1,757 research outputs found

    A Driving Performance Forecasting System Based on Brain Dynamic State Analysis Using 4-D Convolutional Neural Networks.

    Full text link
    Vehicle accidents are the primary cause of fatalities worldwide. Most often, experiencing fatigue on the road leads to operator errors and behavioral lapses. Thus, there is a need to predict the cognitive state of drivers, particularly their fatigue level. Electroencephalography (EEG) has been demonstrated to be effective for monitoring changes in the human brain state and behavior. Thirty-seven subjects participated in this driving experiment and performed a perform lane-keeping task in a visual-reality environment. Three domains, namely, frequency, temporal, and 2-D spatial information, of the EEG channel location were comprehensively considered. A 4-D convolutional neural-network (4-D CNN) algorithm was then proposed to associate all information from the EEG signals and the changes in the human state and behavioral performance. A 4-D CNN achieves superior forecasting performance over 2-D CNN, 3-D CNN, and shallow networks. The results showed a 3.82% improvement in the root mean-square error, a 3.45% improvement in the error rate, and a 11.98% improvement in the correlation coefficient with 4-D CNN compared with 3-D CNN. The 4-D CNN algorithm extracts the significant θ and alpha activations in the frontal and posterior cingulate cortices under distinct fatigue levels. This work contributes to enhancing our understanding of deep learning methods in the analysis of EEG signals. We even envision that deep learning might serve as a bridge between translation neuroscience and further real-world applications

    Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis.

    Get PDF
    BackgroundMusic conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature.MethodThis study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo.ResultsEmpirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex.ConclusionThe resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 165, March 1977

    Get PDF
    This bibliography lists 198 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1977

    The role of multi-scale phase synchronization and cross-frequency interactions in cognitive integration

    Get PDF
    Neuronal processing is distributed into anatomically distinct, largely specialized, neuronal populations. These populations undergo rhythmic fluctuations in excitability, which are commonly known as neuronal oscillations. Electrophysiological studies of neuronal activity have shown that phase synchronization of oscillations within frequencies characterizes both resting state and task execution and that its strength is correlated with task performance. Therefore phase-synchronization within frequencies is thought to support communication between oscillating neuronal populations and thereby integration and coordination of anatomically distributed processing in cognitive functions. However, it has remained open if and how phase synchronization is associated with directional flow of information. Furthermore, oscillations and synchronization are observed concurrently in multiple frequencies, which are thought to underlie distinct computational functions. Little is known how oscillations and synchronized networks of different frequencies in the human brain are integrated and enable unified cognitive function and experience. In the first study of this thesis, we developed a measure of directed connectivity in networks of coupled oscillators, called Phase Transfer Entropy (Phase TE) and tested if Phase TE could detect directional flow in simulated data in the presence of noise and signal mixing. Results showed that Phase TE indeed reliably detected information flow under these conditions and was computationally efficient. In the other three studies, we investigated if two different forms of inter-areal cross-frequency coupling (CFC), namely cross-frequency phase synchrony (CFS) and phase-amplitude coupling (PAC), could support integration and coordination of neuronal processing distributed across frequency bands in the human brain. In the second study, we analyzed source-reconstructed magneto- and electroencephalographic (M/EEG) data to investigate whether inter-areal CFS could be observed between within-frequency synchronized networks and thereby support the coordination of spectrally distributed processing in visual working memory (VWM). The results showed that CFS was increased during VWM maintenance among theta to gamma frequency bands and the strength of CFS networks predicted individual VWM capacity. Spectral patterns of CFS were found to be different from PAC, indicating complementary roles for both mechanisms. In the third study, we analyzed source-reconstructed M/EEG data to investigate whether inter-areal CFS and PAC could be observed during two multi-object visual tracking tasks and thereby support visual attention. PAC was found to be significantly correlated with object load in both tasks, and CFS in one task. Further, patterns of CFS and PAC differed significantly between subjects with high and low capacity for visual attention. In the fourth study, we analyzed intracerebral stereo-electroencephalographic data (SEEG) and source-reconstructed MEG data to investigate whether CFS and PAC are present also in resting state. Further, in order to address concerns about observations of CFC being spurious and caused by non-sinusoidal or non-zero mean signal waveforms, we introduced a new approach to identify true inter-areal CFC connections and discard potentially spurious ones. We observed both inter-areal CFS and PAC, and showed that a significant part of connections was unambiguously true and non-spurious. Spatial profiles differed between CFS and PAC, but were consistent across datasets. Together, the results from studies II-IV provide evidence that inter-areal CFS and PAC, in complementary ways, connect frequency-specific phase-synchronized networks that involve functionally specialized regions across the cortex to support complex functions such as VWM and attention, and also characterize the resting state. Inter-areal CFC thus may be crucial for the coordination and integration of spectrally distributed processing and the emergence of introspectively coherent cognitive function.Keskeinen kysymys aivotutkimuksessa on, kuinka ajattelu ja kognitio syntyvät ihmisaivojen 10^15 hermosolussa. Informaation käsittely aivoissa tapahtuu suurissa hermosolupopulaatioissa, jotka ovat toiminnallisesti erikoistuneita ja anatomisesti eroteltuja eri aivoalueille. Niiden aktivaatiorakenteiden jaksollisia muutoksia kutsutaan aivorytmeiksi eli oskillaatioiksi. Hermosolupopulaatioiden välistä viestintää edesauttaa niiden toiminnan samantahtisuus eli synkronoituminen. Sähköfysiologisissa tutkimuksissa on havaittu aivorytmien synkronoituvan sekä lepomittausten että tehtävien suorituksen aikana siten että tämä synkronoituminen ennustaa kognitiivissa tehtävissä suoriutumista. Oskillaatioiden vaihesynkronia ei kuitenkaan kerro niiden välisen vuorovaikutuksen suunnasta. Tämän lisäksi oskillaatioita ja niiden välistä synkroniaa havaitaan yhtäaikaisesti lukuisilla eri taajuuksilla, joiden ajatellaan olevan vastuussa erillisistä laskennallisista ja kognitiivisista toiminnoista. Toistaiseksi on kuitenkin jäänyt kartoittamatta, miten informaation käsittely eri taajuuksilla yhdistetään yhtenäisiksi kognitiivisiksi toiminnoiksi, ja havaitaanko myös eri taajuisten oskillaatioverkkojen välillä synkroniaa. Väitöskirjan ensimmäisessä osatyössä on kehitetty uusi tapata mitata oskillaattoriverkkojen vuorovaikutusten suuntia, jonka toimivuus todennettiin simuloimalla synkronoituneita hermosolupopulaatioita. Väitöskirjan muissa osatöissä on tutkittu havaitaanko ihmisaivoissa eri taajuisten oskillaatioiden välistä synkronoitumista. Erityisesti tutkittiin kahta erilaista synkronian muotoa, joista ensimmäinen (’cross- frequency phase synchrony’,CFS) mittaa kahden oskillaation välistä vaihesuhdetta ja toinen (’phase-amplitude coupling’, PAC) vaiheen ja amplitudin suhdetta. Väitöskirjan toisessa osassa tutkittiin, selittääkö CFS koehenkilöiden suoriutumista näkötyömuistitehtävässä. Tutkimukseen osallistuneilta koehenkilöiltä mitattiin aivosähkökäyrä (EEG) ja aivomagneettikäyrä (MEG), joiden avulla selvitettiin havaitaanko aivoalueiden välistä synkroniaa (CFS). Tutkimustulokset osoittivat, että koehenkilöiden CFS oli korkeampi näkötyömuistitehtävän mielessä pitämisen aikana theta-taajuuksista gamma-taajuuksiin asti ja että CFS-verkkojen vahvuus ennusti yksilöllistä työmuistikapasiteettia. Kolmannessa tutkimuksessa analysoitiin MEG- ja EEG-aivokuvantamislaitteita käyttäen onko aivoalueiden välillä CFS:ä ja PAC:a kahdessa näkötarkkaavaisuustehtävässä. PAC lisääntyi tilastollisesti merkitsevästi tehtävän vaikeuden mukaan kummassakin tehtävässä, kun taas CFS lisääntyi yhdessä tehtävässä. Lisäksi CFS ja PAC taajuusparit olivat erilaisia hyvin suoriutuvien koehenkilöiden sekä heikosti suoriutuvien koehenkilöiden välillä. Neljännessä tutkimuksessa tutkittiin havaitaanko CFS:ä ja PAC:a aivojen lepotilassa. Aivokuoren aktiivisuutta mitattiin MEG:llä sekä epilepsiapotilailta aivoihin kirurgisesti asetetuilla elektrodeilla. CFS:ä sekä PAC:a havaittiin kummallakin menetelmällä. Lisäksi kehitimme menetelmän joka vähentää väärien havaintojen todennäköisyyttä ja lisää aitojen CFS ja PAC yhteyksien havaitsemista. Tulokset osoittavat, että merkittävä osuus yhteyksistä aivoalueiden välillä on aitoja. CFS- ja PAC-profiilit erosivat toisistaan, mutta olivat samanlaisia eri menetelmillä tutkittaessa. Yhdistettynä tulokset tutkimuksista II–IV viittaavat siihen, että CFS ja PAC yhdistävät eri taajuuksille ja aivoalueille hajautettua informaation käsittelyä. CFS:sää ja PAC:ia havaittiin aivojen lepotilassa mutta myös tarkkaavaisuus- ja näkötyömuistitehtävän aikana. CFS ja PAC saattavat mahdollistaa eri taajuisten aivorytmien ja hajautettujen prosessien koordinaation ja yhdistämisen

    Relationship between large-scale structural and functional brain connectivity in the human lifespan

    Get PDF
    The relationship between the anatomical structure of the brain and its functional organization is not straightforward and has not been elucidated yet, despite the growing interest this topic has received in the last decade. In particular, a new area of research has been defined in these years, called \u2019connectomics\u2019: this is the study of the different kinds of \u2019connections\u2019 existing among micro- and macro-areas of the brain, from structural connectivity \u2014 described by white matter fibre tracts physically linking cortical areas \u2014 to functional connectivity \u2014 defined as temporal correlation between electrical activity of different brain regions \u2014 to effective connectivity\u2014defining causal relationships between functional activity of different brain areas. Cortical areas of the brain physically linked by tracts of white matter fibres are known to exhibit a more coherent functional synchronization than areas which are not anatomically linked, but the absence of physical links between two areas does not imply a similar absence of functional correspondence. Development and ageing, but also structural modifications brought on by malformations or pathology, can modify the relation between structure and function. The aim of my PhD work has been to further investigate the existing relationship between structural and functional connectivity in the human brain at different ages of the human lifespan, in particular in healthy adults and both healthy and pathological neonates and children. These two \u2019categories\u2019 of subjects are very different in terms of the analysis techniques which can be applied for their study, due to the different characteristics of the data obtainable from them: in particular, while healthy adult data can be studied with the most advanced state-of-the-art methods, paediatric and neonatal subjects pose hard constraints to the acquisition methods applicable, and thus to the quality of the data which can be analysed. During this PhD I have studied this relation in healthy adult subjects by comparing structural connectivity from DWI data with functional connectivity from stereo-EEG recordings of epileptic patients implanted with intra-cerebral electrodes. I have then focused on the paediatric age, and in particular on the challenges posed by the paediatric clinical environment to the analysis of structural connectivity. In collaboration with the Neuroradiology Unit of the Giannina Gaslini Hospital in Genova, I have adapted and tested advanced DWI analysis methods for neonatal and paediatric data, which is commonly studied with less effective methods. We applied the same methods to the study of the effects of a specific brain malformation on the structural connectivity in 5 paediatric patients. While diffusion weighted imaging (DWI) is recognised as the best method to compute structural connectivity in the human brain, the most common methods for estimating functional connectivity data \u2014 functional MRI (fMRI) and electroencephalography (EEG) \u2014 suffer from different limitations: fMRI has good spatial resolution but low temporal resolution, while EEG has a better temporal resolution but the localisation of each signal\u2019s originating area is difficult and not always precise. Stereo-EEG (SEEG) combines strong spatial and temporal resolution with a high signal-to-noise ratio and allows to identify the source of each signal with precision, but is not used for studies on healthy subjects because of its invasiveness. Functional connectivity in children can be computed with either fMRI, EEG or SEEG, as in adult subjects. On the other hand, the study of structural connectivity in the paediatric age is met with obstacles posed by the specificity of this data, especially for the application of the advanced DWI analysis techniques commonly used in the adult age. Moreover, the clinical environment introduces even more constraints on the quality of the available data, both in children and adults, further limiting the possibility of applying advanced analysis methods for the investigation of connectivity in the paediatric age. Our results on adult subjects showed a positive correlation between structural and functional connectivity at different granularity levels, from global networks to community structures to single nodes, suggesting a correspondence between structural and functional organization which is maintained at different aggregation levels of brain units. In neonatal and paediatric subjects, we successfully adapted and applied the same advanced DWI analysis method used for the investigation in adults, obtaining white matter reconstructions more precise and anatomically plausible than with methods commonly used in paediatric clinical environments, and we were able to study the effects of a specific type of brain malformation on structural connectivity, explaining the different physical and functional manifestation of this malformation with respect to similar pathologies. This work further elucidates the relationship between structural and functional connectivity in the adult subject, and poses the basis for a corresponding work in the neonatal and paediatric subject in the clinical environment, allowing to study structural connectivity in the healthy and pathological child with clinical data

    Spectral and Anatomical Patterns of Large-Scale Synchronization Predict Human Attentional Capacity

    Get PDF
    The capacity of visual attention determines how many visual objects may be perceived at any moment. This capacity can be investigated with multiple object tracking (MOT) tasks, which have shown that it varies greatly between individuals. The neuronal mechanisms underlying capacity limits have remained poorly understood. Phase synchronization of cortical oscillations coordinates neuronal communication within the fronto-parietal attention network and between the visual regions during endogenous visual attention. We tested a hypothesis that attentional capacity is predicted by the strength of pretarget synchronization within attention-related cortical regions. We recorded cortical activity with magneto- and electroencephalography (M/EEG) while measuring attentional capacity with MOT tasks and identified large-scale synchronized networks from source-reconstructed M/EEG data. Individual attentional capacity was correlated with load-dependent strengthening of theta (3-8 Hz), alpha (8-10 Hz), and gamma-band (30-120 Hz) synchronization that connected the visual cortex with posterior parietal and prefrontal cortices. Individual memory capacity was also preceded by crossfrequency phase-phase and phase-amplitude coupling of alpha oscillation phase with beta and gamma oscillations. Our results show that good attentional capacity is preceded by efficient dynamic functional coupling and decoupling within brain regions and across frequencies, which may enable efficient communication and routing of information between sensory and attentional systems.Peer reviewe
    • …
    corecore