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Abstract: The potential for an intelligent transportation system (ITS) has been made possible by the
growth of the Internet of things (IoT) and artificial intelligence (AI), resulting in the integration of
IoT and ITS—known as the Internet of vehicles (IoV). To achieve the goal of automatic driving and
efficient mobility, IoV is now combined with modern communication technologies (such as 5G) to
achieve intelligent connected vehicles (ICVs). However, IoV is challenged with security risks in the
following five (5) domains: ICV security, intelligent device security, service platform security, V2X
communication security, and data security. Numerous AI models have been developed to mitigate
the impact of intrusion threats on ICVs. On the other hand, the rise in explainable AI (XAI) results
from the requirement to inject confidence, transparency, and repeatability into the development of AI
for the security of ICV and to provide a safe ITS. As a result, the scope of this review covered the XAI
models used in ICV intrusion detection systems (IDSs), their taxonomies, and outstanding research
problems. The results of the study show that XAI though in its infancy of application to ICV, is a
promising research direction in the quest for improving the network efficiency of ICVs. The paper
further reveals that XAI increased transparency will foster its acceptability in the automobile industry.

Keywords: intelligent connected vehicle; intrusion detection; safety; security; XAI

1. Introduction

Most major cities across the world are faced with transportation, traffic, logistic,
and environmental sustainability problems as a result of the rapid development of the
human population and the rise in the number of vehicles on the road [1,2]. Technology has
been shown to be a huge help in managing transportation systems sustainably. For instance,
the fifth-generation (5G) communication network is an enabler for intelligent transportation
systems (ITSs) in smart cities [3]. A recent approach to solving the growing demand
for sustainable transportation is the introduction of intelligent connected vehicles (ICVs)
reliable for managing road capacity and fuel consumption [1,2]. Another 5G-enabled
technology is the single-circuit-board user interface solutions that can collect real-time data
from moving cars for traffic control, routing, and trip planning are used [3,4]. This system
aids in the effective and efficient delivery of products and services both inside and outside
the nation and can address the problem plaguing transportation systems [5]. Some 5G
technology and communication protocols such as wireless access in vehicular environment
(WAVE) and dedicated short-range communication (DSRC) allow for data collection and
sharing between vehicles and in vehicle [6]. Between- and in-vehicle data sharing is known
as “cooperative sensing” or “collective perception”, thus “cooperative ITS” (C-ITS) [6,7].
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The CAR 2 CAR Communication Consortium members build their C-ITS deployment
plans on the cooperative vehicle to “other things” (V2X) short-range communications that
perform everywhere at any time via local ad hoc networks in the 5.9 GHz band. This coop-
erative V2X (C-V2X) communication uses the European standard ETSI ITS G5 [7] which is
based on the US market IEEE 802.11p WLAN standard specially designed for automotive
applications in addition to the WAVE/DSRC, and long-term evolution-advanced (LTE-A)
delivering quality of service for most V2X applications [8]. The successor standard, IEEE
802.11 bd, offers improved performance and seamless evolution of the radio technology
which ensures efficient use of the allocated spectrum, and continuous operation of im-
plemented services [4,9]. Cooperative V2X systems in vehicles analyze the data received
and warn the driver against dangers. By this principle, critical road safety situations and
resulting accidents can be avoided [7]. The performance requirements for basic road safety
and advanced V2X services are adapted from [10] and summarized in Table 1.

Table 1. Performance Requirements for the Basic Road Safety and Advanced V2X Services [10].

Use Case Group Transmission
Mode

Latency
(ms)

Reliability
(%)

Maximum
Data Rate
(Mbps)

Communication
Range (m)

Basic road safety
services supported by
3GPP Rel-14/Rel-15

Broadcast 10–100 90 31.7 100–300

Vehicles Platooning
Broadcast,
groupcast
and unicast

10-25 90–[99.99] [65]
less than 100;
[5–10] s max
relative speed

Advanced driving Broadcast [3–100] [99.99]–[99.999] [50] [5–10] s max
relative speed

Extended sensor Broadcast 3–100 [90–99.999] 1000 [5–1000]

Remote driving Unicast [5–20] [99.999] Uplink: 25
Downlink: 1

Same as cellular
Uplink and Downlink

To meet the demands of efficient connectivity of ICVs (awareness driving, sensing
driving, and cooperative driving), the authors in [11] proposed the introduction of the
sixth generation (6G) to compensate for the inability of the existing 5G to guarantee
the best connectivity for fully autonomous connected vehicles as corroborated by [10].
Moreover, manually driven vehicles profit from cooperative V2X as well as all levels of
assistance and automation up to fully self-driving cooperative automated vehicles [12].
Services such as providing information about traffic light signal phases and their predicted
changes or barriers on the route in real-time furthermore support smooth and comfortable
traveling [12]. By avoiding strong accelerations/decelerations, the fuel/energy consump-
tion of vehicles can be reduced with favored effects on lowering noise and emissions.
Sophisticated sensors of vehicles and in road infrastructure are able to detect other road
participants [5]. However, common issues of ITSs include but are not limited to: (a) vehicle
routing, (b) demand forecasting, (c) traffic prediction for flow and location, (d) processes
optimization, (e) arrival time forecasting, and (f) anomaly or intrusion detection [13]. This
survey is delimited to the state-of-the-art progress of XAI applications in solving the intru-
sion detection and mitigation issues of ICV networks. This is important as trust is critical to
the C-ITS security as enumerated by the European Telecommunications Standards Institute
(ETSI) [14].

It was difficult to determine what caused the accident that killed a woman crossing
a road on 18 March 2018, in Arizona, when a self-driving car hit and killed her [15].
As a result, questions about the function of artificial intelligence (AI) and the safety of its
integration into the ITS, which is made up of driverless or autonomous vehicles, ICVs,
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and the Internet of vehicles (IoVs), were raised [16]. While it is a debate to determine the
causes for the misbehavior of ICVs, one of the potential causes is the possibility of intrusion
and the potential harm that can occur from compromising ICVs/IoVs. In addition, the use
of the “black box” approach in the design of traditional AI solutions makes investigation
difficult [17].

AI is an innovative technology used for developing sophisticated systems that can
understand and learn things effectively, just like humans do. Real-world problems such as
securing traditional transportation and ITS can be solved with more accuracy and speed
with AI and big data algorithms [4,9,13,18]. AI systems are capable of learning new things
and making accurate decisions through the help of machine learning algorithms, and artifi-
cial neural networks (ANN) [19]. The introduction of AI has redefined the transport sector
resulting in the ITS. ITS is recognized as a type of AI-based mobility technology that can
comprehend and provide satisfaction to end users, markets, and society at large [20]. ANNs,
genetic algorithms, simulated annealing, fuzzy logic models, and ant colony optimizers are
some examples of AI technologies that support transportation that is deemed innovative,
disruptive, and emerging by the World Economic Forum. These technologies are used
to address problems with transportation management such as congestion, guaranteeing
that journeying times are reasonable for passengers, and boosting the efficiency of the
entire transportation network [21]. In addition, AI helps to resolve some of the problems
affecting the transportation industry’s sub-systems, including traffic management, public
transportation, safety management, manufacturing, and logistics [22].

AI growth has resulted in enormous models being used to meet the daily needs of
mankind, including safe ITS [23]. However, AI models are challenged by the need for trans-
parency, “simulability”, fidelity, and compactness, despite their benefits. The drawback is
a result of the systems’ “black-box” design, which enables accurate decision-making but
leaves out the justification for the decision being made. This then led to the development
of “explainable AI” (XAI), a revolutionary technology. This novel idea enhances the de-
pendability and openness of AI-based systems [24]. The concept of XAI was put up as a
means of increasing AI’s transparency and fostering its acceptability in some important
industries [25]. XAI reduces the complexity of AI while increasing the application of AI
systems in sectors such as security, healthcare, and transportation [26]. Consequently,
several research works have been published on XAI. One common challenge of the plethora
of publications on XAI is the difficulty to situate growth in XAI with specific sector unique
demands. To address this, several review papers on XAI have been published. However,
a general review of XAI still leaves stakeholders with the problem to grapple with their
sector-specific needs. Consequently, in this review, we have articulated all XAI models and
how they have addressed the unique demand of securing ITS.

Intrusion detection is the process of monitoring and analyzing events in a system
or network [27] for indications of potential events, which are breaches or vulnerabilities
of security regulations, and acceptable use of standard security practices [28]. Intrusion
detection techniques are usually grouped based on the identified activities and the ap-
proach used to identify intrusions. Intrusion detection systems (IDS) can be host-based or
network-based. Specification-based, signature-based, and anomaly-based detection are
the focal intrusion detection approaches. Aside from event monitoring and assessment,
IDS normally collects activity information, alerts of critical occurrences via warnings and
alarms, and provides relevant reports [23]. IDS is an essential security tool to safeguard
networks against adversarial and non-adversarial attacks from malicious traffic [29]. In re-
cent times, machine learning (ML) has aided the development of IDS research. According
to the IoT Analytics [30], in August 2022, Nozomi researchers identified three security
holes (CVE-2022-29831, CVE-2022-29832, and CVE-2022-29833) that could allow an at-
tacker to obtain information from Mitsubishi GX Works3 (configuration and programming
software for certain Mitsubishi PLCs) project files to compromise connected safety CPU
modules. Guan et al. [31] also revealed that researchers found 14 vulnerabilities in the
infotainment system of several BMW series. A critical part of modern ITSs is the possibility
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of interconnected vehicles, known as vehicle-to-vehicle (V2V) connection, IoV in general,
the connection of vehicles to other road infrastructures known as (V2I), the connection of
vehicles to other “things” known as (V2X), or simply ICVs [1]. The prevailing challenge
of connected things is vulnerability to attacks and falsification of data as they get trans-
mitted in the ICVs [32,33]. It is thus critical to detect and mitigate against these attacks in
ICVs [2,31].

The past decade has witnessed a significant increase in the research and innovation of
IDS for secured IoVs/ICVs [33]. The design and implementation of dedicated, advanced
IDS are mandated by demanding controls for real-time operation and data integrity, regular
traffic patterns, and a limited choice of telecommunication protocols [34]. Although there
are several survey studies on security threats and key management schemes, this article
provides an exhaustive contemporary systemic survey of the XAI-based IDS for secured
ICVs/IoVs approaches with recourse to confirming their adherence to the key properties
of XAI such as fidelity, completeness, simulability, and compactness. Put in perspective,
the main contributions of this review are as follows:

1. This study employed the PRISMA article selection approach to acquire articles focused
on ITS, IDS, and XAI with a focus on the trends, challenges, and open research issues
in ICV security IDS and designs and dynamics.

2. This study reviewed articles published within a five-year duration between 2017
and 2022. This is to obtain recent information, trends in the design of AI-based IDS,
and open issues.

3. This study assessed the performance of various XAI techniques, with fidelity, com-
pleteness, simuability, and compactness as focus.

4. This study investigated issues of ethics and policy concerns of ICV and safety of road
users [35].

5. This study gave an evidence-based technology strategy for evaluating the performance
of different datasets, collection methods, and how close to reality they are. We high-
light data gathering issues, how some researchers tackled the problem, and testbed-
based research.

The organization of this work is as follows: Section 2 gives background informa-
tion on ITS, vulnerabilities, and justification for securing the IoV network with XAI. It
also presented a review of related works while emphasizing the uniqueness of our paper.
Section 3 elaborates the employed methodology for the study, highlighting IDS techniques
and benchmark public datasets. Section 4 discusses the state-of-the-art frameworks and per-
formance evaluation. Section 5 concludes the study with open issues and future direction.
A list of abbreviations in this work is listed at the end of this paper.

2. Background and Review of Related Works
2.1. ITS as an Emerging Transportation Solution

Ensuring sustainable and efficient transport systems include safe travel for every
road user is fundamental to economic growth. Roads are a major means of transportation
in most cities across the world and provide easy access to jobs, schools, and markets.
Therefore, a safe, efficient, and sustainable road transport system is imperative for economic
growth. However, there are serious concerns about the negative impacts of transport on
human health and the environment including road traffic crashes (RTCs). According
to [36], 1.35 million people are thought to die from RTCs every year, and 50 million suffer
injuries as a result of RTCs. In addition to the deaths of those who are involved in the
accidents, their families and society as a whole are also affected by the aftereffects of traffic
accidents, which may include long- and short-term physical injuries for those who survive
the collisions [37]. Furthermore, according to WHO [38], the whole cost of RTCs, which
includes the economic worth of lost quality of life, costs governments roughly 3% of their
gross domestic product. The problem is worse in developing countries because of the lack
of suitable and integrated policies and approaches guiding transportation, including failure
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to give sufficient consideration to road safety features in the design and construction of
roads [39].

More people are becoming aware of the significance of promoting safety in order to
achieve successful policy goals. Over the years, various measures aimed at reducing RTCs
have been adopted in different countries across the world, most of which have been targeted
toward improving behavior, infrastructure, and vehicles. In the past decade, the traditional
methods of improving traffic safety by merely deploying traffic lights and signs, using
traffic police, etc., have become less efficient and not achieving the intended results as
could be seen in increasing crash numbers and associated injury rates. However, recent
advances in information and communication technology have contributed to providing
other new possibilities, ways, and effective solutions to the transport safety problem. One
of these is to use ITS technology, which can be applied in different transport modes and
encompasses a very wide range of technologies to deal with different transport issues
including transport safety. One of the several advantages when applying ITS technology
to transportation projects is to prioritize the safety of all road users, bolster transportation
infrastructure, and give road users vital information on safety [40]. This could be done
through the integration of advanced communications technologies which focus on both the
infrastructure and vehicles including integrated applications between them. It contributes
to modifying the way motorists drive by providing information on safety and travel time
needed to make informed decisions. It can gather the information required, for instance,
to estimate the probability of a collision, identify and confirm accidents, speed up the
reaction to traffic incidents, and send out safety messages to road users if an incident
happened on their route.

In developed nations such as Japan, South Korea, Singapore, the United States, and the
United Kingdom, ITSs are being used and implemented more frequently to increase the effi-
cacy, efficiency, and safety of road transportation systems [41]. However, this is not the case
in developing countries where most governments are yet to adopt and implement policies
to readily integrate ITSs into the current transport system. Considering the increasing rate
of RTCs and associated injury rates recorded in developing countries annually, it is very
important and urgent that ITS-based measures are adopted and must be designed to suit
the traffic safety situation of these countries by considering their unique socio-economic
and environmental conditions [41].

2.2. The Internet of Vehicles Structure and Need for XAI-IDS

The astounding development in ITS has greatly spurred the invention of smart cars,
resulting in the concept of “The IoV” which allows vehicles to initiate communication
with accessible networks and the environment. Vehicles can exchange and collect data
about other vehicles and roads in real-time, a concept known as the ICV [33]. It is an
extended application of the IoT in intelligent transportation, designed as a data sensing and
processing platform for the ITS [42]. A comprehensive report on the evolution and future
prospects of the ICV can be found in [43], while the authors in [44] presented the global
progress made on ICV, especially with a focus on China being one of the leading countries
in ICV implementation [45]. The IoV architecture consists of three layers, as shown in
Figure 1 [46,47], which includes the application (service platform), network (channel for
V2X communication), and perception layers (device layer ensuring the incorporation of
intelligent devices into the connected vehicles giving rise to the ICV).
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Figure 1. Three-Layer Structure of the IoV and the Associated Functionalities Enabling the Emergence
of Connected Vehilces.

Since the IoV is a form of the IoT, it is faced with challenges related to efficient
communication between thousands of integrated vehicles, the decision in data processing at
the onboard unit, big data integration with IoV, intrusion detection and mitigation, etc. [48].
Additionally, the ability to process the vast amount of data to reduce road congestion,
improve the management of traffic, and ensure road safety are parts of the issues in the
future IoV trends [49,50]. Hence, AI technology coupled with ML algorithms is capable of
improving the network efficiency of the IoV [23]. With ML algorithms, data processing at
the onboard units (OBUs), fog level, or cloud level can be resolved. Further issues such
as the rapid topology of the IoV, channel modeling, optimization quality of experience,
energy, and time can be solved with ML algorithms [50]. To resolve the intrusion challenges,
several authors have developed AI and ML models [23,32,47,49]. However, recent works
have become devoted to the concept of XAI to resolve the inadequacies of traditional AI.
To classify an AI as XAI, the following requirements should be present:

1. Fidelity: For instance, it is not enough that AI-IDS for securing an ITS performed with
high accuracy, it is now a research concern to know the details of the datasets and how
it affected the systems. Is there any element of bias? How are individuals or persons
affected by the decisions of AI-based decisions in response to the EU general data
protection regulation [35]?

2. Simulability: Common questions that are now asked are “can a third party check the
correctness of the model?” and “Is it possible to repeat the simulation and arrive at
similar results?”

3. Completeness: “Explainability” is not enough. It is encouraging to have proper docu-
mentation of the model development for a sustainable enhancement of the system [17].

4. Compactness: Give human users the knowledge they need to comprehend, properly
trust, and successfully manage the new generation of AI partners.

2.3. IoV/ICV Vulnerabilities and Attacks

Security is a critical concern in ITS due to the sensitivity and safety implications of
compromised ICVs/IoV. An ICV is constantly exposed and vulnerable due to protocol
limitations and limited study mitigation approach, and real-time monitoring [28,51–53].
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These attacks occur at the different layers of the IoV architecture and the open systems
interconnection (OSI) layers [51,52]. The most common ICV/IoV attacks [54] are as follows:

1. Man-in-the-middle (MiM): This attack occurs when the intruder intercepts network
traffic information by gaining access between communication units. It is carried out
by monitoring the network, injecting anomalies in the transmission, and forwarding
the same to the recipient. A successful attempt assumes the session maintains the
connection while the spoofing keeps the attacker unrecognized. This attack can be
with SSLStrip, Evilgrade, and Ettercap [28,55,56].

2. Denial of service and distributed denial of service (DoS/DDoS): In this attack sce-
nario, an authorized user is denied access to resources by attacking the availability
requirement of network resources [57]. A compromised RTU sends arbitrary packets
to the MTU, thereby depleting the network bandwidth and constraining resource
availability to users. It disrupts the communication link between the RTU and MTU,
making control and process monitoring difficult. It can be with attack tools known as
Low Orbit Ion Cannon (LOIC), Slowloris, and GoldenEye [28,58,59].

3. Eavesdrop: This attack comes in two ways, namely, active and passive eavesdropping.
An eavesdropping device assesses the wired or wireless network with the aid of
tcpdump, dsniff, or Wireshark [28,55,56].

4. Reconnaissance: These attacks seek information about a network and its equipment
features. As a result, it is critical to safeguard the sensor measurements from the
physical process. Response injection attacks inject misleading inputs into a control
system, causing control algorithms to make wrong choices. Fake control commands
enter the control system in a command injection attack. It can occur as a consequence
of human interference, which results in incorrect control action, or as a result of the
injection of false commands, which results in the overwriting of RTU software and
field device register values [60].

These IoV vulnerabilities can be grouped into the following five (5) domains: ICV
security, intelligent device security, service platform security, V2X communication security,
and data security. The ICV intrusion can also be classified based on attacks on the network,
software, and hardware connections [52] as follows:

1. Network connection attack: Intrusion on the IoV communication transverse transport,
network, and application layers. It targets the exploitation of the OSI model and
violates the security goals such as availability, authentication, integrity, and confiden-
tiality.

2. Hardware attack: In this case, the intruder gains unauthorized entry to the IoV system
units and violates their operations. Access control is the most difficult aspect of
securing hardware.

3. Software attack: The ICV/IoV system uses a range of software to improve its efficiency
by satisfying operational demands. Nevertheless, it is prone to trojan horse, SQL
injection, and buffer overflow attacks due to inadequate implementation. Since the
mobile application is gradually becoming an essential part of the IoV, it has become a
hot spot of attack for attackers [61].

Consequently, the need for IDSs, lightweight firewall, hardware encryption, and
trusted execution environment have been canvased by stakeholders, as shown in
Figure 2 [61].
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Figure 2. Various approaches to mitigating ICVs’ vulnerability to attacks highlighting the role of
IDSs, among others [61].

2.4. Securing the ICV with XAI: Background Information
2.4.1. Existing Approaches to Combating Security Breaches on ICVs

Security has remained a big concern among ICV stakeholders due to their reliance on
the internet connection, thus exposing them to cyber criminals/hackers. Hackers can take
control of a connected car, forcing unintended braking, acceleration, or steering. Privacy
invasion can also be a security concern as hackers can gain access to the personal information
of users. To solve this, the report from the connected vehicle 2022 summit by Mandal [62]
opined that “Escrypt”, a cyber threat protection company, was of the view that vehicle
data safety could be ensured through blockchain-based communication systems, smart
gateways, cyber digital twin, AI-based detectors and other encryption systems [62]. Similarly,
the authors of [63] proposed what they considered an advanced AI and ML technique to
protect connected vehicles from vulnerabilities related to automated driving, smart charging
of electric vehicles, and communication among vehicles or between vehicles and roadside
infrastructure. The advanced AI/ML known as “CARAMEl” was demonstrated to secure
ICVs from spoofing attacks [63]. This work shows the promising role of AI in securing
ICVs. However, XAI promises even more benefits to the ICVs dues to the trustworthiness
introduced in addition to the known gains of AI. This paper focuses on the adoption of AI
with an attention on the XAI for securing ICVs.

2.4.2. Explainable-AI (XAI) Frameworks and Result Evaluation

The ICV network is confronted with security issues that necessitate more adaptive,
automated, and integrated IDS. Explainable AI (XAI) is necessary for mitigating vulnerabil-
ity and intrusion detection, with explanation and interpretability of classification model
decisions [64–67], as well as managing evolving threats and attack mechanisms efficiently.
XAI aims to develop ML algorithms that generate more explainable techniques while
preserving efficient learning performance, as shown in Figure 3. It also allows human
comprehension of the models’ actions and decisions. As a rapidly expanding area, it aids
in extracting information and the visualization of the results generated with maximum
transparency [68].
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Figure 3. The concept of XAI.

The national institute of standards (NIST), part of the U.S. Department of Commerce,
enumerated five types of “explanations” for AI. These were enumerated in [69] as follows:

1. Inform the subject of an algorithm: In the case of the IDS for ITS, an explanation of
how the AI model guarantees the security of the system from intruders is critical.

2. Comply with compliance or regulatory requirements: As AI algorithms gain im-
portance in regulated industries, they must be able to show that they follow rules.
For instance, self-driving AI algorithms should detail how they adhere to any applica-
ble traffic laws.

3. Build social trust in AI systems by using explanations that support the model and
approach rather than focusing on specific outputs. This could involve detailing the
algorithm’s goals, development process, data used, and sources, as well as its advantages
and disadvantages [70].

4. Help with future system development: In order to improve an AI system, technical
employees must comprehend where and why a system produces incorrect results.

5. Benefit the owner of the algorithm: Businesses are implementing AI across all sectors
in the hope of reaping considerable rewards. For instance, a streaming service benefits
from recommendations that are easy to understand and keep people subscribed.

2.4.3. Practical Implementation of ML and XAI-Based Models

The authors of [71] employed layer-wise relevance propagation (LRP) to decompose
input significance ratings in gait classification using convolutional neural networks (CNNs).
LRP is a later technique for generating interpretations for machine learning model predic-
tions [71,72]. It operates in the input space, where clinical practitioners typically analyze
signals. LRP divides a function’s prediction f (y) for an input data variable y into element
and time input significance values Si for each input data yi. It allows the interpretation of
the prediction of an ML model as the individual roles of each input data. LRP enables the
comprehension of the data a model employs for prediction. It verifies the significance of the
ground reaction force characteristics correlating to the areas with the highest input relevance
scores. A highly skilled diagnostic expert examined the experimental results of the derived
relevance scores of LRP from a medical point of view. Another study [73] demonstrates
how the combination of deep neural networks and SHapley Additive exPlanations (SHAP)
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or “DeepSHAP” can interpret the impacts on ML for spoofing identification. According to
the experimental results, SHAP analysis highlights the consideration adapted by a given
classifier at reduced spectro-temporal ranges. In [74], the authors investigate side-channel
website fingerprinting attacks by employing XAI methods. Because the dataset includes
both side-channel measurements and captured network traces, the XAI technique was to
determine the most prevalent network request types that significantly impact website detec-
tion. The ROAR metric was used in the study, which demonstrated that LIME and saliency
maps accurately detect the most dominant features in side-channel measurements. A study
that interprets the performance of mobile traffic classification using DL methods [75] gives
specific insights for performance enhancement. It involves the analysis and evolution of a
multimodal-DL approach called mimetic-enhanced using explainable artificial intelligence
tools. The strategy was evaluated based on the predictability of trust and confidence using
calibration and explainability using SHAP-based methods. Meanwhile, adjustment by focal
loss attains a 6X reduction over the uncalibrated case, resulting in a substantial increase in
trustworthiness. Considering interpretability, a global interpretation for each modality was
obtained, measuring the relevance of each and emphasizing the importance of retaining
high payload, despite the enormous majority of encrypted traffic.

2.5. Review of Related Works
2.5.1. Review of Survey on XAI Related Works

The concept of XAI has penetrated several fields such as healthcare [76–78], regression
modeling [79], anomaly detection [80], power system emergency control [81], fault detec-
tion [82], landslide prediction [83], measuring uranium enrichment [84], online game predic-
tion [85], civil engineering [86], and no-teardown vehicle component cost estimation [87].
Thus, the application of XAI to the ITS is attracting a lot of attention from researchers.

Although some review papers on XAI have been written, to the best of our knowledge,
this is the first attempt to conduct an extensive review of XAI’s applicability to ITS with
a focus on intrusion mitigation. The authors in [88] presented a review on XAI without
delimiting any field. They focused on the general concepts, applications, emerging issues,
and approaches of XAI designs. On the other hand, the authors in [17] reviewed XAI with
a focus on the major requirements and agenda setting for the future implementation of
XAI. Specifically, they explained the provenance information concept and its applicability
to XAI. Gossen et al. [89], as a follow-up to their previous work [90], posited that algebraic
aggregation [90] combined with semantic analyses solving for infeasible path reduction,
has an impact on both explainability and velocity. Specifically, the work indicated their
impact concerning running time [89].

Similarly, the authors in [77] reviewed the applicability of XAI to the healthcare
sector while focusing on data analysis and interpretation of models. The mention of
XAI’s applicability to the transportation sector was only done in passing. Focusing on
the emergence of XAI for Industry 4.0, the authors in [91] provided a comprehensive
survey of XAI-based approaches adopted to meet their demands for automatic and real-
time implementation. In [79], the authors present a review aimed at establishing the
unique features of XAI for regression models known as XAIR. The review provided a brief
overview of the general concept of XAI before narrowing it down to XAIR, emphasizing the
important specificity of the regression problem that necessitates XAI adaptation. Moreover,
authors in [92] reviewed XAI from the perspective of data and knowledge engineering,
enumerating the existing works of XAI for data-driven and knowledge-aware scenarios.

The closest review of XAI for security is presented in [93]. The authors of this study
provided an overview of XAI concepts, trends, enabling technologies, and applications for
system security. However, the reviews confirm the hypothesis that review works available
on XAI and the security of ITS is limited. Due to the scarcity of research on XAI for ITS
security, this study provides an exhaustive contemporary study with a systematic and
comprehensive review of the extensive research on XAI-IDS for ITS. This study differs from
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previous XAI reviews in that it is the first to systematically survey research works and
directions in the use of XAI for the security of ITS limited to IDS.

2.5.2. Review of Survey on Security Issues of ICVs

Guan et al. [31] gave a comprehensive survey on the impending cybersecurity for ICVs
detailing the challenges and constraints of attack mitigation, three common approaches
to IDS in the vehicle network as well as three emerging technologies to solve the network
security problems of ICVs. The identified IDS approaches are (1) feature-based detection,
(2) information theory and statistical analysis detection, and (3) detection based on machine
learning. Although the authors highlighted the need for a robust machine learning-based
IDS, they did not clarify what constitutes a robust ML. The XAI in the view of this paper is
a promising and robust solution for IDSs for ICVs.

Mitigating the vulnerabilities and threats to ICVs at the early stage of vehicle develop-
ment has been acknowledged by automakers to be a veritable means of securing ICVs with
minimal cost. Luo et al. in [94] presented a comprehensive survey on threat analysis and
risk assessment (TARA) for connected vehicles. They [94] concluded among other issues
that the large amount of data collected by ICVs can bring many possibilities for TARA as
it could guarantee the accuracy of threat model training. This data-driven TARA process
is a new research direction and it will be promising to see the possibility of incorporating
TARA and XAI to secure ICVs.

Dibaei et al. [95] provided existing defense mechanisms against attacks on ICVs
while preferring research directions. The defense mechanisms listed corroborated with
other researchers and included cryptography, software vulnerability detection, malware
detection, and network security. The paper recommended the use of deep learning over
existing ML. However, the issue of computational complexity, huge data traffic, and latency
will necessitate the need for deep learning on edge computing. In all, no position was taken
on the important role of XAI.

Following the same pattern as other reviewed works, Banafshehvaragh and Rah-
mani [96] exhaustively discussed all detection approaches for smart vehicles where they
proposed high-performance intrusion, anomaly, and attack detection methods for all com-
munication dimensions of smart vehicles, particularly external and internal network vehi-
cles. Their statistical study of the detection evaluation criteria further reaffirms the position
of this paper that XAI is yet to be studied and explored by most authors. One argument
in favor of this is the issue of how to manage the practical implementation of XAI while
handling the challenge of computational complexity.

In conclusion, Wang et al. [97] noted that the application of AI algorithms for in-
vehicle communication has become a new research hotspot. They suggested improving the
quality of the data set, reduction in the interference caused by emergencies, improving and
optimizing the AI algorithm, and improving the ride comfort of the road.

2.5.3. Summary of Related Works and Research Gaps

From the above review of surveys both in XAI and ICV intrusion detection schemes,
it is evident that the XAI applicability to ICV is yet to be fully studied. This review
work makes a bold attempt to draw the nexus between XAI and the security of ICVs. Al-
though there are survey works on XAI, to the best of our knowledge, none have considered
the applicability to the security of ICVs. On the other hand, despite the numerous surveys
on the security of ICVs and recommendation for AI, there is a limited survey available
on XAI applicability to the security of ICVs. Thus, this is the first attempt to conduct a
comprehensive review of the use of XAI for the security of ICVs.

3. Review Methodology

This section offers a systematic description used for the detailed review. The innovative
reviewing methodologies in this study are inspired by the meta-analysis (PRISMA) [98,99]
and the “mentefacto conceptual design” [100]. Articles published between 2017 and 2022
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were given priority during selection. Nonetheless, the year of publication is irrelevant
when the need arises for a historical perspective in the review. According to [101], computer
science and engineering-related studies can preferably come from the following databases:
IEEE Xplore, ScienceDirect, Wiley, Springer, Taylor and Francis, and select social sites such
as Academia and Researchgate, Sage, and Google Scholar. In addition, only papers written
in the English language we considered for final analysis. Using the key search “ITS”, “IoV”,
“ICV”, “IDS”, “AI”, and “XAI”, a summary of papers according to the database source
is listed in Table 2. Similarly, the PRISMA flow diagram for the systematic reviews and
the basis for the final selection of articles are shown in Figure 4. Quantitative analysis
was done using only XAI papers for IDS. Therefore, the results of the screened literature
were systematically summarized and reported by a narrative comprehensive analysis.
Specifically, the steps of this analysis include determining the review problem, sorting out
and comparing the data, and drawing conclusions [97]. The inclusion criteria for papers
used in the survey are:

1. Articles must be original articles published in journals, arXiv, or conference proceedings.
2. Except for the purpose of history or background, only papers published between 2017

and 2023 were considered for final inclusion for discussion.
3. For qualitative analysis, only papers that addressed the issues and concerns of ITS

and ICV security using AI/XAI were considered.
4. In comparing this review paper with recent review works, ICVs, security, and AI must

be covered to qualify for comparison.
5. The papers have to be written entirely in English.
6. Finally, the papers whose databases had access restrictions were excluded because the

authors could not access them.

Figure 4. PRISMA flow showing the process of the final selection of the 137 papers at the reference
and the 7 specific articles that focused on XAI for IDS in ICV.
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Table 2. Publications used in this review.

Database Source No. of Documents % Freq

IEEE Xplore (Journals) 52 37.96

IEEE Xplore (Conferences) 12 8.76

Taylor and Francis 4 2.92

Wiley 4 2.92

MDPI 8 5.84

Springer 11 8.03

ACM 4 2.92

ArXiv Pre-print 9 6.57

Google Scholar 7 5.11

ScienceDirect (Elsevier) 15 10.95

Other sources (Blogs, Reports, and Websites) 11 8.02

Total 137 100.00

The summary of document search and usage are summarized in Table 2 and Figure 4,
respectively. A total of 393 (337 + 56) documents were identified by the search. A total of
97 documents were excluded due to duplication, leaving a total of 296 for screening. Sixty-
seven were further excluded after screening for relevance and elimination of papers with
open abstracts but restricted access to full paper content. Of the 162 documents remaining,
25 were excluded using the inclusion criteria above. Thus, a total of 137 documents were
used for the survey. A total of 130 of these were used for qualitative analysis, while the
other 7 (see Table 3) were used for the specific review since they were strictly papers on XAI
for IDSs, while 10 papers (see Table 4) served the purpose of the XAI framework details for
background studies.

Table 3. Publications on XAI-based IDS solutions for IoV/ICV.

Author Approach Aim Performance Year

[54]

Proposed explainable
deep learning to secure
IoV using the
SHAP mechanism

To increase the
DL-based IDS’
transparency and
resilience in
IoT networks

The experimental findings
demonstrated the
proposed framework’s
strong performance with a
99.15% accuracy and a
98.83% F1 score,
highlighting its capacity to
defend IoV networks from
complex cyber-attacks.

2022

[92]

Extensive review of
XAI approaches to
data-driven and
knowledge-aware
scenarios such as ITS

To provide
state-of-the-art
evaluation metrics and
deployment
applications in
industrial practice

The knowledge of
taxonomies and trends in
XAI for data-driven
applications will enrich
the designs of future
XAI systems

2022

[102]

Introduced a novel
VisExp approach for
IDS for in-vehicle
networks

Aims to detect and
mitigate CAN bus
attack in in-vehicle
networks

The proposed approach
gave a promising result,
making the VisExp a
potential candidate

2022
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Table 3. Cont.

Author Approach Aim Performance Year

[103]

Integration of ANFIS
and human–computer
interface platforms to
enhance the
understanding of
UAV behavior

The approach is to
translate the ANFIS
output to linguistic
value easily
understood by human

The proposed approach
shows the potential
application of ANFIS for
the development of XAI

2019

[104]
A novel XAI applicable
to IoT generally
including IoV

To ensure a robust
explanation of IDS
decisions in detecting
and mitigating attacks
in IoT

Developed multiple XAI
models such as SHAP,
and RuleFit to aid the deep
neural network for
transparency and trust

2022

[105]

A majority vote
ensemble approach
combined with
recursive feature
elimination-extreme
gradient boosting

Intended to provide a
more accurate solution
by combining the most
viable features and
prediction from
various classifiers

The experimental result
shows that the proposed
approach improved
accuracy, F1-score, and
recall while reducing miss
rate, compared to
previous techniques

2021

[106]
A multilayer,
data-driven
cyber-attack system

To enhance ICS
cyber-security by
covering a wider
attack scope utilizing
the defense-in-depth
concept

Experimental results show
that the proposed
approach had a high
detection accuracy

2019

Table 4. Selected Publications Showing Usage of XAI Frameworks.

Author XAI Framework Specific Usage Detail Year

[54] SHAP mechanism
To increase the DL-based
IDS’ transparency and
resilience in IoT networks

Provided global and local
explanations to XAI
models using SHAP plots

2022

[102] Novel VisExp
Enhance the
trustworthiness of the
XAI-powered IV-IDS

Based on SHAP, compared
the proposed
knowledge-based VisExp
with a rule-based
explanation

2022

[103] Integration of
ANFIS

Approach is to translate the
ANFIS output to linguistic
value easily understood by
humans to enhance the
understanding of
UAV behavior

Proposed approach shows
the potential application of
ANFIS for the
development of XAI

2019

[104] RuleFit, SHapley,
and SHAP

Multiple XAI frameworks
built and integrated to
ML/DL-based IDS

Efficient, transparent and
trustworthy IDS for
IoT applications

2022

[72] SHAP A unified framework for
prediction analysis

Conceptual identification
of a new class of additive
feature importance
measures that possesses
desirable features

2017
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Table 4. Cont.

Author XAI Framework Specific Usage Detail Year

[107] LIME

Explains the prediction of
any classifier model with
ease while ensuring local
fidelity with speed

Has the flexibility to be
applicable to different
models such as random
forests and image
classification

2016

[108] TRUST

To ensure fast and accurate
XAI numerical applications
using factor analysis to
transform input features

Model-agnostic,
and high-performing,
applicable to numerical
applications

2021

[109] LORE Blackbox outcome
explanation

Agnostic approach to
learning the local
interpretable predictor for
decision rule-based
explanations

2018

[110] GRAD-CAM Heat map for each class of
a single image

Uses the feature maps
produced by the CNN. It
is model-specific

2019

[111] CEM

Leverages the features
needed to predict that
input instance are of
same class

Agnostic model, local and
for post hoc explanations 2018

4. Findings and Discussion
4.1. ITS/IoV Intrusion Detection Systems (IDS)

An intrusion is any unauthorized activity that disrupts or damages a network. This
means that any incursion that violates the integrity, confidentiality, or availability of the
ITS is an intrusion. The objective is to detect any abnormal activity in an IoV network
traffic that a standard firewall cannot detect. It is critical to attain high levels of security
against actions that jeopardize system availability, integrity, or confidentiality. IDSs can
be classified based on the detection or deployment approach, and Figure 5 depicts the
classification of an IDS.

From the standpoint of the deployment-based IDS approach, the classification of IDS
can be either host or network based. The host-based system monitors all activity on the
single host and examines security vulnerabilities and intrusions. The major limitation
with this system is that it must be on all hosts that need intrusion protection, resulting in
increased computational complexity for each node and eventually degrading IDS perfor-
mance [112]. On the other hand, a network-based system is to mitigate intrusions on all
devices and the entire network. The network-based system constantly monitors network
traffic and investigates for intrusions.

On the other hand, the detection-based IDS approach can be either signature or
anomaly-based. The signature-based system (also known as knowledge-based IDS) defines
a signature for attack behaviors derived from footprints left by each intrusion. These signa-
tures are in the signature database, and data patterns are matched with these signatures to
detect attacks. One advantage of this system is the high detection rate due to the database’s
availability of attack signatures residents. However, the approach is unsuitable in real-time
due to the lack of signature patterns; therefore, it is incapable of detecting new attacks.
However, the approach considered in this study is the network and anomaly-based IDS,
which focuses on various AI approaches.
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Figure 5. Classification of Intrusion Detection Systems.

AI-enabled IDSs are an effective security measure to combat invasions. Conventional
IDSs include rule-based, signature-based, flow-based, and traffic-based techniques. Be-
cause most connections and traffic in IoV networks were previously specified, these IDS
detect aberrant activity. For example, when the intruder establishes new connections to
the victim or delivers a different type of traffic, the network will see anomalous data
flows [113,114]. Unfortunately, due to the frequent network, which results in constant
topology changes, conventional IDSs do not perform adequately. In addition, intelligent
IDSs are necessary to counter the emergence of new forms of attacks or wisely planned
intrusions such as man-in-the-middle (MiM) attacks.

AI-based IDSs are often helpful if an intruder disrupts network traffic communica-
tion. It is difficult to detect the breach if the attacker does not connect with any network
components. To compromise network operations, the intruder must disrupt the network
somehow. AI techniques can detect anomalies that are difficult to detect by a human.
The capacity of AI techniques to detect even minor anomalies distinguishes them from
other types of IDSs. AI-based IDSs can be constructed with a shifting target to create
a secure network. Because attacks are continually developing and new vulnerabilities
occur daily, the capacity of AI-based models to adapt and grow is precious. It is why
signature-based IDSs are becoming outdated, thereby giving way to anomaly-based ML
IDS as an emerging trend [113].

AI-based techniques are apt for provisioning authentication and authorization of
security control and network traffic patterns, which require high learning sensitivity and
robustness. They have been helpful as detection and mitigation tools against data integrity
threats and snooping intrusion by targeting the availability of specific attack features. Their
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superiority to network analyzers is in automation and disinclination to human error [115].
Below are some AI-based IDS frameworks for ITS/IoV:

4.1.1. Artificial Intelligence (AI) Frameworks and Result Evaluation

Vehicular networks or IoV constitute a critical part of the ITS. Its dynamic nature,
as well as the exponential increase in the number of connected devices as a result of B5G
technologies, has resulted in cyberattacks and the need for security. AI has played a critical
role in securing connected devices/things such as the IoV, and vehicular ad hoc networks
(VANETs). In [23], the authors proposed an optimized support vector machine for the
protection of VANET from DDoS attacks. Although the proposed model achieved an
accuracy of 99.33%, it cannot be said to be an XAI as no evidence of the XAI principles was
presented by the authors.

Additionally, the authors in [32] proposed a random-forest-algorithm-based IDS for
detecting false basic messages in IoV. The accuracy of the proposed model was 99.6%.
The work was based on the vehicular reference misbehavior (VeReMi) dataset. Using the
same VeReMi dataset, the authors in [116] developed a distributed IDS for the detection of
misbehavior and position falsification of VANETs using an ensemble of k-nearest neighbor
(KNN) and random forest. Although the trio of [117–119] proposed ML and deep learning
(DL) solutions for the security of ITS (such as autonomous vehicles (AVs), and IoV), their
choice of the dataset can be challenged as there could have been more suitable ITS-specific
datasets such as the VeReMi [120], BursTADMA [121], or VeReMi extensions, as used by
the authors in [115].

Moreover, excessive demands for handcrafted feature engineering are a common
challenge of ML research, particularly intrusion detection [122]. Moreover, traditional ML
schemes are not well suited for multi-classification problems. However, studies have shown
the adaptability and flexibility of ML-based IDS over DL-based IDS. ML-based IDS has
shown tremendous potential in improving detection accuracy with minimal computational
complexity and time [123,124]. It has led to the adoption of deep learning approaches [125].

ML algorithms can detect seemingly tricky attack patterns. An ML-based IDS has the
operational aim of delivering a secure network. Because attacks and attack methods are
continually developing and new vulnerabilities occur daily, the capacity of ML models to
adapt and grow is precious. It is another reason signature-based IDS are declining while
anomaly-based IDS based on ML are advancing.

4.1.2. Application of XAI-Based IDSs for ICVs

The explainability and call for the trustworthiness of the ML have motivated the need
for XAI. Table 3 is a summary of some current studies on XAI-based IDS for ITS, showing
their performance, approach, and year of publication.

The works of [54] proposed the use of SHapley Additive exPlanations (SHAP) to
enhance the transparency and resilience of deep learning-based IDS for IoV networks. This
approach gave an accuracy of 99.15% regarding its ability to protect IoV networks against
attacks. However, the major obstacle is the challenge of computational complexity.

Recently (September 2022), the authors in [102] employed the XAI for trustworthy In-
vehicle IDS leveraging CAN bus data. They further enriched the body of XAI by proposing
a novel “VisExp” approach for visualizing the explanations necessary for gaining trust in
the system. However, the limitation of the approach is the reliance on a survey formatted
using Google forms. This has the potential of skewing the results.

In [103], the authors proposed a rule-based XAI leveraging the adaptive neuro-fuzzy
inference system (ANFIS) for understanding unmanned aerial vehicles (UAV) maneuvering
decisions. In addition, they developed a human–computer interface (HCI) where the
outputs of the ANFIS are translated to linguistic values. This is a promising approach to
aiding the monitoring and mitigation of possible intrusion into UAV networks.
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Interestingly, the authors of [104] proposed novel XAI-based deep learning solutions
for IDSs in the IoT generally not limited to the IoV. However, the approach is similar to
other authors as they used SHAP and RuleFit. The use of SHAP has enjoyed dominance due
to its ease of use and flexibility in generating the basis for the visualization of explainable
results [86].

4.2. Overview of Datasets

This section gives an overview of the datasets used by the researchers to test their
presented techniques’ performance.

1. The VeReMi dataset: This dataset [120] is an ITS-specific dataset that captures ma-
licious messages intended to trigger falsification, and hence serves as a model for
evaluating falsification detection models in an IoV network. The dataset consists of
vehicle onboard message logs, including a ground truth labeled, generated from the
simulation environment of the Luxembourg City Vehicle Network. The Luxembourg
City Network is a smart city that greatly represents an ecosystem enabled by inter-
action among technologies such as IoT, AI, open data platforms, autonomous cars,
smart lights, and wearable devices. Using LuST and VEINS, the simulated network
generated GPS data on local vehicles, as well as sets of BSMs, received from other ve-
hicles through DSRC. The classification process was carried out using Maat to execute
multiple parallel detectors. The initial dataset contains a number of simple attacks
with 614,940 observations and 17 features. A detailed description of the dataset can be
found in [120].

2. The BurST-ADMA: The BursTADMA dataset [121] was released in March 2022.
The BurST-ADMA is an Australian motorway dataset made up of onboard vehicle
message logs generated on a Burwood road map that connects Melbourne’s city to the
suburbs. Vehicle trajectory information was extracted from the Simulation of Urban
Mobility (SUMO) road traffic simulation framework and false data were injected into
the retrieved trajectory information for a total duration of 1000 s. The BurST-ADMA
dataset contains 207,315 observations with 179,126 normal BSM data and 28,189 false
data. Seven (7) different falsifications are labeled on the BSMs and one normal vehicle
data type. Each of these data points contains the time-step, the vehicle’s ID, its X and Y
location coordinates, and differential information such as heading, speed, acceleration,
and labels [121].

3. V2X falsification dataset: The scenario created here mimics a malicious program or a
malfunctioning sensor by injecting false data into the vehicle’s positional and speed
readings. To model the transmission of CAM in the vehicle network, two of the
most well-known simulators SUMO and Network Simulator-3 (NS-3) were used on a
VSimRTI platform, a Java-based platform that can seemingly couple the operations of
both simulators. The falsification attack is divided into attacks with several parameters:
speed, acceleration, and heading. Hence, four (4) different scenarios were explored
where vehicles broadcast messages using different strategies and service platforms
capturing all simulated false data injection scenarios [126].

4. Car-hacking dataset: The car-hacking dataset [127] was used in conjunction with
traditional IDS datasets by the authors in [118] to evaluate the performance of using
rule extraction methods from deep learning neural networks to implement a two-
stage IDS for ITS. On the other hand, the authors in [117] used the same dataset to
validate their proposed enhanced multi-stage deep learning framework for detecting
malicious activities from autonomous vehicles. The dataset comprised DoS, fuzzy,
and RPM/GEAR attacks, respectively, as detailed in [127].

4.3. Explanable Frameworks in XAI

This section describes the approaches used for model explanation in XAI enumerated
in Table 4.
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4.3.1. What Is SHAP and What Is Its Applicability to IDSs for ICVs?

SHAP is a method for explaining the output of any machine learning model [54,72].
The concept of Shapley values from cooperative game theory [72,85] allows a fair dis-
tribution of values among a group of individuals. The method assigns each feature an
importance value for a particular prediction. The values can be for both global and local
interpretation of a model’s predictions, and it is considered a state-of-the-art method for
feature importance in XAI. It is also model-agnostic, meaning that it can explain the output
of any machine learning model, regardless of its architecture. SHAP aids the perception
of the contribution of each data feature to the particular prediction made by a machine
learning model. Intrusion detection in ICV is a critical task, as it helps ensure the vehicle’s
security and safety and its passengers. SHAP explains the decisions made by an IDS in
ICVs, which can help to improve transparency and trust in the system. Applying SHAP
aids the understanding of the feature importance and contribution of each feature to the
predictions made by the model for detecting intrusion attempts.

Based on the SHAP values approach, the following criteria are used for providing both
global and local explanations for XAI models [54]: SHAP Force Plots, SHAP Importance
Plots, SHAP Summary Plots, and SHAP Dependence Plots. SHAP Summary Plots give
a global summary of the features of the SHAP values distribution in the dataset. They
demonstrate how each feature’s relevance is distributed. This makes it easier to see the
dataset’s features.

Dependence plots, according to [54], are deemed to be the most straightforward global
interpretation plots. The link between the value of a feature and the related Shapley
values for each instance in the dataset is displayed in the dependence charts. The SHAP
dependence plots display the precise structure of the relationship, whereas summary plots
only display the relationship between a feature value and its influence on the prediction.

The SHAP Force Plots aid in the visualization of feature attributions of specific oc-
currences, where each feature value is a force that either confirms or refutes a prediction.
The Force Plots were utilized by the authors of [54] to depict the packet flow characteristics
that support or refute the hypothesis made by our IDS model. The size or effect that each
feature has on the forecast is also displayed through Force Plots.

Additionally, SHAP Importance Plots for Shapley values are employed to determine
the level of importance or significance of instances in the dataset. Large absolute Shapley
values in this plot are classified as key features since they have a greater average impact on
the model output [54].

4.3.2. What Are TRUST and LIME and What Is Their Applicability to IDSs for ICVs?

TRUSTvs. LIME: TRUST is a framework for assessing AI models’ transparency,
robustness, and fairness [108]. It evaluates the comprehensibility and interpretability of
intrusion detection models for ICV, considered black boxes because they are difficult to
interpret [108]. Applying TRUST to the trained IDS model facilitates the transparency of the
model’s decision-making process and identifies how well the model can detect intrusion
attempts. TRUST’s feature importance and decision path analysis aid in understanding the
most important features and how it makes its predictions. The framework includes several
robustness assessment techniques for evaluating IDS in ICVs, such as robustness testing
and adversarial example generation [93,108]. It enables the interpretability of the model’s
generalization to new and unseen data and its resistance to adversarial examples [93,108].
TRUST can also evaluate the model’s fairness by assessing the demographic parity and
equalized odds. It assists in clarifying the model’s fair treatment of various features and
identifies potential bias in the model [93,108]. It is helpful for intrusion detection in ICVs
as it provides more interpretable and transparent explanations of the decision-making
process of the IDS, which can help to improve the security and safety of the vehicle and its
occupants by ensuring the robustness and fairness of the model.
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Similarly, LIME is a technique for explaining the predictions of any machine learning
model by approximating the model locally with an interpretable model. It is model-agnostic,
following the ability to explain the output of any machine learning model, regardless of its
architecture [107]. It is a common approach for interpretability because it provides human-
understandable explanations for complex models [107]. LIME enables a more intuitive and
interpretable comprehension of the complex decision-making process of IDS models, which
is vital for building trust in the model and its predictions [107]. Its utilization enhances the
understanding of the significant features relevant to intrusion detection predictions, which
improves the security and safety of the ICV and its user.

The benchmark XAI explainer model is known as the Local Interpretable Model-
agnostic Explanations (LIME), introduced by [107]. This model, however, was outper-
formed by the Transparency Relying Upon Statistical Theory TRUST) explainer introduced
by [108]. It achieved 25 times faster results and is a promising candidate for real-time
and critical applications such as the ITS. In addition, the TRUST model took care of the
computational complexity deficiency of SHAP.

4.3.3. What Is LORE and What Is Its Applicability to IDSs for ICVs?

For a given black box case, LOcal Rule-based Explanations (LORE) introduced by
Guidotti et al. [109] generates an interpretable prediction. On a dense set of synthetic
examples, a decision tree is utilized to train the local interpretable predictor. A local
explanation that consists of a single-choice rule and a number of counterfactual rules for
the reversed decision can be extracted from the decision tree. This framework is local-
based, post hoc, and model-agnostic [128]. The originators of the LORE in [109] based
their work on a local interpretable predictor, a decision tree. The decision tree allows
for the extraction of a local explanation, which consists of a single choice rule and a
collection of counterfactual rules for the reversed decision [128]. The identified challenge
that LORE’s applicability to XAI for ICV could be the need for human comprehensibility
of the explanations provided by LORE [109]. To achieve a flexible framework for LORE
interpretability, Rajapaksha et al. [129] proposed the use of k-optimal associations, known as
Local Rule-based Model Interpretability with k-optimal associations (LoRMIkA). LoRMIkA
provides a flexible way to obtain predictive rules needed for explanations. The argument
here is that the most predictive rules are not necessarily the rules that provide the best
explanations. Since the ICV situation is expectedly dynamic, LoTMIkA shows a promising
adoption owing to its ability to provide multiple rules capable of explaining predictions in
various scenarios.

4.3.4. What Is GRAD-CAM and What Is Its Applicability to IDSs for ICVs?

A method called Gradient-weighted Class Activation Mapping (GRAD-CAM) [110]
creates a heat map for each class from a single image. Grad-CAM then generates a localiza-
tion map that discriminates classes. The framework uses the feature maps produced by the
final convolutional layer of a CNN. This is model-specific, local-based, and post hoc [128].
GRAD-CAM finds usage in the visualization of deep learning (such as CNN) outputs.
GRAD-CAM achieves this by using the features obtained from the last convolutional layer
of a CNN, for example. The weighted combination of feature maps followed by the ReLU
activation function is used to obtain a precise heat map. Although GRAD-CAM is one of
the most popular methods for explaining deep neural network decisions, it violates key
axiomatic properties, such as sensitivity and completeness. Integrated gradients are an
axiomatic attribution method that aims to cover this gap [130]. In 2020, GRAD-CAM was
reported to have a challenge in its ability to reflect the model’s computation because of
the gradient average steps. These steps are thus unreliable in prediction. To solve this,
a modified CAM was proposed, known as High-Resolution Class Activation Mapping
(HiResCAM), for faithful explanations of CNN [131].
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4.3.5. What Is CEM and What Is Its Applicability to IDSs for ICVs?

The contrastive explanation method (CEM) is a method for generating explanations
for AI models to understand the decision-making process of a model by comparing the
decision made for a specific input to the decision made for a similar but different input [111].
Its classification model explanations are provided in [111]. Furthermore, it retrieves the
characteristics that must be sufficiently present to predict the input instance will belong
to the same class. The minimal attributes that must be altered in order to associate the
input instance with a different class are also identified. This is local, post hoc, and model-
neutral [128]. According to [128], CEM, when used for neural networks, highlights not
only the pertinent positives but also the pertinent negatives in its explanation, making
it a preferred choice over LRP. The ability of CEM to extract both positive and negative
pertinent features can help in reducing error during the diagnosis of a target. It is, however,
yet to be seen how CEM could be applied effectively to the IDS for ICVs where non-image
data is dominant. This is important if the CEM is to be used for intrusion detection in
ICVs in real-time by monitoring and analyzing network traffic, system logs, and other data
sources to identify unusual or suspicious activity. CEM is vital to interpreting the AI model
predictions.

4.4. Discussion
4.4.1. Computational Complexity Challenge of XAI Implementation

The computationally demanding and costly operation of SHAP is one of its disadvan-
tages. Additionally, it has been discovered to be open to hostile attacks. In a subsequent
study, the authors in [54] seek to assess the degree to which SHAP is susceptible to mali-
cious attacks and look into potential new or improved defenses that might be utilized to
enhance its robustness in IoT systems.

4.4.2. Concept Misrepresentation

Although the phrases “interpretability” and “explainability” are sometimes used syn-
onymously in the literature, they are not the same. A model’s active quality of explainability
defines the steps it takes to reveal to people its frequently intricate internal workings [132].
The level at which a model’s mechanics make sense to people, in contrast, is referred
to as a model’s interpretability [70,132]. Thus, there is a need for universally acceptable
terminology, and elimination of ambiguity in definitions [93].

4.4.3. Need for ICV-Based Dataset

Although, XAI adoption for ICV is still at the infant stage, the AI-based approaches
witnessed the use of inappropriate datasets for model evaluation. Since the ICV or IoV
has unique features, datasets reflecting the reality of the connected vehicles should be
advocated if the goal of XAI will be achieved.

4.4.4. Reliability

Reliability analysis determines a system’s level of assurance in terms of probability
density [133]. They utilized the XGBoost to calibrate the resistance reduction factors in
reaching the stipulated objective system. The suggested ML-based models are proven to effi-
ciently determine the shear resistance of fabric-reinforced cementitious matrix-strengthened
reinforced concrete beams, yielding the most consistent, precise, and reliable predictions
while meeting the specified target reliability of the system. In another study outlining
some intriguing potential prospects for utilizing machine learning to increase safety and
reliability concerns, the authors of [134] examined the use of machine learning in quality
engineering and security solutions. Since the LIME is based on Gaussian assumptions,
the reliability of the output becomes doubtful once the assumptions do not fit into any
target system. The challenge of overfitting also depletes the reliability of XAI models as
some researchers do not scrutinize the potential flaws of “explainers” [135].
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One reliability case of concern to researchers is the effect of adversarial perturbations
(APs) on deep learning. APs are the procedures intended to mislead a target model by
injecting imperceptible noise (attacks). Galli et al. [136] proposed the use of the disc
similarity coefficient (DSC) and correlation coefficient (CC) as measures for the reliability
of XAI methods. The reliability of deep learning models was found to be affected by the
huge number of pixels in the target image, and AP. However, the number of classes used in
datasets had no significant effect on the reliability of XAI. However, most of the existing
reliability experiments were conducted using datasets too little in comparison to real ICV
expectations.

4.4.5. Future Direction Based on Research Gaps

The authors in [70] opined that beyond XAI, there is a call for responsible AI (RAI).
RAI is an additional constraint on the XAI to guarantee fairness, ethical deployment,
transparency, security, safe usage, accountability, and privacy awareness. This review shows
that although XAI and RAI are gaining adoption for various target domains, they are yet to
be extensively deployed for IDSs in ITSs/ICVs. It will be a promising research direction
to explore LIME, SHAP, and TRUST for IDSs in ITSs while scrutinizing all “explainer”
options [135]. In addition, the computational complexity introduced by the use of XAI
needs to be addressed since the ICVs are real-time networks where the need for latency
can not be ignored. Furthermore, for XAI to be effectively deployed in ICVs, lightweight
models and user-friendly practical implementation is desired. From the case studies, it
is evident that some leading AI companies are already developing XAI interfaces in this
direction. Additionally, issues of real-scenario experiments/testing, the complexity of
security XAI-based solutions, and the need for embedded/portable solutions have been
listed as additional future directions in [137].

5. Conclusions

This paper presented a comprehensive review of explainable artificial intelligence
(XAI) for intrusion detection and mitigation inintelligent connected vehicles (ICVs). ICVs/IoV
as an extended application of the Internet of things (IoT) in intelligent transportation sys-
tems (ITSs) requires effective security from attackers due to vulnerabilities inherent in
connected devices. However, due to the “black-box’” nature of artificial intelligence ap-
plied to most detection systems, transparency or interpretability becomes a problem; thus
the need for explainable AI. In this survey, a comprehensive background of the existing
XAI frameworks, their capabilities and use cases, and their applicability to ICV security is
discussed. In particular, the need for reliability, low computational complexity, and incor-
poration of user-friendly XAI modules is identified as a promising research issue. Finally,
XAI developers must address the issue of bias introduced by rule-based XAI to foster its
acceptability in essential industries such as the automobile industry.
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