11,102 research outputs found

    Trace-Driven Simulation for Energy Consumption in High Throughput Computing Systems

    Get PDF
    High Throughput Computing (HTC) is a powerful paradigm allowing vast quantities of independent work to be performed simultaneously. However, until recently little evaluation has been performed on the energy impact of HTC. Many organisations now seek to minimise energy consumption across their IT infrastructure though it is unclear how this will affect the usability of HTC systems. We present here HTC-Sim, a simulation system which allows the evaluation of different energy reduction policies across an HTC system comprising a collection of computational resources dedicated to HTC work and resources provided through cycle scavenging -- a Desktop Grid. We demonstrate that our simulation software scales linearly with increasing HTC workload

    Operating policies for energy efficient large scale computing

    Get PDF
    PhD ThesisEnergy costs now dominate IT infrastructure total cost of ownership, with datacentre operators predicted to spend more on energy than hardware infrastructure in the next five years. With Western European datacentre power consumption estimated at 56 TWh/year in 2007 and projected to double by 2020, improvements in energy efficiency of IT operations is imperative. The issue is further compounded by social and political factors and strict environmental legislation governing organisations. One such example of large IT systems includes high-throughput cycle stealing distributed systems such as HTCondor and BOINC, which allow organisations to leverage spare capacity on existing infrastructure to undertake valuable computation. As a consequence of increased scrutiny of the energy impact of these systems, aggressive power management policies are often employed to reduce the energy impact of institutional clusters, but in doing so these policies severely restrict the computational resources available for high-throughput systems. These policies are often configured to quickly transition servers and end-user cluster machines into low power states after only short idle periods, further compounding the issue of reliability. In this thesis, we evaluate operating policies for energy efficiency in large-scale computing environments by means of trace-driven discrete event simulation, leveraging real-world workload traces collected within Newcastle University. The major contributions of this thesis are as follows: i) Evaluation of novel energy efficient management policies for a decentralised peer-to-peer (P2P) BitTorrent environment. ii) Introduce a novel simulation environment for the evaluation of energy efficiency of large scale high-throughput computing systems, and propose a generalisable model of energy consumption in high-throughput computing systems. iii iii) Proposal and evaluation of resource allocation strategies for energy consumption in high-throughput computing systems for a real workload. iv) Proposal and evaluation for a realworkload ofmechanisms to reduce wasted task execution within high-throughput computing systems to reduce energy consumption. v) Evaluation of the impact of fault tolerance mechanisms on energy consumption

    Improving Mobile Video Streaming with Mobility Prediction and Prefetching in Integrated Cellular-WiFi Networks

    Full text link
    We present and evaluate a procedure that utilizes mobility and throughput prediction to prefetch video streaming data in integrated cellular and WiFi networks. The effective integration of such heterogeneous wireless technologies will be significant for supporting high performance and energy efficient video streaming in ubiquitous networking environments. Our evaluation is based on trace-driven simulation considering empirical measurements and shows how various system parameters influence the performance, in terms of the number of paused video frames and the energy consumption; these parameters include the number of video streams, the mobile, WiFi, and ADSL backhaul throughput, and the number of WiFi hotspots. Also, we assess the procedure's robustness to time and throughput variability. Finally, we present our initial prototype that implements the proposed approach.Comment: 7 pages, 15 figure

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Energy-efficient checkpointing in high-throughput cycle-stealing distributed systems

    Get PDF
    Checkpointing is a fault-tolerance mechanism commonly used in High Throughput Computing (HTC) environments to allow the execution of long-running computational tasks on compute resources subject to hardware or software failures as well as interruptions from resource owners and more important tasks. Until recently many researchers have focused on the performance gains achieved through checkpointing, but now with growing scrutiny of the energy consumption of IT infrastructures it is increasingly important to understand the energy impact of checkpointing within an HTC environment. In this paper we demonstrate through trace-driven simulation of real-world datasets that existing checkpointing strategies are inadequate at maintaining an acceptable level of energy consumption whilst maintaing the performance gains expected with checkpointing. Furthermore, we identify factors important in deciding whether to exploit checkpointing within an HTC environment, and propose novel strategies to curtail the energy consumption of checkpointing approaches whist maintaining the performance benefits

    Powertrace: Network-level Power Profiling for Low-power Wireless Networks

    Get PDF
    Low-power wireless networks are quickly becoming a critical part of our everyday infrastructure. Power consumption is a critical concern, but power measurement and estimation is a challenge. We present Powertrace, which to the best of our knowledge is the first system for network-level power profiling of low-power wireless systems. Powertrace uses power state tracking to estimate system power consumption and a structure called energy capsules to attribute energy consumption to activities such as packet transmissions and receptions. With Powertrace, the power consumption of a system can be broken down into individual activities which allows us to answer questions such as “How much energy is spent forwarding packets for node X?”, “How much energy is spent on control traffic and how much on critical data?”, and “How much energy does application X account for?”. Experiments show that Powertrace is accurate to 94% of the energy consumption of a device. To demonstrate the usefulness of Powertrace, we use it to experimentally analyze the power behavior of the proposed IETF standard IPv6 RPL routing protocol and a sensor network data collection protocol. Through using Powertrace, we find the highest power consumers and are able to reduce the power consumption of data collection with 24%. It is our hope that Powertrace will help the community to make empirical energy evaluation a widely used tool in the low-power wireless research community toolbox
    corecore