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Abstract

The relationship between the anatomical structure of the brain and its functional organization
is not straightforward and has not been elucidated yet, despite the growing interest this topic
has received in the last decade. In particular, a new area of research has been defined in these
years, called ’connectomics’: this is the study of the different kinds of ’connections’ existing
among micro- and macro-areas of the brain, from structural connectivity — described by
white matter fibre tracts physically linking cortical areas — to functional connectivity —
defined as temporal correlation between electrical activity of different brain regions — to
effective connectivity — defining causal relationships between functional activity of different
brain areas. Cortical areas of the brain physically linked by tracts of white matter fibres
are known to exhibit a more coherent functional synchronization than areas which are not
anatomically linked, but the absence of physical links between two areas does not imply a
similar absence of functional correspondence. Development and ageing, but also structural
modifications brought on by malformations or pathology, can modify the relation between
structure and function.

The aim of my PhD work has been to further investigate the existing relationship between
structural and functional connectivity in the human brain at different ages of the human
lifespan, in particular in healthy adults and both healthy and pathological neonates and
children. These two ’categories’ of subjects are very different in terms of the analysis
techniques which can be applied for their study, due to the different characteristics of the data
obtainable from them: in particular, while healthy adult data can be studied with the most
advanced state-of-the-art methods, paediatric and neonatal subjects pose hard constraints to
the acquisition methods applicable, and thus to the quality of the data which can be analysed.

During this PhD I have studied this relation in healthy adult subjects by comparing struc-
tural connectivity from DWI data with functional connectivity from stereo-EEG recordings
of epileptic patients implanted with intra-cerebral electrodes. I have then focused on the
paediatric age, and in particular on the challenges posed by the paediatric clinical environ-
ment to the analysis of structural connectivity. In collaboration with the Neuroradiology
Unit of the Giannina Gaslini Hospital in Genova, I have adapted and tested advanced DWI



ii

analysis methods for neonatal and paediatric data, which is commonly studied with less
effective methods. We applied the same methods to the study of the effects of a specific brain
malformation on the structural connectivity in 5 paediatric patients.

While diffusion weighted imaging (DWI) is recognised as the best method to compute
structural connectivity in the human brain, the most common methods for estimating func-
tional connectivity data — functional MRI (fMRI) and electroencephalography (EEG) —
suffer from different limitations: fMRI has good spatial resolution but low temporal res-
olution, while EEG has a better temporal resolution but the localisation of each signal’s
originating area is difficult and not always precise. Stereo-EEG (SEEG) combines strong
spatial and temporal resolution with a high signal-to-noise ratio and allows to identify the
source of each signal with precision, but is not used for studies on healthy subjects because
of its invasiveness.

Functional connectivity in children can be computed with either fMRI, EEG or SEEG,
as in adult subjects. On the other hand, the study of structural connectivity in the paediatric
age is met with obstacles posed by the specificity of this data, especially for the application
of the advanced DWI analysis techniques commonly used in the adult age. Moreover, the
clinical environment introduces even more constraints on the quality of the available data,
both in children and adults, further limiting the possibility of applying advanced analysis
methods for the investigation of connectivity in the paediatric age.

Our results on adult subjects showed a positive correlation between structural and func-
tional connectivity at different granularity levels, from global networks to community struc-
tures to single nodes, suggesting a correspondence between structural and functional orga-
nization which is maintained at different aggregation levels of brain units. In neonatal and
paediatric subjects, we successfully adapted and applied the same advanced DWI analysis
method used for the investigation in adults, obtaining white matter reconstructions more
precise and anatomically plausible than with methods commonly used in paediatric clinical
environments, and we were able to study the effects of a specific type of brain malformation
on structural connectivity, explaining the different physical and functional manifestation
of this malformation with respect to similar pathologies. This work further elucidates the
relationship between structural and functional connectivity in the adult subject, and poses
the basis for a corresponding work in the neonatal and paediatric subject in the clinical
environment, allowing to study structural connectivity in the healthy and pathological child
with clinical data.
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Chapter 1

Introduction

Brain structure and function are commonly assumed to be interlinked and statistically
correlated [Skudlarski et al. (2008)]; in particular, many studies have found evidence that
brain function is shaped by the underlying structural organization of the brain [Greicius
et al. (2009); Sporns (2014)]. While it has been found that brain areas linked by anatomical
connections will exhibit a stronger functional connectivity than non-physically-linked areas
[Honey et al. (2009)], the absence of physical links between brain regions does not imply a
missing functional link. On the contrary, strong statistical correlation is often found between
the signals from cortical regions which are not directly connected by axonal tracts [Honey
et al. (2009)]. The relationship between structural and functional organization in the brain is
therefore not straightforward, and, despite the many studies conducted on this topic, it has
not been completely understood yet [Damoiseaux and Greicius (2009)].

The study of how this link between anatomy and functionality develops and changes
through the human lifespan has garnered strong interest in the last two decades. The first
study which found a correspondence between structural connectivity from DWI data and
functional connectivity computed with BOLD-fMRI in a single brain slice was by Koch
et al. (2002). From that point on, many groups have tried to investigate how brain structure
determines and influences brain functions and human behaviour, both in resting-state and
during tasks. For example, Hagmann et al. (2008) found the same correspondence between
structure and function in the whole brain, subdividing it into 66 separate areas; Cohen
et al. (2008), on the other hand, studied the network engaged in adaptive behaviour during
feedback-guided decision-making tasks, finding that the strength of the physical connections
between several brain areas had a good correspondence with their functional connectivity.

Development and ageing are the first causes of structural and functional modification of
the brain through the lifespan; congenital malformations, neurodegenerative pathologies and
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acquired brain injury can produce changes in the micro- and macro-structure of the brain,
influencing both its structure and its function [Sharp et al. (2014)]. In ageing, analysis of
functional connectivity through functional MRI showed that cognitive decline in elderly
people is mediated by the extent of white matter damage and caused by functional disruption
in the coordination of brain systems supporting cognition, especially in the Default Mode
Network [Andrews-Hanna et al. (2007)]. Achard and Bullmore (2007) also showed alterations
of efficiency relative to the cost of small-world functional networks due to normal ageing
or to the use of pharmacological agents. While the physical organization of the brain is
more or less constant day-to-day [Honey et al. (2009)], it can change considerably during
development and across longer time spans of weeks/months [Draganski et al. (2004); Kuner
and Flor (2017)]; on the other hand, functional connectivity can change and reorganise itself
in a very short time span [Bassett et al. (2006)]. The brain can change its whole organization
during an individual’s life through neuroplasticity, which gives it the ability to modify both
its structural and functional organization as a response to injury or pathology, but also to
learning and environmental or social stimuli.

The aim of this work was to investigate the relationship between large-scale, network-
level structural and functional connectivity at different ages in the lifespan, in particular in
infancy and young adulthood. Both ages present different characteristics and challenges,
which I have tried to overcome during this work.

The healthy adult subject is one of the most studied ‘cases’ in neuroimaging, as it can
be considered as the ‘baseline’ human subject. Many studies on the link between structural
and functional connectivity on healthy adults exist; despite this, though, the nature of this
correlation has still not been completely revealed [Honey et al. (2009)]. For example, while
some of the variance in functional networks not predicted by structural organization has been
explained by indirect coupling and interregional distance [Honey et al. (2009)], the plasticity
of the brain and especially of its functional organization makes it difficult to obtain a complete
’model’ of connectivity from indirect measures of the activity of single areas. The functional
model is further complicated by the excitatory/inhibitory function of postsynaptic densities,
which influence the way the electrical signals are propagated and maintained through the
axons.

One of the most famous projects aimed at understanding this relationship is the Young
Adult Human Connectome Project (HCP), which is part of the Human Connectome Projects
(https://www.humanconnectome.org/) and which aims to map the brain’s structural and
functional organization in the healthy adult. The HCP aims to investigate brain structure
with magnetic resonance imaging (MRI) and functional connectivity with resting-state

https://www.humanconnectome.org/
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functional MRI (rs-fMRI) and magneto-encephalography (MEG). These are all non-invasive
techniques; in my work, I chose to study functional networks obtained through stereo-
electroencephalography (SEEG), an invasive technique used in patients who suffer from drug-
resistant epilepsy, in which the neural activity is acquired through intra-cerebral electrodes
implanted in the patient’s brain. Though invasive and not applicable on healthy volunteers,
SEEG presents a higher resolution than fMRI and MEG and directly records electrical activity
in the brain. In order to be able to study only the ‘healthy’ brain activity recorded by these
electrodes, all non-typical brain activity present in the recorded signals was removed, so that
only typical, ‘healthy’ functional data was used to infer connectivity.

While SEEG data can be acquired also from paediatric subjects and analysed with the
same techniques as adult data [Taussig et al. (2014); Cossu et al. (2008)], the methods used
for computation of structural connectivity in healthy adults have been applied on paediatric
MRI data only in advanced research studies, and not on data from a clinical environment.
These analysis methods have very specific requirements in terms of the quality of the data
to which they are applied; the clinical environment, on the other hand, introduces time
constraints to the MRI exams and other limitations which make it impossible to acquire data
with the required conditions, especially on paediatric subjects. In the second part of this
work, I have focused on the application of advanced structural analysis to MRI data acquired
at the Giannina Gaslini Hospital in Genova, which presented characteristics which made it
suboptimal for this kind of analysis. The aim of this second part of the work was to adapt the
advanced MRI analysis methods applied in the first part of the work for the use on neonatal
and paediatric clinical data, in order to be able to study the brain’s structural network as done
with adult data.

During this PhD I have also developed an analysis pipeline for brain structural connec-
tivity and microstructural white matter analysis, which integrates several existing software
tools into a single processing pipeline and is currently being used at the Gaslini hospital for
research purposes (Chapter 3).



Chapter 2

Background

2.1 Brain connectivity and the connectome

’Brain connectivity’ refers to a pattern of physical links, statistical dependencies or causal
interactions between single units within the nervous system. Connectivity patterns can be
examined at different granularities within the system, from single-neuron level to neuronal
populations to anatomically defined brain regions; different types of connections can also
be taken into account, from white matter (WM) fibre pathways physically linking cortical
brain regions (structural connectivity) to statistical correlation or causal relationships be-
tween electrical signal patterns originating from separate neuronal populations (functional or
effective connectivity) [Sporns (2007)]. Connectivity patterns influence and restrict neural
activity and, more broadly, human function and behaviour: the analysis of how this influence
is exerted is then crucial to understand how the brain processes information and originates
these behaviours.

The term ’connectome’ was first used independently by Sporns et al. (2005) and Hagmann
(2005) to refer to a mapping of the connections in the human brain. The term was inspired by
the genome, namely a map of the human genetic code: in the same way, the idea behind the
connectome is to produce a "comprehensive structural description of the network of elements
and connections forming the human brain" [Sporns et al. (2005)]. This description can be
seen as a network structure, with nodes — corresponding to single, well-delineated brain
units — being connected by edges, corresponding to the actual connections through which
these units communicate.

Three different ’types’ of brain connectivity can be defined, depending on what is consid-
ered to be the ’connection’ between two nodes of the network: these are structural, functional
and effective connectivity. Structural (or anatomical) connectivity refers to the physical
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presence of anatomical connections between sets of neurons or neuronal elements, creating
a physical network. Functional connectivity is defined as “temporal correlations between
remote neurophysiological events” [Friston (1994)] arising from brain units at different scales
— from single neurons to neuronal populations to brain areas. In a functional connectome,
the measure of connection between two brain areas is the correlation between their activity,
as measured with different methods — from BOLD functional MRI, which measures the
variation in blood oxygenation due to neuronal activity, to more direct measurements of
electrical activity such as electro-encephalography (EEG). Effective connectivity refers to
“the influence one neural system exerts over another” [Friston (1994)] and models direct
causal effects between neural units [Sporns (2013)].

Sotiropoulos and colleagues [Sotiropoulos and Zalesky (2017)] subdivide the process
of computing a connectome in two steps: the first step is to define the nodes which will
form the network, and the second step is to find the edges connecting them. One of the main
challenges in the compilation of the connectome is the definition of the structural elements
which will become the nodes and edges of the final network structure. A structural network
of the human brain could be defined at different scales, from the micro-scale — where nodes
are the single neurons and edges are the synapses linking them — to the macro-scale, where
nodes and edges are anatomically distinct brain regions and the WM pathways connecting
them together. On one hand, at the micro-scale, single neurons and synapses are far too
numerous to be considered as network elements and are also subject to rapid plasticity-
induced changes [Sporns et al. (2005)]. On the other hand, brain regions are difficult to
delineate, and there exist no single ’universal’ parcellation scheme to define which nodes to
use for the network. Despite these difficulties, the macro-scale is usually chosen as the best
scale for the computation of connectivity networks.

At this scale, the nodes of the network are single cortical brain regions, as defined by a
’parcellation’ scheme, namely a subdivision of the brain cortex into separate, definite regions
with respect to some fixed criterion. Several such schemes exist; the criteria used for cortical
subdivision can be anatomical - e.g. separation based on cortical folding, sulci and gyri,
as done in Desikan et al. (2006) and Destrieux et al. (2010) - or relying on integration of
different information; for example, Schaefer et al. (2017) defines a parcellation based on
the subdivision of the cortical area in seven functional subnetworks, while Glasser et al.
(2016) integrates information from cortical folding, myelin content maps and resting state
fMRI to generate a parcellation from a dataset of 210 subjects. The appropriate number of
regions which a parcellation should include is also a matter of discussion, and may depend
on the application for which the connectome is to be used [Cammoun et al. (2012)]; for
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this reason, in the last years, multi-scale parcellation schemes have been created through
successive hierarchical subdivision of a coarse parcellation into finer schemes (see for
example Cammoun et al. (2012), Schaefer et al. (2017)).

2.2 Estimation of structural connectivity

Once the nodes of a connectome have been defined with respect to some scheme or criterion,
it is necessary to estimate the edges of the connectome network, i.e. the actual connections
between nodes. As described before, the kind of connection depends on the type of con-
nectivity being investigated: for structural connectivity, the edges will represent WM fibre
pathways, while for functional connectivity the nodes will be considered connected if there
is a statistical correlation between their electrical activities.

The most widespread non-invasive method to study structural connectivity in vivo is
diffusion-weighted imaging (DWI), an MRI technique which maps the motion of water
molecules along the different brain tissues. While in the cerebrospinal fluid (CSF) and gray
matter (GM) water motion does not significantly prevail in any direction (isotropic diffusion),
in WM, water molecules move preferentially along the direction of axons and fibre tracts
(anisotropic diffusion). The patterns followed by the water thus reflect the underlying tissue
structure, allowing the tracing and reconstruction of WM fibre tracts. The sensitization of the
image to diffusion is obtained by varying the homogeneity of the MRI magnetic field with
gradient pulses applied in several directions (see Appendix A for details on DWI acquisition).

Several methods exist to reconstruct WM fibre pathways from DWI data. The process
needed for this reconstruction is composed of two steps: the first is the estimation of the WM
fibre orientations in each voxel of the DWI volume, which are then used as input to tractog-
raphy methods which propagate curves following the water diffusion direction throughout
the brain, thus approximating the axonal pathways between cortical regions. The first and
simplest method for estimation of diffusion directions is Diffusion Tensor Imaging (DTI)
[Basser et al. (1994)], which assigns a single diffusion direction to each voxel; more complex
models estimate a Fibre Orientation Direction (FOD) for each voxel, describing the fibre
distribution at the given location [Sotiropoulos and Zalesky (2017)]. These advanced models
allow a better characterization of the water diffusion patterns throughout the brain tissue and,
coupled with probabilistic tractography techniques, produce WM tract reconstructions of
higher quality and anatomical plausibility than the classical DTI model, which in turn allows
to obtain more precise representations of structural connectivity [Farquharson et al. (2013)].
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2.3 Estimation of functional connectivity

Functional connectivity can be estimated from data acquired through several methodologies:
one of the most common acquisition methods is blood-oxygenation level dependent fMRI
(BOLD-fMRI), which exploits the fluctuations in blood oxygen content caused by neuronal
firing to estimate functional activity from a specific brain area. The functional correlation
between brain regions can be computed either on data acquired with the subject at rest
(resting-state BOLD-fMRI), or by administering specific stimuli to the subject and recording
the brain’s response to the specific task (task-based BOLD-fMRI). Usually task-based BOLD-
fMRI is used to investigate specific functional subnetworks, because of the specificity of the
brain’s reaction to different stimuli and tasks; resting-state BOLD-fMRI is the method of
choice to study global functional connectivity. The first direct comparison of structural and
functional connectivity [Koch et al. (2002)] was done on data extracted from resting-state
BOLD-fMRI, compared with structural connectivity from DTI data. Many fMRI studies
have also defined functional networks involved in particular cognitive tasks, such as working
and autobiographic memory [Addis et al. (2007)]; separate evidence of the existence of
corresponding structural subnetworks has been provided by parallel tractography studies
[Audoin et al. (2007)].

While BOLD-fMRI offers high reliability in space accuracy, it is an indirect method of
estimating brain activity and has a poor temporal resolution (at the second scale), because of
the slow response of the BOLD signal to neuronal activation [Lei et al. (2010)]. More direct
methods of brain activity estimation exist, with a higher temporal resolution (millisecond
scale): magneto-encephalography (MEG) records the magnetic fields produced by electrical
neuronal activity, while electro-encephalography (EEG) directly measures voltage fluctu-
ations due to neuronal currents. Because of the different time scale, these methodologies
measure different neuronal processes; however, independent studies using either fMRI, MEG
or EEG to estimate functional activation have reached the same conclusions [Hamandi et al.
(2008); Garcés et al. (2016)]. Graph theory analyses have been applied to the study of
functional connectivity with MEG, surface and depth-EEG studies of brain connectivity
[Reijneveld et al. (2007)]. Bassett and colleagues [Bassett et al. (2006)] used wavelet decom-
position of MEG signal to demonstrate that small-world properties of functional networks in
healthy subjects were maintained at different time scales, in both rest and task conditions.

As mentioned before, while fMRI presents a low temporal resolution and indirectly
estimates brain function through blood oxygenation, EEG directly records electrical activity
from neuronal populations, but suffers from poor spatial resolution and volume conduction
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effects, due to the separation of the electrodes from the brain. To overcome these drawbacks,
stereo-electroencephalography (SEEG) is used: this is an invasive recording methodology,
which acquires high SNR signals through intra-cerebral electrodes implanted in the subject’s
brain. This technique is commonly used in patients suffering from drug-resistant focal
epilepsy during pre-surgical evaluations for resection of the epileptogenic zone; the data
acquired through the electrodes present a high Signal-To-Noise ratio, and the signal source
can be easily reconstructed through segmentation of a post-implant CT scan [Narizzano
et al. (2017)]. However, because of its invasiveness, it is obviously not applicable on healthy
volunteers.

The first part of this thesis has focused on the estimation and comparison of structural
connectivity — computed through advanced diffusion analysis and probabilistic tractography
— and functional brain connectivity from SEEG data in the healthy adult. The aim of this first
work was to investigate whether the higher quality of SEEG data and WM reconstructions
from advanced tractography would allow to gain more insight into the link between structure
and function for normal, healthy adult data than what has been done using BOLD-fMRI
and classical DTI. The SEEG data were stripped of all pathological, non-typical activity in
order to study only the normal activity contained in the signals: in this way, we were able to
compare the functional data with DWI data from healthy subjects.

2.4 The estimation of structural connectivity in the paedi-
atric clinical environment

As introduced in Section 2.2, DTI is the most widespread method of estimating WM fibre
orientation from DWI data, but the model it is based on does not allow to reconstruct more
than one fibre tract passing through a voxel. It is thus unsuitable for the reconstruction
of a variety of fibre configuration, such as crossing or ‘kissing’ fibres, and for the correct
determination of fibres’ cortical terminations [Abhinav et al. (2014)]. Many methods have
been developed in order to overcome this limitation (for example, see Daducci et al. (2014)
for a review), based on different models and each with specific requirements as far as data
acquisition and computational burden for the reconstruction of WM pathways.

Constrained Spherical Deconvolution (CSD) was first introduced by Tournier et al. (2004)
and successively refined in Tournier et al. (2007). This model belongs to the family of
methods which compute a Fibre Orientation Distribution (FOD) for each voxel, modelling
the distribution of WM axons at the given location; probabilistic tractography (PT) algorithms
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can then be applied to these FODs to integrate the orientation information and obtain so-
called ‘streamlines’, which represent WM fibre pathways in the brain. This enables CSD to
fully represent any configuration of WM tracts, such as crossing or fanning fibres, producing
reconstructions that are more faithful to the real WM anatomy than those obtainable with
DTI [Toselli et al. (2017)]. (see Appendix A for details on DTI limitations and the CSD
model).

CSD is often applied to studies of specific WM tracts and the effects on function and
behaviour of microstructural damage or injury. Liégeois and colleagues [Liégeois et al.
(2013a); Liégeois et al. (2013b)] studied which tractography-derived measures best predicted
language outcome and presence of dysarthria after childhood brain traumatic injury; Northam
and colleagues [Northam et al. (2012)] evaluated the relationship between WM microstructure
and speech deficits in adolescents born very preterm, with a spectrum of brain injuries;
Gordon and colleagues [Gordon et al. (2012)] studied reorganization of motor pathways and
cortical motor activity caused by an arterial ischaemic stroke in the perinatal period in an
11-year-old child.

Among the several advanced diffusion methods existing, CSD combines good quality of
WM reconstructions with less stringent requirements — in terms of acquisition characteristics
and time needed for both the exam and the processing — than other methods such as Diffusion
Spectrum Imaging [Wedeen et al. (2008)], which has very high hardware requirements and
quite long acquisition and processing times. However, in order to fully exploit the capabilities
of the CSD method, specific acquisition parameters are still required, including a strong
MRI magnetic field (i.e., 3T or above), a high number of gradient directions along which
to acquire the signal (from a minimum of 30 up to 60 and more), and high values of the
b parameter, which measures the ’sensitivity’ of the DWI sequence to the water diffusion
(optimal value, 3000 s/mm2 [Tournier et al. (2013)]; see Appendix A for the role of the b
parameter in a DWI acquisition).

These protocols require a longer acquisition time than most acquisitions commonly done
in clinical environments, where there exist strict time constraints on the maximum exam
length and often on the available hardware (MRI scanners, processing stations, etc.), and are
thus often unfeasible. This is especially true in the case of paediatric clinical environments:
for exams on children and neonates, the time requirements are even more strict than for adults.
Moreover, paediatric DW imaging is challenging, especially in neonates (see Yepes-Calderon
et al. (2017) for a discussion). For any imaging sequence, the overall image quality is lower
than that of an adult image, because the neonatal brain has a lower myelin content than the
adult brain, and neonatal GM and WM have a similar water content. For the same reason, the
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average diffusivity is higher in the neonatal brain than in the adult brain [Hüppi and Dubois
(2006)]. Since it is difficult to keep a non-sedated neonate immobile during the exam session,
short DWI acquisition sequences with few gradient directions and low b-values are usually
applied, so as to keep the examination as short as possible.

For all these reasons, DTI is commonly used to evaluate WM structure in neonates and
children in the clinical environment, since it is easily applicable on acquisition sequences
commonly used in this setting and produces acceptable results, despite its limitations. Ad-
vanced tractography methods are not applied often in the clinical setting, because they are too
demanding in terms of scan duration, especially in children and neonates. Among the main
factors that influence the choice of processing methodology in a diffusion study, magnet field
strength and the parameters of the DWI acquisition sequence (mainly the number of gradient
directions and the b-value) greatly influence image quality, and thus significantly impact on
the yield and applicability of the method in individual cases.

In the last two years, a few studies involving neonates and unmyelinated infants have
used CSD-PT. Pieterman et al. (2016) investigated the change in connectivity of specific
tracts in neonates in the first weeks of life; the images for this study were acquired on a
3T scanner, with a DWI sequence well suited to the application of CSD-PT (64 gradient
directions and a b-value of 2500 s/mm2). Batalle et al. (2017) studied brain connectivity
and development in 65 neonates under 46-week post-menstrual age, by performing CSD-PT
on DWI data acquired on a 3T scanner with multiple b-values, which allows to further
improve the characterization of the signal and the subsequent WM reconstructions. Salvan
and colleagues [Salvan et al. (2017)] analysed the microstructure of the arcuate fasciculus
in 43 preterm neonates at term-equivalent age, correlating it with linguistic skills at 2 years
of age: again, the study was conducted on a 3T scanner, with high angular resolution data
acquired with 64 gradient directions and a b-value of 2500 s/mm2. 33 of the 43 neonates were
sedated orally during scans. All these studies were performed with hardware and acquisition
sequences specific for the application of CSD-PT; the optimal conditions for this kind of
studies cannot be reproduced in the clinical environment, where often low-field scanners
(1.5T) and insufficient processing tools are found. Sequences acquired on 1.5T MR scanners
at low b-values (around 1500 s/mm2) are usually processed with DTI analysis to determine
diffusion metrics such as fractional anisotropy (FA), using deterministic tractography to
extract connectivity measures.

The second part of this work focused on the adaptation of CSD-PT analyses for the
paediatric clinical environment, in collaboration with the Neuroradiology Unit of the Giannina
Gaslini Hospital in Genova. The aim of this second part of the work was to allow clinicians
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to investigate WM structure and connectivity using advanced diffusion techniques, in order
to fully exploit their advantages over classical DTI analyses. These methodologies were
then applied to a specific type of brain congenital malformation, partial agenesis of the
corpus callosum, in order to investigate the modifications to structural connectivity that this
pathology can cause, and to try to explain the functional and behavioural symptoms presented
by patients suffering from it. Agenesis of the corpus callosum is among the most common
congenital malformations of the human brain [Bedeschi et al. (2006)], presenting an extreme
heterogeneity in causes and presentation [Dobyns (1996)]. The formation of the corpus
callosum — a thick bundle of WM fibres which is the main connection between the brain’s
hemispheres — can begin as early as 6 weeks of gestation [Schell-Apacik et al. (2008)], and
investigations of the mechanisms determining the causes of this pathology could shed light
on the development processes of this important part of the brain. The final aim of this section
of the work was to compute brain structural connectivity with the same methods used on
healthy adult data in the first part of the work, in order to make it possible to repeat the same
correlation analysis on paediatric functional data in future.

2.5 Organization of the work

The main objective of this thesis was to study the relationship between structural and
functional connectivity in the human brain at different ages of the human lifespan, in
particular in healthy adults and both healthy and pathological neonates and children.

The first section of the thesis is focused on the image processing methods on which my
PhD work is based. Chapter 3 details the analysis pipeline I have developed during the PhD,
integrating different neuroimaging toolboxes in a single software which is currently in use at
the Gaslini hospital for research purposes.

The second section of the thesis, containing the main projects I have worked on during
the PhD, is subdivided in two parts, reflecting the two parts of the work I have conducted.
Part I describes the analysis of the relationship between structural and functional connectivity
in healthy adults, with structural data from DWI and CSD-PT analyses and functional data
from SEEG (Chapter 4), while Part II contains the description of my work on adapting
and testing CSD-PT reconstruction and connectivity analysis on paediatric clinical data. In
particular, Chapter 5 describes the feasibility testing and adaptation of CSD-PT and tract-
density imaging (TDI) to paediatric data acquired with a 1.5T scanner and a suboptimal
acquisition sequence at the Giannina Gaslini Hospital in Genova; Chapter 6 contains the
application of the tested and validated methods to a specific pathological case – a group of
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children suffering from partial agenesis of the corpus callosum, a condition in which the
corpus callosum is not formed completely before the birth, but only a section of it is missing.
We compared these subjects with a group of matched healthy controls and investigated how
modifications to the brain’s structure changes connectivity and produces functional symptoms
in the patients. Chapter 7 contains a discussion of the main results of this work of thesis, and
a brief explanation of the future research activity which is the natural continuation of this
work. At the end of this thesis, Appendix A describes in more depth the structural analysis
methods I have used in this work, namely the DTI method, its main limitations and how the
CSD-PT method overcomes them; Appendix B contains supplementary material for the work
described in Chapter 6.



Chapter 3

Analysis pipeline: the Brain
Tractography App (BTractApp)

All the CSD-PT analyses, tractography computations and structural connectivity studies
in this thesis were executed with an integrated analysis pipeline which I developed and
maintained during my PhD, and which is currently also being used by clinicians at the
Gaslini hospital in Genova. The pipeline started as a tool to execute simple tractography on
DWI data, and is thus called Brain Tractography App (BTractApp), even if it now includes
also connectome generation, network statistic computation and other WM microstructural
analysis tools.

The BTractApp pipeline integrates several neuroimaging tools commonly used both in
research and clinical environments: the FSL toolbox, Freesurfer’s recon-all function to
produce brain parcellations, the MRtrix3 toolbox, plus MATLAB scripts using the BCT
toolbox to execute some group-level network analyses and produce group-consensus connec-
tomes and graph-based measures for a group of subjects. The pipeline can analyse single
subjects or groups, with the possibility of selecting which subjects in a folder to analyse and
which to skip; it can work on DICOM or Nifti input images, and produces several types of
output files (from Nifti images to different types of tractogram files, comma-separated-value
files for connectomes, ASCII text files for group network statistics, etc.). It is divided into
sections, roughly defining different stages of the analysis. Each stage can be executed or
not, depending on the input data and on the aim of the analysis. At each stage, the pipeline
will check if all the input files for that section are present and, if not, will stop with an error
message to the user.

In addition to the software and toolboxes used for this thesis, BTractApp integrates
also the DKE and AMICO toolboxes for WM microstructural analysis. This section of the
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pipeline was not used for the studies described in this thesis, but it was implemented and
integrated as an option into the analysis workflow for future use in research activity which
was planned together with the Gaslini Unit.

BTractApp is written in the Python language, to integrate different toolboxes in a trans-
parent way to the user: it can be executed both by command-line and using the graphical
interface, developed with the Tkinter toolbox in Python. Each stage of the analysis requires
several parameters to be set: this can be done either through the graphical interface (where
the main parameters for each method and algorithm are adjustable) or through a single
text configuration file, which can be then fed to the command-line version of the pipeline.
Different configuration files can be set, either subject-specific or group-specific. The default
parameters are the ones tested and selected for the analysis on paediatric data during my work
at the Giannina Gaslini hospital [Toselli et al. (2017)], but the pipeline has been successfully
applied also to adult data from the HCP project and other types of input data. A scheme of
the pipeline is shown in Figure 3.1.

3.1 Preprocessing

The first stage of the analysis for any kind of study is the preprocessing of the raw data. For
this step, the BTractApp pipeline uses the FSL toolbox [Jenkinson et al. (2012)], which is
one of the most used toolboxes in the imaging community, and some functionalities from the
MRtrix3 toolbox [Tournier et al. (2012)].

The only required input data is the diffusion weighted data: other input can include a
T1-weighted anatomical volume, and a diffusion weighted volume acquired with b = 0 and a
phase encode direction opposite to the one used in the main diffusion weighted sequence (the
so-called "blip-up-blip-down" acquisition), in order to apply eddy currents correction to the
main data. The raw input images can be both in DICOM and Nifti format: the pipeline will
adapt the first steps of the preprocessing accordingly. If the diffusion weighted images are in
Nifti format, the diffusion scheme adopted in the acquisition must be provided separately,
through two files listing the b-values and the acquisition directions used in the exam (FSL’s
bvals and bvecs files). If these files are not present, FSL cannot obtain this information
from the data: the pipeline will thus stop with an error.

The main steps of the preprocessing stage are: denoising, Gibbs ringing removal, bias
field removal, motion and eddy correction. All the steps are independent of each other and
the user can choose which ones to perform, according to the input data. Almost all of them
are applied to the DWI volumes.
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Figure 3.1 Scheme for the BTractApp processing pipeline. Dashed lines for input data indicate
optional volumes (the only required volume is the DWI volume). ’B0INV’ indicates blip-up-blip-
down sequence, either full 4-D volume or single b = 0 image acquired with opposite phase direction
than DWI volume. Grey squares represent processing steps, while blue rounded squares represent data
produced by the pipeline. The scheme represents the analysis for a single subject; in the connectome
section, the group network statistics computation can be executed only if the analysis is being run on
a group of subjects, and will be the last step performed by the pipeline. The dashed rectangle and
arrow lines for the parcellation step indicates that it is an external processing step, which must be
done separately from the BTractApp software and the results of which will be then fed to the pipeline.
The scheme includes the optional NODDI and DKI processing sections: these were not applied in any
of the studies described in this work, but were implemented and tested for future use in collaboration
with the Neuroradiology Unit at the Gaslini hospital.
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The denoising step is done using the dwidenoise function from the MRtrix3 toolbox,
which will also output a map of the estimated noise to allow the user to better check the
results. The next step is the removal of the so-called Gibbs ringing artefacts, which appear
as thin parallel lines close to high-contrast interfaces in an image. The removal of these
artefacts is done with the MRtrix3 mrdegibbs function. After this removal, the preprocessing
proceeds with the MRtrix3 dwipreproc function, which tries to apply motion and eddy
current correction to the image.

The dwipreproc script itself uses functions from the FSL library, namely eddy, topup
and applytopup, in order to correct the DWI images for motion, eddy current-induced
distortion and susceptibility-induced distortion The last correction (applied by the eddy

function) can be done only if the DWI acquisition includes a so-called "blip-up-blip-down"
sequence - that is, an additional acquisition of one or more volumes (typically, one or more
pairs of spin-echo b = 0 EPI volumes, or a full DWI volume equal to the original one) having
the same readout time as the DWI volumes, but the exact opposite phase encoding direction.
These additional images are used by eddy to estimate the inhomogeneity field of the DWI
volumes, and to correct the distortion it causes. If this additional sequence is not present in
the input data, the dwipreproc script will perform motion and eddy current correction only.
BTractApp allows the user to select whether to apply the inhomogeneity field estimation, and
to provide the additional sequence to the algorithm: if the option to correct for inhomogeneity
is selected, but the additional sequence is not present, BTractApp will warn the user with a
message and will proceed with the motion and eddy corrections only.

The last step of the DWI preprocessing stage is the removal of the bias field caused by
the B1 inhomogeneity. This is done with the dwibiascorrect MRtrix3 script, which uses
either the N4 algorithm from the ANTs toolbox (http://stnava.github.io/ANTs/) or the FAST
function from FSL for the bias correction. The algorithm to be used can be selected by the
user with a parameter in the BTractApp GUI or configuration file. The estimated bias field
will also be computed and saved as a Nifti file.

At the end of the preprocessing stage, the final, preprocessed DWI volumes will be
saved as a Nifti file and as a .mif file, a format specific to MRtrix3 which encodes more
information than the traditional Nifti (for example, DWI .mif files can encode the diffusion
directions and b-values in their header, while Nifti files cannot maintain information about
the diffusion acquisition sequence and need external text files for this information). The
.mif format is used throughout the BTractApp pipeline for all analysed data, in order to
fully exploit the MRtrix3 functionalities; all the "final" outputs from processing steps (e.g.

http://stnava.github.io/ANTs/
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the preprocessed DWI data, brain masks, anatomical data, parametric maps and more) are
also saved as Nifti, for use with other image-viewing or analysis software.

After preprocessing, if an anatomical T1 sequence is present, it will be registered to
the preprocessed DWI data using the FLIRT tool from FSL. This is done to ensure that all
subject’s data is analysed and processed in the same space. The registration is done by default
with a rigid transformation (6 degrees of freedom) and with normalized mutual information
as cost function, but the user can modify these choices if needed. The transformation is
computed, then applied separately to the T1 volume maintaining the original resolution and
field of view, in order to avoid reducing the original voxel dimensions and cropping sections
of the anatomical image not present in the DWI field of view.

As a last step of the preprocessing stage, a binary brain mask is computed from the
preprocessed DWI data using the dwi2mask MRtrix3 function: this mask will be used in all
the subsequent steps in order to define which voxels contain brain tissue.

3.2 Connectivity analysis

The connectivity analysis panel is composed of all the processing steps needed to produce a
structural, whole-brain connectome for a single subject or a group of subjects. It also includes
mapping of diffusion parameters and super-resolution track-density maps [Calamante et al.
(2010)].

3.2.1 Tractography

The default behaviour for the tractography stage is to produce a whole-brain tractogram from
the preprocessed DWI data, using the parameters chosen by the user and set through either
the GUI or the configuration file. The whole tractography stage is composed of functions
from the MRtrix3 toolbox.

The first step is the computation, for each voxel, of a Fibre Orientation Distribution
(FOD) which describes the orientation distribution of the water molecules in the selected
voxel. This is done in two steps: first the single-fibre response is estimated from the DWI
data, and then the actual FODs are estimated using the computed responses.

The single-fibre response is computed using the dwi2response script with the dhollander
algorithm for unsupervised estimation of WM, GM and CSF [Dhollander et al. (2016)]. This
algorithm will compute three separate responses, one for each brain tissue (WM, GM and
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CSF), without the need for an additional T1 image for tissue segmentation (as does the
msmt_5tt algorithm of the same toolbox).

The computed responses are then used for the FOD estimation, using the dwi2fod

command. This command offers two algorithms for the computation: csd and msmt_csd.
The first algorithm requires so-called single-shell DWI data, namely from an acquisition
scheme with a single non-zero b-value applied along all acquisition directions, coupled with
a single WM-response, and will produce a single FOD computed as if all the voxels in the
data contained WM. This can be inappropriate in voxels containing a mixture of WM and
other tissues. The second algorithm provided by the MRtrix3 toolbox requires DWI data
from a multi-shell acquisition scheme, with several non-zero b-values applied to different
subsets of the acquisition directions (the so-called ’shells’): more precisely, it needs as many
distinct b-values and as many tissue responses as the number of tissue FODs to be estimated.
The b = 0 volumes are included in the count, so a single-shell sequence will be enough to
produce two separate FODs (WM and CSF: the GM response will inherently not be used
in the fit), while in order to have three separate tissue FODs a multi-shell sequence with
two non-zero b-values will be needed. BTractApp will automatically detect the number of
non-zero b-values in the data and provide the msmt_csd algorithm with all the computed
tissue responses or only the WM and CSF ones depending on the acquisition scheme detected.
The result of this step will then be two or three tissue FODs, depending on the data: for
multi-shell acquisitions, all three tissues will have a FOD response, while for single-shell
data only the WM and CSF FODs will be computed.

The WM FODs are then provided to the tractography algorithm, to produce the final
tractogram. This is done with the tckgen command, which accepts a wide variety of
parameters and input data.

The first and main input to the tractography is the file with the computed WM FODs,
which provide the distribution of directions to be tracked in each voxel. The MRtrix3 toolbox
provides different tracking algorithms, both deterministic and probabilistic: BTractApp
applies the default one, a probabilistic streamlines method applying second order integration
called iFOD2 [Tournier et al. (2010)]. The main parameters for this method are: number
of streamlines for the final tractogram (default is 10 millions); maximum angle between
successive steps of the tractography algorithm (selected default is 50�); FOD amplitude limit,
under which the streamline is terminated (default is 0.1); maximum streamline length (default
is 200).

BTractApp allows the user to select and use two frameworks which can improve the
quality and anatomical plausibility of the resulting tractogram: these are the Anatomi-
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cally Constrained Tractography framework (ACT; [Smith et al. (2012)]) and the Spherical-
deconvolution Informed Filtering of Tractograms (SIFT; [Smith et al. (2013)]). The first
framework provides mechanisms to influence streamline termination and whether or not
a generated streamline is anatomically plausible and can therefore be retained in the final
tractogram or needs to be rejected; these mechanisms can be integrated in the tractography
step by selecting the ACT option either in the BTractApp GUI or with the configuration
file. ACT requires a tissue segmentation of an anatomical volume in order to derive prior
anatomical knowledge and structural information and to incorporate that information in the
tracking process: if the ACT option is selected in BTractApp and a T1 anatomical volume is
present in the subject’s folder, the software will automatically trigger the generation of the
segmentation volume using the 5tt command from MRtrix3.

SIFT is a method which needs to be applied on a computed tractogram, and it will filter
out streamlines from this original tractogram in order to improve the biological accuracy
of a streamline reconstruction. This is done by finding a subset of the original streamlines
which best matches the DWI data, correcting some of the biases inherent to the streamline
seeding and generation process and producing a second tractogram in which the density
of the streamlines better represents the density of the underlying biological connections
[Smith et al. (2013)]. SIFT requires only the DWI data as input, but can accept also a tissue
segmentation volume (the same used for the ACT step) to incorporate also structural and
anatomical information. Since SIFT works by filtering out streamlines from a first tractogram
to produce a second, more precise one, the first tractogram must contain a very high number
of streamlines, which will then be reduced in the second reconstruction: often the SIFT
algorithm is applied reducing the number of streamlines of about an order of magnitude
[Calamante et al. (2012)]. For this reason, the default number of streamlines to be retained in
the SIFT-ed tractogram for BTractApp is 2 millions against an original number of 10 million,
but both numbers can be modified by the user.

DTI and TDI maps

The last processing stage included in the tractography section of BTractApp is the generation
of parametric maps from the DWI data. The first maps that can be selected by the user are the
classical DTI diffusion parameters: mean and radial diffusion (MD and RD) and eigenvalues
maps (l1, l2 and l3). To compute these, the software will first estimate the DTI diffusion
tensor for the DWI volume (command dwi2tensor), and then compute the selected maps
with the tensor2metric command. Other maps that can be produced are track-density
maps, using the so-called Track-Density Imaging (TDI) framework developed by Calamante
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et al. (2010). These maps are computed from the tractography reconstruction, and assign
to each voxel a gray-level value representing the number of streamlines traversing it in the
reconstruction. If the relevant option is selected, another TDI map can be produced, with
each voxel containing not a grey value but a RGB value, representing both the streamline
density and the main direction in the voxel (DEC-TDI maps). These maps can also be
computed from a so-called ’short-track’ tractogram, which is a streamline reconstruction in
which the maximum streamline length is set to a very small value: this type of tractogram
produces a TDI or DEC-TDI map in which the longer, denser WM tracts do not have an
image contrast much higher than thinner tracts, and thus are more legible than normal TDI
maps, avoiding over-saturation of main WM tracts. If the short-track maps are selected,
BTractApp will automatically trigger the generation of the short-track tractography, using
the same parameters as the normal one and the selected number of short streamlines (default
is ten times the number for the original tractogram [Calamante et al. (2012)]) and maximum
length (default is computed to be about ten times the voxel size [Calamante et al. (2012)]).

All these maps can be used either alone, for the investigation of DTI parameters and
WM structure, or they can be used to ’weigh’ the connectome computed in the next step
in different ways; for example, it is possible to obtain connectivity matrices in which the
weight of an edge is the average FA value along the fibres connecting the corresponding
nodes. This can be done with any image or map the values of which can be sampled along
the streamlines, producing weights for the resulting edges.

3.2.2 Structural connectome

After the tractography computation, BTractApp allows the user to select one or more parcella-
tion schemes for which to compute a connectome matrix from the tractogram. The available
parcellation schemes are the Desikan-Killiany [Desikan et al. (2006)] and Destrieux [De-
strieux et al. (2010)] schemes from Freesurfer, the BCI parcellation scheme from BrainSuite
and the Schaefer parcellation scheme [Schaefer et al. (2017)], based on the subdivision of the
brain in 7 functional subnetwork proposed by Yeo et al. (2011). The parcellation data needs
to be computed by the user with the relevant software, separately from the BTractApp pro-
cessing, and included in the subject’s data: BTractApp assumes that the Freesurfer data from
the segmentation of the brain according to the Desikan and Destrieux atlases are contained
in the subject’s base directory, in a folder named recon-all having the same structure as
Freesurfer’s original results folder, while the data for the BrainSuite parcellation should be
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placed in a folder named brainsuite and the data for the Schaefer parcellation is contained
in a folder named schaefer.

For each selected parcellation scheme, BTractApp will convert the labelled volume
computed by the external software into the .mif format used by MRtrix3, converting the
labels with respect to a lookup table contained in the BTractApp default files, and will
compute the connectivity graph given by considering the relabelled parcels as nodes and the
final tractogram from the tractography step as edges. The edge weights will be the number of
streamlines connecting each pair of nodes. The user can select options to set the diagonal of
the resulting connectomes to zero (namely, ignore self-connections), to normalize the edge
weights by dividing them for the sum of the corresponding nodes’ volume and length, and
to compute a representative streamline for each edge and a mesh surface for each node, for
visualization purposes.

If the ’batch’ version of the software is used to analyse a group of subjects, it will
provide the user with the possibility to select and execute a group network analysis on the
group’s subjects, using one or more of the selected parcellation schemes. This analysis
has been implemented in MATLAB, using the Brain Connectivity Toolbox (BCT; https:
//sites.google.com/site/bctnet/), and integrated in the software: it includes the computation of
a group ’consensus’ connectome (as defined in Owen et al. (2013); see for example Severino
et al. (2017)) and the computation of several network measures both on a binarized version
of the computed networks and on the original weighted ones.

3.3 Future applications: WM microstructural analysis

The microstructural analysis stage of the pipeline is independent of the tractography and
connectivity analysis, and can be executed alone after the preprocessing stage. This analysis
stage was implemented and tested on both adult and paediatric data, as a propaedeutic step
for future research projects. The maps produced in this stage can integrate the WM analysis
on development or specific pathologies.

The two microstructural models integrated in the analysis pipeline are the Diffusion
Kurtosis Imaging (DKI) and the Neurite Orientation Dispersion and Density Imaging
(NODDI). Two external toolboxes have been integrated in BTractApp to execute the rel-
ative analyses: for DKI, I tested and integrated the Diffusional Kurtosis Estimator (DKE,
http://academicdepartments.musc.edu/cbi/dki/dke.html), while for the NODDI analysis I
chose the AMICO toolbox (https://github.com/daducci/AMICO) developed by Daducci et al.
(2015).

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
http://academicdepartments.musc.edu/cbi/dki/dke.html
https://github.com/daducci/AMICO
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Both models require a multi-shell acquisition sequence to be estimated. BTractApp will
allow the user to select the microstructural analyses prior to starting processing; if any of
the two analyses have been selected, it will then check the data acquisition scheme and stop
execution with an error if the scheme is not multi-shell.

3.3.1 Diffusion Kurtosis Imaging

Kurtosis is a mathematical quantity which measures how much a given probability distribution
differs from the Gaussian curve: a positive kurtosis corresponds to a distribution with
fatter tails and a more peaked shape than a Gaussian, while a negative kurtosis describes a
distribution with thinner tails and a lower, flatter top. This concept can be translated into
diffusion imaging to study how the presence of barriers and compartments in the brain (e.g.
cell membranes, separation into intracellular and extracellular spaces, etc.) alters the diffusion
of the water molecules so that it is no longer precisely Gaussian. The characterization of the
difference between the actual diffusion probability density function and perfect Gaussian
diffusion can be useful to characterize brain tissue both in health and pathology [Jensen and
Helpern (2010)]. As with diffusion, DKI can compute the mean kurtosis in a voxel (MK)
and axial and radial kurtosis (AK and RK), defined as the kurtosis along the main diffusion
direction (major eigenvector of the diffusion tensor) and the mean of the kurtosis along the
other two minor eigenvectors, respectively.

The analysis of DKI parameters is especially interesting in the neonatal and developmental
stages of the brain, to study the maturation of different areas of the brain and how this can
be influenced and modified by pathology. Paydar and colleagues [Paydar et al. (2014)],
in an analysis of the brains of children between 0 and 2 years of age, showed that mean
kurtosis detects significant microstructural changes consistent with known patterns of brain
maturation in both WM and GM, past the plateau reached by classical FA measures around 2
years of age which is commonly taken as the end of the brain myelination period.

The toolbox integrated in BTractApp for kurtosis analysis is DKE (version 2.6). The
software can be run as a command line script, providing it with a configuration text file
containing all the parameters and paths for the data to be processed. BTractApp provides a
GUI to set the parameters’ values, automatically creates the appropriate configuration file -
selecting the preprocessed DWI data as input - and feeds it to the DKE script. The kurtosis
maps are estimated and placed in a folder called kurtosisData, in the subject’s original
folder.
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3.3.2 Neurite Orientation Dispersion and Density Imaging

The NODDI model [Zhang et al. (2012)] describes the overall diffusion in a voxel as
composed of diffusion patterns from three separate components: an intracellular compartment,
an extracellular compartment, and an isotropic component. From the diffusion in these
compartments, NODDI estimates three output parameters: intracellular volume fraction
(ICVF), orientation dispersion index (ODI) and extracellular (or isotropic) volume fraction
(ISOVF). In particular, ICVF and OD model the microstructural components of the FA index
from the classical DTI model: axonal packing density and variation in the main diffusion
orientation in a voxel. A variation in one of these two indices can cause modifications in the
FA value computed by DTI: the NODDI model allows to discriminate the two parameters for
a more precise investigation of microstructural WM changes.

The computation of NODDI parameters has been integrated in BTractApp using the
AMICO framework. The framework is written in Python, and thus its integration in the
BTractApp code was straightforward: the software uses the AMICO functions in order to
compute NODDI parametric maps for the preprocessed DWI data. The parameters for the
NODDI model can be set in BTractApp’s configuration file, or selected from the GUI. The
software will compute all three of the parametric maps (ICVF, ODI and ISOVF), in Nifti
compressed format (.nii.gz) and will save them in a folder called AMICO in the subject’s
original folder.
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Relationship between network-level
structural and functional connectivity in

the healthy adult



Chapter 4

Correlation of network-level structural
and functional connectivity in healthy
adults

4.1 Introduction

The aim of this first part of the work was to investigate the relationship between structural
and functional connectivity in the healthy adult brain.

Healthy adult data is often used as ‘baseline’ data to test and apply any processing or
analysis method in brain imaging. This is often done in order to provide a description of the
structure and function of the brain in a normal state, both to create an atlas for reference and
to improve diagnostic accuracy [Job et al. (2017)]. We chose to first analyse the relationship
between structural and functional connectivity in the adult brain not only for this reason,
but also because healthy adult data poses less challenges than other types of data, such as
paediatric or pathological data.

The novelty of this part of the work is due to the method through which functional
connectivity is estimated: stereo-electroencephalography (SEEG), a technique in which the
neural activity is registered using intra-cerebral electrodes directly implanted in the patient’s
brain. This technique is commonly used in patients who suffer from drug-resistant epilepsy,
but not on healthy subjects due to its invasiveness. SEEG presents a higher resolution than
fMRI and MEG and directly records electrical activity in the brain. In this study, we used data
from SEEG recordings of epileptic patients to compute the functional connections between
regions of the brain: in order to be able to study only the ‘healthy’ brain activity recorded by
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these electrodes, all non-typical brain activity present in the recorded signals was removed, so
that only typical, ‘healthy’ functional data was used to infer connectivity. This allowed us to
compare the functional connectivity thus obtained with structural connectivity from healthy
subjects, and to infer information about the relationship between these two ’modalities’ of
brain connectivity in the healthy adult.

In this work, we wanted to investigate how structural and functional connectivity are
related not only at the single-edge level, but at different levels of network granularity, from
global similarity to community structure to single-node and edge correlation. Studies have
shown that even when there is only a small edge-to-edge correlation between structural and
functional networks, nonetheless significant relationships between structural and functional
network patterns can emerge through indirect, network-level interactions [Mišić et al. (2016)].
A global, edge-to-edge correlation analysis can thus be insufficient to understand the inter-
action between brain structure and function. We chose to study node-level connectivity to
understand whether the relationship between structural and functional connectivity varies for
different nodes or is constant across the brain, and whether there are specific brain regions
which present more similar connectivity patterns than others. We also chose to investigate
community structure in both network types and how the optimal communities are related
between structural and functional networks. Finally, we analysed the weights distribution
for both structural and functional networks to study how well it was approximated by dif-
ferent known distributions, in particular the power-law and log-normal distributions, which
have been found by several works to well approximate neuronal connectivity [Buzsáki and
Mizuseki (2014)].

4.2 Materials and Methods

4.2.1 Diffusion-weighted data and structural connectivity

The diffusion-weighted data we used to compute the structural connectivity was part
of the WU-Minn HCP Data Release of the Human Connectome Project (https://www.
humanconnectome.org/study/hcp-young-adult). This HCP data release includes high-resolution
3T MR scans from young healthy adult (age range 22-35 years). We selected 57 subjects (26
men) from the release and, for each subject, downloaded: pre-processed DWI data acquired
at 3T and pre-processed T1 anatomical data registered to the DWI volume; two parcellations
of the subject’s brain into cortical and subcortical regions, obtained with Freesurfer using
the Desikan and the Destrieux atlases [Desikan et al. (2006); Destrieux et al. (2010)]; and
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a binary brain mask separating the subject’s brain from the background. Details about the
acquisition parameters and the pre-processing steps applied on the released data can be found
in the relevant paper by Sotiropoulos et al. (2013).

Constrained spherical deconvolution and probabilistic tractography were performed on
the pre-processed diffusion-weighted images by using the MRtrix3 package [Tournier et al.
(2012)]. For each subject, a whole-brain tractography consisting of 50 million streamlines
was generated, by using the Anatomically Constrained Tractography framework (ACT)
[Smith et al. (2012)]. The seeds used for generating streamlines were distributed uniformly
in the grey/white matter interface. The tractograms were filtered by using the Spherical
deconvolution Informed Filtering of Tractograms (SIFT) [Smith et al. (2013)], and the final
result consisted of 5 million streamlines for each subject.

In order to study how much the correlation between structural and functional connectivity
is dependent from the choice of parcellation scheme, we chose to use three different brain
parcellations, with different numbers of parcels: the Desikan scheme [Desikan et al. (2006)],
the Schaefer scheme [Schaefer et al. (2017)] and the Destrieux scheme [Destrieux et al.
(2010)]. The Desikan and Destrieux parcellations are included in the Freesurfer toolbox (https:
//surfer.nmr.mgh.harvard.edu) and are composed of 68 and 148 cortical parcels respectively.
Subject-specific parcellations obtained with these schemes are included in the HCP data
release and were downloaded for each of the subjects used for the SC computation.

The Schaefer parcellation is a multi-resolution scheme, based on the subdivision of the
brain cortex into seven functional networks defined by Yeo et al. (2011): different sub-
parcellations of the main scheme exist, with 100, 200, 400, 600, 800 and 1000 parcels. For
this work, we chose to use only the coarsest parcellation scheme, composed by 100 parcels,
which we will indicate simply as ’Schaefer’ in the following. This parcellation was not
included in the HCP processing pipeline, and thus subject-specific parcellations with this
scheme were not present. In order to obtain them, we downloaded the .annot files specific
for the parcellation from the group’s GitHub (https://github.com/ThomasYeoLab/CBIG/
tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal), together with the
surface data of Freesurfer’s fsaverage6 subject. From the fsaverage6 surfaces and the
Schaefer annotation files, we projected the parcellation onto each HCP subject’s surface data
using the command mri_surf2surf from Freesurfer, thus creating two Schaefer annotation
files for each HCP subject (left and right hemisphere). We then re-projected the annotation
files onto a volume in subject-specific space using the command mri_aparc2aseg. This
produced, for each subject, a volume labelled with the Schaefer labels, plus the labels
referring to Freesurfer’s aseg parcellation of the subcortical areas. Finally, from this volume

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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we removed the subcortical labels, maintaining only the cortical areas which we used for the
computation of the structural connectivity matrices.

For each subject’s tractogram we obtained three structural connectivity matrices, one for
each parcellation scheme, with the tck2connectome command of the MRtrix3 toolbox. The
computed matrices were symmetric, and the diagonal (representing self-connections) was
set to zero; the weight of each edge was taken to be the number of tractogram streamlines
connecting the corresponding brain parcels.

4.2.2 SEEG data and functional connectivity

For a detailed description of the functional data acquisition and processing, see Arnulfo et al.
(2018). SEEG data was recorded from 67 subjects affected by drug resistant focal epilepsy.
We acquired mono-polar local field potentials (LFPs) from brain tissue with platinum–iridium,
multi-lead electrodes, with shared reference in the WM far from the putative epileptic zone.
We acquired an average of 10 minutes of uninterrupted spontaneous activity with eyes closed
with a 192-channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110) at a
sampling rate of 1 kHz. Before electrode implantation, the subjects gave written informed
consent for participation in research studies and for publication of their data.

We excluded electrode contacts (1.3 ± 1.2, range 0-10) that demonstrated non-physiological
activity from analyses. We employed a referencing scheme where electrodes in GM were
referenced by the contacts located in the closest WM [Logothetis et al. (2012)], which was
proven optimal for preserving phase relationship between SEEG contact data [Logothetis
et al. (2012)]. Since one same WM contact can be used for referencing multiple cortical con-
tacts, we rejected derivations with shared reference. The final number of channels analysed
was on average 110 ± 25 for each subject and 7491 in total.

Prior to the main analysis, SEEG time series were filtered with 18 Finite Impulse Response
(FIR) band pass filters with central frequency ranging from 2.50 to 320Hz. We excluded
all 50Hz line-noise harmonics using a band-stop equiripple FIR filter with 1% of maximal
band-pass ripples and 3 up to 8Hz width for the stop band parameters.

Due to possible filtering artefacts around epileptic spikes and the resultant increase in
synchrony, we discard periods of 500ms containing Interictal Epileptic Events. We defined
such periods as the temporal windows where at least 10% of cortical contacts demonstrated
abnormal concurrent sharp peaks in more than half of the 18 frequency bands. Such episodes
were excluded from within- and cross-frequency synchrony analysis.
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We estimated inter-areal phase-phase interactions at individual subject level using the
Phase Locking Value (PLV) [Ray et al. (2008)]. Finally, for each parcellation scheme,
we morphed individual contact-PLV values via the median operation, separately for each
frequency, to group-level inter-regional PLV matrices where regions were the parcels from
the selected atlas. During this ’morphing’ step, we excludes from the computation of the
median all contact-PLV values which were not present in at least 3 subjects, and which were
not sampled at least 20 times in total. This was done in order to remove from the matrices
computation contact-PLV values which were sampled only a small amount of times, and
might thus be due to noise or artefacts in the registrations.

4.2.3 Network analysis

At a global level, we analysed the average SC and FC connectivity matrices obtained by
averaging over all subjects, thus producing a single SC average matrix and 18 average
FC matrices, one for each acquisition frequency. We then computed Pearson’s correlation
coefficient between the average SC matrix and every FC average, for all three parcellation
schemes.

SC edge weights were computed by counting the number of streamlines between two
brain parcels, and thus SC edge weights equal to zero indicated the absence of any physical
connection between the corresponding regions. In FC matrices, however, edge weights were
obtained as measures of correlation between electrical activities of brain areas, which are
never perfectly equal to zero. The zero value had thus a ’filler’ function in FC matrices: if a
FC edge had a value of zero, this indicates that the correlation between the corresponding
two brain areas could not be computed, because of the specific electrode distribution in the
patient. For this reason, in all the global analyses described in the following, we considered
only edges which were non-zero in FC matrices, masking the SC matrices accordingly before
computation of Pearson’s correlation.

To assess the statistical significance of the correlation, we computed Pearson’s correlation
between randomly rewired SC and FC matrices, obtained using the null_model_und_sign
function from the BCT, which randomly rewires graphs maintaining weight, degree and
strength distributions.

We computed the same Pearson’s correlation coefficient between the average SC connec-
tivity matrix and 500 bootstrapped average FC matrices, obtained by randomly resampling
the FC subjects pool with replacement, to select 67 FC matrices used to compute new boot-
strapped averages for all frequencies. These bootstrapped matrices were compared with the
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original SC matrix, and we computed 95% confidence intervals from the results of these
comparisons.

In order to study how correlation varies at different network densities, we selected the
FC acquisition frequency which produced the highest correlation value for all parcellation
schemes (14.14 Hz) and we studied how this correlation varies when only part of the edges is
present. The SC and FC matrices were thresholded so that only the edges with weight greater
than a given percentile were retained, and the global analysis described above was repeated
on these thresholded matrices. This was done for a range of percentile values from 10 to
90, with a step of 10, giving nine pairs of SC and FC matrices with decreasing density. The
computation of confidence intervals over bootstrapped FC averages and the analysis over
rewired matrices was also repeated.

From this first comparison, we found that the Schaefer parcellation scheme is the one
for which the correlation is highest, for all FC frequencies: for the following analyses, we
limited ourselves to this specific parcellation scheme.

Comparison with log-normal distribution

The log-normal distribution and other skewed, heavy-tailed distributions - such as the power-
law distribution - are often found in biological organisms and processes, especially in the
brain [Buzsáki and Mizuseki (2014); Sporns (2013)]. Checking the distribution of the
measured data against such models can help confirm the data is significant, well-distributed
and responding to known properties. We chose to study the weight distributions for SC and
FC in order to compare them with these well-known models and estimate the goodness of
their fit. First we plotted the decimal logarithm of the SC and FC edge weights, sorted in
descending order, to visualize the shape of the distribution. We then fitted both SC and FC
data at all acquisition frequencies with four different distributions: power law, truncated
power law, exponential and log-normal. For each distribution fitting, we first computed
the maximum likelihood estimate (MLE), which is the estimated set of parameters which
maximizes the fit of the given distribution to the data.

To estimate the goodness of each fit, we computed three quantities: the Akaike informa-
tion criterion (AIC), the Bayesian information criterion (BIC) and the Root Mean Square
error (RMS). The AIC is a means for model selection which estimates the quality of the fit of
a model with respect to other models, and was defined by Akaike (1974) as:

AIC = 2k�2 ln(L̂) (4.1)
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where k is the number of estimated parameters in the model and L̂ is the maximum of its
likelihood function. Given a set of candidate models for fitting the data, a smaller AIC value
indicates the preferred model. The BIC is similar to the AIC, but with a penalization term
for the number of parameters defined as ln(n)k, while in the AIC it is 2k. Finally, the RMS
is a measure of accuracy for a fitting and is defined as the square root of the second sample
moment of the differences between predicted values and observed values.

Parcel-wise analysis

We analysed parcel-wise correlation by comparing a node’s SC pattern (i-th row of the SC
matrix for node i) with the corresponding FC pattern (matrix row). We computed a Pearson
correlation value between SC and FC for each node at each FC frequency, thus obtaining
a 100 ⇥ 18 matrix where rows represented nodes and columns represented FC frequencies.
Each value quantified how the SC pattern of a given node correlated with the corresponding
FC pattern at a given frequency.

To analyse how parcel-wise correlation varied with FC frequency, we computed the
covariance matrix of the 100 ⇥ 18 matrix obtained in the previous step: the result was an 18
⇥ 18 matrix M, in which each element Mi j represented how the correlation pattern of all nodes
at frequency i varied with respect to the correlation pattern at frequency j. From this matrix,
we obtained a clusterization of FC frequencies with respect to their covariance, applying
a k-means clusterization on the matrix with k = 4, based on the covariance matrix. From
the clustering, we found four FC frequencies ranges inside which the correlation between
SC and FC varied in a similar way: [2.5� 9.99] Hz, [14.14� 28.28] Hz, [39.99� 159.99]
Hz and [190.27�319.99] Hz. We then recomputed parcel-wise correlation coefficients, this
time from the four average FC matrices obtained by averaging FC matrices of frequencies in
the same cluster.

Modularity analysis

We used the Leiden community detection algorithm [Traag et al. (2018)] to subdivide the
SC and FC matrices in communities and compute the modularity value of these partitions.
We analysed separately left and right hemisphere connections, for several reasons: first,
inter-hemispheric coverage in FC SEEG acquisitions is very poor, and the electrode implants
are quite different from left to right hemisphere, producing uneven sampling between the
hemispheres. Moreover, the two hemispheres have different functional roles, which might
influence their module organization and thus the results of a joint analysis. Lastly, the
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Schaefer parcellation scheme is not perfectly symmetrical, presenting some parcels in one
hemisphere which are not present in the other; to obtain a more precise study of each
hemisphere’s organization, we chose to separate the data from left and right in the modularity
analysis.

For the partition of the networks into communities, we chose to use the Leiden algorithm
instead of the widely used Louvain one [Blondel et al. (2008)] because the Leiden algorithm
has been shown to uncover better partitions than the Louvain one, while also being faster.
The Leiden algorithm is made available as a Java package (https://github.com/CWTSLeiden/
networkanalysis) and, among other parameters, requires the definition of a ’resolution’
parameter for the quality function to be optimized, which can be either the constant Potts
model or the modularity. We chose the modularity as our quality function and studied the
behaviour of each network’s community structure when the resolution parameter (g) varies.
To do this, we applied the modularity analysis with different values of g , starting from 0.8
and ending at 2.3 with increments of 0.1. The default value for g is 1, for both Louvain and
Leiden methods; smaller values tend to detect bigger modules, while higher values detect
smaller modules. For each value of g we computed a consensus partition of the network
and its modularity value, which varies between 0 and 1 and measures the ’goodness’ of the
partition: partitions with modularity close to 1 have dense connections between nodes in
the same module, and sparse connections between nodes in different modules, indicating
optimal interconnection of nodes inside modules and optimal inter-module separation.

To obtain a single ’consensus’ partition of each SC and FC networks, we applied the
Leiden algorithm to 500 bootstrapped averages for the SC matrix and the FC matrix at
each frequency. The partitions obtained for the bootstrapped averages were then combined
with a consensus clustering approach [Lancichinetti and Fortunato (2012)]. Each partition
is represented as a binary square matrix, where each element is set to 1 or 0 depending
respectively on whether the corresponding nodes are in the same module or not. This is done
to eliminate the arbitrary numbering of modules from the representation, thus making the
partitions directly comparable to each other. The set of matrices is then averaged across
the repetitions to obtain a matrix with values close to 1 when the respective pair of nodes
frequently co-occurred in the same module across the set and values close to 0 when the
respective pair of nodes rarely co-occurred in the same module. The resulting co-occurrences
matrix is a weighted network, which is then used again as input to the Leiden method to
compute a final consensus partition scheme. We then computed the modularity value for the
obtained consensus scheme at each given g value, hemisphere and connectivity (SC or FC at
each frequency).

https://github.com/CWTSLeiden/networkanalysis
https://github.com/CWTSLeiden/networkanalysis
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4.3 Results

4.3.1 Structural and functional average matrices show the same global
structure

The average connectome matrices for SC and FC (Schaefer parcellation scheme), with the
corresponding standard deviations, are shown in Figure 4.1. The matrices were averaged
over all subjects; for FC, the average was computed separately for each acquisition frequency.
We chose to show the average matrix with a frequency of 14.14 Hz, since this frequency
produced the highest correlation with SC connectivity for all parcellations; we selected the
Schaefer parcellation because it was the scheme for which we obtained the highest correlation
coefficients for all FC frequencies (see Figure 4.2a).

4.3.2 Global Pearson correlation coefficient shows positive correlation
between average structural and functional networks

In Figure 4.2a we show that the Pearson correlation coefficient between global average SC
and FC matrices has a peak at FC frequency of 14.14 Hz, for all three parcellation schemes.
The Schaefer parcellation scheme was the one for which the correlation was always greater
than for the other two schemes, for all FC frequencies; the parcellation scheme with the
lowest correlation across frequencies was the Destrieux one. The maximum correlation
value was 0.56 for the Schaefer parcellation, 0.51 for the Desikan and 0.46 for the Destrieux
scheme (all p < 0.05, Pearson correlation test). The correlation coefficients obtained from
randomly rewired matrices are very close to zero, which further shows that the correlation
found in the original data is significant.

The Pearson correlation coefficient computed between the average SC matrix and the
average FC at 14.14 Hz did not vary significantly for different values of density thresholding
(Figure 4.2b). The matrices were thresholded by removing the weaker edges to retain from
90% to 10% of the edges, and the global correlation analysis was repeated on these nine
pairs of networks. We found that the correlation coefficient remains almost constant at
varying network densities, decreasing slightly just for networks containing the strongest 10%
edges. The comparison of average SC with randomly rewired average FC matrices produces
again correlation values very close to zero, confirming that the correlation of original data is
significant.

In Figure 4.2c we plot the strongest 30% SC weights against the strongest 30% FC
weights at 14.14 Hz, on a decimal logarithmic scale, for all parcellation schemes. By
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(a) (b)

(c) (d)

Figure 4.1 Average SC (a) and FC (b) matrices and corresponding standard deviations ((c) and (d)).
The average FC matrix shown in this Figure has an acquisition frequency of 14.14 Hz, since this
frequency resulted to be the one which better correlates with the average SC connectivity (see Figure
4.2a).

analysing the weights’ distribution, we can determine that the data support the correlation
computed in the previous analysis, without outlier data which could drive the correlation.

4.3.3 Structural and functional weights follow log-normal distribution

In Figure 4.3 we summarise the results of the comparison between edge weights distribution
for SC and FC and log-normal distribution. The decimal logarithms of the sorted edge
weights for SC and FC, plotted in Figures 4.3a and 4.3b, show that the shape of the weights
distributions reflects a log-normal distribution.
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The results of the fitting of SC and FC weights with four different distributions are shown
in Table 4.3c and Figure 4.3d. In Table 4.3c, bolded values indicate the minimum of the
AIC and the RMS, showing that the best fit among the four distributions was found for
the power-law and log-normal distributions. In Figure 4.3d we plotted the four quantities
computed for each fitting across FC frequencies; again, the fittings which produced the
smallest AIC and RMS are the power-law and the log-normal distributions.

4.3.4 Functional node weights show high variability in right temporal
lobe, structural variability focused in optical region

The average and standard deviation of the node strength for SC and FC data, plotted in
Figure 4.4, show a high average and variability in functional strengths localised in the right
temporal lobe, while for the structural weights only few nodes localised in the optical region
show a high strength and a high variability. Again, the FC acquisition frequency of 14.14
Hz was chosen because of its high correlation with SC connectivity (see Figure 4.2a). The
high node strength and variability for FC in the right temporal lobe may be caused by the
uneven sampling of the two hemispheres: as is often the case, the patients’ right hemispheres
presented more electrodes than the left, due to the higher presence of eloquent cortex in
the left hemisphere and thus the higher risk of functional damage for implants in the left
hemisphere. With respect to SC node strength, slightly higher variability is found in nodes in
the optical region of the brain.

4.3.5 Spatial variability in node-wise Pearson’s correlation shows vari-
ability in correlation between SC and FC at different brain loca-
tions

We used Pearson’s correlation coefficient to compare the SC and FC connectivity patterns
of each single node, obtaining a 100 ⇥ 18 matrix of node-wise correlation coefficients
(Figure 4.5a). Each row of the matrix represents a parcellation node, and each column is a
FC acquisition frequency. The value (i, j) is the Pearson correlation coefficient of the SC
connectivity pattern for node i (namely the i-th SC matrix row) with the FC connectivity
pattern for the same node at frequency j ( j-th FC matrix row). This allowed to analyse how
single nodes’ connectivity patterns varied across FC frequencies.

We found that the correlation between SC and FC could vary significantly across nodes,
with few nodes showing very low correlation coefficients (minimum coefficient 0.25) and
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other nodes - localised mainly in the regions comprised in the Default Mode Network
[Greicius et al. (2003)] - presenting very high correlation values (maximum coefficient 0.97).
We also found that the correlation variation seemed to identify ranges of FC frequencies
across which the node-level correlation patterns were similar. For this reason, we chose to
further investigate the covariance of node connectivity patterns across frequencies, in order
to reduce the dimensionality of the FC data from 18 frequencies to a smaller number of
‘frequency ranges’ across which SC-FC correlation was coherent.

The covariance matrix obtained by computing Pearson’s correlation coefficients between
parcel-wise correlation patterns at different pairs of frequencies is shown in Figure 4.5b. Both
rows and columns represent FC frequencies; the values represent the correlation coefficients
computed on the matrix in Figure 4.5a, where rows (nodes) are variables and columns
(frequencies) are observations. We found that the frequencies can be grouped together with
respect to their correlation coefficients, obtaining ranges of frequencies where parcel-wise
correlation patterns vary in a very similar way.

We applied a k-means algorithm (k = 4) on the covariance matrix to compute these
groups, obtaining four ranges of frequencies with similarly varying correlation patterns:
[2.5�9.99] Hz, [14.14�28.28] Hz, [39.99�159.99] Hz and [190.27�319.99] Hz. We then
recomputed parcel-wise correlation coefficients as done for Figure 4.5a correlating SC data
with four FC matrices obtained by averaging FC data across the four frequency ranges. The
results of this last analysis are reported in Figure 4.5c, where rows of the matrix represent
nodes and columns represent the four frequency ranges. In Figures 4.5d and 4.5e we show
parcel-wise correlation values for two of these ranges: respectively, range [2.5�9.99] Hz,
which gave the lowest average correlation value (r = 0.717), and range [14.14�28.28] Hz,
which gave the highest correlation value (r = 0.787).

4.3.6 Structural network strongly modular with few big communities,
good correspondence with Yeo’s functional subdivision

We show in Figure 4.6a how the modularity and the number of modules for the structural
connectivity vary with different values of g; the modularity has a maximum for values of g
close to 1, which produce a partition in five modules for both hemispheres.

The left and right partitions which produced the highest modularity values are shown in
Figure 4.6b. Both partitions were composed of 5 modules: the left partition had a modularity
value of 0.81 and corresponded to a g value of 1, while the right partition had a modularity
value of 0.74 and was obtained with g = 1.10.
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The Schaefer parcellation is based on the subdivision of the brain into seven functional
subnetworks defined by Yeo et al. (2011): for this reason, we investigated also the SC partition
schemes composed by seven modules, to compare them to the original seven functional
subnetworks. For the left hemisphere, partitions with seven modules were obtained for all
g � 2; the one with the highest modularity value (0.66) corresponded to g = 2.3. For the right
hemisphere, partitions with seven modules were obtained for all g � 1.7, and the highest
modularity (0.68) was obtained with g = 2. We show both partition schemes in Figure 4.6c:
the white lines superimposed onto the brain’s hemispheres represent the boundaries of Yeo’s
original parcellation. We found that the 7 modules obtained on the SC average matrix are
well aligned with the boundaries defined by Yeo and colleagues.

4.3.7 Functional modularity lower than structural, fewer and bigger
modules for maximum modularity

In Figure 4.7a we show the modularity values and the number of detected modules for
partitions obtained with different combinations of FC acquisition frequency ranges (columns)
and g values (rows). The analysis was executed separately for left and right hemispheres.

The partitions which produced the highest modularity value for each hemisphere are
shown in Figure 4.7b. The left partition (modularity 0.50) contained only two modules and
was obtained on the FC acquisition range [14.14�28.28] Hz and a g value of 0.8, while the
right partition (modularity 0.58) contained five modules and corresponds to a FC acquisition
range [2.5�9.99] Hz and g = 1.5.

As done with the SC analysis, we considered also the partition with the highest modularity
value among those comprised of seven modules, which we show in Figure 4.7c. For the
left hemisphere, the highest modularity value among partitions with seven modules was
0.46, obtained on the averaged FC for range [39.99�159.99] Hz and g = 2.1. For the right
hemisphere, the partition with seven modules and highest modularity (0.55) corresponded
to an acquisition range of [2.5�9.99] Hz and g = 2. Again, the edges of the 7-module FC
partitions align well with Yeo’s boundaries.

4.3.8 Good correspondence between structural and functional commu-
nity partitions

In order to compare the SC and FC modules, we used the partition_distance function
from the BCT toolbox. This function computes, for a given pair of module partitions, the
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normalized variation of information (nV I) and the normalized mutual information (nMI).
These quantities are defined in Meilă (2007) as follows:

nV I = [H(X)+H(Y )�2MI(X ,Y )] / log(n)

nMI = 2MI(X ,Y ) / [H(X)+H(Y )]
(4.2)

where X and Y are the two partitions, H is the entropy, MI is the mutual information and
n is the number of nodes in the partitions. We compared SC partitions for varying g with
corresponding FC partitions for all g and acquisition frequency; the results of the comparison
are shown in Figure 4.8a, where the matrix rows represent g values and the columns represent
FC frequency ranges. The matrices on the left show the distribution of nMI values, while the
matrices on the right show the nV I values; top matrices correspond to the analysis for the left
hemisphere, while bottom matrices correspond to the right hemisphere.

The maximum value for the nMI indicator in the left hemisphere was 0.79. This corre-
sponded to g = 2.1 for SC and g = 1.3 for FC. The FC frequency range for this partition was
[39.99�159.99] Hz, and both partitions were composed of 5 modules; the corresponding
minimum value for the nV I indicator was 0.17. For the right hemisphere, the maximum nMI
value was 0.73, corresponding to a SC partition with 7 modules and a FC partition with 6
modules (g = 2.3, [14.14�28.28] Hz) (Figures 4.8b and 4.8c). The corresponding minimum
value for the nV I indicator was 0.25.
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(a)

(b) (c)

Figure 4.2 (a) Pearson’s correlation coefficient (thick lines) between average SC and FC matrices,
for the three parcellation schemes used: Desikan (red), Schaefer (green) and Destrieux (blue). 95%
confidence intervals were computed from 500 bootstrapped FC averages and are shown as shaded
areas around the main lines. Correlation of average SC matrix with randomly rewired average FC
matrices is also reported (thin lines, same colours as the main lines). (b) Analysis of correlation
at different network densities between average SC and FC matrices, with FC frequency 14.14 Hz.
Thick lines and shaded areas represent the Pearson correlation and 95% confidence intervals over
bootstrapped FC averages for the three parcellations, plotted over the percentile thresholds used; thin
lines show the correlation of SC matrix with randomly rewired FC matrices, for the same density
thresholds. (c) Scatter-plots of the decimal logarithm of average SC weights (x-axis) against decimal
logarithm of average FC weights at 14.14 Hz (y-axis) for the three partition schemes. For all the global
correlation analyses, only edges which were non-zero in the average FC matrices were considered.



4.3 Results 40

(a) (b)

pow tpow exp log-normal
MLE -27093 -26581 -33888 -26208
AIC 54189 53167 67778 52419
BIC 54195 53180 67785 52432
RMS 0.533 3.0764 84.7498 1.2993

(c) (d)

Figure 4.3 (a) Decimal logarithm of edge weights for the average SC matrix, sorted in descending
order. (b) Decimal logarithm of edge weights for the average FC matrix at different acquisition
frequencies, sorted in descending order. Figures (a) and (b) show that the weight distribution for
both SC and FC at all frequencies is similar in shape to the log-normal distribution. (c) Maximum
likelihood estimate (MLE), Akaike information criterion (AIC), Bayesian information criterion (BIC)
and root mean square error (RMS) for the fitting of SC weights with four different distributions: power-
law (pow), truncated power-law (tpow), exponential (exp) and log-normal. Bolded values represent
the smallest AIC and RMS values, indicating goodness of fit. (d) Plot of Maximum likelihood
estimate (MLE), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root
mean square error (RMS) for the fitting of FC weights at different frequencies with four different
distributions: power-law (pow), truncated power-law (tpow), exponential (exp) and log-normal. The
distribution which best fits the data is the one with smaller AIC and RMS: from the plot, these are the
power-law and log-normal distributions.
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(a) (b)

(c) (d)

Figure 4.4 Average node strengths for SC (a) and FC (b) and relative standard deviations ((c) and
(d)). For FC, we chose to show the data at 14.14 Hz, since this frequency resulted to be the one which
better correlates with the average SC connectivity (see Figure 4.2a).
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(a) (b) (c)

(d) (e)

Figure 4.5 (a) Parcel-wise SC vs FC correlation matrix for all nodes (rows) and all frequencies
(columns). (b) Covariance matrix for all FC frequencies. (c) Parcel-wise SC vs FC correlation for all
nodes (rows) and four frequency clusters individuated form the covariance matrix, with the k-means
algorithm (k = 4). (d) Parcel-wise correlation SC vs FC coefficients averaged over the first frequency
cluster (range [2.5�9.99] Hz), which produced the lowest average correlation coefficient (r = 0.717).
(e) Parcel-wise correlation SC vs FC coefficients averaged over the second frequency cluster (range
[14.14�28.28] Hz), which produced the highest average correlation coefficient (r = 0.787).
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(a)

(b) (c)

Figure 4.6 (a) Modularity values (left plots) and number of detected modules (right plots) against g
value for SC matrices, Schaefer parcellation. Computation was done separately for left (top plots)
and right hemisphere (bottom plots). (b) SC partitions for left and right hemispheres which produced
the highest modularity values (0.81 for the left hemisphere, 0.74 for the right hemisphere). The left
partition was obtained with g = 1, while the right partition with g = 1.10. (c) SC partitions for left and
right hemispheres which produced and the highest modularity values among the partitions comprised
of seven modules (0.66 for the left hemisphere, 0.68 for the right hemisphere). The left partition was
obtained with g = 2.3, while the right partition with g = 2. The white lines superimposed onto the
brains represent the boundaries of Yeo’s original parcellation.



4.3 Results 44

(a)

(b) (c)

Figure 4.7 (a) Modularity values (left image) and number of detected modules (right image) against g
value for FC matrices, Schaefer parcellation. Computation was done separately for left (top plots) and
right hemisphere (bottom plots). The matrices’ rows represent different values of g , while the columns
represent FC acquisition ranges, as computed in Subsection 4.3.5. (b) FC partitions for left and right
hemispheres which produced the highest modularity values (0.50 for the left hemisphere, 0.58 for the
right hemisphere). The left partition was obtained with a FC averaged over the [14.14�28.28] Hz
range and with g = 0.8, while the right partition with the [2.5�9.99] Hz range and g = 1.5. (c) FC
partitions for left and right hemispheres which produced and the highest modularity values among the
partitions comprised of seven modules (0.46 for the left hemisphere, 0.55 for the right hemisphere).
The left partition corresponds to a FC acquisition range of [39.99�159.99] Hz and g = 2.1, while the
right partition had a range of [2.5�9.99] Hz and g = 2. The white lines superimposed onto the brains
represent the boundaries of Yeo’s original parcellation.
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(a)

(b) (c)

Figure 4.8 (a) Normalized mutual information (nMI, left column) and normalized variation of
information (nVI, right column) for the comparison of SC and FC module partitions. The comparison
was executed separately for left (top row) and right hemisphere (bottom row). (b) and (c) Left and
right SC (b) and FC (c) partitions which produced the maximum nMI value (0.79 for the left, 0.73
for the right) and the minimum nV I value (0.17 for the left, 0.25 for the right). The left SC and FC
partitions were composed of 5 modules; the right SC partition was composed of 7 modules, while the
right FC partition had 6 modules.
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Network-level structural and functional
connectivity in the healthy and

pathological child



Chapter 5

Feasibility of advanced WM structural
reconstruction on paediatric data at low
magnetic field and low b-value

5.1 Introduction

As introduced in Chapter 2, while functional connectivity can be computed from EEG
or SEEG recordings also in paediatric patients with the same modalities as adult patients
[Cossu et al. (2008); Taussig et al. (2014); Vanhatalo and Kaila (2006)], the computation
of paediatric structural connectivity through advanced diffusion analysis methods is not as
straightforward. This is true especially in the clinical environment, which often cannot not
provide the necessary equipment and processing power for this type of analysis, and where
classical DTI is almost always the preferred method of WM analysis in children, despite its
known shortcomings [Farquharson et al. (2013)].

CSD-PT has been shown to reconstruct WM fibre tracts with higher precision and
completeness than DTI [Küpper et al. (2015); Beare et al. (2016); Stefanou et al. (2016)], and
has been increasingly used to study WM alterations and functional impairments in children.
For example, Murray et al. (2016) used this method to analyse the correlation between WM
abnormalities and changes in attention ability in children born very preterm, while Thompson
et al. (2016) studied structural connectivity in very preterm children at 7 years of age and
found it correlates with impaired intelligence and movement. Both Thompson et al. (2014)
and Kelly et al. (2014) used CSD to study DTI scalar values and tract volume in the optic
radiation of children born very preterm and to correlate them with visual outcome. Some
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studies have started to apply CSD-PT to paediatric subjects for connectivity studies: for
example, Mormina et al. (2016) used CSD-PT to evaluate the structural organization in
a 17-year-old patient with cerebellar agenesis, while Backes et al. (2014) investigated the
correlation between functional and structural connectivity in children with rolandic epilepsy
compared with healthy controls, and Scheck et al. (2015) studied the connectivity of the
anterior cingulate tract in children with unilateral cerebral palsy.

All these studies applied MRI acquisition parameters in line with the recommendations
for CSD-PT described in Tournier et al. (2013). During my PhD I collaborated with the
Giannina Gaslini hospital in Genova, with the aim of applying CSD-PT for the investigation
of structural connectivity in neonatal and paediatric data. We chose to apply the method
to data commonly available in a paediatric hospital: since the equipment present in the
clinical environment often cannot fulfil the requirements for these methodologies, we chose
to acquire data with hardware and acquisition sequences which are commonly found in these
environments. The MRI scanner we used for the data acquisition was a 1.5T machine, a
low field compared with the optimal 3T required for advanced analyses, and the acquisition
sequence we selected had only 34 gradient directions and a b-value of 1000 s/mm2, producing
data which was suboptimal for the application of these methods. To our knowledge, no other
study had been performed at the time with CSD-PT on unmyelinated subjects scanned at
1.5T with a low b-value and a small number of gradient directions.

Our aim was first to test the feasibility of CSD-PT on the data available in a typical
paediatric clinical environment, and to adapt the preprocessing and processing steps and all
the parameters used for the analysis, in order to obtain the best possible WM reconstructions
of specific WM tracts with these methodologies, and compare their quality and anatomical
accuracy with DTI reconstructions. If the diffusion analysis thus adapted could be applied
also on this type of suboptimal data with good results, it could substitute DTI for WM
analysis both in diagnostic processes and for the investigation of structural connectivity in
patients, opening the way for more advanced studies with clinical data.

5.2 Materials and methods

5.2.1 Subjects and image acquisition

We analysed the DWI studies of 50 subjects (29 males) subdivided into three groups: 8
neonates (group I, mean age 11.63 ± 5.3 days), 20 infants (group II, from 1 month to 2
years old, mean age 5 ± 4.32 months), and 22 children and adolescents from 2 to 17 years
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old (group III, mean age 8.18 ± 4.82 years). All subjects were originally admitted at the
hospital for minor symptoms (e.g. headaches, minor head trauma) and were diagnosed as
neurologically and developmentally normal by experienced paediatric neurologists, having
normal MRI findings.

For each subject, a DWI sequence was acquired on a 1.5T scanner (Philips Intera Achieva
version 2.6, Best, the Netherlands). The acquisition sequence was an axial single-shot
spin-echo echo-planar sequence commonly used in clinical practice. Acquisition parameters
were as follows: 60 axial slices; slice thickness, 2 mm; acquisition matrix, 128 ⇥ 128
(in-plane resolution, 1.75 ⇥ 1.75 mm); TR = 8129 ms; TE = 80 ms; averages = 1. The signal
was acquired along 34 non-collinear directions of space, using a b-value of 1000 s/mm2.
One measurement without diffusion weighting (b = 0 s/mm2 ) was also performed. The
average duration of the acquisition sequence was 5 min 34 s. Neonates belonging to group
I were fed before MRI examination to achieve spontaneous sleep and were spontaneously
breathing during examination. For groups II and III, subjects under 6 years of age or who
were uncooperative were sedated during examinations. For all subjects, heart rate and oxygen
saturation were monitored by pulse-oximetry throughout the examination. For both sedated
and non-sedated subjects, the duration of the examination was the same, in order to keep the
sedation period as short as possible. All brain MRI studies were obtained with axial sections
parallel to the bicommissural line, and included additional 3-mm-thick T2-weighted images
on the three planes of space and a 3D T1 anatomical sequence, with different acquisition
parameters based on patient age. These sequences were used to assess the presence of brain
lesions or malformations.

5.2.2 Whole-brain tractography and track-density maps

All DWI images were preprocessed with FSL tools [Jenkinson et al. (2012)], correcting
for subject movement artefacts and eddy currents. Fibre tracking was performed using the
MRtrix package (https://github.com/MRtrix3/mrtrix3) [Tournier et al. (2012)]. CSD was
performed on the preprocessed DWI images in order to estimate the FODs in each voxel,
using a maximum harmonic degree (lmax) of 6, which was the maximum value allowed by
the data, as described in Tournier et al. (2009). From these FODs, streamlines were computed
using the iFOD2 algorithm, developed by Tournier et al. (2009) and made available by the
MRtrix toolbox.

https://github.com/MRtrix3/mrtrix3
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As a first step, we computed a whole-brain tractogram for each subject. Each tractogram
was composed by 2 million streamlines, with a maximum number of generation trials for the
algorithm of 200 million.

The tractography algorithm requires the setting of several parameters, which influence
the quality of the resulting tractograms: the default values for these parameters are usually
chosen as the ones producing the best results for healthy adult data, which is the ’default’
data most often used to test processing algorithms. Because of this, we tested different
combinations of tracking parameters in order to see their effect on the reconstructions
obtainable from paediatric data, following the work of Tournier et al. (2012) and Tournier
et al. (2010). Step size was set to the default value of 0.9 mm (about 0.5 times the voxel size,
as recommended for the iFOD2 algorithm in Tournier et al. (2009)), which was shown to be
a good compromise between quality of the results and computational time. As performed
in the study by Tournier et al. (2012), we tested different values for the cut-off threshold
(FOD amplitude value under which the streamlines are terminated) and for the maximum
angle between successive tracking steps. In order to find the best combination of values
for these parameters, we produced whole-brain tractograms for six representative subjects
selected at random from the three groups (two neonates from group I, two infants from group
II, and two children from group III), using different combinations of parameters. One expert
neuroradiologist examined the results for each combination of values and rated them on a
5-point scale (1, non-diagnostic tracks; 2, poor quality; 3, fair quality; 4, good quality; 5,
excellent quality). The combination of parameters which obtained on average the highest
scores in this preliminary test was selected as the ’default’ for the subsequent analyses. The
cut-off threshold was set to be 0.2, while the maximum angle between steps was 50�. Table
5.1 shows the results of the rating for the different combinations of values.

The maximum and minimum streamline lengths were set, respectively, to 200 mm (about
ten times the size of the DWI voxel) and 9 mm (about 5 times the voxel size), as suggested in
the toolbox documentation. The generated streamlines were anatomically restrained with
a binary brain mask computed directly from the DWI images with the MRtrix toolbox:
streamlines were terminated when they exited the mask. The same brain mask was also used
as a seeding mask: generation points for the computed streamlines (“seeds") were uniformly
distributed in the mask, and streamlines were propagated from each seed bidirectionally
until termination. The average computation time for this first step (including preprocessing,
up to the generation of the whole-brain tractograms) was of 30 min on an iMac desktop
workstation (8-core Intel Core i7 @3.5 GHz, 32 GB RAM).
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Score frequency
Max angle FOD amplitude 1 2 3 4 5

10�
0.1 100% - - - -
0.2 100% - - - -
0.3 100% - - - -
0.4 100% - - - -

30�
0.1 33.3% 66.7% - - -
0.2 - - 100% - -
0.3 16.7% 83.3% - - -
0.4 100% - - - -

50�
0.1 - - 66.7% 33.3% -
0.2 - - - 66.7% 33.3%
0.3 - 16.7% 83.3% - -
0.4 100% - - - -

70�
0.1 - - 100% - -
0.2 - - - 100% -
0.3 - 66.7% 33.3% - -
0.4 100% - - - -

90�
0.1 - - 100% - -
0.2 - 100% - - -
0.3 - 100% - - -
0.4 100% - - - -

Table 5.1 Average scores for whole-brain CSD-PT tractograms obtained with different values of FOD
amplitude threshold (0.1, 0.2, 0.3 and 0.4) and maximum angle between tracking steps (10�, 30�, 50�,
70�, 90�). For visualization purposes, a dash ("-") marks cells where the score frequency was 0.0%.

From the whole-brain tractograms, we computed for each subject a gray-scale super
resolution track-density imaging (TDI) map and a directionally encoded colour TDI map
(DEC-TDI map) [Calamante et al. (2010), with a spatial resolution of 0.5 mm. DEC-TDI
maps were coloured by assigning red to the right–left direction, green to the anterior–posterior
direction, and blue to the inferior–superior direction. In order to improve visualization of the
maps, we applied a short-track method to produce short-track DEC-TDI maps (stDEC-TDI
maps) as previously reported by Hoch et al. (2016). Short-track TDI and DEC-TDI maps
allow to better visualize low-intensity fibre tracts and assess the quality of the tractography
results. The short maximum length of the reconstructed tracks lowers the TDI contrast in
these maps, allowing to better visualize low-intensity structures without over-saturating high-
intensity tracts. In order to maintain the contrast-to-noise ratio, the number of streamlines
generated for these maps needs to be about one order of magnitude greater than the number
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used for normal TDI maps [Calamante et al. (2012)]: we computed the maps from tractograms
composed of 20 million streamlines. The rest of the parameters were the same used for the
whole-brain tractograms mentioned earlier (FOD amplitude threshold, 0.2; maximum angle
between steps, 50�; step size, 0.9 mm), but the maximum streamline length was set to 20
mm in order to fully exploit the advantages offered by this technique.

5.2.3 Eigenvector maps and anatomical analysis of conventional and
stTDI data

To provide comparison with the computed TDI and stDEC-TDI maps, we used the MRtrix3
toolbox to compute the DTI diffusion tensors in each subject. From these diffusion tensors,
we computed a colour-coded map of the principal eigenvector (EV map) for each subject,
in order to compare it with the stDEC-TDI map. EV maps encode, in each voxel, the main
direction of diffusion within the voxel, together with its magnitude. The maps were colour-
coded with respect to this main diffusion direction in the same way as the DEC-TDI and
stDEC-TDI maps (red for left–right, green for anterior–posterior, blue for inferior–superior)
and had the same voxel size as the DWI data.

A team of neuroradiologists with experience on paediatric neuroimaging studies reviewed
all MRI studies to perform an image quality assessment. For each subject, they characterized
anatomical detail in axial MRI sections from the conventional MRI protocol, EV maps,
and short-track TDI parameter maps at 5 canonical anatomical levels of the brain: corpus
callosum, internal capsule, rostral midbrain, middle pons, and rostral medulla (similar to the
work by Hoch et al. (2016)). The TDI maps were then labelled by consensus according to
the standard anatomical texts of Duvernoy’s Atlas of the Human Brain Stem and Cerebellum
[Naidich et al. (2009)] and of WM atlas mapping [Catani and de Schotten (2008)].

5.2.4 ROI placement and reconstruction of WM tracts

In order to evaluate the performance of CSD, we used a probabilistic tractography method
to reconstruct three main WM tracts: the cerebellar-thalamic tracts (CTT), the corticopon-
tocerebellar tracts (CPCT), and the corticospinal tracts (CST). Because of their important
roles in voluntary movement control, these tracts are among the main constituents of the WM
pathways most commonly investigated by tractography. In particular, the CTT is the main
efferent tract from the cerebellum, the CPCT constitutes the main afferent pathway from
the cerebral cortex to the cerebellum, and the CST originates from the precentral areas and
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descends through the centrum semiovale and ipsilateral posterior limb of internal capsule to
the brainstem.

The tracts were reconstructed using either a single or a multiple regions of interest
(ROI) approach depending on the specific tract, according to WM atlas mapping [Catani and
de Schotten (2008)]. In each subject, ROIs were drawn separately for the right and left sides
on computed DEC-TDI maps, taking advantage of the improved anatomical visualization
offered by these maps.

In detail, (i) for the CPCT, we placed a seeding ROI in the middle cerebellar peduncle on
the coronal plane and an inclusion ROI in the posterior limb of the internal capsule on the
axial plane; (ii) for the CTT, we placed a seeding ROI in the superior cerebellar peduncle
on the coronal plane; and (iii) for the CST, we placed the seeding ROI on the posterior
limb of the internal capsule, and an additional ROI was placed in the cerebral peduncle, on
the right and left sides separately, on the axial plane. The ROIs were drawn by a single
operator during a single session, in order to reduce inter-subject variability. All the ROIs were
drawn so as to completely include the anatomical structures mentioned earlier, as previously
described by Lim et al. (2015), thus ensuring that the considered tract would be included in
the final reconstruction while diminishing the influence of the ROI choice on the final tract
reconstructions [Huang et al. (2004)].

Tractography was performed for each tract with the same algorithm and parameters used
to compute the whole-brain tractograms. Each tract was composed of 10000 streamlines,
with a maximum number of generation trials for the algorithm of 1 million. All selected tracts
were also reconstructed with a combination of traditional DTI and deterministic tractography
(Fibre Assignment by Continuous Tracking (FACT), Mori et al. (1999)), in order to validate
the CSD reconstruction results and to compare the quality of the tracts obtained with the two
methods, using the same ROI placement. The DTI analysis and deterministic tractography
were performed using the MRtrix package, which implements the deterministic tractography
method on the diffusion-weighted images. Parameters were left at their default values for
the toolbox, as defined in the study by Tournier et al. (2012). These parameters were found
to give the best results for the data, as determined by visual inspection of the results. In
particular, the FA threshold (value under which streamlines were terminated) was 0.1 and the
maximum angle between steps was 9�. As for CSD tractography, the maximum streamline
length was set to 200 mm. Again, each tract was composed of 10000 streamlines, with a
maximum trial number of 1 million. For both methods and all tracts, reconstructions were
obtained by seeding streamlines uniformly inside the selected ROIs and propagating them
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bidirectionally until termination. The same brain mask used for the whole-brain tractograms
was used to terminate streamlines when they exited the brain.

5.2.5 Qualitative analysis of reconstructed tracts

A team of neuroradiologists independently reviewed all tractography results using Trackvis
(http://trackvis.org/), a software program that allows interactive visualization of tractography
reconstructions. The neuroradiologists performed a track quality assessment by using a
5-point scale (1, non-diagnostic tracks; 2, poor quality; 3, fair quality; 4, good quality;
5, excellent quality). The evaluations were based on the presence of false-positive and
false-negative tracts and anatomical accuracy of the reconstructed bundles [Beddy et al.
(2011)].

5.2.6 Statistical analysis

For each tract and reconstructing technique, frequencies and percentages of the quality score
were calculated across subjects. The average weighted score was computed for each tract
and for each evaluator as the average of all scores weighted by their frequency. Chi-square
test was used to compare qualitative scores of CSD and DTI tracts. Inter-observer agreement
was evaluated using the Cohen’s kappa test [Cohen (1960)]: a value of K > 0.70 indicated
excellent, 0.40 to 0.70 fair-to-good (moderate), and < 0.40 poor agreement [Fleiss et al.
(2003)]. Statistical analysis was performed with SPSS Statistics for Mac 21.0 (IBM, Armonk,
NY, USA). Results were considered significant at p < 0.05.

5.3 Results

5.3.1 EV Maps, Short-Track TDI, and DEC-TDI Maps

Good quality directionally encoded colour track density maps were obtained in all patients,
as determined by visual inspection. Short-track TDI and DEC-TDI maps better depicted
the brain anatomy compared with the conventional images, showing consistent concordance
with available anatomical atlases and previous studies [Hoch et al. (2016); Naidich et al.
(2009); Catani and de Schotten (2008)]. The EV maps allowed to visualize the main fibre
tracts in older children, while they presented a more blurred appearance for unmyelinated
neonates; the distinguishable level of detail was lower in the EV maps than in stDEC-TDI
for all subjects.

http://trackvis.org/


5.3 Results 55

Figures 5.1-5.3 demonstrate axial images of the brain at 5 discrete anatomical levels on
conventional imaging, EV maps, and stDEC-TDI maps in one representative case of each
age group, respectively.

Figure 5.1 EV maps and stDEC-TDI maps at 5 canonical brain levels (rostral medulla, middle
pons, rostral midbrain, internal capsules, corpus callosum) in a 6-day neonate. Axial T2-weighted
images (upper row) and corresponding EV maps (middle row) and stDEC-TDI images (bottom row).
Conventional color scheme: blue (inferior-superior), green (antero-posterior), and red (left-right).
Note that even in an unmyelinated brain the corticospinal tract is clearly visible from the bulbar level
to the centrum semiovale in the stDEC-TDI map (arrowheads), while it is more difficult to distinguish
in the EV maps especially at the bulbar level (first column).

In particular, even in unmyelinated or partially myelinated brains, several WM bundles
could be clearly discriminated in the stDEC-TDI maps (Figures 5.1 and 5.2), while the same
bundles were harder to distinguish in the EV maps, especially at the brainstem levels. In
older children, WM tracts and nuclear groups could be visualized with greater anatomical
detail in the stDEC-TDI maps than in the EV maps, again particularly in the brainstem
(Figure 5.3). By comparing zoomed versions of the EV and stDEC-TDI maps, the advantage
in visualization offered by the stDEC-TDI maps is clear: the reduced voxel size allows to
easily visualize and distinguish the WM tracts even when zooming the image, while the EV
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Figure 5.2 EV maps and stDEC-TDI maps at 5 canonical brain levels (rostral medulla, middle pons,
rostral midbrain, internal capsules, corpus callosum) in a 16-month-old infant. Axial T2-weighted
images (upper row) and corresponding EV maps (middle row) and stDEC-TDI images (bottom row).
Conventional color scheme: blue (inferior-superior), green (antero-posterior), and red (left-right). The
stDEC-TDI images clearly show the genu (thin arrow) and splenium (empty arrow) of the corpus
callosum in red. The anterior columns of the fornix (arrowhead) are depicted in light blue. The anterior
portion of cingulum (thick arrow) is coloured in green. The main WM tracts are distinguishable also
in the EV maps, but the quality is lower; the corticospinal tract is almost not distinguishable from
non-WM voxels at the bulbar level (first column), while in the stDEC-TDI map it is clearly visible
and distinguished from the background.

maps appear blurred and with a stair-step effect. The different anatomical structure is more
confused and less easily discriminated in the zoomed EV maps (Figure 5.4).

5.3.2 CSD and DTI reconstruction of white matter tracts

All tracts were reconstructed with CSD-PT, showing a 100% success rate for CSD-PT fibre
tractography reconstruction. DTI fibre reconstruction also showed a 100% success rate, but
the reconstructions obtained with CSD-PT received higher quality scores more frequently
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Figure 5.3 EV maps and stDEC-TDI maps at 5 canonical brain levels (rostral medulla, middle
pons, rostral midbrain, internal capsules, corpus callosum) in a 10-year-old child. Axial T2-weighted
images (upper row) and corresponding EV maps (middle row) and stDEC-TDI images (bottom row).
Conventional color scheme: blue (inferior-superior), green (antero-posterior), and red (left-right). The
stDEC-TDI maps show the middle cerebellar peduncles in green (arrowhead), the inferior longitudinal
fasciculi in green (thin arrow), the external capsules in blue-green (empty arrow), and the superior
longitudinal fasciculi in green (thick arrow). As in the infant case, the visualization is enhanced in the
stDEC-TDI maps and the quality is higher; non-WM voxels show no values, while in the EV maps
the WM structures are harder to distinguish from the background voxels.

than the DTI reconstruction. A summary of visual assessment results and inter-reader
agreement evaluation are reported in Table 5.2.

Figures 5.5-5.7 demonstrate CTT, CPCT, and CST reconstructions using both methods in
one representative case of each age group, respectively.

While all the considered fibre tracts are reconstructed successfully, the DTI tracts ap-
peared thinner and with a reduced volume with respect to known anatomy, especially in the
infant (Figure 5.6) and neonate (Figure 5.5). CSD-PT tracts, on the contrary, were fully
reconstructed even in unmyelinated neonates, showing the full volume of the WM structures.
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Figure 5.4 EV maps and stDEC-TDI maps, magnified view at 3 brainstem levels (rostral medulla,
middle pons, rostral midbrain) in an 8-year-old child. Upper row: EV images. Lower row: stDEC-
TDI images. Conventional color scheme: blue (inferior-superior), green (anteroposterior), and red
(left-right). First column: at the bulbar level, the corticospinal tract is on the anterior surface of
the pyramids (arrowhead), adjacent to the inferior olivary nucleus (asterisk). In the EV map, non-
WM voxels show and ‘blur’ the corticospinal tract, making it more difficult to distinguish. Second
column: at mid-pons level, the pyramidal tract (arrowhead) is clearly separated from the transverse
pontocerebellar fibres (thin arrow) and ascending pathways (thick arrow). Note the dentate nuclei
(empty arrow), almost not recognizable in the EV map. Third column: at rostral midbrain, the central
tegmental tract (arrow) is located posteriorly to the red nuclei (arrowhead). Note the optic tracts
coloured in green (thin arrow). The smaller voxel size of the stDEC-TDI maps allows to visualize all
the structures correctly even at a zoomed level, while the EV maps at the same level of magnification
appear blurred and with a stair-stepped effect.

The resulting average scores with the relative standard deviations are reported in Table
5.3. Average scores for CSD-PT tracts were always higher than DTI scores, with a difference
ranging from 0.7 to 1.4 points. The difference between scores for the two methods was
always significant (p < 0.05 for all tracts and all readers) (Table 5.2).

Figure 5.8 shows the frequency of the scores assigned to all tracts for the different
reconstruction methods and for both evaluators. No reconstruction was scored with 1 or 2
points, confirming the 100% success rate for both reconstruction methods; however, lower
scores were more frequently awarded to DTI reconstructions, while the frequency of higher
scores was higher for CSD-PT reconstructions.



5.3 Results 59

Reader 1 Reader 2
Tract Method Score Frequency p-value c2 Score Frequency p-value c2 Cohen’s K p-value

CTT

DTI
3 18 (36%)

< 0.001*

3 15 (30%)

< 0.001*

0.60 < 0.001*4 32 (64%) 4 35 (70%)
5 0 (0%) 5 0 (0%)

CSD-PT
3 3 (6%) 3 2 (4%)

0.66 < 0.001*4 28 (56%) 4 27 (54%)
5 19 (38%) 5 21 (42%)

CPCT

DTI
3 25 (50%)

0.008*

3 22 (44%)

0.025*

0.72 < 0.001*4 25 (50%) 4 28 (56%)
5 0 (0%) 5 0 (0%)

CSD-PT
3 2 (4%) 3 5 (10%)

0.62 < 0.001*4 35 (70%) 4 32 (64%)
5 13 (26%) 5 13 (26%)

CST

DTI
3 43 (86%)

0.039*

3 38 (76%)

0.024*

0.66 < 0.001*4 7 (14%) 4 12 (24%)
5 0 (0%) 5 0 (0%)

CSD-PT
3 1 (2%) 3 0 (0%)

0.57 < 0.001*4 20 (40%) 4 25 (50%)
5 29 (58%) 5 25 (50%)

Table 5.2 Quality scores with relative frequencies and inter-reader agreements for the DTI and CSD-
PT reconstructions of CTT, CPCT and CST tracts. Legend: CTT, cerebellar thalamic tract; CPCT,
corticopontocerebellar tract; CST, corticospinal tract; CSD, constrained spherical deconvolution;
DTI, diffusion tensor imaging; p-value c2, p-value for the Chi square test. The 5-point scale: 1,
non-diagnostic; 2, poor quality; 3, fair quality; 4, good quality; 5, excellent quality. Only scores from
3 to 5 are reported because no reconstruction was scored with 1 or 2 points.

No reconstruction obtained with DTI received the highest score of 5 points, while CSD-
PT reconstruction was scored 5 points on average in 40% of the comparisons for CTT,
26% of the comparisons for CPCT, and 54% of the comparisons for CST. For CSD-PT
reconstructions of CST, the highest score of 5 points was the most frequently awarded for
both readers, while the most frequent score for DTI reconstructions of the same tract was of
3 points. A moderate-to-excellent inter-reader agreement was observed for all qualitative
evaluations, with values ranging between 0.6 and 0.7.
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Figure 5.5 CSD-PT (upper row) and DTI (lower row) reconstructions of the CST (first column),
CPCT (second column), and CTT (third column) in a 10-day-old neonate. All tracts are reconstructed
with both techniques but the quality of CSD-PT tracts is superior to that of DTI.

Tract Method Reader 1 Reader 2

CTT DTI 3.64 ± 0.48 3.70 ± 0.46
CSD-PT 4.32 ± 0.59 4.38 ± 0.57

CPCT DTI 3.50 ± 0.51 3.56 ± 0.50
CSD-PT 4.22 ± 0.51 4.16 ± 0.58

CST DTI 3.14 ± 0.35 3.24 ± 0.43
CSD-PT 4.56 ± 0.54 4.50 ± 0.51

Table 5.3 Average scores and standard deviations for the DTI and CSD-PT reconstructions of CTT,
CPCT and CST tracts.
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Figure 5.6 CSD-PT (upper row) and DTI (lower row) reconstructions of the CST (first column),
CPCT (second column), and CTT (third column) in a 12-month-old infant. All tracts are reconstructed
with both techniques but the quality of CSD-PT tracts is superior to that of DTI.

Figure 5.7 CSD-PT (upper row) and DTI (lower row) reconstructions of the CST (first column),
CPCT (second column), and CTT (third column) in a 6-year-old child. All tracts are reconstructed
with both techniques but the quality of CSD-PT tracts is superior to that of DTI.
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Figure 5.8 Score frequency histograms for all tracts and reconstruction methods. Top plot: results for
Reader 1, bottom plot: results for Reader 2. Only scores from 3 to 5 points are reported in the plots,
because no reconstruction was rated 1 or 2 points.



Chapter 6

Modifications of network-level structural
connectivity in children with segmental
callosal agenesis

6.1 Introduction

In Chapter 5 we showed that CSD-PT can be successfully applied to paediatric clinical data
from healthy subjects to obtain WM fibre tracts reconstructions, with better results than
with classical DTI. The subsequent step in my work was then to apply this reconstruction
methodology to a group of pathological subjects. The objectives of this part of the work were:
i) to further confirm the applicability of CSD-PT on this kind of data, even in pathological
cases, where normal anatomy is disrupted; ii) to exploit the capabilities of CSD-PT to
investigate how WM modifications brought on by a specific malformation can influence
structural connectivity with respect to normal, healthy connectivity.

In collaboration with the Gaslini hospital, we chose to study structural connectivity
modifications in a specific congenital defect: segmental agenesis of the corpus callosum
(segACC). This is a peculiar form of partial callosal agenesis (ACC) characterized by the
absence of the central portion of the corpus callosum — a thick tract of commissural fibres
which connects the brain’s hemispheres — with disconnection between the anterior (genus)
and posterior (splenium) corpus callosum [Raybaud and Girard (1998), Raybaud (2010)]. On
conventional imaging, the anterior and posterior segments appear, respectively, as genual and
splenial remnants, while the intermediate segment is a thin lamina, usually corresponding to
the hippocampal commissure [Raybaud (2010)] These features were traditionally considered
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the result of an early destructive insult during central nervous system development. Indeed,
for many years, the prevailing theory held that the corpus callosum developed in an anterior-
to-posterior direction, starting with the genu, followed by the body, splenium, and finally
the rostrum [Barkovich and Kjos (1988)]. According to this model, segACC can only be
explained by an acquired disruptive event occurring after corpus callosum development has
been completed. On the other hand, segACC has been described in siblings and in patients
with no evidence of cerebral lesions, suggesting a malformative rather than acquired origin
[Raybaud and Girard (1998)]. New theories on the bicentric origin of the corpus callosum
have further supported the malformative hypothesis [Raybaud (2010)]. Nevertheless, little
is still known about the structural connectivity pattern and clinical-genetic phenotypes
associated with this callosal malformation.

The first investigations of callosal malformation were done with anatomical MR scans
[Barkovich and Kjos (1988)] and DTI with FACT tractography [Lee et al. (2004)], showing
the connectivity pattern of Probst bundles and revealing the presence of aberrant heterotopic
callosal tracts in partial ACC. More recently, advanced diffusion analysis allowed to charac-
terize the wide variability of callosal connections in partial ACC [Wahl et al. (2009)]. The
structural connectivity framework has greatly improved the characterization of WM abnor-
malities in patients with ACC, revealing different patterns of global and local connectivity
and greater inter-individual variation of brain network organization compared with healthy
subjects [Owen et al. (2013); Meoded et al. (2015); Jakab et al. (2015)].

In this study, we aimed to determine the impact of segACC on large-scale brain networks,
comparing network topologic properties related to integration and segregation among children
with this malformation relative to healthy controls, and we applied network-based statistics
to quantify connectivity differences. In particular, we hypothesized that the absence of the
central callosal portion would reduce the long-range global connectivity and increases the
short-range local connectivity in patients with segACC. We also expected to find increased
variability of node degree spatial distribution and correlation strengths in patients with
segACC compared with controls. Finally, we postulated that the modular organization of the
segACC brain is different compared with healthy controls.
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6.2 Materials and Methods

6.2.1 Image acquisition and preprocessing

This was a single-centre retrospective case-control study, performed with Gaslini Institute
review board approval and parental written informed consent. We reviewed the MR imaging
studies, clinical information, and genetic data of 8 children consecutively diagnosed with
segACC between 2010 and 2015 (5 males; mean age at MR imaging, 3.9 years; range, 22
days to 5.11 years). Connectome analysis was performed in the 5 patients with segACC older
than 2 years of age, because no major reorganization of structural modules is usually observed
after this age [Hagmann et al. (2010)]. We selected 10 age- and sex-matched controls who
underwent brain MR imaging with DTI for transient febrile convulsion, minor trauma,
or headaches; all had normal brain anatomy, psychomotor development, and neurologic
examination.

MR imaging was performed on a 1.5T scanner with an 8-channel head coil and included
a 3-mm-thick axial T2 volume, FLAIR, and DWI; a 3-mm-thick coronal T2 volume; sagittal
0.6-mm-thick 3D driven equilibrium; and a 3D turbo field echo T1 volume. DWI data was
collected along 34 non-collinear directions by using an axial single-shot spin-echo echo-
planar sequence, with b-values of 0 and 1000 s/mm2, TR = 9203ms, TE = 71 ms, section
thickness 2 mm, FOV = 240 ⇥ 240 mm, matrix size = 128 ⇥ 128. Uncooperative patients
were sedated during the examinations.

The FMRIB Diffusion Toolbox 3.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) was used
to correct DWI raw data for motion artefacts and eddy current distortion and to calculate the
tensor and DTI metrics maps. Subsequently, we used the FMRIB Linear Image Registration
Tool (FLIRT; http://www.fmrib.ox.ac.uk/) to perform linear registration between the reference
b = 0 images and the 3D-T1 volume. Non-brain tissue was removed by using the MRtrix3
package (https://github.com/MRtrix3/mrtrix3).

6.2.2 Probabilistic tractography and connectivity matrix computation

CSD-PT was performed on the preprocessed diffusion-weighted images by using the MRtrix3
package [Tournier et al. (2012)]. For each subject, a whole-brain tractography consisting
of 3 million streamlines was generated, using the Anatomically Constrained Tractography
framework (ACT) [Smith et al. (2012)]. The seeds used for generating streamlines were
distributed uniformly in the gray/white matter interface. The tractograms were filtered by

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
http://www.fmrib.ox.ac.uk/
https://github.com/MRtrix3/mrtrix3


6.2 Materials and Methods 66

using the Spherical Deconvolution Informed Filtering of Tractograms (SIFT) [Smith et al.
(2013), and the final result consisted of 1.5 million streamlines for each subject.

Fibre segmentation was performed by using TrackVis 0.5.1 (www.trackvis.org) with
a manually drawn multi-ROI approach, following the callosal fibre segmentation method
described by Wahl et al. (2009) (Figure B.1 in Appendix B). Qualitative analysis was
performed by a team of paediatric neuroradiologists who evaluated the anatomic course of
reconstructed tracts on superimposed 3D-T1 and the presence of other brain anomalies.

The 3D-T1 was automatically segmented by using FreeSurfer 5.1.0 (http://surfer.nmr.mgh.
harvard.edu/) in 84 regions (68 cortical and 16 subcortical), representing the network nodes
used as seeds for connectome construction [Fischl et al. (2004)]. To compare the structural
connectivity studies of patients and controls, we modified the virtual callosotomy approach
used by Owen et al. (2013) simulating the segACC in each matched control (partial virtual
callosotomy — PVC). In particular, in MRtrix3, we placed a manually drawn exclusion
mask on the mid-sagittal plane over the exact callosal segment corresponding to the patient’s
agenetic callosum portion. The size and shape of the mask varied for each pair of matched
controls on the basis of the specific type of segACC, effectively removing only the streamlines
passing through the corresponding agenetic callosal segment.

The connectome edges were calculated by using probabilistic tractography performed
with MRtrix3. The tracking results of each of the seeds were masked by each of the other
83 regions, referred to as targets, to obtain a connection strength between each seed and
target pair, with the total number of streamlines connecting two regions as the connection
strength. The 84 ⇥ 84 connection matrices were symmetric about the diagonal, and the
matrix diagonal was set to zero. The connection strength was then divided by the sum of
voxels in the seed and target regions to account for differences in volumes between various
cortical and subcortical regions.

Individual and consensus connectomes were created for the 3 groups of subjects: patients
with segACC, controls with PVC, and controls without PVC. In particular, we thresholded
each individual connectome to remove the weakest connections, setting to zero all connection
strengths that were < 0.5% of the maximum strength [Owen et al. (2013)]. The individual
connectomes were then binarized setting to 1 all the non-zero connections. For each group, a
consensus connectome was obtained by averaging the thresholded matrices of all subjects in
the group; subsequently, all connections that were present in < 75% of the subjects in the
group were removed from the group’s consensus matrix. The consensus matrices were then
binarized by setting to 1 all the non-zero connections.

www.trackvis.org
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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6.2.3 Network and statistical analysis

For topology analysis, we calculated measures of structural segregation (clustering coefficient,
transitivity, local efficiency, and modularity) and integration (mean degree, characteristic
path length, mean normalized betweenness, global efficiency, and cost) for the binarized
individual and consensus connectomes of subjects with segACC, PVC and controls, with the
Brain Connectivity Toolbox (https://sites.google.com/site/bctnet).

In each group, hub nodes were separately identified for individual and consensus con-
nectomes. A node in a single network (individual or consensus) was marked as a hub if
its degree was 1 standard deviation higher than the mean degree of its network. To test
the hypothesis that the segACC brain has higher within-group variability compared with
controls, we assessed the spatial distribution of node degree by transforming the degrees of
the 84 nodes in each connectome into a vector and by using the correlation coefficient in a
pair-wise fashion between all individuals in each group [Owen et al. (2013)]. To measure
network similarity, we calculated the connection strength correlation coefficient between
each individual connectome and its group consensus connectome, as well as between every
pair of individual connectomes in each group [Owen et al. (2013)].

Modularity and mean participation coefficient (quantifying the diversity of inter-modular
connections) were calculated for each partitioning of the consensus and individual con-
nectome [Rubinov and Sporns (2010)] To evaluate the stability of modular assignment, we
computed the mean Hubert-Rand Index [Hubert and Baker (1977)] for each of the 3 groups: i)
between the modular assignment for each of the individual connectomes and the assignment
for the consensus connectome, and ii) pair-wise between the modular assignments for the
individual connectomes [Owen et al. (2013)]. The Hubert-Rand index is an adjustment of the
Rand index (measuring the similarity of two partitions of a dataset) that takes into account
the probability of both agreement and disagreement between partitions [Hubert and Baker
(1977)].

To subdivide the networks into non-overlapping modules, we applied the Louvain commu-
nity detection algorithm with an iterative fine-tuning method by using the function provided
by the Brain Connectivity Toolbox. The iterations were stopped when the modularity value
did not change between steps.

Network-based statistics was performed to evaluate the differences in subnetworks
between patients and PVC controls [Zalesky et al. (2010)]. The statistical model included
a design matrix of 5 patients and 10 controls. We used a contrast vector [1, -1] to test for
an increase of subnetwork connectivity in controls compared with patients, and a contrast
vector [-1, 1] to test for the opposite hypothesis. A t-test was applied to assess the statistical

https://sites.google.com/site/bctnet
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significance of between-group comparisons of the network metrics. For each metric, the data
labels were randomly reassigned between the two groups and t-values were computed for
each relabelling A total of 5000 permutations were performed to estimate the null distribution,
and associations with t > 3 were analysed by network-based statistics. A family-wise error
rate-corrected significance level of p  0.01 was used.

To assess the statistical significance of between-group comparisons of the network metrics
and the measures of connectome variability, we used a non-parametric permutation testing
procedure. For each metric, the data labels were randomly reassigned between the two groups
and t-values were computed for each relabelling, for a total of 5000 permutations. p-values
were calculated on the basis of the distribution of t-values obtained from the permutations
and were adjusted for multiple comparisons with a false-discovery rate correction. Statistical
significance was set at p < 0.05. Data was analysed by using SPSS Statistics for Mac 21.0
(IBM, Armonk, New York).

6.3 Results

Clinical, genetic, and neuroradiological characteristics of patients with segACC are described
in Table B.1 in Appendix B. On conventional imaging, in most patients (7/8; 87.5%),
the agenetic segment corresponded to the posterior callosal body and the splenium was
hypoplastic. In one patient (1/8; 12.5%), the anterior callosal body was additionally involved.
Probst bundles were noted in all patients (8/8; 100%) at the level of the agenetic callosal
segment on coronal images. The anterior commissure was hypoplastic in four cases (4/8;
50%). A colpocephalic appearance of the lateral ventricle was evident in three patients (3/8,
34.5%).

On constrained spherical deconvolution tractography, no callosal fibre tracts were de-
tectable at the level of the thin lamina corresponding to the agenetic segment. Three mal-
formative subtypes were identified on the basis of the relationship of the hippocampal
commissure (HC) with the callosal remnants (Figure 6.1 and Figure B.2 in Appendix B): the
HC lay beneath the anterior callosal remnant in three patients (segACC type I), while in three
other patients, it was attached to the posterior callosal remnant (segACC type II). Finally, in
two patients, the intermediate segment of the commissural plate was made of green-coded
longitudinal bundles corresponding to the fornices joined in the midline, forming the HC
(segACC type III).

According to the projection areas, the intermediate agenetic segment corresponded to
fibres projecting to the parietal lobe in all patients with segACC and healthy controls after
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Figure 6.1 The 3 subtypes of segmental agenesis of the corpus callosum: SegACC type I in a 2-year-
old girl (patient 3, A–D), segACC type II in a 5.4-year-old boy with Klippel-Feil syndrome (patient 5,
E–H), and segACC type III in a 5.7-year-old boy with septo-optic dysplasia (patient 6, I–L). Midline
sagittal T2 driven equilibrium (A, E, and I) and corresponding fractional anisotropy color directional
maps fused with 3D-T1 (B, F, and J) reveal the focal absence of the posterior part of the callosal body
in all patients. Hypoplasia of the anterior commissure may be associated, as shown in patient 3 (A
and B, arrowhead) and patient 6 (I and J, arrowhead). Note the presence of a green-coded longitudinal
bundle located in the inferior part of the anterior callosal segment, corresponding to an ectopic
callosal bundle in patient 5 (F, empty arrow). Coronal fractional anisotropy color directional maps
fused with 3D-T1 (C, G, and K) demonstrate Probst bundles, with variable thickness, at the level of
agenetic callosal segments in the 3 patients (arrows). Tractographic reconstructions of callosal fibres
overlaid on T1 (D, H, and L) show the homotopic callosal connections in the three patients. (D) In
segACC type I, the anterior callosal remnant contains fibres connecting the anterior frontal, posterior
frontal, and parietal lobes, while the posterior callosal segment contains fibres connecting the parieto-
occipitotemporal lobes. In segACC types II (H) and III (L), the anterior callosal segments exclusively
contain frontal callosal fibres, while the posterior callosal remnants contain fibres connecting the
parieto-occipitotemporal lobes. In segACC type III (L), the intermediate segment of the commissural
plate is made of green-coded bundles, corresponding to the fornices joined in the midline, forming the
hippocampal commissure. The callosal fibres are coloured according to their projections to specific
lobar areas (i.e., light blue for anterior frontal callosal fibres, orange for posterior frontal callosal
fibres, green for parietal callosal fibres, and violet for occipitotemporal callosal fibres).

PVC. The hypoplastic posterior callosal remnants consistently connected the occipitotem-
poral lobes, while the anterior remnants always connected the frontal lobes, including the
frontal associative regions and, in all except one case, the motor areas. In the three patients
with segACC-type I, the anterior callosal remnants also contained splenial fibres connecting
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Consensus connectomes Individual connectomes [Mean (SD)] P values

Control PVC SegACC Control PVC SegACC SegACC
vs Controls

SegACC
vs PVC

Assortativity 0.03 �0.02 0.02 �0.02 (0.03) �0.05 (0.03) �0.02 (0.04) 0.815 0.379
Global efficiency 0.45 0.42 0.38 0.54 (0.02) 0.52 (0.02) 0.48 (0.03) 0.005* 0.024*
Mean local efficiency 0.69 0.7 0.71 0.77 (0.02) 0.77 (0.02) 0.75 (0.04) 0.553 0.597
Mean normalized betweenness 0.02 0.02 0.03 0.01 (0.0) 0.02 (0.0) 0.02 (0.0) 0.001* 0.031*
Characteristic path length 2.63 2.83 3.36 2.13 (0.09) 2.24 (0.13) 2.42 (0.12) 0.002* 0.021*
Transitivity 0.38 0.4 0.4 0.45 (0.02) 0.46 (0.02) 0.46 (0.04) 0.555 0.904
Mean clustering coefficient 0.49 0.51 0.53 0.56 (0.03) 0.57 (0.03) 0.57 (0.04) 0.905 0.929
Mean degree 8.64 8.17 7.31 14.71 (1.27) 13.66 (1.33) 12.02 (1.62) 0.005* 0.054
Cost 0.21 0.2 0.18 .35 (0.03) 0.33 (0.03) 0.29 (0.04) 0.005* 0.054

Table 6.1 Network metrics of consensus and individual connectomes. Bold font and asterisks indicate
p-values which were statistically significant.

the occipitoparietal lobes. Segmental Probst bundles corresponding to the agenetic callosal
segment were confirmed in all patients. These bundles merged anteriorly with the ventral
callosal remnant and extended posteriorly to the parietal lobes. Callosal ectopic bundles were
identified in three patients.

6.3.1 Network and statistical analysis

Table 6.1 reports the topology metrics of consensus and individual connectomes. Patients
with SegACC had less integrated structural connectivity compared with those with PVC and
controls. No significant differences in the segregation metrics were found among patients
with segACC and PVC and controls.

Figures 6.2 and 6.3 show the hubs found respectively for the consensus and individual
connectomes. The analysis of within-group variability revealed that the spatial distribution of
node degrees was significantly more variable in segACC, as demonstrated by a lower mean
correlation coefficient (r = 0.634±0.089), compared with both controls (r = 0.735±0.052)
and subjects with PVC (r = 0.729±0.066) at p < 0.05.

There were no differences in the connection strength correlation coefficients between the
consensus network and each individual network, indicating that the consensus connectomes
represented individuals in their group to approximately the same extent. Conversely, the
inter-individual variability of the segACC connectome was greater than that of the control
and PVC connectomes, as shown by a significantly lower consistency between individual
networks (p < 0.05, Table B.2 in Appendix B).

The mean and standard deviation of modularity-related metrics are provided in Table 6.2.
Six modules were identified in the consensus network of controls and those with PVC, while
only 5 were found in patients with segACC, due to disruption of the module corresponding
to the structural core (Figure 6.4 and Tables B.3-B.5 in Appendix B).
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P values
Control PVC SegACC SegACC SegACC

[Mean (SD)] [Mean (SD)] [Mean (SD)] vs Controls vs PVC

Modularity 0.38(0.02) 0.41(0.03) 0.44(0.03) 0.002* 0.151
Participation coefficient 0.39(0.05) 0.31(0.07) 0.28(0.04) 0.003* 0.335
HRI (vs consensus) 0.53(0.05) 0.54(0.08) 0.58(0.09) 0.311 0.394
HRI (vs individual) 0.63(0.03) 0.61(0.06) 0.68(0.02) 0.009* 0.017*

Table 6.2 Modularity metrics of individual connectomes. SD: Standard deviation. HRI: Hubert-Rand
Index. Bold font and asterisks indicate p-values which were statistically significant.

Network-based statistics identified 3 subnetworks of decreased connectivity in patients
compared with controls (Figure 6.5 and Table 6.3).
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Node 1 Node 2 t test value P value

Network 1 0.001
L inferoparietal L lingual 6.24
L lingual L middle temporal 5.89
L paracentral L postcentral 5.89
L hippocampus L middle temporal 4.16
L paracentral L amygdala 3.61
L inferoparietal L postcentral 3.61
L paracentral L middle temporal 3.53
L pallidum L medio-orbitofrontal 3.53
L paracentral R hippocampus 3.53
L hippocampus L thalamus proper 3.53
L middle occipital L medio-orbitofrontal 3.53
L putamen L pallidum 3.18
L paracentral L medio-orbitofrontal 3.18

Network 2 0.009
L superior frontal R rostral middle frontal 3.53
R posterior cingulate R rostral anterior cingulate 3.53
R isthmus cingulate R rostral anterior cingulate 3.53
L rostral middle frontal R rostral middle frontal 3.18
R rostral anterior cingulate R rostral middle frontal 3.18

Network 3 0.01
R lingual R insula 3.61
R middle temporal R lingual 3.61
R middle temporal R temporal pole 3.53
R middle occipital R insula 3.18

Table 6.3 Subnetworks with decreased connectivity in patients with SegACC compared with controls
with partial virtual callosotomy.
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Figure 6.2 Hubs for the consensus connectomes in the control (A and B), PVC (C and D), and segACC
(E and F) groups. The bar graphs reveal the degree of distribution across nodes for the consensus
connectomes (A, C, and E): the red bars demonstrate the nodes with degrees greater than mean plus
1 standard deviation for the control consensus connectome in A. The dashed lines demonstrate the
cut-off for mean plus 1 standard deviation in the PVC controls and patients with segACC. The red bars
in C and E show the redistribution of hub regions in the PVC and segACC consensus connectomes,
compared with control consensus connectomes: any red node appearing to the right of the dashed line
has been demoted from hub status and any white bar to the left of the dashed line is a node that has
been promoted to a hub. The 3D schematic graphs depict the spatial distribution of hubs (represented
by larger red circles) within the corresponding consensus connectomes (B, D, and F).
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Figure 6.3 Hubs for individual connectomes in the control (A and B), partial virtual callosotomy (C
and D), and segmental callosal agenesis (E and F) groups. The bar graphs reveal the mean degree of
distribution across nodes for the individual connectomes with standard deviation error bars (A, C, and
E): the red bars demonstrate the nodes with a degree greater than mean plus 1 standard deviation for
the controls (A). The dashed lines demonstrate the cut-off for mean plus 1 standard deviation for the
PVC and for segACC. The red bars in C and E show the redistribution of regions in the individual
connectomes of the PVC and segACC groups, respectively, compared with the hubs in the individual
connectomes of control subjects: any red node appearing to the right of the dashed line has been
demoted from hub status, and any white bar to the left of the dashed line is a node that has been
promoted to hub. The 3D schematic graphs depict the spatial distribution of hubs (represented by
larger red circles) within the corresponding individual connectomes (B, D, and F).
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Figure 6.4 Module assignments for the consensus connectomes. Topology analysis of network
modules reveals 5 modules for the control and partial virtual callosotomy groups and 4 modules
for patients with segACC. Modules 3 and 4 largely consist of frontal nodes, while modules 1 and
2 are more posterior. Note that module 5, corresponding to the “structural core” of the network, is
not present in the segACC consensus connectome. The 82 nodes are plotted with a circle coloured
according to the community to which it was assigned. For the complete list of the regions included in
each module, refer to Tables B.3-B.5 in Appendix B.

Figure 6.5 Subnetworks with decreased connectivity in patients with SegACC compared with controls
with partial virtual callosotomy. Networks 1 and 3 are prevalently intra-hemispheric and involve the
temporoinsular and nuclear regions, while network 2 is inter-hemispheric and connects the frontal
lobes and right cingulum.



Part III

Discussion



Chapter 7

Conclusions

7.1 Main results

The main results of this PhD thesis can be summed up as: i) the characterisation of the
statistical correlation between structural and functional connectivity in healthy adult subjects,
using structural and functional analysis methods with higher precision and resolution than
the methods most often used in literature; ii) the application of CSD-PT-based WM tracts
reconstruction to neonatal and paediatric clinical data, with methods which are never applied
in the clinical environment and overcoming the obstacles posed by its constraints; iii)
the further characterisation of structural connectivity modifications brought by segmental
agenesis of the corpus callosum, their effect on patients’ functionality and the differences
with the modifications and functional manifestations caused by complete agenesis of the
corpus callosum.

7.2 Part I – Relation between structural and functional
connectivity in the healthy adult

The first approach to the relationship between brain structure and function is almost always
done on healthy adult subjects, to obtain a baseline description of the brain’s workings. While
analysis of diffusion MRI data is currently the only way to compute structural connectivity
in vivo, many techniques exist to study functional connectivity, often converging to the
same results [Hamandi et al. (2008); Garcés et al. (2016)]. Non-invasive methods such as
BOLD-fMRI and scalp EEG suffer from different and opposite resolution problems, which
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are overcome by the use of intra-cerebral electrodes in epileptic patients who will undergo
surgery.

In the work presented in Chapter 4, I compared the structural connectomes of 57 healthy
adult subjects from the HCP Young Adult Project with resting-state functional connectomes
from 67 adult subjects affected by drug resistant focal epilepsy, implanted with intra cere-
bral electrodes for SEEG recording. All non-typical activity was removed from the SEEG
recordings prior to computation of functional connectivity, effectively removing all contri-
butions of epileptic activity from the data. I computed structural connectomes from DWI
data downloaded from the HCP database, processed with CSD-PT, and analysed statistical
correlation between average group connectivity matrices at three different granularity levels:
a global comparison, a single-node-level analysis and a study of the community structure of
both networks and of their correlation.

Global comparison between average structural and functional networks yields significant
positive correlation for all parcellation schemes and FC acquisition frequencies, with values
of the coefficient higher than 0.5 for the function-based parcellation scheme. This positive
correlation does not vary at different densities of the original networks, suggesting it is driven
by hub nodes presenting very high degree. It also does not vary strongly across different
acquisition frequencies, while there is a higher variability across subjects, shown by the
wide confidence intervals. The visual comparison between structural and functional average
networks suggests that the structural connectivity — especially edges with high weights —
might be the ’base’ for functional connectivity, which can then be established also between
areas not directly connected by WM fibres.

Node-wise correlation coefficients show several nodes with very high values of structural-
functional correlation, up to 0.95 (p < 0.02, Pearson correlation test), and a few nodes
with very low coefficients (minimum 0.2, p < 0.02, Pearson correlation test), varying
quite coherently across four ranges of FC acquisition frequencies. The higher correlation
coefficients are concentrated in the fronto-temporal and occipital lobes of the brain, while
lower correlation is found for nodes in the parietal lobe: the regions of high correlation
re located in the areas which define the Default Mode Network [Greicius et al. (2003)], a
functional subnetwork linked to resting-state brain activity, where a good correspondence
of structural and resting-state functional connectivity has been demonstrated [Greicius et al.
(2009)]. This result is reasonable since the SEEG data acquisition was done with the patients
in a resting-state condition, with eyes closed: the resulting connectomes can be seen as
’resting-state connectomes’, reflecting the functional organisation in a ’default’ state of
rest, which appears to be strongly linked with the structural organisation of the brain. The
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variability of correlation across nodes further confirm the hypothesis that the relationship
between structural and functional organization is driven by a few hub nodes, composing the
’core’ of the networks.

Community analysis revealed a strong modularity for structural networks (max 0.81 left,
0.74 right hemisphere), with a subdivision into five modules well responding to previous
studies on both structural and functional connectivity [Hagmann et al. (2008); Owen et al.
(2013)] and a slightly lower community structure in functional networks, with a smaller
number of bigger modules (maximum modularity 0.50 left, 0.58 right hemisphere). The
functional partition with the best modularity value for the right hemisphere was again
composed of five modules, confirming the results from the previously cited works; the
optimal partition for the left hemisphere, on the other hand, was composed of only two big
modules. This might be caused by an uneven sampling of the brain’s left hemisphere, which
is often less implanted than the right hemisphere because of the high number of eloquent
cortex areas present in the left side of the brain. We compared partitions of structural and
functional networks composed of seven modules with the subdivision of the brain in seven
subnetworks from Yeo et al. (2011), finding a good correspondence of module edges with
the ones defined in the cited work. Comparison of partitions obtained from structural and
functional networks produced a maximum normalized mutual information index of 0.79
for the left and 0.73 for the right hemisphere, corresponding to partitions of five to seven
modules. This suggests a similar organization of structural and functional modules in both
hemispheres. This similarity seems to increase with the number of modules detected in the
networks, while for a lower number of modules the similarity decreases. This result, coupled
with previous observations and subdivisions of the brain network with respect to functional
characteristics [Yeo et al. (2011)], seems to suggest the existence of many functional sub-
areas, well segregated with respect to each other, and supported by a similar subdivision of
the structural network. It has been shown that single-edge-level analysis is often not enough
to capture the relationship between brain structure and function [Mišić et al. (2016)]; the
results of our global analysis were both confirmed and expanded by the analyses of other
levels of connectivity, from single-node to community level, giving more information on the
separate connectivities and on how they relate to one another.

This first part of the work established the existence of a strong relationship between
structural and functional brain connectivity and showed that CSD-PT and SEEG can be
used to investigate this link more finely than other methodologies, such as functional MRI
and DTI, which suffer from known problems such as a poor temporal resolution and a too
simplistic modelling of the diffusion MRI signal, producing low-quality reconstructions.
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In the following part of the thesis, the analysis has focused on the application of these
methods to the neonatal and paediatric age, and in particular to the computation of structural
connectivity from paediatric clinical data with the advanced diffusion imaging used in this
first part of the work.

7.3 Part II – Structural connectivity and its influence on
function in the healthy and pathological child

While functional connectivity in children and neonates can be studied with the same methods
applied in adults in the first part of this work [Cossu et al. (2008); Taussig et al. (2014);
Vanhatalo and Kaila (2006)], the same cannot be said for advanced diffusion imaging
methods for structural connectivity analysis. The second part of this thesis has focused on the
adaptation and application of CSD-PT to diffusion MRI data of paediatric patients acquired
with sequences commonly used in the clinical environment, where classical DTI is almost
always the chosen method of WM and connectivity analysis. This part of the thesis has been
developed in collaboration with the Neuroradiology Unit at the Giannina Gaslini Hospital in
Genova.

7.3.1 Feasibility of advanced diffusion imaging in paediatric clinical
data

In the work described in Chapter 5 we compared the reconstructions of three major WM
tracts — cerebellar-thalamic tracts, cortico-ponto-cerebellar tracts, and corticospinal tracts —
obtained with DTI and CSD-PT in 50 myelinated and unmyelinated subjects, scoring them
on a five-points scale [Beddy et al. (2011)]. The diffusion MRI images from all subjects
were acquired with a 1.5T scanner, using a sequence with suboptimal acquisition parameters
(34 gradient directions, b-value 1000 s/mm2) commonly applied during exams at the Gaslini
Hospital. Color-coded maps have been computed using the Track-Density Imaging (TDI)
framework [Calamante et al. (2010)], to compare the results with DTI eigenvector maps
commonly used in diagnostic practice.

While both methodologies were able to reconstruct the tracts in all cases, lower scores
were more frequently awarded to DTI reconstructions, and the frequency of higher scores
was higher for CSD-PT reconstructions. DTI reconstructions appeared often thinner and
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with reduced volumes with respect to known anatomy, especially for unmyelinated subjects,
while CSD-PT fully characterized the tracts even in the younger subjects.

We found that TDI maps provide WM images of high quality and higher spatial resolution
than the original diffusion-weighted data. TDI is performed by mapping reconstructed WM
tracks to an image in which the intensity of each voxel reflects the number of tracks passing
through that specific position in space [Calamante et al. (2010)]. A major advantage of this
method is that TDI maps can be computed with a voxel size smaller than the original DWI
data, thanks to the interpolation strategy used, thus allowing a better visualization of the
results. Directionally encoded colour maps can be computed by assigning a colour to each
spatial direction, and then colouring the map voxels with the correct colour depending on
the directionality of the fibres in the voxel. The TDI maps presented a higher resolution and
image quality with respect to eigenvector maps, allowing to precisely individuate anatomical
structures which appeared blurred on indistinguishable in eigenvector maps. The use of TDI
maps in place of eigenvector maps allows clinicians to better characterise the WM density
and direction in each location of the brain and to better delineate anatomical structures of
interest, either for diagnostic purposes or to better individuate ROIs for subsequent research
work.

Our results corroborate the hypothesis that CSD-PT can be successfully applied using
routine clinical MR protocols with low angular resolution and low b-value, even in paediatric
subjects. The advantages of CSD-PT over DTI can thus be exploited in a clinical environment
to investigate structural brain connectivity, both in health and pathology. Further refinements
to the CSD-PT reconstructions may be obtained using additional frameworks; for example,
Anatomically Constrained Tractography (ACT) [Smith et al. (2012)] incorporates anatomical
priors from a tissue segmentation of a T1 image into the tractography process, in order to im-
prove streamline termination criteria and the biological accuracy of the resulting tractograms.
Another interesting method to eliminate reconstruction bias and improve biological plausi-
bility of the tractograms is the Spherical-deconvolution Informed Filtering of Tractograms
(SIFT) developed by Smith et al. (2013). As discussed in the study by Calamante et al.
(2015), the application of these two methods also greatly improves the biological meaning
of TDI maps and quantitative investigations on these maps. The anatomical information
added by the tissue maps used in ACT allows streamlines passing through non-WM regions
or having implausible trajectories to be rejected, while SIFT allows to reduce the bias toward
major WM tracts in tractography reconstructions.

These two frameworks were incorporated in the analysis pipeline in a following work
with the Gaslini hospital, in order to confirm the good results obtainable with CSD-PT on
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paediatric clinical data and the applicability of this methodology to investigate structural
connectivity in such an environment. For this study, we chose to apply this method to
investigate structural connectivity and its modifications in a cohort of patients suffering
from a congenital malformation of the corpus callosum: segmental agenesis of the corpus
callosum.

7.3.2 Modifications in structural connectivity in segmental callosal age-
nesis

Segmental agenesis of the corpus callosum (segACC) is a specific form of partial callosal
agenesis (ACC) where only the central portion of the corpus callosum is missing, causing
a disconnection between the anterior and posterior segments. Despite the growing interest
this malformation has garnered in the past years after the advent of high-angular-resolution
diffusion imaging, little is still known about the modifications to structural connectivity it can
cause. Graph-based structural analysis has helped characterize ACC structural abnormalities,
revealing a decrease in global efficiency and a correspondent increase in local connectivity
measures, along with higher variability in individual connectomes compared with healthy
controls [Owen et al. (2013); Meoded et al. (2015); Jakab et al. (2015)].

In the last part of this thesis, presented in Chapter 6, we compared the structural connec-
tivity of 5 patients diagnosed with segACC with that of 10 age- and sex-matched healthy
controls, before and after virtual removal of the same section of the corpus callosum missing
in the corresponding segACC patient (partial virtual callosotomy — PVC group). The
structural connectomes were obtained from diffusion MRI data acquired at the Gaslini hospi-
tal, with the CSD-PT methodology adapted and validated in the previous part of the work.
This allowed to fully characterize the WM connections between cortical areas and to apply
network-based analyses to both groups, comparing network metrics and community structure.

As described in previous works [Owen et al. (2013)], we found a significant decrease in
network integration, with decreased global efficiency metrics and increased path length and
mean normalized betweenness. This has been shown to be a result of missing long-range
inter-hemispheric callosal fibres [Owen et al. (2013); Meoded et al. (2015)]. However, while
high-functioning ACC adults in the study by Owen et al. (2013) also showed an increase
in local efficiency and segregation metrics, reflecting a profound rearrangement of cortical
and subcortical connectivity, in our patients there was no such increase. This likely indicates
that the compensatory WM rewiring mechanisms, demonstrated by the presence of Probst
bundles and heterotopic callosal connections, were insufficient to compensate the absence
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of direct inter-hemispheric callosal tracts; this was confirmed by the decreased connectivity
found in three subnetworks related to cognitive, memory and language functions, and further
supported by the presence of psychomotor delay in all patients and a worse neurologic
prognosis than the adults with ACC studied in Owen et al. (2013). This is likely due to
the fact that the compensatory rewiring mechanisms described in ACC patients have a high
cost in terms of brain reorganization: while complete ACC can trigger this compensation
because of its higher severity in terms of decreased connectivity, the absence of only part of
the callosal fibres might not be enough to initiate the rewiring process, causing more severe
disruption to connectivity and cognitive functions.

This work also demonstrated that the structural connectivity of segACC subjects was
different from that of normally developing controls based on local changes in brain regions
that normally serve as connection hubs [Hagmann et al. (2010)]. The so-called ’hub’ nodes
are hyper-connected nodes through which a high number of paths between other nodes pass.
In particular, the cortical and subcortical hubs which were demoted or promoted from their
statuses were different in the segACC group compared with the PVC group, indicating that
network topology reorganization in segACC may not be explained only by the exclusion of
callosal fibres from the normal brain [Owen et al. (2013)]. Moreover, we found an increased
connectome variability in segACC, with higher variability in the spatial distribution of node
degree and in correlation strengths in patients compared with controls, confirming results
recently found both in adults and fetuses with ACC [Owen et al. (2013); Jakab et al. (2015)].
This might be due by a very wide variety of causes, from the connection variability of Probst
bundles [Tovar-Moll et al. (2006)] to alternative tracts being generated through different parts
of the brain in different subjects [Tovar-Moll et al. (2006); Tovar-Moll et al. (2014)].

We also found a lower number of modules and a higher intra-group correspondence
in patients with segACC compared with PVC and controls. These findings suggest that
neural plasticity in segACC reorganizes structural connectivity in an almost stereotyped way,
causing the loss of a distinct posterior medial module corresponding to the structural core
of the human brain, which comprises highly connected and central regions of the cortex
[Hagmann et al. (2008)]. In particular, portions of posterior medial cortex, such as the
posterior cingulate cortex, the precuneus, and the lateral and medial parietal cortex are
key core components known to be highly activated at rest in the Default Mode Network.
Therefore, it has been suggested that the structural core may have a central role in integrating
information across functionally segregated brain regions [Hagmann et al. (2008)]. Owen et al.
(2013) demonstrated a weakened structural core in adults with ACC associated with reduced
connectivity between regions of the cingulate cortex. Most interesting, the focal absence of
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callosal fibres connecting the parietal lobes in segACC may also disrupt the structural core
and contribute to the impairment of large-scale brain dynamics in these patients.

This thesis further elucidates the relationship between structural and functional connectiv-
ity in the adult subject, demonstrating the existence of a robust statistical correlation between
the two which is maintained at different levels of aggregation. It also poses the basis for
investigation of structural and functional networks in the neonatal and paediatric subject in
the clinical environment: by solving the problems posed by the sub-optimality of data from
the paediatric clinical environment, it allows to apply advanced diffusion imaging methods in
the clinical activity, in order to better investigate structural connectivity — and to elucidate
its relationship with functional connectivity — in the healthy and pathological paediatric
patient.
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Appendix A

Methods: Diffusion-weighted MRI,
diffusion tensor imaging and constrained
spherical deconvolution

A.1 The diffusion-weighted MRI signal and the b-value

Diffusion-weighted MRI (DWI) is a specific type of magnetic resonance imaging (MRI)
which measures the random Brownian motion of water molecules within a tissue. This motion
is driven by the thermal energy of the molecules, and is perfectly equal in all directions
(isotropic diffusion) in an homogeneous medium. In structured tissue, however, this diffusion
is restricted by the presence of cell membranes and macromolecules and thus is not equal
in all directions (anisotropic diffusion). In a given amount of time, molecules in different
locations of the imaged part will experience different amounts of movement, depending on
the organization of the tissue in that specific voxel. This difference in diffusion is exploited
to produce contrast in DWI images.

To sensitize the images to water diffusion, the homogeneity of the magnetic field is varied
linearly using a pulsed field gradient, which causes the protons to precess with different rates
depending on their position along the gradient. This causes de-phasing of the spins, and
thus signal loss. After a given amount of time, another gradient pulse is applied to the field,
having equal magnitude but opposite direction than the first gradient: if the protons have
not moved between the gradient applications, this causes a perfect re-phasing of the spins,
and thus no signal loss. However, protons which have moved during this interval will not be
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perfectly refocused and will cause a reduction in the signal measured by the machine after
the second gradient. The measured signal can be expressed as [Stejskal and Tanner (1965)]:

S = S0 exp
h
� g2G2d 2

⇣
D� d

3

⌘
D
i

(A.1)

where S is the signal after application of the gradients, S0 is the signal without diffusion
weighting, g is the gyromagnetic ratio, G and d the strength and duration of the gradient
pulse, D the interval between the de-phasing and re-phasing pulses, and D the diffusion
coefficient. This equation was simplified by [Le Bihan and Breton (1985)] by gathering all
gradient terms in a single factor, called the "b factor" or b-value, which depends only by the
acquisition parameters. The signal attenuation thus becomes:

S = S0 exp(�bD) (A.2)

As introduced before, isotropic diffusion of water is equal in all directions of the space
and can be described simply by a constant D. If the diffusion is anisotropic, however, a tensor
D is required to fully describe molecular movement along all directions in space. Diffusion
Tensor Imaging was the first method developed to characterise this tensor.

A.2 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) was introduced by Basser et al. (1994) to describe the
diffusion of water molecules in body tissues, and specifically in the brain. The anisotropic
nature of this diffusion means that a constant is not sufficient to characterise it, but a tensor is
needed to fully describe the different amounts of movement in all directions. This tensor is
of the form:

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

(A.3)

and is symmetric (Di j = D ji). Equation A.2 then can be expressed as:

S = S0 exp
⇣
� Â

i=x,y,z
Â

j=x,y,z
bi jDi j

⌘
(A.4)
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where b is the b-value matrix, expressing the b-value along each direction. In practice, a
single b-value is used for all directions, since it is neither necessary nor efficient in terms of
SNR to apply different b-values for different directions [Le Bihan et al. (2001)].

Since the diffusion tensor is symmetric, the minimal set of images needed for its esti-
mation is composed of six volumes acquired along six different gradient directions, plus
an image with no diffusion weighting (b = 0). In practice, data is collected along as many
directions as possible, distributed as uniformly as possible on the 3D sphere; advanced
diffusion analysis and fibre tracking methods require a uniform sampling of the space, a
specific number of gradient directions and a minimum b-value (see for example Tournier
et al. (2009)), introducing constraints on their application in specific environments.

From the diffusion tensor D, many diffusion and anisotropy indices can be computed [Le
Bihan et al. (2001)]. The most commonly used are the mean diffusivity (MD), describing the
overall diffusion in a voxel, and the fractional anisotropy (FA), which quantifies the fraction
of D that can be explained with anisotropic diffusion. These indices are defined as:

MD =
Dxx +Dyy +Dzz

3

FA =

s
3
2
[(l1 �hl i)2 +(l2 �hl i)2 +(l3 �hl i)2]

l 2
1 +l 2

2 +l 2
3

(A.5)

where li is the i-th eigenvalue of the tensor D and hl i= (l1+l2+l3)/3. By computing
the value of these parameters for each voxel of a DWI volume, we obtain parametric maps
which are often used in clinical applications: for example, MD maps can highlight variations
of water diffusivity in ischaemic regions very early after the ischaemic event, well before the
appearance of abnormalities in conventional MRI, allowing to intervene when brain tissue
is still salvageable [Warach et al. (1992); Le Bihan et al. (2001)]. The degree of diffusion
anisotropy in WM has been shown to be proportional to the myelination of WM fibres in a
voxel: for this reason, FA maps are often used to measure myelin integrity for microstructural
WM analysis or brain maturation mapping in neonates and infants [Le Bihan et al. (2001)].

From the eigenvectors of D we can also infer information about the directionality of the
diffusion in a voxel, by assuming that the direction of the fibres is collinear with the first
eigenvector v1, which is associated with the largest eigenvalue l1. By selecting for each
voxel the first eigenvector of the voxels’ diffusion tensor, we obtain a vector field which can
be used as input for tractography algorithms to produce a reconstruction of the major WM
fibre pathways in the brain.
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A.2.1 Limitations of DTI

The assumption of a single main diffusion direction per voxel means that DTI can successfully
resolve only a single WM fibre population in a single voxel. This limitation poses the problem
of correctly reconstructing voxels containing more complex configuration of fibres, such
as crossing or ’kissing’ tracts (two fibre populations meeting and then separating again in
the same voxel) and other multiple-fibre configuration, which is particularly important since
it has been shown that about 90% of WM voxels in the brain contain multiple fibre tracts
[Jeurissen et al. (2013)].

In the last decade, many methods have been developed to address this limitation (see for
example Tournier et al. (2011) and Daducci et al. (2014) for reviews). These methodologies
have not yet been integrated in the clinical practice, where DTI is still the most commonly
used method of WM mapping and study. Some of the reasons for this missed adoption are
scan times unfeasible for the clinical application, software and hardware availability and
acquisition constraints [Farquharson et al. (2013)]. Among the many higher-order models
overcoming the limitations of DTI, constrained spherical deconvolution (CSD) [Tournier
et al. (2004)] has been shown many times to combine robustness to crossing-fibres effects
and feasible time and hardware constraints (see for example Farquharson et al. (2013); Auriat
et al. (2015); Stefanou et al. (2016)).

A.3 Constrained spherical deconvolution

The constrained spherical deconvolution model is based on the assumption that the diffusion
signal originating from separate regions of the analysed sample will add independently,
generating the total measured diffusion signal. This assumption is based on the time scale
of the molecular diffusion: the average displacement of a water molecule during a typical
diffusion-weighted acquisition is expected to be of the order of 10 µm [Tournier et al. (2004)],
meaning that water molecules will likely visit only regions separated by a few tens of microns
during the experiment. A second assumption is that the radius of curvature for curved fibre
populations is greater than this length scale, and thus there can be no exchange between
distinct sections of a single fibre tract. Under these assumptions, the measured diffusion
signal from a voxel can be approximated as the sum of the signals from each fibre population
contained in the voxel.

A third assumption made from this model is that the signal generated from a single,
coherently-oriented fibre population is identical for all fibre tracts in the brain, and thus
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the only difference between signals produced by different fibre populations is due to their
orientation. The signal attenuation arising from such a coherent fibre tract is then represented
as a response function R(q), which is axially symmetric and depends only on the elevation
angle q expressed in spherical coordinates (where q = 0 if the tract is aligned with the
z-axis). This single-fibre response can be estimated directly from the acquired data, using
the diffusion signal from regions containing a single, coherently-oriented fibre population:
these voxels are often selected among those with the highest FA coefficient, which indicates
high diffusion anisotropy and thus a single, well-defined diffusion direction, suggesting the
presence of a single fibre tract in the voxel.

Given this response function, the signal measured from a voxel containing several fibre
populations can then be written as:

S(q ,f) = Â
i

fi Âi R(q) (A.6)

where fi is the i-th fibre population in the voxel, f is the azimuthal angle in spherical
coordinates and Âi expresses a rotation onto the direction (qi,fi). This equation expresses
the signal from a voxel as the sum of the single-fibre response function from each population,
weighted by their volume fractions and aligned along their respective orientations. This is
equivalent to the convolution of the response function R(q) with a fibre orientation density
(FOD) function over the unit sphere:

S(q ,f) = F(q ,f)⌦R(q) (A.7)

where F(q ,f) is the FOD function, expressing the fraction of fibres in the voxel aligned
with the direction (q ,f). Given a voxel containing N fibre populations, F(q ,f) is the sum
of N Dirac deltas, each pointing along the direction of one fibre population and weighted by
the corresponding volume fraction. If the single-fibre response R(q) is known (or estimable
from data), the FOD function can then be obtained through a spherical deconvolution of the
acquired signal S(q ,f) with R(q), thus obtaining the distribution of diffusion directions in
the selected voxel.

Details on the spherical deconvolution process can be found in Healy Jr et al. (1998).
Spherical harmonics are a complete orthonormal basis set of functions on the sphere; each
can be denoted by its harmonic order n - directly proportional to angular frequency - and
phase factor m (n � 0; �n  m  n). Even values of n identify symmetric harmonics, while
harmonics with odd n are anti-symmetric. In the same way, rotational harmonics are a
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complete orthonormal set over the rotations space and are denoted by harmonic order n and
two phase factors, l and m (n � 0; �n  l,m  n).

The spherical convolution operation can be defined as the effect of a convolution kernel -
composed by a set rotations - on a function over a sphere [Healy Jr et al. (1998); Tournier
et al. (2004)]. Given the 2n+ 1 vector Fn representing the n-th order spherical harmonic
decomposition of F(q ,f) and the (2n+ 1)(2n+ 1) matrix Rn representing the n-th order
rotational harmonic decomposition of R(q), we can write:

Sn = Rn Fn (A.8)

which expresses the n-th order spherical harmonic representation of S(q ,f). The spheri-
cal deconvolution operation can then be performed by inverting each Rn matrix to compute
Fn. Since diffusion is symmetric about the origin, only even components are non-zero;
moreover, since R(q) is axially symmetric, Rn is a single constant for each harmonic order n.
The spherical harmonics representation of S(q ,f) can be obtained with a linear least squares
fit, as shown in Alexander et al. (2002), estimating the response function R(q) from the data
as described above.

The maximum harmonic order nmax which can be estimated depends on the number
of independent samples of the signal attenuation, and thus, in practice, from the gradient
directions used in the acquisition sequence. Given a value of nmax, the minimum number
of separate directions required is given by 1/2 (nmax +1) (nmax +2) and is the number of
spherical harmonics coefficients contained in the series up to nmax [Tournier et al. (2009)].
It is necessary to note that the spherical deconvolution operation is increasingly sensitive
to noise as the maximum spherical harmonic increases, which introduces the need for an
attenuation or the elimination of the higher harmonic components to limit noise effects
[Tournier et al. (2004)].
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Control PVC SegACC

Consistency of individual networks with the consensus network 0.844±0.02 0.845±0.059 0.852±0.02
Consistency between individual networks 0.704±0.083 0.707±0.082 0.647±0.038*

Table B.2 Mean network consistency (correlation coefficient of connection strengths). Bold font and
asterisk indicate significant difference from control and PVC groups (P < 0.05).

Module 1 Module 2 Module 3 Module 4 Module 5

L caudal anterior cingulate L bankssts L paracentral L caudal middle frontal R bankssts
L cuneus L entorhinal R caudal middle frontal L frontal pole R cuneus
L isthmus cingulate L fusiform R insula L insula R entorhinal
L posterior cingulate L inferior parietal R lateral orbitofrontal L lateral orbitofrontal R fusiform
L precuneus L inferior temporal R paracentral L medial orbitofrontal R inferoparietal
L rostral anterior cingulate L lateral occipital R pars opercularis L pars opercularis R inferotemporal
L superior parietal L lingual R pars orbitalis L pars orbitalis R lateral occipital
R caudal anterior cingulate L middle temporal R pars triangularis L pars triangularis R lingual
R isthmus cingulate L parahippocampal R postcentral L postcentral R middle temporal
R posterior cingulate L pericalcarine R precentral L precentral R parahippocampal
R precuneus L superior temporal R rostral middle frontal L rostral middle frontal R pericalcarine
R superior parietal L supramarginal R superior frontal L superior frontal R superotemporal

L temporal pole L cerebellum cortex R frontal pole R supramarginal
L transverse temporal R accumbens area R medial orbitofrontal R temporal pole
L hippocampus R amygdala R rostral anterior cingulate R transverse temporal

R caudate L accumbens area R hippocampus
R cerebellum cortex L amygdala
R pallidum L caudate
R putamen L pallidum
R thalamus proper L putamen

L thalamus proper

Table B.3 Modules identified in healthy controls, with assignment of nodes to each module. "Bankssts"
indicates cortical areas around superior temporal sulcus.

Module 1 Module 2 Module 3 Module 4 Module 5

L caudal anterior cingulate L bankssts R caudal middle frontal L caudal middle frontal R bankssts
L paracentral L cuneus R frontal pole L entorhinal R entorhinal
L posterior cingulate L inferior parietal R lateral orbitofrontal L frontal pole R fusiform
L rostral anterior cingulate L inferior temporal R medial orbitofrontal L fusiform R inferior parietal
L superior frontal L isthmus cingulate R paracentral L insula R inferior temporal
R caudal anterior cingulate L lateral occipital R pars opercularis L lateral orbitofrontal R insula
R cuneus L lingual R pars orbitalis L medial orbitofrontal R lateral occipital
R isthmus cingulate L middle temporal R pars triangularis L parahippocampal R lingual
R posterior cingulate L pericalcarine R precentral L pars opercularis R middle temporal
R precuneus L precuneus R rostral middle frontal L pars orbitalis R parahippocampal
R rostral anterior cingulate L superior parietal L cerebellum cortex L pars triangularis R pericalcarine
R superior frontal L superior temporal R accumbens area L postcentral R postcentral

L supramarginal R amygdala L precentral R superior parietal
L transverse temporal R caudate L rostral middle frontal R superior temporal

R cerebellum cortex L temporal pole R supramarginal
R pallidum L accumbens area R temporal pole
R putamen L amygdala R transverse temporal
R thalamus proper L caudate R hippocampus

L hippocampus
L pallidum
L putamen
L thalamus proper

Table B.4 Modules identified in subjects with PVC, with assignment of nodes to each module.
"Bankssts" indicates cortical areas around superior temporal sulcus.
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Module 1 Module 2 Module 3 Module 4

L bankssts L caudal anterior cingulate L caudal middle frontal R bankssts
L cuneus L medial orbitofrontal L entorhinal R cuneus
L inferior parietal L rostral anterior cingulate L frontal pole R entorhinal
L inferior temporal R caudal anterior cingulate L fusiform R fusiform
L lateral occipital R caudal middle frontal L insula R inferior parietal
L lingual R frontal pole L isthmus cingulate R inferior temporal
L middle temporal R lateral orbitofrontal L lateral orbitofrontal R insula
L pericalcarine R medial orbitofrontal L paracentral R isthmus cingulate
L superior temporal R paracentral L parahippocampal R lateral occipital
L supramarginal R pars opercularis L pars opercularis R lingual
L transverse temporal R pars orbitalis L pars orbitalis R middle temporal

R pars triangularis L pars triangularis R parahippocampal
R posterior cingulate L postcentral R pericalcarine
R precentral L posterior cingulate R postcentral
R rostral anterior cingulate L precentral R precuneus
R rostral middle frontal L precuneus R superior parietal
R superior frontal L rostral middle frontal R superior temporal
R accumbens area L superior frontal R supramarginal
R caudate L superior parietal R temporal pole
R cerebellum cortex L temporal pole R transverse temporal
R pallidum L accumbens area R amygdala
R putamen L amygdala R hippocampus
R thalamus proper L caudate

L cerebellum cortex
L hippocampus
L pallidum
L putamen
L thalamus proper

Table B.5 Modules identified in patients with segmental callosal agenesis, with assignment of nodes
to each module. "Bankssts" indicates cortical areas around superior temporal sulcus.
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Figure B.1 Callosal tract segmentation procedure, shown for a control subject. A region of interest
is first drawn on the midline sagittal section of fractional anisotropy colored maps to include all
callosal fibers. These fibers are further segmented and colored according to their projections to
specific lobar areas (i.e., homotopic anterior and posterior frontal, parietal, and occipitotemporal tracts
[central image]). For the anterior frontal lobe projections, 2 additional ROIs are placed on a coronal
section in each hemisphere anterior to the rostrum (left upper and middle images). For the posterior
frontal lobe and parietal lobe projections, an axial section is chosen at the most posterior edge of the
parieto-occipital sulcus. Two ROIs for posterior frontal projections are then placed to encompass the
region between the coronal section used for anterior frontal fibers and the central sulcus (left lower
image). Two ROIs for parietal lobe connections are placed on the same axial section, in the region
posterior to the central sulcus (right lower image). Projections to the occipital and temporal lobes
are segmented by using 2 ROIs placed on coronal images posterior to the callosum, encompassing
regions inferior to the parieto-occipital sulcus (right upper and middle images).
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Figure B.2 Anatomic schemes of the 3 types of segmental callosal agenesis. In segACC type I (left),
the fornices and the hippocampal commissure lie beneath the anterior callosal segment (arrow). In
segACC type II (middle), the fornices and the hippocampal commissure lie beneath the posterior
callosal segment (arrow). In segACC type III (right), the intermediate segment of the commissural
plate is made of the joining fornices and hippocampal commissure (arrow).
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