized bump model and a review of the IRI 

quarter-car suspension model will provide an analytical framework to study the behaviors of 

each transform.  The framework will facilitate simulations to demonstrate how different vehicles 

will respond to a range of bump height and width when traveling at different speeds.  The RIF-

index and IRI computed from the simulated vehicle responses under identical conditions of 

roughness will provide a relative comparison of their behaviors.  The insights gained will explain 

how the RIF-index is proportional to the IRI at a standard speed and yet represent the actual ride 

quality experienced at any speed.  Analysis of the vehicle responses in both the time and 

frequency domains will provide different perspectives for understanding their characteristics and 

utility. 

With limited access to connected vehicles, the case studies for this research will utilize 

regular vehicles with onboard electronic devices such as smartphones that already integrate the 
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relevant sensors.  The case studies will incorporate vehicles of different types to assess the 

statistical behaviors of the models.  The first case study will utilize an Inertial Profiler vehicle to 

collect data simultaneously to compute both the IRI and the RIF-index.  This approach will 

validate the RIF/IRI proportionality relationship derived.  Smartphones aboard regular vehicles 

and multiple traversals of the same segment will provide the case study data to validate the 

model performances for different levels of roughness observed. 

Blindly selecting the maximum sensor update rate available would result in an 

unnecessarily large amount of data that each vehicle sensor must log in its available memory for 

subsequent wireless transmission.  Therefore, the analysis will include a derivation of the 

minimum accelerometer sample rate and the minimum GPS update rate needed.  Additional case 

studies with different sensor settings will validate the update rate selections. 

The study will finally apply the new models to assess their performances in two key 

applications: pavement deterioration forecasting and automated anomaly localization.  A 

sensitivity analysis of the RIF-index with respect to variations in vehicle suspension behavior 

will provide precision bounds for the deterioration forecasting.  Similarly, a sensitivity analysis 

of the localization accuracy as a function of GPS receiver, suspension transient responses, and 

other factors will provide precision bounds for the method anomaly localization.  Both analyses 

will incorporate case study data to validate the expected statistical behaviors that characterize 

tradeoffs in precision with achievable data volume. 

1.4.  Research Contributions 

Currently deployed methods of ride quality characterization are relatively expensive, 

slow, and complex.  Hence, their frequency and span of use is limited.  The RIF-transform will 

break through these long-standing limitations by producing continuous assessment of roughness 



9 
 

for the entire network.  Research to identify all possible benefits of the USDOT connected 

vehicle initiative has focused mainly on ways of using vehicle-to-vehicle (V2V) communications 

to prevent crashes, and vehicle-to-infrastructure (V2I) communications to enhance mobility and 

reduce polluting emissions in congested corridors (USDOT 2012).  No other research has 

defined an approach to leverage the convergence of statistics from a large volume of connected 

vehicle data to characterize ride quality (Bridgelall 2014).   

Previous attempts to estimate the IRI from inertial sensors aboard regular vehicles found 

that such techniques require calibration with individual vehicle responses at a fixed speed 

(Dawkins, et al. 2011), (Ndoye, et al. 2011), (Chen, Lu, et al. 2011).  The convergence of an 

average RIF-index from the transformation of a large data volume will obviate the need for 

calibration.  Existing probe vehicles produce the IRI from single vehicle traversals.  The IRI 

derived from one traversal is not a statistically significant estimate of the roughness of a road 

segment.  Bernoulli's Theorem (Papoulis 1991) posits that the average RIF-index from a large 

volume of vehicle traversals will provide a more accurate and precise representation of ride 

quality than the IRI.  This dissertation will further derive a direct proportionality relationship 

between the RIF-index and the IRI.  Direct proportionality will allow the RIF-transform to 

extend investments in IRI datasets through simple scaling.   

This research will provide new insights to explain numerous IRI deficiencies reported by 

demonstrating its behavior relative to the RIF-index in both the time and frequency domains.  

The IRI is undefined for speeds besides 80 km/h (Gillespie, Sayers and Queiroz 1986).  This 

constraint limits use of the IRI in urban environments with interrupted traffic flows.  

Consequently, agencies seldom use the IRI to assess the roughness of interrupted flow facilities.  

Furthermore, laser-based Inertial Profilers that measure the elevation profile of paved roads tend 
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to overestimate the roughness from unpaved roads.  As a result, highway agencies do not use 

such instrumented approaches on unpaved roads.  Nevertheless, interrupted flow facilities and 

unpaved roads account for more than 90% of the roadways in the United States.  Unlike the IRI, 

the RIF-transform will be applicable for all facility types and at all speeds. 

The IRI is a summary of the roughness that a fixed quarter-car produces from the 

simulated traversals of a digitized replica of the elevation profile.  Therefore, the IRI does not 

reflect the true roughness that vehicle occupants experience when traveling in vehicles with 

different suspension characteristics and at speeds different from 80 km/h.  The analysis will 

demonstrate how a vehicle’s response to spatial wavelengths of the road’s longitudinal profile 

will vary with suspension characteristics and speed.  In fact, numerous studies demonstrated that 

the IRI masks road roughness that causes human discomfort (Ahlin and Granlund 2002), 

(Papagiannakis 1997), (Lak, Degrande and Lombaert 2011).  The IRI is also insensitive to spatial 

wavelengths that are characteristic of underlying pavement distress symptoms (Ramji, et al. 

2004), (Walker, Fernando and Sho 2005), (Loizos and Plati 2008), (Múčka and Granlund 2012).  

Conversely, the RIF-transform will be applicable at any speed.  The RIF-index will represent the 

actual roughness that users experience rather than a simulated roughness.  This research will 

further develop a time-wavelength-intensity-transform (TWIT) by integrating RIF-indices from 

multiple speed bands to produce a speed-independent and wavelength-unbiased roughness index.  

Therefore, the TWIT will represent the average roughness experienced for the range of speeds 

that vehicles travel the segment.   

Several studies have applied heuristics or machine learning techniques to detect potholes 

from the inertial data of individual vehicle traversals (Mohan, Padmanabhan and Ramjee 2008), 

(Silva, Perera and Perera 2008), (Eriksson, et al. 2008), (Tai, Chan and Hsu 2010), (Chen, Zhang 
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and Lu 2011), (Hautakangas and Nieminen 2011), (Mednis, et al. 2011).  However, none of 

those studies characterized the spatial localization accuracy as a function of variations in vehicle 

volume, speed, sensor, and suspension parameters.  This research will determine the precision 

bounds of anomaly localization when using a multi-resolution feature of the RIF-transform. 

The methods developed in this research will enable cost-reduced decision support 

platforms with enhanced precision and accuracy to forecast the resource needs for all roads.  The 

inherently higher frequency of ride quality reporting will enable more effective and predictive 

maintenance practices.  A case study of the model application will determine the precision 

bounds in forecasting deterioration as a function of the available traversal volume for a segment.  

Unlike the IRI, the multi-resolution features of the RIF and the TWIT will provide high spatial 

resolution to localize anomalies that could be symptoms of pavement distress or safety hazards.  

A case study will demonstrate how agencies would utilize the multi-resolution feature to identify 

and catalog anomalies that would require urgent attention.   

Ultimately, the widespread use of the wavelength- and speed-unbiased TWIT will result 

in optimized asset management practices that extend the lifecycle of pavements and minimize 

expenditures.  Agencies worldwide will be able to use the models developed to deploy practical 

and affordable solutions that will provide many-fold savings in pavement preservation activities. 

1.5.  Organization of the Dissertation 

Chapter 1 provides an overview of the dissertation, the research objectives, the scope, key 

contributions, and the organization of its main sections.  Chapter 2 summarizes the history and 

background of pavement performance measures, the challenges of using the prevailing methods, 

and the emerging opportunities to mitigate their shortcomings using the new models.  Chapter 3 

establishes the analytical foundation and derives the new models.  Chapter 4 explores the relative 
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behaviors of the IRI and RIF-transforms, proves the direct proportionality relationship, and 

provides a case study for validation.  Chapter 5 analyzes the sensitivity of the models to sensor 

and vehicle parameter variations and provides case studies to validate the best settings for the 

inertial sample rate and the GPS update rate.  Chapter 6 assesses how variances in sensor and 

vehicle suspension parameters affect the precision of models that use the RIF-index to forecast 

pavement deterioration.  The associated case study illustrates the practical tradeoff in precision 

as a function of data collection days.  Chapter 7 demonstrates the multi-resolution feature of 

roughness localization, characterizes the accuracy of its position estimate with respect to 

variations in sensor and vehicle suspension parameters, and illustrates application of the model 

through several case studies.  Chapter 8 summarizes the theories developed, reviews the research 

questions answered, and highlights the primary benefits and contributions.  This final chapter 

also identifies limitations of the models and future research to address them. 
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CHAPTER 2.  PAVEMENT RIDE QUALITY CHARACTERIZATION 

This chapter provides an overview of the background and history of pavement condition 

assessment.  The focus is on objective methods of ride quality characterizations.  A review of the 

literature exposes current challenges and limitations of the prevailing methods.  An assessment 

of the connected vehicle environment highlights emerging opportunities for new statistical 

methods to leverage the voluminous data flows from connected vehicles. 

2.1.  Background and History 

Pavement condition assessment is a broad term that involves a wide variety of 

characterizations.  Measures of condition include geometric design and surface material 

characteristics that affect the overall roadway level of service (LOS).  The volume-to-capacity 

(V/C) ratio and the traffic density typically determine the roadway LOS (HPMS 2012).  The 

volume of vehicles through a segment is the product of the average speed and the traffic density.  

Hence, the LOS must change when drivers slow down to navigate safely through rough 

segments.  The Federal Highway Administration (FHWA) long recognized that “roughness is 

widely regarded as the most important measure of pavement performance” because it is the 

characteristic that is most evident to the traveling public (Perera, Byrum and Kohn 1998).  State 

agencies use roughness indices as acceptance criteria for the quality of new pavements and 

surface treatments.  Roughness levels are also important metrics that agencies rely on to forecast 

and prioritize preservation activities, and to create or enforce policies based on objective 

decision-making. 

From the earliest times of the first paved roads, society developed devices to produce 

objective, consistent, and repeatable measures of roughness.  Tools have evolved from simple 

hand-held devices such as straightedge levels to sophisticated onboard computers and lasers that 
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can measure elevation profiles at highway speeds.  Prior to the 1900s, the sliding straightedge, 

called a Viagraph, was one of the first devices invented to measure roughness.  It recorded the 

vertical deviations of a center piston (Hveem 1960).  The Viagraph was the only instrument 

available until 1922 when the State of Illinois invented the Profilometer.  It was essentially a 

straightedge on wheels.  All straightedge type devices measure the depths below peaks of the 

roadway that touch the base of the device as it slides along the surface.  Hence, measurements 

with such devices are slow and tedious. 

Road roughness affects the ride quality that vehicle occupants experience.  With the 

introduction of faster moving vehicles, agencies soon became aware that motorists were more 

concerned with ride quality than actual profile roughness.  Around 1926, the State of New York 

developed the Via-Log to measure roughness.  A stylus mounted to the front-axle recorded its 

movements relative to the body of the vehicle by marking its relative position on a turning roll of 

paper.  Manufacturers later implemented the same concept in different ways through a 

combination of mechanical and electronic methods.  Thereafter, practitioners named the category 

response-type road roughness measuring systems (RTRRMS).  For repeatable measurements, 

manufacturers introduced trailers with standardized mass-spring suspensions such as the Bureau 

of Public Roads (BPR) Roughometer introduced in 1941, and the Mays Ride Meter introduced in 

the 1960s.  Soon thereafter, agencies discovered that the mechanical filtering action of a 

vehicle’s suspension masked some of the RTRRMS roughness indicators that straightedge 

devices would normally report.  This discrepancy led to additional investigations for improved 

methods. 

During the early 1960s, the General Motors Research Laboratory (GMRL) produced the 

first contactless, high-speed device that incorporated basic principles of the straightedge 
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(Spangler and Kelley 1966).  Contactless depth measuring sensors replaced the center piston and 

the center wheels of straightedge devices.  Acoustic sensors initially provided the depth 

measurement but manufacturers eventually replaced those with lasers in the 1990s.  The GMRL 

device became a template for engineers to improve accuracy and reduce cost.  An important 

shortcoming, however, was that the tire and suspension system differences of vehicles required 

some method of regular calibration.  This challenge spurred considerable research to find the 

best means of calibrating roughness-measuring devices (T. D. Gillespie 1992). 

In 1982, the World Bank sponsored a series of experiments in Brazil to establish standard 

processes for calibrating and reporting roughness measurements.  This event led to the definition 

of the IRI.  The standardizing body selected a fixed speed of 80 km/h (about 50 mph) to simulate 

the responses of a fixed quarter-car to the digitized elevation profile (Gillespie, Sayers and 

Queiroz 1986).  Practitioners call this fixed quarter-car the Golden Car.  In 1990, the FHWA 

adopted the IRI as the standard reference for reporting pavement roughness (HPMS 2012).  The 

IRI has been the prevailing method of ride quality characterizations ever since. 

2.2.  Current Challenges 

The American Society of Testing and Materials standard E867 (ASTM 1997) defines 

roughness as “the deviations of a pavement surface from a true planar surface with characteristic 

dimensions that affect vehicle dynamics and ride quality.”  Spatial wavelengths shorter than 

about 10 feet typically indicate top layer pavement distress (Jordan and Cooper 1989) while sub-

grade problems tend to produce longer wavelengths (Doré, Flamand and Pascale 2002).  The IRI 

and Power Spectral Density (PSD) are the two most widely utilized indices for characterizing 

roughness.  Unlike the PSD, it is not possible to measure the IRI directly from the pavement 

profile.  The IRI is the cumulative absolute difference between the sprung- and unsprung-mass 
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rates of the Golden Car (T. D. Gillespie 1981).  The simulation produces the two mass motion 

rates by moving the Golden Car model at the fixed reference speed across the sampled elevation 

profile.  The IRI is sensitive to the sample interval selection.  Therefore, the profiling equipment 

must carefully regulate the traversal speed of the vehicle to maintain a relatively constant sample 

interval.  Consequently, the stop-and-go conditions of urban roads present significant challenges 

for road profiling equipment that must maintain a relatively constant speed (Janoff 1990). 

The Golden Car model is essentially a mechanical filter.  Therefore, it emphasizes 

vibration energy of wavelengths near the modal resonances and attenuates energy that falls 

outside of the frequency pass-band.  This filtering action results in wavelength biases that mask 

some distress symptoms (Marcondes, et al. 1991).  Studies show that the IRI is not a unique 

representation of pavement condition because different wavelength compositions can produce 

the same IRI (Mann, McManus and Holden 1997).  To compensate for these deficits of the IRI, 

some practitioners compute the PSD to attempt detection of underlying or developing faults.  A 

PSD decomposes the spatial profile into an intensity spectrogram of wavenumbers that are in 

units of cycles per meter (Davis and Thompson 2001).  Computing the PSD requires sample 

sequences of at least one kilometer of the elevation profile (ISO 8608 1995).  This requirement 

makes the PSD impractical for localizing distress symptoms within a few meters (Perera and 

Kohn 2005). 

To provide an alternative to the IRI, the ISO 8608 standardized a single number summary 

of roughness that is the intercept of a linear fit to the log-log PSD slope.  However, this method 

is a gross approximation of roughness because it incorrectly assumes that the road profile is a 

stationary stochastic process (Delanne and Pereira 2001).  Hence, agencies use the PSD less 

often than the IRI for network level roughness characterizations. 
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Nearly all jurisdictions now use Inertial Profilers to produce the IRI and the PSD from 

measurements of the elevation profile (The Transtec Group 2012).  These vehicles integrate a 

laser and position sensitive light sensor to measure the elevation profile while traveling at 

highway speeds.  Although standards have since been in place to specify their functionality and 

performance (AASHTO 2010), Inertial Profilers differ in the quality of the data that they report 

(Ksaibati, et al. 1999), (Dyer, Boyd and Dyer 2005).  Specifically, samples of the profile include 

vehicle body bounces that distort the reference plane needed to determine the correct vertical 

distance to the pavement surface.  Attempts to estimate and remove reference plane bounces by 

double integration of the signal from a body-mounted accelerometer often result in added 

distortions because of variable initial conditions, speed changes, and electromagnetic noise 

(Janoff 1990).  Without an effective method of proper reference plane normalization, roughness 

from objects such as lane dividers and manhole covers produce body bounces that could 

invalidate miles of collected data (Walker, Fernando and Sho 2005), (Dyer, Boyd and Dyer 

2005), (Wang, Birken and Shamsabadi 2014).  At the time of this writing, the Transportation 

Research Board (TRB), National Cooperative Highway Research Program (NCHRP 2013) is 

conducting research to address these shortcomings of Inertial Profilers. 

2.3.  Emerging Opportunities 

Research groups predict that by 2020, organizations worldwide will collect and process 

30 terabytes of data each day from more than 150 million connected vehicles (Boyadjis 2013).  

The ubiquity of smartphones, wireless hotspots, cloud computing applications, and Big Data 

analytics has already established a practical framework to implement and use the models that this 

research developed.  The existing connected vehicle framework incorporates sensors aboard fleet 

vehicles such as postal and freight carriers, utility and law-enforcement vehicles, and public 
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transit.  These vehicles currently communicate with various decision support platforms to enable 

a wide variety of business processes.   

 

Figure 2.  The existing connected vehicle framework 

The USDOT roadmap indicates that connected vehicle pilot deployments will conclude 

by 2020 and transition to full deployment for all vehicles soon thereafter (USDOT 2014). 

Figure 2 illustrates the overall framework for existing and emerging connected vehicles.  Nearly 

all vehicles integrate accelerometers to provide the signals needed for critical safety functions 

such as airbag deployment and vehicle dynamics control.  Much of these types of data are 

currently isolated to the vehicle system bus.  One of the main objectives of the connected vehicle 

initiative is to standardize the approach of transmitting this and other sensor data via wireless 

means.  The majority of the onboard GPS receivers are currently aftermarket devices.  

Nevertheless, the persistent consumer demand for safety, security, comfort, and convenience will 
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result in their integration as standard features of regular vehicles for navigational guidance.  The 

market for embedded automotive sensors such as accelerometers and GPS receivers was more 

than $18 billion in 2014.  Analysts predict that the market will reach $30 billion by 2020 

(Industry Experts Group 2013). 

Mandates to improve fuel economy, reduce emissions, and improve safety through V2V 

communications has spurred the development of regulations and policies to standardize the 

wireless link and message formats for vehicle probe data.  The USDOT selected dedicated short-

range communications (DSRC) as the standard for V2V communications.  The DSRC standard 

will naturally extend to V2I communications (NHTSA 2011), (NHTSA 2014).  The SAE J2735 

standard, produced in part to support the USDOT connected vehicle initiative, prescribes the 

format for transmitting the relevant onboard sensor data to remote host computers (CAR 2013).  

The USDOT has already modified the National ITS Architecture to include inertial and location 

data in the standard message set of its “roadway hazard warnings” service package with the 

explicit purpose of enabling applications such as pothole detection (USDOT 2014). 

The growing availability of vehicle probe data has raised issues involving ethics, security, 

and privacy (Christin, et al. 2011).  The concept of connected vehicles has also led to early 

concerns about computing resource availability and the capability of existing systems to process 

such large volumes of data (Leduc 2008).  Nevertheless, the growing popularity of Big Data 

science and engineering has stimulated rapid advancements in computing infrastructure, feature 

extraction methods, and machine learning techniques to satisfactorily address those issues (Wang 

and Ku 2012), (Cristofaro and Soriente 2013).  Travel advisory applications and in-vehicle 

navigation systems from providers such as TeleAtlas (TomTom), Here.com (Nokia), Apple 

Maps (Apple Inc.), and Waze (Google Inc.) now automatically update maps by mining data from 
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roaming cellular phones (Cohan 2013).  Organizations are now routinely mining vehicle probe 

data to improve fleet safety and operating efficiency (Verizon 2014), to assess environmental 

impacts (NREL 2014), and to guide transportation planning (NCHRP 775 2014).  The USDOT 

has been promoting technical and policy advancements that will lead to the ubiquitous exchange 

of vehicle probe data (USDOT 2014).  Hence, the performance of methods developed in this 

dissertation will improve continuously as connected vehicle data become widely available. 
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CHAPTER 3.  MODEL DEVELOPMENT 

The literature search of this chapter summarizes existing models of profile roughness that 

are suitable for analysis and simulation.  The lack of analytical models of roughness created the 

need to develop a bump model to characterize roughness in both the time and frequency 

domains.  The new model provides an ability to sweep bump height and width to reveal how 

specific characteristics of the vertical acceleration energy would produce different vehicle 

responses.  Functional definitions of the vehicle and sensor response models provide a 

framework to derive the IRI and to assess its behavior as a function of bump dimensions and 

vehicle speeds.  The insights gained shape the definition of the RIF-transform.  The theories 

developed identify and explain the proportionality relationship between the RIF-index and the 

IRI.  The case study includes a detailed description of the data, their processing, and the method 

of transformation to RIF-indices. 

3.1.  Literature Review of Roughness Models 

Vehicle manufacturers use random and deterministic models of bumps to study 

suspension system performance and vehicle responses to road roughness.  Both types of models 

adequately simulate road conditions to characterize their roughness.  Whereas roughness 

simulation models produce profile roughness, roughness characterization models summarize the 

ride quality from either simulated or actual road profiles.  The next sections summarize the 

evolution of available roughness simulation and roughness characterization models. 

3.1.1.  Roughness simulation models 

The most common random models of road profiles are Gaussian processes (Dodds and 

Robson 1973), Markov processes (Waechter, et al. 2003) or triangular series with random cosine 

components (Sun 2003).  Researchers are aware that such models cannot reproduce the elevation 
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profile of an actual road but use them nonetheless to analyze possible vehicle fatigue from road 

roughness (Robson 1979).  Models based on random Gaussian processes do not generally 

account for road irregularities that cause most of the vehicle fatigue damage (Bogsjö 2007). 

Deterministic bump models provide a more controlled approach to the design 

optimization of artificial road bumps such as those used for traffic calming.  These types of 

models allow direct control of their parameters to observe the effects on vehicle responses at 

different speeds.  Researchers typically model individual bumps as conical or rectangular 

structures that are either concave or convex with respect to the surface (Oke, et al. 2007).  A 

recent study proposed a non-rectangular form that includes a circle protruding above a flat 

surface (Garcia-Pozuelo, et al. 2014).  However, expressions involving partial circles do not 

produce analytic functions because of their discontinuities.  Hence, it is not possible to create 

closed form expressions of slope profiles by continuous differentiation.  This research 

demonstrates how combinations of modified Gaussian radial basis functions with randomized 

parameters produce roughness simulation models that are analytical. 

3.1.2.  Roughness characterization models 

The AASHTO road test conducted from 1956 to 1961 in Ottawa, Illinois resulted in the 

definition of a present serviceability index (PSI) as the first single-number summary of pavement 

roughness (Carey and Irick 1960).  The researchers defined the PSI as a regression relation 

between the output of a roughness-measuring device and the average ratings of ride quality from 

a panel of observers.  The state-of-the-art roughness-measuring device at the time was a BPR 

Roughometer.  Its output was “slope variance” (SV), which is the variance of the profile height 

differences between measurements taken every foot of travel (Carey, Huckins and Leathers 

1962).  Purdue University researchers found that the SV provided excellent correlation with 
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panel ratings for rigid pavements.  However, the SV was a poor predictor of ratings for flexible 

pavements (Nakamura and Michael 1963).  Other Purdue University researchers soon repeated 

roughness characterization experiments by incorporating a brick-sized accelerometer strapped to 

the chest of a driver.  They defined an accelerometer roughness index (ARI) as a scaled 

accumulation of the rectified accelerometer signal for T seconds where 

  
T

z dg
T

TARI
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and gz(τ) is the accelerometer output as a function to time τ.  Using ARI at fixed speeds improved 

predictions for the panel rating of flexible pavements conditions but still did not match the 

predictability for rigid pavements (Wermers 1962).  The Kentucky Department of Highways 

(KDOH) repeated the ARI experiments at different speeds.  They found that the ARI was 

nonlinear with speed and that the indices for flexible and rigid pavements were uncorrelated 

(Rizenbergs 1965).  Since then, researchers conducted numerous studies to determine 

correlations between user perceptions of roughness and objective measures of roughness that 

various devices would produce.  For example, researchers found that the root-mean-square 

vertical acceleration (RMSVA) obtained from a Mays Ride Meter, which is the difference 

between adjacent slope measurements, was useful in equipment calibration, but unreliable as a 

predictor of panel ratings (Hudson, et al. 1983).   

Generally, the lack of agreement between various roughness measuring devices 

circumvented the definition of a uniformly accepted single-index characterization of roughness 

until the World Bank experiment in 1982 defined the IRI (Gillespie, Sayers and Queiroz 1986).  

A Washington State Department of Transportation (WSDOT) study concluded that the IRI was 

the single best predictor of driver-perceived road roughness and driver acceptability (Shafizadeh, 

Mannering and Pierce 2002).  However, other researchers cautioned against using the IRI by 
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demonstrating that profiles with distinctly different roughness features can produce the same IRI 

(Kropáč and Múčka 2005).  Agencies worldwide found that the IRI masks wavelengths that 

produced roughness for both local roads and highways (Brown, Liu and Henning 2010). 

As an alternative to the IRI, some transportation agencies use a single-index summary of 

roughness derived from a regression fit of the PSD.  That is, given the spectral density SH() 

where 

  vw
HH CS   (2) 

is a regression to the PSD, the “degree of unevenness” is defined as CH and “the waviness” as wv.  

The ISO 8608 standard specifies the roughness index as CH within the angular frequency limit of 

35.02902    radians/meter and a waviness value of wv = 2.  However, numerous authors 

indicated that the PSD roughness index is an oversimplification.  They demonstrated that the 

waviness factor varies widely in practice from about 1 to 4 depending on where the measurement 

is taken (Brown, Gerz and Sulten 1991), (Andrén 2006), (Kropáč and Múčka 2009).  The 

simplicity of the model has nevertheless led to its widespread use in vehicle suspension 

development.  Manufacturers are now investigating more complex vehicle responses by 

extending the PSD model to include data from both wheel paths (Johannesson, Podgórski and 

Rychlik 2014). 

Researchers revisited the ARI in the late 1980s to provide a more sensitive indicator of 

truck operating costs and cargo damage than the IRI (Todd and Kulakowski 1989).  Studies 

found that the sprung-mass vertical acceleration was the largest contributor to the dynamic axle 

loads that heavy trucks generate (Papagiannakis 1997).  Consequently, researchers proposed a 

new index based on the PSD of the sprung-mass vertical acceleration of a reference quarter-

truck.  The reference speed and segment length was 80 km/h and 0.5 km, respectively.  The truck 
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roughness index is the square root of the area under the PSD from zero to 50 Hertz.  The 

researchers found that the new index is uncorrelated with the IRI.  

The seemingly unbounded increase in performance levels and cost reduction of 

smartphones has continually enticed researchers to revisit techniques that involve 

transformations of the accelerometer data to produce single indices of roughness.  However, the 

findings continue to demonstrate that unless calibrated with the responses of individual vehicles 

at fixed speeds, correlation with the IRI remains poor.  Transformations of the smartphone 

accelerometer signal include the root-mean-square (RMS) (Dawkins, et al. 2011), the full-car 

vibration power (Katicha, Khoury and Flintsch 2015), the Fourier Transform magnitude 

(Douangphachanh and Oneyama 2013), the magnitude weighted Short-Time Fourier Transform 

(Yagi 2013), and linear regression of the power spectral density (Du, et al. 2014).  As the need to 

calibrate transformations of the accelerometer data from individual vehicles does not provide any 

substantial improvement over the RTRRMS methods, the IRI has prevailed as the most common 

representation of road roughness.  In fact, many proposals for new indices involve a modification 

of the IRI procedure (Múčka 2015). 

3.2.  The Bump Model 

A Gaussian radial bases function (Buhmann 2008) is continuously differentiable.  It also 

provides a finite spatial support that is suitable for modeling the height profile z(x) of a single 

bump as a function of the path traversal distance x such that 

   2

000 exp)( xxxz    (3) 

where the bump amplitude is 0, its peak position is x0, and its ‘sharpness’ is 0.  This theoretical 

development defines the approximate bump width  as 
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where e is Euler’s number, a mathematical constant that is approximately 2.71828.  A linear 

combination of bumps with random variations in heights, widths, and positions produces a 

convenient model of the elevation profile along a wheel path. 

 

Figure 3.  Elevation profile consisting of a random combination of bump functions 

Figure 3 plots two simulated profiles by combining the bump functions defined in 

Equation (3) with randomized parameters.  This simulation distributes the bump positions 

uniformly but distributes the bump heights and widths normally.  Adjusting the amplitude 

parameter produces profiles with varying roughness intensities.  The plots offset the simulated 

rough and smoother profile for clarity.  Each cross section exhibits the characteristic micro- and 

macro-textures of a real profile that provide tire grip and roadway drainage, respectively.  Hence, 

the simulation need not add holes to the profile because the random combination of bumps 

naturally results in simulated holes as well.  Rather than using random profiles, the analysis will 

adjust the model parameters in a uniform manner to provide insights into the relative effects on 

ride quality. 
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3.2.1.  Vertical acceleration potential energy 

 

Figure 4.  Bump elevation profile and vertical acceleration at different speeds 

Ride roughness is directly proportional to the g-forces produced when bump traversals at 

any speed transforms potential energy to kinetic energy.  Figure 4 plots an example of the 

elevation profile for three bumps with different dimensions.  The first, second, and third bumps 

are positioned at 5, 10, and 15 meters, respectively.  The height and width of the first bump is 10 

centimeters (cm) and 2 meters, respectively.  Progressively decreasing the widths and heights of 

the bumps by one-half and one-quarter, respectively, produces the same peak vertical 

acceleration when traversing them at the constant speedv.  Hence, reporting some aspect of the 

signal magnitude such as the peak or the average value of the inertial sensor output will 

mischaracterize the true nature of the elevation profile.  This explains the main deficiency of the 

ARI or variants such as the RMS that researchers tend to explore.  The vertical acceleration 

shown is in units of g-force with gvxzgtz )()(    where )(tz is the second derivative of the 

temporal elevation profile and g is the unit of standard gravity defined as 9.81 m·s-1.  Bump 

traversals at any speed causes the spatial elevation profile to produce kinetic energy.  Therefore, 

the potential of bumps to produce kinetic energy from traversals at a speed v̅ is their potential 

energy Epv where 
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The plots of Figure 4 further compares g-forces produced at two average speeds.  Increasing the 

speed by 50% from 2.2 m·s-1 to 3.3 m·s-1 doubles the peak g-forces produced.  This explains the 

speed sensitivity of the ARI and similar methods reported. 

In general, to produce the same peak g-forces at a fixed speed, a narrower bump must 

also be shorter by a factor that is equal to the square of the width reduction factor.  For example, 

a bump that is one-half as wide must also be shorter by (½)2 = ¼ to produce the peak g-force 

level of the wider bump.  By extension, given identically tall bumps traversed at a fixed speed, 

the narrower bumps will produce exponentially greater g-forces. 

 

Figure 5.  Bump vertical acceleration and Golden Car response spectra 

To illustrate the square-law relationship, Figure 5 plots the Discrete Fourier Transform 

(DFT) of the g-forces produced from simulated traversals at 3.3 m·s-1 across equal height 10 

centimeter bumps of widths w = 2, 1, and ½ meter.  The narrower bump produces a peak g-force 

that is greater by the square of the amount of width reduction.  For example, the second bump is 

a factor of two narrower than the first.  Therefore, the second bump increases the peak g-force 

produced by a factor of four.  The theoretical basis for this square-law relationship becomes 
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evident when applying the second derivative rule to the bump profiles.  That is

)()( 2 xzxz vvv    where βv
-1 is the width reduction factor of the bump.   

The DFT of the identically tall bumps with decreasing widths illustrate how their 

potential energy distributes spectrally, relative to the response sensitivity of the Golden Car.  The 

potential energy of each bump is equivalent to the areas under their respective Fourier transform 

magnitude shown (Oppenheim and Schaefer 1975).  By inspection, the narrower bumps have 

higher potential energy than the wider bumps. 

3.2.2.  Vertical acceleration kinetic energy 

Bump traversals convert potential energy to kinetic energy when the forces acting on the 

wheel contact area produce a vertical acceleration.  The wheel suspension system absorbs a 

portion of the kinetic energy and dissipates some of it as heat in the suspension dampers, and as 

acoustic vibrations that produce road noise.  The resultant energy produces vehicle body-bounces 

that account for the roughness in ride that vehicle occupants experience.   

 

Figure 6.  Golden Car responses to bumps of equal heights but different widths 

The mechanical filtering action of the Golden Car attenuates bump energy that are 

approximately higher than 20 hertz.  Figure 6 shows the transient responses of the filter for each 

of the bumps traversed at a constant speed of 3.3 m·s-1.  As anticipated from the DFT results 

shown in Figure 5, the Golden Car model will progressively absorb kinetic energy as the bumps 
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become narrower.  This result reflects the dot products of the Golden Car response spectra with 

the respective frequency spectra for each bump shown in Figure 5.  The Fourier transform of the 

temporal bump profile is denoted     fZtz  and the frequency response of the quarter-car is 

denoted Q(f).  Therefore, the inverse Fourier transform of the product Z(f)Q(f) = Zs(f) where

    tzfZ ss 1  produces the corresponding transient responses shown in the plots of Figure 6.  

The vertical acceleration from vehicle body bounces is  tzta sz )( .  Hence, the vertical 

acceleration kinetic energy Ekv is 

.)(
2
dttaE zkv   (6) 

The next section derives the Golden Car frequency response shown in Figure 5.   

Higher traversal speeds produce the same effect as narrower bumps.  This is intuitive because 

traveling faster across a bump decreases the time exposure to potential energy.  Mathematically, 

reducing the bump width by a factor of βv is equivalent to a transformation from z(x) to z(βv∙x).   

 

Figure 7.  Golden Car sprung-mass responses to vertical acceleration at different speeds 

The function becomes  tvz v   because tvx  and that is equivalent to increasing the 

velocity by a factor of βv.  The scaling property of the Fourier transform specifies the amount of 

frequency shift such that 
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Therefore, the potential energy of the narrower bump will spread into frequencies that are βv 

higher, resulting in less response from the Golden Car.  Figure 7 compares the body-bounce of 

the Golden Car traversing a 5-meter-wide bump at 2.2 m·s-1 and βv = 8 times that speed.  This 

result demonstrates the expected attenuation in transient response at the higher speed.  This also 

explains the reason that a vehicle occupant will experience a lower intensity body-bounce when 

traveling across the same bumps at higher speeds, even though the potential energy from the 

narrower bumps is much greater (Figure 5).   

In summary, given a set of suspension characteristics and a fixed speed, roughness 

intensity will tend to decrease non-linearly as bumps become narrower.  On the other hand, 

roughness intensity is linearly or directly proportional to bump height because 

       .000 fZtztz    (8) 

These models explain the fundamentals of how variations in bump height and width result in the 

roughness intensity that riders experience at different speeds.  The mechanical filtering action of 

the Golden Car amplifies bump energy peaks that coincide with the resonant quarter-car modes, 

and attenuates energy that falls outside of the spectral response bandwidth.  The next section will 

derive the quarter-car model to provide insights into limitations of the IRI that practitioners 

observed. 

3.3.  Vehicle Response Model 

The standard quarter-car is a model that consists of a series connection of two mass-

spring systems.  Suspension engineers relate the vehicle body- and axle-bounces observed to the 

lumped quarter-car sprung- and unsprung-mass responses, respectively (Angeles 2011).   
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Figure 8.  Damped mass-spring model of a quarter-car 

Figure 8 illustrates the damped mass-spring model.  From Newton’s law, the vertical 

force fz(t) acting on the sprung-mass ms of a damped mass-spring system is )()( tzmtf ssz  .  The 

components of this vertical force are the downward acceleration -msg due to gravity g, the 

upward resistance to vertical velocity )(tzs with viscous damping coefficient cs, and the upward 

spring force ks(h-z) with spring stiffness ks and compression distance h.  Traversing the 

longitudinal profile creates an upward forcing function fz(t) from the axle motion Zu(t).  The sum 

of these forces yields the motion equation for a damped mass-spring model 

  ).()()()( tftzhktzcgmtzm zssssss    (9) 

When the system is at rest at time t = 0 the vertical reference plane is at zs(0) = 0.  Hence the 

equilibrium condition is 

.0 hkgm ss  (10) 
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Substituting Equation (10) into Equation (9) yields the second order, non-homogeneous linear 

differential equation of motion for the sprung-mass response where  
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The natural frequency of the sprung-mass system, s, is defined as 

.
s

s
s

m

k
  (12) 

The damping ratio, s, is defined as 
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This expression yields a normalized model where the impulse response of the damped mass-

spring system is completely described by its natural frequency and damping ratio 

).()()(2)( 2 ttztztz zssssss     (14) 

The standard solution for the impulse response of the under-damped case with damping ratio in 

the range 0 < δ < 1 is 
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where zδ(t) is the impulse response, ωn is the natural frequency of the system, and u(t) is the 

Heaviside step function that assures causality of the model.   

3.4.  The Inertial Sensor Model 

The inertial sensor applies a second derivative to the vertical motion signal zs(t) and 

produces an output voltage gz(t) that is directly proportional to the vertical acceleration az(t).  

Therefore, the body-bounce zs(t) is a convolution of the quarter-car impulse response qz(t) and 

the elevation profile z(t) such that 
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   dztqtz zs )()()(  (16) 

where 

)()( tzta sz   (17) 

The sensor output is 
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The sensor constant g transforms the sensed g-force (g) to a proportional voltage that scales to 

the dynamic range of the digital output. 

3.5.  The International Roughness Index 

The notation for the IRI in this development is
L
vI .  It represents the roughness index for a 

segment of length L where the constant speedvis the standard reference speed of 80 km/h.  The 

IRI is the accumulated absolute rate difference between the sprung- and unsprung-mass motion 

of a Golden Car such that 
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The first derivatives of the sprung- and unsprung-mass vertical motions are )(tzs and )(tzu

respectively. 

3.5.1.  The Golden Car parameters 

The unsprung-mass and its associated spring stiffness are mu and ku respectively (T. D. 

Gillespie 1981).   
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Table 1.  Golden Car model parameters 

Parameter Value Unit 
ks/ms 63.3 s-2 
ku/ms 653 s-2 
cs/ms 6.0 s-1 
mu/ms 0.15 - 

 

Table 1 summarizes the Golden Car parameters, normalized to the sprung-mass.  The 

literature on IRI typically ignores the damping coefficient cu of the unsprung-mass model.  

Nevertheless, a reasonable estimate would be about 15% of the sprung-mass damping coefficient 

(Türkay and Akçay 2008).   

Table 2.  Damped mass-spring parameters for the Golden Car 

Parameter Units Sprung Mass Unsprung Mass 
Resonant Frequency (f) hertz 1.27 10.50 
Damping Ratio () - 0.38 0.05 

 
Applying these values to Equations (12) and (13) yields the Golden Car resonant 

frequencies and damping ratios summarized in Table 2. 

3.5.2.  The IRI speed constraint 

The transient responses from simulated Golden Car traversals at the reference speed 

produce the sprung- and unsprung-mass motions needed to calculate the IRI.  Hence, the IRI-

transform produces a roughness index by simulating the transient responses of the Golden Car as 

it responds to the roughness of a digitized replica of the elevation profile.  The simulator often 

includes numerical algorithms to solve Equation (11) for the transient responses before applying 

the transform provided in Equation (19) to calculate the roughness index.  The simulator applies 

the fixed reference speed of 80 km/h to the longitudinal motion of the Golden Car, regardless of 

the speed that the Inertial Profiler obtained the samples of the actual elevation profile.  

Equation (5) revealed that the potential energy of elevation profiles is speed dependent.  
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Therefore, the IRI will not represent roughness that the elevation profile would have produced at 

speeds different from the reference speed. 

3.5.3.  The IRI wavelength sensitivity 

The products of the Fourier transforms of the Golden Car sprung- and unsprung-mass 

impulse responses produce the Golden Car frequency response.  Their Fourier transforms are 

denoted   )()(  ss Ztz   and   )()(  uu Ztz   respectively.  Given the impulse response defined 

in Equation (15), their Fourier transforms Zδ() are of the form 
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This form characterizes a second-order low-pass filter with cutoff frequency at the modal 

resonances of the individual damped mass-spring systems.   

 

Figure 9.  Golden Car transfer function 

Substituting the Golden Car parameters into Equation (20) for each of the damped mass-

spring systems and evaluating the magnitude of the product Zδs()Zδu() results in the Golden 

Car transfer function shown in Figure 9.  The response peaks at 1.3 hertz and 10.5 hertz 

correspond to the resonant frequencies of the Golden Car sprung- and unsprung-mass spring 
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systems.  Hence, the Golden Car model will amplify elevation profile potential energy that is 

within proximity of those modes. 

Traversing a road segment at a constant speed converts its spatial wavelengths in cycles 

per meter to temporal wavelengths in cycles per second or hertz.  Traveling the same profile at 

different speeds will shift spatial wavelengths into and out of the Golden Car frequency response 

band.  The mechanical filtering action of the Golden Car attenuates responses to wavelengths 

that are outside of its frequency response range.  All quarter-cars, including the Golden Car, will 

produce a maximum response to spatial wavelengths that range from sfv  to ufv  meters where fs 

and fu are the sprung- and unsprung-mass resonance frequencies, respectively, in units of hertz.  

Hence, at v 80 km/h, the IRI will underrepresent spatial frequencies lower than 17.6 

meterscycle-1 and higher than 2.1 meterscycle-1 as shown in Figure 9.  Furthermore, the IRI will 

exaggerate roughness from wavelengths that translate to frequencies near the resonant peaks.   

Figure 10.  Operations for sensor data integration 

3.6.  Development of the New Transforms 

This section develops a new transform to integrate the data from time, inertial, 

orientation, and geospatial position sensors to produce a summary index of roughness for road 
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segments of any length.  Figure 10 illustrates the overall operation to produce a stream of 

position tagged vertical acceleration values that the new transform will compress into a summary 

of roughness. 

3.6.1.  The inertial response model 

Nearly all modern GPS receivers provide longitudinal speed data by filtering position 

updates with a predictive Kalman filter (Brookner 1998).  Alternatively, a speed sensor or 

odometer could provide the speed directly if available.  The linear time-invariant (LTI) transform 

of Equation (16) dictates that the vertical acceleration produced from the body-bounces of each 

quarter-car is equivalently a convolution of the vertical acceleration )(tz input from the wheel 

path and the quarter-car impulse response qz(t) such that 

   dztqta zz )()()(   (21) 

The temporal quarter-car response is the inverse Fourier transform of the transfer function 

product Zδs()Zδu().  Equation (20) provides the form for each transfer function.  Equivalently, 

the quarter-car impulse response is the convolution of its sprung- and unsprung-mass impulse 

responses such that 

    dztztztztq ususz )()()()()(  (22) 

where * is the mathematical convolution operator.  An accelerometer mounted to the body of the 

connected vehicle measures the resultant vertical acceleration from each wheel-assembly as a 

linear combination of their quarter-car vertical acceleration responses az[n](t) at the sensor’s 

location such that 
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where ][nz  are constants of the linear combination.  Their values depend on the position of the 

sensor in the vehicle relative to each of the Wz wheel-assemblies.  Hence, their proportional 

contributions are such that 
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This expression accumulates the proportional g-forces from each wheel-assembly into the 

resultant acceleration sensed. 

3.6.2.  The Road Impact Factor transform and index 

The average magnitude of vertical acceleration sensed per unit length L of a road segment 

traveled at a constant speed v is 
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Applying the relationship dx = v(t)dt provides an equivalent time-domain expression where 
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Parseval’s Theorem (Oppenheim and Schaefer 1975) relates the frequency domain representation 

of the signal Gz(f) to its time domain representation gz(t) as 

  dttgdffG zz

22
)()(  (27) 

The left side of Equation (27) represents the area under the vertical acceleration magnitude 

spectra, which is the resultant kinetic energy of ride roughness sensed.  Therefore, the energy of 

the g-forces sensed as a function of distance must completely represent the kinetic energy 

response of the quarter-car from profile roughness.  Applying the energy transformation to 
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Equation (26) and applying a linearization produces the average g-force magnitude per unit of 

distance
L
vR as 

.)()(
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This research defines
L
vR as the RIF-index.  Incidentally, for an average speed vtv )(  across a 

path segment of length L, the RIF-transform simplifies to 
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where
L
gzE is the longitudinal energy density of the vertical acceleration signal.  The signal 

energy is in units of Joules per meter when the sensor output is in units of volts.  It is evident that 

the RIF-index is zero when the traversal speed is zero. 

3.6.3.  Spatial data fusion 

The index of roughness L
vR  is the ensemble average of the RIF-indices from Nv 

traversals across a path of length L where 
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][L
vR is the RIF-index from the ρth traversal of the segment at an average speed of v , and v is 

the batch mean speed from all traversals.  In addition to compressing the inertial and position 

data longitudinally along the traversal direction, the ensemble averaged RIF (EAR) indices fuses 

multiple data streams within the same geospatial window of all traversals.  Hence, the EAR-

index represents a vertical compression when visualizing the RIF-indices from multiple 

traversals across a segment as a stack of values. 
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The EAR-index represents the average roughness that the typical vehicle occupant 

experiences when traveling the segment within a specified range of speeds or speed band.  For 

example, selecting data streams from vehicle traversals that are within 5 km/h of an average 

speed of 80 km/h will produce an EAR-index that summarizes roughness in proportion to the 

IRI.  However, producing the EAR-indices for the prevailing average speed of a facility type 

such as the speed limit would be more practical and meaningful.  Like the IRI, the RIF-index 

must be speed-dependent because it is a function of the quarter-car suspension response.  

Therefore, the EAR-index from the same speed band will correspond to the changes in ride 

quality within that speed range over time.  The TWIT, defined in the next section, integrates the 

EAR-indices from all speed bands to produce a speed-independent characterization of roughness. 

3.6.4.  The Time-Wavelength-Intensity Transform 

 

Figure 11.  Graphical representation of the TWIT components 

The TWIT is a linear combination of the EAR-indices from available speed bands.  The 

coefficients are the percentages of traversals within each speed band.  The TWIT, denoted by the 
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dependent variable  is, therefore, a weighted EAR-index by traffic volume within each speed 

band or window w such that: 
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The units of time increment Pj should match the period that agencies use to measure traffic 

volume, which is typically one hour.  The number of segment k traversals in period increment 

Pj within speed band ][wv is denoted jP

wvN ][ .  The corresponding EAR-index for each speed band 

is denoted
L

wvR ][ .  The total number of speed bands available for segment k is Nk.   

Figure 11 is a graphical representation of the EAR-indices and the TWIT index for a 

hypothetical road segment after a period of one day.  For this scenario, the width of each speed 

band is 5 km/h.  The selection of bin width depends on the application.  This selection will 

involve a tradeoff in traversal volume available for the speed band and the speed variance.  

Chapter 6 explores how the tradeoff in traversal volume and speed variance affects the precision 

of empirical models that forecast pavement deterioration. 

From Bernoulli's Theorem (Papoulis 1991), as the vehicle volume across a segment 

increases, the EAR-index within a speed window will converge to represent the average ride 

quality that the occupant of a typical vehicle experienced.  For each speed window, the vehicle 

suspension will respond most to spatial wavelengths near sfv  that coincide with the range of 

sprung-mass modes.  Therefore, as the number of traversals and speed bands increases, the 

TWIT will produce an unbiased representation of the true spatial wavelength composition of the 

segment.  Furthermore, the weighted linear combination of the EAR-indices from each speed 
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band will adapt the TWIT to emphasize wavelengths that most significantly affect ride quality 

within the predominant speed ranges. 

The TWIT is analogous to the short-time Fourier transform in signal processing.  For 

roadways, the vehicle speed amounts to a spatial frequency selector that characterizes the ride 

quality from a narrow range of wavelengths along the path.  Hence, slow speeds will emphasize 

the responses from the short spatial wavelengths of narrow cracks and small bumps.  Conversely, 

higher speeds will emphasize quarter-car responses to longer spatial wavelengths that could be 

symptoms of emerging subgrade problems.  Overall, the TWIT-index is a broadband summary of 

the roughness that a typical rider experienced for the range of speeds traveled.  Consequently, the 

TWIT-index has the desirable property that it will represent changes in actual ride quality over 

time even if the spectral characteristics of the segment changes.  On the other hand, the EAR-

index from different speed bands would represent wavelength selective changes in ride quality 

over time that could be symptoms of specific road distress.  In particular, the EAR-index derived 

from an 80 km/h speed band will be representative of the IRI. 

3.7.  Case Study of Applying the Models 

This case study uses a regular passenger vehicle to collect the GPS and inertial data that 

the RIF-transform requires.  The selected road contains distinctly smooth and rough segments, 

including a very rough rail grade crossing.  A chi-squared fit of the RIF-index distribution with 

classic statistical distributions will typify the quality of the data collected. 

3.7.1.  Data collection site and equipment 

Numerous apps are currently available for nearly all of the popular smartphone models to 

log data from their internal sensors such as the GPS receiver, the tri-axial accelerometer, and the 

tri-axial gyroscope.  One smartphone app developed at the university provided the ability to 
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select the sample rate of the inertial sensor (Bouret 2013).  The iOS® device logged time, 

inertial, and geospatial position data from 30 traversals of a 2007 Subaru Legacy sedan through 

the segment of Bolley Drive.  The vehicle remained within 1 m·s-1 of the average speed of 

7 m·s-1.   

 

Figure 12.  Data collection site and equipment for the RIF-indices 

Figure 12 illustrates the setting.  The road segment contains a rail grade crossing that 

produces a noticeably rougher ride than the rest of the segment.  The crossing consists of four 

rails.  The latitude and longitude of the first track crossed when heading north is as indicated in 

Figure 12.  The 70-meter segment south of the crossing looks and feels significantly smoother 

than the 70-meter segment north of the crossing.  Similarly, the north segment looks and feels 

much smoother than the 70-meter segment containing the crossing.  The maximum achievable 
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GPS and accelerometer update rates for this case study were 1 and 93 hertz, respectively.  

Chapter 5 develops criteria and methodology for selecting the best update rates for each sensor. 

3.7.2.  Data format 

The accelerometer produced “Gz,” “Gx,” and “Gy,” which are the g-forces sensed in the 

vertical, lateral, and longitudinal directions, respectively, with each normalized to 9.81 ms-2.  

The gyroscope produced the “Pitch,” “Roll,” and “Yaw,” which are the sensor orientation angles 

in degrees, respectively.  The gyroscope also produced the “Rx,” “Ry,” and “Rz” values, which 

are the angular rotational rates about the respective sensor axis in degrees per second. 

Table 3.  Data format used for the RIF-transform 

Time Gz Lat Lon Vel Pitch Roll Yaw Gx Gy 

21.347 -0.98 46.88096 -96.7701 1.42 8.19 1.51 -25.61 0.05 -0.13 

23.956 -1.02 46.88096 -96.7701 1.42 8.17 1.51 -25.63 0.05 -0.14 

26.118 -0.99 46.88096 -96.7701 1.42 8.17 1.51 -25.63 0.02 -0.15 

37.812 -1.03 46.88096 -96.7701 1.42 8.17 1.50 -25.64 0.05 -0.12 

48.627 -0.97 46.88096 -96.7701 1.42 8.17 1.50 -25.64 0.08 -0.14 

59.410 -1.02 46.88096 -96.7701 1.42 8.16 1.55 -25.67 0.00 -0.16 

123.741 -0.95 46.88096 -96.7701 1.42 8.20 1.47 -25.73 0.02 -0.13 

134.777 -1.05 46.88096 -96.7701 1.42 8.20 1.47 -25.73 0.04 -0.15 

 

Table 3 shows a fragment of the dataset that the smartphone app produced as a comma 

separated value (CSV) file format.  The first row contains a header with labels for each column 

of data sampled from the sensors.  The “Time” column is the sample period in milliseconds.  The 

output register of the GPS receiver produced the “Lat” and “Lon,” which are the latitude and 

longitude, respectively, in decimal format.  These values were unchanged for this data fragment 

because the inertial sensor updated 93 times faster than the GPS receiver did.  The GPS receiver 

also produced the “Vel,” which is the estimated ground speed in ms-1.   
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3.7.3.  Data volume and upload time 

The data from each vehicle will contain ten parameters per row as shown in Table 3.  The 

data logger uses single-precision floating-point (32 bits) to store each parameter in digital 

memory.  Each row contains the sample interval time instant and the updated sample from each 

sensor output.  Hence, the data logger will have a capacity of 217, 109, and 54 hours per 

gigabyte (GB) of memory storage for sample rates of 32, 64, and 128 hertz, respectively.  Each 

sensor produces an updated output asynchronously with respect to the other.  Therefore, a higher 

sample rate will capture fresher data whenever the sensor changes its output.  However, blindly 

sampling at the highest rates possible could produce more data than are necessary.  Chapter 5 

analyzes the trade-off between sample rate and performance requirements to select the best 

settings. 

The data logger will opportunistically identify available and approved networks to upload 

its recently captured data.  For example, vehicles may upload data when parked in a Wi-Fi zone 

such as near a home or office.  This approach continually frees memory to store new data.  

Sampling at 32, 64, and 128 hertz produces data at the rates of 10.2, 20.5, and 41 kilobits per 

second (kbps).   

Table 4.  Data rates and time capacity as a function of sample rate 

Rates Collection Rate (hertz) 

 
32 64 128 

Data Rate (kbps) 10.2 20.5 41.0 

Capacity (hrs/GB) 217 109 54 

Upload time per drive hour (sec) 1.8 3.7 7.4 

 

Table 4 summarizes the data rates, time capacity, and upload time per drive hour.  

Incidentally, the 20.5 kbps capture data rate from sampling at 64 hertz is similar to the compact 
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disc audio bandwidth of 22.1 kilohertz.  A wireless connection at 20 megabits per second (mbps) 

will require 6.7 minutes per GB of data upload.  That is, the wireless upload of 109 hours of data 

sampled at 64 hertz will take less than 7 minutes.  Viewed alternatively, using the same wireless 

connection speed will require 3.7 seconds to upload the data logged at 64 hertz for every hour of 

drive time.  Hence, a connected vehicle environment that uses standard DSRC will provide the 

opportunity for near real-time analysis of roadway conditions.  

Table 5.  Data capacity requirements for different speeds and sample rate 

Capacity (km/GB) Collection Rate (hertz) 

 
32 64 128 

25 km/h (~15 mph) 5,425 2,713 1,356 

55 km/h (~34 mph) 11,936 5,968 2,984 

100 km/h (~62 mph) 21,701 10,851 5,425 

 

Table 5 summarizes the storage capacity between uploads in terms of kilometers of 

profiling for each traversal velocity and sample rate combination.  Roughness characterizations 

of local roads with typically low speed limits will take longer than highways where the traversal 

speed could be four times greater.  Hence, between uploads, the data logger will have a greater 

distance capacity per unit of available memory for restricted access roads such as freeways. 

3.7.4.  Path distance tagging 

The GPS update rate must be sufficiently high to account for differences in the traversal 

distance along curvilinear paths.  Studies found that vehicles travel no faster than 20 mph when 

traversing the sharpest right-turn curves that have a minimum corner radius of 25 feet 

(Fitzpatrick and IV 2005).  This is equivalent to traversing the curved path of about 12 meters in 

length at a speed of approximately 9 m∙s-1.  Hence, in this worst-case scenario, the GPS must 

update faster than 0.75 Hz to provide an estimate for the traversal distance along the curviest 
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paths expected.  Present technology limits the maximum update rate of standard GPS receivers to 

about 10 Hz (O'Kane and Ringwood 2012).  Most devices such as smartphones allow a 

maximum GPS update rate of 1 Hz.  Consequently, the GPS update rate would be several-fold 

slower than the maximum accelerometer sample rate.  To accommodate this misalignment in 

update rates, the data processing algorithm must interpolate between GPS updates to estimate the 

path distance between accelerometer samples.  The interpolated distance is the ratio of the GPS 

update distance to the number of intervening accelerometer samples.  GPS receivers typically 

incorporate Kalman filters to minimize the effects of multipath reflections and any loss of 

satellite line-of-sight conditions (Brookner 1998).  The approximate distance between a pair of 

GPS coordinates on the earth’s surface where (S, S) and (E, E) denotes the start and end 

(latitude, longitude) pairs, respectively, is (Gade 2010) 
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where Rearth is the mean earth radius of approximately 6,371 kilometers.  The appendix outlines 

the algorithm used to compute the path distances for traversals of the case studies. 

3.7.5.  Data distribution models 

The case studies will use the critical chi-squared value to test the distribution of RIF-

indices for candidacy as a Gaussian, a Student-t, a lognormal, or a logistic distribution.  A least 

squares method will estimate parameters of each distribution that best fit the measured 

histograms of RIF-indices.  The four distributions selected for testing exhibit similar 

characteristics as a function of sample size (Agresti and Finlay 2008).  The Gaussian distribution 

Dg(ι), as a function of the frequency bin ι is 
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where αg, μg, and σg are estimates of the amplitude, mean, and standard deviation parameters, 

respectively.  Similarly, the modified Student’s t-distribution Dt(ι) to test is 
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where tdf(ι) is the normalized Student’s t-distribution, which is a gamma function of ι and df 

degrees-of-freedom.  The parameters αt, μt, and σt are estimates of the amplitude, mean, and 

standard deviation parameters, respectively.  The lognormal distribution Dn(ι) to test is 
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The parameters αn, μn, and σn are estimates of the amplitude, mean, and standard deviation 

parameters, respectively.   

 

Figure 13.  Similarities of the selected classical distributions 

The logistic distribution is denoted DL(ι), and the associated parameters αL, μL, and σL are 

estimates of the amplitude, mean, and standard deviation, respectively, where 
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Each distribution provides a slightly different fit for the data histogram.  Figure 13 illustrates 

their similarities for the same mean and spread of a normalized random variable.   

 

Figure 14.  RIF-index distributions for Bolley Drive traversals 

The Student’s t-distribution is practically identical to a Gaussian as sample sizes 

approach 30.  The logistic distribution has heavier tails than the Gaussian distribution and may 

provide a better model for the distribution of relatively few samples from a case study.  The 

lognormal distribution typically provides a better fit for skewed distributions. 

3.7.6.  Experimental results 

Figure 14 plots the histograms of RIF-indices derived from the data collected for 

relatively “smooth” and “rough” sections of Bolley Drive, and the section that includes the very 

rough rail grade crossing.   
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Table 6.  Parameter estimates for the RIF-index distribution fit 

  Smooth Rough Rail Grade 

Gaussian       

df 3 3 3 

χ2 (α = 5%) 7.815 7.815 7.815 

χ2 Data 79.22 151.597 2.111 

Significance α (%) 0 0 54.976 

Amplitude 0.681 0.929 0.886 

Mean 0.152 0.32 0.471 

Standard Dev. 0.022 0.027 0.037 

Student-t       

df 3 3 3 

χ2 (α = 5%) 7.815 7.815 7.815 

χ2 Data 1.673 1.636 1.707 

Significance α (%) 64.293 65.136 63.547 

Amplitude 0.738 1.022 0.968 

Mean 0.151 0.32 0.47 

Standard Dev. 0.021 0.027 0.036 

Lognormal       

df 3 3 3 

χ2 (α = 5%) 7.815 7.815 7.815 

χ2 Data 6.151 47.872 1.669 

Significance α (%) 10.45 0 64.384 

Amplitude 0.687 0.927 0.88 

LN(mean) -1.878 -1.139 -0.751 

Standard Dev. 0.148 0.084 0.078 

Logistic       

df 3 3 3 

χ2 (α = 5%) 7.815 7.815 7.815 

χ2 Data 5.978 6.746 1.793 

Significance α (%) 11.268 8.044 61.655 

Amplitude 0.705 0.972 0.92 

Mean 0.152 0.32 0.47 

Standard Dev. 0.014 0.017 0.023 

EAR-Index 0.155 0.322 0.475 

MOE0.95 (%) 6.928 4.465 2.778 

vv (%) 6.395 6.695 6.105 
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The plots show that each of the four distributions fit the histograms in a similar manner.  

It is evident that the EAR-index for each segment is distinctly different as anticipated.  Each 

shape mimics those of classical parametric distributions.  Table 6 summarizes the parameter 

estimates for each of the four distributions from the three road segments.  The critical chi-

squared value listed in the table as “χ2 Data” is an evaluation of the expression 
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where Ok are histogram values observed in bin k and Ek are the expected values from the 

hypothesized distribution.  The chi-squared distribution value at 5% significance ( = 5%) is the 

largest value expected with a probability of, at most, 5%.  The chi-squared degrees-of-freedom df 

listed are one unit less than the number of histogram bins n, minus the two independent 

distribution parameters estimated, which are the amplitude and the standard-deviation, the latter 

being dependent on the estimate of the mean.  That is, negligibly small deviations from the tested 

distribution will yield a relatively small critical χ2 value where the significance level would be 

expectedly much greater than 5%.  Statisticians generally reject a null hypothesis that the data 

follow a tested distribution if the significance of the critical χ2 value is less than 5%, or 

equivalently, if the critical χ2 value is larger than the chi-square distribution value at 5% 

significance.   

For at least two of the tested distributions in all three cases, the critical chi-squared values 

are substantially smaller than the distribution chi-squared values at 5% significance.  Therefore, 

the tests cannot reject a hypothesis that the distribution of the RIF-indices follows one of the 

distributions.  This agreement with classic distributions provides a high degree of confidence that 
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with higher levels of vehicle traversals, the margin of error (MOE) will diminish to approach the 

true segment roughness. 

The MOE for the RIF-index 
LR  1  within a (1-)% confidence interval of significance  

(Papoulis 1991) is 
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where jP

wvN ][ is the traversal volume defined in Equation (31) and dft ,2/1  is the t-score where the 

normalized cumulative t-distribution of df degrees of freedom equals (1-).  The standard 

deviation of the RIF-index is denoted
L
R .  The ratio of MOE1-α to the EAR-index is the MOE 

percentage, which is a relative measure of the data spread.  For example, MOE0.95 (%) indicates 

that 95% of the data points are likely to be within that percentage of the EAR-index.  Table 6 

lists the MOE0.95 (%) for each of the three road segments.  The average MOE for all segments is 

less than 5% with only 29 traversals each.  This provides a high confidence that the MOE % will 

become progressively smaller with additional traversals.  The velocity standard deviation σv as a 

percentage of the mean velocity v is less than 7%.  Velocity variance contributes to RIF-index 

variance.  Chapter 5 further examines its significance with respect to selecting the appropriate 

GPS update rate. 

3.8.  Summary 

This chapter developed a new roughness simulation model to provide the theoretical 

foundation for evaluating the new roughness characterization models under a range of 

conditions.  The key concepts of vertical acceleration potential and kinetic energies provided the 

insights needed to develop the new roughness characterization models.  This suite of models 
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establishes the analytical framework for the remaining research.  A derivation of the quarter-car 

model reveals the mechanical filtering action that explains the IRI deficiencies reported.  The 

spatial wavelength bias of the IRI is a fundamental limitation that results from the fixed speed 

constraint of the IRI-transform.  The RIF-transform relies on the integration of data from 

multiple heterogeneous sensors that include a tri-axial accelerometer, a tri-axial gyroscope, a 

ground velocity sensor, a timer, and a geospatial position receiver.  The resulting data stream 

from individual vehicle traversals is a stream of the resultant vertical acceleration sensed and a 

path distance associated with each sample.  The RIF-transform produces a single-index summary 

of roughness per unit of longitudinal distance, traversed within a specified speed range.  The 

EAR-index is the average RIF-index from all vehicle traversals of a specified segment, within 

the specified speed window.  The TWIT integrates the EAR-indices from all available speed 

bands for the segment to provide a wavelength unbiased characterization of roughness. 

The case study demonstrated practical utilization of the EAR-index by using a 

smartphone app to log the required sensor data from a regular passenger car.  Each row of the 

data stream contained the sample updates from a smartphone with integrated timer, 

accelerometer, gyroscope, and GPS receiver.  Based on the data rates utilized, the typical 

smartphone would be capable of storing more than 100 hours of data per gigabyte of available 

storage. 

The local road selected consists of three equal length segments with distinct differences 

in roughness, including a rail grade crossing.  Fewer than 30 vehicle traversals near the speed 

limit provided a suitable statistical sampling of RIF-indices for each segment.  The differences in 

EAR-indices for each segment matched the perceived differences in relative roughness.  The 

average margin-of-error for the EAR-indices was approximately 4% for a 95% confidence 
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interval.  The chi-squared tests could not reject the hypothesis that the distribution of RIF-indices 

are in accordance with classical models such as the Gaussian, Student-t, lognormal, and logistic 

distributions.  Therefore, the case study validated the models and provided a high degree of 

confidence that the EAR-index, and consequently the TWIT, will continue to provide a higher 

precision of ride quality characterization as additional vehicles traverse the segment.  Hence, the 

high volume of traversals anticipated from connected vehicle environments will provide an ideal 

setting to use these new models. 
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CHAPTER 4.  CHARACTERISTICS OF THE MODELS 

This chapter compares the IRI and RIF-transforms under various scenarios of profile 

roughness.  The analytical bump model developed in Chapter 3 provides an ability to 

methodically simulate, analyze, and compare the behaviors of each transform by varying the 

bump width, bump height, and vehicle speed.  The literature search summarizes and explores the 

limitations of existing approaches to transform inertial data into a single-index summary of 

roughness.  A proof of the direct proportionality relationship between the IRI and the RIF-index 

utilizes their underlying commonality as linear time-invariant systems.  A functional 

decomposition of their inner operations explains the similarities and differences in their 

responses to a range of roughness characteristics.  The case study validates the proportionality 

relationship.  A scenario study demonstrates how practitioners could extend IRI datasets by using 

EAR-indices and the RIF/IRI proportionality relationship. 

4.1.  Literature Search of Inertial and Position Data Integration Models 

The literature search reveals a lack of models to transform accelerometer and GPS data 

into a single-index summary of roughness.  The available approaches generally apply a time or 

frequency domain transform to the inertial data.  Time domain methods include the ARI given by 

Equation (1) and the RMS of the accelerometer signal (Papagiannakis 1997).  The latter is 

similar to the ARI, and neither accounts for variations in vehicle speed.  Frequency domain 

methods such as the Fourier Transform (Douangphachanh and Oneyama 2013) and the PSD 

(Chen, Lu, et al. 2011) are computationally intensive and they do not identify localized 

roughness.  Hybrid methods such as the Wavelet Transform (Tomiyama, Kawamura and Ohiro 

2014) and the Hilbert-Huang Transform (Ayenu-Prah and Attoh-Okine 2009) attempt to localize 

roughness by decomposing the time-domain signal into empirical basis functions.  By 
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approximating the shape of typical inertial signatures, basis functions match similar features in 

the signal but they do not provide a single-index summary of roughness.  Almost all methods 

reported are some variation of the procedure to produce the IRI, and they require a fixed speed 

standard (Múčka 2015).  Methods of compensation for speed variations often result in an 

unstable index that could approach an infinite value when speed decreases toward zero 

(Dawkins, et al. 2011). 

4.2.  Behavior of the IRI and the RIF-transforms 

Chapter 3 demonstrated how variations in the bump width or the traversal speed shift the 

frequency distribution of vertical acceleration energy produced.  This section examines the 

relative effects of such variations on the output of the IRI- and RIF-transforms. 

4.2.1.  Speed relationship 

 

Figure 15.  IRI and RIF-transforms for a 10-centimeter high by 1-meter wide bump 

Figure 15 plots the output of the IRI- and RIF-transforms from traversing a 10-centimeter 

high by 1-meter wide bump at a range of speeds.  The RIF-index is in units of g-force/meter on 

the left vertical axis, whereas the IRI is in units of m/km on the right vertical axis.  The IRI for 

the simulated bump is as indicated at the marker crossing of its reference speed at 80 km/h.  

Output peaks of the IRI-transform are located at speeds that translate potential energy of bumps 

to the sprung- and unsprung-mass resonant modes of the Golden Car.  Bump energy peaks that 
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coincide with the unsprung-mass resonance produce the largest excitation to the series mass-

spring system.  The RIF-index also approaches a maximum because it integrates energy from the 

quarter-car sprung-mass response.  Overall, the RIF-transform is less sensitive to speed 

variations.  This is a desirable feature because it accommodates a greater speed-band width when 

computing the TWIT-index. 

4.2.2.  Bump height relationship 

 

Figure 16.  RIF-indices and IRI at two speeds for a 10-meter wide bump of varying heights 

Both the RIF-index and the IRI are directly proportional to bump height.  Figure 16 

compares the RIF-index and the IRI for a 10-meter wide bump of varying heights.  The plot 

shows the RIF-index at the IRI reference speed as well as half that speed.  This result indicates 

that the RIF-index and IRI are directly proportional for a given bump width and traversal speed.  

The next section explores how the RIF/IRI proportionality constant varies with bump width at 

the IRI reference speed. 

4.2.3.  Bump width relationship 

As demonstrated in Chapter 3, for a given speed the frequency of the peak potential 

energy of a bump increases as its width decreases and vice-versa.  Bump widths of 

approximately 2 meters produce peak potential energy that coincides with the unsprung-mass 

resonant mode of the quarter-car.  Therefore, the peak roughness indices occur when the peak 
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potential energy of bumps coincide with the quarter-car resonant modes.  This phenomenon at a 

fixed traversal speed is responsible for the wavelength bias of the IRI. 

 

Figure 17.  RIF/IRI for a 10-centimeter high bump of varying widths 

Figure 17 plots the RIF-index and the IRI for a range of bump widths traversed at the 80 

km/h reference speed.  As the bump width increases beyond 5 meters, its peak potential energy 

moves away from the unsprung-mass mode and toward the sprung-mass mode.  Therefore, the 

output of both transforms settle because the wider bumps produce less excitation at the 

unsprung-mass mode.  This result demonstrates that for a fixed speed, the RIF/IRI 

proportionality varies with the bump width composition of the elevation profile.  At a fixed 

speed, the RIF- and IRI-transforms integrate roughness energy from all bump widths of the 

profile.  Figure 16 demonstrates that both transforms are directly proportional to the overall 

roughness intensity of the profile.  Therefore, the ratio of RIF/IRI for any road segment must be 

a constant.  However, this constant will vary among profiles that exhibit different distributions of 

bump widths.  Therefore, applications that would extend the IRI datasets by switching to the 

RIF-index must characterize the constant before applying it.  Real roads contain a broad range of 

bump sizes.  Therefore, the shapes of their potential energy spectra are likely to remain relatively 

broadband over time, and that characteristic will lessen the need for periodic recalibration of the 

ratio. 
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4.3.  Derivation of the RIF-IRI Proportionality Constant 

 

Figure 18.  Functional decomposition of the RIF- and IRI-transforms 

The RIF-index and the IRI are linear-time-invariant (LTI) transforms because they 

integrate the responses from a linear mass-spring system (C.-T. Chen 2004).  The RIF- and IRI-

transforms are a cascade of LTI transforms of the elevation profile along the wheel path as 

illustrated by the functional decomposition in Figure 18.  The upper cascade illustrates the 

process steps that software packages use to produce the IRI.  The procedure begins by applying a 

moving average filter to the samples of the elevation profile.  This filter removes unwanted high 

frequency content such as electronic noise and spurious vibrations.  The procedure then applies 

the filtered signal as a forcing function to the damped mass-spring model of the Golden Car.  A 

numerical method then computes the sprung- and unsprung-mass motion rates by differentiation.  

The IRI is the accumulated absolute rate difference between the sprung- and unsprung-mass per 

unit length of the segment analyzed.  The lower cascade represents how practitioners would 

produce the RIF-index in practice.  An accelerometer mounted to the body of an actual vehicle 

samples the g-forces produced from body-bounces as it travels along a path of the elevation 



61 
 

profile.  An algorithm then computes the square of the product of each g-force sample and the 

instantaneous velocity obtained from the speed sensor.  The RIF-index is the square root of the 

accumulated result, normalized to the segment length.  This functional decomposition 

demonstrates the similarities and differences of each transform.  The underlying commonality of 

their LTI transforms explains their direct proportionality relationship.  A proof of this 

relationship will utilize the theoretical impulse to provide a broadband excitation for each 

transform that would yield an expression that depends only on the fixed quarter-car parameters 

and other constants. 

4.3.1.  The IRI-transform of the Golden Car impulse response 

Removing the low pass filter in the IRI cascade equalizes the inputs to both transforms.  

From Equation (15), the sprung-mass impulse response is 
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and the unsprung-mass impulse response is 
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The convolution of Equation (22) provides the quarter-car impulse response qz(t). Therefore, 

substituting the impulse response expressions from Equations (39) and (40) into Equation (22) 

yields the quarter-car impulse response.  Table 2 in Chapter 3 provided the Golden Car sprung- 

and unsprung-mass parameters used to evaluate the expressions.  Computing the sprung- and 

unsprung-mass vertical motion rates )(tzs  and )(tzu , respectively, and applying them to Equation 

(19) produces the IRI-transform )(tI L
v .   
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Figure 19.  Impulse response of the Golden Car model and the IRI instants 

Figure 19 plots the transform output as a function of time to observe its accumulation 

with the quarter-car impulse response. 

The absolute value of the instantaneous rate difference in Equation (19) hinders a closed 

form expression for the integration.  Evaluating the output instead using a numerical method of 

integration, the transform converges to a constant of 0.240 meters in the limit t .  A series 

expansion of the integration coupled with some heuristics yields the expression 
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that approximates the converged numerical value within a fraction of a millimeter. 

4.3.2.  The RIF-transform of the Golden Car impulse response 

Utilizing the distributive property of LTI systems, the convolution of the sprung- and 

unsprung-mass impulse responses is equivalent to a linear combination of their individual 

impulse responses where 

).()()()()( tztztztztq ususz    (42) 
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For impulse excitations, the coefficient of linear combination   is unity because an impulse 

identically excites all subsystem modes.  However, their motions are in opposite phase because 

of the series mass-spring arrangement, hence   = -1 for impulse excitation (Angeles 2011).   

The vertical acceleration produced from the quarter-car impulse response is 

  )()()()(
2

2

tztztq
dt

d
ta uszz      (43) 

From Equation (23), the g-force sensed for a quarter-car where Wz = 1 is 
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Closed form solutions for the accumulated second derivative of the impulse responses of 

Equations (39) and (40) are 
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respectively, where TvL   such that )(  Tgz  becomes negligibly small.  The quarter-car impulse 

response becomes negligibly small for Tε > 2.0 seconds as observed in Figure 19.  Substituting 

Equations (44), (45), and (46) into Equation (29) yields the RIF-index for the quarter-car impulse 

response as 
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Therefore, the RIF/IRI proportionality constant
RI is 
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The
RI  proportionality constant is for an impulse excitation, which is equivalent to a 

broadband elevation profile spectrum.  This expression evaluates to a constant of 5.8 for the 

Golden Car parameters, the reference speed of 80 km/h, a sensor constant of γg = 1, and a 

segment distance of one kilometer per the standard unit of IRI measure.  The theoretical impulse 

excitation is the largest possible; therefore, this ratio represents the theoretical bound.  The RIF-

index for the transient responses to the impulse excitation was 1.4 g-force/meter, whereas the IRI 

accumulated to 0.240 meters after 1 kilometer of theoretical travel at the IRI reference speed.  

The actual RIF/IRI constant of proportionality will be much smaller for practical road 

excitations. 

4.4.  Case Studies and Practical Applications 

RIF and IRI data simultaneously collected with a laser-based Inertial Profiler provide 

validation of the consistency of their direct proportionality for an actual segment of road, using a 

real vehicle. 

4.4.1.  Equipment and test facilities 

The North Dakota Department of Transportation (NDDOT) calibrates its Inertial Profiler 

annually at the MnROAD facility near Monticello Minnesota.  The calibration procedure 

required only six to 10 traversals of Cell 37, which is a 500-feet (~153 meter) segment of the 

low-volume road.  An industrial grade data logger (Appareo NaviCubeTM) aboard the NDDOT 

vehicle logged the inertial and GPS data while the Inertial Profiler instrumentation sampled the 
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elevation profile.  The Appareo data logger sampled the vertical acceleration at approximately 

125 hertz and updated the GPS coordinates at approximately 2 hertz.  These update rates were 

about twice that of the iOS device used in Chapter 3 to validate the RIF-transform models.   

The NDDOT Inertial Profiler is a modified model E350 Ford van.  It is equipped with left 

wheel path (LWP) and right wheel path (RWP) laser-based height sensors and a GPS receiver.  

The height sensors measure the profile elevation at approximately 3.8-centimeter intervals when 

the vehicle moves at a fixed speed.  The onboard equipment produced elevation profile samples 

using the standard *.erd file format.  The Profile Viewing and Analysis (ProVAL) software from 

The Transtec Group then converted LWP and RWP data to the IRI values. 

 

Figure 20.  Traversal path for the instrumented vehicle 

Figure 20 shows the location of the MnROAD facility and Cell 37.  The data logger is in 

the bottom left inset and the Inertial Profiler is in the top right inset of the figure. 
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4.4.2.  Results of direct RIF/IRI proportionality 

The ProVAL software produced IRI separately for the elevation profile samples from the 

LWP and RWP.  Agencies typically report the IRI as the average of the values transformed from 

the LWP and RWP elevation profiles.  The Inertial Profiler has the ability to regulate the 

traversal speed.  This capability minimizes speed variations to provide a consistent sample 

interval for the laser-based distance measurement system.  The traversal speed was about 35 

miles-per-hour.  The onboard velocity sensor reported the speed in units of m·s-1 but converting 

this to km/h provides the more familiar units.  The IRI reported was in units of m/km.  The RIF-

index was in units of g-force/meter. 

Table 7.  IRI and RIF-index data collected from the MnROAD experiments 

 Traversal Speed IRI RIF RIF/IRI 

1 55.46 1.59 0.105 0.066 

2 55.56 1.59 0.114 0.072 

3 55.54 1.59 0.107 0.067 

4 55.61 1.54 0.108 0.070 

5 55.69 1.56 0.104 0.067 

6 55.79 1.57 0.108 0.069 

Average 55.61 1.57 0.108 0.068 

MOE0.95 (%) 0.22 1.38 3.41 3.35 

 

Table 7 summarizes the data collected.  The MOE0.95 is the 95% confidence interval as a 

percentage of the average values.  Even with only six data points, the MOE0.95 of the IRI was 

within less than 2% of the mean.   

The EAR-index for the 150-meter segment was 0.108 g-force/meter.  The EAR/IRI ratio 

was approximately 68×10-3.  Although higher than the IRI variability, the MOE0.95 of the RIF-

index was within less than 4% of the mean.  Hence, the RIF/IRI ratio was similarly consistent.  

Three significant factors accounting for the lower IRI variability are 1) the low pass filtering of 
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the sampled elevation profile 2) the fixed parameters of the Golden Car model, and 3) the fixed 

reference speed.  Firstly, as shown previously in Figure 18, the procedure to produce the IRI 

begins by removing higher frequency variations in the elevation profile using a moving average 

filter.  Conversely, the RIF-transform does not filter the inertial sensor data prior to producing 

the RIF-index.  Secondly, the IRI transform simulates the motions of the sprung- and unsprung-

mass of a fixed quarter-car, namely the Golden Car.  Conversely, the RIF-transform responds to 

the sprung-mass motion of the actual vehicle.  Thirdly, the ProVAL software translates the 

spatially sampled elevation profile data to the fixed IRI reference speed, with practically zero 

variance, before applying it to the Golden Car model.  Conversely, the RIF-transform 

incorporates the instantaneous speed variations that the onboard sensor reports. 

 

Figure 21.  RIF-index distributions for MnROAD 

Figure 21 plots the RIF-index histogram and distribution fit for traversals of the 

MnROAD Cell 37.  The chart uses the same scale as those of Figure 14 in Chapter 3 for relative 

comparison.  The inset enlarges the distribution plot for Cell 37 for visual clarity.   
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Table 8.  Distribution parameters for the Bolley Dr. and MnROAD RIF-index histograms 

  Rough Bolley MnROAD 

Gaussian     

df 3 1 

χ2 (α = 5%) 7.815 3.841 

χ2 Data 151.597 0.071 

Significance α (%) 0 79.049 

Amplitude 0.929 0.033 

Mean 0.32 0.106 

Standard Dev. 0.027 0.004 

Student-t     

df 3 1 

χ2 (α = 5%) 7.815 3.841 

χ2 Data 1.636 0.356 

Significance α (%) 65.136 55.07 

Amplitude 1.022 0.043 

Mean 0.32 0.106 

Standard Dev. 0.027 0.004 

Lognormal     

df 3 1 

χ2 (α = 5%) 7.815 3.841 

χ2 Data 47.872 0.085 

Significance α (%) 0 77.081 

Amplitude 0.927 0.032 

LN(mean) -1.139 -2.239 

Standard Dev. 0.084 0.038 

Logistic     

df 3 1 

χ2 (α = 5%) 7.815 3.841 

χ2 Data 6.746 0.161 

Significance α (%) 8.044 68.835 

Amplitude 0.972 0.034 

Mean 0.32 0.106 

Standard Dev. 0.017 0.003 

EAR-Index 0.322 0.108 

MOE0.95 (%) 4.465 3.590 

vv (%) 6.695 0.025 
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As observed, the “rough” Bolley Drive segment exhibits nearly three times the roughness 

density of the MnROAD cell.  This relationship agrees with the subjective perception.  Even 

with significantly fewer traversals, it is evident that the spread of the RIF-indices for the 

MnROAD traversals is smaller than that for the Bolley Drive traversals.  The much smaller 

variance of the Inertial Profiler velocity and the smoother segment is a significant contributor to 

the reduction in variance of the EAR-index for the MnROAD traversals.   

Another factor that reduced the variance of the EAR-index for the MnROAD segment 

over the Bolley Drive segment is the path length.  The MnROAD segment is 80 meters longer 

than the Bolley Drive segment.  Hence, the spreading of localized errors in GPS path distance 

evaluations across a longer segment reduced the overall path length variability.   

Table 8 summarizes the parameters for each distribution fit using a least squares method.  

For the MnROAD distribution, the critical chi-squared values were much smaller than the 

distribution chi-squared values at 5% significance.  In fact, the test statistics were sufficiently 

small such that the equivalent significance percentage is much larger than 5% as indicated.  Even 

with relatively few traversals, the chi-squared test cannot reject the hypothesis that the data 

follows any of the tested distributions.  The smaller variance in traversal speed for the MnROAD 

dataset accounted for the improved MOE over the Bolley Drive data, even for significantly fewer 

traversals and a lower EAR-index.  This result provides a high degree of confidence in the 

measured EAR/IRI proportionality constant. 

4.4.3.  Extending IRI applications with EAR datasets 

The direct proportionality relationship allows the EAR-index to extend applications that 

rely on historical IRI data.  Present and future EAR indices computed from one or more speed 

bands, or their combination thereof via the TWIT transform, can provide an alternative to 
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collecting elevation profile samples and producing the IRI.  For instance, a deterioration 

forecasting application may have estimated the coefficient βL from IRI data collected during the 

period 0 ≤ Pj < 5 years using the empirical model 
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Future data on ride quality will continue to improve the estimate of βL.  Hence, agencies can 

continue to collect ride quality data in the form of RIF-indices and convert them to IRI.   

 

Figure 22.  IRI application scenario extended with EAR indices 

The solid line of Figure 22 illustrates a hypothetical IRI trend for periods prior to P5.  The 

dashed line represents a forecasted trend for periods after P5.  The forecasted trend uses the EAR 

indices )( j
L

v PR scaled by the EAR/IRI proportionality constant 5RI  measured in year P5.  

Therefore, the modified forecasting model is 
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That is, EAR indices collected in the future years Pj > 5 for a speed band around the speed limit 

of the segment will provide the coefficients βL[j] where 
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and the updated calibration coefficient βL to forecast future EAR indices would be 
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where JN is the total number of time periods available in the overall dataset.   

4.4.4.  Estimating the IRI from EAR measurements 

Practitioners who prefer not to transition to the EAR-index but cannot afford IRI 

characterizations using specialized Inertial Profiler vehicles could use regular vehicles to 

estimate IRI values from the EAR-index measurements.  In such situations, the practitioner may 

use a quantitative or a qualitative approach.  The former approach requires recent IRI 

characterizations of the facility to determine the proportionality factor, whereas the latter does 

not.  The tradeoff is precision.  The quantitative approach will provide an IRI value that is within 

a few percentage points of the actual IRI value.  On the other hand, the qualitative approach will 

provide an IRI value that is within a larger window that would map to the typical qualitative 

descriptions of pavement conditions within that range. 

The precision of the quantitative approach depends on the recentness of IRI values 

determined for the facility.  As the bump width analysis indicated, any significant differences in 

the spectral profile characteristics from previous characterizations could require an update of the 

proportionality factor.  FHWA analysis of long-term pavement performance (LTPP) data 

indicates that the PSD, or equivalently, the wavelength distribution remains relatively unchanged 

over time (Karamihas and Senn 2012).  Therefore, changes in the proportionality factor would 

likely be insignificant for a majority of pavements.  The qualitative approach is appropriate for 
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local and unpaved roads with no prior IRI assessments, and for which a gross estimate of the IRI 

would suffice.  The next section provides a case study. 

4.4.5.  Case study of qualitative IRI estimates 

The difficulty of maintaining a relatively constant speed, and the presence of anomalies 

that would distort the reference plane for laser-based height measurements, prevent agencies 

from using Inertial Profilers to assess the IRI for local roads such as Bolley Drive (NCHRP 

2013).   

Table 9.  IRI estimates based on RIF-index measurements 

 
Bolley Drive (70-meter) Segments MnROAD 

 
Smooth Rough Rail Grade 150-meter Cell 

EAR-index (g-force/meter) 0.155 0.322 0.475 0.108 

IRI estimate (m/km) 2.265 4.705 6.941 1.578 

IRI estimate (in/mile) 143.511 298.133 439.792 99.995 

Characteristic condition 
(IRI range in m/km) 

New 
Pavements 
(1.5 – 3.5) 

Worn 
Pavements 
(2.5 – 6.0) 

Damaged 
Pavements 
(4.0 – 11.0) 

Airport 
Runways 
(< 2.0) 

 

Table 9 summarizes the IRI estimates for the three Bolley Drive segments based on their 

measured EAR-indices and the proportionality constant obtained from the MnROAD traversals.  

The table includes the World Bank descriptions of pavement conditions that would map to the 

range of IRI values shown (Gillespie, Sayers and Queiroz 1986).  As expected, all the estimates 

correlated with the relative differences in roughness observed.  The estimated IRI values 

corresponded to the characteristic conditions observed for each pavement section as pictured in 

Figure 12.  This result indicates that the qualitative approach provides a viable alternative to 

roughness characterizations for facilities such as local and unpaved roads where IRI 

characterizations are not affordable or not feasible.  Chapter 5 will examine the sensitivity of the 

EAR-index as a function of sensor and vehicle parameter variances. 
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4.5.  Summary 

This chapter examined the relative behavioral characteristics of the new transforms 

developed in Chapter 3 and the prevailing IRI transform that nearly all agencies currently use to 

report official ride quality data.  Simulations of the models demonstrated their similarities and 

differences in roughness characterizations as a function of traversal speed, bump height, and 

bump width.  The IRI is limited to characterizing roughness at a fixed speed by simulating the 

response of a fixed quarter-car.  Conversely, the RIF-index characterizes roughness by reporting 

the average g-force actually experienced per unit distance and at any speed.  The analysis 

demonstrated that relative to the IRI, the RIF-transform exhibits a lower sensitivity to speed 

variations.  This characteristic accommodates wider speed bands without appreciably increasing 

the variance of the RIF-index. 

With all other factors unchanged, the analysis found that both transforms are directly 

proportional to changes in bump height at any speed.  Hence, the transforms are directly 

proportional to each other.  The direct proportionality relationship dictates that the RIF-index and 

the IRI will change by the same proportions for a given change in the overall roughness intensity 

of the elevation profile.  For example, with all other factors being equal, doubling the bump 

height will double both the RIF-index and the IRI.  This direct proportionality relationship is 

significant because of the potential practical benefits.  For instance, the EAR-index for a given 

speed band, such as the speed limit of the facility, can extend applications that rely on historical 

IRI data by applying a single proportionality constant to either dataset. 

Frequency domain analysis provided further insights about the conditions that would 

require updating the proportionality factor.  Changes in the bump width composition of the 

elevation profile will change the proportionality constant.  However, IRI updates to recalibrate 
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the proportionality constant may be unnecessary for most applications because research 

demonstrated that the spatial frequency distribution of the elevation profile remains similar as the 

pavement ages. 

An impulse excitation provided the broadband excitation for the quarter-car to 

characterize its response and to derive an expression for the theoretical bound of the RIF/IRI 

proportionality constant.  The RIF- and IRI-transforms of the quarter-car impulse response 

converged to expressions that depended only on the fixed quarter-car parameters, the IRI 

reference speed, and the segment length.  Subsequently, their constant ratio proved the RIF/IRI 

direct proportionality relationship for a given quarter-car and a specified speed band. 

This chapter provided two case studies.  The first demonstrated the repeatability of the 

RIF/IRI proportionality and the second demonstrated utility of the factor to estimate the IRI for 

any facility without sampling its elevation profile.  The first case study used an inertial profile 

vehicle to collect IRI and RIF-index related data simultaneously from the MnROAD Cell 37.  

The proportionality factor derived from each traversal was consistent within a 4% margin-of-

error of the 95% confidence interval.  This result promoted high confidence in measuring the 

constant of proportionality with relatively few traversals of an Inertial Profiler.  The second case 

study demonstrated the benefit of converting EAR-indices to IRI estimates by using the 

proportionality factor obtained from characterizing a different facility.  The value ranges 

associated with the gross IRI estimates matched the qualitative condition description for those 

segments.  This result indicated that the qualitative approach to IRI estimation by measuring 

EAR-indices provides a viable alternative for facilities such as local and unpaved roads where 

IRI characterizations are not affordable or not feasible. 
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CHAPTER 5.  SELECTING THE BEST SENSOR SETTINGS 

This chapter examines the effects of sensor installation, orientation, sample frequency, 

and update rate settings to establish recommended standards.  The literature search reveals that 

studies utilizing accelerometers and GPS receivers to characterize road roughness tend to ignore 

analysis of the impact that their settings has on the quality of the data or the results.  Sampling 

the output of sensors too frequently could result in an unnecessary increase in power 

consumption, memory requirements, and data upload time.  Conversely, sampling too slowly 

will under represent the system and introduce large errors.  This chapter determines the impact of 

sensor installation and parameter selection and then recommends the best settings. 

5.1.  Literature Review of Sensor Parameter Selection and Impact 

The practical application of inertial and GPS sensors involves decisions about their 

installation characteristics and parameter settings.  The earliest reported experiments used analog 

accelerometers constructed from multiple discrete components and circuits that were bulky.  The 

sensing mechanism was a brick-sized device that researchers strapped directly to the driver’s 

chest.  This approach was an attempt to isolate vibrations from other parts of the vehicle that 

could cause the analog integrator to overflow (Rizenbergs 1965).  Nearly all experiments 

conducted more recently use highly integrated data loggers such as smartphones with embedded 

digital accelerometers and GPS receivers that conveniently mount to a vehicle’s dashboard 

(Astarita, et al. 2012), (Douangphachanh and Oneyama 2013).  Such data loggers include noise 

filters to band-limit the signals for the selected sample rate (Android Open Source Project 2014).  

The pre-installed position and orientation of connected vehicle sensors would likely remain 

consistent because of normal manufacturing practices to specify standard modules and 

installation procedures for high-throughput assembly line operations.  However, the parameters 
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for after-market probe devices, including smart phones, are likely to vary much more because of 

different manufacturer recommendations and user preferences. 

The case studies of this research discovered that fixing the data logger to the dashboard 

of the vehicle provided the best combination of inertial sensing and GPS receiver data quality.  

The data processing algorithm accounted for the orientation of the device to produce a resultant 

vertical acceleration component of the tri-axial inertial signal.  This is the first study to 

characterize the trade-off between inertial sensor sample rate, traversal volume, and variance of 

the RIF-index (Bridgelall 2014).  Related studies simply selected the highest sample rate 

available from the inertial sensor used at the time (Tai, Chan and Hsu 2010), (Dawkins, et al. 

2011), (Mednis, et al. 2011), (Douangphachanh and Oneyama 2013).  There are no studies to 

guide the selection of the GPS update.  For fast-moving vehicles, sub-optimum GPS update rate 

selection can result in position tagging errors of tens of meters or the need for more data memory 

and wireless bandwidth than is necessary. 

5.2.  Considerations for the Inertial Sensor Installation 

Road roughness excites all the resonant vibration modes of a moving vehicle.  The 

dominant vibration modes are from the individual mass-spring systems of each quarter-car.  An 

actual vehicle will also exhibit vibration modes that potentially originate from other sources such 

as loose components, cargo, and the engine.  However, vibration sources other than the quarter-

car resonant modes are less important when characterizing road roughness; the signal processing 

algorithms can attenuate unwanted vibrations with an appropriate low-pass filter if necessary.  

However, the RIF- and EAR-transforms will tend to average the noise from random vibrations 

across many vehicle traversals.  Hence, another benefit of the new transforms is that they obviate 

the need to apply additional signal processing such as low-pass filtering to the inertial data. 
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5.2.1.  Sensor orientation 

The resultant vertical acceleration for any sensor orientation is the product of the linear 

acceleration from each sensor axis and the magnitude of the axis component of the rotated 

vertical unit vector in Cartesian space.  The vector rotation Πxyz in three-dimensional space is 
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where Λ, θ, and ϕ are the pitch, roll, and yaw angles produced by the integrated gyroscope 

sensor.  The unit vector uxyz = [1 1 1]T represents the composite of the lateral, longitudinal, and 

vertical directions, respectively.  The notation T represents the transpose vector operator.  

Therefore, the resultant vertical acceleration gz is 

     222
),,,(),,,(),,,(),,( zzxyzzuyzxyzyuxzxyzxuz ugugugg    (54) 

where gxu, gyu, and gzu are the accelerations registered for the individual sensor axis.  The 

subscript x, y, or z represents the relative contributions from that accelerometer component to the 

resultant vertical acceleration.  Incidentally, a similar method produces the resultant 

accelerations in the lateral and longitudinal directions. 

 

Figure 23.  Accelerometer signals and RIF-index profile from a speed bump traversal 
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Figure 23 plots the RIF-index from a data logger secured to the dashboard of a sport 

utility vehicle (SUV), traversing a speed bump at 7 m∙s-1.  The labels gx, gy, and gz are in units of 

g-forces, and they represent the lateral, longitudinal, and vertical accelerations, respectively.  The 

gz signal offset of approximately -1g is a result of the earth’s constant downward gravitational 

force.  The graph artificially offsets the gx signal by +1g to separate it from the other plots on the 

same chart.  The signal processing algorithm must remove all offset from the individual 

accelerometer sensors before producing the resultant vertical acceleration for any sensor 

orientation.  This important step assures that the RIF-transform ignores static g-forces and 

represents only the energy produced from movements. 

The first and second peaks of the RIF-indices in Figure 23 are an estimate of the positions 

of the sensor when the front and rear axles of the vehicle cross the bump, respectively.  For this 

single traversal, the true position of the bump’s center is about five meters ahead of the peak 

RIF-index as indicated by the vertical marker ξ shown at 30 meters.  The offset comes from 

errors in tagging the inertial signal samples with geospatial coordinates.  Chapter 7 provides a 

detailed analysis of this phenomenon and provides a case study. 

5.2.2.  Sensor placement 

Each wheel-assembly contributes a portion of the total inertial energy sensed as described 

by Equations (23) and (24).  The RIF-transform integrates all the roughness energy sensed at its 

position, regardless of the wheelbase producing it.  Consequently, lateral offsets in sensor 

placement will emphasize roughness from the wheel path that is closest.  Sensor installation 

toward the center of an axle would report the mean roughness sensed from each wheel path.  The 

RIF-index would be insensitive to longitudinal variations in sensor placement when the 

resolution window L of the RIF-transform is greater than the maximum wheelbase of the vehicle.  
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A resolution window that is shorter than the wheelbase will emphasize roughness from the axle 

that is closest to the position of the inertial sensor.  Therefore, the recommended sensor 

placement for ride quality characterizations would be toward the center of the wheel path and at 

any longitudinal position in the vehicle for resolution windows that exceed the wheelbase. 

The recommended sensor installation is a rigid mount to the body frame of the vehicle.  

Any cushioning between the sensor and the body frame would result in artificial dampening of 

the vehicle body bounces.  The case studies found that a dashboard mounting mechanism works 

best when using smartphone apps to log the data.  Placement of the smartphone in someone’s 

pocket effectively applies an additional set of mechanical filters to the sensor transfer function 

that could include dampening effects from the seat suspension and the human body.  

Nevertheless, it is likely that intensity variations from poor installations would become 

negligible after averaging the data from thousands of vehicle traversals.  The data from sensors 

in connected vehicles will be significantly more consistent because their placement and 

orientation will be less random across vehicles. 

5.3.  Selecting the Best Inertial Sensor Sample Rate 

To characterize the roughness energy from vehicle vibrations, the Nyquist Theorem 

(Oppenheim and Schaefer 1975) posits that a sensor must sample the inertial sensor response at a 

rate that is at least twice that of the highest mode frequency.   

Table 10.  Estimated quarter-car suspension parameters 

 Parameter Units Sprung Mass Unsprung Mass 

Car Resonant frequency (f) hertz 1.739 11.210 
 Damping Ratio () - 0.282 0.059 

Truck Resonant frequency (f) hertz 1.690 12.160 
 Damping Ratio () - 0.320 0.050 
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It is standard practice for vehicle manufacturers to attenuate the suspension motion 

between 4 and 8 hertz because vibration levels within that frequency range are the most harmful 

to humans (Griffin 1990).  Table 10 lists the quarter-car parameters for a typical car (Kropáč and 

Múčka 2009) and a typical commercial heavy vehicle (Besinger, Cebon and Cole 1995) to 

demonstrate their similarities.  The guidelines result in a sprung-mass resonant frequency 

between 0.9 and 1.5 hertz for all vehicle types (General Motors 1987).  Consequently, the 

unsprung-mass resonance frequencies are typically about 10 times higher than the sprung-mass 

modes (T. D. Gillespie 2004), which is between 9 and 15 hertz. 

5.3.1.  Estimation of quarter-car response 

Fourier transform theory posits that the DFT of an impulse response produces the transfer 

function of the system that it excites (Oppenheim and Schaefer 1975).  The impulse is broadband 

and, therefore, excites all the vibration modes that the system exhibits.  The energy from a 

sufficiently long sequence of inertial samples will approach the broadband characteristics of an 

impulse because of the randomness from micro- and macro-textures of a typical road profile.   

 

 

Figure 24.  Estimation of the quarter-car response coefficients 

 

The DFT of the accelerometer signal samples will produce a transfer function that 

reflects the full-car response to profile roughness.  Hence, it would be possible to estimate the 
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suspension parameters by fitting a linear combination of quarter-car models to the DFT of the 

accelerometer signal samples.  Figure 24 shows the framework used to produce a least squares 

approximation of the quarter-car parameters.  The left portion of the diagram represents the DFT 

of the sensor signal samples {gz}.  The full-car response is a parallel combination of Wz quarter-

car responses.  The individual quarter-car responses are a convolution of the sprung- and 

unsprung-mass system responses as described previously by Equation (42) in Chapter 4.  

Therefore, from Equation (43) the sensor output for a general profile excitation of all Wz wheel-

assemblies is 

 .)()()(
1

][][][][



zW

n
nunznsnz

g

z tztz
g

tg  


 (55) 

Non-impulse profile excitations will produce an unsprung- to sprung-mass response magnitude 

ratio ][nz that is different from unity.  Finally, the sensor performs a second derivative of the 

composite quarter-car responses, applies a constant γg, and then produces the digital output in 

units of g-force.   

The right portion of the diagram of Figure 24 is a frequency domain model of the full-car 

system.  It is a linear combination of all the sprung- and unsprung-mass frequency responses.  

The resultant frequency response is a product of the sensor transfer function and the linear 

combination of quarter-car responses.  The Fourier transform of the vertical acceleration sensed 

from each mass-spring response produces the frequency domain model such that 

  )()()( ],[],[ fZftz nmgnm    (56) 

where the subscripts m = 1 and m = 2 enumerate the sprung-mass (s) and unsprung-mass (u) 

subsystem parameters, respectively.  Hence,  
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.],[][],[ nsznznuz    (57) 

The function )( fg  is the sensor frequency response.  It is the second derivative of the motion 

input signal.  The magnitude of Equation (20) with f 2 yields the impulse response 

magnitude of a quarter-car as 
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Therefore, the magnitudes of the quarter-car impulse responses are dependent only on the 

damping ratios such that 
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Subsequently, the Fourier transform of Equation (55) is Gz(f) where 
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The least squares fit of Equation (60) to the DFT of the sensor output produces estimates for 

each of the quarter-car resonant frequencies f[m,n], the damping ratios ],[ nm , and the coefficients 

of their linear combination ],[ nmz .  The typical vehicle will exhibit similar quarter-car parameters 

because of their design symmetry for maximum performance and traction.  This scenario 

simplifies the least squares fit to a single quarter-car and the estimation of values for the βzs, ρz, 

fs, ζs, fu, and ζu parameters. 
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5.3.2.  Sensor signal and noise energy 

A vehicle traveling a segment of length L at a constant speed v will produce a finite 

time signal with longitudinal energy density
L
gzE .  Sampling the time-limited signal gz(t) 

produces a vector gz[k] with samples at time instants k.  From Parseval’s Theorem (Chen 2004): 
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where Gz[k] is the DFT of gz[k].  At a sample rate of fs both vectors contain NfvL s )/(  samples of 

the signal s[k] plus noise en[k] where gz[k] = s[k] + en[k].  The noise or error sequence, en 

includes quantization noise, electronic noise, and randomness from wheel-path variations.  The 

noise energy N is:   

s

n
f

eEN
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],[    (62) 

where 2
],[ neE  is the expected value of the squared sample-errors or, equivalently, the noise 

power (Skylar 2009) for traversal .  For a given sample rate fs the variance of the signal energy 

among traversals stems from the variance of the noise energy where: 
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This expression shows that increasing the sampling rate decreases the variance of the signal, 

thereby improving the consistency of the sampled signal energy from one traversal to the next. 

5.3.3.  Variance of the RIF-index 

From Equation (29), the RIF-index for a segment of length L, traveled at a mean speed v

is 
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From the theory of error propagation (Ku 1966), the standard deviation of the RIF-index, 
L
R  is: 
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where 
2
v  is the batch variance of the mean speed among traversals.  The covariance of the mean 

speed and the vertical acceleration signal energy is denoted 
2
Ev .  The random variables for mean 

speed and vertical acceleration signal energy are independent; therefore, the covariance factor is 

zero.  Evaluating the partial derivatives indicated in Equation (65) and substituting the noise 

energy factor from Equation (63) yields: 
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where 
L
gzE  and v  are the averages of the vertical acceleration signal energy and the batch mean 

speed among traversals.  Hence, the variance of the RIF-index among traversals increases when 

the variance of the mean traversal speed increases, but decreases when the sample rate increases.  

Incidentally, the signal-to-noise (SNR) ratio is 
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The expression then becomes 
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Therefore, the variance of the RIF-index among traversals diminishes with a proportional 

increase in SNR as expected. 
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5.4.  Case Study for Inertial Sensor Settings 

The following sections estimate parameters for the quarter-car equivalent of two different 

vehicle types.  The first estimate is for a luxury sedan, and the second is for the Inertial Profiler 

van used in the case studies. 

5.4.1.  Vehicle response estimate 

 

Figure 25.  Frequency response estimate of the instrumented passenger car 

Figure 25 shows the ensemble average DFT of signal samples {gz} from 30 traversals 

using a 2007 Toyota Camry LE sedan.  The ensemble average improves the SNR of the DFT and 

increases the accuracy of the estimation.  The dotted line is a least squares fit of the quarter-car 

from Equation (60) with Wz = 1.  The coefficient of determination for this fit was 91.8%.  The 

estimate indicates that the sprung- and unsprung-mass resonant modes are near 2 and 12 hertz, 

respectively, and the corresponding damping ratios of approximately 0.3 and 0.1.  The estimate 

for ρz was 2.4.  The multiple peaks in the DFT response are from harmonics produced when 

tandem quarter-cars cross the same rough spots to create a semi-periodic waveform.  Chapter 7 

provides a simulation and a case study of the tandem quarter-car excitation that explains the 

appearance of harmonics in the response signal. 
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Figure 26.  Frequency response estimate of the Inertial Profiler van 

The ensemble average DFT reduces noise and hence improves the accuracy of the 

estimation.  However, it is still possible to estimate the equivalent quarter-car parameters from 

single traversals.  For example, Figure 26 shows the estimate from a single traversal of the 

Inertial Profile vehicle used to collect the IRI data.  The estimate improves by including 

sufficiently long segments to integrate the excited responses of all the quarter-car response 

modes.  It is apparent that the vibrations of equipment in the Inertial Profile van created 

additional resonant modes near 4 hertz.   

Table 11.  Parameter estimates for the instrumented vehicles 

  Inertial Profiler Van Passenger Vehicle 

Parameter Units Sprung Mass Unsprung Mass Sprung Mass Unsprung Mass 
Resonant frequency (f) hertz 1.4 15.7 1.7 11.5 
Damping ratio () - 0.39 0.05 0.27 0.08 
Response ratio (ρg) - 4.3 2.4 

 

Table 11 summarizes the sprung- and unsprung-mass parameter estimates for the 

vehicles.  The estimated parameters are within the ranges expected for typical vehicles and even 

trucks as indicated in Table 10.  The appendix provides additional quarter-car equivalent 

estimates for the inertial responses of other vehicles used in the various case studies of this work. 
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5.4.2.  Point of diminishing returns 

Chapter 3 described the case study that compared roughness for the three Bolley Drive 

segments by setting the accelerometer sample rate to the highest available frequency of 93 hertz.  

This case study collected inertial samples gz[k] at the seven additional sample rates of 1, 2, 4, 8, 

16, 32, and 64 hertz with 30 traversals for each.   

 

Figure 27.  EAR-index convergence with sample rate 

 

 

Figure 28.  MOE declines with sample rate 

Figure 27 plots the EAR-indices from 28 traversals, with two outlier datasets removed.  

For all sample rates, the relative differences in roughness for each segment corresponded to 
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roughness differences that the driver perceived.  As expected, the roughness measure stabilized 

as the sample rate increased beyond 32 hertz, which was more than twice the frequency of the 

estimated unsprung-mass resonance of the vehicle. 

Figure 28 plots the MOE95 as a percentage of the mean RIF-index.  This implies that 

equal magnitude RIF-index variations will be a larger percentage of lower EAR-indices than for 

higher ones.  For example, the standard deviation of the RIF-index is approximately 0.05 g/meter 

for each of the road segments sampled at 32 hertz.  However, their corresponding MOE95 values 

are 10% for the smooth segment with an EAR-index of 0.16 g/meter, but only 4% for the rail-

grade (tracks) segment that produces a much higher EAR-index of 0.57 g/meter. 

 

 

Figure 29.  MOE declines with traversal volume 

As anticipated from Equation (66), the MOE95 for all roughness categories declined as 

the sample rate increased.  Increasing the sample rate beyond twice the dominant mode 

frequency provided diminishing returns in MOE95 reduction.  The standard deviation of the RIF-

indices measured from all sample rate datasets was within 5% of the theoretical value predicted 
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by Equation (66).  The batch mean of the traversal speeds v  and its standard deviation across 

28 traversals was 7.15 ms-1 and 0.45 ms-1, respectively. 

5.4.3.  Accelerometer sample rate selection 

From the central-limit-theorem (Papoulis 1991) and Equation (38), the variance of the 

RIF-indices diminishes with increasing traversals.  Figure 29 plots the MOE95 as a function of 

the traversal volume across a 200-meter section of Bolley Drive that includes all three segments.  

For sample rates of at least 64 hertz, the MOE95 drops below 5% after only six traversals.  In 

general, as the traversal volume increased, the MOE diminished more slowly for higher sample 

rates than for the lower sample rates.  This is because a higher sample rate reduces the noise 

energy, per Equation (62), thereby improving the signal consistency from one traversal to the 

next.  The trend in error reduction with traversal volume is an inverse power function with 

exponent -0.51, which is approximately the inverse square root function of Equation (38). 

5.5.  Selecting the Best GPS Receiver Settings 

Depending on the size and complexity of an anomaly, its position at some distance p

from a reference point will produce one or more maxima in the accelerometer signal.  This 

analysis introduces a small bump into the wheel path at a known position to simulate a simple 

anomaly that produces one peak in the vertical acceleration signal.  The position tagging system 

of the sensor integration platform associates each sample of the accelerometer signal with 

geospatial coordinates obtained from the associated GPS receiver.  The position tag p̂  of the 

first signal peak is an estimate of the true position p  of the bump’s peak.  The estimate includes 

distance biases such that 
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   .ˆ
GPSsbiDSPpp    (69) 

This expression groups the biases into three categories:  signal processing, vehicle response, and 

GPS receiver related.  The position bias from digital signal processing (DSP) is the expected 

delay DSP  from digital filtering.   

The accelerometer sample rate is generally several times greater than the GPS sample 

rate.  Hence, the data processing algorithm interpolates the path distance between GPS position 

updates.  This approach fills in path distance gaps that result when the GPS receiver loses line-

of-sight conditions, for example, when traveling through a tunnel.  Consequently, there is an 

error i  in locating a peak within the interpolation sub-interval. 

 

Figure 30.  Accelerometer signal peaks relative to the bump peak at different vehicle speeds 

The vehicle related bias b  results from the combined suspension and accelerometer 

frequency responses.  These responses are essentially filters that delay the response from a bump 

excitation or forcing function.  The GPS receiver related biases are its average longitudinal 

position s  of installation in the vehicle and the average position tag offset GPS .  The RIF-

transform has an expected signal processing related bias.  The vehicle and sensor related biases 

vary randomly across vehicle manufacturers.   
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After traversing the isolated bump, the accelerometer signal output contains a first peak 

followed by transient oscillations from the vehicle body bounces as shown in Figure 30.  Plots of 

the simulated inertial signal indicate the g-forces produced from the quarter-car responses at 

three different speeds.  The next sections develop the error models in terms of the various signal-

processing, vehicle, and sensor parameters.   

5.5.1.  Peak position delay 

The modified radial basis function defined previously in Chapter 3 produced the 

simulated 5-cm-high bump plotted in Figure 30.  The composite frequency response of the 

vehicle and the accelerometer transfer functions produce the first signal peak.  The signal peak 

offset from the position of the bump’s peak is a function of the phase response of the composite 

filter.  Therefore, the peak delay increases proportionally with traversal speed as the frequency 

composition of the bump shifts toward higher frequencies.   

The vertical acceleration produced by traversing the bump is the forcing function input to 

the composite filter representation of the vehicle and sensor.  This simulated response uses the 

quarter-car suspension parameters estimated for the 2007 Toyota Camry LE used in the case 

studies.  The results indicate that for the simulated suspension parameters, the first peak will 

offset at a rate that is approximately 1.5 cm per m·s-1 increase in longitudinal velocity.  

Therefore, the average offset b  of the first signal peak from the true position of the bump’s 

peak is 

vb  015.0  (70) 

The corresponding variance 2
b  of the first peak offset is 

  222 015.0 vb    (71) 
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The case study described later compares the relative contribution of this uncertainty to the 

overall precision of bump localization. 

5.5.2.  Digital signal processing related errors 

The simulated vehicle response does not contain any modal responses or noisy vibrations 

beyond the quarter-car sprung-mass mode.  Therefore, analysis of the case study data will apply 

a low pass finite impulse response (FIR) filter before identifying the position of the first peak in 

the signal after a bump traversal.  The FIR filter delay DSP  is 

A

FIRDSP
f

v
N  (72) 

where NFIR is the number of FIR filter taps and Af  is the average sample rate, which is the same 

as the inertial sensor sample rate. 

The corresponding variance of the DSP filter delay 
2
DSP  is 
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where v  and fA  are the standard deviations of the vehicle speed and the inertial sensor sample 

rate, respectively.  The covariance factors are zero because the accelerometer sample rate is 

independent of the vehicle’s speed.  The variance in accelerometer sample rate is a function of 

the signal processor’s clock rate, which is negligibly small for most modern processors. 

5.5.3.  Sample interval related errors 

The average sample interval is Av v    where the average sample period of the 

accelerometer signal is A .  Hence, the error in estimating the position of a signal peak within the 
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sample interval will be at most
v .  If the distribution of the peak position is uniform within the 

sample interval, then the average error is 

A
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v
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Therefore, the variance 
2
i  is 
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where the covariance factors are zero because the parameters are independent. 

5.5.4.  Sensor position 

For ride quality monitoring applications, the inertial sensor position would be relative to 

the first axle that crosses the anomaly.  Hence, distances behind the first axle are negative with 

respect to the velocity vector.  When using a smartphone app to simulate a connected vehicle, the 

device would likely remain within reach of the driver.  Hence, for an average arm span of 1.5 

meters and an average operator position of 2 meters behind the first axle, the sensor’s lateral 

position could range from -0.5 to -3.5 meters.  If the distribution is normal then approximately 

six standard deviations will cover the entire range of reach such that the average distance s  is 

-2.0 meters.  Hence, one standard deviation σεs must be approximately (-0.5 + 3.5)/6 = 0.5 

meters.  Eventually, connected vehicle applications are likely to have embedded inertial sensors 

at a standard position relative to the first axle that would minimize the position variance.  

However, this analysis will use the worst-case sensor position variance for a smartphone 

embodiment. 
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5.5.5.  GPS tagging errors 

The geospatial position tag GPS  reported by the GPS receiver and its associated 

embedded system consists of two error components such that the average position bias is 

dlagdGPSGPS    (76) 

The mean geospatial position bias is dGPS  and the mean position tag latency is dlag .  The 

distribution of the geospatial position uncertainty from trilateration is Gaussian with zero mean 

(Gade 2010).  Hence, the position bias becomes dlagGPS   .   

From Equation (76), the total variance in geospatial position tagging 2
GPS  is 

222
dlagdGPSGPS    (77) 

The variance 
2
dGPS  of the geospatial position from errors in trilateration can be substantial 

because of random changes in atmospheric effects, multipath propagation, and GPS receiver 

performance.  The variance also increases when the GPS receiver loses line-of-sight conditions 

with the satellites.  GPS system administrators expect that the 95% confidence interval for 

horizontal position precision under direct line-of-sight conditions will be about 6.7 meters.  

However, this uncertainty could increase to more than 10 meters when multi-path reflections 

from buildings, large trees, and other tall structures distort the weak satellite signals. 

System designers seldom report on the latency in position tagging dlag  or its variance 

2
dlag  because these parameters are highly dependent on the architecture and implementation 

details of a GPS receiver and its embedded host platform.  Manufacturers generally retain such 

information as a trade secret.  Some implementations provide a so-called “pulse-per-second” 

signal output that embedded platforms can use to estimate and remove some of the bias, although 
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not necessarily all of it (Solomon, Wang and Rizos 2011).  The equivalent distance lag depends 

on the velocity of the vehicle such that 

vlagdlag    (78) 

The average position tagging latency lag  accumulates from delays through a cascade of 

processing blocks on the GPS electronic chip and the embedded platform.  From Equation (78), 

the variance 
2
dlag  of the position tagging latency is 

   222
vlaglagdlag v     (79) 

where lag  is the tag latency standard deviation.  The typical cascade of GPS processing blocks 

include hardware that receives and demodulates the satellite signals, synchronize carrier 

frequencies, measure the Doppler shift of the propagated radio wave, extract and decode satellite 

timing information, calculate the receiver position using trilateration techniques, and transfer the 

geospatial coordinates to the application host platform.   

Satellites transmit their position and clock time once every six seconds.  To provide 

position updates at a much faster rate, GPS receiver manufacturers incorporate a variety of 

techniques such as phase-locked-loops (PLLs) and Kalman Filters (USDHS 1996).  Hence, a 

faster update rate does not necessarily improve the accuracy of the position estimate based on 

trilateration of the satellite’s reported position and speed, but it does reduce the variability in 

position estimates. 

The resulting latency in position tagging is the average time difference between locking 

on to at least four satellite signals and recording the position estimate from trilateration in 

application memory.  Common GPS receivers in smartphones can update position estimates at a 

maximum rate of one hertz (Apple Inc. 2014) but require time for the satellite signals to 
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propagate through the various processing stages of the cascaded logic.  GPS receivers that are 

more expensive can produce an estimate of position updates at rates higher than 10 hertz by 

implementing multiple GPS receiver channels and integrating additional sensors such as 

gyroscopes, accelerometers, and magnetometers to extend the Kalman Filter’s predictive 

properties (O'Kane and Ringwood 2012).  The tagging latency standard deviation lag  is a 

function of time variations in the overall GPS signal processing chain.  The asynchronous 

operation between the clocking of the application processor and the GPS receiver leads to 

variations in the geospatial coordinate “freshness” and fetch-to-tag times.  The former is the time 

difference between coordinate deposit and retrieval from the output register of the GPS receiver.  

The fetch-to-tag time depends on the implementation of the application on the host platform and 

the number of active software threads that could affect the duration of an interrupt service.  The 

freshness variance is likely to dominate when the GPS update interval is large relative to 

variations in the process duration of the interrupt service, for example, seconds versus tens of 

milliseconds.  Hence, for a normally distributed coordinate freshness, the standard deviation will 

be approximately one-sixth of the GPS update interval GPST  where 

6GPSlag T   (80) 

That is, the interval between nominal GPS updates is approximately six standard deviations.  

Substituting Equation (80) into Equation (79) and solving for the distance spread in tagging 

latency yields 

   22
6 vlagGPSdlag Tv     (81) 

Hence, the distance spread from GPS tagging latency increases as the variance in vehicle 

velocity and the length of the GPS update interval increases. 
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5.5.6.  Model for GPS update rate selection 

From Equation (69) the position bias ~ is a random variable where the average error is 

       dlagsbiDSPGPSsbiDSPpp   ~ˆ  (82) 

Hence, the variance of the peak position error 
2
  is the sum of the variances of the individual 

uncertainties such that 

        222222222222
dlagdGPSsbiDSPGPSsbiDSP     (83) 

In scenarios where the GPS trilateration error dominates, the update rate selection should be such 

that the variance in position tagging remains smaller than the expected GPS position variance or 

22
dGPSdlag    (84) 

Substituting Equation (81) into Equation (84) and solving for the mean update interval yields 

 226
vlagdGPSGPS

v
T    (85) 

This result is intuitive because the application should decrease the update interval to 

accommodate larger variations in vehicle speed or smaller geospatial position spreads from 

trilateration.  The next section quantifies this update rate for the case study application. 

5.6.  Case Study for GPS Receiver Selection or Adaptation 

Isolated road bumps produce an easily detectable first peak response in the actual vertical 

acceleration signal.  One of the main objectives of the case study is to characterize the 

distribution of the first peak position tags relative to the actual position of the bump along the 

traversal path.  The selected bumps were a speed bump on a park road, a raised concrete-to-

asphalt pavement joint on an airport access road, and an uneven rail grade crossing a local road.   
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Figure 31.  Bumps traversed for this case study 

Figure 31 shows street level views of the isolated bumps.  Each bump interrupted 

relatively smooth, 30-meter road segments on either side to produce the localized roughness.  

The areas of uneven pavement joints and the rail grade crossing produced multiple signal peaks.  

However, the peak detection algorithm and selected thresholds indicated the position of only the 

first significant peak for each dataset.  The technique to obtain and validate the coordinates of 

each bump involved resting the GPS receiver on top of them, computing the mean position 

reported, and then ensuring their agreement with coordinates reported in a local geographic 

information systems (GIS) database (North Dakota State Government 2014). 

The park bump experiment incorporated a 2001 Ford Explorer SUV to collect inertial and 

GPS data at three different speeds.  The airport access road experiments used a 2007 Subaru 

Legacy sedan to collect the eastbound (EB) and westbound (WB) traversal datasets.  Traversals 

across the rail grade crossing used a 2007 Toyota Camry LE sedan to collect data.  The 

smartphone data logging application (app) ran on an iPhone 4S with iOS® Version 7.1 and 8 GB 

memory.  The app collected and stored the GPS coordinate updates, sensor orientation, vehicle 

velocity, the accelerometer samples, and a timestamp.  The analysis excluded two data logs from 

the 30 traversals in each of the six datasets to remove outlier GPS position tags. 
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5.6.1.  Distribution of first peak position 

 

Figure 32.  Accelerometer signal for two park bump traversals 

Table 12.  Parameters derived from the data of the six case studies 

 
Park Bump Airport Road Bump Tracks 

Parameters 2.5 m·s-1 5 m·s-1 7 m·s-1 EB WB NB 

Batch mean speed, v (m·s-1) 2.552 4.983 7.187 6.769 6.715 6.685 

Batch mean spread, v (m·s-1) 0.204 0.570 0.428 0.428 0.251 0.416 

Suspension delay,
b (m) 0.038 0.075 0.108 0.102 0.101 0.100 

Suspension delay, b (m) 0.003 0.009 0.006 0.006 0.004 0.006 

DSP latency mean,
DSP (m) 0.246 0.481 0.693 0.654 0.648 0.649 

DSP latency spread,
DSP (m) 0.020 0.055 0.041 0.041 0.024 0.040 

Interpolation, i (m) 0.014 0.027 0.038 0.036 0.036 0.036 

Interpolation, i (m) 0.001 0.003 0.002 0.002 0.001 0.002 

Sensor position,
s (m) -0.920 -0.920 -0.920 -0.710 -0.710 -0.710 

Gz sample rate, fA (hertz) 93.227 93.277 93.341 93.169 93.198 92.669 

Gz rate spread, fA (hertz) 0.097 0.070 0.101 0.073 0.103 0.077 

GPS update rate,
GPST

(s) 1.009 1.004 0.993 0.986 0.988 1.015 

GPS update spread,
lag (s) 0.168 0.167 0.166 0.164 0.165 0.169 

GPS tag spread, dlag (m) 0.460 1.011 1.212 1.162 1.109 1.230 

First peak offset,~ (m) -2.712 -5.337 -3.944 -5.227 -2.334 -7.708 

GPS tag lag, lag (m) -2.091 -4.999 -3.864 -5.309 -2.409 -7.784 

GPS tag lag, lag (s) -0.819 -1.003 -0.538 -0.784 -0.359 -1.164 

First peak spread,  (m) 5.013 4.361 3.349 2.637 2.010 2.294 

GPS spread,
dGPS (m) 4.992 4.242 3.122 2.367 1.676 1.936 
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Figure 33.  Distribution of first peak distribution and least squares fit 

Table 12 summarizes the signal-processing, vehicle, and GPS receiver parameters 

derived for the six case studies.  Figure 32 shows the FIR filtered accelerometer signal output 
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from two traversals of the park bump case study with traversal speeds of approximately 7 m·s-1.  

Figure 33 shows histograms of the first peak position tags for each case study. 

Processing the data from all case studies required developing some custom software to 

determine the position tag of the first peak in the inertial signal.  The algorithm located the first 

peak that exceeded a threshold Gσ set to about two standard deviations above the signal mean.   

Table 13.  Best fit parameters for distributions of the first peak position 

  Park Bump Airport Road Bump Tracks 

Parameters 2.5 m·s-1 5 m·s-1 7 m·s-1 EB WB NB 

Gaussian 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 1.511 2.152 2.075 0.873 1.004 0.347 

Significance α (%) 46.986 34.103 35.431 64.628 60.527 84.062 

Amplitude 141.611 122.735 107.874 303.516 69.35 67.407 

Mean 28.173 25.67 25.784 18.684 27.345 25.169 

Standard Dev. 6.467 4.665 3.14 5.238 2.838 2.345 

Student-t 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 3.071 3.574 1.534 1.064 2.626 2.135 

Significance α (%) 21.534 16.744 46.438 58.745 26.901 34.391 

Amplitude 166.519 143.144 120.988 130.934 81.315 77.353 

Mean 28.59 26.102 25.542 23.254 27.262 25.191 

Standard Dev. 6.415 4.658 2.839 2.661 2.835 2.255 

Logistic 
      

df 2 2 2 2 2 2 

χ2 , α = 5% 5.991 5.991 5.991 5.991 5.991 5.991 

χ2 Data 1.73 2.216 0.576 0.561 1.317 0.701 

Significance α (%) 42.111 33.026 74.974 75.53 51.763 70.441 

Amplitude 148.791 128.291 111.262 171.415 72.27 69.95 

Mean 28.373 25.841 25.703 21.741 27.305 25.164 

Scale 4.173 3.016 1.968 2.405 1.813 1.488 

 

The plots of Figure 32 indicate the path distance tags of the first peaks from traversals 1 

and 2 at the distance markers εp1 and εp2, respectively.  These positions are located at -6.2 and 0.1 
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meters relative to the actual position of the bump’s peak at 30 meters.  The position tags of the 

first peaks of the remaining 26 traversals randomly appear before or after the actual bump 

position.  Table 12 indicates that the average position tag offset of the first peak ~  from the true 

position of the bump’s peak and the average spread   across all cases was -4.54 and 3.28 

meters, respectively.  The histogram plots of Figure 33 provide a visual indication of the average 

delay and spreads of the position tags for the inertial signal peak.  The number of bins for each 

histogram is proportional to the typical guideline, which is the square root of the number of 

traversals available.  A least squares fit of the Gaussian, Student-t, and logistic distributions 

superimpose each histogram.  The fit for these three distributions are similar for all datasets.   

Table 13 summarizes the parameters of the distribution fit and the associated chi-squared 

(χ2) values for the hypothesis that the data are accordingly distributed.  The table highlights the 

largest significance levels in bold font for each case study.  The chi-squared method cannot reject 

the hypothesis that the distributions of the first peak follow the tested distributions.  The mean 

distance lag persists across all datasets.  These results promote a high level of confidence that the 

position tags distribute normally and that the mean value adequately characterize the distance lag 

in position tagging.  The strong agreement with classic distributions indicates that the MOE for 

the mean distance lag will diminish with higher levels of vehicle traversals.  The next sections 

evaluate the signal-processing, vehicle, and GPS receiver related biases and their spreads. 

5.6.2.  Digital signal processing related errors 

Equations (72) and (73)  provide the mean DSP filter delay DSP  and its standard 

deviation DSP .  The average delay and associated spread across all cases were 56 cm and 4 cm, 

respectively.  Equation (74) provides the bias i  and (75) provides the uncertainty i  in peak 
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position estimation given the sample rate of the accelerometer signal.  The average sample rate 

was about 93 hertz, which was the highest rate practically achieved with the iOS data logger app.  

Across all cases, the average error bias and spread of the peak position in the signal were 31 and 

2 millimeters, respectively. 

5.6.3.  Vehicle response related errors 

For each case study, the first two rows of Table 12 list the batch means v and the 

standard deviations v  of the average traversal speeds, respectively.  The average speed 

variability across all case studies was 0.38 m·s-1 (less than 1 mph).  Equations (70) and (71) 

provide the average response delay b  and delay spread b , respectively, of the vehicle 

suspension relative to the first peak position.  The average values across all case studies were 87 

mm and 6 mm respectively. 

5.6.4.  Sensor position bias 

The average bias in sensor position s  across all case studies was -0.82 meters.  The 

driver of each vehicle fixed the sensor flat onto the dashboard for all traversals of each case 

study.  Therefore, the position variance within each traversal set was zero.  The three-

dimensional rotation model of Equation (54) dynamically accounted for variations in the sensor 

orientation based on output from the integrated gyroscope of the smartphone to compute a 

resultant vertical acceleration from the three-axis accelerometer. 

5.6.5.  Geospatial position tag latency 

Removing the expected biases from the mean of the first peak position bias provides an 

improved estimate for the position tagging latency as follows: 



104 
 

 sbiDSPdlag   ~
 (86) 

The residual offset was an average distance lag of -4.41 meters from tagging latency across all 

case studies.  From Equation (78), the equivalent tagging latency was 0.78 seconds.  Equation 

(81) provides the average spread in geospatial position tagging dlag   of 1.03 meters across all 

traversals.     

5.6.6.  Geospatial position spread 

The geospatial position spread from trilateration errors is the residual variance after 

removing all the other quantifiable variances as follows: 

 2222222
dlagsbiDSPdGPS     (87) 

The resultant is the geospatial position spread dGPS .  Its average value was 3.056 meters across 

all traversals.  This uncertainty is consistent with the expected MOE for conventional GPS 

receivers (USDHS 1996).  Systems that provide higher precision, such as differential GPS, use 

additional ground-based receivers at reference positions to derive and relay correction 

parameters that could yield sub-meter level precision in typical conditions, and even centimeter 

level precision in environments with less multi-path signal propagation.  

5.6.7.  Differential geospatial update spread 

The position update intervals for a vehicle traveling at constant speed must be 

equidistant.  Therefore, the difference in position update intervals for an error free system must 

be zero.  The GPS receivers used for these case studies incorporate linear prediction using 

Kalman filtering to estimate position updates, based on the longitudinal velocity, longitudinal 

acceleration, and confidence intervals from past predictions.  Therefore, the expected distribution 

of differential distance updates is zero mean and the variance will reflect variations in vehicle 
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speed and geospatial position tagging.  The latter includes variances in position tagging latencies 

and the dilution of precision in geospatial position fixes from trilateration errors. 

The embedded system must process interrupt requests more quickly for a faster GPS 

update rate setting.  Therefore, the spread in position tag freshness must decrease accordingly.  

The vehicle speed is practically constant across sub-second intervals.  Therefore, the minor speed 

variations across these short intervals will contribute negligibly to the differential distance 

spread.  Given these considerations, the expected spread in differential distance updates will be 

lower for shorter GPS update intervals. 

Table 14.  Parameters measured for the intra-traversal geospatial position updates 

 
Park Bump Tracks MnROAD 

Parameters 2.5 m·s-1 5 m·s-1 7 m·s-1 NB SB Cell 37 

Traversals,
vN  28 28 28 7 5 6 

GPS update rate,
GPST

 (s) 1.009 1.004 0.993 0.500 0.500 0.499 

GPS tag spread, dlag  (m) 0.460 1.011 1.212 1.997 1.527 1.383 

Differential update,
dn (m) 1.760 2.975 2.904 0.302 0.282 0.304 

Differential update, n  (s) 0.690 0.597 0.404 0.038 0.044 0.018 

First peak spread,  (m) 5.013 4.361 3.349 3.590 0.740 3.389 

Ratio
22
 dn  35.1% 68.2% 86.7% 8.4% 38.1% 9.0% 

GPS tag latency, lag (s) -0.819 -1.003 -0.538 -1.368 -1.914 -0.833 

 

Table 14 summarizes the differential update spreads dn  for the park bump case studies 

at approximately one-second update intervals, and three others conducted with a more expensive 

GPS receiver capable of updating at approximately twice the rate, or equivalently approximately 

every half a second.  The more expensive GPS receiver was available only for a limited time to 

collect data for a few traversals.  Data collection included both northbound (NB) and southbound 

(SB) directions of the local road containing the rail grade crossing, and for Cell 37 of the 
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MnROAD facility (Bridgelall 2014).  The data from each traversal contained thousands of 

differential distance updates to produce statistically significant measures.  Therefore, it was 

unnecessary to include the data from all available traversals, but doing so nevertheless validated 

the consistency of the device operation across the available traversal sets. 

The average of the differential distance update spread for the longer and shorter update 

intervals were 2.5 and 0.3 meters, respectively, thus supporting the theory.  The equivalent time 

spreads n   were 600 and 30 milliseconds for the lower and higher update rates, respectively.  

The significantly smaller time spread of the higher performance receiver also reflects its greater 

consistency in processing interrupt service requests from the embedded GPS receiver.   

The differential distance spread for the 2-hertz update rate cases were very consistent as 

highlighted in bold font in the table.  The ratio of the differential distance update spread to the 

spread in first peak position 22
 dn  is an indicator of its relative contribution to the overall 

spread in peak position tagging.  The average ratio of differential distance update spread to first 

peak spread for the 1-hertz update cases was 63.3%, as compared with 18.5% for the 2-hertz 

update rate cases.  The ratio for the SB traversal appears uncharacteristically high.  However, this 

was because of the relatively low overall spread in position tagging (0.74 meters), even with only 

five traversals.   

This experiment and the results validate the theory that, if affordable, increasing the GPS 

update rate will improve the geospatial coordinate freshness and reduce variations in the 

interrupt process time to minimize the overall spread in position tagging latency.  The average 

latency bias, however, will not necessarily decrease and may even increase because higher 

quality GPS receivers tend to incorporate longer cascades of processing blocks to improve the 

navigational performance.  Although some manufacturers of high performance GPS receivers 
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provide an additional signal (pulse-per-second) to aid in removing some of the latency in 

position tagging, most consumer-based platforms do not necessarily utilize that signal (Android 

Open Source Project 2014).  As indicated on the last row of Table 14, the average latency in 

position tagging for the 1 hertz and 2 hertz update rate cases were -0.8 and -1.4 seconds, 

respectively.  This indicates that, as expected, the higher update rate GPS receiver incorporated a 

longer cascade of processing blocks to enhance the precision of position updates. 

5.6.8.  Relative error contribution 

Table 15.  Summary of relative error contributions 

 
Park Bump Airport Road Bump Tracks 

Parameters 2.5 m·s-1 5 m·s-1 7 m·s-1 EB WB NB 

First peak spread,   (m) 5.013 4.361 3.349 2.637 2.010 2.294 

Ratio,
22
  b  0.000% 0.000% 0.000% 0.001% 0.000% 0.001% 

Ratio,
22
  DSP  0.002% 0.016% 0.015% 0.024% 0.014% 0.030% 

Ratio,
22
  i  0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

Ratio,
22
 dlag  0.842% 5.374% 13.097% 19.417% 30.442% 28.749% 

Ratio,
22
dGPS  99.164% 94.617% 86.903% 80.571% 69.527% 71.224% 

 

Table 15 summarizes the relative contribution of the individual error factors to the overall 

spread in geospatial position tagging.  Variances in position tagging latency contributed 16.32% 

on average to the overall uncertainty in peak position while geospatial position spread from 

errors in trilateration contributed 83.668% of the uncertainty.  Hence, for these case studies, the 

GPS trilateration errors were dominant.  Applications have no control over the atmospheric and 

environmental factors that causes trilateration errors.  Hence, to assure that no other error sources 

become dominant, the recommended GPS update interval for the case studies was at most 2.53 

seconds.  This value results from substituting the expected average GPS geospatial position 
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spread and position tagging latency for these cases, and a mean speed and standard deviation of 

7 m·s-1 and 1 m·s-1, respectively, into Equation (85).  Unlike the geospatial position spread from 

GPS trilateration, the tag latency error spread increases with vehicle speed.  Hence, scanning for 

anomalies at highway speeds will increase the minimum update rate requirement.  For example, 

at the worst-case speed of 35 m·s-1 and a speed variability of 1 m·s-1, the recommended update 

interval is 0.5 second. 

Henceforth, to minimize energy consumption, data logging, and data transmission 

requirements, the GPS update rate may adapt in accordance with the model of Equation (85).  

Adaptation requires knowledge of the expected maximum geospatial error, the average position 

tagging latency of the sensor, the average traversal speed, and the expected velocity variations of 

the vehicle.  This model and update rate recommendation is broadly applicable to applications 

that tag data from any sensor type with position coordinates derived from GPS receivers. 

5.7.  Summary 

Sensor orientation and placement affects the signal quality.  Applications that select a 

fixed sensor position and a rigid mount to some part of the vehicle’s body will produce the best 

sensitivity to vehicle axle- and body-bounces.  The sensor integrates roughness contributions 

from all wheel assemblies in proportion to its relative distance from them.  A lateral position that 

is equidistant to each wheel path will average the roughness from each.  An RIF-transform 

spatial resolution window that exceeds the wheelbase will desensitize the longitudinal position of 

the sensor.  RIF-transforms that automatically produce and use the resultant vertical acceleration 

by accounting for the sensor orientation will produce the best quality signal for post-processing. 

The EAR index derived from a fixed sample rate for the inertial sensors across all vehicle 

types will provide a more consistent characterization of ride quality.  The minimum sample rate 
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should be at least twice the highest resonant mode of all vehicles traversing the segment.  

Frequency domain analysis of the inertial signal samples can provide a reliable estimate for the 

model parameters of a vehicle suspension system when their equivalent quarter-car model 

parameters are unknown.  Given that standard design practices attenuate suspension responses to 

excitation frequencies above approximately 32 hertz, the sample rate recommended for 

standardization is 64 hertz. 

The case study demonstrated that the margin-of-error of the RIF-index diminishes rapidly 

as the sample rate approaches this recommended rate and that further decreases beyond those 

rates provide diminishing returns.  Given a sample rate and speed variance, the RIF-index 

variability diminishes as the inverse square root of the traversal volume.  Therefore, the traversal 

volume needed for a desired level of EAR-index accuracy is proportional to the square of its 

standard deviation. 

Selecting the maximum GPS update rate available will generally increase the receiver’s 

power consumption and add to the data memory and wireless bandwidth requirements of the 

overall application.  Conversely, a slower update rate could result in impractically large errors of 

anomaly localization, particularly when traveling at highway speeds.  This chapter developed a 

model of the geospatial position tagging error for sensor integration applications and 

characterized the relative contributions from biases and variations in signal-processing, vehicle, 

and sensor parameters.  The model selects a minimum update rate to minimize the overall 

localization error when expected values are available for delays in vehicle suspension responses 

and the processing latencies. 

Specific case studies in roadway anomaly position tagging validated the overall model 

and quantified the achievable accuracy and precision under nominal conditions.  Chi-squared 
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testing of the position tagging distribution for isolated road bumps showed excellent agreement 

with three classic distributions, namely the Gaussian, Student-t, and logistic.  The data from 

vehicle traversals in six case studies provided a high level of confidence that the margin-of-error 

will diminish with larger vehicle traversal volume.  For the scenario of traveling on local roads at 

the relatively low average speed and standard deviation of 7 m·s-1 and 1 m·s-1, respectively, the 

maximum recommended update interval was about 2.5 seconds.  However, when monitoring for 

anomalies at maximum highway speeds, under typical conditions of satellite visibility and 

multipath, the recommended update interval was at most 0.5 seconds. 

In general, sensor integration applications that tag sensed data with the geospatial 

coordinates of the sensor’s position can benefit from an adaptive selection of the GPS update rate 

based on travel speed.  Future work will examine the utility of the error models for applications 

involving remote sensing using unmanned aircraft systems (UAS). 
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CHAPTER 6.  PERFORMANCE IN DETERIORATION FORECASTING 

Transportation agencies rely on models to predict when pavements will deteriorate to an 

index of roughness that would trigger a maintenance action.  The accuracy and precision of such 

forecasts are directly proportional to the frequency of monitoring.  Roughness indices derived 

from connected vehicle data will enable transformational gains in both the accuracy and 

precision of deterioration forecasts because of the very high data volume and update rates 

achievable.  This chapter develops precision bounds for the variance of the RIF-index and 

includes a case study to characterize performance as a function of variances in vehicle 

suspension and sensor parameters.  The error bounds result from an analysis of the direct 

relationship between the inertial sensor signal and the vehicle mechanical responses. 

6.1.  Literature Review of Deterioration Forecasting Using Ride Indices 

This is the first study to relate statistics of the RIF-indices to the precision of 

deterioration forecasts in connected vehicle environments (Bridgelall 2014).  Consequently, 

literature on this specific method is limited.  However, a significant volume of related work 

investigates the performance of the IRI and other measures of roughness as an explanatory 

variable in deterioration forecasting models.  Related efforts calibrate the output of inertial 

sensor data from single vehicle traversals to estimate the IRI (Nagayama, et al. 2013) or attempt 

to train a neural network to produce an IRI estimate from accelerometer data (Dawkins, et al. 

2011).   

Numerous models of pavement deterioration forecasting exist.  The most common are 

empirical regression of the IRI because they provide the greatest practical value and abstract the 

complexity of the underlying phenomena (Lu and Tolliver 2012).  The scope of this chapter is to 
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study the utility of the RIF-index as an alternative to the IRI by applying it as an explanatory 

variable to a common regression model. 

6.2.  Sensor Output Variance 

Models of pavement deterioration forecasting that use roughness indices as independent 

variables will exhibit uncertainties from the combined variances of those variables.  Hence, a 

model that uses the EAR-index will inherit its statistics.  Consequently, the precision of the 

forecasts will improve in proportion to the reduction in MOE of the EAR-index as the available 

traversal volume increases. 

From Equation (64), the RIF-index is proportional to the product of the average traversal 

speed and the linear energy density of the inertial sensor signal energy.  As described in 

Chapter 5, the signal energy from all wavelengths zE  would be the response to an impulse such 

that 
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For an impulse excitation ][n = -1 and the expression becomes 
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Using Fubini’s theorem (Thomas and Finney 1995) to interchange the integration and summation 

operations yields 
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Substituting the closed-form solutions for the integration from Equations (45) and (46) yields 
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From the theory of error propagation (Ku 1966), the acceleration energy variance is 
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where 
2

],[ nm ,
2

],[ nm  and 
2

],[ nm  are the variances of the mode resonant frequencies, damping 

ratios, and their covariance factors, respectively.  The latter is zero because the resonant 

frequencies and damping ratios are statistically independent.  Evaluating the partial derivatives 

indicated in Equation (93) and substituting the results yields 
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From Equation (64), the maximum RIF-index 

vR  from an impulse excitation is 




zv EvR   (95) 

and from Equation (65) the standard deviation is 
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The factors that account for the RIF-index variability are evident in this result.  Intuitively, the 

expression indicates that when elevation profiles and vehicles are identical zvE = 0 and the 
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variance of the RIF-index 
2
R  is directly proportional to the average signal energy and the 

variance of the vehicle’s speed.  On the other hand, if the velocity is constant for all vehicle 

traversals such that 02 v  then the standard deviation of the RIF-index is directly proportional 

to the average vehicle speed and the variance of the energy of the inertial signal relative to its 

average value. 

6.3.  Deterioration Forecasting Application 

Research demonstrates that long-term evaluation of the IRI follows the exponential form 

(Haider, et al. 2010) 

 tt L exp)( 0  (97) 

where 0 and (t) are respectively the initial and future values of ride-indices at time t.  The 

calibration parameter L adjusts to best fit the historical ride-index measured for the segment of 

length L.  Therefore, the expected time to reach a future index   is 
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The time window uncertainty or standard deviation T  of the forecasted roughness index is 
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where   is the precision of the future roughness index  .   

6.3.1.  Error bound of the RIF-index 

When using the RIF-index, an impulse excitation produces the bound of the ratio  

where 
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Substituting Equation (95) and (96) yields 
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This result is intuitive.  It states that the maximum RIF-index spread as a percentage of its mean 

value is directly proportional to the sum of the respective spread proportions for the speed and 

inertial signal energy. 

6.3.2.  Precision as a function of traversal volume 

The time MOE, T is 
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where jP

wvN ][ is the traversal volume defined in Equation (31), and 2/1 q  is the standard normal 

quantile for a (1-)% confidence interval (Papoulis 1991).  Substituting   from Equation (99) 

yields 
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Solving for jP

wvN ][  and substituting the results from Equation (101) yields  
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where

 1R is the largest expected MOE of the RIF-index from an impulse excitation and a 

speed band.  Hence )(][ TN jP

wv   is the minimum traversal volume needed to achieve a minimum 

desired precision (maximum T) of the estimated time when the pavement will deteriorate to a 

future ride-index that is lower than the bound such that 

v

L
v RR  .  Alternatively, given a 

deterioration rate parameter L, a mean RIF-index in the future, and its error band as a standard 

deviation, the precision T within the desired confidence interval is 
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Intuitively, Equation (104) states that the minimum number of vehicle traversals needed 

for a given precision of forecast )(][ TN jP

wv  is directly proportional to the square of the largest 

MOE expected of the future ride index.  The minimum number of vehicle traversals needed is 

also inversely proportional to the square of the desired precision.  Similarly, Equation (105) 

states that the achievable forecast precision is directly proportional to the largest MOE expected 

of the future ride index and inversely proportional to the vehicle volume needed.  The precision 

improves with increasing vehicle volume. 

6.4.  Case Study of Deterioration Forecasting Precision Bounds 

The case study utilized statistics of vehicle parameters available for a model year.  Safety 

guidelines for suspension system designs provide the models to translate vehicle weight statistics 

to quarter-car parameter statistics.  The resulting parameter spreads provide a quantification of 

the maximum RIF-index MOE that subsequently enables a scenario analysis for typical vehicle 

volumes. 
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6.4.1.  Vehicle suspension statistics 

Automotive engineers distribute the sprung- and unsprung-masses so that they account 

for 90% and 10%, respectively, of the gross vehicle weight (T. D. Gillespie 2004).  This design 

guideline achieves the desired suspension system response that complies with international 

standards for human comfort and safety.  The average curb weight of vehicles increased steadily 

since 1985 and peaked in 2007 (Bastani, Heywood and Hope 2012).  Trends indicate that they 

are likely to return to 1990 levels by 2015.  Table 16 lists the average and standard deviation of 

the gross mass for vehicles manufactured in 2007 (Woodyard 2007).   

Engineers also design the sprung-mass resonant frequency between 0.9 and 1.5 hertz for 

all vehicle types (General Motors 1987).  Similarly, vehicle suspension shock absorbers produce 

sprung-mass damping ratios in the range of 0.3 to 0.4.  These ranges represent approximately six 

standard deviations for a normal distribution. 

Table 16.  Statistics for typical vehicles manufactured in 2007 

Parameter Value 

Gross mass, average (mG) 2226 kilograms 
Gross mass, standard deviation (σmG) 483.7 kilograms 
Sprung mass resonant frequency, mean (ωμs/2π) 1.2 hertz 
Sprung mass resonant frequency, standard deviation (σωs/2π) 0.1 hertz 
Sprung mass damping ratio, mean (ζμs) 0.35 
Sprung mass damping ratio, standard deviation (σζs) 0.02 
Unsprung-mass resonant frequency, mean (ωμu/2π) 9.97 hertz 
Unsprung-mass resonant frequency, standard deviation (σωu/2π) 1.53 hertz 
Unsprung-mass damping ratio, mean (ζμu) 0.23 
Unsprung-mass damping ratio, standard deviation (σζu) 0.08 

 

Table 16 summarizes the mean and standard deviation of the resonant frequency 

parameters.  The derivations that follow provide the values listed in Table 16 for the unsprung-

mass statistics.  A tire at its rated load will experience a deflection of approximately 25 mm 
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(Gillespie 2004).  Therefore, an estimate of the average unsprung-mass spring stiffness kμu, in 

units of N·m-1 for four-wheeled vehicles is 
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where g is the g-force constant of 9.8 ms-2 and Gm is the average gross mass of the vehicles.  

The mean unsprung-mass resonant frequency, μu, is therefore 
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where mμu is the average unsprung-mass.  From the gross mass statistics listed in Table 16, the 

associated average resonant frequency of the unsprung-mass mode is approximately 10 hertz.  Its 

standard deviation u is 
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For this scenario, both kμu and mμu depend on the gross vehicle mass statistics, therefore, the 

covariance factor is unity and the expression becomes 
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The average damping-ratio for the unsprung-mass u is 
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The unsprung-mass damping coefficient cμu is typically  = 15% of the sprung-mass damping 

coefficient cμs (Türkay and Akçay 2008).  Therefore, 
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where mμs, μs, and μs are the means of the sprung-masses, their resonant frequencies, and their 

damping ratios, respectively.  Hence, the standard deviation of the unsprung-mass damping ratio

u is 
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where the covariance term cv is 
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The guidelines for typical vehicle suspension designs link the variables mμs, mμu, and μu.  

Therefore, the covariance factors σmsmu, σmsu, and σmuu are each unity.  Evaluating the partial 

derivatives indicated, and simplifying yields 
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Table 17.  Ratio of standard deviation to mean value for typical vehicles 

Parameter Sprung Mass Unsprung Mass 

Resonant Frequency () 8.3% 15.4% 

Damping Ratio () 4.8% 35.7% 
Spring Stiffness (k) 27.4% 21.7% 
Damping Coefficient (c) 18.1% 18.1% 

 

Table 17 summarizes the ratios of standard deviations to mean values for the sprung- and 

unsprung-mass parameters of this case study.  The energy variance to mean ratio  zz EvE  of 

Equation (96) is now quantifiable with these typical quarter-car statistics.  Subsequently, 
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Equation (104) will produce the maximum number of sensor readings needed for a specified 

level of forecast precision and confidence interval for a speed band and the historical rate of 

pavement deterioration.  The next section provides a quantification for this typical scenario. 

6.4.2.  Application of the forecasting precision bounds 

   

Figure 34.  Data collection time needed for forecast precision at 95% confidence 

Evaluating Equation (104) using the parameters of Table 16 for the typical vehicle mix 

illustrates the fundamental trade-off in data collection time and achievable forecast precision.  

Figure 34 plots the data collection time in terms of the number of data collection days required 

for a desired maximum forecast precision, within a 95% confidence interval. 

This result uses a speed band where the average speed is 24.6 m/s (55 mph) and the 

standard deviation is 5%.  The number of data collection days depend on the Annual Average 

Daily Traffic (AADT) volume medians of 10,965 and 39,093 passenger cars per lane for rural 

and urban interstate facilities respectively (Hausman and Clarke 2012), and a scenario where 

only 20% of the vehicles provide the inertial data.  The result also incorporates typical rural and 

urban interstate highway deterioration rates (Anastasopoulos, Mannering and Haddock 2009) 
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that correspond to L values of 0.056 and 0.055 respectively.  The plot indicates that one week of 

data collection under these circumstances will forecast RIF-indices with a worst-case precision 

of one and two weeks for the typical urban and rural interstates, respectively.  The actual 

precision achieved will be better than this bound which represents an impulse excitation or 

equivalently, broadband potential energy from the elevation profile.  Precision will also improve 

for the same data collection period as more vehicles participate. 

 

Figure 35.  Data collection needed for a precision of one week with varying confidence 

For the same AADT scenario, Figure 35 plots the data collection time needed to achieve 

a precision of one week within confidence levels ranging from 50% to 99%. 

6.5.  Summary 

The ability to collect and process data from a large number of inertial sensors in a 

connected vehicle environment will provide transformational gains in the precision and accuracy 

of forecasting pavement deterioration.  Fundamentally, the accuracy and precision of a 

regression model’s ability to predict pavement deterioration is directly proportional to the rate of 

its recalibration with updated ride quality data.  As observed in the model, statistical properties 
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of the RIF-index inherently improves forecast precision as data volume increases, making it ideal 

for application in a connected vehicle environment.   

This analysis provides theoretical insights that relate the statistics of vehicle motion 

parameters to bounds of the forecast precision.  The maximum possible excitation from an 

impulse provided the theoretical maximum MOE for RIF-index variability.  An inversion of the 

empirical model to forecast deterioration provided the precision in time units as a function of the 

MOE for the RIF-index.  The supporting case study used suspension parameter variances 

available for vehicles manufactured in 2007.  The analysis incorporated a scenario of 20% sensor 

participation rate from passenger cars traveling a typical U.S. interstate highway, at a common 

speed limit.  The model indicated that after collecting RIF-index data for about one week, the 

future ride-index is predictable within one weeks of the time expected to reach that value, within 

a 95% confidence interval.  The accuracy is a function of the calibration parameter fit to the 

historical ride-index data for the segment.  In general, increasing the level of desired precision 

would require an exponential increase in the number of data collection days.  Consequently, the 

lower data volume of rural roads will require more data collection time to achieve the same 

precision of forecasting deterioration as for urban roads. 
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CHAPTER 7.  PERFORMANCE FOR ANOMALY LOCALIZATION 

With infrequent assessments of ride quality, transportation agencies miss important 

vulnerabilities such as frost heaves that appear and disappear between monitoring cycles.  Most 

agencies rely on the public to report the location and type of defects for unmonitored facilities 

such as local and unpaved roads.  Unfortunately, agencies often learn about these anomalies after 

they begin to cause congestion or crashes.  The unexpected appearance of anomalies can cause 

drivers to reduce speed and/or direction abruptly.  Such actions tend to create dynamic capacity 

bottlenecks and unsafe roadway conditions (FHWA 2011). 

The multi-resolution feature of the RIF-transform identifies localized roughness within an 

adjustable spatial resolution window.  Increases in traversal volume improve the precision of 

anomaly localization by reducing the variance of the RIF-index.  This chapter derives the 

precision bounds of the RIF-transform to localize roadway anomalies when using standard GPS 

receivers.  Error factors include variances from GPS location tagging, vehicle speed, suspension 

parameters, and sensor characteristics (Bridgelall 2014).  The first case study of this chapter 

incorporates data from traversals across a rough rail grade crossing to demonstrate and 

characterize the localization capabilities of the multi-resolution feature.  Six additional case 

studies use the multi-resolution model to characterize its localization accuracy for narrower 

anomalies such as road bumps.  The case studies revealed that vehicle suspension transient 

motion and sensor latencies are the dominant factors in estimating the position of anomalies. 

7.1.  Literature Review of Roadway Anomaly Position Estimates 

Connected vehicles provide immense opportunities to enable new participatory sensing 

approaches that could substantially lower the cost of network-wide roadway performance 

monitoring.  The probe data will become inexpensive, real-time, and available for all facilities by 
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collecting and processing time, inertial, and geospatial position data from onboard sensors 

(Bridgelall 2014).  This realization has motivated researchers worldwide to develop smartphone 

applications that simulate the probe data that connected vehicles would provide.  Smartphones 

embed the accelerometers and GPS receivers needed for anomaly identification.  However, the 

techniques developed and their performances vary widely.  Most of the reported research focuses 

on the accuracy of various algorithms to detect anomalies from their features in the inertial data 

of individual traversals (Ayenu-Prah and Attoh-Okine 2009).  Algorithms range from blind 

signal data mining of heuristic features (Chen, Zhang and Lu 2011) to complex temporal 

template matching using Wavelet transforms (Wei, Fwa and Zhe 2004).  Other ongoing research 

focuses on the accuracy of classifying anomaly types by the shape of their inertial signatures 

(Gónzalez, Martínez and Carlos 2014).  However, there are no reports of sensor data integration 

and compression methods that merge multiple streams of inertial data to improve the localization 

precision by capitalizing on statistical properties of the data.  Only one study attempted to fuse 

the data from multiple traversals, but the focus was on increasing signal quality, not localization 

accuracy (Ndoye, et al. 2011).  In general, the literature lacks information about the localization 

accuracy of algorithms to identify anomalies using inertial and GPS probe data. 

7.2.  Multi-resolution Feature 

The RIF-transform reports localized g-forces by replacing the segment length L in 

Equation (28) with a resolution window ΔL such that the short-time transform becomes 
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and the EAR-index 
L

vR
 becomes 
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The data processing algorithm tags the RIF-index with an interpolated path distance derived 

from the GPS receiver, the timer, and the velocity updates.  The EAR-index is the average of 

RIF-indices at the same position tag across all traversals.  Therefore, EAR-index peaks are 

position estimators for anomalies. 

The multi-resolution RIF-transform provides a data compression functionality that 

reduces the time, inertial, and geospatial dataset by integrating the accelerometer signal energy 

within each resolution window for all traversals in the selected speed band.  Anomalies produce 

inertial signal peaks followed by the transient responses of the vehicle suspension system.  The 

RIF-transform integrates roughness from both the inertial signal peak and the vehicle transient 

responses that follow.  Therefore, the position of the anomaly causing the inertial event will 

precede EAR-indices that represent only transient responses.  Equation (70) provides the offset 

of the inertial signal peak from the position of the anomaly.  The duration of the transient 

response is a function of the vehicle suspension parameters.  Hence, without a priori information 

about anomalies, the tagged position of peak EAR-indices provides the best estimate for the 

position anomalies.    

 

Figure 36.  The EAR of Bolley Drive at resolutions of 1, 10, and 35 meters 

The intensity of the EAR-index peak provides an indication of relative roughness of the 

anomaly that produced it.  The next section investigates the expected error magnitude of the 
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position estimate for the peak EAR-index.  Figure 36 is an example of the multi-resolution RIF-

transform and associated EAR-indices for the Bolley Drive rail grade crossing.  Windows of 

length 1, 10, and 35 meters illustrate the average g-force sensed within those distances, 

respectively.  The minimum window size is a function of the accelerometer sample rate because 

it is the minimum distance resolution from interpolating between GPS receiver updates.  

Practically, a spatial resolution that is better than one meter may be unnecessary for the visual 

identification of anomalies in the field.  The maximum window size is the length of the entire 

segment for which contiguous samples are available.  Each of the plots of Figure 36 averages the 

RIF-indices from 28 traversals.  The EAR-indices distribute about the true position of the rail 

grade crossing as indicated.  For this case study, peak EAR-index was located within one meter 

of the first track position.  The standard deviation of the EAR-indices about the peak was 3.6 

meters.  Hence, the spatial distribution of the EAR-indices provides a visual representation of the 

localization uncertainty for anomalies.  Color or grayscale coding the intensity of the EAR-

indices for GIS integration will provide a suitable visualization of the roughness intensity levels 

along a route.  An important and desirable feature of this method of ensemble averaging is that 

the delineation between rough spots will become sharper with additional traversal volume 

because of the associated MOE reduction. 

7.3.  Anomaly Position Estimate 

The position of the peak EAR-index r̂ includes biases relative to the true peak position

p such that 

    dGPSsrpr L  ˆ  (117) 
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That is, the position estimator r̂  contains biases from signal processing, sensor, and vehicle 

related parameters.  The biases are: a) the integration window ΔL of the RIF-transform and the 

average interpolation sub-interval r , b) the average longitudinal sensor position s  and the 

average latency GPS  of the position tag, and c) the average transient response distance d  that 

contains roughness from the system transient responses.  The next sections derive the model for 

each error factor. 

7.3.1.  Signal processing biases 

Before performing an ensemble average, the algorithm interpolates the RIF-indices of 

each traversal to produce a higher resolution grid for GIS map registration and data visualization.  

The user sets the display resolution preference that determines the length of each interpolation 

sub-interval 
r .  Hence, the error in estimating the position of a peak EAR-index within the 

interpolated sub-interval will be at most r .  The case studies of this chapter set the RIF-

transform integration window ΔL to 1 meter and the interpolation sub-interval
r to 0.1 meters.  

If the distribution of the EAR-indices is uniform within the sub-interval then the average error is 

rr 
2

1
  (118) 

The variance of the position of peak EAR-indices 
2
r  within the sub-interval is practically zero 

for a typical high-resolution display.   

7.3.2.  Transient response bias 

At the position of the sensor, the g-forces from vehicle body bounces dominate those of 

the axle bounces.  Equations (3) and (23) in Chapter 3 provide the bump and quarter-car 

response models, respectively.  The quarter-car parameters used for this simulation are estimates 
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for the Toyota Camry 2007 LE sedan used for data collection.  Chapter 5 describes the procedure 

used to estimate the quarter-car parameters from the inertial data.   

 

Figure 37.  a) Simulated g-force and b) signal energy for a bump response 

The first chart of Figure 37 shows the simulated g-forces that a quarter-car produces 

when traversing a 5 cm × 30 cm bump at 2.5 m·s-1.  The second chart of the figure shows the 

accumulated accelerometer signal energy as a percentage of the maximum signal energy.  The 

first peak of the accelerometer signal shown at the distance marker υ in Figure 37 is the vertical 

acceleration during the time that the bump is producing a forcing function on the damped mass-

spring system.  The phase response of the composite quarter-car and sensor filters briefly delays 

this first peak from the actual position of the bump’s peak. 

Figure 30 in Chapter 5 showed the first peak delay as a function of vehicle speed.  

Starting from the first dip, the remaining signal represents the g-forces from the transient 

response motion of the sprung-mass.  At higher speeds, the mechanical filtering action of the 

quarter-car absorbs the forcing function portion of the inertial signal.  Figure 7 in Chapter 3 

demonstrated this situation for the 8 × v  traversal where the quarter-car produced only the 

transient response portion of the bump excitation.  The RIF-transform integrates the inertial 

response energy within the resolution window, and this will often include the energy from 

transient responses that extend beyond the actual position of the inertial event.  Hence, for 
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relatively small resolution windows, the position of the peak EAR-index could be associated 

with the transient response from roughness encountered at some distance behind. 

As indicated in the second chart of Figure 37, the duration to the first peak of the 

transient response portion of the signal, indicated at marker ξ, contains more than 90% of the 

inertial response energy.  Therefore, this first peak of the transient response portion of the inertial 

signal will tend to dominate the position bias of the peak EAR-index.  The second derivative of 

the sprung-mass impulse response )(tz s  characterizes the maximum transient response duration.  

Taking the second derivative of Equation (39) provides the sprung-mass transient response as 
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From trigonometric identities (Thomas and Finney 1995), the combination of the two sinusoids 

of Equation (119) is equivalent to a single sinusoid of the same frequency and an average phase 

shift of dr radians where 
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Therefore, the average position of the first peak of the transient response is the product of one 

resonant mode cycle distance  21 ssfv    and the phase shift portion of a full cycle, which is

 2dr .  Therefore, transient response bias is 
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Hence, the variance of the transient response bias 
2
d  is 
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where s and fs are the standard deviations of the sprung-mass damping ratio and resonance 

frequency, respectively.  The last term of Equation (122) contains the covariance factors.  These 

parameters are independent for nominal suspension system operation; hence, the covariance is 

zero.  After evaluating the partial derivatives, Equation (122) becomes 
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In this form, the expressions that multiply each of the variances relative to their means directly 

represent the sensitivities of those parameters. 

7.3.3.  Sensor related biases 

Chapter 5 quantifies the variances in sensor position and GPS receiver tag latencies.  

Rewriting their expressions in the sensitivity form of Equation (123) yields 
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and  
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respectively. 

7.4.  Full-Car Response Simulation 

For the case studies of Chapter 5, the bumps extended uniformly across both wheels of an 

axle.  Hence, each quarter-car response is the combined g-forces sensed from both of their wheel 

assemblies.  The g-forces sensed from the rear quarter-car will be a time-delayed and attenuated 

version of the g-forces sensed from the front quarter-car.  The time delay is equal to the ratio 

wheelbase/ v .  The measured amplitude was about one-third of the magnitude sensed from the 

front-axle.  Therefore, simulating tandem axle traversals requires two identically wide bumps 

where the second is one-third the height of the first and placed one wheelbase behind. 

 

Figure 38.  Simulated bump profile, vehicle body bounce response, and sensor signal 

Tire deflection creates a contact path length of approximately 15 cm (6 in).  The 

convolution of the patch length with the bump profile effectively widens the bump by twice the 

patch length.  Figure 38 plots the body bounce and corresponding vertical acceleration from one 
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wheel path of a tandem quarter-car traveling over the simulated park bump at approximately 

2.5 m·s-1 (5 mph).   

Table 18.  Spatial parameters of the tandem quarter-car simulation 

Parameter Units Value 
Axle separation (wheelbase) m 2.834 
First bump height cm 5.0 
Second bump height proportion - 35% 
Bump width cm 30.0 
Tire patch length cm 15.0 

 

Table 18 summarizes the spatial parameters of the simulation. 

 

Figure 39.  DFT of simulated accelerometer signals for single- and double-axle traversals 

Figure 39 compares the frequency responses from the simulated single- and tandem-axle 

traversals.  Adding the response from the rear axle crossing creates a semi-periodic pulse train 

that produces energy at the odd harmonics of v /wheelbase.  The DFT of the simulated sensor 

output shown in Figure 39 indicates that the first three odd harmonics are located at 

approximately 2.1, 3.6, and 4.9 hertz as expected.  This simulation result corresponds to the 

shape of the frequency response of the vehicle traversals shown for the case study revealed later 

in this chapter. 
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7.5.  Precision Bounds of Position Estimate 

From Equation (117), the position error 
r~  (accuracy) is a random variable where 

    dGPSsrprr L   ˆ~
 (126) 

Hence, the variance of the peak EAR-indices 
2
EAR  is the sum of the variances of the error 

components where 

 2222222222
dlagdGPSsdrGPSsdrEAR     (127) 

This expression characterizes the error contribution from each factor that dilutes the precision of 

estimating the position of anomaly from the position of peak EAR-indices.  The case study of the 

next section quantifies and compares the relative magnitudes of each factor.  

7.6.  Case Study of Anomaly Position Estimate 

 

Figure 40.  Accelerometer signal and windowed RIF-indices 

Without prior information about the various parameter biases, the position of a peak 

EAR-index or TWIT index provides the best estimate for the position of an anomaly.  Figure 40 

shows the RIF-indices from a 1-meter resolution window transform.  The corresponding inertial 

signal output exhibits the transient responses of the double axel crossing of the vehicle as well as 
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noise.  The delay of the first peak RIF-index from the position of the first peak of the inertial 

signal is evident. 

 

Figure 41.  The EAR-indices for three bump types, speeds, and vehicles 
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Conceptually, the EAR-index is a single index summary of roughness for traversals 

within a specified speed band by combining the data from multiple onboard sensors, integrating 

the resultant vertical acceleration longitudinally, and then averaging the resulting RIF-indices 

from multiple traversals.  The TWIT produces a speed-independent index of roughness by 

integrating the EAR indices for the range of speeds that users travel the segment.   

As anticipated, the RIF-indices include energy from the bump, the transient response 

peaks, and noise from other vehicle response modes.  If available, the application can remove 

known biases from the position of the peak EAR-index to improve the localization accuracy.  

The signal processing biases are available for known algorithms.  It is also possible to estimate 

the nominal bias from vehicle suspension transient responses.  Once standardized for all 

vehicles, statistics of the position of the embedded sensor would become available.  However, 

the geospatial position error of standard GPS receivers will likely remain the dominant factor in 

position uncertainties. 

7.6.1.  Distributions of the ensemble average RIF 

The charts of Figure 41 show the EAR-indices for 1-meter resolution RIF-transforms of 

the datasets for the six case studies conducted in Chapter 5.  The distance indicated on the 

horizontal axis of each graph is relative to the geospatial coordinates of the reference position on 

the traversal path.  The anomaly produces a peak EAR-index after each axle crossing.  The 

second peak, when discernible such as in the 5 m·s-1 park bump case, occurs after the rear axle 

crosses the anomaly.  The charts also overlay a Gaussian distribution fit to the EAR-indices 

between the a and z vertical markers that border the approximate position of the first peak.  The 

least-squares method used to fit the function to the data is the Levenberg-Marquardt algorithm 

(Marquardt 1963). 
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The leading edge of the EAR-indices before the peak value provides the best 

approximation of the distribution because the transient responses included in the trailing edge 

tends to overestimate the spread of the peak position.  The average offset of the position of the 

peak EAR-index across all case studies, including all biases, was -2.0 meters.  The average of the 

spreads EAR  was 3.4 meters.  The chi-squared (χ2) significance for a Gaussian distribution fit of 

the EAR-indices near the peak was significantly greater than 5% for all cases.   

Table 19.  Parameters derived from the data of the six case studies 

 
Park Bump Airport Road Bump Tracks 

Parameters 2.5 m·s-1 5 m·s-1 7 m·s-1 EB WB NB 

Sprung Mass Res., fμs (hertz) 1.371 1.933 2.588 2.154 2.159 1.896 

Damping Estimate, ζμs 0.20 0.13 0.26 0.09 0.09 0.18 

Transient dist.,
d (m) 0.977 1.410 1.681 1.669 1.651 2.006 

Transient dist.,
d (m) 0.078 0.161 0.100 0.106 0.062 0.125 

GPS tag lag, lag (m) -2.091 -4.999 -3.864 -5.309 -2.409 -7.784 

GPS tag spread,
dlag (m) 0.460 1.011 1.212 1.162 1.109 1.230 

GPS position, dGPS (m) 4.992 4.242 3.122 2.367 1.676 1.936 

EAR peak offset,
r~ (m) 2.450 -1.950 -0.750 -5.390 -1.290 -5.200 

EAR spread,
EAR (m) 5.184 4.412 3.571 2.649 2.016 2.795 

χ2 Gaussian fit to
EAR  100.0% 100.0% 96.7% 100.0% 100.0% 54.9% 

Residual spread,
R (m) 1.315 0.645 1.236 0.235 0.144 1.591 

Ratio 22
EAR

 93.5% 97.7% 88.0% 99.1% 99.4% 67.4% 

Ratio
22
EARpGPS   92.7% 92.4% 76.4% 79.8% 69.1% 48.0% 

Ratio
22
EARlag   0.8% 5.3% 11.5% 19.2% 30.3% 19.4% 

Ratio 22
EARd  

 0.0% 0.1% 0.1% 0.2% 0.1% 0.2% 

Ratio 22
EARR    6.4% 2.1% 12.0% 0.8% 0.5% 32.4% 

 

Table 19 summarizes the analysis results and includes the offset r
~  of the peak EAR-

index from the position of the true peak and the estimated spread EAR .  The average χ2 
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significance across all cases was 91.9%.  Therefore, the analysis cannot reject the hypothesis that 

the distribution of EAR-indices about the peak value follows a Gaussian distribution. 

7.6.2.  Transient response estimate 

The harmonics from the tandem axle crossings observed in the simulation results of 

Figure 39 are evident in the DFT of the actual signal.  Hence, the data from real vehicle 

traversals match the simulated results and provide confidence that the tandem quarter-car model 

combined with the sensor transfer function adequately characterizes the system.  The first seven 

rows of Table 19 list the vehicle and sensor parameters estimated previously in Chapter 5.  The 

first two rows of the table summarize the estimated sprung-mass suspension parameters for each 

test vehicle.   

 

Figure 42.  DFT of sensor output and quarter-car response estimate 

Figure 42 shows the least squares fit of the combined quarter-car suspension and sensor 

transfer functions to the DFT of the inertial sensor signal from the 2.5 m·s-1 speed bump traversal 

case.  The same vehicle produced the data for all traversals of a dataset.  The resonant 

frequencies and damping ratios of a regular vehicle will likely vary during traversals.  However, 

those variances are unknown.  Hence, setting the theoretical variances to zero and lumping the 

residual variances into a single parameter will capture those nonlinearities.  Substituting the 
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estimated suspension parameters into Equations (121) and (123) provides an estimate for the 

average transient response distance bias d  and the associated standard deviation d .  The 

average values across all case studies were 1.6 and 0.1 meters, respectively. 

7.6.3.  Relative uncertainties of bias factors 

Chapter 5 derived the variance of the position of the first peak 
2
  in the inertial response.  

It represents the best achievable precision of the position estimate for the anomaly because of the 

a priori knowledge about its actual position.  The average ratio 22
EAR  of the first peak position 

variance to the variance of the EAR-index is within 5% for these case studies.  This result 

indicates that the distribution of the EAR about the peak value approaches the performance of 

the best position estimator for anomalies.  This is a very promising result because the EAR-index 

includes energy from all modal responses, transient responses, and noise.   

Isolating the variances estimated for the transient response delay, the tag latency, and the 

GPS related errors derived in Chapter 5 from the variance of the EAR-indices about the peak 

value 2
EAR  yields the residual variance 2

R  such that 

 2222222
dlagdGPSdsrEARR     (128) 

The residual variance captures differences between the true behavior of the system and the error 

model.  Hence, the residual error could include non-linear effects from variations in the resonant 

frequencies and damping ratios of a vehicle’s suspension system. 

The last four rows of Table 19 summarize the relative error magnitudes from GPS 

trilateration, GPS position tagging latencies, vehicle transient responses, and the residual error.  

The error from GPS trilateration was the largest contributor with an average of 76% across all 

case studies.  The position variance from GPS tag latency contributed the next largest error with 
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an average of 14.4% across all case studies.  The position variance from transient responses was 

by far the least contributor, with an average of 0.1% across all cases.  The average residual error 

across all cases was 9.0%.  The largest residual is for the case with the poorest Gaussian fit to the 

spread of EAR-indices about the peak value.  Nevertheless, the relatively large χ2 significance for 

the Gaussian distribution provides a high level of confidence that the residual errors will 

diminish with higher traversal volumes. 

Although relatively small for these case studies, the variance in suspension parameters 

for a single vehicle could increase from any non-linear behavior.  In fact, the GPS related errors 

still dominate even if all the residual errors are attributable to suspension variances.  Transient 

response related variances would increase with a larger spread in vehicle types that use the 

facility.  However, the magnitude of that increase will likely remain insignificant because the 

suspension systems of nearly all vehicles respond similarly to comply with international 

standards that minimize vibration hazards to humans.  In conclusion, the position uncertainty 

from standard GPS receivers will likely continue to dominate the achievable precision of 

estimating the actual position of pavement anomalies.  Therefore, using higher accuracy systems 

such as differential GPS will improve the precision significantly. 

7.6.4.  Precision bounds 

The MOE1-α of the position estimate for the peak EAR-index is denoted   1 where 

jP

wv

EAR

N

q

][

21

1





 




  (129) 

The standard normal quantile is 21 q  for a confidence interval of (1-α)%.  The number of 

vehicle traversals is jP

wvN ][  as defined in Equation (31).  Hence, the 95% confidence interval is 
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2 × 95.0 and 21 q = 1.96.  The MOE95 diminishes with increasing traversal volume in the 

manner described by Equation (129).   

Table 20.  Vehicle parameters to compare precision bounds 

Parameter 
Single 

Vehicle 
Typical  

Mix 
Worst 
Case 

GPS geospatial position spread,
dGPS (m) 3.056 3.056 10 

GPS mean update period,
GPST

(s) 1.0 1.0 1.0 

Sensor position standard deviation, σεs (m) 0 0.5 0.5 

Vehicle batch mean speed, v (m·s-1) 7 7 35 

Batch speed standard deviation, v  (m·s-1) 1.0 1.0 1.0 

Body bounce mean,
sf  (hertz) 1.2 1.2 1.2 

Body bounce standard deviation, fs (hertz) 0 0.1 0.1 

Damping ratio mean,
s  0.35 0.35 0.35 

Damping ratio standard deviation, s  0 0.02 0.02 

  

 

Figure 43.  Precision bounds of peak position estimation 

Figure 43 compares the MOE for three cases.  Table 20 summarizes the parameters.  

Table 16 in Chapter 6 provides the mean values and standard deviations of the typical vehicle 

suspension parameters used.  In theory, the sensor position and suspension variances for a single 

vehicle scenario are zero, hence Equation (128) becomes 

 .2222
dlagdGPSREAR     (130) 
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The typical mix scenario incorporates the same error spreads as the single vehicle scenario 

except for the typical variances expected for the sensor position and the suspension parameters.  

The worst-case scenario incorporates the same sensor and suspension parameter statistics as the 

typical mix scenario but simulates the precision at a maximum speed of 35 m·s-1 and a worst-

case geospatial position standard deviation of 10 meters.  The GPS update rate for all scenarios is 

set to one second. 

Figure 43 shows that the achievable precision for the single and the typical vehicle mix 

scenarios are indistinguishable.  This is an expected result because the expected GPS related 

errors are identical and they dominate.  For these scenarios, about 5 and 30 traversals will 

provide an estimate of the anomaly’s position within 3 meters and 1 meter, respectively.  The 

precision improves rapidly as the traversal volume grows toward five vehicles.  Traversal 

volumes beyond 20 vehicles provide diminishing returns. 

Both the speed and traversal volume are likely to increase for highways.  The worst-case 

scenario uses the highest anticipated GPS position variance and vehicles traveling at a maximum 

speed of 35 m·s-1.  Higher speeds stretch the uncertainties in the position estimate and, therefore, 

require a greater number of traversals to achieve the same precision as lower speed traversals.  

For instance, 70 traversals will localize anomalies within 3 meters for the worst-case scenario; on 

the other hand, the typical case and a five-fold speed reduction require only five traversals to 

achieve the same precision. 

7.6.5.  Error sensitivity of factors 

Equation (123) directly indicates the sensitivity factors of each parameter deviation with 

respect to their mean value.   
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Table 21.  Typical position error sensitivity and parameter spreads 

 Typical Vehicle Mix Scenario 

Parameter Sensitivity (m) CI95 Uncertainty (m) 
Sensor position 1.00 97.99% 0.98 
Transient peak    

Velocity factor 3.82 19.60% 0.75 
QC resonance 3.82 16.33% 0.62 

QC damping ratio 1.27 9.52% 0.12 
GPS tag    

Latency variance  10.5 21.78% 2.29 
Velocity variance  10.5 19.60% 2.06 

 

Table 21 summarizes the distance sensitivity for parameters of the typical scenario.  It 

lists the MOE95 as a percentage of the mean value and the associated uncertainty.  The 95% 

confidence interval (CI95) listed is a percentage of the mean value.  The uncertainty shown 

normalizes the comparison of each error factor by taking the product of the sensitivity and the 

confidence interval.  As indicated in bold font, the position uncertainty is most sensitive to 

variations in GPS related parameters.  In fact, the uncertainty interval from GPS receiver related 

errors are more than three times greater than that from variations in vehicle suspension 

parameters.  Finally, large variations in sensor position relative to the first axle can significantly 

dilute the precision of anomaly localization.  Hence, this study recommends that vehicle 

manufacturers strongly consider standardizing the distance relative to the front-axle for inertial 

sensor installation. 

7.7.  Summary 

The emergence of connected vehicles and smartphones offer lucrative opportunities to 

use them as dynamically distributed sensors to reduce the cost of network-wide monitoring by 

locating automatically and continuously anomalies that could pose risks to drivers.  Methods that 

identify anomalies in the data streams of individual vehicle traversals lack the potential of 

statistical methods to improve precision of localization by combining the data streams from 
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many vehicles.  The RIF-transform offers an adjustable spatial resolution window to localize 

inertial events along the traversal path.  The EAR-index is an ensemble average of the RIF-

indices at the position tags of each spatial window.  Variations in the position tags from GPS 

receiver errors, sensor placement, and embedded system latencies create uncertainties in 

anomaly localization.   

Six case studies to characterize the statistics of the spatially distributed EAR-indices 

could not reject the hypothesis that they follow a Gaussian distribution about the position of the 

anomaly.  For normally distributed errors, the peak EAR indices inherently provide the best 

estimate for the position of anomalies.  The spread of EAR-indices directly indicate the 

confidence interval of their localization.  Furthermore, increases in traversal volume will reduce 

the MOE and increase the precision of localization.  The case studies additionally demonstrated 

the benefit of using the spread of EAR-indices about the peak as a measure of uncertainty in the 

position estimate.  Its performance approached that of an estimator that uses a priori knowledge 

about the position of an anomaly. 

GPS related uncertainties dominated the overall position tagging error for the case 

studies.  The uncertainties from suspension variability and vehicle transient responses were 

substantially smaller.  It was possible to remove the bias errors from suspension transient 

responses by estimating the vehicle suspension parameters from discrete Fourier transform of the 

inertial data.  A least squares fit of the quarter-car model provided estimates for the two primary 

mode frequencies and their associated damping ratios.  However, the position errors from 

variances in vehicle suspension parameters were relatively small for these case studies because 

the same vehicle provided data for all traversals of a dataset.  Nevertheless, a sensitivity analysis 

that included typical variations expected for the suspension parameters revealed that GPS 
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receiver related errors would still be more than three times those attributable to variations in 

vehicle transient responses. 

This chapter characterized the precision bounds of estimating the position of anomalies 

from the distribution of EAR-indices.  In general, the precision of estimating the position of 

anomalies increases rapidly as traversal volume grows beyond 20 vehicles.  The model for MOE 

indicated that for the typical vehicle mix, 5 and 30 traversals would provide an estimate of the 

anomaly’s position within 3 meters and 1 meter, respectively.  For the worst case scenario of 

GPS related errors and a speed of 35 m·s-1, approximately 70 traversals would provide a 

precision of anomaly localization within 3 meters.  Finally, the sensitivity analysis revealed that 

position estimates would be most sensitive to variations in the position of the sensor relative to 

the first axle.  Therefore, this study recommends a connected vehicle standard to implement the 

inertial sensor at one or relatively few fixed distances from the front-axle of a vehicle. 
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

Roadways are critical to the economic prosperity of all nations.  Hence, their continuous 

deterioration in response to traffic loads and environmental factors poses significant challenges.  

Agencies must assess roadway performance regularly to enable effective pavement preservation 

programs.  However, the scaling of existing methods for more frequent and network-wide 

characterizations of ride quality is cost prohibitive.  A method of using onboard sensor data from 

connected vehicles offers the potential for both cost reduction and the continuous monitoring of 

all roadways.  With limited access to standardized connected vehicles at present, researchers 

have been retrofitting regular vehicles with smartphones to log and transmit time, inertial, and 

geospatial position data.  Methods presently available to produce roughness indices from 

onboard sensor data do not scale for practical deployment because they require calibration with 

individual vehicle responses.  This research produced a scalable approach to transform 

voluminous sensor data from connected vehicles into a reliable single-index summary of road 

roughness.  Agencies will benefit by integrating the computationally simple models into 

decision-support platforms.  The solution will enable deterioration forecasting that is more 

reliable.  The methods and models provide an ability to localize anomalies that could pose 

hazards to the traveling public. 

The research goals were to develop the models, characterize their performance relative to 

the prevailing methods, and to demonstrate their performance and utility through case studies.  

The objectives achieved in pursuing the goals were as follows: 

1. development of a computationally simple and effective model to transform time, inertial, 

and geospatial position data streams to a single index summary of roughness, namely the 

road impact factor (RIF) index 
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2. establishment of a direct proportionality relationship between the RIF-index and the 

prevailing standard, namely the international roughness index (IRI) 

3. preservation of the IRI utility while eliminating its deficiencies by defining a speed 

independent model, namely the time-wavelength-intensity-transform (TWIT) 

4. quantification of the trade-off in accuracy and precision of ride quality characterizations 

relative to the practical variances in traversal volume, vehicle suspension parameters, and 

sensor characteristics 

5. quantification of the model performance that would use RIF-indices as independent 

variables to forecast pavement deterioration 

6. characterization of the accuracy and precision of the new models in anomaly localization 

The case studies demonstrated the practical use of the new models and methods. 

8.1.  Summary of Models and Methods 

The continuous differentiability and practically finite extent of the modified Gaussian 

radial basis function provided the theoretical framework for roughness simulation and 

characterization.  The translation, dilation, and amplification features provided an ability to study 

the manifestations of roughness energy in both the time and frequency domains.  The insights 

gained led to the definitions of the RIF-transform and the TWIT.  Initiating the notion of vertical 

acceleration potential and kinetic energies provided the distinction to characterize profile 

roughness in the spatial and temporal domains, respectively.  These notions explained the 

transformation of spatial elevation profiles to vertical accelerations that vehicle occupants 

experience when traveling in various vehicles at different speeds.  Representing vehicle 

suspension systems as mechanical filters with dual resonance modes uncovers the non-linear 

sensitivity to profile roughness at different speeds.  These characterizations lead to mathematical 
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explanations of the various IRI limitations that practitioners detected.  The square-law of 

differentiation illustrated how bumps of different heights and widths could produce identical 

roughness intensities.  Similarly, the square-law also demonstrated how traversing the same 

bump at different speeds could produce differences in roughness magnitude that the IRI masks 

but riders actually experience.  These theoretical characterizations explain the gap in previous 

attempts to transform inertial signals to a single-index summary of roughness. 

The RIF-transform is a compression of the inertial signal per unit of distance traveled.  Its 

derivation stems from the physical principle that the accelerometer signal energy is a complete 

representation of the vibration energy experienced.  Parseval’s Theorem produces an equivalent 

quantification of the signal energy in the temporal and spectral domains.  The theorem points to a 

simple time-domain computation of the RIF-transform.  Subsequently, the RIF-index is a 

summary of the average g-force experienced after traveling a segment of road.  The RIF-index is 

a more intuitive summary of roughness than the IRI because it is a measure of the average g-

forces that a rider experienced rather than a simulation of the accumulated suspension motion 

from a pre-defined quarter-car model.  The RIF-transform requires significantly lower 

computational resources than the IRI or the PSD transforms.  The simplicity of its scalar 

multiply-and-accumulate (MAC) operations allows almost any sensor to compute the RIF-

transform directly, using negligible amounts of energy. 

The ensemble average of the RIF-indices (EAR) for any desired spatial resolution 

window, within a specified speed band, represents a vertical compression of the roughness 

indices from multiple vehicle traversals.  The case studies validated that the distribution of the 

RIF-indices from multiple traversals result in an excellent fit with classic distributions such as 

the Gaussian and t-distributions.  Therefore, the margin-of-error (MOE) will expectedly diminish 
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with higher vehicle traversal volumes.  The TWIT is a weighted average, by traversal volume, of 

the RIF-indices from all speed bands reported for a segment.  Hence, the TWIT-index reflects 

the average g-force that riders experienced at the typical range of speeds that they traveled the 

segment. 

The onboard inertial sensor produces six parameters: one set of tri-axial accelerometer 

values, and one set of tri-axial orientation values.  The onboard GPS receiver produces a pair of 

geospatial coordinates and a ground speed.  An integrated clock produces a timestamp for the 

sensor samples at regular intervals.  Hence, the integrated sensor unit produces a data file 

containing 10 parameters per row.  The application updates each row at the selected sample 

interval setting for the inertial sensor.  At the recommended settings for the update rates, one 

gigabyte of sensor memory stores about 109 hours of pre-processed data. 

The data integration algorithm combines the inertial sensor parameters to produce a 

resultant vertical acceleration that is sensor orientation independent.  The RIF-transform then 

combines the resultant vertical acceleration, the velocity, the timestamp, and the geospatial 

coordinates into a single roughness index for each spatial resolution window.  Producing the 

RIF-index for spatial resolution windows of about one kilometer will provide an IRI equivalent 

summary of roughness.   

The variations of sensor and vehicle suspension parameters and the volume of traversals 

available establish practical bounds for the precision of the RIF-index.  Therefore, establishing 

the best settings for all onboard sensors will enhance consistency.  Aftermarket sensor 

installation, such as smartphones, produce the best results when secured anywhere on the 

dashboard of the vehicle.  This placement provides good mechanical coupling to sense the 

vehicle vibrations.  The dashboard surface is also a good location for satellite signal reception.   
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The frequency response of nearly all vehicles points to a minimum sample rate for the 

inertial sensor of 64 hertz.  The case studies validate this result by demonstrating diminishing 

returns beyond that sample rate.  The minimum GPS update rate setting should be such that the 

variance in position tags for the inertial samples would be no greater than the expected error 

from GPS trilateration.  The position tagging error arises from two factors.  They are the 

embedded system latency in retrieving the updated GPS coordinates and the latency in tagging 

the inertial samples with equivalent path distances.  The case study incorporated a signal 

processing method to isolate the trilateration distance errors from those of the tagging delays by 

tracking the distribution of the first inertial response peak from traversing an anomaly at a 

reference position.  The results from six case studies indicated that the trilateration errors were 

within the spread of 3 meters that GPS operators expect.  The spread in differential distance 

updates for devices set at two different rates indicated that the variance in distance lag is a direct 

function of the GPS update rate selection.  Traversal velocity variations amplify the errors in 

position tagging.  The analysis indicated that for the case studies, the minimum GPS update rate 

recommended for detecting anomalies would be 1 hertz, and twice that rate for highway speeds. 

The accuracy and precision of deterioration forecasts improves continuously with 

traversal volume when employing empirical models with RIF-indices as the explanatory 

variable.  The rate of precision improvement with traversal volume depends on the overall spread 

in vehicle suspension parameters and the selected boundaries for each speed band.  The case 

study used suspension system parameter spreads derived for typical vehicles to illustrate the 

achievable precision trade-off with data collection volume.  For a scenario where 20% of the 

vehicles traveling a segment are connected, one week of sensor data collection will forecast RIF-

index threshold with a worst-case precision of three and seven weeks for the typical urban and 
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rural interstates, respectively.  Within the same confidence interval, the precision bounds 

improve or require fewer data collection days with additional vehicle participation. 

The EAR provides a multi-resolution tool for observing roughness at both the network 

and local levels.  The peak EAR values are inherently best estimators for both the roughness 

intensity and the position of anomalies.  The EAR spread characterizes the MOE for the position 

estimate of an anomaly.  Therefore, color-coding the EAR for GIS implementation will provide a 

viable method of data visualization to examine clusters and patterns of localized roughness at 

any spatial resolution.  For the typical traffic mix and speeds, the precision of anomaly 

localization will improve rapidly as the available traversal volume grows beyond five and 

become asymptotic beyond 20.  Six case studies demonstrated that GPS related errors tend to 

dominate the interval of uncertainty, whereas, variances in vehicle suspension parameter tend to 

be three-fold less significant. 

8.2.  Summary of Research Contributions 

The methods and models developed in this research breaks through long-standing 

constraints to reduce the cost, expand the reach, and increase the frequency of ride quality 

characterizations.  The techniques developed enable the first statistical approach to pavement 

performance evaluation using connected vehicles.  The direct proportionality relationship with 

the IRI at fixed speeds will extend investments in IRI datasets through simple scaling.  

Therefore, agencies have the flexibility of continuing to use the IRI while expanding applications 

that utilize the RIF- and TWIT-indices.  Unlike the IRI or the PSD, the computational simplicity 

of the RIF-transform and the TWIT provides flexibility for onboard devices to compute them 

directly for real-time observation.  Their computational simplicity minimizes the cost of 

continuous scaling for widespread adoption. 
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The new models address the IRI utility gaps by extending their application to all facility 

types and all speeds.  Inertial sensors directly measure the actual roughness energy that riders 

experience on either paved or unpaved roads.  The IRI data collection and simulation procedure 

limits its application to paved highways and a fixed speed.  Simulating a fixed quarter-car model 

at a fixed speed produces an IRI that is spatial wavelength biased.  The TWIT precludes this bias 

by integrating roughness from all wavelengths and traversal speeds.  Moreover, multiple 

traversals to characterize roughness produce a more statistically significant measure.  Agencies 

typically produce the IRI based on elevation profile measurements taken from a single traversal, 

and often from only one lane, and in one direction.  Sampling the inertial response of vehicles 

that actually use all the facilities provides a more complete characterization of their performance.  

Furthermore, the accuracy and precision of applications that forecast pavement deterioration and 

localize anomalies will improve continuously with higher data volume as more connected 

vehicles participate.  In-depth analysis identified the best inertial sensor sample rate and GPS 

update rate settings for standardization.  The case studies conducted validated those selections of 

sensor settings. 

The new approach to ride quality characterization has a broad reach.  The methods and 

models will enable cost-reduced, continuous situational awareness, and objective asset 

management for all roads worldwide.  Nations that cannot afford laser-based probe vehicles to 

compute the IRI will have a substantially lower cost alternative by using smartphones to enable 

connected vehicles that are compatible with their existing communications infrastructure.  

Agencies that utilize the TWIT to visualize roughness will have enhanced data visualization 

capabilities and reduce their training requirements to interpret roadway performance data.  By 

integrating these models into decision-support platforms, agencies throughout the world will be 
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able to realize enormous savings by making effective data-driven decisions to optimize their 

pavement preservation practices. 

8.3.  Limitations and Future Research 

Methods that use probe vehicles to sample the condition of pavements do not necessarily 

characterize the roughness of sections outside the wheel path.  Although differences in driving 

habits and lane changes will allow connected vehicles to provide a broader spatial assessment 

than the IRI would, drivers are not likely to traverse the road shoulders.  Furthermore, drivers 

will tend to avoid anomalies such as potholes when their location has become familiar.  

Therefore, other methods must complement probe vehicles to characterize all aspects of 

pavement condition. 

Anomalies such as utility covers, concrete pavement joints, and precipitation will 

produce roughness that does not necessarily require remediation.  Therefore, future research will 

incorporate remote sensing techniques to complement probe vehicle methods of roughness 

characterization.  Methods of remote sensing, such as hyperspectral, are capable of providing 

both high spatial and spectral resolutions to discern pavement cracks, estimate the age of asphalt 

pavements, identify metallic objects such as utility covers, and measure geometric features of the 

facility.  Consequently, remote sensing methods will help to enhance the situational awareness of 

pavement condition in general while identifying anomalies that do not necessarily warrant 

attention.  The invention of new techniques to mine the probe data for anomaly classification will 

enable the removal of select roughness features from the characterization of ride quality.  Future 

work will examine the feasibility of these and other related ideas that emerge as the author 

further develops the method for technology transfer. 
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APPENDIX A.  DATA PROCESSING ALGORITHMS 

This appendix provides an overview of the software developed to process the data, 

implement the RIF-transform, and produce the EAR-indices. 

A.1.  Data Processing Procedure 

Evaluating and cleaning the data is a first step in computing the RIF-transform.  The 

onboard sensors will upload data files periodically to a server.  The algorithm examines the input 

queue for new files to process. 

 

Figure A.1.  Data preparation procedure 

Figure A.1 summarizes the sequence of steps to process the raw data from each .CSV file.  The 

header contains relevant data about the vehicle and the onboard sensor types. 
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A.2.  Segment Extraction Procedure 

After validation of the data quality through the cleansing process, the procedure extracts 

the relevant segments of specified lengths for processing.  

 

Figure A.2.  Segment extraction procedure 

Figure A.2 summarizes the steps in the procedure to extract the specified segments of a 

specified speed band.  The steps following are computation of the RIF-transforms for the 

specified spatial resolution, the corresponding EAR-indices, and optionally populating the data 

into a GIS map.  When data are available for multiple speed bands of traversals for a segment, 

the TWIT-indices will display a speed independent indication of roughness. 
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APPENDIX B.  VEHICLE USED IN THE CASE STUDIES 

This appendix provides a summary of the various vehicles used for the case studies and 

the estimates of their quarter-car parameters. 

B.1.  Frequency Responses 

2011 Ford E350 (Van) 

 

2011 Ford E350 (NDDOT) 

 

2007 Toyota Camry LE (Luxury Car) 

 

2007 Toyota Camry LE (Luxury Car) 

 

2007 Subaru Legacy (Compact Car) 

 

2007 Subaru Legacy (Compact Car) 

 

2001 Ford Explorer (SUV) 

 
 

2001 Ford Explorer (SUV) 

 

2011 Chevrolet Traverse (Mini-Van) 

 

2011 Chevolet Traverse (Mini-Van) 

 

Figure B.1.  Vehicles used for the various case studies 
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The charts on the left side of Figure B.1 shows the DFT of the inertial signal obtained 

from sensors installed in the respective vehicles pictured on the right side.  The dotted lines of 

the plots are the quarter-car model estimates from fitting the data using a least-squares method. 

B.2.  Quarter-Car Parameter Estimates 

Table B.1.  Parameter estimates for the composite quarter-car 

Vehicle fs (hertz) ζs fu (hertz) ζu 

2011 Ford E350 (Van) 1.4 0.39 15.7 0.05 
2007 Toyota Camry LE 1.7 0.27 11.5 0.08 
2007 Subaru Legacy 1.9 0.22 11.9 0.18 
2001 Ford Explorer 2.2 0.46 13.8 0.18 
2011 Chevrolet Traverse 2.1 0.35 10.8 0.10 

 

Table B.1 summarizes the sprung- and unsprung-mass estimates for the quarter-car 

representation of each vehicle.  These results show that the parameters for different vehicle types 

are consist with the expected response that complies with design guidelines of the international 

standards for human safety and comfort. 


