
Powertrace: Network-level Power Profiling for Low-power
Wireless Networks

Adam Dunkels, Joakim Eriksson, Niclas Finne, Nicolas Tsiftes
{adam,joakime,nfi,nvt}@sics.se

Swedish Institute of Computer Science

March 2011
SICS Technical Report T2011:05

ISSN 1100-3154

Abstract

Low-power wireless networks are quickly becoming a
critical part of our everyday infrastructure. Power con-
sumption is a critical concern, but power measurement
and estimation is a challenge. We present Powertrace,
which to the best of our knowledge is the first system
for network-level power profiling of low-power wireless
systems. Powertrace uses power state tracking to esti-
mate system power consumption and a structure called
energy capsules to attribute energy consumption to activ-
ities such as packet transmissions and receptions. With
Powertrace, the power consumption of a system can be
broken down into individual activities which allows us
to answer questions such as “How much energy is spent
forwarding packets for node X?”, “How much energy
is spent on control traffic and how much on critical
data?”, and “How much energy does application X ac-
count for?”. Experiments show that Powertrace is accu-
rate to 94% of the energy consumption of a device. To
demonstrate the usefulness of Powertrace, we use it to
experimentally analyze the power behavior of the pro-
posed IETF standard IPv6 RPL routing protocol and a
sensor network data collection protocol. Through using
Powertrace, we find the highest power consumers and are
able to reduce the power consumption of data collection
with 24%. It is our hope that Powertrace will help the
community to make empirical energy evaluation a widely
used tool in the low-power wireless research community
toolbox.

1 Introduction

Low-power wireless networking is rapidly becoming a
critical part of our everyday infrastructure through the
deployment of electrical metering, building energy man-
agement, future smart cities, and the smart grid [30].

A

Energy capsule 2

Energy capsule 1

Energy capsule n

.

.

.

.

.

.

.

.

.

Power state tracking

Control traffic

Protocol

Application 

P

Figure 1: Powertrace uses power state tracking to esti-
mate the power consumption of the system. The energy
for individual activities, such as packet transmissions and
receptions, are captured in energy capsules. The energy
capsules can be attributed to applications, protocols, or
other activities such as control traffic. Combining power
profiles from nodes in the network gives a network-level
power profile.

Low-power wireless devices are used in many situations,
for example to monitor the power consumption of appli-
ances in smart grid networks, to sense temperature and
other environmental data in city automation systems, and
to control heating systems for office building automation.
Low-power wireless devices are often battery-powered,
making power consumption a central concern.

Power-efficient mechanisms is an active topic in many
fields [25], such as server systems [1, 32], data cen-
ters [19], mobile and handheld applications [9, 20], and
low-power wireless networking, which has been the fo-
cus of research for over a decade in the sensor net-
work community. The community has developed proto-
cols, mechanisms, and algorithms for low-power wire-
less networking, but surprisingly few of those have
been empirically evaluated in terms of power consump-
tion. In part, this is because energy is difficult to mea-
sure [13], but also because systems and tools for measur-
ing the power consumption of individual sensor network
nodes [5, 8, 10, 13, 24] have required custom hardware

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


designs or have been difficult to use, and have not pro-
vided any means to view energy consumption at the net-
work level.

We present Powertrace, a system for network-level
power profiling for low-power wireless networks. Pow-
ertrace attributes network-level power consumption to
the activities that cause the power to be spent. Power-
trace uses power state tracking to estimate the power con-
sumption of the local node, records the energy consump-
tion in a energy capsules that represent node-level activi-
ties such as packet reception or packet transmission, and
attributes the energy capsules to network-level activities
such as individual applications or individual protocol ac-
tivities including routing, forwarding, or control traffic.
The process is shown in Figure 1. By attributing energy
capsules to network-level activities, Powertrace can an-
swer questions such as “What is the average power spent
on control traffic?”, “What is the power cost for forward-
ing packets on behalf of other nodes?”, and “Are there
nodes that spend more energy than others, and why is
this the case?”. With Powertrace, researchers can mea-
sure, empirically evaluate, and compare the energy con-
sumption of their low-power wireless systems; protocol
designers can profile the power consumption of their pro-
tocols; system developers can debug and verify the oper-
ation of their system; and network operators can inspect
the energy consumption of their networks.

We make two primary contributions with this paper.
To the best of our knowledge, we are the first to demon-
strate network-level power profiling for low-power wire-
less networks. We demonstrate that the method is useful
by applying it to existing network protocols from the lit-
erature. Our results gives many insights into the power
behavior of these protocols that have previously not been
seen, such as that the largest part of power consump-
tion is spent on idle wake-ups. Moreover, we quantify
and evaluate the accuracy of software-based power state
tracking as a way to measure energy consumption in low-
power wireless systems. Additionally, we are the first to
provide an empirical power evaluation of the proposed
standard IETF RPL routing protocol for low-power wire-
less IPv6 networks. Taken together, we hope that the
simplicity and accuracy of Powertrace combined with its
broad usefulness will allow the community to move to-
wards empirical energy evaluation as a preferred tool in
the low-power wireless research toolbox.

We have implemented Powertrace for the Contiki op-
erating system, but the methods are general enough to be
applied to any operating system. A prototype version of
Powertrace has been available for Contiki for some time,
and has already been used by others to gain insight into
their low-power wireless systems, resulting in a number
of published papers. Powertrace has been used on at least
four different hardware platforms (Tmote Sky, ESB, Mi-

caZ, Zolertia Z1), with no code modifications needed
when crossing platforms. Powertrace needs instrumen-
tation, but the instrumentation is simple, requiring only a
handful of lines of code in device drivers and radio duty
cycling protocols.

The rest of this paper is structured as follows. Sec-
tion 2 motivates the need for energy profiling for low-
power wireless networks. In Section 3 we introduce
Powertrace and describe how its power state tracking
works and how energy capsules are used to attribute en-
ergy consumption to activities. Section 4 describes our
implementation of Powertrace for Contiki. In Section 5
we evaluate the accuracy and overhead of Powertrace and
demonstrate its usefulness by applying it to two impor-
tant protocols from the literature: sensor network data
collection and the proposed standard IETF low-power
IPv6 RPL routing protocol. We discuss the implications
of our findings and future directions in Section 6, review
related work in Section 7, and conclude the paper in Sec-
tion 8.

2 Communication and Power in
Low-power Wireless

In low-power wireless networks, communication and
power consumption are intertwined. The communica-
tion device is typically the most power-consuming com-
ponent, but merely refraining from transmissions is not
enough to attain a low power consumption: the radio
consumes as much power in listen mode as when ac-
tively transmitting. To reduce power consumption, the
radio must be switched completely off—duty cycled—
as often as possible.

Low power consumption is important in different
types of wireless systems for a number of reasons. For
battery-powered systems, the energy consumption of the
system determines its lifetime. Since batteries often can-
not be easily replaced, low energy consumption trans-
lates into lower operating costs. For systems that are
powered by an energy scavenging source, such as so-
lar cells or vibration energy, the power supplied by the
power source is small. Even systems with an always-
on power source often need to maintain a low power
consumption. For example, smart grid electrical meters,
whose one purpose is to reduce overall power consump-
tion of the electrical grid, cannot themselves have a too
high power consumption, lest the power consumption of
the smart grid infrastructure outweighs the potential sav-
ings. Moreover, the power consumption of a device often
determines the cost and the physical size of the power
converter of the device, so a low power consumption re-
sults in a smaller system, with a lower cost.

2



Receiver

Sender

Time

Data Ack Wake−up

D

D

A D

A

D

A

D

D

A

A

D

D

D

Figure 2: The basic operation of the ContikiMAC low-
power radio duty cycling mechanism.

2.1 Attaining Low Power Consumption:
Radio Duty Cycling

The purpose of radio duty cycling is to turn off the radio
as much as possible but still retain the ability to commu-
nicate. When the radio transceiver is off, a node can-
not receive transmissions from neighbors. To be able
to communicate while keeping the radio switched off
as much as possible, the radio must wake up periodi-
cally to be able to receive packets from neighbors. Nu-
merous radio duty cycling mechanisms have been devel-
oped [2, 4, 21, 22, 28, 31].

As a specific example, for the popular Tmote Sky
sensor network mote platform with its CC2420 radio
transceiver, the CC2420 consumes 63 mW of power in
listen mode. When transmitting data, the transceiver
draws slightly less, 60 mW. In comparison, the CPU
draws 5 mW in active mode and 0.1 mW in sleep mode.
If the radio is always turned on, regardless of the activ-
ity on the node, the power consumption will remain at
approximately 60 mW.

In a duty-cycled network, nodes perform three dis-
tinct actions: transmit packets, receive packets, and pe-
riodically wake up to be able to receive packets from
neighbors. Wake-ups can be either scheduled or non-
scheduled. With scheduled wake-ups, nodes agree on
specific times for wake-ups so that senders always know
when potential receivers will be awake. Scheduled
schemes has an overhead in setting up and maintain-
ing their schedules and are suitable for static networks,
such as industrial monitoring systems [21]. Examples
of duty cycling mechanisms with scheduled wake-ups
are S-MAC [31] and TSMP [21]. With non-scheduled
wake-ups, nodes wake up independently, either with an
exact periodicity or randomly. A sender, who may not
know when its receiver is awake, must send a preamble
of wake-up transmissions to the receiver, before send-
ing the actual data packet. Alternatively, the receiver
can transmit a probe packet every time it wakes up to
let potential senders know that it is awake. Examples of
protocols with opportunistic wake-ups are B-MAC [22],
ContikiMAC [4], X-MAC [2], and RI-MAC [28].

Throughout this paper, we use the ContikiMAC duty-

cycling mechanism [4], the default radio duty cycling
mechanism in the Contiki operating system. As shown
in Figure 2, ContikiMAC uses a periodic wake-up mech-
anism configured with constant, uniform intervals. A
ContikiMAC wake-up consists of two consecutive radio
channel samples, whose timing is selected to allow either
of the two samples to catch a transmission from neigh-
bors. To send a packet to a ContikiMAC node, the sender
repeatedly transmits the data packet until it hits the re-
ceiver’s wake-up slot. After discovering that a packet is
in the air, the receiver keeps its radio on to receive the
transmission. Before going to sleep again, the receiver
replies with an acknowledgment packet if the packet re-
ception was successful. The sender stops sending pack-
ets and records the time at which the acknowledgment
was received. Since wake-ups are periodic, the sender
can synchronize with the receiver’s wake-up phase to
make subsequent transmissions shorter.

2.2 Counting Transmissions is Not Enough

In the absence of easy-to-use energy measurement tech-
niques, the sensor network community has often used
packet counting as a proxy for energy consumption. This
energy estimation method is based on the assumptions
that radio wake-ups and packet receptions consume no or
an insignificant amount of energy, and that packet trans-
mission energy is constant. To challenge these assump-
tions, we measure the energy consumption of the actions
of the ContikiMAC duty cycling protocol by attaching an
oscilloscope to a 100 Ω resistor connected in series with
a power source to a Tmote Sky sensor network mote.

Figure 3 (a)-(d) shows the current draw for wake-ups.
The energy consumption depends on the activity in the
radio medium. If no radio signal is detected, the radio
can quickly go back to sleep (a). If a radio signal is de-
tected, the radio is kept on in anticipation of an incoming
packet, but if no valid packet is detected, the radio can go
back to sleep (b). We call this a false positive wake-up.
If a packet is detected, the radio is kept on to receive the
full packet. If a broadcast transmission is received (c),
no link-layer acknowledgment is sent. If a unicast trans-
mission is received (d), a link-layer acknowledgment is
sent, which causes more energy to be spent.

Figure 3 (e)-(h) shows the current draw for packet
transmissions in four different situations: one broadcast
transmission and three unicast transmission. The broad-
cast transmission (e) is the longest of them because the
transmission must reach all neighbors. Since the wake-
up schedule of the neighbors is unknown, the broadcast
transmission must extend over the full wake-up period,
which in this case is 125 ms. For unicast transmissions, it
is enough to reach one receiver, and the transmission can
stop when the sender has heard a link-layer acknowledg-

3



 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  5  10  15  20  25  30  35  40

R
a
d
io

Time (ms)

(a) Wake-up, no signal detected

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  5  10  15  20  25  30  35  40

R
a
d
io

Time (ms)

(b) Signal detected, no packet detected

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  5  10  15  20  25  30  35  40

R
a
d
io

Time (ms)

(c) Packet detected, broadcast packet
received

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  5  10  15  20  25  30  35  40

R
a
d
io

Time (ms)

(d) Packet detected, unicast packet
received

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  20  40  60  80  100 120 140 160

R
a
d
io

Time (ms)

(e) Broadcast transmission

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  20  40  60  80  100 120 140 160

R
a
d
io

Time (ms)

(f) Non-synchronized unicast

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  20  40  60  80  100 120 140 160

R
a
d
io

Time (ms)

(g) Synchronized unicast

 0

 5

 10

 15

 20

C
u
rr

e
n
t 
(m

A
)

Off

On

 0  20  40  60  80  100 120 140 160

R
a
d
io

Time (ms)

(h) Unicast to awake neighbor

Figure 3: Current draw of radio transmissions with ContikiMAC on the Tmote Sky. The shark fin-like patterns are
due to capacitor buffers in the Tmote Sky designed to smooth out current spikes. Notice that timescales are different
in figures (a)-(d) and in (e)-(h).

Activity Energy (uJ)
Wake-up, no signal detected 12
False positive wake-up 100
Broadcast reception 178
Unicast reception 222
Broadcast transmission 1790
Non-synchronized unicast transmission 1090
Synchronized unicast transmission 120
Unicast transmission to awake receiver 96

Table 1: Energy consumption for the ContikiMAC activ-
ities in Figure 3.

ment from the receiver (f). With fixed wake-up sched-
ules, the sender can then phase-lock onto the neighbor so
that the next transmission can start just before the neigh-
bor wakes up, thus reducing the transmission cost (g).
Neighbors may sometimes be fully awake, for example,
because they are designated routers that have a continu-
ous power supply. If the neighbor was fully awake, the
transmission does not need to wake the neighbor up, and
is therefore much faster (h).

Table 1 summarizes the energy consumption of the
ContikiMAC actions from Figure 3. We see that the en-
ergy cost of wake-ups and receptions may differ by an
order of magnitude, depending on the situation. Like-
wise, we see that the cost of a packet transmission may
differ by an order of magnitude depending on the type of
transmission and on the receiver, even when the size of
the data is constant. Also, the cost of wake-ups is on the

same order of magnitude as unicast transmissions. Taken
together, these data suggest that the number of transmis-
sions is not a good predictor of total system energy, but
that more detailed energy models are needed.

3 Power Profiling with Powertrace

Powertrace is a run-time power profiling mechanism that
uses power state tracking to estimate the power consump-
tion of each node, breaks the power consumption into en-
ergy capsules, and attributes them to higher-level activi-
ties. Examples of such activities are individual applica-
tions, individual protocols, or protocol mechanisms such
as control traffic, packet forwarding, or retransmissions.
Powertrace allows both inspection of node-level energy
behavior and of network-level protocol power profiles.

An example of how Powertrace operates is shown in
Figure 4. The figure shows a timeline of activities in a
Powertrace system. The system first performs a periodic
wake-up, then attempts to transmit a packet but senses
a simultaneous radio transmission from a neighbor, then
successfully retransmits the same packet, and finally per-
forms a second periodic wake-up. Powertrace tracks the
power states of the system as it goes through its activi-
ties. For each activity, Powertrace records the estimated
energy in a corresponding energy capsule. As seen in
the figure, multiple power states contribute to an energy
capsule and energy capsules. For example, a transmis-
sion capsule contains energy contributions from both the
radio transmission and the radio listen state.

4



Radio transmission

Radio listen

CPU active

Wake−up capsule

Transmission capsule

20050 100 1500

Time (ms)

Retransmit

Power states

Energy capsules

Activities

Current draw

CPU sleep

Wake−upWake−up

Transmission attempt

Figure 4: Measuring communication energy expenditure with Powertrace: the radio duty cycling layer maintains
energy capsules for wake-ups, transmissions, and receptions. In the figure, capsules for wake-up and transmissions are
shown. The transmission capsule is split across two activities: the first transmission attempt at 40 ms, which sensed
another transmission in the ether and backed off, and the retransmission at 100 ms.

3.1 Power Model

Powertrace uses a linear power model in which the in-
stantaneous power is estimated as the sum of all active
power states. System energy is derived from the time
that the system spends in each power state. The instan-
taneous system power consumption Psystem(t) at time t
be described as

Psystem(t) =
∑
m,n

Pm,nsm,n(t), (1)

where Pm,n is the power consumption of component m
in power state n and sm,n(t) is either 0 or 1, depending
on whether the state is entered at time t or not. Examples
of components are the CPU, the radio transceiver, on-
board flash memories, and sensors. Examples of power
states are the CPU in active mode or in sleep mode and
the radio in listening mode or in transmission mode.
Likewise, the energy model Esystem is

Esystem =
∑
n,m

Pm,nTm,n, (2)

where Tm,n is the time during which component m has
been in state n.

The constant factors Pm,n can be either pre-calibrated
using off-line measurement or calibrated at run-time,
e.g., by using techniques such as those developed by
as Fonseca et al. [10]. If the power model is used for

comparing two protocols or mechanisms the actual con-
stants cancel out and only the time factors Tm,n remain.
For example, in many cases it is advantageous to report
power consumption of low-power wireless protocols as
the measured radio duty cycle: the percentage of time
in which the radio was turned on. Reporting power con-
sumption as its radio duty cycle makes it possible to com-
pare protocols across hardware platforms, which may
have different constant factors for Equation 2 but have
similar timing.

3.2 Power State Tracking

Powertrace tracks system power states by measuring the
time during which components are in each power state.
Device drivers are instrumented to record a time stamp
when a component enters a new state. When the compo-
nent leaves its state, the time difference is computed, and
added to the corresponding Tm,n.

Power state tracking is widely used to assess the en-
ergy consumption of general-purpose computers [32]
and handheld systems such as Android and Windows
Mobile [20]. It has also previously been used in net-
worked embedded systems [5, 12].

The power state tracking in Powertrace is done en-
tirely in software and no additional hardware is needed.
This has both advantages and disadvantages compared to
hardware-based energy measurement mechanisms, such
as the methods developed by Ritter et al. [24] and Fon-

5



seca et al. [10]. A software-based mechanism is not af-
fected by environmental factors that affect the energy
consumption of the system, such as temperature and
humidity. Moreover, software-based techniques yield
the same result on different batches of the same hard-
ware, which is not necessarily true for a hardware-based
method.

3.3 Energy Capsules

In Powertrace, an energy capsule contains a representa-
tion of the energy of an activity, such as the transmission
or reception of a packet, or reading a block of data from
a file on external flash memory. Each energy capsule is
associated with a set of power states. Powertrace records
the energy consumption of the activity by opening an en-
ergy capsule when the activity starts and closing when
the activity ends. When the capsule is open, it records
the energy from the power states with which it is asso-
ciated. An individual activity can span across multiple
lower level operations that are separated in time. Cap-
sules can therefore be opened and closed multiple times.
Likewise, multiple energy capsules can be open at any
given time, tracking energy for multiple operations over
different power states.

Energy capsules are controlled by the module in
charge of its energy consumer. For example, a flash file
system maintains energy capsules for creating, reading,
and writing files. A radio duty cycling mechanism main-
tains energy capsules for radio communication.

When sending a packet, the radio duty cycling layer
opens an energy capsule to hold the energy consump-
tion for the transmission. Many low-level activities con-
tribute to the energy consumption of a transmission. In
Figure 4, the packet transmission is first initiated after
approximately 40 ms. The radio duty cycling layer sam-
ples the radio channel, but finds a transmission from a
neighbor and consequently sets a retransmission timer to
expire approximately 60 ms in the future. The energy
capsule is closed and opened again for the next transmis-
sion. The radio is again set to listen mode to check for
transmissions from neighbors, but this time the packet
can be sent. The radio duty cycling layer now repeatedly
transmits its packet until a link layer acknowledgment is
received from the receiver. Between the transmissions it
sets the radio to listen mode to be able to receive the ac-
knowledgment. When the acknowledgment is received,
the radio is turned off and energy capsule is closed. Con-
trol is then returned up the network stack, which keeps
the CPU in active mode a while longer, but this energy is
not attributed to the transmission capsule since it is not
part of the radio transmission.

3.4 Capsule Aggregates

Multiple energy capsules can be combined into energy
capsule aggregates. A capsule aggregate contains the
sum of the energy from all its capsules. Powertrace uses
capsule aggregates to attribute communication power
consumption to network protocols, which are identified
by port number or protocol identifier. Applications or
protocols that use Powertrace can also use them to ag-
gregate energy information.

Powertrace allows applications or protocols to sub-
scribe to its capsule feed. When a capsule’s activity has
completed, the controlling module informs Powertrace,
which distributes the capsule to its subscribers. Sub-
scribers can process the energy capsules immediately, or
store them on secondary storage, such as a flash memory,
for later off-line analysis.

Applications or protocols may use capsule aggregates
to maintain their own information about the energy con-
sumption of the system, which allows them to make
energy-aware decisions. For example, a routing proto-
col can subscribe to the capsule feed to get information
about the energy costs of transmitting data to particular
neighbors. This information can be aggregated into the
routing table, which allows the protocol to base its rout-
ing decisions on the average transmission energy for its
potential parents, allowing routing protocols to be more
energy-efficient.

4 Implementation

We have implemented Powertrace in the Contiki oper-
ating system for low-power wireless networks1. Contiki
includes the uIPv6 certified low-power IPv6 stack [7] and
the Rime sensornet communication stack [6], allowing us
to evaluate Powertrace with two different network stacks.
Contiki also provides a set of duty cycling mechanisms,
including ContikiMAC [4] and X-MAC [2], that we use
when evaluating Powertrace. The principles behind Pow-
ertrace are generic enough for it to be implemented for
any low-power wireless operating system, however.

4.1 Instrumentation

Powertrace requires instrumentation of the system to
track power states and to generate energy capsules, but
the amount of instrumentation needed is small: in-
strumentation typically requires only a handful lines of
code. Figure 5 shows the Powertrace instrumentation of
the Contiki CC2420 low-power radio device driver, in
pseudo-code. The listing shows the functions for turning

1http://www.sics.se/contiki

6



on listen mode, turning off listen mode, and for transmit-
ting a packet. The instrumentation adds one line of code
every time a power state is changed. In our Powertrace
implementation in Contiki, we needed to add 7 lines of
instrumentation code to the existing 900 lines of code in
the CC2420 driver.

Figure 6 shows the energy capsule instrumentation, in
pseudo-code, for the radio duty cycling layer. This in-
strumentation is needed to detect when the radio is trans-
mitting packets and when it is waking up to sample the
radio channel for activity. For transmissions, a transmis-
sion energy capsule is opened when initiating a trans-
mission. The transmission code first samples the chan-
nel to see if someone else is currently transmitting. If
so, it turns of the radio, closes the transmission capsule,
and sets up a retransmission timer. By opening the cap-
sule before sampling the channel, the cost of the channel
sample will be included in the transmission capsule.

If no transmission was detected, the packet is sent
repeatedly until an acknowledgment is received. The
packet is sent repeatedly because the receiver may be
asleep. In this simplified example, there is no synchro-
nization, but in a real protocol such as ContikiMAC, the
sender records the wake-up schedule of its neighbors to
optimize subsequent transmissions. When the transmis-
sion has been completed, the capsule is closed. By call-
ing capsule done(), Powertrace is informed that the en-
ergy capsule is ready to be sent to subscribers.

The wake-up code is straightforward, but uses two en-
ergy capsules to distinguish between an idle wake-up and
a packet reception. Before turning the radio on, both
the idle wake-up capsule and the reception capsule are
opened. If no packet was detected, the wake-up capsule
is closed and the reception capsule is rewound: the cap-
sule is reverted to its last state. If a packet was detected,
it is received by the radio, and the reception capsule is
closed and the wake-up capsule is rewound.

The amount of instrumentation needed for energy cap-
sules is small. In our ContikiMAC implementation, we
added 15 lines of instrumentation to the existing 1200
lines of code. In Contiki’s X-MAC implementation, we
added 13 lines of code to its 1000 lines of code, and the
ContikiTDMA time-synchronized duty cycling protocol
got its 700 lines of code extended by 7 lines of instru-
mentation code.

4.2 Two-timer Calibration

Powertrace’s power state tracking uses hardware timers
to measure the time for each power state. For long-lived
power states, the timer must be able to count the entire
lifetime of the power state, without wrapping. For short-
lived power states, the timer must have a tick rate that is
high enough to measure the power state.

cc2420_listen() {
powerstate_on(RADIO_LISTEN);
strobe(CC2420_SRXON);
is_listening = 1;

}
cc2420_off() {
strobe(CC2420_SRFOFF);
powerstate_off(RADIO_LISTEN);
is_listening = 0;

}
cc2420_send() {
if(is_listening) powerstate_off(RADIO_LISTEN);
powerstate_on(RADIO_TRANSMIT);
strobe(CC2420_STXON);
powerstate_off(RADIO_TRANSMIT);
if(is_listening) powerstate_on(RADIO_LISTEN);

}

Figure 5: Excerpts of the CC2420 low-power radio
driver, instrumented to track Powertrace power state
changes. The strobe() function is CC2420-specific and
used to send commands to the radio hardware.

send_packet() {
capsule_open(transmission_capsule);
cc2420_listen();
if(cc2420_packet_detected()) {
/* Someone else is sending. */
cc2420_off();
capsule_close(transmission_capsule);
set_retransmission_timer();
return;

}
do {
/* Repeatedly transmit until
receiver wakes up */
cc2420_send();
/* Listen for ACK */
if(cc2420_packet_received()) {
/* Read ACK */
cc2420_read();
break;

}
} until(timeout);
cc2420_off();
capsule_close(transmission_capsule);
capsule_done(transmission_capsule);

}
wakeup_radio() {
capsule_open(wakeup_capsule);
capsule_open(receive_capsule);
/* Sample channel for activity. */
cc2420_listen();
if(cc2420_packet_detected()) {
/* A packet was detected */
capsule_rewind(wakeup_capsule);
cc2420_receive_packet();
capsule_close(receive_capsule);
capsule_done(receive_capsule);

} else {
/* No packet detected */
capsule_rewind(receive_capsule);
capsule_close(wakeup_capsule);
capsule_done(wakeup_capsule);

}
}

Figure 6: Powertrace instrumentation of the radio trans-
mission and wakeup code.

Timer resolution is particularly important for actions

7



that are timer-driven. If the action is driven by the same
time source as the power state tracking, the power state
timing may be consistently under-measured. For exam-
ple, the ContikiMAC wake-up mechanism is driven by
a timer interrupt that uses Tmote Sky 32768 Hz hard-
ware timer. By using the same timer source to measure
its power state, the measurement is consistently skewed:
the radio listen power state during a ContikiMAC wake-
up is exactly 12.3 ticks long.

To combine measurement of long-lived and short-
lived phenomena, our Tmote Sky Powertrace implemen-
tation uses a combination of two hardware clocks: the
32768 Hz timer source and the internal CPU cycle clock.
Power states are always measured with the 32768 Hz
timer, but for states that have a lifetime below 32 ticks
(1 millisecond), the CPU cycle clock is used. A con-
version table is used to convert between the two clocks.
Since the CPU cycle clock is unstable and affected by
external factors such as temperature, Powertrace must
make sure to calibrate the clocks and regenerate the con-
version table if the clocks drift. In our current imple-
mentation, we periodically (every 30 seconds) recalibrate
the clocks, but it is also possible to trigger calibration by
events that are known to skew the clocks, such as rapid
temperature changes.

5 Evaluation

We evaluate Powertrace in three ways. First, we evaluate
the accuracy of the energy consumption as reported by
Powertrace through comparing it with oscilloscope en-
ergy measurements. Our results show that Powertrace
is accurate within 94% compared with hardware-based
power measurement. Second, we evaluate the overhead
of Powertrace and the energy capsule mechanism. We
find that Powertrace has a negligible overhead, but if
energy capsules are stored to flash, performance is af-
fected. Third, we demonstrate the usefulness of Power-
trace through a set of case studies where we use Pow-
ertrace to study the energy consumption of two commu-
nication protocols for low-power wireless: the Contiki
Collect data collection protocol and the IETF proposed
standard RPL protocol for routing in low-power IPv6
networks. Based on information from the Powertrace
power profile, we are able to reduce the system energy
consumption of the data collection network by 24%.

For our experiments, we use the Tmote Sky mote [23],
a widely used sensor network platform. We use a small-
scale experimental setup for the accuracy and overhead
experiments, and a 17-node testbed for the network ex-
periments. To ensure repeatability, we also use the Con-
tiki simulation environment for a subset of the case stud-
ies. The Contiki simulation environment combines a

cycle-accurate simulation of the Tmote Sky platform
with a bit-level accurate simulation of its CC2420 radio
transceiver.

5.1 Accuracy

The accuracy of Powertrace depends on two factors: how
closely the energy estimation through power state track-
ing matches the actual energy consumed by the hard-
ware, and if the energy capsule mechanism is able to cor-
rectly attribute energy to activities.

To evaluate the accuracy of the power state tracking
mechanism, we run an experiment where one Tmote Sky
is instrumented with energy measurement hardware and
where we compare the output of Powertrace with the
hardware energy measurement. To measure the energy
of the hardware, we use an oscilloscope to measure the
voltage across a 100 Ω resistor connected in series with
an external power source, which is set to deliver 4.5 V.
The oscilloscope samples the voltage over the resistor at
2 MHz. We use three auxiliary motes to act as communi-
cation partners and to generate background traffic noise.

On the mote under test, we run an application that
transmits broadcast and unicast packets to one of the aux-
iliary motes. For all incoming packets, the auxiliary mote
responds with either a broadcast or a unicast transmis-
sion. We vary the data rate between one packet every
eight seconds to four packets per second. We vary the
background noise conditions from fully silent to WiFi
background noise with cross-traffic from the auxiliary
motes. This experiment thus exposes the mote under test
both to direct traffic, non-intelligible background noise,
and background noise in the form of packets that are pro-
cessed by the mote. Each experiment is run for 10 min-
utes.

The result of the experiment is shown in Figure 7,
which shows the energy converted into power consump-
tion. To convert the Powertrace timing data into power,
we insert numbers from the Tmote Sky data sheet into
Equation 2. We empirically found the data from the data
sheet to match the power consumption of the Tmote Sky
mote used in the measurements. As shown in the figure,
the power consumption reported by Powertrace is accu-
rate to 94% of the measured power consumption. We
expect that run-time calibration [10] can improve the ac-
curacy further.

To validate the correctness of the energy capsule at-
tribution mechanism, we run an experiment with two
Tmote Sky motes. One mote acts as a sender and the
other as receiver. The sender sends unicast traffic to
the receiver over two different application-layer connec-
tions. Both the sender and the receiver record their per-
application energy consumption. Figure 8 shows the re-
sult. The energy attributed to the two applications match

8



 0

 5

 10

 15

 20

 25

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)
Data rate (packets per second)

Oscilloscope
Powertrace

(a) No radio interference.

 0

 5

 10

 15

 20

 25

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Data rate (packets per second)

Oscilloscope
Powertrace

(b) With radio interference.

Figure 7: The power consumption as a function of the application-level data rate, measured with Powertrace and with
an oscilloscope, with and without external interference. With interference, the power consumption is lower because
fewer transmissions are made when collisions are detected.

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8

S
e
n
d
e
r

d
u
ty

 c
y
c
le

 (
%

) Transmissions protocol A
Transmissions protocol B

Idle wake-ups

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  1  2  3  4  5  6  7  8

R
e
c
e
iv

e
r

d
u
ty

 c
y
c
le

 (
%

)

Transmissions / second

Receptions protocol A
Receptions protocol B

Idle wake-ups

Figure 8: Two applications running on a sender node
sends data to a receiver. Powertrace attributes their trans-
mission and reception energy to the two applications.
The energy spent on idle wake-ups drops as the number
of receptions increase.

their transmission rate. We also see that the energy spent
on idle wake-ups decrease as the traffic rate increases.
This is expected, as the number of wake-ups that result
in a packet reception increases with the traffic rate.

5.2 Overhead

We evaluate the run-time overhead of Powertrace by
measuring its impact at the system level. We run an ex-
periment where two nodes send exchange packets as fast
as they can, without any radio duty cycling, and mea-
sure the number of packets they are able to send. We
vary the type of processing that is done on the energy
capsules: on-line aggregation of energy values and stor-
ing the energy capsules to flash for off-line analysis. For
storing capsules to flash, we use the Contiki Coffee file
system [29]. We would expect that storing the capsules

Setup Throughput
Without Powertrace 69.8 ± 0.017
Powertrace with on-line analysis 69.4 ± 0.017
Powertrace with capsules to flash 66.6 ± 0.019
On-line analysis, w/ ContikiMAC 7.51 ± 1.3
Capsules to flash, w/ ContikiMAC 6.22 ± 2.0

Table 2: Throughput in packets per second with and
without Powertrace, and with and without writing energy
capsules to flash.

to flash to have a measurable effect on performance. On
purpose, this experiment have high data rates that typ-
ically falls outside of the usage pattern of low-power
wireless networks, but exposes the overhead of Power-
trace.

The results of the experiments are shown in Table 2.
We see the effect of Powertrace with on-line analysis
is negligible on the packet rate. Powertrace reduces the
data rate with only 0.6%. Storing every energy capsule to
flash reduces the data rate by 4.6%, however. But when
radio duty cycling is introduced, the throughput drops
dramatically, and the spread increases. The high variance
in this measurement makes it impossible to statistically
show any difference when writing capsules to flash. The
reason for this is that ContikiMAC receptions can occur
no more often than the wake-up rate, which means that
any additional processing following a packet transmis-
sion or reception has a negligible effect on the system.

5.3 Case Studies

To demonstrate the usefulness of Powertrace, we per-
form a set of case studies where we use Powertrace to
study low-power wireless protocols from the literature.
This is the first network-scale empirical evaluation of
low-power wireless protocols where we are able to break

9



 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40
C

u
rr

e
n
t 
(m

A
)

Time (ms)

Figure 9: The X-MAC wake-up, which is approximately
ten times as expansive as the ContikiMAC wake-up (Fig-
ure 3).

down the network power consumption into components.

5.3.1 Sensornet Data Collection

We first look at the power profile of a sensor network
data collection protocol. Data collection protocols oc-
cur frequently in sensor networking research and have
been used in many sensor network deployments. Many
data collection protocols exist. In this case study, we
use Contiki Collect, the data collection protocol provided
with the Contiki operating system. Nodes in a Contiki
Collect network periodically broadcast beacons that an-
nounce their distance from a sink node. To send a packet
towards a sink, nodes pick a parent that is closer to the
sink than itself. Contiki Collect uses expected transmis-
sions (ETX) as its path cost metric [3]. Contiki Collect
uses ideas from the TinyOS CTP protocol [11], including
adaptive beaconing and datapath route validation, both of
which reduce the control traffic overhead.

We set up a 17 node Tmote Sky network in an of-
fice environment and let one node be the sink of the
network. The other nodes send data towards the sink
at a rate of one packet every other minute, a typical
data rate used in sensor networks [11]. We use Pow-
ertrace to collect power profiling data from the system
and transmit the energy readings as part of the data col-
lection traffic. The sink, which is connected to a PC,
sends the collected data over its USB port to the PC,
which logs the data. We use two system configurations,
one that uses the X-MAC duty cycling protocol [2] and
one that uses ContikiMAC—both with a wake-up rate of
8 Hz. For both configurations, the resulting collection
networks had an average depth of 1.5-1.8 hops and were
able to deliver 93%-98% of their packets to the sink. In
their power profiles, we distinguish between idle wake-
ups, control traffic, and data traffic. Idle wake-ups are
wake-ups that do not result in any packet reception.

The power profile of the X-MAC network is shown
in Figure 10, which reports the power consumption as
radio duty cycle. It is evident that the idle power con-
sumption is the dominating factor of the system power
consumption. This is due to the X-MAC wake-up mech-

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2  4  6  8  10  12  14  16

D
u
ty

 c
y
c
le

 (
%

)

Data
Control

Idle

Figure 10: The power profile for the data collection net-
work with X-MAC. Note that the y axis scale is different
from Figure 11 and Figure 12.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 2  4  6  8  10  12  14  16

D
u
ty

 c
y
c
le

 (
%

)

Data
Control

Idle

Figure 11: The power profile for data collection with
ContikiMAC and the default clear-channel assessment
wake-up mechanism. Note that the y axis scale is dif-
ferent from Figure 10.

anism (Figure 9) being comparatively expensive in com-
parison to transmissions and receptions. These results
are consistent with power measurements obtained from a
TinyOS CTP network [17], which uses an X-MAC-like
duty cycling scheme by default.

The results for ContikiMAC are shown in Figure 11.
Although ContikiMAC has a lower power consumption
than X-MAC, we see that the idle power consumption
dominates also in this case. The per-node breakdown
shows that nodes in vicinity of the sink, which was
placed in the middle of the network in the vicinity of

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 2  4  6  8  10  12  14  16

D
u
ty

 c
y
c
le

 (
%

)

Data
Control

Idle

Figure 12: The power profile for data collection with
ContikiMAC and a more conservative clear-channel as-
sessment. Note that the y axis scale is different from
Figure 10.

10



nodes 7 and 8, have a higher idle power consumption.
This is because nodes in the center of the network are
affected by transmissions from fringe nodes that are too
far away for successful receptions, but close enough to
trigger a false positive wake-up.

Seeing that false positive wake-ups had such an effect
on power consumption, we configured ContikiMAC to
have a more conservative wake-up trigger. By default,
ContikiMAC uses the clear-channel assessment mecha-
nism provided by the radio chip to trigger a wake-up, but
this mechanism is intended for avoiding collisions when
transmitting packets. It is therefore intended to be sensi-
tive to transmissions that are out of the reception range.
By setting a more conservative clear-channel assessment
threshold for ContikiMAC’s wake-ups, we were able to
reduce the amount of false positives, as shown in Fig-
ure 12. With this configuration, we reduced the total
power consumption by 24%, but also increased the av-
erage path length from 1.5 hops to 1.8 hops. This is also
evident in the power profile, where the cost for data traf-
fic increases as more packets must be forwarded.

5.3.2 Low-power IPv6 Routing with RPL

We next turn to applying Powertrace on RPL, a low-
power IPv6 routing protocol that is on the verge of be-
coming an IETF standard [30]. RPL is designed to op-
erate efficiently across a wide range of network types,
but with a particular focus on low-power networks with
potentially high loss links. RPL is a distance-vector pro-
tocol that builds a directed acyclic graph rooted at the
network border router. RPL is optimized for the many-
to-one communication pattern, where network nodes pri-
marily send data towards the border router, but has pro-
visions for any-to-any routing as well. As RPL is about
to become an IETF standard, it is important to profile its
power behavior.

We use the same testbed setup as above and use the
sink node as the IPv6 network border router. We set
up an IPv6/RPL network between the other nodes and
use Powertrace to measure the power consumption of the
network. We break the power consumption into Internet
Control Message Protocol (ICMP) packets that consti-
tute control traffic and User Datagram Protocol (UDP)
packets that constitute application data. Since we estab-
lished the role of idle wake-ups in the previous section,
we disregard them here. We run a simple data collection
application on top of UDP. The result is shown in Fig-
ure 13. We see that the control traffic power consump-
tion goes down over time but that the cost for data traffic
stays relatively constant.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80  100

D
u
ty

 c
y
c
le

 (
%

)

Time (min)

ICMP Control
UDP Data

Figure 13: The power profile of the RPL routing proto-
col, broken down into control and data traffic.

6 Future Directions

Although power consumption has been a primary con-
cern for low-power wireless research in the sensor net-
working community, surprisingly few protocols and
mechanisms have been empirically studied in terms of
their energy consumption. We hope that Powertrace and
its mechanisms, which are intended to be simple yet
powerful, will help to move the community towards more
empirical and experimental energy evaluations.

6.1 Usefulness

We evaluate the usefulness of Powertrace in this paper,
but the ultimate test of usefulness is if the system is
useful for others. An earlier version of Powertrace has
been included in the Contiki OS open source distribu-
tion and has been used for empirical evaluation of low-
power wireless networking mechanisms. Lachenmann
et al. [14] use it to demonstrate that their uDSSP im-
plementation has a power overhead of 0.07 mW. Meier
et al. [18] use Powertrace to perform run-time optimiza-
tion of radio duty cycling wake-up schedules, which in-
creased network lifetime by 50%. Dunkels et al. [4] mea-
sured the control traffic overhead with Powertrace and
devised a method to reduce it by to reduce it by piggy-
backing control traffic transmission on each other. Sim-
ilarly, Österlind et al. [33] used Powertrace to find that
redundant wake-ups accounted for a large portion of the
power consumption and designed a mechanism that re-
duces the number of wake-ups. Powertrace also makes
it possible to distinguish power consumption of traffic
classes—a feature whose usefulness was demonstrated in
the development of the politecast communication primi-
tive for low-power wireless [16], which used Powertrace
to identify the cost of redundant control traffic broad-
casts. Powertrace was also used extensively during the
development and tuning of the ContikiMAC protocol [4].
With the results provided by Powertrace, it was evident

11



that the wake-up cost dominated energy consumption,
and this observation prompted the development of Con-
tikiMAC’s energy-efficient wake-up mechanism.

6.2 Research Directions
Being able to track energy at the network scale opens
up new research opportunities. First, it makes is pos-
sible to experimentally evaluate existing protocols and
mechanisms to expose the system-level trade-offs that
are difficult to reach without the ability to do system-
level measurements. Second, with run-time power pro-
filing, new energy-aware protocols and mechanisms that
make energy-aware decisions can be developed. We have
already seen examples of those, such as the ZeroCal
mechanism by Meier et al. [18], which uses Powertrace
to perform duty cycling run-time optimization. More-
over, the results obtained with Powertrace can lend em-
pirical support to research debates. For example, Schmid
et al. [26] argue that that low-power wireless networks
need to move away from the mesh networking model
in order to reduce the power consumption because idle
wake-ups consume a disproportional amount of energy.
The empirical results in this paper demonstrate that idle
wake-ups constitute the largest part of the power con-
sumption in low-power wireless systems.

6.3 Generalization
We have thus far only used Powertrace in the context
of low-power wireless systems, but we believe that its
concepts generalizes into other areas. In its current im-
plementation, Powertrace relies on the accuracy of its
power state tracking mechanism. In more complex de-
vices, such as handheld devices or servers, it normally is
not possible to directly track power states, however. But
Powertrace’s energy capsules do not directly depend on
the power state tracking, but can work with any under-
lying power estimation model, of which there are many,
both for servers [25] and handheld devices [20]. It would
be interesting to generalize Powertrace to such devices as
well, providing them with the network-level power pro-
filing ability.

6.4 Technology Trends
The low-power wireless area still is in its infancy. With
today’s technology, radio duty cycling must be done in
software, but next-generation low-power radios such as
IEEE 802.15.4e are likely to have built-in hardware sup-
port for duty cycling. This makes the current Power-
trace power state tracking impossible. But the design
of the energy capsule mechanism extends to hardware-
implementations of radio duty cycling. For example, the

radio chip could hold an energy capsule for its wake-
up, which could be periodically read by the radio device
driver. Likewise, packet transmissions and packet recep-
tions could also return an energy capsule to the device
driver. With this functionality, network-level power pro-
filing would be possible even with hardware implemen-
tations of radio duty cycling.

7 Related Work

Power management, power measurement, and power
profiling are active research areas in many fields [1, 9,
19, 25]. In particular, power state tracking has a long
history. Zeng et al. [32] used the power state tracking
mechanism to estimate the energy consumption but for
general-purpose computers. Their problem is, however,
more complex than ours, due to the higher complexity of
general-purpose peripherals such as hard drivers. Simi-
larly, Pathak et al. [20] use system call tracing to estimate
the power profile of systems using Android or Windows
Mobile. Their mechanism is similar to the power state
tracking used by Powertrace, but works at the system
call level rather than the device driver layer because the
device driver layer cannot be accessed in modern smart-
phones.

To the best of our knowledge, Powertrace is the first
system to profile the power behavior of low-power wire-
less protocols and mechanisms at the network-level. The
work closest to Powertrace is Quanto by Fonseca et
al. [10]. Quanto uses a hardware-based energy measure-
ment device [8] to track the energy consumption of the
system and stores this for later off-line analysis. The
authors show that the energy consumption of individ-
ual activities can be extracted through the off-line anal-
ysis. Powertrace is different from Quanto in many as-
pects. First, unlike Quanto, Powertrace is a run-time
mechanism that continuously provides power profiling
data, which allows applications and protocols to make
energy-aware decisions. Moreover, unlike Quanto, Pow-
ertrace breaks down energy into individual network ac-
tivities, which enabled network-level profiling.

A number of energy measurement or energy estima-
tion mechanisms have been developed in the sensor net-
work community. Ritter et al [24] estimate the energy
consumption of a sensor mote by using a 1 F capac-
itors, so-called GoldCaps, to power the motes. Since
the energy storage of the capacitor is constant, it is pos-
sible to estimate the energy consumption by measuring
the(relatively short lifetime of the mote. Jiang et al [13]
developed hardware add-on board that measured the cur-
rent consumption for a mote. This required a significant
attention to detail as the board needs to measure both
short-lived current bursts and long-lived trends. Dutta

12



et al [8] present a hardware-based technique where a
switching capacitors were used to estimate the power
consumption of the mote. When one capacitor ran out
of energy, it triggered a processor interrupt. By count-
ing the interrupts, it was possible to estimate the energy
consumed by the device. Unlike these approaches, Pow-
ertrace does not need any additional hardware or custom
designs but only use software which makes adoption and
deployment easier.

Software-based estimation techniques have also been
developed, both for use in simulation and in deployed
systems. Shnayder et al. [27] provide energy models to
the TOSSIM sensor network simulator that allows en-
ergy to be estimated through simulation. Network-level
simulators such as TOSSIM have the drawback of not
capturing low-level behavior and therefore cannot accu-
rately simulate radio duty cycling mechanisms. Unlike
simulation-based approaches, Powertrace allows power
profiling in experimental setups and in deployed systems,
which allows the system developer to see the exact con-
ditions in which the network is operating.

Hurni et al. [12] and Dunkels et al. [5] use a power
state tracking technique that estimate the total energy
consumption of a sensor mote by measuring the time
during which components are switched on. Lorincz et
al. [15] use a similar technique for energy and resource
management in the Pixie operating system. Powertrace
incorporates these techniques but adds network-level
profiling that makes it possible to break down power con-
sumption into network-level activities.

8 Conclusions

Energy consumption is of primary importance in low-
power wireless networks, but to optimize energy we have
to be able to measure it. We present Powertrace, a system
for network-level power profiling of low-power wireless
networks. Powertrace enables not only run-time energy
estimation of low-power wireless systems but also power
profiling that show the per-activity power cost. This pro-
vides system developers with the means to optimize their
systems for power consumption, as they are able both to
identify the worst power consumer and to evaluate any
savings their optimizations do. Powertrace uses power
state tracking to estimate the node-level power consump-
tion and a structure called energy capsules to attribute
energy consumption to activities.

Using Powertrace, we demonstrate that the number of
radio transmissions is a poor estimator for the energy
consumption of a system and that low-power wireless
systems spend a large portion of their power on idle lis-
tening. Based on these results, we tune the ContikiMAC
duty cycling mechanism and reduce system energy con-

sumption by 24%, but idle listening still dominates.
Powertrace is already being used in the community

and we hope that it will further help towards more em-
pirical studies of energy and power consumption in low-
power wireless systems.

References
[1] G. Banga, P. Druschel, and J. Mogul. Resource contain-

ers: a new facility for resource management in server sys-
tems. In Proceedings of the Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 45–58,
New Orleans, Louisiana, United States, 1999.

[2] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-
MAC: a short preamble MAC protocol for duty-cycled
wireless sensor networks. In Proceedings of the Interna-
tional Conference on Embedded Networked Sensor Sys-
tems (ACM SenSys), pages 307–320, Boulder, Colorado,
USA, 2006.

[3] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Mor-
ris. A high-throughput path metric for multi-hop wireless
routing. In Proceedings of the International Conference
on Mobile Computing and Networking (ACM MobiCom),
pages 134–146, San Diego, CA, USA, 2003. ACM.

[4] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriks-
son, and N. Finne. The announcement layer: Beacon
coordination for the sensornet stack. In Proceedings of
the European Conference on Wireless Sensor Networks
(EWSN), 2011.

[5] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-
based on-line energy estimation for sensor nodes. In Pro-
ceedings of the IEEE Workshop on Embedded Networked
Sensor Systems (IEEE Emnets), Cork, Ireland, June 2007.

[6] A. Dunkels, F. Österlind, and Z. He. An adaptive com-
munication architecture for wireless sensor networks. In
Proceedings of the International Conference on Embed-
ded Networked Sensor Systems (ACM SenSys), Sydney,
Australia, November 2007.

[7] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Lev-
erett, E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes,
N. Finne, and A. Dunkels. Making Sensor Networks IPv6
Ready. In Proceedings of the International Conference
on Embedded Networked Sensor Systems (ACM SenSys),
Raleigh, North Carolina, USA, November 2008.

[8] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. En-
ergy metering for free: Augmenting switching regulators
for real-time monitoring. In Proceedings of the Interna-
tional Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN), pages 283–294, 2008.

[9] J. Flinn and M. Satyanarayanan. Energy-aware adaptation
for mobile applications. In Proceedings of the ACM Sym-
posium on Operating System Principles (SOSP), pages
48–63, Charleston, South Carolina, United States, 1999.

13



[10] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:
Tracking energy in networked embedded systems. In Pro-
ceedings of the Symposium on Operating Systems Design
and Implementation (OSDI), pages 323–338, 2008.

[11] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In Proceedings of the
International Conference on Embedded Networked Sen-
sor Systems (ACM SenSys), Berkeley, CA, USA, 2009.

[12] P. Hurni, T. Braun, B. Nyffenegger, and A. Hergen-
roeder. On the accuracy of software-based energy esti-
mation techniques. In Proceedings of the European Con-
ference on Wireless Sensor Networks (EWSN), Bonn, Ger-
many, February 2011.

[13] X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro
power meter for energy monitoring of wireless sensor
networks at scale. In Proceedings of the International
Conference on Information Processing in Sensor Net-
works (ACM/IEEE IPSN), Cambridge, Massachusetts,
USA, 2007.

[14] A. Lachenmann, U. Müller, R. Sugar, L. Latour,
M. Neugebauer, and A. Gefflaut. Programming sen-
sor networks with state-centric services. In Proceedings
of Distributed Computing in Sensor Systems (DCOSS),
2010.

[15] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen, and
M. Welsh. Resource aware programming in the pixie os.
In Proceedings of the International Conference on Em-
bedded Networked Sensor Systems (ACM SenSys), pages
211–224, Raleigh, NC, USA, 2008.

[16] M. Lunden and A. Dunkels. The politecast communca-
tion primtive for low-power wireless. The ACM Computer
Communications Review, April 2011.

[17] M. Martins, R. Fonseca, T. Schmid, and P. Dutta. Poster
abstract: Network-wide energy profiling of ctp. In Pro-
ceedings of the International Conference on Embedded
Networked Sensor Systems (ACM SenSys), pages 439–
440, Zurich, Switzerland, 2010.

[18] A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele.
Zerocal: Automatic mac protocol calibration. In Pro-
ceedings of Distributed Computing in Sensor Systems
(DCOSS), pages 31–44, 2010.

[19] R. Nathuji and K. Schwan. Virtualpower: coordinated
power management in virtualized enterprise systems. In
Proceedings of the ACM Symposium on Operating System
Principles (SOSP), pages 265–278, 2007.

[20] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y. Wang. In
Proceedings of the ACM European Conference on Com-
puter Systems (ACM EuroSys), 2011.

[21] K. Pister and L. Doherty. TSMP: Time Synchronized
Mesh Protocol. In Proceedings of the IASTED In-
ternational Symposium on Distributed Sensor Networks
(DSN08), Orlando, Florida, USA, November 2008.

[22] J. Polastre, J. Hill, and D. Culler. Versatile low power me-
dia access for wireless sensor networks. In Proceedings
of the International Conference on Embedded Networked

Sensor Systems (ACM SenSys), pages 95–107, Baltimore,
MD, USA, 2004. ACM Press.

[23] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. In Proceedings of the
International Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN), Los Angeles, CA,
USA, April 2005.

[24] H. Ritter, J. Schiller, T. Voigt, A. Dunkels, and J. Alonso.
Experimental Evaluation of Lifetime Bounds for Wireless
Sensor Networks. In Proceedings of the European Con-
ference on Wireless Sensor Networks (EWSN), Istanbul,
Turkey, January 2005.

[25] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A compar-
ison of high-level full-system power models. In Proceed-
ings of the Workshop on Power Aware Computing and
Systems (HotPower), San Diego, CA, December 2008.

[26] T. Schmid, R. Shea, M. B. Srivastava, and P. Dutta. Dis-
entangling wireless sensing from mesh networking. In
Proceedings of the Workshop on Hot Topics in Embedded
Networked Sensor Systems (HotEmnets), Killarney, Ire-
land, 2010.

[27] V. Shnayder, M. Hempstead, B. Chen, and M. Welsh.
Powertossim: Efficient power simulation for tinyos appli-
cations. In Proceedings of the International Conference
on Embedded Networked Sensor Systems (ACM SenSys),
2004.

[28] Y. Sun, O. Gurewitz, and D. Johnson. RI-MAC: A
Receiver-Initiated Asynchronous Duty Cycle MAC Pro-
tocol for Dynamic Traffic Loads in Wireless Sensor Net-
works. In Proceedings of the International Conference
on Embedded Networked Sensor Systems (ACM SenSys),
Raleigh, NC, USA, 2008.

[29] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling
Large-Scale Storage in Sensor Networks with the Coffee
File System. In Proceedings of the International Con-
ference on Information Processing in Sensor Networks
(ACM/IEEE IPSN), San Francisco, USA, April 2009.

[30] J.P. Vasseur and A. Dunkels. Interconnecting Smart Ob-
jects with IP: The Next Internet. Morgan Kaufmann,
2010.

[31] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient
MAC Protocol for Wireless Sensor Networks. In Pro-
ceedings of the IEEE Conference on Computer Commu-
nications (INFOCOM), New York, NY, USA, June 2002.

[32] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Ecosys-
tem: managing energy as a first class operating system re-
source. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), San Jose, California, 2002.

[33] F. Österlind, N. Wirström, N. Tsiftes, N. Finne, T. Voigt,
and A. Dunkels. StrawMAN: Making Sudden Traffic
Surges Graceful in Low-Power Wireless Networks. In
Proceedings of the 2010 ACM HotEMNETS Workshop on
Hot Topics in Embedded Networked Sensosr, Killarney,
Ireland, June 2010.

14


