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Abstract 

The capacity of visual attention determines how many visual objects may be perceived at any 

moment. This capacity can be investigated with multi-object tracking (MOT) tasks which have 

shown that it varies greatly between individuals. The neuronal mechanisms underlying capacity 

limits have remained poorly understood. Phase synchronization of cortical oscillations 

coordinates neuronal communication within the fronto-parietal attention network and between 

the visual regions during endogenous visual attention. We tested a hypothesis that attentional 

capacity is predicted by the strength of pre-target synchronization within attention-related 

cortical regions. We recorded cortical activity with magneto- and electroencephalography 

(M/EEG) while measuring attentional capacity with MOT tasks and identified large-scale 

synchronized networks from source-reconstructed M/EEG data. Individual attentional 

capacity was correlated with load-dependent strengthening of theta (3-8 Hz), alpha (8–10Hz) 

and gamma-band (30–120 Hz) synchronization that connected the visual cortex with posterior 

parietal and prefrontal cortices. Individual memory capacity was also preceded by cross-

frequency phase-phase and phase-amplitude coupling of alpha oscillation phase with beta and 

gamma oscillations. Our results show that good attentional capacity is preceded by efficient 

dynamic functional coupling and decoupling within brain regions and across frequencies, which 

may enable efficient communication and routing of information between sensory and 

attentional systems. 
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Introduction 

Studies using multiple-object tracking (MOT) tasks, where subjects attend and track one or more 

visual objects, have shown that humans have the capacity to concurrently attend to 2–4 moving visual 

objects (Pylyshyn and Storm 1988; Cowan 2001; Oksama and Hyona 2004; Treisman 2006; 

Bettencourt et al. 2011). The tracking of multiple objects among distractors is dependent on the 

selection of which items will be tracked (Lahnakoski et al. 2017) as well as on the sustained attention 

to the selected target objects (Alvarez and Cavanagh 2005). Interestingly, a similar capacity limit of 

2−4 objects has also been observed for both visual working memory (VWM) (Luck and Vogel 1997; 

Cowan et al. 2005) and attention (Pylyshyn and Storm 1988; Treisman 2006; Bettencourt et al. 2011), 

so that VWM and attentional capacities are correlated in individual subjects (Oksama and Hyona 

2004) These findings suggest that capacity limits of VWM and attention may stem from shared 

underlying neuronal mechanisms.  Accordingly, the activation of prefrontal (PFC), posterior-parietal 

(PPC), and visual cortices in functional magnetic resonance imaging (fMRI) data is characteristic to 

not only VWM tasks but also to MOT (Culham et al. 1998; Battelli et al. 2001; Jovicich et al. 2001; 

Howe et al. 2009; Alnaes et al. 2015), spatial attention (for reviews, see (Kastner and Ungerleider 

2000; Corbetta and Shulman 2002)) and feature-based attention (Zhou and Desimone 2011) so that 

the connectivity within fronto-parietal attention networks mediate top-down attentional effects 

(Daitch et al. 2013; Spadone et al. 2015; Meehan et al. 2017). In the fronto-parietal system, PPC is 

one of the key regions where VWM capacity limits may arise (Todd and Marois 2004; Xu and Chun 

2006; Robitaille et al. 2010). 

Such anatomically distributed processing is thought to be coordinated and integrated by large-scale 

inter-areal neuronal synchronization (Siegel et al. 2012; Fries 2015; Womelsdorf and Everling 2015). 

Large-scale neuronal synchronization and phase coupling of neuronal oscillations in source-

reconstructed magnetoencephalography (MEG) studies have indeed been shown to underlie 

coordination of visuospatial attention (Siegel et al. 2008; Doesburg et al. 2016; Lobier et al. 2017) 
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and VWM (Palva et al. 2010). However, both the functional significance of large-scale neuronal 

synchronization in MOT tasks and, in particular, its possible role in individual attentional capacity 

have remained poorly understood.   

We have previously shown using source-reconstructed MEG that the amplitude of gamma (γ, 30–120 

Hz) oscillations is load-dependently increased in PFC, PPC, and visual areas in both MOT (Rouhinen 

et al. 2013) and VWM (Palva and Palva 2011) tasks and that this increase is correlated with individual 

VWM capacity. Furthermore, in these data, the individual capacity limitations of VWM were also 

predicted by concurrent large-scale high-alpha- (h 10-14 Hz,) and beta- (, 14-30 Hz) band phase 

synchronization (Palva et al. 2010) as well as by cross-frequency phase synchronization (CFS) of 

these networks (Siebenhühner et al. 2016).  In the present study, we address whether large-scale 

synchronization could play a role in the integration and coordination of neuronal processing 

underlying attention divided to multiple concurrently tracked visual objects and contribute to setting 

the individual attentional capacity limits.  

We posited that the capacity of visual attention in MOT tasks would be associated with long-range 

synchronization of visual and frontoparietal attention networks as well as by their cross-frequency 

(CF) interactions. To test this in a data-driven approach, we recorded concurrent M/EEG during a 

MOT task (Figure 1a) and used the source-modeled data to identify large-scale synchronized 

networks and their correlation with psychophysical performance and individual attentional capacity.  

 

Methods 

The experiment used in this study is the same as described in (Rouhinen et al. 2013). MEG data was 

collected from 23 additional subjects. All data, if not stated otherwise, has been analyzed with a 

LabVIEW software (National Instruments) with customized code. This code is available upon 

request. An overview of the workflow is given Supplementary figure 1. 
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Subjects and recordings 

42 healthy volunteers were recorded with concurrent MEG (306 channels), electroencephalography 

(EEG) (60 channels), electro-oculography (EOG) (horizontal and vertical channels), and 

electromyography (EMG) (abductor/flexor pollicis brevis, or thumb channels) by Vectorview (19 

subjects, sampling rate 600 Hz) and Triux (23 subjects, sampling rate 1000 Hz) M/EEG systems 

(Elekta-Neuromag) at the BioMag Laboratory, Helsinki University Hospital. Individual T1-weighted 

MRI images were recorded with a 1.5T scanner (Siemens, Germany) using a MP-RAGE protocol at 

a resolution of 1x1x1 mm resolution. After removing one subject whose performance was very poor, 

41 subjects remained (22 females, 29 ± 6.5 years). The study was approved by the Ethical Committee 

of the University of Helsinki and performed according to the Declaration of Helsinki. Written 

informed consent was received from each subject prior to the experiment.  

Tasks and stimuli 

The subjects performed a multiple object tracking (MOT) task in which they attended and tracked 

moving visual objects and responded to feature-changes in their shape. We used LabVIEW to 

generate the stimuli and tasks. We recorded two variations of the task. The first task (T1) was a 

general attention task where subjects tracked all objects on the screen with the object load varying 

from one to four. The second task (T2) was an object-selective attention task, where the object load 

remained at four but subjects attended and tracked only one to four objects with one color while 

ignoring the objects with another color (pink and yellow, respectively, Figure 1a). The inter-stimulus 

interval between target events was 0.7–5 seconds. The target event was a shape change of the target 

object and had a duration of 100 ms. Each of the four load conditions had 160 trials in both tasks for 

a total of 1 280 trials. The experiment was divided into eight 10 minute blocks. After artefact rejection 

and equalizing between conditions, 124.3 ± 22.87 (mean ± SD) trials remained in T1 and 115.8 ± 

29.81 in T2 for each attentional load per subject. The projected display’s vertical size was 10° and 
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the moving objects’ size was 0.8°. The subjects were instructed to look at the center-of-mass of the 

targets and avoid saccades between targets. 

 

Figure 1. The schematics of the experiment and psychophysical performance.  a) Left: An example 

frame of Task 2 with two pink targets and two yellow distractors. The leftmost object shows a target 

event. Right: Example of paths of the objects during 45 seconds.  b) Boxplots of hit rates and reaction 

times for Task 1 (T1) and Task 2 (T2).   c) Boxplots of eye and saccadic motion indices for T1 and 

T2. In boxplots median is marked with a line, and the whiskers extend at maximum to 1x the 

interquartile range. Lines above represent significant differences between loads (p < 0.01, Holm-

Bonferroni corrected post-hoc t-tests).  

 

Analysis of behavioral data 

Target events were defined as “detected” if the subject responded with a thumb twitch between 200–

700 ms from the onset of the target event and as missed otherwise. Reaction time (RT) was computed 

as onset of thumb twitch minus onset of target event and hit rate (HR) as the fraction of detected 

events (Supplementary figure 1d). Capacity (C) was computed as C = ((HRT1,L3 + HRT2,L3)*3 + 

(HRT1,L4 + HRT2,L4)*4)/4, where T1 and T2 indicate tasks 1 and 2, respectively, and L3 and L4 the 

attentional loads of 3 and 4 objects, respectively, so that at 100% accuracy in all load conditions 

capacity would be 3.5. The subjects were divided by their capacity into three groups: high, middle, 
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and low capacity. High-capacity subjects had capacity values ranging from 2.62 to 2.96 (mean ± SD, 

2.76 ± 0.12), middle-capacity subjects values ranging from 2.01 to 2.54 (2.23 ± 0.18), and low 

capacity subjects values ranging from 1.12 to 2.01 (1.55 ± 0.31). The subjects that were included in 

(Rouhinen et al. 2013) were classified similarly in the new current analysis except for a single subject 

whose classification was changed from low to middle capacity. The individual performance and 

capacity classification of the subjects are shown in Supplementary Figure 2.  

Performance differences between loads and tasks were evaluated with both frequentist and Bayesian 

repeated measures ANOVA. Inverse Bayesian factors were calculated with JASP (JASP Team 2016) 

to provide an estimate of evidence for the performance differences. Uninformative priors were used 

in non-post-hoc Bayesian testing. BF10 gives the odds ratio for the alternative and null hypotheses 

given the data, and BF21 the odds ratio for alternative with interaction/alternative without interaction. 

Dimensions that had statistically significant differences in the two-way repeated measures ANOVA 

were further analyzed with post-hoc t-tests. Frequentist post-hoc tests were Holm-Bonferroni 

corrected. Bayesian post-hoc tests were corrected for multiple testing by fixing to 0.5 the prior 

probability that the null hypothesis holds across all comparisons (Westfall et al. 1997). 

Analysis of eye motions 

Eye motion differences between different load conditions were estimated using the same trials as in 

synchrony analyses. Eye motions were estimated using broad band filtered (1–120 Hz) amplitude of 

the horizontal and vertical EOG channels (eye motion index, EMI) and the amplitude of the derivative 

of eye motion (saccadic motion index, SMI). Two-way repeated measures ANOVA Load x Task of 

eye motions was used to estimate eye movement differences between load conditions and tasks. Both 

frequentist and Bayesian ANOVAs were used. Dimensions that had statistically significant 

differences in the two-way repeated measures ANOVA were further analyzed with post-hoc t-tests. 

Frequentist post-hoc tests were Holm-Bonferroni corrected. Bayesian post-hoc tests were corrected 

for multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds across all 
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comparisons (Westfall et al. 1997). Correlations between eye movements and capacity were estimated 

with Spearman’s correlation test to check if capacity groups have differences in their eye motions. 

Similarly to how the capacity value is calculated, the average eye motion measure of loads three and 

four were used in the Spearman’s correlation test.  

Preprocessing of M/EEG data 

Maxfilter software (Elekta Neuromag) (Gramfort et al. 2014) was used to suppress external noise 

(temporal signal space separation), interpolate bad channels and co-localize recordings in signal space 

in MEG sensors (Supplementary figure 1b). Fieldtrip MATLAB toolbox (MathWorks) (Oostenveld 

et al. 2011) was used for independent component analysis (ICA) to remove components 

corresponding to eye movements, heartbeat, and muscle artefacts, as well as activities with a single-

channel focus in spatial distribution, or with greatest power spectral density in frequencies over 40 

Hz. Time series data were then filtered into narrow-band time series using a bank of 34 complex 

Morlet wavelets with the time-frequency compromise term m = 5 and approximately log-linearly 

spaced center frequencies ranging from 3 to 120 Hz with exact frequencies optimized to yield as 

many integer-ratio frequency pairs for the analysis of cross-frequency coupling with as few wavelet 

filters as possible (Palva et al. 2005; Siebenhühner et al. 2016). After filtering the time-series data 

were downsampled to sampling rate of 5 times the center frequency. 

Source modeling and cortical parcellation 

Anatomical reconstruction and parcellation with the Destrieux atlas from MRI images (Fischl et al. 

2004; Destrieux et al. 2010) was performed using Freesurfer (http://surfer.nmr.mgh.harvard.edu). 

Source modeling with minimum norm estimate using the dSPM method was carried out using MNE 

software (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) (Dale et al. 2000; 

Gramfort et al. 2014). Noise covariance matrices were computed using preprocessed broad-band 

filtered M/EEG time-series from 5 s time-windows taken with 5 s intervals and then used to compute 

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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one inverse operator per subject (200–250 Hz). Only time-windows that were not contaminated by 

eye blink or eye movement artefacts were used for noise covariance matrix computations. The source 

models had dipole orientations fixed to pial surface normals and a 7 mm inter-dipole separation 

throughout the cortex, yielding 5189–8054 source vertices. Single source narrowband complex vertex 

time series were collapsed into parcel time series with a source-reconstruction-accuracy- (fidelity-) 

optimized collapse operator (Korhonen et al. 2014). This optimization was done to enhance the 

possibility of detecting true connections among the spurious connections, see (Siebenhühner et al. 

2016) for further details. We used a 400-parcel parcellation that was obtained by iteratively splitting 

the largest parcels of the Destrieux atlas along their most elongated axis using the same parcel-wise 

splits for all subjects (Palva et al. 2010; Palva et al. 2011). The 400 parcel data was collapsed to a 

coarser 200-parcel parcellation before computing interaction metrics to reduce the effects of inter-

subject functional variability. Parcels were also assigned functional labels based on Yeo’s 7-parcel 

scheme (Figure 2b) (Yeo et al. 2011). These steps refer to Supplementary Figure 1a–c. 

Analysis of inter-areal synchronization  

To identify cortex-wide phase-synchrony networks, we computed individual parcel-to-parcel phase-

synchronization for each condition and frequency in a time window from -700 … -200 ms before 

target events (pre-target period) (Supplementary figure 1e). Phase-synchronization was estimated 

using imaginary part (iPLV) of the complex phase locking value (cPLV) (Palva et al. 2005). cPLV 

was defined as: 

𝑐𝑃𝐿𝑉 =
1

𝑁
∑[𝑒𝑖(𝜃𝑝(𝑛)−𝜃𝑞(𝑛))]

𝑁

𝑛=1

   

where N is the number of samples and 𝜃𝑝 and 𝜃𝑞 are the phases of the time series of parcels p and q; 

and iPLV = |im(cPLV)|. iPLV is insensitive to zero-lag interactions and hence yields neither artificial 
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nor true zero-lag or near-zero lag couplings (Nolte et al. 2004; Vinck et al. 2011; Palva et al. 2018; 

Wang et al. 2018). 

Analysis of local oscillation amplitudes 

To investigate the modulation of local oscillations amplitudes, we used the 34 complex Morlet 

wavelets to compute amplitude envelopes for each wavelet frequency for each parcel P across trials 

N and samples T:  𝐴𝑃 =
1

𝑁× 𝑇
∑ 𝐴(𝑃, 𝑛, 𝑡)𝑛,𝑡 . The same -700 … -200 ms pre-target time data was used 

as for the synchronization analysis. Correlation of the load-dependence of amplitude with individual 

attentional capacity was obtained by computing the correlation between individual capacity and the 

change in oscillation amplitude from load 2 to 4 with Spearman’s rank test (p<0.05, corrected) (Figure 

4). Significant differences in the amplitudes between detected and undetected targets were obtained 

using t-tests (p<0.05, corrected). Amplitude data were visualized per parcel on cortical surfaces as 

the fraction of statistically significant amplitude differences in frequency dimension at frequency 

band selection (Figure 4), and per frequency as a fraction of statistically significant differences in 

parcel space.  

Statistical analyses 

We used a data-driven large-scale data-analysis approach in the assessment of both the MEG findings 

and the relationships between MEG (phase coupling, amplitude, CFC) and behavioral (such as 

attentional capacity) data (Brunton and Beyeler 2019).  In order to not bias the data-analysis with a 

priori defined frequency bands, we performed the analyses on all of them and then identified the 

frequency bands where the relationships were the strongest, and visualized the networks for these 

frequency bands. Group statistics were performed separately for each frequency to identify significant 

inter-areal or parcel-parcel interactions. We tested for significant differences in the strength of 

synchronization between detected and undetected targets using t-tests (p<0.05) and with load 

conditions of 2 or 3 objects, which had adequate numbers of both detected and undetected events 
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(Figure 2, Supplementary figure 1g). Correlations of the strength of synchronization with attentional 

load, i.e., with the number of to-be attended objects was estimated using Spearman’s rank correlation 

tests (p<0.05) for attentional loads of 2–4 (Figure 3a, Supplementary figure 1h). To estimate in which 

frequencies the two tasks differed we used a two-way repeated measures ANOVA for attentional 

loads of 2–4 (Load x Task, p<0.05, Figure 3a). To estimate differences in the strength of load-

dependent synchronization and their correlation with capacity, we computed the correlation 

(Spearman’s rank test, p<0.05) between capacity and the increase of strength of synchronization from 

load 2 to 4 for phase synchrony (Figures 3b, 4), for inter-areal cross-frequency interactions (Figure 

5), and for local oscillation amplitudes (Figure 4). Task differences between higher and lower 

capacity subjects at single target loads (2 and 3) were estimated with t-tests (p<0.05, T2-T1).  

We accounted for multiple statistical comparisons in two steps: the false discovery rate was reduced 

by removing as many of the least significant positive and negative findings as predicted by the alpha-

level. We then estimated a threshold Q to define a joint probability, p’, for the number of significant 

observations that could arise by chance in any of the frequencies of the connection density spectrum. 

In the interpretation and network visualization stages, only the observations exceeding the Q 

threshold are considered. For the 1:1 inter-areal synchrony threshold Q of significant observations 

remaining after false discovery correction was estimated to correspond 0.672 % connection density 

at 0.001 chance level. This threshold was used for the t-tests and Spearman’s correlation tests in 

analyses of inter-areal synchrony (Figure 2a, 3). Connection density values for load effects were 

further normalized to a zero mean. For ANOVA analyses, a threshold of 0.475 % connection density 

was used, which corresponded to 0.05 chance level (Figure 3a).  

Analysis of cross-frequency coupling 

To estimate the interactions across distinct frequencies, we computed two forms of cross-frequency 

coupling (CFC): phase-amplitude coupling (PAC) and cross-frequency phase synchronization (CFS). 

We calculated both inter-areal CFC among all parcel pairs p and q of the 200 parcels, and local CFC, 
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where p ≠ q. We estimated n:m CFS where the integers n and m define the frequency ratio so that 

n·fhigh = m·flow with values n = 1 and m ϵ{2,3,4,5,6,7,8} using the phase-locking value (PLV):  

𝑃𝐿𝑉𝑝,𝑞,𝑛:𝑚,𝑓𝑙𝑜𝑤,𝑓ℎ𝑖𝑔ℎ
=

1

𝑁
|∑ exp [i ∙ (𝑚 ∙ 𝜃𝑝(𝑟, 𝑡, 𝑓𝑙𝑜𝑤) − 𝑛 ∙ 𝜃𝑞(𝑟, 𝑡, 𝑓ℎ𝑖𝑔ℎ))]

𝑟,𝑡

| 

where i is the imaginary unit, 𝑁 = 𝑁𝑟 ∙ 𝑁𝑡, where Nr is the number of trials r and Nt is the number of 

samples t within a time window, 𝜃𝑝and 𝜃𝑞 are the phases of parcel p and q, respectively (Tass et al. 

1998; Palva et al. 2005; Siebenhühner et al. 2016; Siebenhühner et al. 2020). Frequency pairs were 

chosen so that the ratio of their center frequencies lay within 5% deviation of the desired integer 1:m 

ratio. 

We estimated PAC by computing the PLV between the phase of the slow oscillation and the phase of 

the amplitude envelope of the fast oscillation filtered at flow. PAC was thus defined as: 

𝑃𝐴𝐶𝑝,𝑞,𝑓𝑙𝑜𝑤,𝑓ℎ𝑖𝑔ℎ
=

1

𝑁
|∑ exp[i ∙ (𝜃𝑝(𝑟, 𝑡, 𝑓𝑙𝑜𝑤) − 𝜃𝑞

𝐸(𝑟, 𝑡, 𝑓𝑙𝑜𝑤, 𝑓ℎ𝑖𝑔ℎ))] 

𝑟,𝑡

| 

where θE(t, flow, fhigh) is the phase of the filtered amplitude envelope time series E(t, flow, fhigh) that was 

obtained by filtering A(t, fhigh) with the Morlet wavelet w(t,flow):   

𝐸(𝑡, 𝑓𝑙𝑜𝑤, 𝑓ℎ𝑖𝑔ℎ) = 𝐴(𝑡, 𝑓ℎ𝑖𝑔ℎ) 𝑤(𝑡, 𝑓𝑙𝑜𝑤).  

In order to correct for potentially spurious observations of inter-areal PAC and CFS arising from non-

sinusoidal or non-zero-mean signals (Lozano-Soldevilla et al. 2016), we used a novel method based 

on graph theory (Siebenhühner et al. 2020). The rationale, in brief, is that inter-areal CFC can only 

be spurious if the signal at flow in p and the signal at fhigh in q are also connected otherwise, namely by 

local CFC and inter-areal synchronization between p and q. Thus, observations of inter-areal CFC 

were discarded if we observed either significant local flow : fhigh CFC in p and significant inter-areal 
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synchronization at fhigh, or significant local flow : fhigh CFC in q and significant inter-areal 

synchronization at flow. 

Correlation of the load-dependent synchronization with individual attentional capacity was obtained 

by computing the correlation between individual capacity and the increase of strength of CFS and 

PAC from load 2 to 4 for phase synchrony with Spearman’s rank test for inter-areal cross-frequency 

interactions (Figure 5), and for local cross-frequency interactions. 

The threshold of significant observations remaining after false discovery correction (see Statistical 

analyses) was estimated by the probability, p’, for a number of significant observations to arise by 

chance from graphs of random p-values after the false discovery reduction in any single frequency 

out of all wavelet frequencies. This threshold was estimated to be 0.672 % connection density for the 

t-tests and Spearman’s correlation tests in analyses of inter-areal synchrony, which corresponded to 

p’ = 0.001 (Figure 5). For local CFC, the threshold was 5.5% connection density at p’ = 0.001. 

Removal of low-fidelity cortical areas and connections for alleviating source-space signal 

mixing 

A major limitation in connectivity analysis using M/EEG data is linear signal mixing among recorded 

signals that after source modeling remains as residual signal leakage among nearby parcels, which is 

dependent on source anatomical location and individual brain anatomy (Palva and Palva 2012). iPLV 

was used to estimate inter-areal synchronization to exclude the direct effects of zero-phase lagged 

linear signal mixing. Spurious interactions, however, remain even when using zero-phase lag 

insensitive connectivity metrics (Palva et al. 2018). Since the number of spurious interactions is 

dependent on the source-reconstructions accuracy, as the first step, we excluded poorly 

reconstructable parcel connections from the graph analysis and visualizations. We removed 

connections between parcels for which the source reconstruction accuracy, fidelity, was below 0.2 

(2.0 % of parcels) (Korhonen et al. 2014). In addition, to further exclude spurious connections, we 
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also removed connections of those parcels that exhibited greatest signal leakage with their neighbors 

(fidelity radius greater than 0.3; 7.6 % of connections, Supplementary figure 1f). In total, 7.6 % of all 

possible connections most prone to source mixing were excluded from the analyses. These sources 

were mostly in the deep and inferior structures (Supplementary figure 3) as expected (Hillebrand and 

Barnes 2002).  

Graph analysis and visualization 

We used graph theory (Bullmore and Sporns 2009) to characterize the network structures in group-

level adjacency matrices. Each thresholded adjacency matrix defined a graph made up of nodes and 

edges, where nodes are cortical parcels and edges are the significant interactions between nodes. 

Connection density (K) was used to index the proportion of significant edges from all possible 

interactions while degree was used to identify nodes that were central in the graphs and thus putatively 

played a key role in network communication. To investigate the spectral patterns of phase synchrony 

modulations associated with multi-object attention, we first plotted the connection density K for both 

the positive (K+, strengthening of inter-parcel synchrony) and the negative (K-, suppression of inter-

parcel synchrony) observations as a function of frequency separately for each statistical analysis 

(Figures 2a and 3). Graph visualization was carried out for frequency-bands showing significant 

increases in phase synchrony for each condition so that before visualization and separately for each 

statistical contrast, neighboring narrow-band frequencies were grouped with hierarchical 

agglomerative clustering by their adjacency-matrix (edge) similarity (Palva et al. 2010). Frequencies 

that formed clusters and had connection densities above threshold at some of the clustered frequencies 

were visualized.  

For each selected frequency band, we first constructed a single graph by summing the adjacency 

matrices of each filter frequency in the band. We then selected most central connections and nodes 

based on their degree. To further alleviate the contribution of the remaining spurious edges (‘false’ 

interactions) created by the concurrent presence of a true interaction and linear mixing (Palva and 
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Palva 2012; Palva et al. 2018) we then applied an edge-bundling approach (Wang et al. 2018). In this 

approach, edges that had high linear mixing were bundled into hyperedges. Only hyperedges 

consisting of at least 6 edges were visualized to decrease the false positive rate and reduce visual 

clutter.  

Correlation of amplitudes and the strength of synchronization  

To test whether changes in signal-to-noise ratio (SNR) by changes in the strength of oscillations 

amplitudes could be correlated with modulations in the strength of synchronization, we first 

normalized oscillation amplitudes and mean node strengths within subjects. The normalized 

amplitude and node strength were correlated with Spearman’s correlation test (p<0.05, corrected), 

either across frequency bands with all parcels or per parcel. 

 

Results 

Psychophysics 

To assess the effect of attentional load on behavioral performance, we estimated hit rates (HR) and 

reaction times (RT) in the responses to the target objects. Subjects’ performance was similar in tasks 

T1 and T2 and with increasing load, HR decreased and RT increased (Figure 1b). Two-way repeated 

measures ANOVA for HR had a significant main effect of load (F(1.188, 47.503) = 148.165, p < 

.001; BF10 = 1.929e+76, with Greenhouse-Geisser correction because Mauchly’s test indicated 

sphericity violation; p < .001, ε = .396), but neither a main effect of task (p = 0.111; BF10 = 0.166) 

nor an interaction effect (p = 0.074; BF21 = 0.392). Similarly to HR, also RT showed a significant 

main effect of load (F(2.026, 81.043) = 127.888, p < .001, with Greenhouse-Geisser correction 

because Mauchly’s test indicated sphericity violation; p < 0.001, ε = .675; BF10 = 5.871e+54) and no 

main effect on task (p = 0.550; BF10 = 0.139) or an interaction effect (p = 0.360; BF21 = 0.198). Post-

hoc tests showed significant differences in HR between all loads (ranges of tests between 1 to 4 loads: 
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t=6.033–14.337, p < 0.001, Holm-Bonferroni corrected, posterior odds = 2.639e+4–1.021e+26). 

Post-hoc tests also showed significant differences in RT between all loads (ranges of tests between 1 

to 4 loads except 3 and 4: t=-13.286–-5.068, p < 0.001, Holm-Bonferroni corrected, posterior odds = 

3.369e+7–1.021e+26), with the difference between loads 3 and 4 being small (t=-2.584, p = 0.014, 

Holm-Bonferroni corrected, posterior odds = 2.158). 

Eye motion differences between loads and subjects 

As the tasks required tracking of moving visual objects, eye-movements might differ between 

attentional loads. To investigate the putative differences in the frequency of eye motions between 

tasks and different target loads, eye motions were estimated from EOG data using an Eye motion 

index (EMI). EMI measures saccades and smooth pursuit eye motions, with more eye motions 

meaning greater EMI. EMI was different between attentional load 1 and loads 2, 3, and 4, but not 

between loads 2-4 (Figure 1c). Two-way repeated measures ANOVA of EMI showed a significant 

main effect of load (F(3, 120) = 24.811, p < .001; BF10 = 7.844e+18, no Mauchly’s sphericity 

violation), but no main effect of task (p = 0.068; BF10 = 0.477) nor an interaction effect (p = 0.569; 

BF21 = 0.805). Post-hoc tests on load between one target and multiple targets showed more eye 

movements for multiple targets compared to single target (ranges of 1 vs. 2, 3, or 4: t=-5.582–-5.091, 

p < 0.001, Holm-Bonferroni corrected, posterior odds = 5.466e+6–1.161e+8). Post-hoc tests on load 

between multiple targets showed strong evidence against differences in EMI between the multiple 

loads (ranges of 2 vs. 3 or 4, or 3 vs. 4: t=-0.026–0.575, p = 1.000, Holm-Bonferroni corrected, 

posterior odds = 0.050–0.062). To exclude the potential confounder of eye-movements in the 

synchronization analyses, we therefore used loads 2-4 for subsequent data-analyses. Saccadic motion 

index (SMI) showed no difference between tasks or different loads (Figure 1c). Two-way repeated 

measures ANOVA of SMI had no significant effects (most significant of Load, Task or interaction 

effects: F(3, 120) = 1.496, p = .219; BF10 = 1.683). The attentional capacity was inversely correlated 

with EMI, with lower capacities being associated with greater EMI (Spearman’s correlation T1: r = 
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-.49, p = 0.001, T2: r = -.48, p = 0.001) as well as with SMI with a marginal negative correlation 

(Spearman’s correlation T1: r = -.27, p = 0.082, T2: r = -.17, p = 0.276). 

Large-scale network synchrony is correlated with target detection 

We first asked whether increased strength of pre-target synchronization would predict the detection 

of target events by estimating all-to-all phase synchronization among cortical parcels for frequencies 

from 3 to 120 Hz in a 0.5 s time window preceding the target events (-0.7…-0.2 s). We assessed 

whether synchronization of the detected target events was stronger compared to that of the undetected 

events (t-test loads 2 and 3, p<0.05, corrected).  In T1, the strength of theta (θ, 3–4.4 Hz) and gamma 

(, 45–66 Hz) synchronization, and in T2, the strength of alpha (, 7–9 Hz) and  (45–51 Hz) band 

phase synchronization were increased if the target events were subsequently detected compared to 

when they were not detected (Figure 2a). In contrast, synchronization in the 30-40 Hz and 70-80 Hz 

-bands was suppressed in T2. We next plotted the most significant connections of the networks of 

which strength were increased. To aid functional interpretation of the connections, we co-localized 

anatomical brain regions with the fMRI based functional sub-systems (Yeo et al. 2011) (Figure 2b). 

In the θ network in T1 occipital pole, functional part of the V1, as well as superior and middle occipital 

gyrus (sOG, mOG) in the right-hemispheric primary visual areas were connected to hubs in the 

posterior parietal cortex (PPC) with high degree hub nodes in the intraparietal sulcus (intPS) of the 

dorsal attention networks (DAN), and angular gyrus (iPGang) of the default mode network (DMN) 

(Figure 2c). The  network, in contrast, connected visual cortices bilaterally. Additionally, it 

connected transverse temporal sulcus (trTS) to visual regions and nodes within the somato-motor 

network (SM). In T2, −band network nodes in the right lateral occipital cortex (LOC) were 

connected with right anterior PFC and right LOC with left PPC the high degree hubs being angular 

gyrus (iPGang) and intPS (Figure 2d). In contrast,  network connected visual regions bilaterally, 

similarly to T1. We did not observe significant local oscillation amplitude modulation differences 

between detected and undetected target events in either of the tasks (t-test, p<0.05, corrected) 



18 

 

(Supplementary figure 4a) and hence the increases in oscillation amplitudes cannot explain the 

increases in the strength of synchronization  via increased signal-to-noise ratio. 

 

Figure 2. Large-scale synchrony differs between perceived and unperceived target events. a) 

Difference in the strength of synchronization between perceived (Hit) and unperceived (Miss) target 

events estimated separately for each parcel-pair and averaged over loads 2-3. Significant difference 

is plotted as connection density indicating the fraction of parcels with either significant positive or 

negative difference in the strength of synchronization as a function of frequency. Positive values 

indicate significantly stronger synchrony for perceived than unperceived target events while negative 

values indicate stronger synchrony for unperceived target events (p < 0.05, t-test, corrected). Note, in 

a given frequency, positive and negative effects can be observed concurrently in different 

connections. The grey shading (-0.67–0.67 %) indicates 0.1% chance-level (See Methods).  b) Parcels 

assignments in Yeo7 parcellation (Yeo et al. 2011); visual (Vis), limbic (Lim), default mode network 

(DMN), somatomotor (SM), dorsal attention network (DAN), ventral attention network (VAN), 
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frontoparietal network (FPN) and non-co-localized (Mix) parcels.  c) Theta (, 3–4.4 Hz) and gamma 

( 45–66 Hz) band networks that were stronger for perceived than unperceived target events for T1. 

Only the 8-10 % strongest connections are shown. Vertex sizes and edge widths are relative to node 

degree. Networks are visualized on an inflated cortical surfaces where light areas are gyri and dark 

areas sulci. d) Alpha (, 7–9 Hz) and gamma band (, 45–51 Hz) networks that were stronger for 

perceived than unperceived target events.  Abbreviations: a anterior; me medial; int intra; s superior; 

ang angular; pole pole; rc rectus; tr transverse; jnS sulcus intermedius primus of Jensen; CI cingulate; 

T temporal; O occipital; G gyrus; S sulcus. 

 

Load-dependent increases in synchronization correlate with individual attentional capacity 

If neuronal synchronization plays a role in the regulation of neuronal processing achieving the 

attentional functions during MOT tasks, it should be strengthened as a function of attentional load. 

We assessed whether synchronization is strengthened by attentional load (Spearman’s correlation test 

loads 2, 3, 4, p<0.05, corrected, reduced). We excluded load 1, because of differences in the eye 

movements compared to the other attentional loads (2–4) and analyzed data from loads 2-4 which 

showed no differences in eye motions (EMI or SMI). In T1, inter-areal synchronization was increased 

in  (6–7 Hz), low- (30–40 Hz), and high- (90–120 Hz) bands but decreased in the high-alpha (h 

10−12 Hz) band (Figure 3a). In T2, inter-areal synchronization was load-dependently increased in 

low  (3–4.4 Hz), low- (7–9 Hz),  (17 Hz), and high- (100–120 Hz) bands and again decreased in 

the h band as well as in the 40-50 Hz  band.  Two-way repeated measures ANOVA of Load x Task 

(p<0.05, corrected) showed task main effects in θ (3–6.5 Hz), α (10 Hz), and β/low-γ (20–38 Hz), 

load main effect in α (10–12 Hz), and an interaction effect in α (10 Hz) (Figure 3a).  
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Figure 3. Load-dependence of large-scale synchrony is correlated with individual attentional 

capacity. a) The correlation of the strength of synchronization with attentional load was estimated 

separately for T1 (blue) and T2 (yellow) for each parcel pair (N = 41, Spearman rank correlation tests; 

p<0.05, corrected). Connection density, i.e., the fraction of connections with significant correlation, 

is plotted separately for positive or negative correlations as a function of frequency. Note in a given 

frequency, positive and negative correlations can be observed concurrently indicating the presence of 

these effects in different connections. Peaks in the connection density are found in theta ( 5–7 Hz), 

low gamma (l 30–40 Hz) and high-gamma (h, >80 Hz) bands for T1 and in low-alpha (l, 7–10 

Hz), low gamma and high-gamma bands in T2.  Red lines indicate frequencies with the main effect 

of load, violet with the main effect of task, and green with the interaction (Two-way repeated 

measures ANOVA (Load x Task). b) Correlation of load-dependent synchronization with individual 

attentional capacity estimated separately for T1 and T2 and for positive and negative tails as in a (N 

= 41, Spearman’s rank correlation test, p<0.05, corrected). Peaks in the connection density are found 

in theta ( 5–7 Hz), low gamma (l 30–40 Hz) and gamma ( , 60–80 Hz) bands for T1, and in low-

alpha (l, 7–10 Hz), low gamma (l , 30–40 Hz), and gamma (, 60–72 Hz) bands in T2.  c) Difference 

in the strength of inter-areal synchronization between T2 and T1 (t-test, p<0.05, corrected) in load 2. 

Positive values indicate stronger synchrony in T2 than in T1. Black line indicates synchronization in 

high-capacity subjects, gray dashed line in lower capacity subjects. d) Same as in c but for target load.  

 

We next tested if load-dependent modulation in the strength of synchronization was correlated with 

individual capacity values.  In both tasks, individual capacity was correlated with load-dependent 

increase in the strength of synchronization in  to low- (6–9 Hz) , low- (33–40 Hz), and  (66–80 

Hz) bands (Spearman’s correlation test, p<0.05, corrected) (Figure 3b). In both tasks, load-dependent 
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increase in the strength of synchronization was observed in high-capacity subjects in  (6–7 Hz), low-

 (36 Hz), and high- (90–120 Hz) bands (Supplementary Figure 5). In contrast, low-capacity subjects 

only showed increased load-dependent synchronization in β (15–23 Hz) band in T1, and  (4–5 Hz) 

band in T2. 

T1 and T2 differed in the demand to suppress irrelevant visual information which was necessary only 

in T2. We therefore further investigated if low- and high capacity subjects had differences in 

synchronization patterns between T1 and T2 reflecting this demand. To this end, the strength of 

synchronization between T1 and T2 was compared for loads two and three separately for low- and 

high capacity subjects. In low-capacity subject,  or  band synchronization was stronger in T2 

compared to T1 in both load 2 and load 3 (Figure 3c–d). Instead in high-capacity subjects, more β 

(15–26 Hz) frequency band synchronization was observed in T2 than T1 in load 3, i.e. when the task 

was more demanding. These results hence suggested that ,  and  band oscillations all contribute 

to the suppression of irrelevant visual objects albeit differently in low- and high capacity subjects.  

Network synchronization among visual and frontoparietal regions are correlated with 

attentional capacity  

One of the major goals was to investigate in which brain networks the strength of synchronization 

preceding the target event would be correlated with variability of individual attentional capacity. To 

this end, we extracted the graph structures and anatomical localization of the networks exhibiting a 

significant interaction between attentional capacity and load-dependent synchrony. In  and  bands 

the strength of long-range connections between visual cortex and PFC correlated with capacity, and 

in T2 also the connections between visual cortex and PPC (Figure 4a–b). The network 

synchronization in the  was independent of the local oscillation amplitude modulations which 

were not correlated with capacity. Also in low- (l) band, the strongest connections correlated with 

individual attention capacity were in the visuo-frontal network in T1. In T1, capacity was correlated 
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with the strength of connections in the SM network connected to PPC and PFC. In addition to 

synchronization, also local increases in oscillation amplitudes were correlated with individual 

attention capacity. In SM and PFC, the major hubs were indeed co-localized with increases in 

oscillations amplitudes indicating that large-scale synchronization connected the local γ activity 

across these cortical areas. However, intPS and nodes in the visual cortex were independent of the 

increases in the amplitude of oscillatory activity indicating the presence of phase-coupling in the 

absence of global power effects. In T2 in low-γ band, capacity was correlated with the strength of 

connections in the SM network connected to PPC and PFC. In the higher γ band (60–80 Hz), 

connections that correlated with individual attentional capacity connected primary visual regions and 

LOC bilaterally and these visual regions to PFC in both tasks. As for low-γ band, SM nodes were co-

localized with oscillation amplitudes, while nodes in PFC, PPC or visual cortex were not. Similar 

network organization was also found for high- network that was correlated with attentional capacity 

only in T2 (Supplementary figure 6).  



23 

 

 

Figure 4. Graphs of load-dependent networks that are positively correlated with individual attentional 

capacity.  a) Load-dependent theta ( 5–7 Hz), low gamma (l 30–40 Hz), and gamma (, 60–80 Hz) 

band networks that are positively correlated with capacity in T1. b)  Load-dependent low-alpha (l, 

7–10 Hz), low gamma (l, 30–40 Hz), and gamma (, 60–72 Hz) band networks that are positively 

correlated with capacity in T2.  Only the 7–14 % of strongest connections are shown. Color of the 

parcel shows that also parcel amplitudes are significantly correlated with the attentional capacity, the 

color indicating the fraction of significant narrow-band frequencies per parcel. The attentional 

capacity is predicted by theta and low-alpha band synchronization between visual cortices and PFC 

as well as by gamma-band synchronization between bilateral visual regions. Abbreviations: a 

anterior; m middle; i inferior; s superior; ang angular; col transverse collateral; hip parahippocampal; 

int intra; ling lingual; orb orbital; po post; rc rectus; sub sub; tr transverse; paC paracentral lobule; CI 

cingulate; IN insular; F frontal; P parietal; T temporal; O occipital; G gyrus; S sulcus.  
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Correlation of synchronization with oscillation amplitudes  

To explicitly test the correlation between the strength of inter-areal synchronization and oscillation 

amplitudes and whether the increases in synchronization were explained by the increase in the signal-

to-noise ratio (SNR) caused changes in the strength of the oscillation amplitudes, we estimated the 

correlation between parcels’ amplitudes and their mean node strengths (Spearman rank correlation 

test, p< 0.05, FDR corrected). In both tasks, the strength of synchronization and oscillation amplitudes 

were very weakly correlated (Supplementary Table 1). The correlations ranged from -0.162 < r < 

0.219 (mean 0.102) in T1, and from -0.027 < r < 0.296 (mean 0.148) in T2 when the amplitude and 

node strength values were estimated within frequency bands (Supplementary Table 1). The load-

dependent (loads 4-2) correlations were slightly higher when estimated separately for each wavelet 

frequency (Supplementary Figure 7a). Weak correlation (~0.23 in both tasks) between amplitude and 

synchronization was observed in high -band (10 Hz), in which synchronization was load-

dependently suppressed and also in the high- band, in which load-dependent high  synchronization 

was found. The strongest correlations were found in the temporal and occipito-temporal areas 

particularly in the high-γ band (Supplementary Figure 7b). These results show that oscillations 

amplitudes in terms of signal-to-noise ratio do not explain modulations in the strength of oscillation 

amplitudes. Furthermore, the weak correlations between oscillations amplitudes and synchronization 

suggest that also mechanistically these phenomena are largely different which was evident also in the 

lack of co-localization of oscillation amplitudes and synchronization specifically in the lower 

frequencies.   

Inter-areal cross-frequency synchronization and phase-amplitude coupling are correlated 

with attentional capacity 

In our earlier study on the amplitude effects in the present MOT data, we observed that γ-band 

oscillation amplitudes were positively correlated with attentional load, specifically in subjects with 

high attentional capacity (Rouhinen et al. 2013). We have also observed that concurrent large-scale 
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networks in distinct frequency bands are cross-frequency phase synchronized during a multi-object 

VWM task (Siebenhühner et al. 2016). Such cross-frequency coupling (CFC) could underlie the 

integration of neuronal processing across functionally specialized frequency bands and hence support 

integration across neuronal processing hierarchies (Jensen and Colgin 2007; Schroeder and Lakatos 

2009b; Fell and Axmacher 2011; Palva and Palva 2017). 

As we here observed inter-areal synchronization in the MOT tasks to take place concurrently in 

multiple frequencies from θ to high-γ bands, we next addressed whether these oscillations would be 

coupled by CFC in a behaviorally relevant manner. We evaluated two forms of CFC: cross-frequency 

synchrony (CFS) and phase-amplitude coupling (PAC). We estimated both local (i.e., within the same 

parcel) and inter-areal (between distinct parcels) CFS and PAC among all cortical parcels and 

between bands having frequency ratios from 1:2 to 1:8 (see Methods), and then tested for all parcel 

pairs whether the difference in CFS strength between loads 4 and 2 was correlated with subjects’ 

individual capacity (Spearman’s rank test, p < 0.05), as described for 1:1 phase synchronization. We 

further used a novel graph-theory-based method (Siebenhühner et al. 2020) to discard spurious 

observations of inter-areal CFC that can arise if there is a non-sinusoidal or non-zero-mean signal at 

least one of the two parcels, leading to artificial frequency components in filtering (and thus spurious 

local CFC) which then “spread” to the other parcel by within-frequency inter-areal phase 

synchronization (see Methods). Since this approach can only detect spurious inter-areal CFC, no 

correction for spurious local CFC was performed. 

Genuine inter-areal CFS was significantly and positively correlated with capacity at ratio 1:2 among 

low-to-high γ frequencies in both T1 and T2 where a larger number of connections than that could be 

expected by chance was observed (Figure 5). Individual attentional capacity was also correlated with 

PAC of β and γ oscillation phases with the amplitude of high-γ oscillations at ratios 1:2 − 1:4 in both 

tasks. This indicates that cross-frequency coupling (CFC) of  and high- oscillations preceding target 

detection was correlated with good attentional capacity. Importantly, CFS of h with β- and −band 



26 

 

oscillations was correlated with individual attentional capacity in T1 showing that h suppression 

was synchronized with higher frequencies that showed increased task dependent synchronization. 

Similarly, also the PAC of  and also  oscillations with higher frequencies were correlated with 

individual attentional capacity.  

 

Figure 5. Correlation of load-dependent inter-areal cross-frequency phase synchronization (CFS) and 

phase-amplitude coupling (PAC) with attentional capacity. a) Connection density (K) of CFS 

connections for which the increase in strength from load 2 to load 4 is positively (top row) or 

negatively (bottom row) correlated with individual attentional capacity. The lower frequency is 

displayed on the y-axis and the ratio of the coupling on the x-axis. In T1, the individual capacity was 

predicted by  oscillations synchronized with β and  oscillations over ratios. In both tasks, capacity 

was also predicted by synchronization between  and high- bands at ratio 1:2. b) Same for PAC. The 

individual capacity was predicted by  to β oscillations phases coupled with the amplitude of higher 

frequency oscillations across ratios as well as by coupling of -oscillation phase with the amplitude 

of high- amplitudes.  Negative correlations were weak for both CFS and PAC.  
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Negative correlations of CFS with individual capacity were rare in T1, and for T2 were mostly found 

between θ-band oscillations with higher frequencies. Similarly to CFS, negative correlations of PAC 

with capacity were observed mainly for low frequencies in the θ band and all ratios in both tasks. 

Positive correlations of local CFS and PAC with capacity, where a larger number of significant 

correlations than could be expected by chance, mostly coupled β and γ with  and high- oscillations 

at ratios 1:2–1:6 in both tasks (Supplementary Figure 8). 

 

Discussion 

We used a well-validated multi-object tracking (MOT) task (Pylyshyn and Storm 1988; Oksama and 

Hyona 2004; Bettencourt et al. 2011) together with M/EEG recordings to investigate whether large-

scale synchronization plays a role in attention to multiple objects and whether a load-dependent 

modulation of synchronization would be correlated with the variability in individual attentional 

capacity. We found that large-scale -, -, and -band synchronization prior to target events was 

strengthened when the events were detected. Good individual attentional capacity was positively 

correlated with load-dependent strengthening of - l-, l,- and -band synchronization was as well 

as with load-dependent cross-frequency coupling. Taken together, neuronal synchronization during 

attentional visual tracking was dynamically organized in a task-dependent manner and this multi-

scale dynamic organization of pre-target activity correlated with both inter-trial and inter-individual 

variability in behavioral performance and attentional capacity. These findings thus constitute 

evidence for that both within-frequency synchronization of neuronal oscillations (Singer 2009; Fries 

2015) and their cross-frequency coupling (Palva et al. 2005; Fell and Axmacher 2011; Jensen et al. 

2014; Palva and Palva 2017) may mechanistically contribute to the integration and regulation of 

neuronal processing across functionally specialized brain regions to achieve attentive visual tracking.  
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Target detection is preceded by large-scale theta/alpha- and gamma-band synchronization 

Target detection was preceded in both tasks by large-scale γ-band synchronization as well as by 

synchronization of the lower frequency oscillations. While in the general attention task (T1), 

synchronization in the -band preceded successful target detection, in the object-based selective-

attention task (T2), successful target detection was preceded by α-band synchronization. These data 

thus suggest that in addition to visuo-spatial attentional control (Doesburg et al. 2016; Lobier et al. 

2017; D'Andrea et al. 2019), α-band synchronization may coordinate also object-based selective 

attention. Further, the increase in -band synchronization is in line with the idea that γ-band 

synchronization is related to attended stimulus perception in humans (Siegel et al. 2008).  

This synchronization connected visual regions with PPC and PFC, including both DAN and then 

frontoparietal attention network (FPN) (Corbetta and Shulman 2002; Sadaghiani et al. 2009; Ptak 

2012; Harding et al. 2015) (Kastner and Ungerleider 2000; Corbetta and Shulman 2002). These 

regions are also key regions in predicting MOT performance in fMRI (Culham et al. 1998; Battelli et 

al. 2001; Jovicich et al. 2001; Howe et al. 2009; Alnaes et al. 2015). Importantly, nodes in the visual 

cortex also included inferior temporal sulcus (iTS) which is related to object perception (Riesenhuber 

and Poggio 2002). These data suggest that during object-based selective attention, synchronization 

couples the attentional (PFC and PPC) systems with those generating the task-relevant object 

representations.  

Load-dependent increase in synchronization correlates with high attentional capacity 

In line with prior MOT studies (Drew and Vogel 2008; Bettencourt and Somers 2009; Drew et al. 

2011), we found large individual variability in attentional capacity. Similarly to prior observations 

for VWM capacity (Palva et al. 2010), the capacity of visual attention correlated with the strength of 

synchronization. We found here that load-dependent strengthening of synchronization in the  and 

 bands together with that in l- and -frequency bands, correlated with individual attentional 
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capacity in both general attention (T1) and object-based selective attention (T2) tasks. Importantly, 

specifically strengthening of the long-range connections between visual cortex and PFC in the  and 

 bands and of the connections between bilateral visual cortices in  band was positively correlated 

with good attentional capacity. These results suggests that in the present task, both - and -band 

synchronization are related to attentional top-down control in MOT task as previously suggested for 

visuospatial attention (Daitch et al. 2013; Harper et al. 2017; Lobier et al. 2017; D'Andrea et al. 2019) 

while the -band is related to integration of visual information (Kreiter and Singer 1996; Bosman et 

al. 2012; Siegel et al. 2012; Womelsdorf et al. 2012). These results are also in accordance with prior 

fMRI MOT studies showing that both visual cortex and PFC exhibit task-load-dependent BOLD 

signal increases (Culham et al. 1998; Jovicich et al. 2001) as well as with our previous findings of 

load-dependently increased γ-oscillation amplitudes in visual regions (Rouhinen et al. 2013).  

Importantly, the capacity of VWM (Gaspar et al. 2016) and multi-object attention (Mäki-Marttunen 

et al. 2020) are known to be predicted not only by the ability to attend multiple objects but also by 

the ability to ignore distractors. We thus tested if the strength of synchronization would be correlated 

with the demand to suppress the processing of irrelevant visual object information. Interestingly, the 

strength of − synchronization was associated with such suppression demands similarly to that 

found for local α oscillations (Jensen and Mazaheri 2010; Herring et al. 2015) albeit only in low-

capacity subjects. In the high-capacity subjects, the suppression of irrelevant visual objects was 

correlated with the strength of -band synchronization pointing towards a functional similarity 

between - and -band synchronization on one hand, and towards differences in functional 

coordination of executive processing in low- and high-capacity subjects on the other.  These data are 

also partially in line with data from attention blink tasks, in which theta and beta band synchronization 

have been associated with encoding and maintenance of target events – i.e. with sustained attention 

whereas theta and alpha-band synchronization have been related to attentional filtering of relevant 

visual information among irrelevant targets (Gross et al. 2004; Glennon et al. 2016).  
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Overall, our data show that attentional capacity is limited both by the coupling of visual cortices – 

essential for representation of visual information (Riesenhuber and Poggio 2002; Grill-Spector and 

Malach 2004; Sayres and Grill-Spector 2008; Vinberg and Grill-Spector 2008) – with the PPC and 

PFC associated with attention top-down control (Spadone et al. 2015; Meehan et al. 2017). Inter-areal 

synchronization of neuronal oscillations played a role in both the efficacy of visual information 

integration and the suppression of irrelevant objects.  

Individual attentional capacity is correlated with the strength of cross-frequency coupling 

A pervasive feature in the present results was the concurrent presence of multiple networks at distinct 

frequencies, which implies that also cross-frequency coupling (CFC) might be relevant to MOT task 

performance. CFC has been proposed to underlie the integration and coordination of neuronal 

processing across functionally-specialized frequency bands (Jensen and Colgin 2007; Schroeder and 

Lakatos 2009b; Fell and Axmacher 2011; Palva and Palva 2017). Many prior studies have found PAC 

to couple fast and slow oscillations during VWM (Sauseng et al. 2009; Axmacher et al. 2010; 

Bahramisharif et al. 2018). We have previously shown that functional integration of fast and slow 

oscillatory networks during multi-object VWM may also be achieved by inter-areal cross-frequency 

phase synchronization (CFS) (Siebenhühner et al. 2016). As multi-object attention tasks and VWM 

tasks share many similarities both at the cognitive (Pylyshyn and Storm 1988; Luck and Vogel 1997; 

Cowan 2001; Cowan et al. 2005; Treisman 2006; Bettencourt et al. 2011) and at the 

electrophysiological (Vogel and Machizawa 2004; Vogel et al. 2005; Drew and Vogel 2008; Drew et 

al. 2011; Drew et al. 2012; Lapierre et al. 2017) levels, in the present study we investigated if either 

inter-areal CFS or PAC were correlated with multi-object attentional capacity. To ensure that our 

observations of CFC were not spurious, we use a novel graph-theory-based method to remove 

putatively spurious connections (Siebenhühner et al. 2020). 

We observed that indeed, load-dependent increases in inter-areal CFS as well as PAC between low- 

and high- bands were positively correlated with attentional capacity in both tasks, albeit with slightly 



31 

 

different spectral profiles. This finding suggests that individual attentional capacity is dependent on 

functional integration of γ and high-γ oscillations. In the prior analyses of the present data, specifically 

load-dependent γ oscillations characterized neuronal activity in subjects with high attentional capacity 

(Rouhinen et al. 2013). Our result now show that these γ oscillations are nested with each other in 

large-scale networks.  

Crucially, hα oscillations were cross-frequency synchronized with  and  band oscillations, this 

coupling before target onset predicting good attentional capacity in T1. Hα oscillations that were 

cross-frequency coupled with higher frequencies were, however, suppressed by the load this 

suppression being significantly correlated with capacity in T1. Similarly, also the PAC of  and also 

 oscillations with higher frequencies were correlated with individual attentional capacity. These data 

support the hypothesis that in addition to underlying top-down attention control, theta and α 

oscillations provide temporal frames for attended visual perception (Jensen et al. 2014; VanRullen 

2016; Palva and Palva 2018; Lakatos et al. 2019). However, we found no evidence for that similar 

mechanisms would operate for object-based selective visual attention task. Together with significant, 

albeit weak, negative of correlation of CFS and PAC of θ band oscillations with higher frequencies, 

these data also show that α and γ oscillations are anti-correlated through dynamical cross-frequency 

coupling and uncoupling. Thus, overall, CFS and PAC are behaviorally significant CFC mechanisms 

in visual attention and may support the regulation of neuronal processing across frequencies (Palva 

et al. 2005; Jensen and Colgin 2007; Palva and Palva 2007; Axmacher et al. 2010; Canolty and Knight 

2010; Voytek et al. 2010; Palva and Palva 2017).  

Relationship to VWM   

We found here that the anatomical and spectral patterns of synchronization as well as cross-frequency 

coupling are correlated with individual attentional capacity in MOT tasks. These data suggest that 

subjects with high-attentional capacity exhibit stronger and more efficient coordination of neuronal 
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processing among representational and executive brain regions. These findings parallel those 

observed earlier with a comparable delayed match-to-sample VWM task (Palva et al. 2010; 

Siebenhühner et al. 2016), which provides further neurophysiological evidence for that VWM and 

visual attention share partially overlapping neuronal mechanisms (Cowan 2001; Cowan et al. 2005). 

In the current MOT task, attentional capacity was positively correlated with strength of 

synchronization in lα- (7 Hz) and γ-band phase synchronization in both tasks. This finding is similar 

to that in VWM where the strength of α- and β-band synchronization was increased by the load and 

predicted individual VWM capacity limits (Palva et al. 2010). In contrast with the VWM, however, 

h-band synchronization in the present MOT task was suppressed in a manner correlated with 

individual attentional capacity.  This distinction of α oscillations between VWM and attention support 

the idea that α oscillations are related to internal, self-oriented processing being enhanced in VWM 

and suppressed in visual attention (Klimesch et al. 2008). 

Further, in VWM task the strength of α- and β-band synchronization in the PPC correlated with 

individual VWM capacity limits, while the attentional capacity in this study was correlated with the 

strength of synchronization between visual and frontal cortices as well as within visual system 

bilaterally. As in the VWM, also in visual attention, the strength of CFC interactions were correlated 

with individual attentional capacity albeit with slightly different spectral patterns (Siebenhühner et 

al. 2016). These results point to important similarities but also differences in how synchronization 

may connect functionally relevant brain regions in visual attention and VWM.  

Our results complement prior studies showing that both local γ oscillations in source-reconstructed 

MEG data (Palva et al. 2011; Rouhinen et al. 2013) as well as slow contralateral delay activity (CDA) 

in scalp electroencephalography (EEG) recordings (Vogel and Machizawa 2004; Vogel et al. 2005; 

Drew and Vogel 2008; Drew et al. 2011; Drew et al. 2012) correlate both with the number of items 

held in visual working memory (VWM) as well as in the focus of attention in MOT tasks. Taken 

together, these evidence support the hypothesis that attended perception and VWM have partially 
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shared underlying neuronal mechanism based on processing related to multi-band oscillations across 

fronto-parietal and sensory brain regions (Watrous et al. 2015a; Watrous et al. 2015b). 

Conclusions 

Our study shows that individual attentional capacity is positively correlated with load-dependent 

strengthening of large-scale synchronization and CFC. Our findings support the framework where l 

synchronization coordinates attentional processing (Palva and Palva 2007; Palva and Palva 2011) by 

providing “frames” for sensory processing (Lakatos et al. 2008; Schroeder et al. 2010; VanRullen 

2016; Palva and Palva 2018) while the γ-band synchronization contributes to the processing of visual 

stimulus information (Bosman et al. 2012; Siegel et al. 2012). Our observations are also consistent 

with CFC among these oscillations underlying the integration of these functions (Palva et al. 2005; 

Palva and Palva 2007; Schroeder and Lakatos 2009a; Lisman and Jensen 2013; Lisman and Jensen 

2013; Palva and Palva 2017; Palva and Palva 2018). 
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Supplementary Figure 1. Schematic representation of the analysis pipeline. Gray boxes refer to 

data, green to processes, and blue to figures.  a) Preparation of forward and inverse operators with 

FreeSurfer.  b) Preprocessing, Morlet wavelet convolution, and inverse transform.  c) Collapsing 

individual sources to cortical parcellations.  d) Analysis of behavioral data and estimation of 

attentional capacity.  e) Computations of individual complex PLV parcel-parcel interaction matrices 

for each condition and frequency.  f)  Estimation of parcel fidelity and removal of nodes and edges 

that are poorly reconstructable.  g) Computing the difference in synchronization between Hit and 

Miss trials.  h) Computing the load-dependent, and load dependent synchronization correlated with 
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individual capacity. Computing the differences in synchronization between the tasks.  i) Computing 

cross-frequency coupling and its correlation with the attentional capacity.  

 

 

Supplementary Figure 2.  Hit rates multiplied by attentional load (capacity) for all subjects at the 

four attentional loads. Red lines are subjects classified as having high capacity, orange lines with 

middle capacity, and blue lines with low capacity. Light lines represented data from subjects that 

were included also in (Rouhinen et al., 2013), and dark lines represent data from new subjects 

recorded for the present study. Right panel: The same but for both conditions. The values indicated 

by vertical line were used for classifying subjects’ attentional capacity. 
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Supplementary Figure 3. Source reconstruction accuracy (fidelity) values of parcels and parcel-to-

parcel connections.  a) Denied edge matrix (DEM), which indicates each parcel-parcel pair and 

whether it is accepted (allowed) or rejected (denied) from the analysis.  b) Anatomical 

representation of the DEM. Color represents fraction of connections denied from the parcel to other 

parcels.  c) Visualization of the parcels’ population level fidelity values.  d) Anatomical mapping of 

lobes as in (Destrieux et al., 2010). 
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Supplementary Figure 4. Top: Difference in oscillation amplitudes between perceived and 

unperceived targets events show that there are no parcels in which the amplitudes would differ  (t-

test, p<0.05, hit-miss, corrected).  Bottom: Oscillation amplitudes of which strength was load-

dependently modulated by attentional capacity. (p<0.05, corrected). Positive values indicate 

stronger load dependent amplitude modulations in high than low capacity subjects and negative 

values vise versa. 
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Supplementary Figure 5. Load-dependence of large-scale synchronization separately for low- and 

high capacity subjects in (N=14 + 14, Spearman rank correlation tests; p<0.05, corrected, reduced). 

Solid line indicates synchronization for high capacity subjects while dashed line indicates 

synchronization for low-capacity subjects.  a) T1.  b) T2. 

 

 

Supplementary Figure 6. Graph of load-dependent high-gamma band (hγ, 80–120 Hz) networks 

that are positively correlated with attentional capacity in T2. Abbreviations and visualization like in 

Figure 4.  
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Supplementary Figure 7. Correlations between parcels’ amplitudes and node strengths as a 

function of frequency. The correlations were tested with Spearman’s rank correlation tests 

performed on normalized amplitudes and node strengths of the difference between loads 4 and 2 (4-

2).  a) Correlations at different frequencies.  b) Significant correlation (corrected) values shown on 

the cortex. See Supplementary Table 1 bottom for average values.  

 

 

Supplementary Figure 8. a) The correlation of load-dependent local CFS and b) local PAC with 

individual attentional capacity (Spearman’s rank correlation test between increase of CFS and PAC 

from load 2 to load 4, and capacity values (p < 0.05, corrected)). Positive correlations in top row 

and negative correlations in bottom row. 
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Supplementary Table 1. Correlations between parcels’ amplitudes and node strengths. Spearman’s 

rank correlation tests were performed on normalized amplitudes and node strengths at attentional 

loads 2 and 4, and the difference between 4 and 2 (4-2). Correlation values and uncorrected p-

values are shown with two different normalizations: middle: normalization within frequency band, 

right: normalization per each frequency. See Supplementary Figure 7b for anatomical visualization 

of where the correlations were the strongest and weakest. 

 

 


