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Abstract

Urban road networks are often affected by disruptions such as accidents and roadworks, giving

rise to congestion and delays, which can, in turn, create a wide range of negative impacts to the

economy, environment, safety and security. Accurate detection of the onset of traffic anoma-

lies, specifically Recurrent Congestion (RC) and Nonrecurrent Congestion (NRC) in the traffic

networks, is an important ITS function to facilitate proactive intervention measures to reduce

the level of severity of congestion. A substantial body of literature is dedicated to models with

varying levels of complexity that attempt to identify such anomalies. Given the complexity of

the problem, however, very less effort is dedicated to the development of methods that attempt

to detect traffic anomalies using spatio-temporal features. Driven both by the recent advances in

deep learning techniques and the development of Traffic Incident Management Systems (TIMS),

the aim of this research is to develop novel traffic anomaly detection models that can incorporate

both spatial and temporal traffic information to detect traffic anomalies at a network level.

This thesis first reviews the state of the art in traffic anomaly detection techniques, including the

existing methods and emerging machine learning and deep learning methods, before identifying

the gaps in the current understanding of traffic anomaly and its detection. One of the problems in

terms of adapting the deep learning models to traffic anomaly detection is the translation of time

series traffic data from multiple locations to the format necessary for the deep learning model

to learn the spatial and temporal features effectively. To address this challenging problem and

build a systematic traffic anomaly detection method at a network level, this thesis proposes a

methodological framework consisting of (a) the translation layer (which is designed to translate

the time series traffic data from multiple locations over the road network into a desired format

with spatial and temporal features), (b) detection methods and (c) localisation. This method-

ological framework is subsequently tested for early RC detection and NRC detection.

Three translation layers including connectivity matrix, geographical grid translation and spatial

temporal translation are presented and evaluated for both RC and NRC detection. The early RC

detection approach is a deep learning based method that combines Convolutional Neural Net-

works (CNN) and Long Short-Term Memory (LSTM). The NRC detection, on the other hand,

involves only the application of the CNN. The performance of the proposed approach is com-

pared against other conventional congestion detection methods, using a comprehensive evalu-

ation framework that includes metrics such as detection rates and false positive rates, and the

sensitivity analysis of time windows as well as prediction horizons. The conventional conges-

tion detection methods used for the comparison include Multilayer Perceptron, Random Forest

and Gradient Boost Classifier, all of which are commonly used in the literature.

Real-world traffic data from the City of Bath are used for the comparative analysis of RC, while

traffic data in conjunction with incident data extracted from Central London are used for NRC

detection. The results show that while the connectivity matrix may be capable of extracting

features of a small network, the increased sparsity in the matrix in a large network reduces its

effectiveness in feature learning compared to geographical grid translation. The results also in-

dicate that the proposed deep learning method demonstrates superior detection accuracy com-

pared to alternative methods and that it can detect recurrent congestion as early as one hour

ahead with acceptable accuracy. The proposed method is capable of being implemented within

a real-world ITS system making use of traffic sensor data, thereby providing a practically useful
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tool for road network managers to manage traffic proactively. In addition, the results demon-

strate that a deep learning-based approach may improve the accuracy of incident detection and

locate traffic anomalies precisely, especially in a large urban network. Finally, the framework

is further tested for robustness in terms of network topology, sensor faults and missing data.

The robustness analysis demonstrates that the proposed traffic anomaly detection approaches

are transferable to different sizes of road networks, and that they are robust in the presence of

sensor faults and missing data.
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Chapter 1

Introduction

1.1 The Context of Intelligent Transport Systems

Transport systems are vital for modern life since an efficient transport system can significantly

enhance the efficiency of individual travel, reduce traffic congestion, minimise traffic incidents

and improve safety. So-called Intelligent Transport Systems (ITS) represent the state-of the-art

in respect to traffic techniques or systems that aim to provide improved traffic control and man-

agement and thus a better service for road users using technology (Alam et al., 2016). Generally,

ITS encompasses a broad range of control, management, electrics, wireless communication and

sensing technologies with the aim to improve factors, such as safety, reliability, efficiency and

sustainability of transport systems (Singh and Gupta, 2015).

The concept of ITS was initially proposed in the United States, Japan and Germany in the late

1960s and early 1970s and involved the integration of route guidance systems (Mohan, 2009).

Complex forms of ITS were not deployed on a practical scale until the mid-1980s, however, with

technological advances, and in particular the massive improvement in computational capabili-

ties, made these cheaper and more reliable (Mohan, 2009). In the recent past, massive research

efforts have been devoted to this subject and its applications. Examples of successfully deployed

ITS systems include Urban Traffic Control (UTC) Systems, Advance Traffic Management Sys-

tems (ATMS), Advanced Driver Assistance Systems (ADAS), Advanced Traveller Information

Systems (ATIS) and Advanced Vehicle Control Safety Systems (AVCSS) (Shaheen and Finson,

2013).

Even though considerable progress has been made on all aspects of ITS, we are yet to see much

1
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improvement in overall safety or congestion (Mohan, 2009; Alam et al., 2016). Traffic conges-

tion might be alleviated more effectively with a more precise prediction of traffic events as well

as more prompt detection of events that have happened. This may now be possible with existing

and emerging sensor data and associated ITS technologies that monitor traffic conditions. The

recent advances in Artificial Intelligence (AI), such as machine learning and deep learning (Le-

Cun et al., 2015), is progressively revolutionising approaches to classification and prediction and

hold considerable promise in respect to monitoring or mitigating safety and traffic congestion.

1.2 Research Background

Given the scope for improvement of current ITS systems and the potential of emerging AI tech-

niques, it is vital to have a better understanding of traffic anomalies and detection methods in

order to alleviate traffic congestion properly. This section will therefore present the background

on traffic anomalies and briefly summarise the current literature on anomaly detection.

1.2.1 Traffic Anomalies

Urban road networks are often affected by disruptive anomalies, such as accidents, inclement

weather and roadworks. With a restriction to road capacity, these anomalies give rise to conges-

tion and traffic delays, which can in turn create a wide range of negative impacts to the economy,

environment, safety and security. Traffic congestion can cause reduced service to road users,

increase delays and pollution, and lead to potential safety hazards (Weisbrod et al., 2003). Ac-

cording to the urban utility report published by Texas Transportation Institute, congestion led

to around 6.9 billion hours of delays for road users, and around 3.1 billion gallons of wasted

fuel, resulting in total economic costs of $160 billion in the urban areas of United States in 2014

alone (Schrank and Lomax, 2015). The UK also suffers such economic losses due to traffic con-

gestion, which is getting worse, with a predicted 64% increase in the annual impact from £13.1

billion to £21.4 billion between 2013 and 2030 based on a study from the Centre for Economics

and Business Research (CEBR, 2014).

The causes of traffic anomalies and congestion delay have been widely investigated in the past

few decades. In general, congestion has two categories, recurrent and non-recurrent. Recurrent
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congestion refers to the situation when traffic demand exceeds the road capacity, while non-

recurrent congestion is caused by unpredictable changes and unexpected occurrences such as

traffic incidents, weather and special events (Lomax and Margiotta, 2003). Recurrent conges-

tion and associated delays are significant contributors to the economic losses described above

(Younes and Boukerche, 2015). Hence, it is valuable to predict RC as early as possible and

alleviate traffic congestion where possible.

On the other hand, non-recurrent congestion is varied in terms of its spatial and temporal di-

mensions, and hence can result in more disruptive impacts on the economy and society. Ikhrata

and Michell (1997) have shown that 50% of congestion on US highways is due to non-recurrent

congestion. Other studies have shown that traffic incidents or anomalies are also one of the

major factors behind the avoidable increase of travel time and costs in transportation networks

by claiming that approximately 25% of congestion is caused by non-recurring incidents such as

unexpected crashes, spilled debris and broken cars (Deniz and Celikoglu, 2011). A report rep-

resenting 85 large metropolitan areas in the US from 1982 to 2003 concluded that non-recurrent

congestion accounted for 60% of all congestion, with traffic incidents contributing up to approx-

imately 25% of this (Systematics, 2005). Overall, RC is shown to be a major factor as well that

contributes to congestion and the resultant adverse economic impacts in cities. This has led to

an increasing research interest in traffic incident analysis and management.

1.2.2 Anomaly Detection

Given the impact of traffic anomalies on the urban networks, a lot of effort has been devoted to

the precise detection of traffic anomalies and their proactive control, both in terms of developing

various algorithms and in the application of new sensor technologies (Chandola et al., 2009).

For example, ITS have been developed to use information extracted from detectors to assist in

signal control and traffic management, and traffic anomaly detection can be a very important

function in ITS applications such as ATMS and ATIS.

Detecting anomalies using collected data has been studied by statisticians since the 19th century

(Edgeworth, 1887). Many automatic traffic anomaly detection algorithms have been applied

to motorways, such as the Motorway Incident Detection and Automated Signalling (MIDAS)

systems (Highways Agency, 2005). Most previous studies focus on corridor-based methods
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that apply and calibrate detection algorithms on a specific corridor (Taylor, 2008). Relatively

little research has been carried out to develop methods that use spatio-temporal data from urban

road networks for anomaly detection (Taylor, 2008). The extension of the traditional corridor-

based method into a network level has the limitation of linearly increasing complexity as well

as computational costs.

In addition to the problem of anomaly detection at an urban network level, another challenge

lies in the early prediction of recurrent congestion. Traditional anomaly detection technologies

such as the MIDAS system have only been able to report current or post-event traffic anomaly

detection. Early detection, or an early alarm, of potential recurrent congestion is especially

useful for proactive traffic control and management. Meanwhile, it is vital to localise anomalies

simultaneously occurring across an urban network.

With recent developments in machine learning, especially deep learning, new advanced de-

tection techniques provide us with a potential opportunity to incorporate the historical traffic

patterns and spatio-temporal congestion propagation at a whole network level. Thus, this re-

search seeks to extend traffic anomaly detection, including both early recurrent detection and

non-recurrent detection, from traditional corridor based methods to urban roadways network

based methods by using technologies that are able to incorporate information both spatially and

temporally. In addition, this research will also focus on methods that offer the ability for early

prediction of RC at a whole network level.

1.3 Aims and Objectives

Given the motivation stated above, this research focuses on traffic anomaly detection, encom-

passing both recurrent congestion and non-recurrent congestion. The broad aim of this research

is to develop novel traffic anomaly detection models that can incorporate both spatial and tem-

poral traffic information to detect multiple traffic anomalies at the urban network level rather

than one or several corridors. This spatial-temporal detection model is expected to be used for

dynamic real-time use that will allow traffic managers to take prompt action to react to conges-

tion and incidents, reduce the late response caused by the undetected incidents and improve the

accuracy and reliability of urban road networks.
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In order to achieve the aim, the main objectives are summarised as follows:

(1) Understand traffic anomalies, the types of anomalies and their corresponding distri-

bution of impacts across an urban traffic network in order to identify the current gaps in the

literature about traffic anomaly detection and thus the relevant research challenges.

(2) Develop a novel framework for multiple traffic incidents detection and early congestion

prediction at an urban network level.

(3) Develop a novel spatio-temporal model that can detect traffic anomalies and predict

congestion at an early stage. Explore the application of deep learning techniques to anomaly

detection and make use of advanced artificial intelligence and machine learning to develop a

method to map the anomaly detection problem to deep learning and evaluate them against base-

line models.

(4) Propose an approach for the localisation of traffic anomalies detected in the network in

association with the proposed spatio-temporal anomaly detection.

(5) Investigate the effect of network topology, sensor faults and missing data on the accu-

racy of the network level traffic anomaly detection and early prediction.

1.4 Thesis Outline

The rest of the thesis is organised as follows.

• Chapter 2 presents a comprehensive review of existing work in the area of anomaly de-

tection, including traffic anomaly detection.

• Chapter 3 establishes the conceptual methodological framework consisting of translation

layers, detection methods and localisation, according to the above aims and objectives,

before presenting potential detection algorithms and performance evaluation methods.

• Chapter 4 explores translation methods to map traffic data at a network level into a form

suitable for input to deep learning methods.
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• Chapter 5 applies the proposed methodology to real-world traffic data and evaluates the

accuracy of the proposed methods compared to conventional detection methods.

• Chapter 6 presents a method to detect the localisation of the anomaly after applying the

method to network wide data.

• Chapter 7 examines the robustness and accuracy of the proposed method when applied to

data from networks with different topologies and in the presence of missing sensor data.

• Chapter 8 summarises the main findings and contributions from this research, and presents

avenues for future research.

1.5 Contributions

A number of contributions have been made in this thesis towards both understanding the nature

of traffic anomalies and improving the accuracy and reliability of traffic anomaly detection by

incorporating the spatio-temporal features of the urban traffic network into machine learning

methods. The key contributions in this thesis are summarised below.

• The concept of anomaly and its detection led to the understanding of traffic anomalies and

a systematic development of a conceptual traffic anomaly detection framework for both

RC and NRC. The traffic anomaly detection framework presented in this thesis is novel to

the literature.

• Identification of three translation layers and their comprehensive comparison is quite new

to the literature. The translation layer acts as an important first layer to transform the input

traffic data into the desired format for use by deep learning methods. Existing applications

of deep learning have mainly focused on the deep learning algorithms themselves, rarely

studying the impact of different translation layer methods.

• This research proposed a novel network-level based detection model that enables it to

learn spatio-temporal information using one model across an entire urban network rather

than single corridors or links with the application of CNN and LSTM. The proposed

detection methods were compared with three conventional detection methods and found

to be superior.
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• It was shown that it is possible to predict RC early, before the actual congestion occurs.

This would allow traffic managers to take early corrective action and thereby improve the

reliability of urban road networks.

• While deep learning based methods provide superior accuracy in NRC and early RC de-

tection, there is no straight-forward mechanism to locate the incident on the network.

Six different methods to determine the location of traffic anomalies were proposed and a

random forest based localisation method was found to be best suited.

• Besides the conceptual and methodological contributions, this PhD research also provides

practical advice based on different issues that may arise in real-time applications including

the heterogeneity of data sources, disruption from the sensor faults and the transferability

of the model between different traffic networks.

1.6 Publications

As part of this study, several scholarly articles were published as below. The link between each

chapter and publications is summarised in Figure 1.1.

1. Zhu, L, Krishnan R, Sivakumar, A, Guo, F, Polak, J. Early Identification of Recurrent

Congestion in Heterogeneous Urban Traffic, The 22nd IEEE International Conference on

Intelligent Transportation Systems (ITSC), Auckland, New Zealand, 2019.

2. Zhu, L, Krishnan R, Guo, F, Polak, J, Sivakumar, A. Traffic Monitoring and Anomaly

Detection based on Simulation of Luxembourg Road Network, The 22nd IEEE Interna-

tional Conference on Intelligent Transportation Systems (ITSC), Auckland, New Zealand,

2019.

3. Zhu, L, Guo, F, Krishnan R, Polak, J. A Deep Learning Approach for Traffic Incident De-

tection in Urban Networks, The 21st IEEE International Conference on Intelligent Trans-

portation Systems (ITSC), Hawaii, USA, 2018.

4. Zhu, L, Guo, F, Krishnan R, Polak, J. The Use of Convolutional Neural Networks for

Traffic Incident Detection at a Network Level, Transportation Research Board 97th An-

nual Meeting, No. 18-00321, Washington DC 2018.
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5. Zhu, L, Guo, F, Polak, J, Krishnan, R. Spatial-Temporal Hybrid Deep Neural Networks

for Early Congestion Detection. 7th Symposium of the European Association for Research

in Transportation, Athens, Greece 2018.

6. Zhu, L, Guo, F, Krishnan R, Polak, J. Automated Early Detection of Congestion on Ur-

ban Roads: A Deep Learning Approach, 50th Annual Conference of the Universities-

Transport-Study-Group (UTSG). London, UK, 2018.

7. Zhu, L, Guo, F, Polak, J, Krishnan, R. Urban Link Travel Time Estimation Using Traffic

States based Data Fusion, Journal of IET Intelligent Transport Systems, 2018.

8. Zhu, L, Guo, F, Krishnan R, Polak, J. Multi-sensor Fusion Based on the Data from Bus

GPS, Mobile Phone and Loop Detectors in Travel Time Estimation. Transportation Re-

search Board 96th Annual Meeting. No. 17-03472, Washington DC 2017.
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Figure 1.1: Summary of objectives in each chapter with corresponding publications



Chapter 2

Literature Review

The main objective of this chapter is to understand traffic anomalies, the types of anomalies and

their corresponding distribution of impacts across an urban traffic network in order to identify

the gaps in traffic anomaly detection and thus the current research challenges. Although there is

no consensus in the literature regarding a definition of traffic anomaly, in practice anomalies in

transport systems are generally related to traffic congestion. The comprehensive understanding

of this traffic anomaly will enable traffic managers to identify the problem quickly, proactively

react to the traffic disruptions and provide a promise of efficient and automatic traffic manage-

ment and control. Hence, this section is focused on reviewing a wide range of literature on

anomalies, and anomaly detection, both in the traffic research field and in other fields.

The structure of this chapter is as follows. First, section 2.1 will introduce the general un-

derstanding of anomaly detection and its application in various subjects. Then, in Section 2.2,

the anomaly detection will be narrowed down to traffic related anomalies and the detection of

these, before reviewing specific congestion detection techniques or algorithms with their corre-

sponding advantages and limitations in Section 2.3. With the aim of developing traffic anomaly

detection at the network level, some potential spatio-temporal models from other research fields

are also reviewed in this part. Section 2.4 summarises the existing work, challenges and oppor-

tunities.

9
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2.1 Research on Anomaly Detection

2.1.1 Definition of Anomaly

The concept of an anomaly has been defined in a number of different ways depending on the

context. A commonly accepted definition of anomaly is from Hawkins (Hawkins, 1980).

“An anomaly is an observation which deviates so much from other observations as to arouse

suspicions that it was generated by a different mechanism.”

An anomaly, therefore, is generally an abnormal behaviour or event that deviates from

the standard, expected or normal behaviour. Anomalies can originate from a wide range of

factors such as malicious activities or system failures. To some extent, anomalies threaten the

reliability and robustness of a system and therefore need to be identified or detected promptly

and accurately. Anomalies are important because they can indicate significant and rare events

and can prompt critical actions to be taken in a wide range of application domains (Ahmed et al.,

2016). The notion of anomaly can be demonstrated by points o1, o2 and region O3 in Figure 2.1.

Anomaly detection algorithms can, therefore, be defined as classifying the boundary of normal

patterns and then identifying any behaviour that is outside the boundary.

Figure 2.1: Example of anomalies (Source: Hojati et al. 2011)
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2.1.2 Types of Anomaly

As discussed in Section 2.1.1, anomalies generally refer to something that deviates from the

normal, expected or standard patterns. Before identifying the anomalies, one important step is

to understand the nature of the anomaly. In this regard, Ahmed et al. (2016) and Chandola et al.

(2009) suggested categorising anomalies according to their characteristics, as follows.

2.1.2.1 Point anomaly

As the name suggests, this type of anomaly refers to a particular data instance which deviates

from the normal pattern of the dataset. One example of this kind of anomaly is o1 or o2 in Figure

2.1. Point anomalies usually result from random issues that may be caused by a wide-range of

factors like different types of system failures.

2.1.2.2 Contextual anomaly

Behaviours or events that act anomalously in a specific context are usually referred to as contex-

tual or conditional anomalies. Contextual anomalies can be characterised by two aspects: (1) the

contextual attributes, such as geographical information for spatial data and sequence position

for time series data; and (2) behavioural attributes, or direct attributes, such as the traffic flow

for traffic incidents. Another property of this type of anomaly is that an identical data instance

which has been identified as a contextual anomaly in one situation may be normal in a different

situation.

Contextual anomalies have often been investigated using time-series or spatial data. For ex-

ample, traffic flows on urban roads during accidents are usually lower compared to normal traffic

conditions for the time of day and day of the week. On the other hand, low traffic flows may

not be contextually anomalous at other times. Defining a contextual anomaly is not straightfor-

ward, however, since detecting the anomaly properly and precisely requires data for the relevant

contextual and behavioural attributes (Chandola et al., 2009).

2.1.2.3 Collective anomaly

A collection of similar point anomalies based on a group of similarly unexpected behaviours or

events is defined as a collective anomaly. Collective anomalies have been commonly investi-
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gated with sequence data, graph data and spatial data. For example, the existence of low traffic

flow values for an abnormally long period of time indicates an underlying phenomenon corre-

sponding to potential abnormal congestion, while the low value by itself may be not necessarily

an anomaly when it occurs in other locations in a sequence. The notion of this type is a set of

similar points as shown in O3 in Figure 2.1.

The difference between a collective anomaly and a point anomaly is, firstly, that collective

anomalies are determined by the existence of a series of anomalous data instances, any one of

which may not be an anomaly by itself. Point anomalies, on the other hand, can be defined di-

rectly without dependence on other similar points. Secondly, individual data instances within a

set of collective anomalies are generally related, whereas point anomalies can occur regardless

of their position vs other data points. On the other hand, contextual anomalies are basically

subject to how the context contributes to the data, so, to some extent, when incorporating some

context information, both point and collective anomalies can be classified as contextual anoma-

lies. Figure 2.2 summaries the relationship among three types of anomalies discussed above.

Point 
anomaly

Contextual 
anomaly

Collective anomaly

Family of  anomaly
With context attributes

Figure 2.2: Family of anomalies and their interactions

2.1.3 Components of Anomaly Detection Frameworks

Anomaly detection is a methodological framework or algorithm to cluster or classify the original

dataset and therefore identify minor or rare abnormal data instances. Basically, as shown in
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Figure 2.3, there are three main components to anomaly detection, i.e., input, anomaly detection

model and output, where anomaly detection model is the way to map the input to the output.

There are a large number of anomaly detection methods used in statistics, machine learning and

deep learning. These will be presented in detail in Section 2.3.

Input

Data processing 
(if necessary)

Output
(Score or Label)

Anomaly Detection

Figure 2.3: Flowchart of anomaly detection

2.1.3.1 Input of anomaly detection

A key factor of any anomaly detection is the nature of the input data, which can be characterised

by a set of attributes or features. Inputs with respect to anomaly detection depend on the ap-

plication or subjects of the problem. There might be different types of datasets, such as credit

card transaction records for credit card fraud detection, audio data for speech fault detection and

image data for theft detection in videos, etc.

2.1.3.2 Output of anomaly detection

One important aspect of anomaly detection is how anomalies are represented as output. Typi-

cally, the output of anomaly detection can be represented in the two following ways (Chandola

et al., 2009; Ahmed et al., 2016).



14 Chapter 2. Literature Review

Score Assigning an anomaly score or probability to each instance according to the degree

or extent to which the instance is considered an anomaly. The anomalies are then selected by

ranking the scores or probability, or by comparing them with a predefined threshold in the light

of the specific domain knowledge.

Label As for this type of output, generally, a label is associated with a data instance to de-

note if that data instance belongs to the normal or anomalous class. In other words, here, the

anomaly detection is a binary classifier. For example, points o1, o2 and region O3 in Figure 2.1

would be labelled as anomalies while the remainder are normal. According to the availability of

labels, anomaly detection algorithms can be classified into: 1) supervised learning with labels

for both normal and anomalous classes; 2) semi-supervised learning with either normal labels

or anomalous labels; and 3) unsupervised learning without any labels but subject to the implicit

assumptions that normal instances are far more frequent than anomalies.

Considering the different levels of congestion or incidents, the concept of labelling has been

used in this research where a probability will be assigned for each level, such as ‘congested’ and

the ‘uncongested’ for recurrent congestion, or ‘with incidents’ and ‘without incidents’ for non-

recurrent congestion detection under the assumption of binary classification. This is described

in further detail in Chapter 3.

2.1.4 Anomaly Detection Applications and Algorithms

In general, anomaly detection has remained one of the most difficult tasks in data science due to

the inherent difficulty of defining and quantifying the notion of anomaly precisely (Agovic et al.,

2009). Nonetheless, anomaly detection has extensive applications in areas such as intrusion

detection for computer science, health care, military monitoring and surveillance, and fraud

detection for bank credit systems and insurance (Chandola et al., 2009). Specifically, there

are well recognised implementations of anomaly detection in respect to identifying unexpected

network intrusions (Ahmed et al., 2016), robot behaviour (Haddadin et al., 2017), web faults

(Wang et al., 2016c) cable faults (Ali et al., 2015) and sensor-based faults (Wu et al., 2018a).

Anomaly detection algorithms have therefore been investigated in various disciplines, in-

cluding artificial intelligence, deep learning, data mining and pattern recognition. For example,
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Agrawal and Agrawal (2015) comprehensively summarised anomaly detection algorithms us-

ing data mining techniques to detect abnormal behaviours and provided an understanding of the

existing techniques. Agrawal and Agrawal (2015) suggested that hybrid data mining approaches

were being widely used because they could provide better results and overcome the drawback of

individual approaches. Agrawal and Agrawal (2015) also suggested that the new approaches in

the modification of decision tree or kernel-based approaches might yield more accurate results.

These algorithms are described further in Section 2.3.

2.1.5 Challenges in Anomaly Detection

Challenges facing accurate anomaly detection include:

• The boundary between normal and abnormal data instances may sometimes be ambigu-

ous, especially for observations at the edge of the normal or abnormal region.

• The normal or abnormal behaviours keep evolving temporally and hence a normal or

an abnormal observation in the current state may be insufficient evidence in the future.

On the other hand, some behaviours at the spatial level may keep propagating across the

network and therefore affecting other activities close by in the network.

• Even though it is common to analyse anomalies using the concept of abnormal data in-

stances, as in Figure 2.1, the definition of anomaly is not universal, especially when con-

sidering the variation in application domains. These different definitions make it difficult

to transfer or translate anomaly detection techniques directly from one domain to another.

• In most cases, anomaly detection is supervised with labels. The availability of labels

traditionally used for training or validation of anomaly detection is a major prerequisite,

however.

• It can be very difficult to distinguish between data noise and actual anomalies, since both

are data that tend to deviate from the normal region.

Given the challenges as summarised in Figure 2.4, although the anomaly detection problem

is implicitly straightforward and easy to understand conceptually, it is difficult to solve in practice
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Figure 2.4: Challenges of anomaly detection

(Chandola et al., 2009). The important implications can be summarised as follows. Firstly, it

is essential to adopt anomaly detection concepts from diverse disciplines including machine

learning, data mining and information theory, according to the nature of the specific domain or

problem. Secondly, the nature of a specific anomaly detection problem may be subject to factors

such as characteristics of data, the availability of data, existence of data noise, type of anomalies,

etc. Finally, since malicious activities or behaviours may evolve both spatially and temporally,

the anomaly detection may need to take these spatio-temporal dynamics into consideration to

reflect not only the current states but also the immediate future.

2.1.6 Summary of the Research on Anomaly Detection

This section has presented an overview of the literature on anomalies in general and anomaly

detection techniques in particular. The systematic understanding of general anomalies must

be applied to give insights into traffic anomaly detection. A detailed introduction to traffic

anomaly detection including detection of recurrent congestion, early recurrent congestion and

non-recurrent congestion will, therefore, be presented in the next section.
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2.2 Research on Traffic Anomaly Detection

2.2.1 Background of Traffic Anomaly Detection

In practice, anomalies in the transportation field (i.e., traffic anomalies) are linked to traffic

congestion. Generally, traffic congestion can be divided into two types: Recurrent Congestion

(RC) and Non-Recurrent Congestion (NRC) (Anbaroglu et al., 2014a). RC refers to day-to-

day congestion where traffic demand exceeds the road capacity. RC usually occurs during peak

periods, and therefore commuters and network operators can anticipate RC in advance (Deniz

and Celikoglu, 2011). With adequate advance notice, one can make plans to potentially mitigate

RC and implement suitable intervention measures. On the other hand, NRC is usually caused

by unpredictable and one-off events, (e.g., traffic incidents and accidents), planned events (e.g.,

concerts, football matches and road works) or inclement weather. These events may occur at

any time of the day and any location. The congestion duration usually depends on the type of

incident and the characteristics of the road network (Lomax and Margiotta, 2003).

To date, many studies have contributed to RC and NRC detection, but some challenges

remain to be further investigated. Section 2.2.2 will first summarise the concept of traffic states,

which are the essential input for congestion detection, as well as some recent studies into traffic

states prediction. In order to identify the gaps and opportunities, this section will review the

key studies of RC in Section 2.2.3, early prediction of RC in Section 2.2.4 and NRC in Section

2.2.5, respectively.

2.2.2 Traffic States

Traffic state is one of the fundamental concepts underpinning traffic stream analysis in the traffic

engineering domain. Three main parameters characterise traffic states: speed, flow and density.

If S is defined as a variable to represent a traffic state, S can be expressed as:

S = (v, q, k) (2.1)

where:
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v = speed, the rate of motion in distance per unit of time (e.g., km/h, m/s)

q = flow, the number of vehicles passing a point in a given period of time (e.g., veh/h, veh/s)

k = density, the number of vehicles occupying a given length of lane/roadway at a specified

time instant (e.g., veh/km)

The fundamental relationship between v, q and k is as below.

q = kv (2.2)

where speed refers to space mean speed, and density can be calculated as a function of detector

occupancy ω (i.e., the proportion of time that a vehicle presents on the detector) and the effective

vehicle length L by the traffic flow relationship k = ω / L.

Traffic states are essential for traffic engineering as indicators of traffic conditions. The

US Department of Transportation has adopted the concept of Level of Service (LoS) for traffic

systems and this is defined as “a qualitative measure describing operational conditions within a

traffic stream, based on service measures such as speed and travel time, freedom to manoeuvre,

traffic interruptions, comfort, and convenience.” (Manual, 1965; Manual et al., 2000). For traffic

flow, LoS is quantified by comparing the operating density k to jam density kj in the six ranges

shown in Table 2.1 and as illustrated for Greenshields’ relationship in Figure 2.5.

Table 2.1: Level of Service ranges

Level of Service Density k
A k < kj / 10
B,C,D kj / 10 ≤ k < kj / 3
E1 kj / 3 ≤ k < kj / 2
E2 kj / 2 ≤ k < 2kj / 3
F kjk ≥ 2kj / 3

Traffic state identification is of importance within areas of traffic control and operations and

this has become an active research topic, especially for both real-time ITS traffic monitoring and

decision-making (Xia et al., 2012). Apart from the practical application in ITS systems, traffic

state identification as an indicator of congestion levels has also been used for traffic variable

estimation problems (Han et al., 2010).
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Figure 2.5: Level of service for traffic flow on a road shown on a normalised speed-flow Green-

shields fundamental diagram (Source: Gerlough and Huber 1975)

Identifying traffic states refers to estimating all the relevant traffic variables, such as mean

speed, density and traffic flow, of the network using real-time traffic data measured by data

sensors deployed on the road network (Wang and Papageorgiou, 2005). More importantly, one

of the main emphases within traffic state identification is to identify traffic variables that are not

directly measured (Wang and Papageorgiou, 2005). For instance, approaches of mapping traffic

data, including traffic flow and density, into traffic states have been attempted as inputs for LoS

analysis in order to capture the dynamics of varying congestion levels with limited sensor data

(Manual, 1965).

A wide range of different traffic state identification methods are available in the literature.

A common approach is to use traffic flow, density and speed to identify traffic states by cali-

brating microscopic fundamental flow-speed-density relationships (Kerner and Rehborn, 1996;

Geroliminis and Daganzo, 2008). While this approach is theoretically sound and intuitive, cal-

ibrating the fundamental relationship and determining the thresholds between different traffic

states are difficult, especially in the absence of large volumes of traffic sensor data (Lu et al.,

2015). Another common approach to estimate traffic states is to use clustering methods, such

as fuzzy-logic (Zhang et al., 2017), k-nearest neighbours (Oh et al., 2016; Cai et al., 2016), etc.
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These methods are effective in identifying traffic states based on historical data and can incor-

porate other explanatory variables such as time of day and weather information as additional

variables.

A major issue of existing state estimation methods is that they lack generalisation and trans-

ferability; most of the approaches require auxiliary datasets that are either not readily available

in real-time or are not easily transferable across sites (Han et al., 2010). Thus, a method that

can estimate traffic states based on readily and transferable information is needed. Moreover,

in terms of the context of traffic states estimation, while various methods have been used in the

context of motorways, it seems that there are limited studies in practice for urban roads, due to

their complex traffic environment.

Given the importance of traffic states identification, some ITS applications have adapted

traffic states identification as an index for measuring motorway road conditions quantitatively.

Compared to motorways, that have sophisticated management and control systems, however,

traffic monitoring (i.e., cameras or loop detectors) in urban roads could be limited by their com-

plex structure and dynamic traffic interactions. With this complexity, traffic congestion in urban

roads may need more advanced ITS systems capable of analysing and mitigating traffic conges-

tion effectively across the whole urban road network.

2.2.3 Recurrent Congestion Detection

RC has been extensively studied in recent years because of the necessity to manage urban road

networks more effectively (Kong et al., 2016a; Liu et al., 2014). Early RC prediction is impor-

tant, especially when road capacity is close to demand. It is important to predict RC precisely

and as early as possible on these types of networks.

A substantial range of literature has contributed to varying levels of depth to identify and

propose models to understand and deal with RC efficiently. At present, however, there is no uni-

fied evaluation measure for recurrent congestion (He et al., 2016a). Since recurrent congestion

generally occurs due to a lack of supply for the excess demand for road travel, congestion usually

leads to a decrease in travel speed and an increase in travel time and delays. These changes in

travel variables make it possible to use traffic states as indicators of different severities of traffic
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congestion. Congestion can, therefore, be measured in various ways based on the variability of

traffic states.

Since these variables are important indexes of LoS and congestion, research efforts have

resulted in a substantial number of prediction methods (Andrews Sobral et al., 2013; Yu et al.,

2016). For example, An et al. (2016) proposed a three-step RC detection procedure with traf-

fic speed input from Global Positioning System (GPS) equipped taxis; Yu et al. (2016) used

Back Propagation Neural Networks (BPNN) to detect traffic congestion based on occupancy

and traffic speed and proved that the BPNN was capable of detecting traffic congestion with

stable performance; and Zhang et al. (2016) proposed traffic pattern identification as well as

congestion detection using dictionary-based compression theory.

A large number of studies have explored the use of traffic states in the RC problem. Tra-

ditional RC prediction methods developed to estimate or predict traffic variables such as speed,

density, flow, and travel time as well as delay, fall into two main types.

The first type of congestion detection is based on single indicators such as travel speed,

directly derived from GPS for vehicular monitoring. For instance, the prevailing traffic speed

can be indicative of the quality of traffic congestion and sometimes the severity of congestion

(Rao and Rao, 2012). He et al. (2016a) classified traffic congestion in urban road networks into

four categories based on its severity by using travel speed index, and used these to measure

both the degree of congestion of road segments and networks, respectively. Kong et al. (2016b),

meanwhile, incorporated the uncertainty and complexity of traffic states within a Fuzzy com-

prehensive evaluation to improve the traffic congestion estimation and prediction sufficiently by

using traffic flow data.

On the other hand, considering the dynamic nature of traffic, especially in the context of

urban road networks, several studies have used multiple attributes of traffic states to evaluate

traffic congestion systematically. Nantes et al. (2016) proposed a Kalman Filter method to in-

tegrate the heterogeneous measurements from loop detectors, Bluetooth and GPS devices to

estimate traffic states in arterial corridors. Yuan et al. (2012) presented a comprehensive traffic

state estimator based on data derived from loop detectors and vehicle trajectories.

It is worth noting, however, that, over the last few years, while many studies have attempted
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to predict or estimate traffic congestion on motorways or highways (e.g., Mazzenga and Demet-

sky, 2010 and Yildirimoglu and Geroliminis, 2013), the application of RC detection in the

context of urban networks has been less well studied. This is due to their greater topologi-

cal and control complexity and their vulnerability to a wider range of sources of interruption

(e.g., intersections, adaptive traffic signal controls, pedestrian crossings and on-street parking)

(Anbaroglu et al., 2014a).

In general, traffic congestion has previously been characterised as a clustering problem in

terms of both theoretical and empirical aspects. Theoretical studies investigate the movement

of vehicles at critical traffic states (Sugiyamal et al., 2008) while the empirical research focuses

on making use of the spatio-temporal clusters to detect congestion patterns (Anbaroglu et al.,

2014a). The existing literature has proposed important approaches to evaluate the traffic state

and comprehensively understand traffic recurrent congestion. Gaps exist, however, firstly in esti-

mating the traffic states at a network level, and, secondly, in achieving detection by incorporating

spatio-temporal information.

2.2.4 Early Prediction of Recurrent Congestion

In road networks where demand closely matches the supply, RC may or may not occur during

peak times on certain days. This is because traffic is a stochastic process and the temporal pattern

of demand over the course of a given day shows day-to-day variability. The realisation of traffic

demand on any given day may give rise to RC. Accurate early detection of the onset of RC

in such networks enables traffic managers to formulate and implement proactive intervention

measures to reduce the level of severity of congestion. Hence, the capability of early detection

of RC is of immense practical value to road network managers.

Traditional RC prediction is commonly based on short-term traffic states prediction. Vla-

hogianni et al. (2014) has provided an important review on this. Most effort in the past decades

has focused on predicting traffic volume or travel time using data collected from single point

sources in motorways and freeways (Vlahogianni et al., 2014). To date, previous studies tend

to focus on analysis and prediction of traffic states either once it has occurred or over relatively

limited prediction horizons, typically a 5-minute or 15-minute time window. This short-term

perspective provides little time for traffic operators to formulate and deploy management plans
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proactively, and can even lead to the failure to accommodate the communication latency of

various traffic sensor devices.

Little attention has been paid to the development of methods that can provide significant

early warning of the formation of congestion and the characteristics of its spatio-temporal evolu-

tion (Ma et al., 2017). Such a method would substantially reduce the time-constraints affecting

traffic operators and provide them with an RC index for proactive reactions. Hence, a more

effective RC early detection method which can infer the onset of RC directly is desirable. At the

same time, the recent developments in computational power and mathematical models enable

researchers to expand prediction horizons (Vlahogianni et al., 2014). The impact of these will

be further presented and reviewed in Section 2.3.1.

There are some obvious differences, however, between short-term traffic prediction and

early RC prediction or detection. First, short-term traffic prediction is by nature a regression

problem, with the output of continuous numbers such as traffic speed, travel time and traffic

flow in a time series format (Ma et al., 2017). In comparison, the early RC prediction problem

is a classification problem which can provide labels such as of severe level of traffic congestion.

In practice, traffic managers may be interested in knowing whether that day is a good day (with

smooth traffic) or a bad day (with congested traffic) with an early indicative index. Even though

powerful deep learning or machine learning methods have been developed recently for short-

term traffic prediction, no research has focused on the early RC detection problem.

2.2.5 Non-Recurrent Congestion Detection

NRC is usually caused by unpredictable and one-off events, (e.g., traffic incidents), planned

events (e.g., concerts, football matches and road works) and inclement weather. In general, an

entire process of traffic incident management is composed of detection, verification, response,

information dissemination, on-site traffic management, investigation and clearance (Teng and

Qi, 2003). Among all these components of incident management, a quick and effective response

strategy relies on employing an accurate incident detection algorithm (Teng and Qi, 2003; Zhang

et al., 2018b). To reduce substantial delays or traffic congestion, therefore, a reliable and efficient

traffic incident detection algorithm is a desirable function for traffic management and control

systems. It has been widely accepted that effective traffic detection methods, alongside the
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implementation of proactive mitigation strategies, can contribute significantly to reducing the

impact of incidents (Zhang et al., 2018b). Furthermore, as a key function of intelligent transport

systems, reliable and prompt detection of traffic incidents is critical to enable traffic managers to

alleviate congestion proactively under different levels of abnormal traffic conditions (He et al.,

2013).

Over the past few years, a sizeable body of literature has emerged with the objective of using

discrete vehicle trajectories or aggregated traffic patterns for traffic incident detection. This

data is acquired by existing and emerging traffic sensors such as loop detectors, surveillance

cameras and GPS (Yuan and Cheu, 2003). Generally, discrete vehicle trajectories are used

for microscopic behaviour based detection, while aggregated traffic patterns usually represent

features of vehicle groups during a specific time span and thus have been extensively used in

the context of traffic control and management (Yuan and Cheu, 2003).

Traditional traffic incident detection methods have been proved valid in many applications

(Asakura et al., 2017; Hawas, 2007). There is a vast body of literature devoted to modelling

traffic incidents and automatic incident detection over the last few decades. Traffic incident

detection was first developed in the early 1970s based on the occupancy measures at fixed

road sections and diagnosed traffic incidents by comparing traffic variables on the upstream and

downstream and then observed the effects of the incident on traffic (Payne and Tignor, 1978;

Highways Agency, 2005). This type of statistical algorithm detects significant differences be-

tween observed data and traffic characteristics predicted by prior probability or by identifying

the outliers based on the principle of standard normal deviation (Baiocchi et al., 2015).

Another type of statistical technique is based on recognising an abnormal pattern by using

a fundamental flow-speed-occupancy diagram, such as the well-known McMaster algorithm

(Persaud et al., 1990). The performance of all the aforementioned algorithms, however, lies in

the accuracy of the thresholds chosen for identifying traffic incidents (Baiocchi et al., 2015).

Despite their effectiveness in detecting traffic incidents on any given arterial road, tra-

ditional detection methods still present certain challenges. Firstly, many methods have been

developed and tested in the context of highways where the topology and traffic patterns are

rather stable or simple compared to urban networks (He et al., 2013; Asakura et al., 2017). Ac-

cordingly, traffic detection within the whole urban networks has been rarely discussed in the
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literature (Anbaroglu et al., 2014b). Secondly, most studies that are focused on individual links

have the limitation of low transferability (Zhang et al., 2016). For example, a traffic incident de-

tection algorithm that is effective in triggering an accurate alarm on typical roads may only work

well in the same or similar traffic patterns based on which its parameters were calibrated. Thus,

it seems impossible for one detection method to perform well under a wide range of different

traffic patterns on different types of road networks. In other words, there is a need to develop

a single method of traffic incident detection for application over the whole urban road network

rather than applying different detection algorithms separately for different types of links.

Given that traffic pattern changes caused by traffic incidents cannot evolve arbitrarily in

space and time, recently a couple of data-driven models making use of state-of-the-art artificial

intelligent techniques, have been developed to address these challenges. These include the mul-

tiple model particle filter (Wang et al., 2016b), fuzzy systems (Hawas, 2007) and Support Vector

Machine (SVM) (Yuan and Cheu, 2003), and each takes into account both spatial and temporal

traffic data at the network level. For instance, Olutayo and Eludire (2014) introduced a hybrid

machine learning classifier that combined neural networks and decision trees to analyse traffic

incidents. Zhu et al. (2018a) applied convolutional neural networks to detect traffic incidents by

incorporating spatial correlations captured by a connectivity matrix among neighbouring edges

in a simulated road network. Gu et al. (2016) employed a dictionary-based method to map Twit-

ter data into a high dimensional binary vector and then identify the traffic incidents based on

high-dimensional feature spaces. The underlying principle of these data-driven methods is to

analyse versatile measures or data sources so as to recognise the changes in patterns as evidence

of the possible occurrence of an incident. Although a wide range of important contributions are

found in the literature, most studies with the exception of Bao et al. (2019) have been devoted

to motorway contexts while limited attention has been paid to urban networks because of their

aforementioned complexity.

2.2.6 Summary of the Research on Traffic Anomaly Detection

Generally, efforts of traffic anomaly detection can be categorised into roadway-based algo-

rithms, probe-based algorithms, arterial-application algorithms, sensor fusion-based algorithms

and driver-based algorithms (Parkany and Xie, 2005). These anomaly detection algorithms sum-
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marised in Table 2.2 have been used for tasks including RC detection and NRC detection.

Table 2.2: Summary of traffic incident detection algorithms

Algorithms Description Category References

Roadway-based

Algorithms

These algorithms applied

in the context

of highways based on

loop detector data.

Statistical Algorithms;

Logic Algorithms;

Artificial Intelligence based Algorithms

Xu et al., 2016

Xu et al., 2013

Lu et al., 2012

Probe-based

Algorithms

Using travel time

and the traffic

variables collected

by probes to detect

incidents in the highways

or arterial streets.

Statistical Algorithms;

Statistical Algorithm;

Bayesian Model

Niver et al., 2000

Hellinga and Knapp, 2000

Park and Haghani, 2016

Sensor Fusion-

based Algorithms

Using multiple data

sources to detect

traffic incidents.

Random Forest;

Treiber-Helbing Filter;

Support Vector Machine

Dogru and Subasi, 2018

Houbraken et al., 2015

Zhang and He, 2016

Arterial-application

Algorithms

Detection of

road incidents that

results in

non-recurrent

jam on urabn roads.

Pattern Matching Algorithms;

Random Forest Classifier;

Probabilistic Topic Algorithms;

Fuzzy Neural Network Algorithm;

Logit Algorithm;

Nueral Networks;

Bayesian Model

Habtemichael et al., 2015

Dogru and Subasi, 2018

Kinoshita et al., 2015

Tang et al., 2017

Rossi et al., 2015

Ki et al., 2018

Sun and Sun, 2015

Heterogeneous Data-

based Algorithms

Using new emerging data

sources to detect

traffic incidents.

Semi Naive Bayes (SNB) Classifier ;

Regression Model

Gu et al., 2016

Steenbruggen et al., 2016

The differences between RC detection and NRC detection can be summarised as follows.

First, the data used for RC and NRC are different. Although both methods need traffic vari-

ables as input, NRC needs the additional contextual information added explicitly by external

systems/processes, such as the traffic incidents. Second, since there are ‘congested’ or ‘un-

congested’ labels unavailable for RC, an extra label generation step is needed before the RC

detection. Finally, RC is caused by overloaded demand and thus for RC early prediction in a

period of time ahead may be possible whereas NRC cannot be predicted in advance.

There are two major challenges that remain unsolved. One is how, in the context of a

complex and constantly changing traffic demand profile, to improve the accuracy of RC and NRC

detection by considering the spatio-temporal propagation of RC and the magnitude of demand at

a whole network level, as identified in Section 2.2.3 and in Section 2.2.5 respectively. The other

one is the need to detect the onset of RC before its occurrence or to be able to give an early stage

warning, as concluded in Section 2.2.4. More robust solutions in these areas would provide

valuable information for traffic engineers to mitigate congestion more effectively in advance. In
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the next section, a number of detection algorithms will be reviewed and summarised, together

with the recent advances in computer science.

2.3 Detection Algorithms

To address the aforementioned challenges, it is essential to review existing anomaly detection

algorithms. In order to extend the current research into spatio-temporal field, some statistical

approaches and machine learning methods will be summarised in Section 2.3.1. Apart from the

existing methods, a comprehensive review of potential methods will also be presented. After

reviewing the existing statistical and machine learning methods, therefore, Section 2.3.2 will

summarise the recent advances in deep learning before reviewing the evaluation methods for

detection algorithms in Section 2.3.3.

2.3.1 Review of Anomaly Detection Algorithms

Generally, the family of anomaly detection algorithms can be classified into four categories as it

is in the surveys by (Ahmed et al., 2016; Chandola et al., 2009): classification-based algorithms,

clustering-based algorithms, statistical algorithms and information theory.

Classification and clustering algorithms are two main branches in machine learning, con-

sidered as supervised learning and unsupervised learning respectively according to whether or

not they make use of pre-labelling. Classification-based algorithms rely on extensive expertise

from relevant experts, such as in respect to the characteristics of anomalous patterns and their

differences compared to the normal activity profile, as well as the availability of anomalous and

normal datasets. On the other hand, clustering-based algorithms group similar data instances

and do not need pre-labelled anomalies. To use clustering-based algorithms, it is necessary

to accept the following key assumptions: 1) noise is considered as anomaly; 2) normal data in-

stances lie close to the nearest cluster’s centroid while anomalies are far away from the centroid;

and 3) the density or the size of a cluster below a threshold is considered anomalous.

Statistical methods are usually based on some data statistics or underlying distribution,

while information theory tries to distinguish the anomaly from the normal by understanding their



28 Chapter 2. Literature Review

underlying characteristics and mechanisms. All algorithms have been summarised according to

the above four categories, as shown in Figure 2.6.

Anomaly detection 
algorithms

Classification-
based algorithms

Support vector 
machine

Neural network

Clustering-based 
algorithmsK-means methods

Nearest Neighour 
methods

Statistical-based 
algorithms

Chi-square theory

Mixture model

Principal 
component 

analysis

Information theory Entropy

Rule-based and 
tree-based 
detection

Figure 2.6: Categories of anomaly detection algorithms

The algorithm types listed in Figure 2.6 will be reviewed in this section. Different detec-

tion algorithms of varying complexity, principles and data requirements can perform differently

when the data conditions are changed. The types of anomaly detection algorithms together with

their pros and cons are summarised after the review.

2.3.1.1 Classification-based Algorithms

Support Vector Machine The basic principle of a SVM is to derive a hyper-plane that max-

imises the margin of separation in feature space between the negative and positive class (Cortes

and Vapnik, 1995). Although the standard SVM algorithm involves supervised learning with

labelled data, it is able to be adapted as a clustering method since it is ultimately derived from

unsupervised learning (Ahmed et al., 2016).

SVM has been found to be one of the most powerful classification methods and has been

used to detect anomalies by arriving at a binary classification based on a region or boundary

learnt in the training dataset (Vapnik, 2013). The application of SVM in anomaly detection can

be seen in Table 2.3. SVM has the advantages of providing a good out-of-sample generalisation,
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robustness and convex optimisation but suffers the disadvantages of a lack of transparency of

results and sensitivity to over-fitting the model selection criterion (Auria and Moro, 2007).

Since, in practice, however, training data often contain unexpected noise which invalidates

the main assumptions of the SVM that all the sample data from training are independently and

identically distributed (IID), the standard SVM may result in poor generalisation and regulari-

sation.

Neural Network Artificial Neural Networks (ANNs) are inspired by the structure of biolog-

ical networks and consist of neurons and multiple layers, i.e., an input layer, hidden layer and

output layer, as shown in Figure 2.7. ANNs are designed to address complex linear or nonlinear

problems where the interrelationships among inputs are not well defined and understood (Zhang

et al., 1998). ANNs have many applications in respect to anomaly detection (Mirza and Cosan,

2018) and traffic incident detection (Ki et al., 2018) for either multiple or binary classifications.

Input Data 1

Input Data 2

Input Data 3

Input Data 4

Output

Hidden

layer

Input

layer

Output

layer

Figure 2.7: Topology of Neural Networks

The workflow of ANNs can be generalised as in Figure 2.8. The data are usually divided

into training and testing datasets. The training datasets are used to train the initial network

compared with the labelled data, and some stochastic gradient methods or loss functions are

used to optimise the weights in order, for example, to conform to different normal classes. As

the last step, the testing data instance is fed with optimised weights and bias into an activate

function which is usually a logic function to decide if the testing instance is normal or not

(Taylor and Addison, 2000; De Stefano et al., 2000).

One type of ANNs is Multiple Layer Perceptron (MLP). MLP is a class of feed-forward
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Figure 2.8: Workflow of Neural Network

artificial neural network which is inspired by the structure of biological networks and consists

of neurons and multiple layers, i.e., input layer, hidden layer and output layer (Haykin, 1994).

Apart from the input layer, each layer contains a neuron which is responsible for storing the

acquired knowledge and operating a nonlinear transformation by using an activation function,

such as a sigmoid function (Haykin, 1994). It is commonly used to solve difficult computational

tasks like predictive modelling tasks or complex non-linear problems where the interrelation-

ships among variables are not well understood. The predictive capability of MLP comes from

the hierarchical structure where the features from various scales can be learned and remapped

into high-dimensional features in order to relate with the target output (Cortez et al., 2012).

MLP often treats anomaly detection in relation to a typical recognition problem (Hawas, 2007;

Olutayo and Eludire, 2014; Lu et al., 2012) and thus has been selected as a representation of the

application of a machine learning technique in traffic congestion detection.

Rule-based and Tree-based Detection The basic idea of rule-based detection is to learn the

pattern of the normal behaviour in a system and consider everything that is not encompassed

within the normal pattern as anomalous. The rule-based algorithms can be used in both bi-

nary classification and multiple classifications. In contrast to binary classification, where all

data instances are classified into two disjointed classes, multiple classification maps a given in-

dependent and identically distributed training set: (S = (xi, yi); 1 ≤ i ≤ n) consisting of n

training instances (xi ∈ x, yi ∈ y) by using a multi-label classifier (n : x → y) via a specific

cost function.

Tree-based learning algorithms are considered to be one of the most-used supervised learn-
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ing methods since they empower predictive models with high accuracy, stability and ease of

interpretation (Pal, 2005). The high predictive power and accuracy arise from their inherent

capability to learn non-linear relationships. The tree-based algorithms include decision trees

(Quinlan, 1986), random forest (Breiman, 2001) and gradient boosting classifier (Friedman,

2001) and so forth.

For example, Random Forest (RF) was first introduced by Breiman (2001) as an ensemble

learning method whose mainly underlying principle is to group a couple of methods together

so as to improve the accuracy of classification or prediction. Specifically, RF starts with a

standard machine learning technique, i.e., decision tree, and constructs a multitude of decision

trees to output class labels of classification. RF has competitive advantages in respect to fast

training time and its effectiveness in dealing with unbalanced and missing data, and hence it has

been extensively used in the literature and has proved its superiority to detect traffic anomalies

compared to normal decision tree classifiers (Liu et al., 2013).

On the other hand, Gradient Boosting Classifier (GBC) is one of the major and powerful

classification machine learning methods first introduced in 2001 (Friedman, 2001) and designed

to search a prediction model in the form of an ensemble of prediction trees. It builds the model

by optimising a non-specific differentiable loss function in a stage-wise boosting fashion. GBC

has been used in the transportation research domain because of its relatively good performance

compared with other normal ensemble methods. For example, GBC has been applied to im-

prove the travel time prediction (Zhang and Haghani, 2015) and crash prediction on urban roads

(Ahmed and Abdel-Aty, 2013).

2.3.1.2 Clustering-based Algorithms

Another type of algorithm in machine learning are the clustering-based algorithms, where there

are usually no labels available during the training process. Two methods, K-means and nearest

neighbour, will be presented in this section.

K-means Clustering K-means clustering (MacQueen et al., 1967) is a method that partitions

data instances into different clusters where each data instance belongs to the cluster with the
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nearest mean, serving as a centroid of the cluster. This algorithm usually begins with a pre-

specified number of clusters K and initialised K centroids, and assigns all data instances to the

centroids before re-calibrating the centroids until finding the optimal ones.

Underpinning K-means clustering are the following assumptions.

• A data instance is treated as an anomaly either if the distance between an instance and

centroid is larger than a predefined threshold; or

• if its distance to the normal cluster centroid is larger than the predefined thresholds.

In general, the essence of K-means algorithms lies in a distance function to compute the

distance or similarity between two objects. Among all the existing distance metrics, the Eu-

clidean distance has been the most commonly used, as Eq. 2.3.

d(x, y) =

√√√√ m∑
i=1

(xi − yi)
2 (2.3)

where x = (x1, . . . , xm) and y = (y1, . . . , ym) are two input vectors with m features. It should

be noted that in the Euclidean distance, all features are equally measured, even for the attributes

in different scales, so it is necessary to normalise all features before applying the algorithms.

The basic Euclidean distance, however, can be easily extendable to prioritise some features by

the weighted Euclidean distance by adding the weighting factor si for the ith features, as follows.

d(x, y) =

√√√√ m∑
i=1

(
xi − yi

si
)2 (2.4)

Nearest Neighbour-based clustering The nearest neighbour algorithms (Dasarathy, 1991)

build a predictive model and map the patterns into different classes by comparing the features

of the patterns which have already been classified. For the past decade, the concept of nearest

neighbour analysis has been used intensively in anomaly detection techniques. In contrast to K-

means algorithms, the key assumptions for this algorithm are that normal data instances occur

in dense neighbourhoods, while anomalies occur much further from their closet neighbours.
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Typically, the nearest neighbour algorithm requires a similarity or distance measure defined

between two data instances. Due to its sole dependence on distance or similarity, it is particularly

effective in the situations when the distributions of the patterns and categories of patterns are

unknown (Cai and Chou, 2003). Moreover, it is easy to use as well as having a low probability

of errors.

The basic notion of this algorithm can be described as follows. Assume that there are

N samples (X1,X2, . . . ,XN ) which have been classified into k categories (1, 2, . . . , k). The

generalised distance between X and Xi where i ∈ [1, N ] is defined as:

D(X,Xi) = 1− X ·Xi

‖X‖ ‖Xi‖ (2.5)

where:

X ·Xi = the dot production of vector X and Xi

‖X‖ = the modulus of X

‖Xi‖ = the modulus of Xi

D(X,Xi) = the generalised distance within the range of [0, 1]

According to the nearest neighbour principle, the data instance X is predicted as belong-

ing to the same category as of Xk, when the generalised distance between X and Xj (j =

1, 2, . . . , N ) is the smallest; i.e.,

D(X,Xk) = min{D(X,X1), D(X,X2), . . . , D(X,XN)} (2.6)

The distance between two data instances can be computed in different ways, such as Eu-

clidean distance in Eq. 2.3 for continuous attributes and a simple matching coefficient for cat-

egorical attributes. Similar to the K-means algorithms, a key advantage of nearest neighbour

is that they are unsupervised and purely data-driven and hence do not make any assumptions

regarding the generative distribution of the data. Moreover, adapting the nearest neighbour al-

gorithm to a different data type is very straightforward, primarily requiring just the definition

of an appropriate distance measure for the given data. Nevertheless, it has limitations such as

being computational expensive since it involves computing the distance of each data instance
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to its nearest neighbours. The second limitation arises from its dependence on a distance mea-

sure, since defining distance measures between instances can be challenging when the data is

complex, such as with graph data (Chandola et al., 2009).

2.3.1.3 Statistical Algorithms

Various other techniques such as Chi-square theory, probability mixture models and principal

component analysis, have been developed based on the principles of statistical theory to detect

anomalies.

Chi-square Theory Chi-square theory has been used for anomaly detection by Ye and Chen

(2001) to detect a large departure of events from normal by using a distance measure based on

the chi-square test statistic as

χ2 =
n∑

k=1

(Ok − Ek)
2

Ek
(2.7)

where:

Ok = the observed value of the kth variable

Ek = the expected value of the kth variable

n = the number of variables

χ2 has a low value when an observation of the variable is near the expected, Following the

μ± 3σ rule, when an observation, χ2 is greater than χ2 + 3S2
χ it is considered an anomaly.

Mixture Model Eskin (2000) proposed a mixture model for detecting anomalies and distin-

guished all data instances into two classes based on their probabilities: 1) abnormal events with

a small probability λ; and 2) Normal events with majority probability of 1− λ.

In the context of the mixture model, these probability distributions are termed as majority

(M) and anomalous (A) distributions. These two probability distributions form the generative

distribution for the data D as

D = (1− λ)M + λA (2.8)
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Principal Component Analysis Principal Component Analysis (PCA) (Wold et al., 1987)

extracts the dominant patterns in a data matrix in terms of a complementary set of scores. The

application of PCA in the anomaly detection field has several benefits including the absence

of assumptions about statistical distribution, significantly decreased dimensions without losing

information and finally low computational complexity (Shyu et al., 2003).

It is generally a linear combination of p random variables (A1, A2, . . . , Ap) that are: 1)

uncorrelated; 2) with variances sorted in order from high or low; and 3) a total variance equal

to the variance of the original data.

The mathematical formulation of PCA can be expressed as Eq. 2.9.

yi = ei(x− x̄) = ei1(x1 − x̄1) = ei2(x2 − x̄2) + · · ·+ eip(xp − x̄p) (2.9)

where:

yi = the ith principal component

i = 1, 2, . . . , p and λ1 ≥ λ2 ≥ . . . λp ≥ 0

A = an n× p data matrix of n observations on each of p variables (A1, A2, . . . , Ap)

S = a p× p sample co-variance matrix of A1, A2, . . . , Ap

Shyu et al. (2003) adapted PCA for anomaly detection by assuming that the number of

normal instances is much higher than that of anomalies. A data instance (x) will be classified

as an anomaly if

q∑
i=1

y2i
λi

> c1 or

p∑
i=p−r+1

y2i
λi

> c2 (2.10)

and is normal if
q∑

i=1

y2i
λi

≤ c1 or

p∑
i=p−r+1

y2i
λi

≤ c2 (2.11)

where c1 and c2 are outlier thresholds for creating a specific alarm α1 and α2.

α = α1 + α2 − α1α2 (2.12)



36 Chapter 2. Literature Review

where

α1 = P (

q∑
i=1

y2i
λi

> c1|x is a normal instance) (2.13)

and

α2 = P (

p∑
i=p−r+1

y2i
λi

> c2|x is a normal instance) (2.14)

2.3.1.4 Information Theory

Another branch of anomaly detection belongs to information-theoretic measures, where entropy

is one commonly used measure originating from the concept of entropy. Entropy was proposed

by Clausius (1867) in the early 1850s to measure the disorder in thermodynamic systems, while

later on Shannon (1948) adopted the concept of entropy to information theory. The definition of

entropy in information theory is a measure of the uncertainty associated with a random variable

(Bereziński et al., 2015). The underlying principle is that the more random the variable, the

bigger the entropy and vice verse.

Assume that in a datasetD in which each data item belongs to a class (x ∈ CD), the entropy

of D relative to the |CD| - wise classification is defined as

H(D) =
∑
x∈CD

P (x) log
1

P (x) (2.15)

where P (x) is the probability of x in D.

One adaption of entropy, given thatY is the entropy of the probability distribution (P (x|y)),
is conditional entropy, as follows.

H(D|Y ) =
∑

x,y∈CD,CY

P (x, y) log
1

P (x|y) (2.16)

where P (xy) is the joint probability of x and y and P (x|y) the conditional probability of x given

y.

Other extensions of entropy include the relative entropy between two probability distribu-
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tions p(x) and q(x) defined over the same x ∈ CD as

relEntropy(p|q) =
∑
x∈CD

P (x) log
p(x)

q(x) (2.17)

and relative conditional entropy which is defined between two probability distribution (p(x|y)
and q(x|y)) over the same x ∈ CD and y ∈ CY as

relCondEntropy(p|q) =
∑

x,y∈CD,CY

P (x, y) log
p(x|y)
q(x|y) (2.18)

Entropy-based anomaly detection has been used intensively in the past. For example,

Bereziński et al. (2015) proposed an entropy-based anomaly detection algorithm to detect mod-

ern malware based on anomalous patterns in the network.

2.3.1.5 Anomaly Detection Summary

The general detection algorithms, together with their applications, have been summarised in

Table 2.3. The application areas include fraud detection, industrial damage detection, cyber-

intrusion detection, textual anomaly detection, medical detection, image processing, sensor

networks and other fields as mentioned previously in Section 2.1.4. Besides the areas listed

in Table 2.3, there are some other emerging areas, such as robot behaviour detection (Haddadin

et al., 2017), money laundering detection (Dreżewski et al., 2015), web fault detection (Wang

et al., 2016c) and traffic surveillance (Bhuyan et al., 2016) and sensor network detection for

healthcare (Haque et al., 2015). On the other hand, for the detection algorithms in Table 2.3, a

wide range of algorithms including parametric methods (e.g., statistical profiling and Bayesian

networks) and non-parametric methods (e.g., neural networks and nearest neighbour method)

have been summarised.

Table 2.4 summarises the advantages and constraints for anomaly detection. These include,

for classification-based algorithms, the need for supervised models with labelled instances of

anomalies, while other algorithms can be used as unsupervised learning without labelled in-

stances. Classification-based algorithms and clustering-based algorithms are quite fast in the

testing phase because each test instance is compared with the pre-trained model or a small num-
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ber of clusters. Other methods, however, are slow in both the training and test phases, especially

when training the neural networks (Chandola et al., 2009).

Table 2.3: Summary of anomaly detection applications and corresponding techniques

Applications Description Detection Algorithms References

Intrusion

Detection

Detection of malicious

activity in a computer

related system;

textbackslash

Statistical Profiling;

Neural Networks;

Mixture of Models;

Rule-based Systems;

Support Vector Machine;

Statistical Model

Bayesian Networks;

Clustering Based Detection

Nearest Neighbour;

Spectral;

Information Theory

Resende and Drummond, 2018

Mirza and Cosan, 2018

Moustafa et al., 2018

Herrera-Semenets et al., 2018

Shams and Rizaner, 2018

Moustafa and Slay, 2016

Kabir et al., 2017

Bostani and Sheikhan, 2017

Lin et al., 2015

Ma et al., 2016

Noble and Cook, 2003

Fraud

Detection

Detection of commercially

criminal activities,

such as mobile phone

call fraud, credit card

fraud and insurance

fraud

Neural Networks;

Rule-based Systems;

Clustering Based Detection;

Statistical Profiling;

Parametric Statistical Model;

Information Theory

Fu et al., 2016

Chen et al., 2015

Nian et al., 2016

Black et al., 2017

Agarwal, 2005

Coppolino et al., 2015

Medical Anomaly

Detection

Detection of patient

condition anomalies or

recording errors or

instrumentation malfunction.

Neural Networks;

Rule-based Systems Clustering;

Statistical Model;

Bayesian Networks;

Nearest Neighbour

Todoroki et al., 2017

Mitchell and Chen, 2015

Chowdhary and Acharjya, 2016

Manogaran et al., 2018

Chandel et al., 2016

Industrial Damage

Detection

Detection of machine

malfunction

Non-parametric Statistical Model;

Parametric Statistical Model;

Spectral;

Rule Based Systems

Neural Networks;

Mixture of Models;

Tibaduiza et al., 2016

Lorente et al., 2015

Leite et al., 2015

Zhou et al., 2015

De Fenza et al., 2015

Hollier and Austin, 2002

Image Processing

Detection

Detection of motion

abnormal appearances on

the image.

Regression;

Mixture of Models;

Support Vector Machines;

Bayesian Networks;

Clustering;

Neural Networks;

Nearest Neighbour

Chen et al., 2005

Moustafa et al., 2018

Davy and Godsill, 2002

Chen and Jahanshahi, 2018

Vishnuvarthanan et al., 2016

Wu et al., 2018b

Arora and Srivastava, 2015

Textual Anomaly

Detection

Detection of interesting

events or novel topics

in the articles

or news.

Statistical Profiling;

Neural Networks;

Mixture of Models;

Clustering;

Support Vector Machines;

Li et al., 2016

He et al., 2016b

Kusetogullari et al., 2016

Fernández-Gavilanes et al., 2016

Patra et al., 2016

Sensor Networks

Detection

Detection of malfunction

or anomalous events

based on sensor data

Rule-based Systems;

Bayesian Networks;

Neural Networks;

Nearest Neighbour;

Spectral;

Parametric Statistical Model;

Branch et al., 2013

Zhao et al., 2017

Chine et al., 2016

Subramaniam et al., 2006

Chatzigiannakis et al., 2006

Karami and Wang, 2018
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Table 2.4: Summary of detection algorithms with advantages and limitations

Category Advantages Limitations Representatives

Classification

based Algorithms

1. Classify the instance

into multiple classes

2. Fast in the

testing phase

3. Suitable for urban

network level detection

and prediction

1. Rely on accurate

labels

Neural networks

(e.g., Todoroki et al., 2017)
Bayesian networks

(e.g., Kabir et al., 2017)
Support vector machines

(e.g.,Shams and Rizaner, 2018)
Rule-Based algorithms

(e.g., Herrera-Semenets et al., 2018)

Clustering

based Algorithms

1. Able to be used as

unsupervised learning

2. Adapt to complex

data type

3. Fast in the

testing

4. Perform better with

missing anomalies

1. Sensitive to the

capabilities of methods

in clustering the

structure

2. Hard to optimised

3. Every instance

is forced to be

clustered into

some cluster

4. Sensitive to the

outliers

5. The computational

complexity is high

6. Rely on the

distance metric

Nearest Neighbour

(e.g., Lin et al., 2015)
K-means Clustering

(e.g., Kumari et al., 2016)
Expectation maximization

(e.g., Smith et al., 2002)

Statistical Detection

Algorithms

1. Provide a statistically

justifiable solution

2. Prediction score is

associated with

confidence interval

3. Robust to anomalies

4. Able to be used as

unsupervised learning

1. Rely on assuming

that data is conformed

to a distribution

2. Hypothesis tests

for complex distribution

is nontrivial

3. Difficult to capture

the correlations among

diverse contributes

Mixture model

(e.g., Moustafa et al., 2018)
Principle component analysis

(e.g., Harrou et al., 2015)

Information Theoretic

Detection Algorithms

1. Able to be used as

unsupervised learning

2. No assumption about

the distribution for

the sample data

1. Sensitive to the

choice of the information

measures

2. Dependent on the

substructure size

when it is applied

on sequences

and spatial data

3. Hard to be associated

with a score

Entropy

(e.g., Coppolino et al., 2015)
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2.3.2 Deep Learning Algorithms

The phrase deep learning refers to learning the relationships among data through back-propagation

algorithms and multi-processing layers (LeCun et al., 2015). Deep learning is an active research

area which has demonstrated remarkable success in a number of application areas such as image

processing (Farabet et al., 2013), speech recognition (Hinton et al., 2012a) and adaptive control

(Mnih et al., 2015). Unlike conventional neural networks with a single hidden layer, deep learn-

ing is a set of machine learning algorithms that tend to learn at multiple levels of abstraction

(Zhang et al., 2018b). LeCun et al. (2015) comprehensively reviewed the development of deep

learning algorithms and their applications. Two commonly-used methods in deep learning are

Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM).

2.3.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a branch of deep learning techniques initially intro-

duced in 1980 by Fukushima (1980) as a derivative of conventional multilayer neural networks.

Deep convolutional nets provide good applications in dealing with video, images, audio and

speech in their raw form (LeCun et al., 2015). In addition to the fully connected layers com-

monly found in conventional multilayers, a CNN includes convolutional layers and pooling lay-

ers, which will be presented later.

CNN is designed to use a form of 2D input such as image or speech signals, and this 2D

input is able to incorporate the spatial information in the raw input. CNN is also easier to train

as it benefits from the convolution layer and sub-sampling with fewer parameters compared

with fully-connected networks when the number of hidden units is the same. Figure 2.9 shows

an example of CNN called LeNet-5 (LeCun et al., 1998), which is well-known as a model for

digital recognition of handwriting. There are two convolutional layers, two max-pooling layers

and two fully-connected layers in LeNet-5.

28

28

24

24

12

12

5x5
Conv
5x5
Conv
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5x5
Conv
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Conv

L3 8x8
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Figure 2.9: A LeNet-5 CNN (Source: LeCun et al. 1998)
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The input to a convolutional layer is an Ri×Ci×Ni image where Ri and Ci is the height

and width of the input and Ni is the number of channels1. The convolutional layer has No filters

(or kernels) of size K ×K ×Ni where K is the receptive field size, which is smaller than that

of the dimension of the input image. After applying the filters over the input image, it outputs

No feature maps of size Ro× Co, where Ro = Ri−K + 1 and Co = Ci−K + 1.

Then, each feature map is sub-sampled with max pooling or mean over P × P contiguous

regions where p ranges from 2 for small images (e.g. 28× 28 handwriting digit images) to 5 for

larger inputs. Either before or after the sub-sampling layer, an additive bias and nonlinear acti-

vation function (e.g. sigmoid and tanh) is applied to each feature map. Figure 2.10 illustrates

the operation of a convolutional layer and a pooling layer. Units of the same colour have tied

weights and units of different colours represent different filter maps.

Figure 2.10: First layer of a CNN with pooling (Source: Ng et al. 2016)

The fully-connected layers are the same as in a standard multi-layer neural network. The

input is a one-dimensional feature vector Vi with size Ni and the output is a one-dimensional

feature vector Vo with size No. The weight matrix W has Ni×No values and Vo = W ·Vi+bias.

Given the above notations, a real CNN can be described as shown in Table 2.5.

The locally-connected convolutional layers enable a CNN to capture complex spatial corre-

lations (Krizhevsky et al., 2012), while reducing the number of parameters in the pooling layer,

which makes a CNN potentially applicable to large-scale traffic networks (Karpathy et al., 2014).

Recent trends of big data analytics, supported by the existing and emerging sensor tech-

1An RGB image has Ni = 3 where RGB image refers to a truecolour image which stores a data array with the

red, green and blue colour for the individual pixel.



42 Chapter 2. Literature Review

Table 2.5: Configuration of LeNet-5

Ni No Ri Ci Ro Co K P Activation Function

L1(Conv) 1 20 28 28 24 24 5

L2(Pool) 20 20 24 24 12 12 2 tanh

L3(Conv) 20 50 12 12 8 8 5

L4(Pool) 50 50 8 8 4 4 2 tanh

L5(FC) 800 500 tanh

L6(FC) 500 10 softmax

nologies in transportation, mean that data-driven deep learning has a decent opportunity to play a

role in traffic estimation, prediction and traffic signal control (Wu et al., 2018c). Indeed, consid-

erable efforts have been focused on the application of deep learning techniques to traffic-related

prediction and estimation problems. For instance, Polson and Sokolov (2017) proposed a deep

neural architecture combining a linear model and a sequence of tanh layers to predict traffic

flows; and Wu et al. (2018c) exploited a hybrid deep learning algorithm to capture the spatial

and temporal correlation for traffic flow forecasting. Ma et al. (2017) recently applied a CNN

algorithm to learn the traffic as an image with the aim to predict large-scale and network-wide

traffic speed, taking into account spatio-temporal traffic dynamics with relatively high accuracy.

The study suggested that deep learning methods, especially CNN, can construct much deeper

and sophisticated architectures than a conventional method and therefore can directly capture

spatio-temporal traffic features and correlations as a whole in a large-scale network rather than

on the traditional isolated links or corridors (Ma et al., 2017). Wu et al. (2018c) presented a Deep

Neural Network (DNN) architecture which made full use of the spatio-temporal characteristics

of traffic data by using a CNN and RNNs to learn, respectively, spatial and temporal features

for traffic flow prediction, and demonstrated that the proposed DNN was capable of improving

prediction accuracy. Wang et al. (2016a) used an error-feedback recurrent CNN structure for

continuous traffic speed prediction to learn from prediction errors so as to adapt for abrupt traffic

anomalies. Most applications of deep learning, however, are related to estimation or prediction

problems, while limited studies have investigated its application in traffic anomaly detection.
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2.3.2.2 Long Short Term Memory

Long Short Term Memory (LSTM) (Hochreiter and Urgen Schmidhuber, 1997) is another com-

monly used deep learning method originated from Recurrent Neural Networks (RNNs) (Rumel-

hart et al., 1986; Werbos, 1990). RNNs are a general class of artificial neural networks, and

unlike feedforward neural networks (Rumelhart et al., 1988), RNNs can deal with sequences

of time series inputs (x1, x2, . . . , xt) by using their internal state memory to output a sequence

(y1, y2, . . . , yt) through an iteration over the Eq. 2.19 and Eq. 2.20.

ht = σ(whxxt + whtht−1 + b) (2.19)

yt = f(whxxt + b) (2.20)

where, ht is the hidden layer at time t, xt is the input at time t, yt is the output, w and b are

the weight and bias respectively, while f is the activation function, in which σ represents the

Sigmoid activation function as defined in Eq. 2.21:

f(x) =
1

1 + e−x
(2.21)

Traditional RNNs have two issues when dealing with the short-term prediction: 1) poor

performance with a long time span and 2) difficulty in identifying the optimal time window size

or lags (Ma et al., 2015a).

The main difference between RNN and LSTM comes from how they maintain information

differently in memory over time during the feedback loops where LSTM has a set of gates which

could be used for control the information and maintain information in memory for long periods.

This architecture enables LSTM to learn longer-term dependencies effectively (Hochreiter and

Urgen Schmidhuber, 1997).

Intuitively, more information is needed to decide how to integrate the previous information

into the current decision, so the most recent information before the decision time step t may

not be enough and information further back is therefore also necessary. LSTM is one of the
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more practical ways to address these limitations of RNNs, as LSTM is known to solve long-

term dependencies by using memory states. Specifically, this long-term information can be

carried effectively with the help of input gate, output gate and forget gate (Hochreiter and Urgen

Schmidhuber, 1997). LSTM was initially invented with the concept of gated recurrent units by

Hochreiter and Urgen Schmidhuber (1997), and has been proved to exhibit superior capability

for time series analysis because of its capability of connecting previous information with a rather

long lag and effectiveness in handling long-term dependencies (Wu and Tan, 2016).

2.3.3 Evaluation Methods for Detection Algorithms

The performance measures, Detection Rate (DR), False Positive Rate (FPR), F-measurement,

precision and Mean Time to Detection (MTTD) are commonly used in automatic anomaly de-

tection research (Parkany and Xie, 2005) to evaluate the performance of classification problems.

DR is formulated as the rate of the total number of incidents detected by the total number

of true incidents, as expressed by Eq. 2.22.

DR =
TP

FN + TP (2.22)

where TP is True Positive and FN is False Negative.

FPR is defined as the rate of the total number of false alarms to the total number of algo-

rithm applications, in other words, the sum of the detection of True Negative (TN) and FP, given

by Eq. 2.23.

FPR =
FP

TN + FP (2.23)

Another measure is F-measurement or F1 score as expressed by Eq. 2.24.

F −Measurement =
2

1/DR + 1/Precision
=

2TP

2TP + FP + FN (2.24)
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Precision is defined as the percentage of true positives to all positives detected.

Precision =
TP

FP + TP
(2.25)

MTTD is an indicator applied to evaluate the mean time required by a detection algorithm

to make a decision for traffic incidents. It is measured as the mean delay in seconds between the

apparent occurrence of an incident and its detection, averaged for all incidents detected over a

period of time (Srinivasan et al., 2003). It can be defined as Eq. 2.26.

MTTD =
1

n

n∑
i=1

(tid − tio) (2.26)

where n is the number of correctly detected incident cases; tid is the time where the incident

was detected and tio is the time when the incident occurred or was measured. In this study,

for traffic incident detection, traffic data and incident data have been aggregated in five-minute

intervals. After the aggregation, the occurrence of traffic incidents cannot be directly reflected

by the data. Thus, tio has been adapted into the time at the end of each five-minute interval

in which the incident occurred. After this adaption, the MTTD used in this study is basically

equivalent to the computation time which has been used in the previous study (Tang and Gao,

2005).

In addition to the evaluation indexes mentioned above, the confusion matrix (also known as

the error matrix, see Figure 2.11), which is a table presenting the performance of the supervised

learning algorithms, can also be used for the performance evaluation.

 

  Predicted  
condition 

 Total population Predicted non-incident Predicted incident 

True 
condition 

Non-incident True Negative 
(TN) 

False Positive 
(FP) 
Type I error 

Incident 
False Negative 
(FN) 
Type II error 

True Positive 
(TP) 

Figure 2.11: Confusion matrix
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Other traditional measures to evaluate and intuitively visualise the performance of binary

classification are the Receiver Operating Characteristic (ROC) curve and Area Under the Curve

(AUC) (Fawcett and Provost, 1999). Fawcett (2006) presented the use of ROC in classification

problems. Basically, ROC is generated by plotting the true positive rate versus the false positive

rate for all thresholds ranging from 0 to 1. The ROC curve of an accurate classifier is presented

in the upper left corner. Conversely, the ROC curve of a poor classifier should be close to the

diagonal reference line. That diagonal line essentially represents a classifier that is not better

than a random guess. A good classifier has an AUC approximating to 1, while a poor classifier

has an AUC around 0.5. The ROC curve and AUC are insensitive to whether the predicted

probability is properly calibrated to represent the probability of each class precisely.

2.3.4 Summary of Detection Algorithms

This section reviewed the existing anomaly detection algorithms and recent advances in com-

puter science with two representative deep learning methods. CNN and LSTM are capable of

capturing the spatial and temporal correlations and abstracting these during the modelling pro-

cess (Yang et al., 2018; Wu et al., 2018c). This capability is a promising property for modelling

spatio-temporal traffic features in this research, and thus a hybrid method combining CNN and

LSTM would make it possible to address the gap of early detection of RC that was highlighted

earlier.So as to evaluate detection algorithms, traditional anomaly detection metrics, such as

detection rate, false positive rate and so forth, together with ROC curve and confusion matrix

have been reviewed in Section 2.3.3.
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2.4 Summary

This chapter has summarised the previous studies on anomalies and anomaly detection before

narrowing down to the traffic anomaly related issues and detection and offering a comprehensive

review of the existing and emerging techniques.

Anomaly detection is used in various research domains such as intrusion detection, medical

anomaly detection and fraud detection. The definition of anomaly is heavily dependent on the

field of application. After a brief presentation of anomaly detection in general, a detailed review

was conducted in terms of the available detection algorithms and specific algorithms that have

been used for traffic incident detection.

Although a lot of effort has been devoted to traffic-related anomaly detection, some chal-

lenges remain: 1) detection of traffic anomalies at the network level rather than at the corridor

or link level, and localisation of the traffic anomaly; and 2) early detection of recurrent conges-

tion, i.e., provision of an early alarm in respect to potential congestion in the network. Given

the gaps identified, recent advances in computer science, particularly deep learning algorithms,

may potentially pave the way to detect traffic anomalies in network and to predict the conges-

tion as early as possible. Specifically, opportunities appear to arise from the availability of

sophisticated spatio-temporal models for potential on-line incident detection, especially with

the application of Convolutional Neural Networks and Long Short Term Memory. CNN, with

its ability to deal with two-dimensional structures, together with LSTM, have the potential to

be used in spatio-temporal detection in the traffic network level.



Chapter 3

Spatio-Temporal Anomaly Detection
Frameworks

The main objective of this chapter is to develop a novel framework for traffic anomaly detection

and early congestion prediction at a network level. Given the gaps and objectives summarised

in Chapter 2, to achieve this objective, it is vital to deploy recent advances, especially deep

learning techniques, for traffic anomaly detection with spatio-temporal features from a network.

This chapter is organised as follows. Section 3.1 defines the problem of traffic anomaly

detection and the scope of this research. Section 3.2 sets out the general structure of the frame-

works for both recurrent congestion detection and non-recurrent congestion detection. Section

3.3 summarises the problem definition and methodology framework.

48
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3.1 Definition of the Problem

3.1.1 Definition of the Traffic Anomaly

As discussed in Section 2.1, unlike other domains in data science, such as classification and

clustering, anomaly detection is typically customised according to the application subject since

it is heavily reliant on subject knowledge. Even though a lot of research has been devoted to

different types of traffic congestion, there is no consensus on the definition of traffic anomaly.

It is essential to define what a traffic anomaly is at the beginning of the process of developing a

conceptual methodological framework.

This research, therefore, defines traffic anomaly as follows:

A traffic anomaly is a traffic observation which deviates significantly from normal free-flow

traffic observations.

In the domain of transport, there are two main types of traffic observations that vary anoma-

lously from the normal free flow. They are recurrent congestion and non-recurrent congestion as

shown in Figure 3.1. The definitions of recurrent congestion and non-recurrent congestion are

generally linked to their causation. The first one is usually caused by scarce supply of road in-

frastructure and regularly excessive demand from road users, particularly throughout the morn-

ing and evening peak-hours. This kind of congestion is therefore referred to in the literature as

recurrent congestion (Anbaroglu et al., 2014a; Emmerink et al., 1995).

The second one is specifically related to individual incidents such as random accidents,

bad weather (e.g., fog, heavy rain and snow) and road works wherein the road capacity would

be diminished dramatically during a certain period of time. Congestion of this type is referred

to as non-recurrent congestion (Anbaroglu et al., 2014a; Emmerink et al., 1995). To clarify,

the phrase traffic anomaly in this research only refers to these two categories of recurrent and

non-recurrent congestion.
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Figure 3.1: Family of traffic anomalies

3.1.2 Characteristics of the Traffic Anomaly

The characteristics of two types of traffic anomalies or congestion are varied. It is obvious

that the first type of anomaly belongs to the class of collective anomalies, while the second

is contextual anomalies due to the availability of contextual information. Since these traffic

congestion anomalies commonly last for a period of time and the nature of the data input is time-

series data, it should be noted that it is rare to find traffic anomalies belonging to the category of

point anomaly. This research assumes that traffic anomalous variables associated with specific

events or behaviours will be associated with contextual anomalies, and that this type of anomaly

is related to the detection of non-recurrent congestion.

On the other hand, traffic anomalous variables caused by normally excessive traffic demand

but not subject to any specific events are categorised as collective anomalies, and this type of

anomaly corresponds to the recurrent congestion detection problem. This research covers both

types of traffic anomaly.

3.1.3 Comparison of Two Traffic Anomaly Detection Problems

Even though these two types of traffic anomaly, i.e., recurrent congestion and non-recurrent

congestion, can sometimes overlap, considering the nature of the requirement for labelled data,
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the two research problems can be treated separately. Specifically, recurrent congestion is usually

predicted without congestion labels such as severe congestion, moderate congestion and normal

condition, whereas the non-recurrent congestion problem is usually in association with the real

labelled contextual information as indicated in Section 2.1.2. Thus, for the purposes of machine

learning, the former should be treated as an unsupervised learning problem while the latter will

be trained as a supervised learning problem. Secondly, based on the comprehensive literature

review on these congestion fields, the research challenges identified in Section 2.2 are different

in terms of the availability of contextual information and the possibility of early detection.

Since recurrent congestion is usually caused by excessive demand during rush hours, sim-

ilar to the traffic state estimation or prediction problem introduced in Section 2.2.2, it can be

predicted based on traffic variables by using data-driven methods. The key objective, therefore,

is to identify recurrent congestion as early as possible so that an early alarm can be given as an

input for ITS in practice. The other objective is to develop a single method that can be used as

a predictive model for a whole network by considering the spatio-temporal correlations rather

than that of traditional corridor-based or link-based models. On the other hand, non-recurrent

congestion is usually triggered by some random factors, such as car accidents, which can hardly

be estimated in advance.

Detecting non-recurrent congestion on an urban road network is more challenging than that

of recurrent congestion due to (1) the heterogeneous nature of an urban road network and (2)

the random nature of non-recurrent events (Anbaroglu et al., 2014a). Traditionally, however, in

the context of non-recurrent congestion, since detection methods are link-oriented and require

the learning of a network with hundreds and thousands of links, a number of models are used.

It is vital for us to identify the non-recurrent congestion at a network level using the clues from

historical non-recurrent congestion patterns across the network within a single model rather than

training numerous models for different links.

In summary, the methods developed in this chapter should solve two research questions.

• How to predict recurrent congestion as early as possible considering spatio-temporal in-

formation from a network-level

• How to detect traffic recurrent congestion and non-recurrent congestion respectively for
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a network within a single model

As mentioned in Section 1.2.1, another disruptive factor affecting traffic management is

sensor fault anomalies. Some types of sensor fault anomaly may belong to point anomaly. To

ensure the reliability of traffic anomaly detection, the robustness of the proposed anomaly de-

tection against factors such as sensor faults, data quality and others will be discussed in Chapter

7.

In order to solve both research questions, it is vital to develop a model which can, first,

help to capture the spatio-temporal information from traffic networks, second be capable of

processing a large network within only one model and, third, learn effectively from the histori-

cal information to build up the predictive power for early detection. The recent advance in deep

learning techniques could be used to address both research questions. CNN can learn traffic

spatial correlations of an entire urban traffic network by only one model for recurrent conges-

tion and non-recurrent congestion. LSTM is capable of temporal correlation learning and it is

effective in long-term dependencies prediction with historical traffic data. More explanation on

this based on practical case studies will be included in following Chapters.

3.2 Methodological Framework

It is essential to construct a conceptual framework to formulate the process of recurrent con-

gestion detection and non-recurrent congestion detection. This framework, in addition to robust

analysis, needs to take practical issues such as data quality and sensor faults into consideration.

As implied by the flow of general anomaly detection in Section 2.1.3, the conceptual

methodology for this research can be presented in Figure 3.2.

Figure 3.2 shows the three stage anomaly detection framework. The first stage is the trans-

lation layer to extract the spatio-temporal features. In the second stage, a deep learning technique

is proposed that has the capability to process multi-dimensional large volume data to detect traf-

fic anomalies, whereas the third stage serves to localise an anomaly within the network. The

following sections from 3.2.1 to 3.2.3 will introduce these stages briefly.



3.2. Methodological Framework 53

Traffic anomaly 
detection model

Input data
Stage 1:

Translation layer

Stage 2:
Anomaly detection

algorithm

Stage 3:
Localisation

Calibrated model

Evaluation and 
robustness analysis

Historical training

Historical testing

nggg
Stage 1:

Translation layer

Stage 2:
Anomaly detection

algorithm

Stage 3:
Localisation

gg

Figure 3.2: Conceptual methodology framework

• Translation layers to transfer data into the input format of the proposed network-level

model

• Deep learning methods based anomaly detection for the identification of non-recurrent

congestion and the early detection of recurrent congestion

• Localisation to find the congestion point

In this research, the possibility of using multiple traffic variables, i.e., traffic flow and occu-

pancy, to detect the traffic anomalies by making use of the deep learning approach is explored.

Given the different objectives of detecting both recurrent and non-recurrent congestion, the de-

tailed framework for these two methods will be slightly different, as shown in Figure 3.3 and Fig-

ure 3.4 respectively. Specifically, in terms of non-recurrent congestion, a supervised CNN will

be proposed to map the traffic non-recurrent congestion labels with traffic variables; whereas,

for the recurrent congestion problem, the hybrid methods (i.e., the combination of CNN and

LSTM) will be proposed to detect recurrent congestion anomalies.
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Figure 3.3: Methodological framework for early recurrent congestion detection

The difference between these two frameworks is summarised as follows.

• Input data: recurrent congestion detection is based only on traffic data while the process

for non-recurrent congestion also includes the contextual causation information;

• Data preparation before stage one: recurrent congestion needs the stage of label generation

or traffic state identification, whereas non-recurrent congestion has to match to traffic data

and incident data;

• Detection model: both models should be capable of network-based detection incorporat-

ing both spatial and temporal information, but the detection of recurrent congestion is

also aimed at early prediction and thus needs to adapt effectively at viable time scale.

• Output: the output of recurrent congestion detection is binary traffic congestion states

while for non-recurrent congestion the output is the existence of traffic incidents.
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Figure 3.4: Methodological framework for non-recurrent congestion detection

3.2.1 Translation Layers

Considering the complexity and dynamic nature of urban traffic, a translation layer that transfers

traffic data to an appropriate input format that enables the proposed detection model to learn

the spatio-temporal features efficiently is important. The transformation between the natural

formats of traffic data and multi-dimensional data is not straightforward (Ma et al., 2017).

The general logic behind this translation leads to three types of methods. The first type is

based on the connection between traffic nodes or regions. In other words, network connectivity

can be constructed by using node-to-node connection information. Thus, under the context of

complex urban networks, a possible way to address this transformation is by using a connectivity

matrix, which can establish a direct connection among all links for each time step.

The second type is to group all links in geographically similar locations by a grid and then

assign a value, such as the maximum, minimum or average, to the centroid of the regional centre.
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This type of method substantially reduces the size of the network and can ideally transform a

complex network into a specified network with the required dimensions.

The final type of translation is using spatial and temporal data as, respectively, the x-axis

and y-axis so as to build a two dimensional data matrix directly. Wang et al. (2016a) and Ma et al.

(2017) converted network traffic into a time-space image where the x-axis and y-axis present

the time and space of a matrix, respectively. Such a transformation that directly represents

traffic variables with time and space may be straightforward and efficient for simple structural

corridors, since it is easy to rank the sequence of space, but it is not directly applicable in

the case of urban traffic networks where the spatial connections among corridors are complex,

which could significantly increase the difficulty of ranking the sequence of space in a matrix.

Corresponding to the three types of methods identified above, in this research, three specific

approaches have been proposed to translate the traffic network into inputs for the network-level

anomaly detection model.

• Connectivity matrix

• Geographical grid

• Spatio-temporal two dimensional translation

Figures 3.5-3.7 show the concept of the three proposed translation layer methods. The

values inside the figures do not reflect any traffic variables but do illustrate how each of the

translation layers works.

The connectivity matrix constructs the direct connection matrix among all links without

taking the ranking of space into account. This approach consists of two steps: (1) given the

original traffic network, node location and flow direction, each cell representing a direct con-

nection gets an index of 1 while each cell that does not represent a direct connection receives a

index of 0; (2) assign the value of traffic flow for the cells with an index of 1 to the connectivity

matrix. Each time step corresponds to a converted connectivity matrix with traffic variables,

such as traffic flows.

The geographical grid translation layer groups neighboured traffic variables together to

formulate a specified traffic network matrix as in Figure 3.6.
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For the spatio-temporal translation, time-series traffic flow data will be converted into a

3D time-space feature where the x-axis, y-axis and z-axis represent time, space and size of the

time windows, respectively. Each cell inside the matrix represents the traffic states or traffic

variables.
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Figure 3.7: Spatio-temporal translation layers
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3.2.2 Anomaly Detection Framework and Methods

As mentioned in Section 2.1.3, the anomaly detection frameworks generally contain three parts:

input, detection algorithm and output. Section 3.2.1 presented how to translate the spatio-

temporal network into the field of transport research and thereby three ways to generate the

input for the detection model: 1) connectivity matrix; geographical grid; and 3) spatio-temporal

translation. Based on the translation proposed in the last section, this section will focus on traffic

anomaly detection methods.

Since recurrent congestion labels are essential for the framework governing the early de-

tection of recurrent congestion, as shown in Figure 3.3, the initial stage for recurrent congestion

detection will be the generation of recurrent congestion labels. Section 3.2.2.1 formulates the

proposed label generation process by using an Expectation Maximisation algorithm. Based on

the input translated in Section 3.2.1 and labels generated for recurrent congestion detection,

CNN is proposed for capturing the spatial features while LSTM has been formulated to ex-

tract the feedback in time scales. A hybrid CNN-LSTM method is therefore proposed for the

detection of recurrent congestion. On the other hand, since it is hard to early predict random

events, LSTM which is capable of temporal information extraction has not been selected for

NRC detection.

3.2.2.1 Traffic States Identification

In the first step of early RC detection, the Expectation Maximisation (EM) algorithm, is used

to classify (“generate labels” in the parlance of the machine learning community) the traffic

states according to different levels of severity of congestion. The primary objective of this step,

as mentioned above, is to generate labels, i.e., indexes for congestion and non-congestion, as

labelled outputs for the CNN-LSTM early RC detection model.

The EM algorithm has been proved to be an effective and transferable probabilistic traffic

state classifier which can capture the latent features of the underlying distribution (Han et al.,

2010). The application of the EM algorithm to classify different traffic states was originally

introduced by Han et al. (2010). Generally, it can be viewed as a form of unsupervised learning

method which, in this context, is used to generate labels that can, in turn, be used to drive a
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more sophisticated CNN-LSTM based supervised deep learning method for detecting the early

onset of congestion.

The traffic states as mentioned in Section 2.2.2 are related to the ratio αi of traffic flow and

occupancy.

αi =
oi
qi

(3.1)

The traffic states are assumed to be clustered into two separable regimes by either congested

or uncongested. Another assumption is that the probability distributions of the traffic states

follows Gaussian distribution, defined as:

p(α)|z=0 ∼ N (μ0, σ
2
0)

p(α)|z=1 ∼ N (μ1, σ
2
1)

(3.2)

where N (μ, σ2) is a Gaussian distribution with mean μ and variance σ2 and p(α)|z is the prob-

ability density function of a given traffic state. So,

p(αi) = γ0N (μ0, σ
2
0) + γ1N (μ1, σ

2
1) (3.3)

where the parameters γ0 and γ1 are the mixture factors with the constraint of γ0 + γ1 = 1.

The Eq. 3.3 is a typical Gaussian Mixture Model (GMM) with unknown parameters Θ =

(γ0, γ1, μ0, μ1, σ
2
0, σ

2
1). So the probabilistic model is defined as:

p(α|Θ) =
∑
k

γkpk(α|θk) (3.4)

Each pk is a Gaussian distribution function parameterised by θk, where θk = (μk, σ
2
k) and

k = {0, 1}.

With the Gaussian distribution of these two traffic states, the question is then modelled to

solve the probability of P (Zi = 1|α = αi) and from Bayesian theory:

P (Zi = 1|α = αi) =
P (αi|Zi = 1)P (Zi = 1)

P (αi)
(3.5)
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Eq. 3.5 is then formulated to:

P (Z = 1|α = αi) =
γ1p1(α = αi|θ1)
p(α = αi|Θ)

(3.6)

In Eq. 3.6, only the parameters Θ of the GMM are unknown to the model, and these

parameters can be calculated by using maximum likelihood estimation with

L(Θ|α) = p(α|Θ) (3.7)

According to maximum likelihood estimation theory, the parameters are ones that max-

imise L, i.e.,

Θ∗ = argmax
x

L(Θ|α) (3.8)

So the problem is reduced to finding the parameters to cluster two different traffic states

statistically. The EM algorithm is used to find maximum likelihood estimates of parameters in

statistical models. The EM algorithm conducts an iteration of the expectation step, which cre-

ates an expectation of the log-likelihood for the parameters, and the maximisation step, which

maximises the log-likelihood at the expectation step. The formulated expectation and maximi-

sation steps will not be covered here due to the extensive derivatives, although readers may refer

to Han et al. (2010) for more details.

3.2.2.2 Convolutional Neural Networks

This section will present methodological details of the proposed CNN algorithm which is vital

for NRC detection and an important component for early RC detection.

Artificial neurons are basically processing units that usually find correlation between input

variables X = (x1, x2, . . . , xn) and target output Y = (y1, y2, . . . , yn) through an activation

function f(·) with weights W = (w1, w2, . . . , wn) and bias b. Mathematically, the full process
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of a neuron operation can be defined as shown in Eq. 3.9:

f(x) =
N∑
i=1

xi × wi + b (3.9)

where N is the size of the input vector, weights W and input variables X have the same di-

mension R
n, while the activation function is the transformation f(·) : R → R. Multi-layer

networks are formed by grouping these multiple processing units. CNN is a typical multi-layer

network and typically consists of three types of processing units, i.e., convolution, pooling and

fully connected layers.

In the convolution unit, a fixed-size window k × k runs over the input matrix x of size

M ×M to define a region of interest, and after that variable values are created inside the win-

dow as the input, with a size of (M−k+1)×(M−k+1) for neurons with an operation like the

formula given in Eq. 3.9, where the feature is then extracted via an activation function f(·) in

this process. The Rectified Linear Unit (ReLU), formulated as Eq. 3.10, is used here as an acti-

vation function due to its ability in detecting high-frequency features in a local neighbourhood

(Nogueira et al., 2017).

f(x) = max(0, x) (3.10)

Typically, after the convolutional layer, there are pooling layers to reduce the variance of

features by running a fixed-size window over the features to reduce their number and optimise

the gain. The commonly used operation in this phase is to select the maximum value over

the feature region generated by convolutional layers, as this maximum process ensures that the

significant features can be obtained for detection, even with varying levels of translations or

rotations (Nogueira et al., 2017).

After several rounds of convolutional and pooling operations, fully-connected layers make

use of most parameters to learn all neurons in the previous layer and output to the current layer

where the spatial notion of the matrix is reduced to that of a one-dimensional vector. To pre-

vent overfitting caused by parameters-dominated fully connected layers, the dropout (Srivastava

et al., 2014) approach is employed, which basically drops a couple of neuron outputs randomly.
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The advantages of this technique lie in the ability to decrease the number of neurons, improving

the speed of training and making the model practically effective.

After the convolutional layer, pooling layer and fully connection layer, a classifier layer,

i.e., a particular type of fully-connected layer, is employed to calculate the class probability for

each instance. The most common classifier is the softmax (Bengio et al., 2009) or so-called

normalised exponential, which is a generalisation of the multinominal logistic function that

generates a vector of real values ranging from 0 to 1 which represent the probability distribution.

Eq. 3.11 shows the mathematical formula of softmax which gets the probability for each jth

class given a sample vector X .

hW,b(X) = P (y = j | X;W, b) =
expXTwj∑K
k=1 expX

Twk
(3.11)

The objective is to minimise the loss function based on updated weights and bias, as ex-

pressed in Eq. 3.12.

argmin
W,b

J (W, b) = − 1

N

N∑
i=1

(y(i) × log hW,b(x
(i)) + (1− y(i))× log(1− hW,b(x

(i))))

(3.12)

where y represents a possible class, x is the input data, i is a specific input, and N represents

the total number of datasets. With the cost function defined, CNN can be trained in order to

minimise the loss by using some optimisation algorithm. Stochastic Gradient Descent (SGD)

is used to update the weights and bias gradually in search of the optimal solution, such that:

W
(l)
ij = W

(l)
ij − α

∂J (W, b)

∂W
(l)
ij

(3.13)

b
(l)
i = b

(l)
i − α

∂J (W, b)

∂b
(l)
i

(3.14)

where α denotes the learning rates which represent the learning intensity in each step. The

training step of a CNN generally consists of a feed-forward stage to pass all information from
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the first layer until the classifier, and a back-propagation stage to calculate errors δ and partial

derivatives for weights and bias. These errors are then propagated through all the layers from

the classifier back to the first layer. The label of the supervised model can be defined as:

f(xt) =

⎧⎪⎨⎪⎩
1, if a traffic anomaly occurs at time t.

0, otherwise.

(3.15)

One example of a CNN model with a matrix input and an output of probability of traffic

anomaly is shown in Figure 3.8.

ConV1 ConV2Pooling 1 Pooling 2 Fully ConnectedInput Output

Figure 3.8: One example of a CNN model with a matrix input and an output of the probability

of traffic incidents

3.2.2.3 Combined Methods

As mentioned earlier, CNN-LSTM is proposed for the early RC detection stage, where inputs

have been transferred into the matrix by using spatio-temporal tensor extraction in Section 3.2.1,

and outputs are labels generated from the first traffic state identification stage in Section 3.2.2.1.

The early detection model consists of a CNN and a multi-layer LSTM, as shown in Figure

3.9. The CNN is initially used for general classification but cannot predict the upcoming part

of the matrix. LSTM, however, enables CNN to detect traffic congestion with partial data and

predict future states because of its capability of sequence processing. A LSTM unit is with

input (i.e. i), output (i.e. o), and forget (i.e. f ) gates where each of these gates is a feed-forward

neural network. it, ot and ft represent the activations of the input, output and forget gates,

at time step t. The 3 exit arrows from the memory cell c to the 3 gates i, o and f represent

the connections as shown in Figure 3.9. The small circles containing a × symbol represent
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an element-wise multiplication between its inputs. The big circles containing a
∫

represent

the application of a differentiable function, such as the sigmoid function, to a weighted sum.

The mathematical equations detailed this whole LSTM process (it, Ct, ft, ot) with activation

function are formulated in the Eq.3.22 - Eq.3.27.

In this stage, CNN reads the input as an image and obtains a fixed size vector representation

of the initial input. After that, a multi-layer LSTM takes the representation, original input and

the last output from previous timestamps to produce the desired output, i.e., traffic states in a

certain timestamp. In order to localise traffic anomalies, the localisation will be used to output

the standard vector output into a multidimensional output according to the different proposed

localisation methods in Section 3.2.3. The main advantage of this combined model is that it

delivers the early detection even with partial data because it can access the raw inputs and get

any information missed by previous steps.
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Figure 3.9: Overview of CNN-LSTM

The simplified version of the early RC detection system is defined as Eq. 3.16, where CNN

takes the initial converted matrix, and Eq. 3.17, where LSTM outputs the detection results.

The intuition behind this model, therefore, is that CNN reads the input matrix converted from

historical traffic data and outputs a vector v, and both v and the initial matrix will be fed into

LSTM to detect RC early so as to avoid any missing information from the CNN step.

v = fCNN(matrixhistorical) (3.16)
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Output = fLSTM(v +matrixhistorical) (3.17)

Among the CNN architecture, including convolutional layers, pooling layers and fully con-

nected layer, the convolutional layer is possibly the most important (Krizhevsky et al., 2012).

The convolutional layer connects the input matrix representation defined as x ∈ R
p×q×r, where,

p, q and r are three dimensions of the input matrix, as defined in the tensor extraction step with

a set of filters k ∈ R
n×p×m×m with stride of size sk, where n represents the number of convo-

lutional filters and m is the size of kernel. The weights of the filter k are shared spatially and

are different for every channel of the feature map. Then, the convolutional layer is formulated

as Eq. 3.18:

yi = fa(
∑
i

kij ∗ xi) (3.18)

where, xi is the ith channel of input, kij is the convolution kernel, fa is the activation function

and yj is the hidden layer extracted by the convolutional layer. For the convolutional layer of the

CNN, the activation function ReLU (Nair and Hinton, 2010) is used. ReLU refers to Rectified

Linear Unit, which is a non-saturating activation function that can capture the non-linearity

of the neuron’s output to converge and guarantee the non-negativity of the output (Nair and

Hinton, 2010). Deep convolutional neural networks with ReLU train much faster than the other

equivalent activation functions, such as tanh and Sigmoid function (Krizhevsky et al., 2012).

ReLU(x) = max(0, x) (3.19)

Max pooling layers formed by Eq. 3.20 serve to shrink the width and height of the feature

map with filter size z and stride size sz,

yijk = max
p,q

xi,j+p,k+q (3.20)

where, xi,j,k is the value of the ith feature map at position j, k ; p is a vertical index in the

local neighbourhood, q is a horizontal index in the local neighbourhood, yi,j,k is pooled and sub
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sampled layer.

Fully connected layers are achieved through a dot product between the final layer y and

weight matrixW v adding bias vector b. Then the output is passed through an activation function

fa.

v = fa(W
vy + b) (3.21)

CNN is capable of capturing patterns in local regions and these captured patterns, vector

v, are then fed into a multilayer LSTM model which consists of input gate, output gate, forget

gate and memory cell. While the input gate decides the passing of new memory, the forget gate

decides whether to keep the previous memory or not and, finally, the output gate produces the

outflow of the current hidden state. The final set of layers is composed of dropout (Srivastava

et al., 2014) and fully-connected hidden layers which make a specific classification based on all

features detected by the previous layers.

In addition to RNNs, the key idea of LSTM is the memory cell in hidden layers where

errors can flow back forever and thus make the error flow tend to decay exponentially in the

whole process from an input gate it, a self-recurrent connection neuron Ct, a forget gate ft to

an output gate ot (Gers, 2001). The mathematical equations detailed this whole LSTM process

(it, Ct, ft, ot), as shown in Figure 3.9, with activation function are formulated in the equations

below.

Input gate, it = σ(xtW
xi + ht1W

hi + vW vi + yt−1W
yi) (3.22)

Forget gate, ft = σ(xtW
xf + ht1W

hf + vW vf + yt−1W
yf ) (3.23)

Output gate, ot = σ(xtW
xo + ht1W

ho + vW vo + yt−1W
yo) (3.24)

New state, C̃t = tanh(xtW
xc + ht1W

hc + vW vc + yt−1W
yc) (3.25)
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Final state, Ct = Ct−1 ◦ ft + C̃t ◦ it (3.26)

Final hidden state, ht = tanh(Ct) ◦ it (3.27)

Here, xt ∈ R
d is the current state of the original input and R

d refers to the number of input

features, and ht−1 ∈ R
h is the previous hidden state and R

h is the number of hidden units. v

is the output vector, yt−1 is the last output of the LSTM and σ denotes the standard logistics

Sigmoid function. The output for each state is derived as:

Output, yt = σ(htW
yi + b) (3.28)

The loss function L is defined as the root mean squared loss as formed by:

L =

√
1

n

∑
i

(ŷ − y)2 (3.29)

where ŷ is the predicted output and y is the original output.

For the final fully connected layer of the LSTM, the tanh activation function is used as in

Eq. 3.30,

tanh(x) =
ex − e−x

ex + e−x
(3.30)

while for the final output layer the Sigmoid activation function is used to make the output the

probability of different traffic states (i.e., congestion or non-congestion).

For regularisation purposes, the L2 loss is used, as given by Eq. 3.31:

L2 = λ
k∑

i=1

ω2
i (3.31)

where ω represents the weights and λ is a hyperparameter to determine the level of L2 loss to
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be added into the final loss model. The weights and biases are updated and optimised with an

Adam optimiser (Kingma and Ba, 2014).

3.2.3 Localisation

After the translation layer to transfer the traffic data into a multidimensional matrix format

and a network-based anomaly detection model, another important step is to localise the traf-

fic anomaly. In the previous section, to simplify the research questions, a network-level traf-

fic anomaly detection incorporating the spatio-temporal information in the whole network was

proposed. Thus the corresponding labels for traffic anomaly were set without considering the

location of the traffic anomaly detected. In practice, after a network-level anomaly detection,

an effective localisation is more important for rapid and proactive emergency reaction or traffic

management. Since traditional RC or NRC methods are mainly link-based or segmentation-

based, limited research has been devoted to traffic anomaly localisation in a network level.

Considering the practical issue, another contribution in this research is to localise the traffic

anomaly after it has been flagged at a network level. Thus, one method is via transposed matrix

and the mathematical formulation for this is as follows.

Suppose that the matrix input after the translation layer can be simplified by a two-dimensional

format as below. ⎡⎢⎢⎢⎢⎢⎢⎣
x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xd1 xd2 xd3 . . . xdn

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎥⎥⎦ (3.32)

where:

x = the traffic variables in the matrix cell, such as the ratio of flow and occupancy at

segment n and at time d for spatio-temporal translation, or the ratio of flow and

occupancy connected node n and d

d, n = the dimension of x-axis and y-axis respectively

y = the traffic anomaly index for position d

To localise a traffic anomaly A(d, n), one can transpose the matrix to predict the labels for
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the other dimension, i.e., n as Eq. 3.33.

⎡⎢⎢⎢⎢⎢⎢⎣
x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xd1 xd2 xd3 . . . xdn

⎤⎥⎥⎥⎥⎥⎥⎦

�

=

⎡⎢⎢⎢⎢⎢⎢⎣
y′1

y′2
...

y′n

⎤⎥⎥⎥⎥⎥⎥⎦ (3.33)

Given the probability of occurrence of traffic anomaly from the horizontal and vertical, the

traffic anomaly could be located with the combination of horizontal (row) and vertical (column)

probability with parameters (b, w1, w2) as Eq 3.34.

w1

⎡⎢⎢⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎥⎥⎦+ w2

⎡⎢⎢⎢⎢⎢⎢⎣
y′1

y′2
...

y′n

⎤⎥⎥⎥⎥⎥⎥⎦+ b =

⎡⎢⎢⎢⎢⎢⎢⎣
y′′1

y′′2
...

y′′n

⎤⎥⎥⎥⎥⎥⎥⎦ (3.34)

Since limited research is available in this area, in this research, six different methods re-

viewed in Section 2.3.1 are proposed: weighted average probability, conditional probability,

index, logistic regression, random forest and gradient boosting classifier. More descriptions

their applications are included in Section 6.2.

3.2.4 Summary

Section 3.2 has presented the methodological framework for traffic anomaly detection and early

prediction in order to meet the objective set out in Section 1.3. Three main components of

the methodological framework, i.e., the translation layer, the anomaly detection methods and

the process of localisation, have been formulated in detail. The translation layer is responsible

for converting the traditional traffic data into a matrix feature space where the spatio-temporal

information could be easily captured by a deep learning-based detection method. Apart from

translation layer and detection methods, another important component is localisation which is

a powerful function for a network-based model.
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3.3 Summary

This chapter first defined the concept of traffic anomaly in Section 3.1 and then presented the

scope and reemphasised the objectives of this study according to the current knowledge in the

traffic domain.

To develop a network-based framework for traffic anomaly detection, this chapter presented

a translation layer to transform the previous time-series data into a multi-dimensional matrix

fashion, where three methods, i.e., connectivity matrix, geographical grid and spatio-temporal

translation, have been introduced to incorporate the spatial and temporal features in the network.

The translation layers are then served as inputs for the detection model by making the use

of the recent advances in deep learning with the aim of detecting RC and NRC earlier and more

precisely. CNN and LSTM have been proposed to capture the spatial and temporal information,

respectively, before the label generation phase for the early RC detection problem.

Since localising the traffic anomaly is of importance in practice, a fundamental method

of localisation has been proposed in Section 3.2.3. The main idea behind the localisation is to

combine different types of weights into the vector format output.

In summary, this chapter has highlighted and dealt with the second objective as set out in

Section 1.3, which is to develop a novel spatio-temporal framework for traffic anomaly detection.

To validate the framework, in the following chapters as shown in Figure 3.10, the application of

the proposed framework based on case studies both for the early detection of recurrent conges-

tion and the detection of non-recurrent congestion will be explored.
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Chapter 4

Translation Layers

Chapter 3 developed a general traffic anomaly detection framework that introduces the con-

cept of a translation layer to deal with the inputs in the first stage of a detection model. One

of the main challenges regarding network analysis incorporating spatio-temporal features is to

transform the data from complex networks into a simple but representative format that can be

processed by the subsequent components of the framework. This chapter will address this chal-

lenge by using two empirical case studies to evaluate the application of the proposed translation

layer for the problem of recurrent congestion and non-recurrent congestion.

This chapter is organised as follows. Section 4.1 gives the research background and main

aim of the chapter. Section 4.2 presents three translation layer methods, namely 1) connectiv-

ity matrix, 2) geographical grid and 3) spatio-temporal translation. Section 4.3 provides the

evaluation results for these translation layer methods based on a case study in the city of Bath in

respect to the detection and early prediction of recurrent congestion detection, while Section 4.4

does the same for the detection of non-recurrent congestion based on a case study in London.

The workflow of the two empirical case studies is composed of a comprehensive analysis of

the data, calibration, results and discussion. Section 4.5 summarises the main findings in this

chapter and concludes according to the aim and objective set out in Chapter 1.

72
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4.1 Introduction and Background

In the literature, most existing studies on RC prediction and NRC detection have focused mainly

on upstream and downstream corridor-based analysis using either data-driven classification and

clustering methods or fundamental diagrams (i.e., traffic speed, density and traffic flow dia-

grams). Nevertheless, the spatio-temporal dynamics of traffic in a network play an important

role, especially in the propagation of congestion propagation arising from traffic anomalies. To

date, limited research has systemically investigated traffic anomaly detection with attention to

the spatio-temporal dynamics of traffic in a network.

Despite limited literature on traffic anomaly detection at a network level, some efforts

which contribute to the task of estimating or predicting traffic variables, such as traffic speed

(Ma et al., 2017) and traffic flow (Zhang et al., 2018a), can potentially be used or extended for

this traffic anomaly detection research. In this regard, one important step in all the literature

related to network analysis is to transfer or translate the complexity of the traffic network into

a matrix that can reflect its spatio-temporal connections. For example, Ma et al. (2017) pre-

sented a time-space matrix representation to translate data from a large scale network into a

two-dimensional (i.e., time and space) matrix which has been used as an image input for convo-

lutional neural networks. In that study, the authors have evaluated the translation methods using

two case studies: 1) a simple network with a set of circular roads and 2) a more complicated

network with some roads connected to circular roads. Their research indicated that this spatio-

temporal translation is very straightforward for networks with a simple topology, such as the

first network, but for the second a compromise translation that segmented the roads into straight

lines had to be proposed. The limitation of this compromise is that only the correlation among

the segmented straight lines can be captured regardless of connections from other links cross-

ing the straight lines. Nonetheless, this study represents a good starting point for the required

time-space translation.

Zhang et al. (2018a) proposed a grid-based translation considering both inflow and outflow

for traffic flow forecasting. Even though this method is a direct translation with geographical

spatial correlations, the key issue affecting the performance was the size of each cell or the

level of aggregation. It should be noted that this grid-based method can be ideally adapted to

data analysis at a zone level. For example, the grid-based method could be used for origin-
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destination matrix generation for traditional travel demand modelling. Since this method is

good at the spatial correlations but less good at reflecting temporal relationships such as period,

trend and closeness, a potential direction for future study could be developing a method that

can incorporate the temporal features into such a model. On the other hand, Zhu et al. (2018a)

investigated the use of a connectivity matrix as a translation layer for traffic incident detection

based on the Sioux-Falls network. The connectivity matrix approach benefits from its simplic-

ity in implementation and the ability to take account of direction and weights based on traffic

variables, and is a well understood concept in transport planning and analysis. On the other

hand, connectivity matrices can be sparse for large networks. The existing studies into network

translation are summarised below in Table 4.1.

Table 4.1: Summary of existing studies in the network translation

Reference Translation Methods Advantages Limitations

Ma et al., 2017

Wu et al., 2018c

Kim et al., 2018

Ke et al., 2019

Time-space translation This method which

is widely accepted

in transport research

can directly generate a

matrix with time and

space features.

It is difficult to deal

with complex spatial re-

lations.

Zhang et al., 2018a

Du et al., 2019

Bao et al., 2019

Yu et al., 2017

Geographically grid-

based translation

It is capable of captur-

ing spatial correlations.

The matrix generated

by this method is

spatially aggregated

to some extent. In

addition, it is computa-

tionally expensive.

Zhu et al., 2018a
Connectivity matrix The translation is

straightforward and

based on the physical

connection of different

nodes.

The transformed matrix

is sparse and sometimes

large in the case of

larger traffic networks.

Zheng et al., 2019
Feature matrix repre-

sentation

The translation repre-

sents all features asso-

ciated with the data in

different cells in the ma-

trix.

The selection of fea-

tures and their com-

binations increases the

complexity of the prob-

lem. It is dependent on

the availability of multi-

ple features.
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In summary, some relevant studies have presented possible methods to translate a traffic

network into a simple matrix. While these studies represent a substantial contribution to traffic

network analysis, some research challenges and gaps remain. Firstly, limited research has been

devoted to the traffic anomaly detection problem, including both recurrent congestion detection

and non-recurrent congestion detection. Moreover, the methods reviewed above have limitations

as well as advantages and thus a systematic evaluation is needed comprehensively to assess their

performance in the traffic anomaly detection domain. Based on the objective of this research,

the following sections set out in detail options to extend or adapt the previous studies into the

traffic anomaly detection domain, together with a systematic evaluation of their performance in

this context in the light of the detection metrics set out in Section 2.3.3.

4.2 Proposed Translation Layers

Out of all the translation layer methods reviewed in the last section, feature matrix representa-

tion depends significantly on the availability of multiple traffic features and has the problem of

complexity in feature selection. Based on the limitations of the feature matrix representation,

it was excluded from the comparative analysis in this chapter. Accordingly, only the connectiv-

ity matrix, grid-based translation and spatio-temporal translation are presented in this research.

This section will introduce their adaptions to traffic anomaly detection problems, i.e., recurrent

congestion detection and non-recurrent congestion detection. This section will also introduce

the rationale behind these three translation layers.

4.2.1 Connectivity Matrix

As briefly introduced in Section 4.2.1, a connectivity matrix can build a matrix that represents

direct connections between all links in a network for each time stamp. In this straightforward

translation, the traffic variables will be naturally placed in a two dimensional matrix (see Figure

3.5) when the time window has not been taken into account. Time lags k can be added as another

dimension into the connectivity matrix, as shown in Algorithm 1.
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Algorithm 1: Connectivity Matrix Translation

Input: Historical traffic observations: {X0,X1, . . . ,Xt}
Network corridor’s connection with origin i and destination j: Sij ∈ {0, 1}
Number of previous time steps or time lags: k

Output: A series of matrix {A0
ijk,A

1
ijk, . . . ,A

t
ijk}

Initialisation;

for enumerate i, j do
if Sij = 1 then

Comments: if directly connected, assign the traffic variables; otherwise pass;

Assign traffic observations Xt to At
ij;

else
Pass;

end
end
for enumerate t do

Generate three-dimensional matrix with depth of k: At
ijk

end

4.2.2 Geographical Grid

Broadly, the geographical grid based method is a graphical representation of raw road network

data where each individual value contained in the matrix is an averaged traffic variable, such as

average traffic flow or traffic speed. A typical example of geographical grid based translation is

the heatmap which originated in 2D displays of the values in a data matrix.

Although the traditional link based flow prediction model is an efficient way to represent

flows, it ignores its dependence on neighbouring road links. Thus, a geographical grid based

method which could take into account the traffic conditions of neighbouring links would be a

promising way to generate matrix input. For example, Zhang et al. (2018a) attempted to use

the concept of traffic flow grid matrix as the input for traffic flow predictions. The input was

decomposed into different channels such as inflow and outflow. A similar translation was also

validated by Du et al. (2019) to predict the traffic passenger flows based on the flow heat maps

from Beijing and New York. Bao et al. (2019) fused multiple data sources in a geographical

grid and fed these into a deep learning approach in order to predict the crash risk in New York

City. Based on its effectiveness in traffic prediction, geographical grid translation could have

the potential for traffic anomaly detection.

Algorithm 2 shows the geographical grid procedure used in this thesis. The main properties
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for the method are the dimension of the geographical grid, i.e., (i, j), historical traffic variables

X and depth of the input or the time lags k. According to the physical location of the traffic

sensors, the traffic flow in cell (i, j) in time slot t is the average of all the inflows or outflows.

Similar to the connectivity matrix, the previous k time steps data can be added as an additional

layer of depth of the matrix input to represent the time lags.

Algorithm 2: Geographical Grid Translation

Input: Historical traffic observations: {X0,X1, . . . ,Xt}
Grid dimension: i, j
Number of previous time steps: k

Output: A series of matrix {A0
ijk,A

1
ijk, . . . ,A

t
ijk}

Initialisation;

for enumerate i, j do
Calculate the average of inflow: St

in,i,j ;

Calculate the average of outflow: St
out,i,j ;

Inflow and outflow: (St
in,i,j,St

out,i,j)

end
for enumerate t do

Generate three-dimensional matrix with depth of k: At
ijk

end

4.2.3 Spatio-Temporal Translation

Compared to the previous two translation methods whose initial two-dimensional matrix only

includes the spatial information, spatio-temporal translation could incorporate temporal infor-

mation directly during the construction of the initial matrix. Some studies have made some

attempts at this space-time translation. For example, Ma et al. (2017) proposed a time-space

matrix using time and space dimension information as the input for traffic prediction. The case

studies were based on two types of topologies where the former is a simple circle while the latter

is a set of segmented roads. Given the direct space and time translation, the research concluded

that the proposed methods based on spatio-temporal input can help to extract the abstract fea-

tures and therefore improve the accuracy of prediction. Another similar study has been done by

Wu et al. (2018c) where the spatial and temporal features were extracted respectively and then

fed into a matrix input for CNN.

Kim et al. (2018) assigned traffic speed according to the order of road segments and time

steps, resulting in an image representation of traffic speed data. Even though the proposed
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methods are commonly accepted and promising, however, their research does not discuss the

logic of how to rank the sequence of road segments. Similarly, Ke et al. (2019) converted multi-

lane traffic flow raw data to the multi-channel spatial-temporal matrix based on the same logic

as the study of Kim et al. (2018) where the converted matrix represents one dimension as the

space while the other dimension is taken as time steps or time spans. There remain gaps in the

current studies, therefore, in respect to translating a realistic topology with complex interactions,

as well as in determining the logic by which to order the sequence in the space dimension.

Considering the nature of traffic flows, this study proposed ranking the spatial sequence

according to the direction in which traffic moves. With complex networks where multiple traffic

directions are given, such as at a junction, the sequence will be ranked in the light of the order of

historical traffic flow values. The point with the largest traffic flow will be picked first while the

non-selected points neighbouring the same junction will be added into a pending list to be added

only on the termination of the sequence starting with the largest traffic flow. Several conditions

that would require changing the direction have been defined in the algorithm:

• 1) all points connected with the last point added into the sequence have already been

included in the sequence;

• 2) all points in the pending list have already been included in the sequence list; and

• 3) if there are no points left in the pending list, a new start point should be generated

randomly to be appended to the sequence list.

In summary, the algorithm starts from a random point in the traffic network and the se-

quence will be generated automatically based on the historical traffic variable characteristics, as

formulated in Algorithm 3.

Section 4.3 and Section 4.4 will focus on testing these three translation layers in the con-

text of both the recurrent congestion problem and the non-recurrent congestion problem. Case

studies for the two research problems will be briefly introduced before evaluating the translation

layers using the deep learning methods proposed in Chapter 3.
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Algorithm 3: Spatio-temporal Translation

Input: Historical traffic observations: {X0,X1, . . . ,Xt}
Number of spatial sequence: i
Number of time steps: j Number of day: d Number of selection methods: k

Output: A series of matrix {A0
ijk,A

1
ijk, . . . ,A

t
ijk}

Initialisation;

Random select a start point a;

Comments: selected by the maximum outflow

for enumerate n points directly connected to point a do
if Xba = max{X1a, X2a, . . . , Xna} then

Point b is appended into the sequence next to a;

else
Append into the pending list for selection after current sequence

end
end
repeat
until All i points have been placed into the sequence;

Assign the traffic variables to matrix At
ijk

4.2.4 Summary

According to the methodological framework proposed in Section 3.2, the first main component

is the translation layer. This section specifically formulated three translation layer methods, i.e.,

connectivity matrix, geographical grid and spatio-temporal translation. In general, the methods

proposed here all have advantages and disadvantages. In order to verify their applicability,

following sections will evaluate them with case studies of early RC detection and NRC detection.
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4.3 Case Study of Early Recurrent Congestion Detection

As presented above, the main objective of this section is to evaluate the candidate translation

layers based on the evaluation metrics proposed in Section 2.3.3 for recurrent congestion detec-

tion. The focus of recurrent congestion includes two parts: recurrent congestion detection and

early prediction.

This section starts by briefly introducing the study area in the city of Bath. Then, before

testing the translation layers, the selected traffic features are validated using scatter plots. Next,

according to the process of generating labels based on the identification of traffic states proposed

in Section 3.2.2.1, labels which will be used later for recurrent congestion detection are gener-

ated using the Expectation Maximisation method. The early prediction results are evaluated in

terms of metrics (i.e., DR, FPR, Precision, F1 score, AUC and F1 score), confusion metrics

and ROC curve based on the translated input, generated output and the proposed deep learning

method. Furthermore, to evaluate how early it can detect or predict, a sensitivity analysis is

presented with a variety of eight prediction horizons and eight time lags.

4.3.1 Data Description

Traffic flow and occupancy data are extracted from the study area of the City of Bath. To evaluate

the proposed early recurrent congestion detection method, the study network consists of a small

network with four sub links, i.e., two Eastbound roads (link 1 and link 4), one Westbound road

(link 2) and a Southbound road (link 3), with 10, 6, 3 and 5 detectors respectively, as shown

in Figure 4.1. The rationale behind this selection of the Lower Bristol Road and Upper Bristol

Road in Bath is that the corridors are arterial roads which among the busiest roads connecting

central Bath with neighbouring cities and rural areas.

The study area is geographically located within two main corridors with different traffic

compositions. The traffic data covers every day from 7:00 to 18:55 in 15-minute time intervals

over the course of two years from June 2015 to June 2017, with a total sample size of 35424.

For an example of flow and occupancy data from Bath, please refer to Appendix B. The typical

traffic flow profile time series for all detectors in the study area at different times of day are

shown in Figure 4.2. The traffic flow time series clearly shows different traffic patterns since
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Figure 4.1: Study area in the city of Bath (Map Source: OpenStreetMap)

different streets have different profile shapes. The aggregated average traffic flow for time of day

(i.e., 48-time points per day), day of week and the average traffic flow of sequenced detectors on

study roads are shown in Figure 4.3. It is clear that the volume of traffic on weekdays is higher

than on weekends for study roads.
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Figure 4.2: Traffic flow profile in the study area
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Figure 4.3: The average traffic flow in terms of day of week, time of day and 24 sequenced

detectors in the RC study area
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4.3.2 Congestion Label Generation

In respect to the detection of recurrent congestion, there are no available traffic states or con-

gestion labels for the detection. As mentioned above, therefore, the Expectation Maximisation

(EM) traffic state identification method has been used to generate the recurrent congestion labels

(Han et al., 2010). Generally, the EM algorithm is used to find maximum likelihood estimates of

parameters in statistical models, formulated in Eq. 3.8. The EM algorithm conducts an iteration

of an expectation (E) step, which creates an expectation of the log-likelihood for the parame-

ters, and a maximisation (M) step, which maximises the log-likelihood on the E step. Figure

4.4 shows the workflow for the E step and M step, where Q(Θ|Θ(l−1)) is the expected value

of the log-likelihood function of parameters set Θ, with respect to the current distribution of

traffic states α and current estimates of the parameters Θ. The M step is to find the parameters

that maximise Q(Θ|Θ(l−1)) using differentiation with respect to different unknown parameters,

i.e., Gaussian distribution parameters θk = (μk, γ
2
k) and the mixture factors rk.

Differentiate above terms with respect to , 
and , then set to zero, subject to 

Considering missing data 

and are independent variablesE

M

Figure 4.4: EM algorithm summary flowchart
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Using the EM algorithm above, the two regimes of congestion and non-congestion can be

clustered based on the busiest road segment. The scatter plots of the EM binary cluster results

are shown in Figure 4.5 where the EM algorithm classifies the traffic states into two regimes

based on traffic occupancy and traffic flow and assigns the reasonable probability of congestion

for the observations. It can be observed from Figure 4.5 that the study area has a clear and

credible separation for congestion and non-congestion regimes. This reflects the fact that the

EM algorithm can optimise traffic states according to the iterative expectation and maximisation

steps. The level of congestion is not simply decided by traffic flow and occupancy. As a result,

the input for early detection consists of both traffic flow and occupancy features.

Figure 4.5: Traffic flow and occupancy patterns and traffic states clustered by the EM algorithm

The labelled traffic states can be simplified as Eq. 4.1 where 0 represents non-congestion

and 1 stands for congestion. Varying levels of traffic congestion could possibly be defined, but

as the main objective of this chapter is to evaluate the proposed translation layers, the commonly

used binary labels are sufficient here.

f(xt) =

⎧⎪⎨⎪⎩
0, No congestion at time t.

1, Congestion at time t.

(4.1)
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4.3.3 Input Layer Representation

In this section, the data of the study area will be converted into multi-dimensional input accord-

ing to the proposed translation layers. Figure 4.6, Figure 4.7 and Figure 4.8 show the translated

input for the early detection model based on connectivity matrix, grid and spatio-temporal trans-

lation respectively.

The connectivity matrix translation is very straightforward. An example of translated traffic

flow in a two-dimensional format is shown in Figure 4.6. The nodes in the connectivity matrix

are main junctions inside the study area so that values inside the connectivity cell represent

the traffic features of the link connecting two associated junctions. In this case study, twenty

junctions have been identified in the study area. Thus, this translation eventually results in a

(2×20×20)matrix where 2 refers to two selected traffic features, i.e., traffic flow and occupancy,

and (20×20) is the connectivity matrix with either traffic flow or occupancy values. Figure 4.6

shows an example with traffic flow values filled in each cell.
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Figure 4.6: Input matrix with traffic flow values (veh/h) converted by the connectivity matrix

for RC detection

Bao et al. (2019) tested different sizes of cells (3 × 8, 5 × 15 and 10 × 30) for crash risk

prediction and suggested that the performance of crash risk prediction will decrease as the res-

olution increases. In this study, a relatively lower resolution with an x coordinate of three and

a y coordinate of nine has been selected in the light of the size of the study area. Therefore,
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the final cell size in Figure 4.7 is 380m which is a reasonable size for the city given that each

cell includes maximum one ILD for one direction and the distribution of detectors is relatively

sparse. This size was selected with the guidance that each cell has no more than one detection

for each direction. In summary, the resulted input matrix using this translation is with the size

of (4×9×3), where 4 refers to traffic flows and occupancy for both inflow direction and outflow

direction, while the rest stands for the size of the grid.

Figure 4.8 shows an example of typical spatial temporal translation, where the spatial se-

quence has been ordered according to the spatio-temporal algorithm proposed in the last section

and the temporal sequence has been placed naturally in the light of the 15-minute time spans.

The dimension after this type of translation is (k× 24× 2) where k is the number of time lags,

24 is the number of detectors and 2 stands for the two selected traffic features.

4.3.4 Model Calibration

In the previous section, two general traffic state classes, i.e., congestion and non-congestion,

are clustered based on the EM algorithm. To evaluate the performance in respect to the early

recurrent detection problem over a two hour period (i.e. with the change of time horizons and

time windows from zero to seven), 8 × 8 experiments are assessed for each translation layer

proposed in this section. Given this, a total of 192 early recurrent congestion detection tasks

with different spatio-temporal combinations are developed and compared.

It is worth highlighting that the early detection model takes the information from a certain

portion of time, defined by a past number of samples (i.e., time window), and predicts in a

certain time step ahead (i.e., time horizons). The certain time ahead can help to indicate how

far in advance the model can detect RC congestion.

The hybrid model based on CNN and LSTM is used for early RC detection. Instead of

introducing further complexity to the evaluation of the translation layer, the early congestion

prediction model used in this section is configured based on hyperparameters that have been

commonly deployed in many previous studies (Krizhevsky et al., 2012; Ma et al., 2015b, 2017;

Wu et al., 2018c; Zhu et al., 2018a; Dabiri and Heaslip, 2018; Bao et al., 2019).

Specifically, there are two types of parameters considered when implementing the structure
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(a) Grid map (source: OpenStreetMap)
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Figure 4.7: Input matrix with traffic flow values (veh/h) converted by geographical grid trans-

lation for RC detection

of a CNN: the hyperparameters connected with each layer and the depth of the CNN, respectively

(Ma et al., 2017). Table 4.2 provides a summary of these two types of CNN hyperparameters.

The selection of the appropriate hyperparameters connected with each layer, i.e., max pool-
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Figure 4.8: Input matrix with traffic flow values (veh/h) converted by spatio-temporal translation

for RC detection

ing kernel size and convolutional filter size, relies heavily on expert judgement. Since no gen-

eral rules can be directly used to find the optimal values of hyperparameters, several well-known

CNN architectures, such as LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012) and

VGG Net (Simonyan and Zisserman, 2014), are referred to. In respect to the max pooling size,

2× 2, which has been adopted widely both in the AlexNet and the LeNet-5, is selected because

it is a typical pooling kernel shape that has been shown to reduce the size of feature maps effec-

tively. As for the convolutional layer kernel size, the size of 3× 3 with a kernel number of 64 is

used since it has the benefit of a decrease in the number of parameters and multiple applications

of ReLU layers (Simonyan and Zisserman, 2014; Dabiri and Heaslip, 2018). For LSTM layers,

different hidden cell sizes of 256 and 512, which are commonly used in previous studies (Ma

et al., 2015b,a), are selected to determine the optimal sizes of hidden cells in different early

recurrent congestion detection scenarios.

The depth of CNN, meanwhile, is often set to be neither too deep nor too shallow, so

that the CNN can efficiently learn the complex spatial structure while still being guaranteed to

converge at the end (Krizhevsky et al., 2012). Since the size will be reduced substantially during
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Table 4.2: Summary of hyperparameters of a CNN

Parameters Function
Parameter type I : Architecture (the depth of CNN)

Convolutional layer (some research sepa-

rates this step into a convolutional layer and

an activation layer)

a) Computing the output of neurons that are

connected to local regions in the input; and

b) extracting the feature maps from the in-

put matrix

Maxing pool layer a) Neighbouring groups of feature maps;

and b) reducing the size of feature maps

Fully connection layer a) Computing the class scores resulting in a

reduced output size; b) reducing the num-

ber of outputs by using matrix multiplica-

tion with a bias offset; and c) minimising

the loss function

Parameter type II : Inner parameters in each layer (hyperparameters)

Convolutional kernel number The number of features

Convolutional kernel size The size of convolutional regions

Convolutional kernel stride The moving distance between each centre

convolutional step

Activation function ReLU/Sigmoid

Pooling layer kernel size The size of local pooling regions

Pooling layer stride The moving distance between each centre

pooling step

Dropout proportion The proportion of data dropped between

layers to deal with the problem of overfit-

ting

Fully connected neuron number The number of classes

Loss function optimiser Accuracy, root mean square error, etc.

convolution and pooling, however, the depth of CNN in this study is constrained by the input

size of the matrix and thus the final net contains five learned layers including two convolutional

layers, two LSTM and one fully-connected layer.
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In summary, the net contains five layers with weights: the first two are convolutional layers,

each followed by a max pooling, two LSTM layers, and the remaining one layer is a fully-

connected layer, where the last fully connected layer is fed to a Sigmoid activation function to

output the predicted probability of the binary classes. The convolutional kernels are connected

to all kernels in the previous layer and the ReLU activation function is used for the output of

every convolutional layer and the first fully-connected layer.

The CNN-LSTM is trained based on the RMSprop optimiser (Tieleman and Hinton, 2012)

in the back propagation process. RMSprop serves as an optimiser to utilise the magnitude of re-

cent gradients in order to minimise the loss function and has achieved remarkable performances

in many previous studies (Zhu et al., 2018a; Ma et al., 2015b). It is used to keep a moving

average of the squared gradient for each weight, and to update the weight and bias in each itera-

tion during the optimisation. Given the decay rate γ and the learning rate η, the parameters are

updated as follows:

rt = γf ′(θt−1)
2 + (1− γ)f ′(θt)2 (4.2)

θt+1 = θt − η√
rt + ε

f ′(θt) (4.3)

where f ′(θt) is the gradient or the derivative of the loss functionLwith respect to the parameters

θ at time step t and ε is an error term. The learning rate is set to be 0.001 with a 0.9 decay.

In order to avoid the problem of overfitting (Hawkins, 2004), a dropout technique (Srivas-

tava et al., 2014) is used. This consists of setting the output of each hidden neuron to zero with a

fixed probability (Hinton et al., 2012b). The dropped-out neurons, therefore, do not participate

in the optimisation. Consequently, the neural network sub samples a different architecture, and

all these architectures share weights (Krizhevsky et al., 2012). Since a neuron cannot depend on

the presence of specific other neurons, dropout reduces complex co-adaptations of neurons and

hence forces the neuron to learn more robust features. The ratio of a 0.5 dropout rate used in

studies (Ma et al., 2015a; Zhu et al., 2018a; Dabiri and Heaslip, 2018) is also used in this study

to reduce the potential overfitting. In addition to the dropout technique, performance trends

based on training and validation were checked before detecting using the testing dataset.
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4.3.5 Results and Analysis

The proposed early detection method is tested in this section, based on the input generated

from Section 4.3.3 and supervised labels from the EM method. Three representative methods,

i.e., MLP, RF and GBC, reviewed in Section 2.3.1 have been selected as baseline models for

comparison. These methods have the ability to capture the complex and non-linear relationship

between different features. The input data for the above statistical and machine learning methods

will be normalised time-series traffic variable data. Furthermore, stochastic gradient methods

are also used for these methods in order to minimise the error and optimise weights and bias

step by step. On the other hand, the output for the conventional methods are the same labels or

traffic states as for the proposed deep learning methods.

The performance is evaluated based on the following metrics:

• detection rate;

• false postive rate;

• F1 score;

• precision;

• area under the curve;

• confusion matrix; and

• ROC curve.

On the other hand, to evaluate how early the model can detect the RC, the sensitivity anal-

ysis based on different time windows and time horizons ranging from zero to eight is applied.

Table 4.3 shows the results of early detection with data samples in the current time step

(i.e., time lag = 0 and prediction horizon = 0). In general, even though all translation layers

show promising results with high accuracy and low false alarm rate, there is no translation layer

that outperforms others in terms of all six evaluation metrics. Nonetheless, it is possible to

identify the method which best fits the specific intended purpose of early detection of recurrent
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congestion. For example, in terms of DR, which measures the percentage of true recurrent

congestion detected, it is obvious that the geographical grid outperforms the others. On the

other hand, if the aim is to achieve lower false alarm rates and high precision, the connectivity

matrix could be selected. One may find the same recommendation based on Figure 4.9 which

shows the confusion matrix for three translation layers. The values inside the confusion matrix

represent the true negative rate, FPR, false negative rate and DR.

In this research, statistical tests of significance which are generally used to quantify evi-

dence against a particular hypothesis being true by mainly using P-values are not used. One

particular reason that P-value could not be used in this research is that using P values as the

sole arbiter of what to accept as truth can also mean that some analyses are biased, some false

positives are overhyped and some genuine effects are overlooked (Wasserstein et al., 2019).

Table 4.3: Recurrent congestion detection results based on different translation layers

Translation Layer DR FPR F1 score Precision AUC

Connectivity Matrix 0.972 0.002 0.985 0.997 0.9993

Geographical Grid 0.991 0.010 0.988 0.985 0.9987

Spatial Temporal Translation 0.976 0.035 0.963 0.951 0.9958

(a) Connectivity Matrix (b) Geographical Grid (c) Spatial Temporal Translation

Figure 4.9: Recurrent congestion detection confusion matrix based on different translation lay-

ers

Figure 4.10 shows their corresponding ROC curves. Generally, a ROC curve is another

common way to evaluate and intuitively visualise the performance of binary classifiers, and is

generated by plotting the true positive rate versus the false positive rate for all thresholds ranging

from 0 to 1. The ROC curve is plotted with true positive rates versus the FPR for all thresholds

ranging from 0 to 1. Two main features are typically checked to interpret the ROC curve: 1) the

position of the curve and 2) the steepness of the curve. Specifically, since the classifier with high
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true positive rate and low FPR is always preferred, a good classifier is generally closed to the

left upper corner and with a steep curve. Thus, for this case study, it is obvious that the rank in

terms of ROC curve is connectivity matrix, geographical grid and spatial temporal translation.

Figure 4.10: Recurrent congestion detection ROC curve

Figure 4.11 shows an example of a sensitivity analysis regarding time lags ranging from

zero to seven which represents a time window from the current time step to a maximum time step

of over two hours. Input data with different time lags have been used to predict multiple time

steps (i.e., time horizons) ahead. There are several interesting points that can be summarised.

First, the connectivity matrix consistently outperforms other translations in terms of lower FPR

and high precision, regardless of the number of time lags, Second, the performance of the geo-

graphical grid is superior than the others based on DR, F1 score and AUC, no matter how many

time lags are used. Thirdly, despite there being no unified performance conclusion in terms of

the selection of time lags, it is obvious that for all translation layers there is a bowl shape in the

metrics. For example, in the FPR plot, when the time lag = 3 all the various translation layers

result in a rather small false alarm rate. Overall, though, the results are not consistent across the

various metrics, translation layers and time lags, and the reason for this is that different metrics

basically measure different types of performance of detection, as defined in Section 2.3.3. The

three translation layers may have their individual advantages and limitations as they incorporate

the traffic characteristics in varying formats. As for the time windows with a time interval of 15

minutes, including a long time windows (i.e., larger than one hour) may introduce noise into the

detection and therefore a bowl shape should be expected. Note that the results above are based
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on a prediction horizon equal to zero, a full result with all prediction horizons is presented in

Appendix C.1.

(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 4.11: Recurrent congestion detection in terms of time lags with prediction horizon=0

Figure 4.12 presents the sensitivity in terms of prediction horizons. Compared to the sen-

sitivity analysis for time lags where there is no generally consistent position for the relationship

between all metrics and time lags, it is notable that the performance is gradually reducing as

the prediction horizon increases. This decrease in the performance is reasonable as the traffic

pattern may remain similar within a short time period. Another interesting point to make is that

even though there is no consistent superior performance in terms of all metrics for the three

translation layers, the connectivity matrix can obviously detect the traffic states more precisely

according to the precision metrics. Regarding the prediction horizon, the performance for pre-

dicting around two hours, or seven steps, ahead is still acceptable with around 0.2 FPR, 0.82 DR,

0.96 precision which means the model is capable of early prediction of recurrent congestion.The

horizons may be interpreted further through a comparison with baseline models, which will be

followed up in Chapter 5. The results above are examples with the time lag equal to zero, a full
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result with all time lags is illustrated in Appendix C.1.

(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 4.12: Recurrent congestion detection in terms of prediction horizons with time lag=0

4.3.6 Summary of Early Recurrent Congestion Prediction

In summary, three translation layers have been evaluated in this section for RC detection and

early prediction. The connectivity matrix may be chosen if a low FPR and high precision are

required for the early prediction task while the geographical grid is attractive when a high de-

tection rate and F1 score is sought. For the performance in terms of time lags and prediction

horizons, the prediction result will decrease when the prediction horizon increases, but the ac-

curacy for prediction two-hours ahead is still acceptable. On the other hand, the performance

change in terms of time lags is on a case-by-case basis. Nevertheless, even though it is hard to

find a conclusive result for performance based on the varying size of time lags, the bowl shape

curves indicate that prediction with a time lag equal to three may be more accurate with lower

FPR and higher precision.
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4.4 Case Study of Non Recurrent Congestion Detection

The previous section mainly tested the translation layers for early recurrent congestion, evaluat-

ing three different translation methods based on varying sizes of time lags and prediction hori-

zons. In this section, these three translation layers will be further evaluated for non-recurrent

congestion detection, i.e., traffic incident detection. The NRC problem needs external knowl-

edge on the occurrence and characteristics of traffic incidents, and thus a different case study

area with both traffic incident data and traffic data has been used. Similar to the previous section,

the evaluation will start with a description of the data for non-recurrent congestion detection,

followed by the presentation of translation layers based on the data of an empirical study area.

The non-recurrent congestion detection model used in this section is a CNN model with typical

parameters listed in Section 4.3.4, supervised by traffic incident data obtained from Transport

for London (TfL).

4.4.1 Data Description

Two types of data are used in this section, i.e., traffic data and incident data. These are both

extracted from the study area near Russell Square in Central London which has a complex traffic

network topology and varying traffic volumes. The study area contains three main train stations

(i.e., Euston Station, King’s Cross Station and St Pancras International Station), connecting

London with other cities and countries, making it one of the busiest areas in Central London.

The area also encompasses eight underground stations, hundreds of bus stations, part of Oxford

Street (London’s main shopping high street), well-known museums such as the British Museum

and part of the University of London. In the following sections, a detailed description of traffic

incident data and traffic data will be presented before an analysis of their relationship.

4.4.1.1 Traffic Incident Data

Traffic incident data from London was recorded in the Traffic Incident Management System

(TIMS) and provided by TfL. The detailed description of traffic incident has been included in

Appendix B.2. The case study area consists of 158 links and 39 of these links were affected by

97 unplanned incident events and 50 planned events during the study period from 1st Jan 2015
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to 24th Mar 2015. The location of the study area, as well as traffic incident heatmaps of the

London study area as a whole are shown in Figure 4.13 and Figure 4.14, respectively.

Figure 4.13: Study area and incident heatmap for NRC detection (Map Source: OpenStreetMap)

Figure 4.14: London incident heatmap (Map Source: OpenStreetMap)

As shown in Figure 4.13 and Figure 4.14, there was a large number of traffic incidents in

the study area in central London. The numbers in the heatmaps represent the record of traffic
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incidents in a one-hour resolution, which means that one traffic incident may be recorded several

times if it lasted for several hours. The detailed traffic incident data has been included in the

Appendix B.

Varying types and levels of severity of traffic incidents are recorded in the traffic incident

dataset. Table 4.4 shows the detailed composition of traffic incidents in the study area. In

general, there are two types of traffic incidents, i.e., planned and unplanned. According to the

description given by TfL, the definitions of each category are as follows.

Table 4.4: Incident counts of the study area for NRC detection

Incident Category Planned Unplanned Total

Traffic Incidents 0 61 61

Works 42 8 50

Hazard(s) 0 9 9

Special and Planned Events 8 0 8

Infrastructure Issue 0 17 17

Traffic Volume 0 2 2

Total 50 97 147

• Traffic incidents: collision, breakdown, emergency services incident.

• Works: utility replacement works, borough redevelopment works, TfL works,etc.

• Hazards: obstruction, spillage, surface damage, flooding, etc.

• Special and planned events: ceremonial event, exhibition, construction activity, etc.

• Infrastructure issue: traffic signals, barriers, etc.

• Traffic volume: tube strike, Christmas shopping, Operation Stack1, etc.

Roadworks scheduled in advance account for a large proportion of the planned traffic in-

cidents, while for the unplanned category, car accidents, generally occurring randomly, are the

main types accounting for roughly 67% of all incidents.

Figure 4.15 illustrates the overall distribution of different types of traffic incidents within

each of the two broad categories of planned and unplanned incidents, in terms of their duration.

1Operation Stack is a procedure to park (or ‘stack’) lorries whenever there is an urgent need to inhibit the flow

of traffic because of some disruptions such as bad weather or industrial action.
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The distribution plots reveal that: 1) the majority of planned anomalies lasted for a duration

of less than five hours while, occasionally, some emergent infrastructure issues or hazards may

lead to incidents with a long duration of around 10-15 hours; 2) the duration distribution of

unplanned events has a long tail, i.e., a typical right-skewed distribution, which means the mean

duration is longer than the duration of most frequent road works for unplanned events; and 3) the

average planned roadworks tend to have a longer duration than that of unplanned works which

may result from the generally heavier workload needed for the planned roadworks.

Figure 4.15: Traffic anomaly distribution in the study area with different types

Figure 4.16 shows the distribution of different types of traffic anomaly in terms of the

time of day. The number in the bar represents the size of intervals of varied traffic anomaly

types falling into each time of the day. Across all times of the day, by far the largest number

of intervals is devoted to works, probably due to the longer duration of roadworks. Most car

accidents occurred during the morning peak hours and afternoon peak hours.

Figure 4.16: Traffic anomaly distribution in the study area with different types over time of day
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4.4.1.2 Traffic Data

The traffic data, including traffic flow and occupancy, are recorded by Inductive Loop Detec-

tor (ILD). ILDs are widely used for providing inputs to the Split Cycle Offset Optimisation

Technique (SCOOT) traffic control system (Hunt et al., 1981). They report vehicle presence or

absence (0/1 values) sampled at 4Hz at the fixed location. Traffic variables such as flow and

occupancy can be calculated from the reported data. The detailed calculation process has been

explained in previous studies (Krishnan, 2008; Zhu, 2015), please refer to Appendix B for de-

tails. The traffic flow data have been aggregated into 5-min intervals between 00:00 and 23:55

every day during the course of around 80 days from 1st Jan 2015 to 24th Mar 2015.

The typical traffic flow time series for all detectors on different days of the week are shown

in Figure 4.17, where a daily peak and off-peak traffic pattern of traffic volumes is evident. The

traffic flow time series data show remarkably different patterns of traffic states due to the varying

levels of ILD sensitivities and the characteristics of observing traffic. The aggregated average

traffic flow for day of the week and for time of day, i.e., 288-time points per day, are shown in

Figure 4.18. Similarly to the traffic data in the Bath case study, it is clear that the volume of

traffic on weekdays is generally higher than that at weekends. The traffic flow between 9:00

and 18:00 is consistently high because of the large traffic volumes in the study area of Central

London.

Figure 4.17: Traffic flow profile in the study area
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Figure 4.18: The average traffic flow in terms of day of week, time of day in the NRC study area

4.4.1.3 Relationship of Traffic Incident to Traffic Data

Figure 4.19 shows the relationship between traffic flow and occupancy, on the one hand, and

traffic anomalies on the other hand (as recorded in the traffic incident dataset), both upstream and

downstream of the anomaly point. During the traffic anomaly, the traffic flow in the upstream

segment will drop significantly while the flow in the downstream will increase dramatically,

followed by a sharp decrease.

On the other hand, while the occupancy upstream will increase immediately after the traffic

anomaly, since the traffic formulation during the traffic anomaly starts from the normal traffic

for that time of day and day of the week, and thus already exhibits a wide potential variation

in traffic jam severity, the scatter plots with the labels of traffic incidents may fall into different

regimes of the LoS category. Thus, it is more difficult for the detection algorithm to capture

this non-linear relationship between traffic data and incident data in the case of non-recurrent

congestion than with the recurrent congestion problem, which in general has a clear separation

of different traffic states.
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(a) Traffic flow of upstream and downstream (b) Traffic occupancy of upstream and downstream

(c) Flow and occupancy of upstream (d) Flow and occupancy of downstream

Figure 4.19: Relationship of traffic data and non-recurrent congestion data

4.4.2 Input Layer Translation

Following this detailed description of the traffic and incident data, this section translates that data

into multiple dimensions according to the proposed translation layers. Figure 4.20 shows the

input for the non-recurrent congestion detection model based on a connectivity matrix. Specif-

ically, 112 main junctions were identified as the nodes in the study area, resulting in a final

connectivity matrix input dimension of (2 × 112 × 112) where 2 refers to two traffic features,

i.e., traffic flow and occupancy, and 112 is the number of main junctions in the study area. It is

worth noting that the sparsity of the matrix will increase exponentially with the increase in the

size of the study area due to its assumption of direct connection. This kind of sparsity may be

dealt with by taking into account two or multiple connections instead of one direct connection.

Although this multiple connection analysis is beyond the scope of this research, it may be worth

discussing in future research.
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Figure 4.20: Input matrix with traffic flow values (veh/h) converted by the connectivity matrix

for NRC detection

With regards to geographical grid translation, Figure 4.21 shows the geographical grid

translation for the London case study. The position of the grid has been determined based

on the directions of the main corridors in the study area, with the aim of guaranteeing that the

neighbouring detectors in the map are placed directly next to each other in the grid. Considering

the dense distribution of detectors in London, and based on a previous study (Bao et al., 2019),

the resolution of the grid was increased to 200m to ensure each cell has a maximum of one

detector for each direction and also to reduce the number of cells with no detectors. This grid

leads to a final size of translated input of 4 × 22 × 18 where 4 refers to the two traffic features

for both the inflow and outflow direction and (22× 18) are the axes of the translated input.

(a) Grid map

(Map Source: OpenStreetMap) (b) Translated inflow (c) Translated outflow

Figure 4.21: Input matrix converted by geographical grid translation for NRC detection
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As mentioned in the Bath case study, the time lags have been included in the depth of the

matrix instead of as a separate temporal dimension. Thus, for the spatio-temporal translation,

the final dimension after this type of translation is (k × 237 × 2) where k is number of time

lags, 237 is the number of detectors and 2 stands for the two selected traffic features for each

detector.

4.4.3 Model Calibration and Output

After the translation of input layers, two other important components for the non-recurrent con-

gestion detection are the proposed algorithm and the labels. For the selection of the relevant

hyperparameters readers can refer to Section 4.3.4.

Regarding the output labels, the labels of the busiest main corridor, namely Euston Road,

have been used in order to simplify the evaluation. Figure 4.22 shows an overview of Euston road

with the distribution of incidents. Euston road connects three main stations, three underground

stations (Warren Street Station, Euston Station and King’s Cross St.Pancras Station) and a couple

of bus stations. During the study period, 33 traffic anomalies, i.e., 22.4% of the traffic anomalies

in the study area, were identified on this road, as listed in Table 4.5 where the major type of non-

recurrent congestion was traffic incidents, or car accidents.

Table 4.5: Incident counts on the Euston Road

Incident Category Planned Unplanned Total

Infrastructure Issue 0 3 3

Traffic Incidents 0 20 20

Hazard(s) 0 4 4

Works 5 1 6

Total 5 28 33

Figure 4.23 shows the distribution of different types of traffic anomalies on Euston Road.

As for the unplanned incidents, four types, namely infrastructure issue, traffic incidents, road-

works and hazards, occurred during the study period. Most traffic incidents lasted around 2-3

hours while the infrastructure issues and hazards had a relatively longer duration, i.e., 5-10

hours. In respect to planned incidents, roadworks were the only types that occurred during the

study period, and it is obvious that the duration of planned roadworks is much longer than the



4.4. Case Study of Non Recurrent Congestion Detection 105

Figure 4.22: Traffic anomaly distribution on Euston Road (Map Source: OpenStreetMap)

unplanned works shown in the left figure. This longer period may because that the planned

works tend to involve a larger maintenance project.

Figure 4.23: Distribution of different types of traffic anomaly on Euston Road

Figure 4.24 presents a histogram of the distribution of varied types of traffic anomaly ac-

cording to the time of day. As expected, roadworks account for most intervals (5 minutes for

each interval) across the whole day while the other three types occur over a smaller number of

intervals. The car accidents may have a longer duration during the noon and midnight period

which lead to a larger number of intervals involving in traffic incidents.
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Figure 4.24: Distribution of different types of traffic anomaly on Euston Road according to the

time of day

4.4.4 Results and Analysis

With the translated inputs, output and proposed detection model, this section will evaluate the

model in terms of the following metrics:

• detection rate;

• false positive rate;

• F1 score;

• precision;

• area under the curve;

• confusion matrix;

• mean computational time to detect a NRC; and

• ROC curve.

Compared to the early recurrent congestion detection discussed in Section 4.3, the sensitiv-

ity analysis with the change of prediction horizon is not applicable since traffic incidents cannot

be predicted in advance due to their inherent randomness. The sensitivity analysis in respect to



4.4. Case Study of Non Recurrent Congestion Detection 107

time windows has been included in this section, however, in order to assess the impact of time

lags on the model performance.

Table 4.6 shows the detection results based on different translation layers. Even though

the connectivity matrix gave superior performance for recurrent congestion detection, its supe-

riority is not transferred to a larger network like that of the London case study. This reduced

performance may because of the sparsity of the translated matrix, as mentioned above. This

sparsity may lead to insufficient feature extraction from the input layers. On the other hand,

based on the results for all the metrics in the table, it is evident that the geographical transla-

tion method, which converts the traffic features in the format of inflow direction and outflow

direction, is effective at supporting the proposed algorithm to detect the emerging and existing

traffic anomalies. It outperforms the connectivity matrix and spatial temporal translation, with

low false alarm rate and high precision, detection rate and F1 score. This result is confirmed by

the confusion matrix in Figure 4.25. Figure 4.26 also demonstrates the superiority of the geo-

graphical grid method, as illustrated by its closeness to the left upper corner and the steepness

of the curve in the ROC curve.

Table 4.6: Nonrecurrent congestion detection results based on different translation layers

Translation Layer DR FPR F1 score Precision AUC MTTD(s)

Connectivity Matrix 0.869 0.132 0.869 0.868 0.947 95.358

Geographical Grid 0.942 0.082 0.931 0.920 0.980 4.371

Spatial Temporal Translation 0.884 0.086 0.897 0.911 0.962 11.764

(a) Connectivity Matrix (b) Geographical Grid (c) Spatial Temporal Translation

Figure 4.25: Non-recurrent congestion detection confusion matrix based on translation layers

Regarding the sensitivity analysis in respect to time lags, as shown in Figure 4.27, it is

remarkable that geographical grid translation consistently outperformed the other two methods
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Figure 4.26: Non-recurrent congestion detection ROC curve

no matter the number of time lags, with FPR fluctuating below 0.1 and with DR over 0.94, etc.

Overall, grid translation is less sensitive to the number of time lags. The performance of detec-

tion based on the connectivity matrix, however, is rather unstable due to its sparsity while that of

spatio-temporal translation is acceptable but consistently less good than the performance of the

geographical grid method. Considering the impact of time lags on accuracy, since many metrics

that measure different aspects of the algorithm have been involved in the decision making, it is

hard to find a conclusive recommendation. Nevertheless, it is notable that a time window of

three could lead to a relatively lower FPR and higher precision together with other acceptable

performance.

4.4.5 Summary of Non-Recurrent Congestion Detection

This section evaluated three translation layers for NRC detection based on a case study in Lon-

don. The result suggested that geographical translation, which converts the traffic features in

the format of inflow direction and outflow direction, is effective at supporting the proposed

algorithm to detect NRC anomalies. It outperforms the connectivity matrix and spatial tem-

poral translation across multiple evaluation metrics. The geographical grid might therefore be

selected as the first component for an NRC detection methodological framework.
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC (f) MTTD

Figure 4.27: Non-recurrent congestion detection in terms of time lags with prediction horizon=0

4.5 Summary

This chapter has been structured to address an important aspect of the third objective, i.e., to

explore the translation of deep learning techniques to traffic anomaly detection by investigat-

ing three different translation layers. The chapter first introduced the background in respect to

translation layers, comprehensively reviewing previous relevant studies in Section 4.1. After

this literature review, three translation layers, connectivity matrix, geographical grid translation

and spatio-temporal translation were described in Section 4.2 before evaluating these in respect

to the problems of the early prediction of recurrent congestion and detecting non-recurrent con-

gestion detection. Specifically, Section 4.3 presented the evaluation result based on a case study

for the prediction of recurrent congestion in the City of Bath, while Section 4.4 illustrated the

evaluation in respect to the detection of non-recurrent congestion based on a case study in Lon-

don. For both case studies, the evaluation started from the data description where the reasons for

the case study selection and data analysis were presented. This was followed by model calibra-



110 Chapter 4. Translation Layers

tion and output description, and finally, the evaluation results based on comprehensive metrics

and sensitivity analysis.

Since several evaluation metrics assessing different aspects of the detection algorithms are

investigated, it is hard to find a conclusive recommendation covering all translation layers in

terms of all metrics. This very inconsistency, however, increases the flexibility of the potential

practical applications, which may target different criteria. As for the recurrent congestion de-

tection, the connectivity matrix approach would be recommended for the early prediction task

if a low false alarm rate and high precision are required, while the geographical grid approach

may be an attractive option where a high detection rate and F1 score are relevant. Another issue

is that the prediction result will decrease when the prediction horizon increases but the accu-

racy for two-hour ahead prediction is still acceptable, with a precision of 0.96 and an FPR of

0.15. On the other hand, the existence of a bowl shape when evaluating the performance with

increasing time lag indicated that adding unnecessary additional time lags may introduce noise

rather than useful features into the detection algorithm. Recurrent congestion detection methods

need to emphasise the impact of time lags. A wiser choice of time lags for recurrent congestion

detection may lead to effective and accurate detection.

In terms of the detection of non-recurrent congestion, in contrast to recurrent congestion

detection, where the output labels are not available, additional traffic incidents obtained from

Transport for London have been used for incident detection. Another difference with the recur-

rent congestion detection is that the traffic network selected is much larger than that of the Bath

case study, with around ten-fold more detectors more than that of the Bath case study. This larger

network caused a relatively sparse connectivity matrix as the input for the detection model. As

a result, the performance of the detection using the connectivity matrix input was worse than

that for the geographical grid translation. With its advantages involving the consideration of

direction and sufficient feature extraction, the geographical grid translation outperformed the

others based on all metrics, regardless of the number of time lags in the sensitivity analysis.

In addition, for the detection performance with geographical grid translation, a rather flattened

bowl shape exists in the sensitivity analysis of time lags.

According to this overall performance comparison, connectivity matrix translation leads

to superior performance in terms of low FPR, high precision and ROC for RC detection, while
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geographical translation outperformed the others across all metrics for NRC detection. The

different recommendations for these two tasks are reasonable since recurrent congestion entails

the continuous correlation in terms of traffic stream direction which means recurrent congestion

generally leads to traffic condition changes in the same direction. The connectivity matrix can

reflect this direction correlation easily by connecting the neighbouring nodes by directions. On

the other hand, NRC might impact on the traffic states of all directions in the area affected by

traffic incidents. This impact on all traffic stream directions in a small area could be naturally

represented by grid translation.

In summary, this chapter has dealt with the objective of translating the deep learning de-

tection into traffic anomaly detection, as set out in Section 1.3. Based on the outcomes, the

connectivity matrix translation and geographical translation will be selected as the translation

layers for subsequent components of the RC and NRC traffic anomaly detection framework, re-

spectively. To further validate the proposed detection algorithm itself, in the next chapter, the

proposed deep learning will be compared with the conventional machine learning methods, both

for early detection of recurrent congestion detection and detection of non-recurrent congestion.



Chapter 5

Deep Learning Based Anomaly Detection

In Chapter 4, three translation layers were developed to translate a traffic network with spatio-

temporal features into a set of matrices. This chapter adapts the deep learning methods out-

lined in Section 3.2.2 and compares their performance with other conventional machine learn-

ing models, such as multilayer perceptron, random forest and gradient boosting classifier. Since

few deep learning methods have previously been applied to the detection of traffic anomalies,

a comprehensive review of deep learning for traffic prediction or forecasting is included here

before undertaking the evaluation for both recurrent congestion and non-recurrent congestion

detection.

This chapter is organised as follows. Section 5.1 presents the research background includ-

ing a detailed literature review of the application of deep learning in traffic prediction. Section

5.2 presents the conceptual structure of the methodological framework and formulations of the

anomaly detection problem for the two types of traffic anomalies. Section 5.3 gives the evalua-

tion based on early recurrent congestion detection while Section 5.4 shows that of non-recurrent

congestion detection in terms of DR, FPR, F1 score, precision, AUC, confusion matrix and

ROC. Section 5.5 provides a summary of this chapter.

112
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5.1 Introduction and Background

The previous chapter mainly focused on the translation input into deep learning methods. This

section will focus on the application of the deep learning models for early RC and NRC detection.

To date, there are two main types of deep learning application in the domain of transporta-

tion could be summarised. Specifically, most studies have focused on the application of deep

learning in the field of traffic prediction, such as traffic flow prediction (Huang et al., 2014;

Polson and Sokolov, 2017; Du et al., 2019) and traffic speed prediction (Ma et al., 2015a; Kim

et al., 2018; Ke et al., 2019). In addition, a few deep learning methods have been used for clas-

sification purposes, such as transportation mode classification (Dabiri and Heaslip, 2018) and

crash detection or incident detection (Bao et al., 2019). Among these studies for the prediction,

some used CNN (Polson and Sokolov, 2017) while the other applied hybrid methods based on

multiple deep learning methods (Du et al., 2019).

For example, CNN and LSTM have been intensively used in the prediction and estimation

problem to extract spatial and temporal features of traffic dynamics (Shi and Yeung, 2018). The

hybrid model combining CNN and LSTM has been proved in many previous studies to have

superior performance for traffic prediction (Ma et al., 2017; Yao et al., 2018; Wu et al., 2018c).

The popularity of combining CNN and LSTM originates from its efficiency and effectiveness

in extracting spatial and temporal features (Ma et al., 2017). Specifically, CNN is good at ex-

tracting spatial information because of its function of convolutional layers and pooling layers.

Convolutional layers of a CNN connected locally instead of being fully connected like the tra-

ditional neural networks enable a CNN to deal efficiently with spatially-correlated problems

(Krizhevsky et al., 2012). The pooling layers of CNN can significantly reduce the level of pa-

rameters in the model architecture which enable it to be generalised into large-scale problems

(Karpathy et al., 2014). On the other hand, LSTM has the mechanism of gates which can control

a long time-period memory which in turn can be particularly capable of dealing with temporal

information and thus useful for the forecasting and prediction problem (Ma et al., 2017).

Another application of deep learning in transportation is to use reinforcement learning (Sut-

ton and Barto, 2018) for traffic signal control. The research into traffic signal control involves

a wide range of control theories, optimisation and decision making, however, which makes it a
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very different topic compared to the traffic prediction and classification problem, and will not

be reviewed in this research. Readers who are interested in this aspect may refer to the recent

survey of traffic control methods by Wei et al. (2019). A summary of the application of deep

learning in traffic prediction is shown in Table 5.1.

Table 5.1: Summary of deep learning applications in traffic prediction and detection

Reference Deep Learning Research Problem Baseline Models
Huang et al., 2014 Deep Belief Networks Traffic flow prediction MLP, SVM, ARIMA,

etc.

Lv et al., 2014 Stacked Autoencoders Traffic flow prediction MLP, SVM, Random

Walk, etc.

Ma et al., 2015a LSTM Traffic speed prediction MLP, SVM, ARIMA,

etc.

Wang et al., 2016a Recurrent CNN Traffic speed prediction CNN, SVM, ARIMA,

etc.

Polson and Sokolov, 2017 CNN Traffic flow prediction linear model, vector

auto-regression

Ma et al., 2017 CNN Traffic speed prediction RF, MLP, KNN, etc.

Fang et al., 2017 Deep Neural Networks

(DNN)

Transportation modes

prediction

SVM, KNN, etc.

Kim et al., 2018 Capsule Network Traffic speed prediction CNN

Wu et al., 2018c DNN Traffic flow prediction LASSO, MLP, etc.

Dabiri and Heaslip, 2018 CNN Traffic mode prediction KNN, MLP, SVM, etc.

Zhang et al., 2018a ST-ResNet Traffic flow prediction ARIMA, MLP, LSTM

Zhang et al., 2018b LSTM and Deep Belief

Network (DBN)

Traffic incidents detec-

tion

SVM and ANN

Ke et al., 2019 CNN Traffic speed forecast-

ing

MLP, ARIMA, LSTM,

etc.

Du et al., 2019 Convolutional LSTM Traffic flow prediction ARIMA, ANN, etc.

Bao et al., 2019 Convolutional LSTM Traffic crash risk pre-

diction

ANN, ARIMA, GBC,

etc.

Even though CNN and LSTM have been intensively used in traffic prediction, to date,

limited research has investigated its effectiveness in traffic anomaly detection. Both types of

traffic anomaly, i.e., the detection of recurrent and non-recurrent congestion, exhibit spatial

dependencies on the traffic states in the local traffic network and temporal dependencies on the

evolution or propagation of temporal traffic dynamics. Hence, it is vital to formulate the problem

with the factors that can help extract these dependencies. To fill this gap, it is worth investigating
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the application of CNN and LSTM in the traffic anomaly detection problem.

5.2 Methodology

Given the challenges and gaps mentioned above, this section will formulate the problem and

transfer the deep learning techniques, i.e., CNN and LSTM, to the research field of traffic

anomaly detection.

5.2.1 Recurrent Congestion Detection

As mentioned in Section 3.2.2, to overcome the aforementioned disadvantages of traditional

traffic congestion detection, a two-stage detection method, i.e., (1) a traffic state identification

stage and (2) an early RC detection stage, is proposed to detect suspicious RC early based on

traffic flow and occupancy data observed from loop detectors. The primary objectives of this

two-stage model are first to identify different traffic states (i.e., congestion and non-congestion)

and secondly to model spatio-temporal dependencies so as to be able to detect potential recurrent

traffic congestion early. This early detection is especially desirable for proactive traffic operation

and control for real-time ITS systems. The labels of the recurrent congestion detection in this

section are the same ones as those generated by the EM algorithm. Please refer to Section 4.3.1

for details.

A critical issue to be tackled with current applications of deep learning to the transporta-

tion field is determining an appropriate way to translate or represent traditional traffic data as a

tensor, the essential input for deep neural nets. The transformation between the natural formats

of traffic data and image data is not straightforward. Given the essential understanding of early

RC detection problem and the evaluation results from the last chapter, it was determined that

the connectivity matrix gives superior accuracy compared to other translation layers, based on

the metrics such as DR and FPR. Thus, this chapter will carry out the evaluation based on the

recommendation of the previous chapter and compare it with other baseline models or conven-

tional machine learning methods. More specifically, for the connectivity matrix, the x − axis

represents the origin nodes of the network, the y−axis represents the destination nodes, which

are placed according to the direction of traffic flow, while the z − axis stands for the features
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of traffic information, i.e., traffic flow and occupancy. An additional dimension represents the

number of frames which are time lags or windows (i.e., how many time steps, t− 1, t− 2, etc.,

have been taken as inputs). After the translation, each frame corresponds to a 4D matrix with

origin nodes, destination nodes, features and time frame.

In terms of the detection method, the hybrid method combining CNN and LSTM is pro-

posed for the early RC detection stage where inputs have been transferred into the matrix using

the connectivity matrix, and outputs are binary labels generated from the traffic state identifi-

cation stage in Section 4.3.1. The early detection model consists of a CNN and a multi-layer

LSTM as shown in Figure 3.9. The CNN is initially used for general classification but it cannot

handle the prediction of upcoming traffic states. LSTM, however, enables CNN to detect traf-

fic congestion with partial data and predict future states because of its capability of sequence

processing. In this stage, CNN reads the input as an image and obtains a fixed size vector rep-

resentation of the initial input. After that, a multi-layer LSTM takes the representation, original

input and the output from previous timestamps to produce the desired output, i.e., traffic states

in a certain timestamp. An overview of the CNN-LSTM was previously provided in Figure 3.9.

Generally, every layer in a CNN model serves as a detection filter for features presented in

the input data. The first layer recognises the relatively obvious features, the later layers gradually

detect the more abstract features, while the last layer of a CNN makes a specific classification

based on all features detected by previous layers. As aforementioned in Section 4.3.4, the se-

lection of max pooling kernel size (2× 2) and convolutional filter size (3× 3) could be referred

to several well-known CNN architectures, such as AlexNet (Krizhevsky et al., 2012) and LeNet

(LeCun et al., 1998). On the other hand, the depth of the proposed model is constrained by the

input size of the image and thus the final net contains five layers with weights.

The detailed CNN-LSTM architecture used in this research is shown in Table 5.2. The first

two are Convolutional (Conv) layers, each followed by a max pooling, and the other two are

LSTM layers, while the remaining fully connected layer is fed to a Sigmoid activation function

to output the predicted probability of the binary classes. The Conv kernels are connected to all

kernels in the previous layer and ReLU activation function is used for the output of every Conv

layer and the first LSTM layer.
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Table 5.2: LSTM CNN architecture for early RC detection

Layer (type) Output Shape Param #

Time Distributed Conv (None, 1L, 32, 18L, 18L) 608

ReLU Activation (None, 1L, 32, 18L, 18L) 0

Time Distributed Pooling (None, 1L, 32, 9L, 9L) 0

Dropout (None, 1L, 32, 9L, 9L) 0

Time Distributed Conv (None, 1L, 64, 7L, 7L) 18496

ReLU Activation (None, 1L, 64, 7L, 7L) 0

Time Distributed Pooling (None, 1L, 64, 3L, 3L) 0

Dropout (None, 1L, 64, 3L, 3L) 0

Time Distributed Flatten (None, 1L, 576) 0

Bidirectional LSTM (None, 1L, 64) 155904

Dropout (None, 1L, 64) 0

Bidirectional LSTM (None, 128) 66048

Dropout (None, 128) 0

Dense (None, 1) 129

Sigmoid Activation (None, 1) 0

5.2.2 Non-recurrent Congestion Detection

A CNN-based incident detection algorithm was proposed to detect anomalous conditions by

comparing traffic flow values with the historical traffic pattern. In order to implement the CNN,

the time-series traffic flow data from ILDs must be converted into a matrix which shares the same

pattern as that used to characterise general 2D images. From the discussion and evaluation of

Chapter 4, it was evident that geographical grid translation outperformed the other methods

in terms of almost all the metrics. Thus, in this section, a detection algorithm based on the

geographical grid translation will be presented. Before presenting the results in comparison with

other machine learning methods, however, it is necessary to elaborate on the typical functions

or layers of a CNN.

5.2.2.1 Convolutional Layer

The convolutional layer is the most important layer in a CNN model (Krizhevsky et al., 2012)

connecting the input connectivity matrix defined as x ∈ R
p×q×q with a set of filters W ∈

R
n×p×m×m where p is the sample size, q is the size of the input matrix and n is the number of
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convolutional filters. The single convolutional layer is formulated as follows:

f(x : W, b) = h = hk, k = 1, . . . , n

hk = ReLU(x⊗Wk + bk)
(5.1)

where b ∈ R
n is a bias for each filter output, k is the number of convolutional filters and ⊗

is the convolutional operator that applies on a single input and a single filter. The output h ∈
R

n×(q−m+1)×(q−m+1) is a set of feature maps extracted by the convolutional layer. A parameter

sharing scheme is used in convolutional layers to control the number of parameters.

5.2.2.2 Max Pooling Layer

Pooling layers in the CNN model summarise the outputs of neighbouring groups of neurons in

the same kernel map. A max pooling technique, the most common pooling strategy, is applied

in every two-unit window for each sub-region to output the maximum. An important function of

pooling layers is progressively to reduce the size of representation by half and filter out undesir-

able small values of traffic flow data, thus reducing overfitting. The commonly used operation

is to select the maximum value over the feature region generated by convolutional layers, since

this max process ensures that the significant features can be obtained for detection, even with

varying levels of translations (Nogueira et al., 2017).

5.2.2.3 Fully Connected Layer and Optimisation

The fully-connected layer is generally employed in the last stage of hidden layers to control the

dimension of the final output. The fully connected layer has full connections to all neurons in

the previous layer. The activation in this layer firstly computes with a matrix multiplication fol-

lowed by a bias offset. Then the output will be transformed according to the specified activation

function.

A binary Sigmoid crossentropy loss function is used as an objective function to be min-

imised later. The loss function for a binary classification is given in Eq. 5.2.

L = −∑
i ŷi log(yi)− (1− ŷi log(1− yi)) (5.2)
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RMSprop (Tieleman and Hinton, 2012) serves as an optimiser to utilise the magnitude of

recent gradients in order to minimise the loss function. It is used to keep a moving average of

the squared gradient for each weight, and update the weight and bias in each iteration during

the optimisation. Given the decay rate γ and the learning rate η, the parameters are updated as

Eq. 4.3. After several rounds of convolutional and pooling operations, fully-connected layers

make use of most parameters in order to learn all neurons in the previous layer and output to the

current layer, where the spatial notion of the matrix is reduced to that of a one-dimensional vec-

tor. To prevent overfitting caused by parameter-dominated fully connected layers, the dropout

(Srivastava et al., 2014) approach is employed. This basically drops a couple of neuron outputs

randomly on the basis that decreasing the number of neurons improves the speed of training and

makes the model practically effective. Finally, a classification layer is employed to calculate the

class probability for each instance. The detailed architecture of the non-recurrent congestion

detection model is appended in Table 5.3 and Figure 5.1.

ConV1 ConV2Pooling 1 Pooling 2 Fully Connected layer * 3Input Output

Figure 5.1: CNN architecture for NRC detection

In summary, the final net contains five layers with weights; the first two are Conv layers,

each followed by a max pooling, and the other three are fully connected layers, while the final

layer is fed to a Sigmoid activation function to output the predicted probability of the binary

classes. The ReLU activation function is used for the output of every convolutional layer while

the Sigmoid function has been used in the final layer.

5.2.3 Conventional Machine Learning Methods for Comparisons

In order to evaluate the performance of the proposed model, three commonly used link-based

machine learning-based detection algorithms are used for comparison. They are Multi-layer

Perceptron (MLP), Random Forest (RF) and Gradient Boosted Classifier (GBC). These methods
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Table 5.3: CNN architecture for NRC detection

Layer (type) Output Shape Param #

Conv2D (None, 32, 22, 18) 1184

ReLU Activation (None, 32, 22, 18) 0

MaxPooling (None, 32, 11, 9) 0

Dropout (None, 32, 11, 9) 0

Conv2D (None, 32, 9, 7) 9248

ReLU Activation (None, 32, 9, 7) 0

MaxPooling (None, 32, 4, 3) 0

Dropout (None, 32, 4, 3) 0

Flatten (None, 384) 0

Dense (None, 64) 24640

ReLU Activation (None, 64) 0

Dropout (None, 64) 0

Dense (None, 32) 2080

ReLU Activation (None, 32) 0

Dropout (None, 32) 0

Dense (None, 1) 33

Sigmoid Activation (None, 1) 0

are able to capture the complex and non-linear relationship between different features (Liu et al.,

2013; Cortez et al., 2012).

Stochastic gradient methods are used to minimise the loss function and update the weights

and bias step-by-step. After the optimisation, these methods with optimised weights are com-

pared with the proposed CNN model. As a result, MLP is set up with hidden layers with a size

of (32, 5); RF is configured to generate ten decision trees with a depth of 3; and GBC is tuned

to form up to 200 estimators, at a learning rate of 0.05 and a depth of 10.

As for the input for these machine learning methods, the time series traffic data can be

directly inputted into the models without the connectivity matrix transformation. The input data

of these traditional methods are normalised time-series traffic data of the target main corridor

or segmentation. Furthermore, stochastic gradient methods are also used in order to minimise

the error and optimise weights and bias step-by-step. The RF, MLP and GBC methods have to

be applied separately to detect incidents on each link.
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5.2.4 Problem of Overfitting

Overfitting is a statistical phenomenon in which a model is exactly in line with or too close to

a particular set of data and may therefore lose the ability to fit additional data or predict future

instances reliably, especially when the model includes more terms than are necessary or uses

more complicated approaches than are necessary (Hawkins, 2004). Ideally, the model should be

able to describe the underlying patterns, capturing the true pattern but not the noise or outliers.

With training according to a specific accuracy metric, however, the model may incorporate the

noise as it may only fit a particular dataset but not generalise the other samples well enough.

Overfitting is undesirable for a wide range of reasons, since 1) it may add no useful functions

and hence waste resources; 2) it may possibly add irrelevant factors which could lead to worse

decisions because the coefficients fitted to them add random variation to subsequent decisions

(Hawkins, 2004).

Overfitting is a common problem in the machine learning and deep learning methods

(Krizhevsky et al., 2012), and its presence can be suspected when the model accuracy in the

training dataset is high but drops significantly with a new dataset. A simple way to detect over-

fitting in practice, therefore, is cross-validation (Kohavi, 1995) by examining the trained model

with a validation dataset to check its predictive accuracy and to identify if significant variance

exists. In this research, to avoid the problem of overfitting, the proposed model has been vali-

dated with the plots of accuracy metrics from a training dataset (70%) and a validation dataset

(10%) before testing in the test dataset (20%).

In addition to the cross validation, a dropout technique (Srivastava et al., 2014) has been

used for the deep learning techniques. This consists of setting the output of each hidden neu-

ron to zero with a fixed probability (Hinton et al., 2012b). The dropped-out neurons therefore

do not participate in the optimisation. Consequently, the neural network sub-samples a dif-

ferent architecture, and all these architectures share weights (Krizhevsky et al., 2012). Since

a neuron cannot depend on the presence of specific other neurons, dropout reduces complex

co-adaptations of neurons and hence forces the neuron to learn more robust features.
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5.2.5 Summary

In this section, the detailed functions and parameters of the deep learning methods proposed in

Section 3.2.2 have been profiled and transferred into traffic anomaly detection. The configura-

tion of RC and NRC detection methods is based on many previous studies. Three representative

machine learning methods have been selected as benchmarks against which the proposed de-

tection methods can be compared. To avoid the overfitting problem, the dropout technique and

cross-validation have been applied.

5.3 Results of Case Study of Early Recurrent Congestion De-
tection

Table 5.4 shows the result of early recurrent congestion detection compared to conventional ma-

chine learning methods. Notwithstanding the generally good performance of both the proposed

CNN-LSTM model and the alternatives in the classification of traffic congestion, the CNN-

LSTM performed better in terms of low FPR. This means that CNN-LSTM has the potential to

detect outliers more accurately than alternative methods. While a large number of parameters

and tensor extraction processes are essential to configure CNN-LSTM, this method provides

better detection accuracy than the benchmarks.

Table 5.4: Recurrent congestion detection results based on different methods

Method DR FPR F1 score Precision AUC

LSTM-CNN 0.972 0.002 0.985 0.997 0.9993

Multilayer Perceptron 0.948 0.003 0.971 0.995 0.9994

Random Forest 0.954 0.011 0.969 0.984 0.9933

Gradient Boosting Classifier 0.941 0.005 0.966 0.992 0.9951

Of the four methods, CNN-LSTM performs best in terms of FPR and DR metrics. The

CNN-LSTM method is computationally more intensive and takes longer to run, but, still, the

time taken for CNN-LSTM method to run on a regular desktop PC is less than a second. Given

that temporal granularity of traffic data provided by ITS systems is typically 1-minute or greater,

the increased computational complexity is of no practical concern when implemented within a

real-world ITS system. Figure 5.2 confirms the superior performance of the proposed methods
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with the confusion matrix while Figure 5.3 gives an overview of the comparison based on the

ROC curve where the proposed method has been placed closer to the left upper corner.

(a) Multilayer Perceptron (b) Random Forest (c) Gradient Boosting Classifier

Figure 5.2: Recurrent congestion detection confusion matrix based on different methods

Figure 5.3: Recurrent congestion detection methods ROC curve

Figure 5.4 shows the relationship between RC detection accuracy and the number of time

steps ahead when the prediction method is run. It is evident from the figure that the detection rate

will decrease as the number of time steps increases. Even though the accuracy of the proposed

early detection method varies with respect to the size of the time horizon, however, the method is

able to predict RC accurately as early as seven-time steps (around two hours) in advance. This

result is encouraging since it provides traffic managers around two hours to select a suitable

intervention action and implement it.

Figure 5.5 presents the variation of accuracy in terms of the time windows to evaluate

the performance of early detection in terms of the time lags used as input for the CNN-LSTM
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 5.4: Recurrent congestion detection methods in terms of prediction horizons with time

lag=0

model. Based on the six metrics tested, the sensitivity of the four deep learning methods var-

ied significantly. Given the sensitivity analysis, it is obvious that the lowest FPR and highest

precision could be obtained with a time window size of 2 or 3. On the other hand, the DR and

F1 scores have a bowl shape which indicates that adding more historical information may not

help with these two evaluation indexes. MLP and RF are insensitive to the number of time lags,

while GBC is most immune to model structure with regards to time lags. The reasons of the

poor performance these baselines compared to the new proposed method are mainly from two

points: (1) lack of ability to model temporal correlations and learn from information from pre-

vious time steps; (2) limited benefit from massive amounts of data. For example, random forest

can train a model with a relative small number of samples and get pretty good results but it will,

however, quickly reach a point where more samples will not improve the accuracy. In contrast,

the proposed deep learning method needs more data to deliver the same level of accuracy, but it

will benefit from massive amounts of data, and continuously improve the accuracy. The full re-
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sults based on eight time lags and eight prediction horizons have been included in the Appendix

C.2.

(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 5.5: Recurrent congestion detection methods in terms of time lags with prediction hori-

zon=0

In this section, an early detection model based on the combination of unsupervised and

supervised learning is presented for the early detection of recurrent traffic congestion. There

are essentially two sub-problems in RC detection. The first is generating the reference labels

as indicators for congested or non-congested states for RC detection and the second is early

detection of RC congestion, i.e., providing an early alarm. In order to solve the first problem, a

data-driven Expectation Maximisation algorithm is presented. It was assumed that traffic states

could be categorised into congested and non-congested regimes. The proposed method clusters

different traffic states iteratively to satisfy the maximum expectation effectively based on traffic

flow and occupancy data from ILD sensors. In order to solve the second sub-problem, the spatio-

temporal characteristics of urban traffic dynamics were learned and analysed in a CNN-LSTM

based early detection model, in which the CNN element guarantees its capability of capturing
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the spatial correlations among ILD data while the LSTM element ensures that long temporal

lags are handled efficiently. The proposed model can also be generalised for prediction problems

in road networks, where spatial correlations are significant factors for the prediction. The time-

space relationship is captured during the feature extraction process in the deep learning neural

layers of the proposed method.

Comprehensive evaluation metrics, including the Detection Rate, False Positive Rate, Pre-

cision and Mean Time to Detection, are used to evaluate the performance of the proposed

method compared to more conventional machine learning methods. Based on the Bath case

study, the proposed two-stage early detection approach has been proved to be promising, as it is

able to detect recurrent congestion as early as seven time steps (i.e., around two hours ahead) in

advance providing traffic managers with adequate time to implement suitable congestion mit-

igation actions. Comparison of the CNN-LSTM method with established methods from the

literature indicates that the deep neural network methods such as the CNN-LSTM algorithm are

capable of achieving accurate early congestion detection and outperforming normal multi-layer

neural networks.

Additionally, this research was followed by an extension of the analysis to consider the im-

plications learnt from this work in respect to the formation of congestion and signs of imminent

congestion in order to generalise the conclusive results based on limited case studies. A sensi-

tivity analysis that describes the robustness of performance in terms of the number of time lags

and prediction horizons was conducted. This additional analysis shows that traffic data input

decomposed by longer time lags does not necessarily improve the performance, even with an

advanced sequence processing tool.

5.4 Results of Case Study of Non Recurrent Congestion De-
tection

This experiment is to examine the accuracy of the proposed CNN model for detection of non-

recurrent or traffic incident related congestion. Table 5.5 shows the results for non-recurrent

congestion detection compared with conventional machine learning methods. Notwithstanding

the generally good performance of both the proposed CNN model and the alternatives in the
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classification of traffic incidents, the CNN performed better in terms of low FPR and high F-

measurements, which means that CNN has been potential for detecting traffic outliers with less

mistaken flags (i.e., false positives and negatives). This superior performance is also verified by

the confusion matrix in Figure 5.6 and the ROC curve in Figure 5.7. Despite the large number

of parameters and the tensor extraction process that is essential to configure CNN, the method

exhibits effective detection compared to the benchmark. It is reasonable that conventional ma-

chine learning methods have a shorter computational time compared to CNN due to the inherent

constraints of the deep structure and a large number of parameters to be trained for the CNN.

This computational time is still practically acceptable as it is far less than the aggregated time

interval, i.e., 5 minutes.

Table 5.5: Recurrent congestion detection results based on different methods

Method DR FPR F1 score Precision AUC MTTD(s)

CNN 0.942 0.082 0.931 0.920 0.980 4.371

Multilayer Perceptron 0.911 0.298 0.825 0.754 0.902 0.227

Random Forest 0.917 0.150 0.888 0.860 0.963 0.078

Gradient Boosting Classifier 0.905 0.116 0.896 0.887 0.968 0.016

(a) Multilayer Perceptron (b) Random Forest (c) Gradient Boosting Classifier

Figure 5.6: Recurrent congestion detection confusion matrix based on different methods

Analysis of time lags is conducted in order to study their impact on the detection perfor-

mance, and the result is presented in Figure 5.8. The conclusion is very similar to that of the

recurrent congestion detection as the accuracy does not necessarily increase with the increase in

time lags for all metrics. Even though it is hard to find a conclusive recommendation, however,

one might identify that the proposed method has the lowest FPR and highest precision with a

time lag equal to 2, and this indicates that the traffic information in the short past can help to

introduce noise to the classification model. The inherent reason for this phenomenon is that the
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Figure 5.7: Recurrent congestion detection methods ROC curve

traffic states change rapidly in the centre of the city and generally traffic division is a common

practice during the occurrence of traffic incidents in a short time.

(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC (f) MTTD

Figure 5.8: Non Recurrent congestion detection methods in terms of time lags with prediction

horizon=0
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In this section, a network-level incident detection model based on the CNN architecture is

presented. The proposed model can be used for prediction problems in large urban networks

where spatial correlation is a significant factor. Traffic data are extracted into tensors by using

geographical grid translation to retain spatial correlations in the network before feeding them

into the proposed model. In order to evaluate the performance of the new approach, it was ap-

plied to detect traffic incidents with traffic data and incident data collected from central London,

and compared it with established alternative methods in terms of six metrics. The results indi-

cate that the proposed deep-learning based detection model outperforms the baseline models.

This comparison of the CNN method with the established methods from the literature indicates

that deep neural network methods, such as the CNN algorithm, are capable of achieving accurate

network-level traffic incident detection, especially for a large sized network.

5.5 Summary

This chapter has reviewed the application of deep learning techniques in transportation. The

hybrid method LSTM-CNN has been used for the recurrent congestion detection in which the

LSTM was applied to extract the temporal features while the CNN was used to capture the

spatial features in the traffic network. The results of a case study from the City of Bath showed

that the proposed model gave reasonable early prediction (with a DR value of 0.972, FPR value

of 0.002, etc), outperforming the baseline models, i.e., MLP, RF and GBC.

On the other hand, the application of CNN in the context of non-recurrent congestion de-

tection was also evaluated and compared with the baseline models. Results of a case study in

London show that the CNN model is superior to the conventional machine learning methods to

get information for existing and emerging traffic incidents.

Despite the superior detection results for both recurrent congestion detection and non-

recurrent congestion detection, the models can only give prediction or detection results for target

corridors or links. For a network-wide analysis, it is vital for any ITS applications to locate the

bottlenecks precisely, i.e., recurrent congestion and incidents in the network. Building on the

contribution of Chapter 4 and this chapter, therefore, the next chapter will illustrate a network-

based detection model with the function of localisation by using deep learning methods.
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Localisation of Traffic Anomaly

The methodological framework presented in this thesis consists of three parts: (1) a translation

layer to capture the spatial and temporal features; (2) detection methods in conjunction with the

translation layer in order to detect traffic anomalies with reasonable accuracy compared to base-

line models; and (3) localisation that can help to locate the traffic anomalies at a network level.

Accurate detection of traffic anomalies based on the information at a network level is a very

important step for a network-based model. Since traffic anomalies could occur on multiple road

segments simultaneously, it is vital to decompose and locate traffic anomaly points precisely.

This chapter will therefore focus on the question of localisation and evaluate the feasibility of

locating traffic anomalies at a network level. The localisation function is of importance when

the proposed method, or similar methods, are used at a network level.

Accurate measurement of traffic anomalies is a prerequisite to design effective interven-

tions. The chapter will start with a review of studies relevant to the localisation of traffic anoma-

lies, in Section 6.1, focusing on vision-based and sensor-based localisation and positioning. Sec-

tion 6.2 formulates the methods for locating traffic anomalies at a network level. In this section,

six different methods are presented. This is followed by an evaluation based on the detection of

both recurrent and non-recurrent congestion, with multiple occurrences of RC and NRC at the

network level in Section 6.3 and Section 6.4, respectively. Finally, Section 6.6 concludes this

chapter with the main findings and limitations of the proposed localisation method.

130
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6.1 Introduction and Background

Advances in ITS, exploiting various synergistic technologies such as collision warning, environ-

mental monitoring and regulation enforcement, can help improve the safety and level of service

of transportation networks. These applications of ITS, however, are largely dependent on the

ability to accurately locate these threatens in respect to the transportation network (Amini et al.,

2014).

A vast array of literature has attempted to solve the problem of localisation practically, not

only in the field of transportation research (Amini et al., 2014), but also in a variety of other do-

mains such as robotics (Rascon and Meza, 2017; Woodman and Harle, 2008), object detection

in vision processing (Li et al., 2013) and, in medical research, cancer detection (Bratan et al.,

2013). Localisation in these domains usually relies on advanced sensors to capture either the

vision-based features or sensor-based features. Specifically, for visual object detection, the com-

mon features used are colour, shape, depth and edges (Luo et al., 2014). One typical solution

to the robot localisation problem is particle filters because of their benefits in requiring signifi-

cantly less computation and a smaller memory than the comparable methods (Fox et al., 1999).

A particle filter is a sequential Monte Carlo method that employs a set of random weighted par-

ticles to represent the posterior distribution of the target state or feature (Candy, 2016). These

features are relatively straightforward, with the input of photos, videos and signals, but for the

matrix from transportation, it is hard to extract those features even with different transformed

matrix due to the complexity and highly dynamic nature of the traffic network.

To date, limited studies have been conducted to localise the traffic anomalies from a net-

work based on the traffic variables. With the recent advances, however, some studies have used

deep learning methods to learn traffic networks as images (Ma et al., 2017; Wu et al., 2018c;

Cui et al., 2018). For example, Ma et al. (2017) learned the traffic network as images to predict

traffic speed. The study transformed the network into a spatio-temporal format with each node

in the spatial sequence representing the location of sensors. By transferring the output from a

value into a vector, the model is capable of short-term prediction for each node at a network

level. This spatio-temporal translation has limitations, however, in respect to its poor transfer-

ability to larger networks with more complex topologies, as discussed in Section 4.1. Wu et al.

(2018c) applied a spatio-temporal CNN LSTM to predict traffic flow where the inner outputs
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of the deep learning models had been visualised. The authors concluded intuitively that partial

cells were sufficient to capture the long-term memories within traffic flow data.

Cui et al. (2018) used a convolutional recurrent neural network to forecast traffic speed.

They presented two examples to interpret why the proposed model is good at capturing spatial

features with the visualisation of convolutional layer weights. A deep CNN model may have

hundreds of thousands of hidden representations, however, such as the weight of convolutional

neurons and the weight of fully connected neurons. Visualising this large number of hidden pre-

sentations needs substantial computational power and analytics. Although visualisation might

be a useful tool to interpret the reasons for good performance by providing hidden output, it

might not be sufficient for precisely locating the crucial cells that lead to final classification

results.

In image processing, some studies (Zhou et al., 2017; Zhang et al., 2017) have attempted

to modify traditional CNNs to enhance their interpretability by applying either labels or filters

to the hidden representations in order to encode more semantically meaningful knowledge in

convolutional layers. The interpretable labels, ranging from colours, materials, textures, ob-

jects and scenes, could be used to help identify the location of an object from an image (Zhou

et al., 2017). In transportation, however, traffic anomalies are generally linked to a cell, or sev-

eral cells, rather than a region in the transferred matrix. The localisation of traffic anomalies,

therefore, is in nature different from the problem of identifying a region with a bounding box.

Additionally, during the learning process, the size and dimension of hidden representations will

be greatly reduced due to the pooling and dropout techniques (Krizhevsky et al., 2012). Re-

ferring to the location using the diminishing weights in an inverse order is a kind of heuristic

problem that needs lots of computational power and research efforts and where, even so, optimal

results might not be guaranteed. Moreover, the traffic states across similar types of roads have

similar properties and characteristics such as the shape of the traffic profile and the congestion

formulation process. These similarities, indistinct characteristics and the requirement for a high

resolution of localisation all increase the difficulty of using weights to locate traffic anomalies

precisely. Considering the discussion above and the scope of this research, it is clear that an

efficient approach to localisation is needed.

This chapter therefore aims to extend the work of the preceding chapters in order to locate
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traffic anomalies precisely within the network, building on the previous discussion of translation

layers and detection methods. Different iterative localisation methods will be presented in the

following sections. The proposed localisation methods will be evaluated with both recurrent

congestion and non-recurrent congestion case studies.

6.2 Localisation Methods

As implied in Section 6.1, several iterative methods are proposed here to address the traffic

anomaly detection problem. This section will present these methods. Since there are very

limited relevant studies in this field, i.e. seeking to extend the application of deep learning to

the traffic anomaly detection field, the localisation in this research will be calculated iteratively

based on the result of the detection model proposed previously by changing the format of output

from a single output to a vector. Specifically, suppose that the matrix input resulting from the

translation layer can be simplified into a two-dimensional format, the proposed method will

consequently detect the row index and column index with the input of the original matrix and

transposed matrix, as formulated as below.
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where x is the traffic variables in the matrix cell at the location with the index (d, n), y is

the traffic anomaly binary labels for the d row and y′ is the traffic anomaly binary labels for

the n columns. To localise a traffic anomaly A(d, n), the deep learning model will be trained

iteratively with the row index and column index labels and thus locate the traffic anomaly with

horizontal and vertical index respectively. Since limited research is available in this research
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field, in this study, six different methods are proposed: weighted average probability, conditional

probability, index, logistic regression, random forest and gradient boosting classifier. These are

summarised below, assuming that the vector of row probability is Prow and the vector of column

probability is Pcol.

• Weighted average probability: The weighted average method assumes that the row and

column have equal weight in the final decision, and thus, for each cell, the probability of

a traffic anomaly is Pij = 0.5Prow,i + 0.5Pcol,j .

• Conditional probability: This method is based on the conditional probability in which

the accuracy of row α and the accuracy of col β in the detection model have been assigned

as the weights, i.e., Pij = αProw,i + βPcol,j .

• Index: Instead of detecting the location with the evidence of probability, this method

uses the indexes or labels from rows and columns directly with the decision function in

Eq. 6.3.

f(xt) =

⎧⎪⎨⎪⎩
0, 0 ∈ [labeli ∪ labelj] at time t.

1, labeli ∩ labelj = 1 at time t.

(6.3)

• Logistic regression: In contrast to the straightforward methods mentioned above, logistic

regression uses the probability with different weights and bias optimised by a stochastic

optimisation function. Mathematically, logistic regression estimates a multiple linear re-

gression.

logb
p(y = 1)

1− p(y = 1)
= β0 + β1x1 + β2x2 (6.4)

By simple algebraic manipulation, the probability that y = 1 is as in Eq. 6.5.

p =
1

1 + bβ0+β1x1+β2x2 (6.5)

where x1 and x2 refer to the probability of the occurrence of a traffic anomaly in rows and

in columns respectively, and β0, β1, β2 are the parameter sets to be optimised during the

training process, while b is the base of the algorithms.
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• Random forest: this method applies random forest methods to the probability of rows and

columns to locate the probability for each cell. The details of the random forest method

can be found in Section 5.2.3

• Gradient Boost classifier: this method uses a gradient boost classifier to calculate the

probability for each cell. Section 5.2.3 presents the details of GBC.

The decision function for all methods except for the index method is as in Eq. 6.6.

f(xt) =

⎧⎪⎨⎪⎩
0, p < 0.5 at time t.

1, p >= 0.5 at time t.

(6.6)

In summary, six methods with different levels of simplicity have been proposed in this sec-

tion. To evaluate the proposed methods, the Bath and London case studies (described in Chapter

4) will be used to evaluate the performance of RC and NRC detection using the evaluation met-

rics set out in Section 2.3.3. For the recurrent congestion detection, according to the dimension

of the connectivity matrix translation, the vector size of 20 for both rows and columns has been

extracted as the traffic anomaly labels. On the other hand, for the non-recurrent congestion de-

tection, the output vector size of 22 and 18 for rows and columns, respectively, will be used

as the labels for NRC anomaly detection (following the dimensions of the geographical grid

layer). The following two sections will present the results based on the case study of RC and

NRC localisation.

6.3 Case Study of the Localised Early Prediction of Recur-
rent Congestion

6.3.1 Data Description

Data extracted from the City of Bath are used for the case study for the early detection of re-

current congestion. The input data for the recurrent congestion detection are the same as in

Chapter 4 and Chapter 5, while the output has been constructed in a different way to detect traf-

fic anomalies at a network level. Specifically, the format of the output has been extracted into a
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matrix format in which two types of vector with binary labels have been generated for the row

and column index respectively. The binary labels have been generated using EM algorithms for

all detectors.

The final model was calibrated using 70% training dataset, 10% validation dataset and

tested with 20% testing dataset. The selection of hyperparameters is dependent on many previ-

ous studies as set out in the previous chapters. One example of the row index and column index

extracted from the matrix format is shown in Figure 6.1.

Col Index

Row 
IndexDetection 

Model

Input Output

Figure 6.1: Localisation input and distribution of RC traffic anomalies in the matrix

Since the aim is to evaluate the accuracy of anomaly detection with the localisation func-

tion, the evaluation metrics listed in Section 2.3.3 are used but with some adaptions to reflect

the changes in the output format. The main adaption is to aggregate the result in each cell across

the matrix based on the testing dataset. More specifically, each cell inside the matrix except for

the one without detector records will be aggregated for evaluation.

6.3.2 Results and Analysis

This section will present the results of early detection and localisation of recurrent congestion

in the City of Bath case study. Table 6.1 shows the aggregated detection accuracy for the six in-

vestigated methods with current time lag and prediction horizon, i.e., time lag=0 and prediction

horizon=0. In general, the random forest based localisation method outperformed others with
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the highest DR, F1 score, precision and AUC. Even though the FPR rate is slightly higher than

that of gradient boosting classifier, the difference is very marginal with a variation of around

0.01. AUC values are calculated with the probability distribution of binary labels. The index

method does not use probability to locate the traffic anomaly, so the ROC curve and AUC value

are not available for this method. Moreover, it is noted that the naive methods, including aver-

age probability, conditional probability and index method, are generally less accurate than the

others. Similar results are also revealed in the confusion matrix in Figure 6.2. Figure 6.3 shows

the ROC curves of the six methods. As discussed above, the ROC curve is unavailable for the

index method, so the curve of the index method is missing from the plot. In light of the ROC

curves, the order of performance is: random forest > gradient boosting classifier > logistic re-

gression > conditional probability and weighted average probability. The superior performance

of RF may originate from its ability to handle the individual predictions and combine these into

a final prediction based on a majority vote on the individual predictions. This combination of

individual predictions with voting systems significantly reduces the error rate (Breiman, 2001).

Table 6.1: Recurrent congestion detection results based on different localisation methods

Localisation Method DR FPR F1 score Precision AUC

Weighted Average Probability 0.733 0.133 0.665 0.609 0.893

Conditional Probability 0.692 0.101 0.676 0.660 0.893

Index 0.633 0.062 0.683 0.742 N/A

Logistic Regression 0.798 0.177 0.808 0.818 0.895

Random Forest 0.864 0.175 0.847 0.831 0.928

Gradient Boosting Classifier 0.846 0.174 0.838 0.829 0.920

Figure 6.4 shows the changes of performance in terms of the increase of prediction lags.

Firstly, except for FPR, the performance of random forest consistently outperformed than others

no matter what time lags have been used. Even though the FPR of random forest is higher than

that of naive methods, it is still an acceptable rate considering the dimension and complexity of

traffic anomaly detection. For the random forest method, time lag of three is the changing point

from the trend of decreasing to the trend of increasing. This result reemphasised the similar

suggestion from previous chapters that the increased time lags do not necessarily contribute to

the detection accuracy (Polson and Sokolov, 2017).

Figure 6.5 shows the localisation accuracy with the change of prediction horizons. As

expected, DR, precision, F1 score and AUC curves have fluctuating but generally decreasing
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(a) Weighted Average Probability (b) Conditional Probability (c) Index

(d) Logistic Regression (e) Random Forest (f) Gradient Boosting Classifier

Figure 6.2: Recurrent congestion detection confusion matrix based on different localisation

methods

Figure 6.3: ROC curve for localised detection of recurrent congestion

trends for all six localisation methods. The reduced performance with larger traffic prediction

horizons has been also suggested in Tan et al. (2016). Moreover, in terms of the different meth-

ods, random forest had superior performance based on the majority of the metrics across all

prediction horizon. Even though the performance reduces with the prediction horizon, the de-

tection performance is still acceptable, with a prediction horizon of seven. It is worth noting that
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 6.4: Localised detection of recurrent congestion in terms of time lags with prediction

horizon=0

performance reduced compared to the model supervised by labels extracted from one link. This

reduction is acceptable, however, since it is only a marginal reduction that is offset by a many

hundred-fold increase in the resolution of detection. For example, DR dropped around 8.3%

from 0.942 to 0.864, but the resolutions of the detection surged significantly from previously

one label for a whole network to every single cell in a 20 by 20 matrix. The high resolution of

detection makes it feasibility to locate traffic anomalies at the cell level by providing the row

and column index. The full performance results with different combinations of time lags and

time horizons have been included in Appendix C.3.

6.3.3 Summary

This section evaluated the performance of six traffic anomaly localisation methods in the context

of the proposed connectivity matrix translation layer and CNN-LSTM early detection method.

The new localisation function enables the model to detect multiple traffic anomalies occurring
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure 6.5: Recurrent congestion detection and localisation in terms of prediction horizons with

time lag=0

simultaneously across the network. The proposed method can predict recurrent congestion early

by providing the row and column index. The evaluation is based on metrics aggregated across

the network. The results suggest that random forest had superior performance in terms of most of

the metrics, such as DR, AUC and precision. This superior performance is consistent even when

the number of time lags and time windows has been increased. For the random forest method, it

is notable that providing more information about previous time lags may not necessarily improve

the detection accuracy. The time lag of three is the point at which the FPR curves change.

The results also suggest that the model is capable of detecting seven time steps ahead with a

reasonable accuracy.
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6.4 Case Study of Localised Detection of Non-Recurrent Con-
gestion

6.4.1 Data Description

The case study of the localised detection of non-recurrent congestion is based on the data ex-

tracted from London. The input data for the detection are the same as in Chapter 4 and Chapter

5, while the output has been constructed into a matrix to detect traffic anomalies at a network

level according to Section 6.2. The grid translation layer was used as the input layer. And

the output was transformed into corresponding dimensions before extracting the row index and

column index, as shown in Figure 6.6.

The final model is calibrated using a 70% training dataset, 10% validation dataset and tested

with 20% testing dataset. The hyperparameters are the ones used in the previous chapters, based

on many previous studies (Krizhevsky et al., 2012; Ma et al., 2015a; Wu et al., 2018c).

Col Index

Row
IndexDetection

Model

Input Output

Figure 6.6: Localisation input and distribution of NRC traffic anomalies in the matrix

6.4.2 Results and Analysis

This section will present the evaluation results of NRC localisation. Table 6.2 shows the com-

parison between six methods with a time lag and prediction horizon equal to 0. Similar to the



142 Chapter 6. Localisation of Traffic Anomaly

evaluation result with RC, the naive methods, i.e., average probability, conditional probability

and index, are less comparative compared to the other three. In general, in terms of the locali-

sation method, random forest outperformed the others with higher DR, F1-score, precision and

AUC. Even though the FPR result for the random forest method is slightly worse than that for

the index method, it is still a very low false detection rate.

Table 6.2: Nonrecurrent congestion detection results based on different localisation methods

Localisation Method DR FPR F1 score Precision AUC MTTD(s)

Weighted Average Probability 0.871 0.372 0.251 0.146 0.905 82.779

Conditional Probability 0.832 0.182 0.386 0.251 0.906 80.065

Index 0.719 0.059 0.571 0.473 N/A 82.922

Logistic Regression 0.789 0.126 0.824 0.862 0.908 157.484

Random Forest 0.896 0.078 0.908 0.920 0.971 158.705

Gradient Boosting Classifier 0.874 0.083 0.894 0.914 0.964 157.485

Figure 6.7 shows the confusion matrix for the six methods where the random forest has

the highest detection rate and relatively low FPR compared to the other methods. Figure 6.8

explicitly presents the order of performance of different localisation methods, in which the curve

for the random forest is closest to the left top corner which means that it has higher true positive

rates with lower false positive rates.

Figure 6.9 shows the sensitivity analysis of localisation performance with the change of

time lags. Since the differences in the performance of the six methods are relatively large, the

shape of every performance curve is not obvious. Nonetheless, it is clear that a bowl shape

exists for some localisation methods, such as the DR curve for logistic regression. Moreover,

the performance of random forest is consistently superior to others based on DR, precision and

AUC metrics. Although its FPR is consistently slightly higher than that of the index methods,

it is still relatively low and acceptable for NRC detection. The index method has the lowest

FPR rate because it only flags NRC when both row and column have an index with NRC, which

greatly reduces the number of false positives. The random forest method, however, has the

lowest FPR when the time lag equals to four. This optimal time lag has also been suggested by

other studies (Ma et al., 2015a).
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(a) Weighted Average Probability (b) Conditional Probability (c) Index

(d) Logistic Regression (e) Random Forest (f) Gradient Boosting Classifier

Figure 6.7: Confusion matrix for localised detection of non-recurrent congestion

Figure 6.8: ROC curve for localised detection of non-recurrent congestion

6.4.3 Summary

This section presented the performance of the proposed methods for NRC detection and local-

isation. The results suggest that the proposed methods are capable of detecting and locating

multiple NRCs at a network level. Similar to the results from RC detection, random forest con-

sistently gave superior performance compared to others, with higher DR, precision and AUC.
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC (f) MTTD

Figure 6.9: Localised detection of non-recurrent congestion in terms of time lags with prediction

horizon=0

but relatively lower FPR no matter the size of time lags used in the model. The results also sug-

gested that random forest has a FPR changing point when time lag equals to four, and adding

additional traffic information beyond a time lag of four may, therefore, not contribute to the

performance of NRC detection.

6.5 Visualisation of Localisation and its Limitations

To better understand how the proposed detection methods learn from the matrix for traffic

anomaly detection, some examples of convolutional layer outputs have been visualised. Vi-

sualisation of the convolutional layer outputs has also been suggested by Wu et al. (2018c) and

Cui et al. (2018). Figure 6.10 (a) visualises the first convolutional layer output, in which the

dark red roughly reflects the location of the three busy segments highlighted in Figure 6.10 (b)

with yellow boxes for early RC detection. Three segments are quite representative because they
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are located near the main entrance or exit connecting either main corridors or signalled multi-

ple lane roads. The area contains frequently-congested junctions connecting to the city centre.

This example illustrates that the proposed method is capable of learning the spatial correlation

from the matrix. This capability is not consistently indicated in the other examples of output

layers, however, as shown in Figure 6.11, where two visualised outputs were extracted from the

first convolutional layer but from different neurons. In contrast to Figure 6.10, the correlation

between the output and physically congested sections of road cannot be interpreted straight-

forwardly. Meanwhile, the additional temporal dimension added into the model for early RC

detection may introduce noise in terms of precisely locating RC, since RC may propagate from

one cell to another in different time steps.

(a) Example of the first convolutional layer output

(b) The RC study area

(Map Source: OpenStreetMap)

Figure 6.10: Visualisation of hidden outputs for RC localisation and corresponding map

A similar understanding can be found for the NRC detection. Figure 6.12 (a) presents an

example of the convolutional layer output where the areas with dark colours in the output matrix

are all located in areas with most traffic incidents. Since the geographical grid translation has

been used for this method, it is relatively straightforward to match the location on the map.

Figure 6.12 (b) shows the maps of the study area, in which the green dots represent the location

of loop detectors while the red dots refer to traffic incident points. Two yellow boxes highlighted

the area with most traffic incidents. The upper box is located just outside Euston mainline rail

station and underground station while the lower box is located near the busy junction between the



146 Chapter 6. Localisation of Traffic Anomaly

(a) Example of convolutional layer output (b) Example of convolutional layer output

Figure 6.11: Examples of hidden output representation without significant features for RC lo-

calisation

A40, New Oxford Road and Theobolds Road. The mapping between the hidden representation

of the convolutional layer and the incident maps indicate that the proposed model can extract

spatial features into a high dimension. Nevertheless, this indication is not transferable to all

hidden output matrices. Two abnormal examples have been given in Figure 6.13 where no

significant cells or areas in the matrix could be located as indicative information for mapping

traffic incidents. Additionally, there are many other representative areas in the graph convolution

output matrix, but they all cannot be shown due to space limits.

Given the potential to find the location using the hidden outputs, at the beginning of this

research, some efforts were attempted to locate the traffic anomaly using hidden weights, bias

and outputs of the deep learning model. There were several significant challenges in this, how-

ever. First, as mentioned in Section 6.1, traffic anomaly detection in the field of transportation

is by nature different from object detection in image processing due to having fundamentally

different features. Secondly, traffic anomaly localisation requires a method to return the index

to a cell level. This high resolution requirement is hard to achieve with the gradually shrink-

ing size of hidden output during the pooling and flattening process of a CNN. Thirdly, a CNN

could have millions of parameters, i.e., weights and biases. Referring to the location using the

diminishing weights in an inverse order is a nonlinear heuristic problem which requires lots
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(a) Example of the first convolutional layer output

(b) The NRC study area

(Map Source: OpenStreetMap)

Figure 6.12: Visualisation of hidden outputs for NRC localisation and corresponding maps

(a) Example of convolutional layer output (b) Example of convolutional layer output

Figure 6.13: Examples of hidden outputs without significant features for NRC localisation

of computational power and research efforts with optimal results not guaranteed. Considering

these challenges and the scope of this research, the iterative methods presented in this chapter

were finally adopted.

In summary, the visualisation could be an appropriate way to interpret the learning process

of a deep learning model. By visualising the hidden output matrix and comparing with the
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traffic states or traffic incidents of the traffic network, one can find that the proposed detection

method effectively captures spatial dependencies sufficiently to identify critical areas in the

traffic network.

6.6 Summary

This chapter has addressed the problem of localisation for a network-based model. The func-

tionality of localisation is critical for a network-based model since it enables the model to predict

multiple traffic anomalies occurring simultaneously across a complete traffic network. Differ-

ent iterative methods ranging from simple average probability, conditional probability, index,

logistic regression, random forest and gradient boosting classifier were used to predict and locate

the traffic anomalies. Data from Bath and London were used to test RC and NRC localisation,

respectively.

For RC and early RC localisation, random forest outperformed other models based on most

of the metrics and it was shown that increasing the size of time lags might not be useful for the

detection and localisation. The results suggested that the optimal time lag for the Bath case study

is three as it provided the lowest false positive rate for early RC detection with the localisation

function. In terms of prediction horizons, the model is also capable of predicting the traffic states

two hours ahead with a reasonable accuracy. On the other hand, for NRC detection, the proposed

models in which random forest had the superior performance are able to localise multiple traffic

incidents at a network level.

This section also visualises the hidden representation of the deep learning methods. This

visualisation can help to interpret its capability to capture the spatial correlations in the learning

process. However, partial visualisation examples might not be enough to interpret the model

performance properly. Considering the scope of this study, a solid and theoretical approach

might be a worthwhile subject for future research.



Chapter 7

Robustness Analysis

The previous chapters in this thesis focused on theoretical traffic anomaly detection using an

empirical framework. The experimental evaluation of this framework may be constrained, how-

ever, by the limitations of the case studies selected. In practice, to apply such traffic anomaly

detection models in the real world, more experiments are needed to verify its robustness and

reliability. This chapter will, therefore, focus on the practical issues in terms of the model’s ro-

bustness with different network topologies, sensor faults and missing data caused by systematic

errors.

Specifically, the structure of this chapter is as follows. Section 7.1 and Section 7.2 begin

with a brief introduction of the robustness analysis in the transportation field and microscopic

traffic simulation. Section 7.3 tests the proposed traffic anomaly detection framework (i.e., ran-

dom forest localisation based CNN-LSTM model with a connectivity matrix translation layer)

on two different simulation networks, i.e., the Sioux-Falls network and Luxembourg traffic net-

work. Section 7.4 and 7.5 will further investigate the model with the involvement of sensor faults

and missing data based on Sioux-Falls network. Section 7.6 summarises the main findings of

this chapter.

149
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7.1 Introduction and Background

Data-driven methods, such as machine learning and deep learning methods, map traffic con-

ditions between current and past traffic data without explicitly formulating the physical traffic

processes in the way that model-based models (Van Lint et al., 2005). Although data-driven

methods require less expertise in traffic modelling and are fast and accurate, they are typical

location-specific solutions with specific input or customised model configurations (Van Lint

et al., 2005). It is therefore important to understand if the model that has been built in this the-

sis can maintain its original performance in different locations. Moreover, another factor that

may ‘damage’ the performance is faulty traffic data or missing data (Van Lint et al., 2005; Luan

et al., 2006). Thus, before the traffic anomaly detection model can be applied in practice, it is

necessary to study its behaviour when faced with unreliable and missing input data.

Robustness is defined as the degree to which a system or component is capable of continu-

ing to function effectively in the presence of internal and external invalid inputs or disturbances

(Geraci et al., 1991). The formulation or evaluation of the theoretical model is generally subject

to some constraints or prerequisites. Robustness analysis is a way to bridge the gap between the

theoretical model and practical situations where unexpected structures, interruptions or input

faults can occur (Bickel et al., 1976). The ability of the proposed model to resist disturbance

and maintain the predesigned functionality is significant for the application of the model (Zhou

et al., 2017). Robustness analysis is crucial for traffic engineering as it can ensure the general-

isation of the theoretical model in the context of a real-world environment that may confront it

with differences and challenges compared to the original environment in which the model was

developed (Scott et al., 2006).

Generally, measures of robustness in network-based models can be categorised into two

types. The first is based on the topology of networks without taking into account disruptions

or unexpected environments while the second involves a wide range of complex factors that di-

rectly or indirectly cause disruptions, such as systematic sensor failures (Snelder et al., 2012).

Regarding the first type, the topology of the urban road network has been analysed by many

researchers (Jiang and Claramunt, 2004; Tian et al., 2016). The typical robustness analysis of

road topology focuses on removal or blockage of one or more network links, particular those

heavily travelled, and then checking the reliability of the network (Scott et al., 2006). The ob-
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jective of this is to identify the bottlenecks or critical transit links in the traffic network (e.g.,

(Sullivan et al., 2010)). This objective is not coherent with the traffic anomaly detection prob-

lem, however, since this already has the functionality to identify interruptions or bottlenecks. In

this research, therefore, the key robustness analysis in terms of network topology is equivalent

to analysing its transferability, so as to answer the question of whether, if the network geometry

or size changes, the model will maintain the same level of performance in terms of anomaly

detection. To date, a wide range of research has presented relevant studies on the transferability

of prediction models (Luan et al., 2018), but few studies have focused on the transferability of

traffic anomaly models at a whole network level.

As for the second type of robustness analysis, which aims to assess the impact of interrup-

tions on the model performance, of particular interest in this research is evaluating the model

performance in the presence of sensor faults. Data extracted from ILD can be corrupted by

various sensor faults. A sensor fault refers to ILDs consistently outputting erroneous data such

as overestimating and underestimating the point flow (Robinson, 2005). The reasons for these

erroneous data include broken cables, crosstalk1, hanging2, parked vehicles, communication

failure between the ILD and the Traffic Management Centre (TMC) (Luan et al., 2006). Robin-

son (2005) comprehensively summarised different types of ILD errors and their corresponding

treatment algorithms. Lee et al. (2010) proposed different algorithms to mimic the real-world

data by introducing different types of error into a ‘perfect’ dataset obtained from microscopic

simulation. To date, however, limited research has investigated these overestimated or underes-

timated sensor faults to a traffic anomaly detection problem.

On the other hand, apart from the overestimated or underestimated sensor faults, another

special type of sensor fault is missing data which is generally caused by communication failure

or malfunction. In such circumstances, no data will have been recorded in the TMC (Robinson,

2005). For example, on average 15% of the ILDs on the Dutch freeway monitoring system may

be out of operation or producing unreliable measurements (Van Lint et al., 2005). A substantial

amount of research has studied the prediction accuracy and robustness with respect to missing

data (Chen et al., 2001; Van Lint et al., 2005; Tan et al., 2013; Laña et al., 2018; Tian et al.,

2018), but this issue has not been adequately addressed in the literature on the application of

1Interaction between ILD and other electrical devices causes ILD to output faulty ‘1-bit’.
2the ILD getting stuck in either an ‘on’ or ‘off’ position.
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traffic anomaly detection across an entire network.

In summary, accuracy and robustness with respect to different network geometries, and in

respect to corrupt and missing input data are key aspects for traffic anomaly detection models

before they can be applied in a real-time application environment. All these factors will be

discussed in the following sections. The robustness analysis will focus on the problem of the

early detection of recurrent congestion since it not only theoretically covers a supervised learning

part as NRC detection but also involves an early alarm function which makes it more valuable

to discuss within the limited space of this thesis.

7.2 Microscopic Traffic Simulation

The complexity of traffic dynamics and the difficulties in readily performing experiments with

real-world traffic make simulation an increasingly popular and effective tool in traffic engineer-

ing, particularly in the presence of ITS systems (Toledo et al., 2005). Traffic simulation can

be used for analysing and visualising a wide variety of dynamic problems, especially those as-

sociated with sophisticated processes that cannot readily be described analytically, or for those

large-scale real-world situations that are highly detailed (Cascetta, 2013).

According to the level of detail, traffic flow models can generally be classified into micro-

scopic, mesoscopic and macroscopic models, where microscopic ones look at the movements of

each vehicle and their interactions within a traffic stream, whereas macroscopic models treat the

traffic stream as a whole. Mesoscopic models, meanwhile, view the transitional situations be-

tween microscopic models and macroscopic models (Cascetta, 2013). Microscopic simulation

details the motion of each vehicle and its interactions by synchronously modelling agent-based

decisions such as acceleration, deceleration, lane change and route choice and updating these

kinematic parameters of each movement at every simulation time step (Azevedo et al., 2017).

One example of a microscopic simulator is SUMO (Krajzewicz et al., 2002), which is an

open-source software commonly used in a wide variety of applications, such as evaluating alter-

native treatments, testing new complicated scenarios and safety analysis (Cascetta, 2013). Table

7.1 presents the advantages and disadvantages of representative simulation software. Compared

to other microscopic traffic simulation software, SUMO, created by the German Aerospace Cen-



7.3. Robustness with respect to Network Topology 153

tre (DLR), is open source and highly portable with various Application Programming Interfaces

(APIs) to control the simulation remotely, and thus is ideally designed to handle large road net-

works (Krajzewicz et al., 2012). For a detailed comparison between SUMO and other micro-

scopic traffic simulation software please refer to the review paper from Pell et al. (2013) and

Saidallah et al. (2016).

SUMO has been used intensively in the transport research such as traffic signal control (Xie

et al., 2012), route choice (Xie et al., 2014) and traffic mobility (Bedogni et al., 2015). Many

studies have been carried out on traffic incident detection and monitoring using SUMO. For

instance, Baiocchi et al. (2015) proposed a Vehicle Ad-Hoc Networks (VANET) framework for

real-time incident detection validated through SUMO simulations. Vandenberghe et al. (2012)

investigated the feasibility of expanding traffic monitoring systems with floating car data based

on SUMO simulation.

7.3 Robustness with respect to Network Topology

This section investigates the accuracy and robustness of the proposed traffic anomaly frame-

work with respect to different network geometries. The empirical study is in the context of the

simulation environment. This section first includes the microscopic simulation description fol-

lowed by the comparison and discussion of results. Two traffic networks with different levels of

complexity and characteristics (e.g., traffic signal control, type of roads, number of lanes, etc.)

have been used for analysing its robustness. One network is a relatively small network based on

the Sioux-Falls network (LeBlanc, 1975) while the other one is a larger calibrated simulation of

the City of Luxembourg (Codecá et al., 2017).

7.3.1 Sioux-Falls Simulation

The network consists of 24 nodes and 76 links, with each link having a single lane with an

ILD located downstream of each node (Figure 7.1 (a)). The simulation was implemented with

a dynamic demand profile in SUMO (Krajzewicz et al., 2002).

The traffic profile has a typical pattern according to the typical traffic profile at different

times of day and day of the week. The dynamic demand profile with a generic timeline for a
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Table 7.1: Comparison between representative microscopic traffic simulation software

Software Name Advantages Disadvantages

VISSIM (1) Allowing definition of the full range of

vehicle types covering private and public

transport;

(2) Providing user-developed applications;

(3) Powerful interfaces and integration;

(4) The vehicle behaviour is taken into con-

sideration such as changing lanes.

(1) Subscription fee;

(2) Complexity issues in-

volved with setting up.

TRANSIMS (1) Time dependent OD demand-generation;

(2) Private and public transport multi-model

transport;

(3) Providing significant changes in the travel

forecasting process.

(1) No transport innova-

tions available;

(2) No dashboard with

KPIs.

MATSIM (1) An activity-based approach demand-

generation;

(2) Private and public multi-model transport;

(3) Open source;

(4) Able to simulate the traffic of a vast re-

gion;

(5) Agent-based and generates individual ac-

tivity.

(1) No transport innova-

tions available;

(2) No dashboard with

KPIs;

(3) Not detailed vehicle

behaviour.

AIMSUN (1) Allowing the modelling of different net-

work models in the same simulation;

(2) Able to reproduce real traffic conditions

of any transport network;

(3) Capable of communicating with external

user-defined applications.

(1) Few ITS-function

available;

(2) Subscription fee.

Paramics (1) Parallel simulator;

(2) Private and public multi-model transport,

parking and port;

(3) Model of an entire city traffic system;

(4) Providing a realistic representation of the

landscape with 2D/3D visualisation.

(1) The reliance on origin-

destination matrices to de-

rive traffic volumes.

SUMO (1) Assignment model;

(2) The vehicle behaviour is taken into con-

sideration such as changing lanes;

(3) Private and public multi-modal transport;

(4) Providing various APIs to remotely con-

trol the simulation;

(5) Open source and free.

(1) No transport innova-

tions available;

(2) Software interface.

day of the week was generated by OD pairs in the network. Figure 7.2 shows an example of
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(a) Topology of Sioux-Falls network (Source:

LeBlanc, 1975)
(b) Topology in the SUMO simulation

Figure 7.1: Map of Sioux-Falls simulation

traffic flow and occupancy patterns across one day with data generated from the Sioux-Falls

simulation. Both traffic flow and occupancy show a typical pattern at different times of the day.

To verify the simulation further, the distribution of average traffic speed and travel distance have

been plotted as Figure 7.3. The average traffic speed and travel distance are not symmetrically

distributed. The travel distance is more concentrated to the median while travel speed is more

skewed towards lower traffic speed due to traffic congestion.

Figure 7.2: Example of traffic flow and occupancy from Sioux-Falls simulation

The traffic flow data were collected by loop detectors at five-minute intervals every day.

The simulation ran for a total duration of ten weeks in simulation time. In order to take into

account the warming up and cooling down period of the simulation, as well as the balance of

datasets, data from 7:00 to 19:55 are used in this study as the input for the proposed traffic



156 Chapter 7. Robustness Analysis

(a) Distribution of average traffic speed (b) Distribution of route length or travel distance

Figure 7.3: Validation of Sioux-Falls simulation output

anomaly detection.

The input matrix was generated using a connective matrix where the x-axis and y-axis

represent the nodes while values in each cell are the corresponding traffic data connected two

nodes in time step t. The generated matrix has 24 × 24 dimension with the sample size of

11760, while the output is a vector of binary values where 1 stands for congestion and 0 for no

congestion, respectively, as labelled by the EM algorithm. In this way, the input and output of

the proposed model are defined.

7.3.2 Luxembourg Simulation

Another well-calibrated simulation used in this research is based on the road network in the

City of Luxembourg (Codecá et al., 2017). Overall, the simulated vehicles made about 25

million trips during three months and traffic flows are collected by inductive loop detectors

at five-minute intervals for ten weeks in simulation time. Figure 7.4 shows the topology of the

simulation network. The main parameters of these simulations are listed in Table 7.2.

In order to validate the simulated data, traffic flow, occupancy, speed and travel distance

have been plotted for verification. Specifically, Figure 7.5 shows the typical flow and occupancy

patterns extracted from the Luxembourg simulation while Figure 7.6 indicates the existence of

a long right tail of average speed and distance distribution. This long tail might be due to the

high proportion of highway and arterial roads in the Luxembourg (Codeca et al., 2015).

Similar to the Sioux-Falls simulation, taking account of the warming up and cooling down



7.3. Robustness with respect to Network Topology 157

(a) Location in Luxembourg

(Map Source: OpenStreetMap)
(b) Topology in the simulation

Figure 7.4: Map of the Luxembourg simulation case study

Table 7.2: Simulation parameter values

Parameter Value

SUMO simulation duration (s) 86400

Simulation area (km2) 8

Total number of edges 635

Total length of edges (km) 89

Vehicles inserted 287034

Number of traffic stream composition 8 (7 types of car and 1 bus)

Data resolution (s) 300

Figure 7.5: Example of traffic flow and occupancy from Luxembourg simulation

period and the balance of datasets, data from 7:00 to 19:55 are used in this study as the input

for the proposed model. The input formatted with a connectivity matrix has been used for the

proposed traffic anomaly detection model. Given the link flows on each edge and its connection

with neighboured links in the network, a connectivity matrix could be generated. Figure 7.7
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(a) Distribution of average traffic speed (b) Distribution of route length or travel distance

Figure 7.6: Validation of Luxembourg simulation output

shows an example of a converted geographical grid with traffic flow values.

(a) Connectivity Matrix (b) visualisation with traffic input

Figure 7.7: Model input for the proposed traffic anomaly detection method

7.3.3 Results and Analysis

The traffic data extracted from the Sioux-Falls and Luxembourg simulations have been used for

early RC detection robustness analysis with respect to network topology for half an hour early

prediction. In the conclusion to the previous Chapter 6, a time lag of three was recommended

for RC detection, and thus this time lag has been applied in this section for both simulations.

The output was labelled with EM algorithm. Both input and output have been formulated into

a connectivity matrix for localisation, as configured in Chapter 6.

Table 7.3 shows the evaluation measurement for the proposed LSTM-CNN. In general, it is

noted that results from both simulations are fairly accurate for 30 minutes ahead of detection in

terms of all evaluation metrics. Typically, the results for the Sioux-Falls simulation case study
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outperformed those for Luxembourg in terms of low FPR, high DR and a large percentage of

F1 score.

Table 7.3: Early recurrent congestion detection results based on different simulation network

Network DR FPR F1 score Precision AUC

Sioux-Falls 0.812 0.204 0.806 0.799 0.885

Luxembourg 0.773 0.212 0.779 0.785 0.865

Another visual way to interpret the results of the classification is via a confusion matrix for

each method. Figure 7.8 shows the confusion matrix with normalisation by the size of classes

(i.e., number of elements in each class) in order to have a more visual interpretation of which

class is being misclassified in case of class imbalance. Specifically, the four values inside each

matrix represent precision, false positive rate, false negative rate and recall from the top left to

right bottom respectively. Both cases caused by either wrongly indicating a traffic anomaly or

improperly identifying a normal instance, namely Type I Error and Type II Error in statistics,

are presented in the confusion matrix clearly. It is worth mentioning that models with the lowest

false positive rate or false negative rate do not necessarily have the best detection rate or precision

out of all possible models, but they are important indicators of whether a model works effectively

by making use of all available information in the data.

(a) Sioux Falls Simulation Network (b) Luxembourg Simulation Network

Figure 7.8: Recurrent congestion detection based on different simulation networks

Figure 7.9 shows the ROC curve of the proposed early detection based on two simulation

case studies. In this evaluation, the fact that both curves gather in the upper left corner suggests

that the proposed model performs well in the classification of traffic anomalies, with low FPR

and high true positive rate regardless of the network topology. The zoomed ROC curve shows
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that notwithstanding the generally good performance of the proposed model in two case studies,

the results based on the Sioux-Falls simulation study outperform than that of Luxembourg. The

high performance of the proposed model can also be confirmed from the metrics (see Table 7.3).

Figure 7.9: Recurrent congestion detection ROC curve for different simulation networks

7.3.4 Summary

The main contribution of this section is to test the proposed model in two network-level simu-

lation case studies. Through a series of evaluations using data from well-calibrated simulation

models of Sioux-Falls and the City of Luxembourg, the accuracy and scalability of the proposed

method were demonstrated. Together with the real world result based on the Bath case study

in Section 6.3.2, the LSTM-CNN algorithm is promising for large-scale traffic early recurrent

congestion detection and thus deserves further investigation.

7.4 Robustness with Respect to Sensor Faults

All real traffic sensors are subject to a range of imperfections that degrade the quality of their

outputs (Lee et al., 2010). Sensor Faults commonly exists in the ILD data (Luan et al., 2006; Lee

et al., 2010). This section is aimed at investigating the impact of sensor faults on the performance

of early RC detection.
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7.4.1 Experimental Design

There are two types of sensor faults. The first type is caused by random errors, such as broken

cables, communication failures and software errors (Luan et al., 2006). This type of sensor

fault typically leads to missing data. In addition to these random errors, another type of errors

is caused systematically. There are two forms of these systematic errors: (1) lower count bias

and (2) higher count bias (Lee et al., 2010). For example, the lower count bias exists when two

or more vehicles pass the ILD at the same time within the resolution frequency (i.e., 0.25 sec),

in which case only one count will be measured by the detector. On the other hand, the higher

count bias can occur for a cross-line ILD due to stationary or parking vehicles (Papageorgiou and

Dinopoulou, 2003; Lee et al., 2010). The treatment of missing data and corrupted sensor faults

is quite different, so these two types of faults will be introduced separately. This section will

focus on the overestimated or underestimated sensor faults, while missing data will be discussed

in the next section.

According to Lee et al. (2010), a single-lane ILD tends to underestimate the counts when

the flow rate is high since vehicles are forced to shorten their headway compared to the ILD

temporal resolution. This underestimation bias can be added to the simulation by randomly

selecting points and reducing the values continuously. On the other hand, in the simulation, the

temporal resolution is quite high, around 0.17 sec. This higher resolution and stationary vehicles

might result in an overestimated count bias. This bias will be introduced in the simulation by

adding more values to a period of time.

To set up a realistic plan, therefore, the overestimated bias sensor faults have been intro-

duced randomly across roads in order to mimic stationary vehicles with an occupancy larger

than 35% as taken in PeMS (Luan et al., 2006), i.e., within a duration of [0, 5 minutes] or [5, 10

min] or [10, 20 min] in the simulated data. On the other hand, the underestimated counts have

been assigned with a random uniform sampling of network edges that are sources of traffic flow

data detected to the simulation randomly across the edges randomly sampling from the top 5%,

10% and 15% flow rate in order to add bias to high flow rates (Roy and Saha, 2018) as these

percentage ranges generally result in a short headway of less than 0.15 sec. since there is limited

literature about the percentages of overestimated and underestimated sensor faults in ILD data,

this research proposed three different levels of infections, i.e., 10%, 20% and 30%, while two
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different biases are sampled randomly across the edges simultaneously.

7.4.2 Results and Analysis

Table 7.4 presents the performance of the proposed model with different percentages of sensor

faults. Generally, the performance is relatively stable in terms of different sensor fault scenarios

for RC 30-min ahead prediction. More specifically, the performance starts to drop as the per-

centage of sensor faults increases from 0.814 DR to 0.799 DR. The FPR rates fluctuate around

0.2 and this flattened change indicates that the sensor faults have a marginal impact in terms of

false alarm of recurrent congestion. Considering the magnitude of the performance change and

percentage of sensor faults, it is obvious that the performance is not sensitive to the proportion

of sensor faults. One possible reason is that after introducing the corrupted data, the labels of

RC might be changed via the EM clustering.

Table 7.4: Early recurrent congestion detection results based on different percentage of sensor

faults

Percentage of Missing DR FPR F1 score Precision AUC

10 Percentage 0.814 0.213 0.803 0.791 0.881

20 Percentage 0.798 0.210 0.794 0.791 0.875

30 Percentage 0.799 0.223 0.790 0.782 0.870

Figure 7.10 shows the confusion matrix in order to have a more visual interpretation of

which class is being misclassified in case of class imbalance. Specifically, one can see that

the proposed classifier has a relatively small false positive rate and false negative rate based on

different proportions of sensor faults, and this proves its ability in classifying different classes

precisely, i.e, congestion and no congestion. It is worth mentioning that the performance with

the lowest false positive rate or false negative rate does not necessarily have the best detection

rate or precision out of all possible models, but they are important indicators of whether a model

works effectively by making use of all available information in the data.

Figure 7.11 shows the ROC curve of the model performance with different levels of sensor

faults. It is obvious from the zoomed ROC curve that the performance variation for three sce-

narios is similar with good performance no matter what threshold is set. It is notable that the

model performs less well when there is a higher percentage of sensor faults.
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(a) 10 Percentage (b) 20 Percentage (c) 30 Percentage

Figure 7.10: Recurrent congestion detection based on different percentages of sensor faults

Figure 7.11: Recurrent congestion detection ROC curve for different percentages of sensor faults

7.4.3 Summary

This section demonstrates the robustness analysis of the proposed early RC detection model in

the presence of overestimated and underestimated traffic values. The proposed model shows

high reliability with different percentages of sensor faults where different scenarios have been

set up in the experimental design.

7.5 Robustness with Respect to Missing Data

Missing data is a special type of sensor fault, different from the sensor faults that were introduced

in the previous section in that this type of erroneous data have no input data rather than having

overestimated or underestimated data. The phenomenon of missing data is very common for
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ILD data for a variety of reasons including communication failures and maintenance issues

(Robinson, 2005).

Many studies in the field of transport research have been devoted to robustness in respect

to missing data and these tend to suggest that it is essential to check the model performance in

the presence of missing data (Van Lint et al., 2005; Tian et al., 2018; Laña et al., 2018). This

section presents the robustness analysis for the proposed early RC detection model in terms of

different percentages of missing data.

7.5.1 Experimental Design

Generally, there are three different types of missing data, as shown in Figure 7.12. The first type

of missing data is incidental failure. The main property of this is that it generally happens during

a short duration without any continuous patterns either in time or in space. The second type is

structural failure which might affect several neighbouring ILDs over a period of time, while the

third type (intrinsic failure) basically has an impact on all ILDs during a period of time. All

three types of missing data commonly exist in the real ILD data (Van Lint et al., 2005).

Figure 7.12: Classification of possible input failure (i.e. missing or unreliable data from traffic

detectors) (Source: Van Lint et al., 2005)

To set up a realistic missing data scenario, missing data are assigned with a random uni-

form sampling of network edges that are sources of traffic flow data. Three different types of

missing data, i.e., incidental failure, structural failure and intrinsic failure are randomly assigned

with the total percentage of 10%, 20% and 30%. Specifically in SUMO simulation, Incidental

failures were incidental points generated randomly across time and space. Structural failures

were simulated in different random spaces with random period of time while intrinsic failure
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Figure 7.13: Examples of different missing data: example of two ILDs

Table 7.5: Early recurrent congestion detection results based on different percentage of missing

data

Percentage of Missing DR FPR F1 score Precision AUC

10 Percentage 0.795 0.191 0.801 0.806 0.883

20 Percentage 0.796 0.206 0.795 0.795 0.875

30 Percentage 0.788 0.204 0.791 0.795 0.872

or systematic failure blocked a period of time for all detectors. An example of traffic data with

different types of missing data has been shown in Figure 7.13.

7.5.2 Results and Analysis

Table 7.5 shows the results of model performance in terms of different percentages of missing

data ranging from 10% to 30%. The detection rate generally decreases as the percentage of

missing data increases. The magnitude of this drop, however, i.e., a 0.2% drop in DR on average

for a 10% increase of missing data, is marginal compared to the extent to which missing data

can increase without causing more false detection. This marginal drop can also be visualised

from the confusion matrix in Figure 7.14.

Figure 7.15 shows the corresponding ROC curves with three different missing data scenar-

ios. The steepness of the curve is relatively similar and this suggests that the model can predict

with high true positive rates and low false positive rates with different percentages of missing

data. According to the position of the curve, however, one can discriminate differences in the

performance. The zoomed ROC curve shows the performance with 10% missing data is closer
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(a) 10 Percentage (b) 20 Percentage (c) 30 Percentage

Figure 7.14: Recurrent congestion detection based on different percentage of missing data

to the left upper corner. The higher the proportion of missing data there is, the worse the model

performance. It is worth noting that even though the performance drops as the proportion of

missing data increases, the accuracy is with around a 0.78 detection rate and 0.2 FPR.

Figure 7.15: Recurrent congestion detection ROC curve for different percentages of missing

data

Since the inputs are dependent in terms of both spatial and temporal dimension, single

missing points or intervals of missing data represent redundancy of information and thus can be

substituted with either the spatial or temporal neighbours during the neural learning process.

7.5.3 Summary

This section has investigated the robustness of the proposed traffic anomaly detection in terms

of missing data. Three different proportions of mixed types of missing data have been designed
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for the robustness analysis. Even though the accuracy of the model reduced as the proportions

of missing data increases, it remained acceptable for 30 minutes ahead of detection.

7.6 Summary

This section has addressed the final objective of this research by investigating the robustness and

transferability of the proposed model in terms of network topology, sensor faults and missing

data. The proposed early RC detection model appears to be robust to corruption arising from

these networks and data imputation schemes. Specifically, for different network topologies,

with the total number of edges and ILD increased by around eight times, the performance only

changed marginally with a 4% drop in DR, a 3% decrease in the F1 score and a 0.8% increase

in the FPR for 30 minutes ahead RC detection. This marginal change with different network

topologies indicates that the proposed model might be transferable into different traffic networks

for early RC detection.

Regarding sensor faults and missing data, a similar marginal drop has also been suggested

for both incidental (random) and structural or systemic input failure. Compared to the influence

of missing data, however, the model is less sensitive to sensor faults, i.e., overestimated and

underestimated counts.

The uniform good performance and marginal reduction when the model is challenged

might originate from the simplicity of simulation in nature. When compared with previous

real-world case studies, however, the detection framework yielded accurate and robust traffic

anomaly detection no matter whether simulated data or real-world data was used.

Compared with traditional RC detection methods that use data from one or few adjacent

detectors, the proposed method may not yield superior results. However, the proposed method

has two advantages compared to traditional methods while maintaining reasonable detection

accuracy. Firstly, since the proposed method uses network-wide data, the method can yield

network-wide results even in the existence of missing data. Secondly, the proposed method is

capable of predicting RC in a couple of time steps ahead with missing or faulty data which

highlights its resilience of early detection function.
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Conclusion

Chapter 2 to Chapter 7 address each of the objectives set out at the beginning of this thesis. This

chapter provides a summary by revisiting these objectives and emphasising the contributions of

this research in Section 8.1. Apart from the conclusion and contributions, Section 8.2 discusses

the limitations and suggests avenues for future research.

8.1 Revisiting the Objectives of this Research

The aim of this research was to develop novel traffic anomaly detection models that can in-

corporate the spatial and temporal traffic information to detect multiple traffic anomalies at the

network level rather than one or several corridors. This spatio-temporal detection model is ex-

pected to be used for dynamic real-time analysis that will allow traffic managers to take prompt

action to mitigate congestion and traffic incidents, reducing the late response caused by uncor-

rected alarms and further improving the accuracy and reliability of the urban road network. The

research objectives to achieve this aim are presented in Section 1.3. The rest of this thesis ad-

dressed each of the listed objectives. This section revisits these objectives and summarises the

relevant work and contributions.

168
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(1) Understand traffic anomalies, the types of anomalies and their impact
across an urban traffic network in order to identify the current gaps in
literature about traffic anomaly detection and thus the relevant research
challenges.

The first objective was to understand traffic anomalies, the types of anomalies and their

corresponding distribution of impacts across an urban traffic network in order to identify the

current research challenges and gaps in respect to traffic anomaly detection. This objective was

addressed in Chapter 2.

Since there is no consensus on the definition of traffic anomalies and their detection. Sec-

tion 2.1 presented an overview of general anomalies, types of traffic anomalies and anomaly

detection. The definition of anomaly is heavily dependent on the field of application. A sys-

tematic understanding of general anomaly, however, helped to understand the concept of traffic

anomalies and gave insight into traffic anomaly detection.

Section 2.2 classified traffic anomalies into two main types, Recurrent Congestion (RC)

and Non-Recurrent Congestion (NRC). A comprehensive review was presented in terms of RC

detection, early RC prediction and NRC detection. The difference between RC detection and

NRC detection lies in three aspects: (1) whether or not contextual information is needed; (2)

requirements of label generation; and (3) possibility of early prediction. Based on the review of

existing research on traffic anomaly detection, two research gaps were identified: (1) improving

the accuracy of RC and NRC detection by using spatio-temporal information across an entire

traffic network; (2) investigating the possibility of detecting the onset of RC before its occur-

rence; and (3) investigating the robustness of techniques in terms of network topology and data

quality.

Section 2.3 reviewed the four main types of detection algorithms, i.e., classification-based

algorithm, clustering-based algorithms, statistical algorithms and information theory, as sum-

marised in Section 2.3.1. Recent advances in deep learning, especially Convolutional Neural

Networks (CNN) and Long Short Term Memory (LSTM), may provide opportunities to model

the whole network taking into account the spatio-temporal information to predict RC as early

as possible even with less than desired data quality.



170 Chapter 8. Conclusion

(2) Develop a novel framework for multiple traffic incidents detection and
early congestion prediction at an urban network level.

Chapter 3 focuses on the second objective, which is to develop a novel framework for traffic

anomaly detection and early congestion prediction at a network level.

Section 3.1 defined the concept of traffic anomalies. Two detailed methodological frame-

works for early prediction of RC and for NRC detection were presented in Section 3.2. The con-

ceptual framework for traffic anomaly detection consists of three stages: (1) translation layers

that transform the traffic data format into the desired input suitable for use by machine learn-

ing methods; (2) an anomaly detection model with the ability to make use of spatio-temporal

information; and (3) localisation to locate the traffic anomaly precisely in the entire network.

Specifically, Section 3.2.1 proposed three translation layer methods, i.e., connectivity matrix,

geographical grid and spatio-temporal translation. The translation layers are then used as in-

puts for the detection model by making use of the recent advances in deep learning with the

aim to detect RC and NRC early and precisely. CNN and LSTM were proposed as the anomaly

detection models to capture the spatial and temporal information. Section 3.2.3 elaborated the

methodology for localisation using iterative methods to locate traffic anomaly after the detec-

tion.

To evaluate the proposed detection framework, three representative methods in the litera-

ture, i.e., Multiple Layer Perceptron (MLP), Random Forest (RF) and Gradient Boosting Clas-

sifier (GBC), are selected as benchmarks. A set of comprehensive evaluation metrics including

F1-score, detection rate, false positive rate, Receive Operating Characteristic (ROC) curve and

computational time were presented to measure its accuracy in terms of different aspects.

(3) Develop a novel spatio-temporal model that can detect traffic anoma-
lies and predict congestion at an early stage. Explore the application of
deep learning techniques to anomaly detection and make use of advanced
artificial intelligence and machine learning to develop a method to map the
anomaly detection problem to deep learning.
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The third objective was to develop a novel spatio-temporal model that can detect traffic

anomaly and early congestion prediction and explore the application of deep learning techniques

to anomaly detection. This leverages advanced artificial intelligence and machine learning and

develops a method to map the anomaly detection problem to deep learning tools. This objective

has been successfully addressed in Chapter 4 and Chapter 5.

Chapter 4 presented three translation layer methods, namely 1) connectivity matrix, 2)

geographical grid and 3) spatio-temporal translation. These translation layers form the first pro-

cessing layer in the framework that transforms the traffic data into the desired multi-dimensional

format for further processing. Section 4.3 presented the evaluation results for the translation lay-

ers based on a case study using data from the City of Bath for the detection and early recurrent

congestion prediction problems. The result suggested that the connectivity matrix would be

recommended if a low false alarm rate and high precision are required for the early prediction

task. RC generally affects the traffic upstream and downstream rather than whole areas or roads.

The results also suggested that the accuracy for two-hour ahead prediction was still acceptable

with a precision of 0.96 and with an FPR of 0.15. Meanwhile, the existence of a bowl shape

when evaluating the performance with an increase of time lags indicates that adding unneces-

sary additional time lags as input to the model may introduce noise rather than useful features

into the detection algorithm.

On the other hand, Section 4.4 showed the evaluation of the translation layer for NRC detec-

tion using a London case study. In contrast to the detection of recurrent congestion, where output

labels are not available, additional traffic incident data obtained from Transport for London was

used for incident detection. The results demonstrated that the performance of the geograph-

ical grid translation layer outperformed others in the sensitivity analysis based on all metrics

regardless of the number of time lags used as explanatory variables.

Chapter 5 evaluated the proposed detection methods and compared these with the conven-

tional machine learning methods (i.e., MLP, RF and GBC) with connectivity matrix translation

and geographical translation selected as the translation layers for subsequent components of the

RC and NRC traffic anomaly detection framework respectively. The hybrid method LSTM-CNN

was used for the RC detection where the LSTM was applied to extract the temporal features while

the CNN was formed to capture the spatial features in the traffic network. The results showed
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that the proposed model gave reasonable early prediction in around two hours ahead (with a DR

value of 0.972, FPR value of 0.002, etc), outperforming the baseline models in Section 5.3. The

application of CNN to NRC detection given in Section 5.4 suggested that CNN was superior

to the conventional machine learning methods to get the informative features for existing and

emerging traffic incidents.

(4) Propose an approach for the localisation of traffic anomalies detected
in the network in association with the proposed spatio-temporal anomaly
detection.

The fourth objective was to propose an approach for localisation of traffic anomalies in a

network in association with the proposed spatio-temporal anomaly detection at a network level.

Chapter 6 focused on this objective by answering the question of localisation and evaluating the

feasibility of locating traffic anomalies in the network.

Localisation is critical for a network-based model since it enables the model to predict

multiple traffic anomalies that occur simultaneously across the traffic network. In order to have

a better understanding of the localisation of traffic anomaly detection, Section 6.1 summarised

a review of the relevant studies. Section 6.2 formulated six iterative methods ranging from

simple average probability, conditional probability, index, logistic regression, random forest

and gradient boosting classifier to predict and locate the traffic anomaly.

The key findings based on the evaluation and discussion in Section 6.3, Section 6.4 and

Section 6.5 are summarised as follows: (1) random forest outperformed other models in terms

of localising multiple traffic incidents at a network level based on the majority of metrics for

RC and NRC detection; (2) the model is also capable of predicting the traffic states in two hours

with a reasonable accuracy; and (3) visualisation can help to interpret the model’s ability to

capture the spatial correlations in the learning process.

(5) Investigate the effect of network topology, sensor faults and missing data
on the accuracy of the network level traffic anomaly detection and early
prediction.
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The final objective in this research is to investigate the effect of network topology, sen-

sor faults and missing data on the traffic anomaly detection and early prediction. Chapter 7

addressed this objective.

Section 7.1 reviewed the practical issues in terms of robustness with different network

topologies, sensor faults and missing data caused by systematic errors. Section 7.3 tested the

proposed traffic anomaly detection framework on two different simulation networks, i.e., the

Sioux-Falls network and the Luxembourg traffic network. Section 7.4 and Section 7.5 further

investigated the treatment with the involvement of sensor faults and missing data based on the

Sioux-Falls network. The results suggested that the proposed model is capable of performing

robustly with different network topologies, sensor faults and different levels of missing data.

8.2 Limitations and Future Research

A number of potential research topics related to the work in this research are recommended for

future studies.

• For RC detection, the detection model is based on the congestion labels generated by the

Expectation Maximisation (EM) algorithm since no traffic congestion states are available

for direct use for the RC detection. This research assumed that the labels obtained from

the EM algorithm represented the ground truth. Even though EM algorithms have been

shown to be effective and reliable to classify different traffic states in many studies (Han

et al., 2010; Zhu et al., 2018b), they still only approximate to true labels. Given the fact that

it is hard to obtain true labels, one possible direction that might be of interest is to compare

different clustering methods, such as nearest neighbours and k-means, systematically in

order to group recurrent congestion states. Additionally, given the scope of this research,

RC detection based on multiple traffic states has not been systematically tested in this

thesis, with a simple binary classification being used instead. It is feasible to identify

multiple traffic states, since the severity of levels of congestion is more informative for

the end user and traffic managers.

• The traffic anomaly detection model proposed in this research is based on deep learning

methods and thus belongs to the class of data-driven models. These have many advan-
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tages (i.e., high accuracy and ease of implementation) but data-driven models have in

common that they correlate the traffic conditions to current and past traffic data without

explicitly addressing the formulation of these traffic conditions. This property leads to

the limitation that they are location-specific, relying on specific input, model architec-

ture and evaluation (Van Phuong et al., 2006). One possible solution to deal with this

limitation for future research is to combine data-driven methods with the advantages of

model-based approaches, such as fundamental traffic flow diagrams (Siebel and Mauser,

2006) and traffic flow models (Gerlough and Huber, 1976).

• This research mapped the relationship between traffic data (i.e., traffic flow and occu-

pancy) and traffic anomalies. Given the vast volume of different data available online,

data sourced from other feeds might be valuable for traffic anomaly detection. The possi-

ble sources include weather data, social media data (i.e., Twitter and Facebook), incident

feeds and traffic data from other sensors such as probe vehicles and cameras. If more

reliable data are available, data fusion for traffic anomaly detection could be promising

to improve the accuracy of the detection and localisation. For example, the localisation

method used in this research is an iterative method based on the detection results from row

and column level. If higher resolution input data are given, such as 1-minute traffic data

from probe vehicles, this iterative method might flexibly scale to provide a the precise

location.

• Furthermore, it would be of immense practical value to extend the method to distinguish

RC from other common anomalies such as sensor faults and NRC. With multiple reliable

data resources, this accurate distinction would be a promising way to reduce the chances

of false alarm significantly.

• This research applied deep learning techniques and customised them into traffic anomaly

detection in the light of the proposed conceptual framework. The application of this con-

ceptual framework could be extendable to short-term prediction problems that are inher-

ently supervised learning problems with adjusted evaluation metrics such as mean abso-

lute percentage error, mean squared error.

• The new ITS generation relies on vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),

infrastructure-to-vehicle (I2V) and infrastructure-to-infrastructure (I2I) communication
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(Alam et al., 2016). These new technologies added to the transportation infrastructure

and vehicles are progressively revolutionising way that we travel. The detection frame-

work proposed in this research might be adapted to take advantage of such technology

developments for detecting traffic anomalies.
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Appendix A

List of Acronyms and Abbreviations

API Application Programming Interface

ATMS Advanced Traffic Management Systems

ADAS Advanced Driver Assistance Systems

ATIS Advanced Traveller Information Systems

AVCSS Advanced Vehicle Control Safety Systems

AI Artificial Intelligence

ANNs Artificial Neural Networks

AUC Area Under the Curve

ARIMA Auto Regressive Integrated Moving Average

BPNN Back Propagation Neural Networks

CNN Convolutional Neural Networks

Conv Convolutional Layer

DLR German Aerospace Centre

DNN Deep Neural Networks

DR Detection Rate
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EM Expectation Maximisation

F1 score F measurement

FC Fully Connected Layer

FN False Negative

FP False Positive

FPR False Positive Rate or False Alarm Rate

GBC Gradient Boosting Classifier

GIS Geographical Information Systems

GMM Gaussian Mixture Model

GPS Global Positioning System

I2I Infrastructure-to-Infrastructure

I2V Infrastructure-to-Vehicle

ICT Information and Communication Technology

ILD Inductive Loop Detector

ITMS Traffic Incident Management Systems

ITS Intelligent Transport Systems

KNN K-Nearest Neighbours

KPI Key Performance Indicator

LASSO Least Absolute Shrinkage and Selection Operator

LoS Level of Service

LSTM Long Short Term Machine

MIDAS Motorway Incident Detection and Automated Signalling
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MLP Multiple Layer Perceptron

MTTD Mean Time to Detection

NRC Non Recurrent Congestion

OD Origin Destination

PCA Principal Component Analysis

RC Recurrent Congestion

ReLU Rectified Linear Unit

RF Random Forest

RGB Red, Green and Blue

RNNs Recurrent Neural Networks

ROC Receiver Operating Characteristic

SCOOT Split Cycle Offset Optimisation Technique

SGD Stochastic Gradient Descent

SNB Semi Naive Bayes classifier

SUMO Simulation of Urban MObility

SVM Support Vector Machine

TfL Transport for London

TMC Traffic Management Centre

TN True Negative

TP True Positive

UTC Urban Traffic Control

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle



Appendix B

Data Preprocessing

B.1 Loop Detector Data Preprocessing

ILDs are widely used to collect traffic variables. Detectors, usually 2m long and 1.5 wide, oper-

ate with the electromagnetic induction principle to produce a binary ‘1’ bit under the presence

of the vehicle, otherwise ‘0’ bit is generated. The ILD used in this research are polled with a

frequency of 4 Hz, which means they detect the existence of a vehicle every 250 milliseconds.

Based on the binary ‘state’ and number of 250 milliseconds, the basic traffic variables, i.e. flow

and occupancy, can be calculated as below. Flow is the number of vehicles that pass a fixed

point during unit time, which can be calculated by the equation below.

q =
D0,1

T
(B.1)

where, q is the flow, D0,1 is the number of ‘0’ bit to ‘1’ bit translations detected by the ILD, in

vehicles and T is the duration of time that count took place (per hour).

Occupancy measures the proportion of time that a vehicle presents on the ILD. We can

obtain the occupancy from the ILD raw data by the equation below.

o =
D1

D0 +D1

(B.2)

where o is the occupancy, D0 is the number of ‘0’ bit detected by the ILD and D1 is the number

of ‘1’ bit detected by the ILD. The examples of flow and occupancy calculated from raw ILD

data have been presented in the following sub sections.
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B.1.1 Bath ILD Data

Bath ILD data were provided by the council of Bath. Table B.1 and Table B.2 show the examples

of raw traffic flow and occupancy data respectively. These traffic data cover every day from 7:00

to 18:55 in 15-minute intervals during the course of two years from June 2015 to June 2017.

Table B.1: Samples of Bath traffic flow data

;==================================================
; EXTRACT @C:\PROGRAM FILES (X86)\SIEMENS TRAFFIC
;
; Th 22-Jun-2017 15:06:39
; Det Det
; Start End Flow* Flow*
; Site Day Date Time Time Mean Count
; yyyymmdd hh:mm hh:mm veh/h
;----------- -- -------- ----- ----- ------ ------
N01255O1 FR 20150501 07:00 07:15 272 96
N01255O1 FR 20150501 07:15 07:30 360 107
N01255O1 FR 20150501 07:30 07:45 424 96
N01255O1 FR 20150501 07:45 08:00 468 96
N01255O1 FR 20150501 08:00 08:15 452 107
N01255O1 FR 20150501 08:15 08:30 456 96
N01255O1 FR 20150501 08:30 08:45 556 96
N01255O1 FR 20150501 08:45 09:00 576 107
N01255O1 FR 20150501 09:00 09:15 544 96
N01255O1 FR 20150501 09:15 09:30 560 107
N01255O1 FR 20150501 09:30 09:45 548 96
N01255O1 FR 20150501 09:45 10:00 624 96
N01255O1 FR 20150501 10:00 10:15 612 102
N01255O1 FR 20150501 10:15 10:30 572 104
N01255O1 FR 20150501 10:30 10:45 532 96
N01255O1 FR 20150501 10:45 11:00 580 104
N01255O1 FR 20150501 11:00 11:15 656 96
N01255O1 FR 20150501 11:15 11:30 620 104
N01255O1 FR 20150501 11:30 11:45 704 96
N01255O1 FR 20150501 11:45 12:00 728 104
N01255O1 FR 20150501 12:00 12:15 516 96
N01255O1 FR 20150501 12:15 12:30 756 104
N01255O1 FR 20150501 12:30 12:45 692 96
N01255O1 FR 20150501 12:45 13:00 668 104
N01255O1 FR 20150501 13:00 13:15 744 96
N01255O1 FR 20150501 13:15 13:30 696 104
N01255O1 FR 20150501 13:30 13:45 736 96
N01255O1 FR 20150501 13:45 14:00 732 104
N01255O1 FR 20150501 14:00 14:15 776 96
N01255O1 FR 20150501 14:15 14:30 720 104
;==================================================
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Table B.2: Samples of Bath occupancy data

;==================================================
; EXTRACT @C:\PROGRAM FILES (X86)\SIEMENS TRAFFIC
;
; Tu 13-Jun-2017 09:41:28
; Det Det
; Start End Occ* Occ*
; Site Day Date Time Time Mean Count
; yyyymmdd hh:mm hh:mm %
;----------- -- -------- ----- ----- ------ ------
N01255O1 FR 20150501 07:00 07:15 5.2 96
N01255O1 FR 20150501 07:15 07:30 7.0 107
N01255O1 FR 20150501 07:30 07:45 7.9 96
N01255O1 FR 20150501 07:45 08:00 8.7 96
N01255O1 FR 20150501 08:00 08:15 8.3 107
N01255O1 FR 20150501 08:15 08:30 9.2 96
N01255O1 FR 20150501 08:30 08:45 11.4 96
N01255O1 FR 20150501 08:45 09:00 11.0 107
N01255O1 FR 20150501 09:00 09:15 10.2 96
N01255O1 FR 20150501 09:15 09:30 11.0 107
N01255O1 FR 20150501 09:30 09:45 13.1 96
N01255O1 FR 20150501 09:45 10:00 16.0 96
N01255O1 FR 20150501 10:00 10:15 12.5 102
N01255O1 FR 20150501 10:15 10:30 11.4 104
N01255O1 FR 20150501 10:30 10:45 10.9 96
N01255O1 FR 20150501 10:45 11:00 10.6 104
N01255O1 FR 20150501 11:00 11:15 13.2 96
N01255O1 FR 20150501 11:15 11:30 12.0 104
N01255O1 FR 20150501 11:30 11:45 13.4 96
N01255O1 FR 20150501 11:45 12:00 14.2 104
N01255O1 FR 20150501 12:00 12:15 9.7 96
N01255O1 FR 20150501 12:15 12:30 14.0 104
N01255O1 FR 20150501 12:30 12:45 13.2 96
N01255O1 FR 20150501 12:45 13:00 12.6 104
N01255O1 FR 20150501 13:00 13:15 16.4 96
N01255O1 FR 20150501 13:15 13:30 14.3 104
N01255O1 FR 20150501 13:30 13:45 13.5 96
N01255O1 FR 20150501 13:45 14:00 14.0 104
N01255O1 FR 20150501 14:00 14:15 13.8 96
N01255O1 FR 20150501 14:15 14:30 13.1 104
;==================================================
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B.1.2 London ILD Data

London traffic flow and occupancy data were extracted and calculated based on the raw ILD

output recorded at 4 Hz available through a system called the London SCOOT Archive Database

(LSAD). This IT system is hosted at TfL and jointly owned by Imperial College London and

TfL (Robinson, 2005; Krishnan, 2008). Table B.3 shows an example of extracted ILD data in

5-minute time intervals.

Table B.3: Samples of London ILD data

Detector Name Time Traffic Flow (veh/5mins) Occupancy (%)

N01/070a1 10:20:00 17 54.33

N02/028c1 10:20:00 12 7.67

N01/143c1 10:20:00 11 17.58

N01/166c1 10:20:00 12 12.92

N01/311a1 10:20:00 7 6.83

N12/184c1 10:20:00 19 31.08

N01/233e1 10:20:00 19 15.75

N10/072a1 10:20:00 11 7.67

N01/156m1 10:20:00 2 1.67

N03/032c1 10:20:00 8 76

N10/064e1 10:20:00 25 41

N12/063c1 10:20:00 16 23.42

N03/187c1 10:20:00 1 1.08

N01/478c1 10:20:00 6 5.25

N02/089f1 10:20:00 11 38.67

N02/032b1 10:20:00 18 20.67

N01/107f1 10:20:00 19 15.17

N01/383b1 10:20:00 9 16.25

N01/154a1 10:20:00 22 36.75

N01/349b1 10:20:00 8 10.67

N10/255x1 10:20:00 21 17.92

N01/198b1 10:20:00 4 93.5

N12/004c1 10:20:00 10 12.25

N02/142h1 10:20:00 0 100

N10/147d1 10:20:00 15 11.42

N01/241a2 10:20:00 30 31.92

N12/091q1 10:20:00 4 3.5

N12/166d1 10:20:00 8 8

N01/229c1 10:20:00 14 10.42

N12/171l1 10:20:00 24 21.75

N02/065h1 10:20:00 23 18.25
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B.2 Traffic Incident Data

The data summarises operator entries recorded in the Traffic Incident Management System

(TIMS). Each Row is identified by the combination of day, hour, sev, and evt_id. The detailed

description of London traffic incident data is presented in Table B.4, while Table B.6 shows an

example of traffic incident provided by TfL.

Table B.4: Description of London traffic incident data

Column Name Description

Day date the row refers to as a number, YYYMMDD

Hour hour of the day that the row refers to, HH

Sev severity of the incident in the hour referenced in each

row as Table B.5

PLAN planned or unplanned incident with values where P for

planned incidents and U for unplanned incidents

TLRN Y/N indicator for if the incident took place on the

TLRN (Transport for London Road Network)

SRN Y/N indicator for if the incident took place on the SRN

(Strategic Road Network)

TUNNEL Y/N indicator for if the incident took place in a Tunnel

Loca text description of the location

Cat1 first level category description for the incident

Cat2 second level category description for the incident

Cat3 third level, detailed, category description for the inci-

dent

Easting x coord, British National Grid (+init=epsg:27700)

Northing y coord, British National Grid (+init=epsg:27700)

Dur duration in minutes, valued (0, 60]
Evt_id ID of the TIMS event. This does not uniquely identify

each row, as the evolution of event status over time is

detailed in this dataset.

Table B.5: Level of severity of London traffic incident

Abbr Description

UNK Unknown

NAE Not Active at End

NDE Not Active During

NES Not Active at Start

MIN Minimal

MOD Moderate

NAT No Action

SER Serious

SEV Severe
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Appendix C

Full Results of Translation Layer, Method
and Localisation

This chapter presents full results for the evaluation of translation layers, detection methods and

localisation for early recurrent congestion detection. The evaluation is based on the indicators

including Detection Rate (DR), False Positive Rate (FPR), precision, F1 score and Area Under

the Curve (AUC) for time lags and early prediction horizons ranging from zero to seven (i.e.,

around two hours ahead).

C.1 Full Sensitivity Analysis of Translation Layers for Early
RC Detection

This section presents full results of translation layer evaluation for early recurrent congestion

detection in Chapter 4 by including results in terms of all time lags and prediction horizons.

Specifically, Figure C.1 shows the results in terms of prediction horizons, while Figure C.2

presents that of time lags for early recurrent congestion detection.
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure C.1: Full results of translation layer evaluation for early recurrent congestion detection

in terms of prediction horizons
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure C.2: Full results of translation layer evaluation for early recurrent congestion detection

in terms of time lags
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C.2 Full Sensitivity Analysis of Detection Methods for Early
RC Detection

This section presents full results of deep learning based detection methods evaluation for early

recurrent congestion detection in Chapter 5 by including results in terms of all time lags and

prediction horizons. Specifically, Figure C.3 shows the results in terms of prediction horizons,

while Figure C.4 presents that of time lags for early recurrent congestion detection.
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(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure C.3: Full results of detection method evaluation for early recurrent congestion detection

in terms of prediction horizons



216 Appendix C. Full Results of Translation Layer, Method and Localisation

(a) FPR (b) DR (c) Precision

(d) F1 score (e) AUC

Figure C.4: Full results of detection method evaluation for early recurrent congestion detection

in terms of time lags
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C.3 Full Sensitivity Analysis of Localisation for Early RC De-
tection

This section presents full results of localisation evaluation for early recurrent congestion detec-

tion in Chapter 6 by including results in terms of all time lags and prediction horizons. Specif-

ically, Figure C.5 shows the results in terms of prediction horizons, while Figure C.6 presents

that of time lags for early recurrent congestion detection.
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(a) FPR
(b) DR
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(c) Precision (d) F1 score
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(e) AUC

Figure C.5: Full results of localisation evaluation for early recurrent congestion detection in

terms of prediction horizons
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(a) FPR
(b) DR



222 Appendix C. Full Results of Translation Layer, Method and Localisation

(c) Precision (d) F1 score
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(e) AUC

Figure C.6: Full results of localisation evaluation for early recurrent congestion detection in

terms of time lags


